WO2015096310A1 - 一种oled阵列基板的对置基板及其制备方法、显示装置 - Google Patents

一种oled阵列基板的对置基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015096310A1
WO2015096310A1 PCT/CN2014/075684 CN2014075684W WO2015096310A1 WO 2015096310 A1 WO2015096310 A1 WO 2015096310A1 CN 2014075684 W CN2014075684 W CN 2014075684W WO 2015096310 A1 WO2015096310 A1 WO 2015096310A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
array substrate
black matrix
oled array
Prior art date
Application number
PCT/CN2014/075684
Other languages
English (en)
French (fr)
Inventor
齐永莲
徐传祥
王灿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/407,009 priority Critical patent/US20160276617A1/en
Publication of WO2015096310A1 publication Critical patent/WO2015096310A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an opposite substrate of an OLED column substrate, a method for fabricating the same, and a display device.
  • OLED Organic Light Emitting Diode
  • an OLED display device is divided into a bottom emission type and a top emission type.
  • the array substrate of the top emission type OLED display device includes a metal anode, a metal cathode, an organic layer between the metal anode and the metal cathode, and the like. The light emitted from the organic layer exits the array substrate from the side of the metal cathode.
  • the thickness of the metal cathode is usually only a few nanometers thick, which makes the resistance of the metal cathode larger, and the metal cathode and the metal anode together drive the organic layer to emit more energy. And the heat is large, which easily affects the normality of the array substrate.
  • the top emission type OLED display device further includes an opposite substrate of the array substrate (ie, opposite to the array substrate)
  • the substrate is provided, and at present, a flat protective layer and a plurality of protrusions on the flat protective layer are formed on the opposite substrate, and a conductive layer is formed on the flat protective layer and the protrusion by sputtering or the like.
  • the conductive layer on the protrusion is electrically connected to the metal cathode to achieve parallel connection of the conductive layer and the metal cathode to reduce the resistance of the metal cathode.
  • the inventors have found that in the prior art, the conductive layer located above the protrusion is likely to be disconnected from the conductive layer located on the flat protective layer due to the limitation of the processing technology, so that The structure of the counter substrate is complicated, the processing cost is low, and the yield of the product is low.
  • the technical problem to be solved by the embodiments of the present invention is to provide an opposite substrate of an OLED array substrate, a preparation method thereof, and a display device, which can simplify the layer structure of the opposite substrate of the OLED array substrate and reduce the difficulty in preparing the opposite substrate. Improve the yield of the opposite substrate.
  • the embodiment of the present invention adopts the following technical solutions:
  • a first aspect of an embodiment of the present invention provides an opposite substrate of an OLED array substrate, including a flat layer and a protrusion on the flat layer, wherein the flat layer and the protrusion are electrically conductive, and the protrusion and the protrusion The electrodes of the OLED column substrate are electrically connected.
  • the protrusion is integrally formed with the flat layer.
  • the opposite substrate further includes a black moment
  • the flat layer is located on the black matrix
  • the flat layer also serves as a color filter layer.
  • the opposite substrate further includes a black moment and a color filter layer, wherein the color filter layer is located above the black matrix, and the level layer is located above the color filter layer.
  • the protrusion is disposed to correspond to the black matrix.
  • the flat layer and the protrusion are made of a transparent conductive resin.
  • the flat layer and the protrusion on the opposite substrate of the OLED array substrate are both electrically conductive, after the opposite substrate and the array substrate are paired, the protrusions are electrically connected to the electrodes of the OLED array substrate.
  • the opposite substrate does not need to be formed by sputtering or the like, which simplifies The layer structure of the opposite substrate reduces the processing cost of the opposite substrate and improves the yield of the product.
  • a second aspect of the embodiments of the present invention provides a display device including an OLED column substrate and an opposite substrate of the OLED array substrate.
  • a third aspect of the present invention provides a method for preparing an opposite substrate of an OLED array substrate, including:
  • An electrically conductive protrusion is formed over the planar layer for electrically connecting to an electrode of the OLED array substrate.
  • the step of forming a conductive layer capable of conducting on the base substrate comprises: Forming a black matrix on the base substrate;
  • a flat layer that also serves as a color filter layer is formed over the black moment.
  • the step of forming a conductive layer on the base substrate comprises: forming a black matrix on the base substrate;
  • a flat layer is formed over the color filter layer.
  • the protrusion is disposed to correspond to the black matrix.
  • the protrusion is integrally formed with the flat layer.
  • the flat layer and the protrusion are made of a transparent conductive resin.
  • FIG. 1 is a schematic structural view of a counter substrate of an OLED array substrate according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a pair of boxes of an OLED array substrate and an opposite substrate thereof according to an embodiment of the present invention
  • FIG. 4 is a flow chart 1 for fabricating an opposite substrate of an OLED array substrate according to an embodiment of the present invention
  • FIG. 5 is an opposite view of an OLED array substrate according to an embodiment of the present invention
  • FIG. 6 is a third flowchart of the fabrication of the opposite substrate of the OLED array substrate according to the embodiment of the present invention. Description of the reference signs:
  • 1 a first substrate; 2 - a flat layer;
  • the embodiment of the present invention provides an opposite substrate of an OLED array substrate, as shown in FIG. 1 , including a flat layer 2 disposed on the first substrate 1 , and a plurality of protrusions 3 located on the flat layer 2 .
  • the flat layer 2 and the protrusions 3 are electrically conductive, and the protrusions 3 are for electrically connecting with electrodes of the OLED array substrate.
  • the metal cathode 10 of the OLED column substrate is taken as an example.
  • the OLED array substrate includes, in order from bottom to top, a second substrate 4 and an array substrate. a thin film transistor unit 5 over the base substrate 4, a passivation layer 6 over the thin film transistor unit 5, a pixel electrode 7 over the passivation layer 6 and electrically connected to the drain of the thin film transistor unit 5, and a pixel
  • the electrode 7 is provided in the same layer and separates the pixel defining layer 8 of each pixel electrode 7, the organic layer 9 located above the pixel electrode 7 and the pixel defining layer 8, and the metal cathode 10 located above the organic layer 9.
  • the OLED array substrate is of a top emission type, that is, as indicated by a broken line arrow in FIG. 2, the light emitted from the organic layer 9 is emitted from the side of the metal cathode 10.
  • the layer thickness of the metal cathode 10 is usually small, for example, only a few nanometers thick, which makes the metal cathode 10 have a large electric resistance, and the electric energy required to drive the organic layer 9 is large, and the metal cathode 10 has a large electric resistance. More heat, affecting the normal operation of the OLED array substrate.
  • both the flat layer 2 and the protrusions 3 can conduct electricity, as shown in FIG. 2, after the opposite substrate and the OLED array substrate are paired, the protrusions 3 are electrically connected to the metal cathode of the OLED array substrate, which is equivalent to parallelizing the level 2 to The metal cathode of the OLED array substrate is used, thereby reducing the resistance of the metal cathode of the OLED array substrate, and at the same time, the opposite substrate does not need to be formed by sputtering or the like, thereby simplifying the layer structure of the opposite substrate. , reducing the processing cost of the opposite substrate and improving the production The yield of the product.
  • the bottom cabinet type thin film transistor unit 5 includes a gate electrode 51 on the second substrate substrate 4, a gate insulating layer 52 on the gate electrode 51, and a corresponding cabinet on the ⁇ pole insulating layer 52.
  • the electrode layer 53 is provided with a source layer 54 and a drain electrode 55 which are located above the active layer 53 and are insulated from each other.
  • a gate line (not shown) of the array substrate may be formed in the same layer as the gate 51, and formed in the same patterning process.
  • the data line of the array substrate (not shown in the figure) ) may be formed in the same layer as the source 54 and the drain 55, in the same patterning process.
  • the source 54 and the drain 55 are located in the same layer and are formed in the same patterning process.
  • the source 54 and the drain 55 may be disposed on different layers. Each is formed by a patterning process and is not limited herein.
  • the thin film transistor unit 5 is covered with a passivation layer 6, and the passivation layer process not only improves the ability of the display device to withstand harsh environments, but also contributes to improving the photoelectric parameters of the thin film transistor unit 5. performance.
  • the passivation layer 6 is usually made of an insulating material such as silicon oxide, silicon nitride, hafnium oxide, or a resin, in order to achieve electrical connection between the drain electrode 55 and the pixel electrode 7 which are separated by the passivation layer 6, blunt A via 11 is provided corresponding to the drain 55 of the thin film transistor unit 5 in the layer 6, so that the pixel electrode 7 above the passivation layer 6 is electrically connected to the drain 55 through the via 11.
  • the gate 51 of the thin film transistor unit 5 When the gate 51 of the thin film transistor unit 5 receives the signal transmitted from the gate line, the conductive channel of the active layer 53 is turned on, the source 54 and the drain 55 of the thin film transistor unit 5 are turned on, and the data signal from the data line is turned on.
  • the source 54 is transferred to the drain 55, and the plexus drain 55 is transferred to the pixel electrode 7 electrically connected thereto.
  • the pixel electrode 7 obtains the data signal, it has a certain voltage difference from the metal cathode 10, so that it is located at the pixel electrode 7.
  • the organic layer 9 between the metal cathode 10 and the metal cathode 10 emits light, and the light of the organic layer 9 is emitted through the metal cathode 10.
  • the pixel electrode 7 can be made of indium tin oxide (ITO) or metal, for example, can be made of a material such as silver aluminum alloy or aluminum, but a matching work function between the pixel electrode 7 and the organic layer 9 should be ensured.
  • the light emitted from the organic layer 9 can be substantially emitted from the side of the metal cathode 10 to ensure the light-emitting rate of the display device including the OLED array substrate and the opposite substrate, which is not limited by the embodiment of the present invention. .
  • the present invention is not limited thereto. It is also possible to make, for example, a top gate type thin film transistor.
  • the bottom-type thin film transistor refers to a type of thin film transistor under the semiconductor layer of the thin film transistor, and the thin film transistor is a type of thin film transistor which is located above the thin film transistor semiconductor layer. Thin film transistor.
  • the organic layer 9 includes a hole transport layer, a light emitting layer and an electron transport layer.
  • the voltage between the pixel electrode 7 and the metal cathode 10 is appropriate, the positive hole and electron transport in the hole transport layer
  • the cathode charge in the layer is combined in the luminescent layer to cause the luminescent layer to illuminate.
  • the electron transport layer and the hole transport layer of the organic light-emitting diode should be made of different organic materials or the same organic compound doped with different impurities. material. At present, the materials most commonly used to make electron transport layers must have high film stability and high thermal stability. The electron transport properties are generally good. Generally, fluorescent dye compounds such as oxadiazole derivatives and naphthalene ring derivatives are generally used. And a compound or derivative containing a naphthyl group, a compound or a derivative containing a 3-methylphenyl group, and the like.
  • the material of the hole transport layer belongs to an aromatic amine fluorescent compound such as a compound containing a 1-naphthyl group or a derivative.
  • the organic layer must have the characteristics of strong fluorescence in the solid state, good carrier transport performance, good thermal stability and chemical stability, high quantum efficiency and vacuum evaporation, such as octahydroxyquinoline aluminum.
  • the protrusion 3 is integrally formed with the flat layer 2, which not only ensures a stable connection between the protrusion 3 and the flat layer 2, but also reduces the process of making the protrusion 3 at a time, further reducing the fabrication of the opposite substrate. cost.
  • the material of the flat layer 2 and the protrusions 3 is typically a transparent conductive resin.
  • the transparent conductive resin can be made by the following method:
  • the light-transmitting matrix resin 50 to 5 parts by mass of the light-transmitting matrix resin, 1 to 20 parts by mass of the organic acid-doped polyaniline, and 1 to 15 parts by mass of the crosslinking monomer are added to 40 to 90 parts by mass of toluene, and stirred until completely dissolved.
  • the transparent conductive resin is formed.
  • the nano-sized erbium-doped 8110 2 may be uniformly mixed with a high molecular polymer monomer, a dispersant, a surfactant, or the like to form a transparent conductive resin for forming the flat protective layer 3.
  • the nano-sized conductive particles, the high-molecular polymer monomer, the dispersant, the surfactant, and the like may be uniformly mixed, and then the transparent conductive resin for the flat protective layer 3 may be formed by a method such as coating or deposition.
  • the nano-scale conductive particles can also be used for ffi nano-scale arsenic oxide or nano-silver.
  • the height of the protrusion 3 in the embodiment is, for example, 2.0 5.0 ⁇ m.
  • the organic layer 9 capable of emitting white light is required to be used in combination with the color filter layer 12 to display a color display screen.
  • the opposite substrate of the OLED array substrate further includes a black matrix 13 and a color filter layer 12, wherein the color filter layer 12 is located above the black moment 13.
  • the leveling layer 2 is located above the color filter layer 12.
  • the protrusions 3 are provided corresponding to the black matrix 13, i.e., any of the protrusions 3 are disposed at positions corresponding to the black matrix 13.
  • the opposite substrate further includes a black matrix 13, the flat layer 2 is located above the black matrix 13, and the flat layer 2 also serves as the color filter layer 12, and at this time, the flat Layer 2 has transmissive regions of different colors, for example, having a red transmissive region, a blue transmissive region, and a green transmissive region, which are arranged in a regular pattern to form a flat layer 2, similar to the foregoing, in order to prevent the influence of the protrusions 3
  • the aperture ratio of the counter substrate is set to correspond to the black moment 13.
  • the flat layer 2 when the flat layer 2 also serves as the color filter layer 12, when the transparent conductive resin forming the flat layer 2 is formed, it is also necessary to incorporate a pigment of a corresponding color to form a flat layer having transmissive regions of different colors. 2. At this time, the flat layer 2 needs to be formed by a plurality of patterning processes and a plurality of mask sheets, wherein the number of mask sheets or patterning processes required is determined by the color included in the flat layer 2.
  • the protrusions 3 are formed simultaneously with the transmission region of a certain color of the flat layer 2, that is, simultaneously with the transmission region of the color.
  • the protrusion 3 is also red.
  • an embodiment of the present invention further provides a display device including an OLED array substrate and the opposite substrate of the OLED.
  • the display device may be any product or component having a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the invention provides a method for preparing the opposite substrate of the OLED array substrate disclosed in the first embodiment. As shown in FIG. 4, the method includes:
  • Step S101 forming a conductive layer capable of conducting on the base substrate.
  • Steps Form conductive protrusions over the planar layer for electrically connecting to electrodes of the OLED array substrate.
  • step S101 specifically includes:
  • Step S201 forming a black matrix on the base substrate.
  • Step S202 forming a color filter layer on the black matrix.
  • Step S203 forming a flat layer over the color filter layer.
  • step S101 specifically includes:
  • Step S301 forming a black moment on the base substrate.
  • Step S302 forming a flat layer serving as a color filter layer on the black matrix.
  • the protrusions 3 should be disposed corresponding to the black matrix 13 to ensure the aperture ratio of the opposite substrate.
  • the protrusions 3 are integrally formed with the flat layer 2 .
  • the flat layer 2 and the protrusions 3 should have a good light transmittance, and therefore, the material of the flat layer and the protrusions is, for example, a transparent conductive resin.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED阵列基板的对置基板及其制备方法、显示装置。能够简化OLED阵列基板的对置基板的层结构,降低对置基板的制备难度,进而提高对置基板的良品率。OLED阵列基板的对置基板包括平坦层(2)和位于平坦层(2)之上的多个突起(3),平坦层(2)和突起(3)能够导电,突起(3)与OLED阵列基板的电极(10)电连接。

Description

种 OLED阵列基板的对置基板及其制备方法、 显示装置
本发明涉及显示技术领域, 尤其涉及一种 OLED 列基板的对置基板及 其制备方法、 显示装置。
有机发光二极管 (Organic Light Emitting Diode,简称 OLED)是一种有机薄 膜电致发光器件, 其具有制备工艺简单、 成本低、 发光效率高、 易形成柔性 结构、 视角宽等优点。 因此, 利用有机发光二极管的显示技术已成为一种重 要的显示技术。
通常, OLED 显示装置分为底发射型和顶发射型两种, 其中顶发射型 OLED 显示装置的阵列基板包括金属阳极、 金属阴极、 位于金属阳极和金属 阴极之间的有机层等结构, 其中, 有机层发出的光自金属阴极一侧射出阵列 基板。
为了使得光可以自金属阴极一侧射出阵列基板., 金属阴极的厚度通常仅 有数纳米厚, 这使得金属阴极的电阻较大, 金属阴极和金属阳极共同驱动有 机层发光时需要消耗较多的电能, 并― 发热较大, 容易影响阵列基板的正常 在现有技术中, 为了减小金属阴极的电阻, 该顶发射型 OLED显示装置 还包括阵列基板的对置基板 (即, 与阵列基板相对地设置的基板), 目前, 主 要是在对置基板上形成平坦保护层以及位于平坦保护层之上的多个突起, 并 在平坦保护层以及突起之上通过溅射等方式形成导电层, 通过位于突起上的 导电层与金属阴极电连接实现导电层与金属阴极的并联, 以减小金属阴极的 电阻。 发明人在实现本发明实施例的过程中发现, 现有技术中, 位于突起之 上的导电层由于受到加工工艺的制约, 容易出现与位于平坦保护层上的导电 层断开等不良现象, 使得对置基板结构较为复杂、 加工成本髙、 产品的良品 率低。 本发明实施例所要解决的技术问题在于提供一种 OLED阵列基板的对置 基板及其制备方法、 显示装置, 能够简化 OLED阵列基板的对置基板的层结 构, 降低对置基板的制备难度, 进而提高对置基板的良品率。
为解决上述技术问题, 本发明实施例采用如下技术方案:
本发明实施例第一方面提供了一种 OLED阵列基板的对置基板, 包括平 坦层和位于所述平坦层之上的突起, 其中, 所述平坦层和所述突起能够导电, 所述突起与所述 OLED 列基板的电极电连接。
进一步的, 所述突起与所述平坦层一体成型。
进一步的, 所述对置基板还包括黑矩 , 所述平坦层位于所述黑矩阵之 上, 所述平坦层兼作为彩色滤色层。
进一步的, 所述对置基板还包括黑矩 和彩色滤色层, 其中, 所述彩色 滤色层位于所述黑矩阵之上, 所述平 层位于所述彩色滤色层之上。
进一步的, 所述突起被设置成与所述黑矩阵对应。
进一歩的, 所述平坦层和所述突起的材质为透明导电树脂。
在本发明实施例的技术方案中, 由于 OLED阵列基板的对置基板上的平 坦层和突起均能够导电, 因此在对置基板和阵列基板对盒之后, 各突起电连 接至 OLED阵列基板的电极, 相当于将平坦层并联至 OLED阵列基板的电极 之上, 由此, 减小了 OLED阵列基板的电极的电阻, 同时, 其对置基板不需 要再通过溅射等方式形成导电层, 简化了对置基板的层结构, 降低了对置基 板的加工成本, 提高了产品的良品率。
本发明实施例的第二方面提供了一种显示装置, 包括 OLED 列基板和 上述 OLED阵列基板的对置基板。
本发明实施例的第三方面提供了一种 OLED阵列基板的对置基板的制备 方法, 包括;
在衬底基板上形成能够导电的平坦层;
在所述平坦层之上形成能够导电的突起, 所述突起用于与所述 OLED阵 列基板的电极电连接。
进一步的, 所述在衬底基板上形成能够导电的平坦层的步骤包括: 在衬底基板上形成黑矩阵;
在所述黑矩 之上形成兼作为彩色滤色层的平坦层。
进一步的, 所述在衬底基板上形成能够导电的平 层的步骤包括: 在衬底基板上形成黑矩阵;
在所述黑矩阵之上形成彩色滤色层;
在所述彩色滤色层之上形成平坦层。
进一步的, 所述突起被设置成与所述黑矩阵对应。
进一步的, 所述突起与所述平坦层一体成型。
进一步的, 所述平坦层和所述突起的材质为透明导电树脂。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 述中所需要使) ¾的附图作筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些 图获得其他的 图。
图 1为本发明实施例中的 OLED阵列基板的对置基板的结构示意图一; 图 2为本发明实施例中的 OLED阵列基板与其对置基板的对盒示意图; 图 3为本发明实施例中的 OLED阵列基板的对置基板的结构示意图二; 图 4为本发明实施例中的 OLED阵列基板的对置基板的制作流程图一; 图 5为本发明实施例中的 OLED阵列基板的对置基板的制作流程图二; 图 6为本发明实施例中的 OLED阵列基板的对置基板的制作流程图三。 附图标记说明:
1一第一衬底基板; 2—平坦层;
Figure imgf000004_0001
4一第二衬底基板: 5—薄膜晶体管单元;
52 栅极绝缘层; 53—有源层;
Figure imgf000004_0002
55—漏极; 6—钝化层;
8—像素限定层; 9一有机层;
Figure imgf000004_0003
11 过孔; 12—彩色滤色层; 下面将结合本发明实施例中的 图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供一种 OLED阵列基板的对置基板, 如图 1所示, 包括 设置于第一衬底基板 1之上的平坦层 2、位于所述平坦层 2之上的多个突起 3, 其中, 所述平坦层 2和所述突起 3能够导电, 所述突起 3用于与所述 OLED 阵列基板的电极电连接。
需要说明的是, 以下, 以所述 OLED 列基板的金属阴极 10为例进行具 具体的, 如图 2所示, OLED阵列基板由下至上依次包括: 第二衬底基 板 4、位于阵列基板的衬底基板 4之上的薄膜晶体管单元 5、位于薄膜晶体管 单元 5之上的钝化层 6、 位于钝化层 6之上的并且电连接薄膜晶体管单元 5 的漏极的像素电极 7、 与像素电极 7同层设置且隔绝开各个像素电极 7的像 素限定层 8、 位于像素电极 7与像素限定层 8之上的有机层 9、 位于有机层 9 之上的金属阴极 10。
其中, 该 OLED阵列基板为顶发射型, 即如图 2中的虚线箭头所示, 有 机层 9发出的光线自金属阴极 10—侧出射。 此时, 金属阴极 10的层厚通常 很小, 例如仅有数个纳米厚, 这使得金属阴极 10的电阻较大, 驱动有机层 9 所需要消耗的电能较多, 同时金属阴极 10 由于电阻较大、 发热较多, 影响 OLED阵列基板的正常工作。
由于平坦层 2和突起 3均能够导电, 如图 2所示, 在对置基板与 OLED 阵列基板对盒之后, 各突起 3电连接至 OLED阵列基板的金属阴极, 相当于 将平 层 2并联至 OLED阵列基板的金属阴极之上, 由此, 减小了 OLED阵 列基板的金属阴极的电阻, 同时, 其对置基板不需要再通过溅射等方式形成 导电层, 简化了对置基板的层结构, 降低了对置基板的加工成本, 提高了产 品的良品率。
具体的, 如图 2所示, 以底 »型薄膜晶体管为例进行说明。 该底櫥型薄 膜晶体管单元 5包括位于第二衬底基板 4之上的栅极 51、 位于所述栅极 51 之上的栅极绝缘层 52、 位于所述»极绝缘层 52之上对应櫥极 5】设置的有源 层 53、 位于所述有源层 53之上且相互绝缘的源极 54和漏极 55。 另外, 该阵 列基板的栅线(图中未示出)可与所述栅极 51位于同一图层、 在同一次构图 工艺中形成, 类似地, 该阵列基板的数据线 (图中未示出) 可与所述源极 54 和所述漏极 55位于同一图层、 在同一构图工艺中形成。
需要说明的是, 在本发明实施例中, 源极 54和漏极 55位于同一图层、 在同一次构图工艺中形成, 当然, 也可将源极 54和漏极 55设置于不同图层、 各自经过一次构图工艺形成, 在此不进行限定。
由图 2可看出, 薄膜晶体管单元 5之上覆盖有钝化层 6, 采^钝化层工 艺不仅提高了显示装置的耐严酷环境的能力, 而且有助于改善薄膜晶体管单 元 5的光电参数性能。 但是, 由于钝化层 6通常采用氧化硅、 氮化硅、 氧化 铪、 树脂等绝缘村料, 因此为了实现被钝化层 6间隔开的漏极 55和像素电极 7之间的电连接, 钝化层 6中对应于薄膜晶体管单元 5的漏极 55之处对应设 置有过孔 1 1, 使得钝化层 6之上的像素电极 7通过该过孔 11 电连接至漏极 55。 当薄膜晶体管单元 5 的栅极 51 接收到栅线传送来的信号, 打开有源层 53的导电沟道, 导通薄膜晶体管单元 5的源极 54和漏极 55, 将来自数据线 的数据信号从源极 54传送至漏极 55, 再丛漏极 55传送给与其电连接的像素 电极 7,像素电极 7获得数据信号后,与金属阴极 10之间具有一定的电压差, 使得位于像素电极 7和金属阴极 10之间的有机层 9发光,有机层 9的光经过 金属阴极 10出射。
其中, 像素电极 7可利用氧化铟锡(ITO)或金属等制成, 例如可利用银 铝合金、 铝等材料制成, 但应保证该像素电极 7与有机层 9之间具有匹配的 功函数, 使得有机层 9发出的光基本都能够丛金属阴极 10—侧出射, 以保证 包括该 OLED阵列基板及其对置基板的显示装置对光的利 ^率, 本发明实施 例对此不进行限制。
本说明 虽然以底極型薄膜晶体管作为实施例进行了说明,但不限于此, 还可使 ^例如顶栅型薄膜晶体管。 本发明实施例中, 底»型薄膜晶体管是指 薄膜晶体管的櫥极位于薄膜晶体管半导体层下方的一类薄膜晶体管顶櫥型薄 膜晶体管是指薄膜晶体管的 »极位于薄膜晶体管半导体层上方的一类薄膜晶 体管。
进一步的, 具体的, 有机层 9内包括空穴传输层、 发光层与电子传输层, 当像素电极 7和金属阴极 10之间的电压适当时,空穴传输层中的正极空穴与 电子传输层中的阴极电荷就会在发光层中结合, 使发光层产生光亮。
需要说明的是, 由于适合传递电子的有机材料不一定适合传递空穴, 所 以有机发光二极体的电子传输层和空穴传输层应选用不同的有机材料或掺杂 了不同杂质的相同的有机材料。 目前最常被用来制作电子传输层的材料必须 制膜安定性高、热稳定性高旦电子传输性佳, 一般通常采^荧光染料化合物, 如蒽二唑类衍生物、 含萘环类衍生物、 含】 萘基的化合物或衍生物、 含 3 甲 基苯基的化合物或衍生物等。 而空穴传输层的材料属于一种芳香胺荧光化合 物, 如含 1 -萘基的化合物或衍生物等有机材料。
有机层的村料须具备固态下有较强荧光、 载子传输性能好、 热稳定性和 化学稳定性佳、 量子效率高且能够真空蒸铍的特性, 例如可采 八羟基喹琳 铝。
例如, 所述突起 3与所述平坦层 2—体成型, 不仅可以保证突起 3和平 坦层 2之间的稳定连接, 而且可以减少一次制作突起 3的工艺, 进一步的降 低该对置基板的制作成本。
其中, 所述平坦层 2和所述突起 3的材质典型的为透明导电树脂, 具体 的, 可通过如下方法制成透明导电树脂:
将 10〜50质量份透光基体树脂和 〜 20质量份有机酸掺杂的聚苯胺加入 到 40〜90质量份甲苯中, 搅拌至完全溶解, 形成所述透明导电树脂。
或者, 将川〜 50质量份透光基体树脂、 1〜20质量份有机酸掺杂的聚苯 胺和 1〜15 质量份交联单体加入到 40〜90质量份甲苯中, 搅拌至完全溶解, 形成所述透明导电树脂。
或者, 将 10〜50质量份透光基体树脂、 1〜20质量份有机酸惨杂的聚苯 胺、 1〜 15质量份交联单体和( 〜l质量份固化引发剂加入到 40〜90质量 份甲苯中, 搅拌至完全溶解, 形成所述透明导电树脂。
另外, 也可将纳米级的掺锑的 81102和高分子聚合物单体、 分散剂、 表面 活性剂等均匀混合, 来形成用于制作平坦保护层 3的透明导电树脂。
例如可以将纳米级的导电粒子和高分子聚合物单体、 分散剂、 表面活性 剂等均匀混合后, 通过涂覆、 沉积等方法, 形成用于平坦保护层 3的透明导 电树脂。
其中, 纳米级的导电粒子除了可采用纳米级的掺锑的 Sn02之外, 还可采 ffi纳米级氧化镭锡或纳米银等。
在本发明实施例中, 为了使得对置基板和阵列基板对盒后形成的显示面 板的厚度符合要求, 本实施例所述突起 3的高度例如为 2.0 5.0 u m。
进一步的, 本发明实施例中, 例如使 ^能够发出白光的有机层 9, 因此 还需要配合使用彩色滤色层 12才能够显示彩色的显示画面。此时, 如图 1或 图 2所示, 该 OLED阵列基板的对置基板上还包括黑矩阵 13和彩色滤色层 12 , 其中, 所述彩色滤色层 12位于所述黑矩 13之上, 所述平 层 2位于 所述彩色滤色层 12之上。为了防止突起 3影响该对置基板的开口率,典型的, 所述突起 3对应于所述黑矩阵 13而设置,即任一个突起 3都设置于与黑矩阵 13对应的位置上。
或者, 如图 3所示, 该对置基板还包括黑矩阵 13, 所述平坦层 2位于所 述黑矩阵 13之上, 所述平 层 2兼作为彩色滤色层 12, 此时, 该平坦层 2 具有不同颜色的透射区域, 例如, 具有红色透射区域、 蓝色透射区域和绿色 透射区域, 该三种透射区域以一定规律排列而形成平坦层 2, 与前述类似的, 为了防止突起 3影响该对置基板的开口率, 所述突起 3对应于所述黑矩 13 而设置。
其中, 若是平坦层 2兼作为彩色滤色层 12时, 在制作) ¾于形成平坦层 2 的透明导电树脂时, 还需要掺入对应颜色的颜料, 以形成具有不同颜色的透 射区域的平坦层 2。 此时, 该平坦层 2需要经过多次构图工艺、 多块掩膜板 形成, 其中, 所需要的掩膜板或构图工艺的数量以平坦层 2所包括的颜色确 定。
需要说明的是, 突起 3与平坦层 2—体成型的情况下, 若是如图 3所示, 平坦层 2兼作为彩色滤色层 12, 则突起 3在制作平坦层 2的某一颜色的透射 区域的同时形成, 即与该颜色的透射区域同时形成。 例如, 突起 3与平坦层 2的红色透射区域一体成型时, 该突起 3也为红色。
进一步的, 本发明实施例还提供了一种显示装置, 包括 OLED阵列基板 和所述的 OLED的对置基板。 所述显示装置可以为: 手机、 平板电脑、 电视 机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或 部件。
实施例二
与实施例一对应的, 本发明实施例提供了一种实施例一公开的 OLED阵 列基板的对置基板的制备方法, 如图 4所示, 该方法包括:
步骤 S101 : 在衬底基板上形成能够导电的平坦层。
步骤 在所述平 层之上形成能够导电的突起, 所述突起用于与所 述 OLED阵列基板的电极电连接。
进一步的, 如图 1所示, 当对置基板还包括彩色滤色层 12和黑矩阵 13 时, 如图 5所示, 步骤 S101具体包括:
步骤 S201 : 在衬底基板上形成黑矩阵。
步骤 S202: 在所述黑矩阵之上形成彩色滤色层。
步骤 S203 : 在所述彩色滤色层之上形成平坦层。
或者,如图 3所示, 当该平坦层 2兼作为彩色滤色层 12时,如图 6所示, 步骤 S101具体包括:
步骤 S301 : 在衬底基板上形成黑矩 。
步骤 S302: 所述黑矩阵之上形成兼作为彩色滤色层的平坦层。
之后, 如图 1、 图 2或图 3所示, 所述突起 3应对应于所述黑矩阵 13而 设置, 以保证该对置基板的开口率。
其中, 典型的, 所述突起 3与所述平坦层 2—体成型。
该平坦层 2和所述突起 3应具有较好的透光率, 因此, 所述平坦层和所 述突起的材质例如为透明导电树脂。
以上所述, 汉为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 w , 都应涵盖在本发明的保护范 因此, 本发明的保护 述权利要求的保护范围为准。

Claims

1 . 一种 OLED阵列基板的对置基板, 其特征在于, 包括平坦层和位于所 述平坦层之上的多个突起, 其中, 所述平 层和所述突起能够导电, 所述突 起与所述 OLED阵列基板的电极电连接。
2. 根据权利要求 1所述的对置基板, 其特征在于, 所述突起与所述平坦 层一体成型。
3. 根据权利要求 1或 2所述的对置基板, 其特征在于, 还包括黑矩阵, 所述平坦层位于所述黑矩阵之上, 所述平坦层兼作为彩色滤色层。
4. 根据权利要求 1或 2所述的对置基板, 其特征在于, 还包括黑矩阵和 彩色滤色层, 其中, 所述彩色滤色层位于所述黑矩阵之上, 所述平坦层位于 所述彩色滤色层之上。
5. 根据权利要求 3或 4所述的对置基板, 其特征在于, 所述突起被设置 成与所述黑矩阵对应。
6. 根据权利要求 1-5任一项所述的对置基板, 其特征在于, 所述平坦层 和所述突起的材质为透明导电树脂。
7. 一种显示装置, 包括 OLED 列基板和如权利要求 1-6任一项所述的 OLED阵列基板的对置基板。
8. 一种 OLED阵列基板的对置基板的制备方法, 其特征在于, 包括: 在衬底基板上形成能够导电的平坦层;
在所述平坦层之上形成能够导电的突起, 所述突起用于与所述 OLED阵 列基板的电极电连接。
9. 根据权利要求 8所述的制备方法, 其特征在于, 所述在衬底基板上形 成能够导电的平坦层的步骤包括;
在衬底基板上形成黑矩阵;
在所述黑矩阵之上形成兼作为彩色滤色层的平坦层。
10. 根据权利要求 8所述的制备方法, 其特征在于, 所述在衬底基板上 形成能够导电的平坦层的步骤包括:
在衬底基板上形成黑矩阵; 在所述黑矩阵之上形成彩色滤色层;
在所述彩色滤色层之上形成平坦层。
1 1. 根据权利要求 9或 10所述的制备方法, 其特征在于,
所述突起被设置成与所述黑矩阵对应。
12. 根据权利要求 8- 1 1任一项所述的制备方法, 其特征在于, 所述突起 所述平坦层一体成型。
1 3. 根据权利要求 8 12任一项所述的制备方法, 其特征在于, 所述平坦 和所述突起的材质为透明导电树脂。
PCT/CN2014/075684 2013-12-27 2014-04-18 一种oled阵列基板的对置基板及其制备方法、显示装置 WO2015096310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/407,009 US20160276617A1 (en) 2013-12-27 2014-04-18 Opposed substrate of an oled array substrate and method for preparing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310743033.0 2013-12-27
CN201310743033.0A CN103700683B (zh) 2013-12-27 2013-12-27 一种oled阵列基板的对置基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015096310A1 true WO2015096310A1 (zh) 2015-07-02

Family

ID=50362158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075684 WO2015096310A1 (zh) 2013-12-27 2014-04-18 一种oled阵列基板的对置基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20160276617A1 (zh)
CN (1) CN103700683B (zh)
WO (1) WO2015096310A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700683B (zh) * 2013-12-27 2016-04-06 京东方科技集团股份有限公司 一种oled阵列基板的对置基板及其制备方法、显示装置
JP2017147059A (ja) * 2016-02-15 2017-08-24 セイコーエプソン株式会社 電気光学装置及び電子機器
CN205900543U (zh) * 2016-05-18 2017-01-18 武汉华星光电技术有限公司 一种oled显示面板
CN108258008B (zh) * 2016-12-29 2020-12-04 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN108198952A (zh) 2017-12-29 2018-06-22 昆山工研院新型平板显示技术中心有限公司 柔性显示屏及其制备方法
CN108598126B (zh) * 2018-05-04 2021-10-15 京东方科技集团股份有限公司 彩膜基板及其制备方法以及显示面板
CN109888122A (zh) * 2019-02-12 2019-06-14 深圳市华星光电半导体显示技术有限公司 Oled显示面板和柔性显示装置
US11367852B2 (en) * 2020-08-07 2022-06-21 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Manufacturing method of OLED display panel with cathode metal layer of lower conductivity and OLED display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543269A (zh) * 2003-03-13 2004-11-03 ����Sdi��ʽ���� 在电致发光显示器件中的导电体设计
CN1967864A (zh) * 2005-11-15 2007-05-23 三星电子株式会社 显示装置及其制造方法
CN103700683A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种oled阵列基板的对置基板及其制备方法、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138502B2 (en) * 2005-08-05 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
JP5463616B2 (ja) * 2007-11-29 2014-04-09 大日本印刷株式会社 有機el素子、有機elディスプレイ及びカラーフィルター
CN101488515B (zh) * 2008-01-17 2012-08-29 奇美电子股份有限公司 有机发光显示器装置、模块及电子装置
TWI380089B (en) * 2008-12-03 2012-12-21 Au Optronics Corp Method of forming a color filter touch sensing substrate
CN102959707B (zh) * 2011-06-30 2016-09-28 株式会社日本有机雷特显示器 显示面板以及显示面板的制造方法
CN102627823B (zh) * 2011-08-10 2015-10-21 京东方科技集团股份有限公司 透明导电树脂、彩膜基板及制作方法、液晶显示装置
KR20130049728A (ko) * 2011-11-04 2013-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 모듈 및 발광 장치
KR101396943B1 (ko) * 2012-06-25 2014-05-19 엘지디스플레이 주식회사 액정표시장치 및 제조방법
CN102944908B (zh) * 2012-10-11 2016-03-30 京东方科技集团股份有限公司 一种彩色滤光片、其制备方法和液晶显示装置
US9088003B2 (en) * 2013-03-06 2015-07-21 Apple Inc. Reducing sheet resistance for common electrode in top emission organic light emitting diode display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543269A (zh) * 2003-03-13 2004-11-03 ����Sdi��ʽ���� 在电致发光显示器件中的导电体设计
CN1967864A (zh) * 2005-11-15 2007-05-23 三星电子株式会社 显示装置及其制造方法
CN103700683A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种oled阵列基板的对置基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN103700683A (zh) 2014-04-02
CN103700683B (zh) 2016-04-06
US20160276617A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
US11444138B2 (en) Display panel, fabrication method therefor, and display device
Guo et al. The fabrication of color-tunable organic light-emitting diode displays via solution processing
WO2015096310A1 (zh) 一种oled阵列基板的对置基板及其制备方法、显示装置
US10573850B2 (en) Manufacturing OLED panel by utilizing morphological transformation layer
WO2015096378A1 (zh) 阵列基板及其制备方法、显示装置
US9406733B2 (en) Pixel structure
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
US20140312323A1 (en) Organic light emitting diode display device and method of fabricating the same
US8946699B2 (en) Display device, light-emitting device, lighting device, and electronic appliance
US10164207B2 (en) Organic light-emitting device and method for manufacturing same
TW200803008A (en) Light emitting device and method of manufacturing the same
US10454066B2 (en) Thin-film package structure and OLED component
WO2015096318A1 (zh) 阵列基板及其制作方法、显示装置
CN108573998B (zh) 显示面板及制造方法、显示装置
CN105390528A (zh) 一种高发光开口率的显示装置及其制备方法
WO2015149465A1 (zh) 一种woled背板及其制作方法
US20150090336A1 (en) Organic-inorganic hybrid light emitting device, method for manufacturing the same, and organic-inorganic hybrid solar cell
US9680131B2 (en) Organic light-emitting diode (OLED) panel, manufacturing method thereof and display device
WO2024046290A1 (zh) 发光器件、显示面板及其制备方法
US11622433B2 (en) Display panel, manufacturing method and drive control method thereof, and display apparatus
CN109768178B (zh) 有机电致发光器件、显示基板、显示装置
US10930727B2 (en) Organic light-emitting diode display screen and electronic device
WO2021097981A1 (zh) 有机电致发光二极管器件、显示面板及其制备方法
WO2023206674A1 (zh) 有机发光显示面板和有机发光显示装置
US20230255107A1 (en) Light-emitting device, light-emitting substrate, and light-emitting apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14407009

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14874953

Country of ref document: EP

Kind code of ref document: A1