WO2024046290A1 - 发光器件、显示面板及其制备方法 - Google Patents

发光器件、显示面板及其制备方法 Download PDF

Info

Publication number
WO2024046290A1
WO2024046290A1 PCT/CN2023/115379 CN2023115379W WO2024046290A1 WO 2024046290 A1 WO2024046290 A1 WO 2024046290A1 CN 2023115379 W CN2023115379 W CN 2023115379W WO 2024046290 A1 WO2024046290 A1 WO 2024046290A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
compound
emitting
layer
weight
Prior art date
Application number
PCT/CN2023/115379
Other languages
English (en)
French (fr)
Other versions
WO2024046290A9 (zh
Inventor
刘杨
王丹
陈磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024046290A1 publication Critical patent/WO2024046290A1/zh
Publication of WO2024046290A9 publication Critical patent/WO2024046290A9/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting device, a display panel and a preparation method thereof.
  • OLED Organic Light Emitting Diode
  • tandem organic electroluminescence devices have become an important development direction of OLED display technology.
  • a light-emitting device includes a first electrode, at least two light-emitting units and a second electrode sequentially stacked along a first direction.
  • the at least two light-emitting units include a first light-emitting unit and a second light-emitting unit.
  • the first light-emitting unit is located between the first electrode and the second electrode; the first light-emitting unit includes a first light-emitting layer.
  • the second light-emitting unit is located between the first light-emitting unit and the second electrode; the second light-emitting unit includes a second light-emitting layer.
  • the light-emitting layer of each light-emitting unit includes a first compound, a second compound and a third compound.
  • the weight ratio of the first compound in the first light-emitting layer to the first light-emitting layer is equal to the weight ratio of the first compound in the second light-emitting layer to the second light-emitting layer.
  • the absolute value of the difference between the weight proportions is in the range of 0% to 3%; and/or the proportion of the second compound in the first luminescent layer
  • the absolute value of the difference between the weight proportion of the second compound in the second light-emitting layer and the weight proportion of the second compound in the second light-emitting layer is in the range of 0% to 3%.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M1.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M2.
  • the absolute value of the difference between M1 and M2 is in the range of 0% to 2%.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M3.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M4.
  • the absolute value of the difference between M3 and M4 is in the range of 0% to 2%.
  • a ratio between the weight of the first compound and the weight of the second compound is in the range of 3:7 to 7:3. .
  • the ratio between the weight of the third compound and the sum of the weights of the first compound and the second compound is 1%. ⁇ 14%.
  • the light emitting device further includes a charge generation layer.
  • the charge generation layer is disposed between two adjacent light-emitting units and coupled with the light-emitting units.
  • the absolute value of the difference between the wavelength of the light emitted by the first light-emitting layer of the light-emitting device and the wavelength of the light emitted by the second light-emitting layer is less than or equal to 20 nm.
  • the at least two light-emitting units further include a third light-emitting unit.
  • the third light-emitting unit is located between the second light-emitting unit and the second electrode, and includes a third light-emitting layer.
  • the weight ratio of the first compound in the first light-emitting layer to the first light-emitting layer is the same as the weight ratio of the first compound in the third light-emitting layer to the third light-emitting layer.
  • the absolute value of the difference between the weight proportions is in the range of 0% to 3%; and/or the proportion of the second compound in the first luminescent layer
  • the absolute value of the difference between the weight proportion of the second compound in the third light-emitting layer and the weight proportion of the second compound in the third light-emitting layer is in the range of 0% to 3%.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M1.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M5.
  • the absolute value of the difference between M1 and M5 is in the range of 0% to 2%.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M3.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M6.
  • the absolute value of the difference between M3 and M6 is in the range of 0% to 2%.
  • the weight ratio of the first compound in the second light-emitting layer to the second light-emitting layer is equal to the weight ratio of the first compound in the third light-emitting layer.
  • the absolute value of the difference between the weight proportions of the first compound in the third luminescent layer is in the range of 0% to 3%; and/or the third luminescent layer in the second luminescent layer.
  • the absolute difference between the weight proportion of the second compound in the second light-emitting layer and the weight proportion of the second compound in the third light-emitting layer The value is in the range of 0% to 3%.
  • a display panel includes a pixel defining layer and a plurality of light emitting devices.
  • the pixel definition layer is provided with a plurality of light-emitting openings.
  • a plurality of light-emitting devices respectively cover a plurality of the light-emitting openings.
  • Each of the light-emitting devices is a light-emitting device as described in any of the above embodiments.
  • the plurality of light-emitting devices in the display panel include first-color light-emitting devices and second-color light-emitting devices.
  • the wavelength of the light emitted by the first color light emitting device is smaller than the wavelength of the light emitted by the second color light emitting device.
  • the ratio between the weight of the first compound and the weight of the second compound in the light-emitting layer of the first color light-emitting device is greater than or equal to the weight of the first compound in the light-emitting layer of the second color light-emitting device.
  • One compound The ratio between the weight of the compound and the weight of the second compound.
  • the ratio between the weight of the first compound and the weight of the second compound is between 5:5 and Within the range of 7:3. In the light-emitting layer of the second color light-emitting device, the ratio between the weight of the first compound and the weight of the second compound is in the range of 3:7 to 5:5.
  • the plurality of light-emitting devices in the display panel include first-color light-emitting devices and second-color light-emitting devices.
  • the wavelength of the light emitted by the first color light emitting device is smaller than the wavelength of the light emitted by the second color light emitting device.
  • the ratio between the weight of the third compound in the light-emitting layer of the first color light-emitting device and the sum of the weights of the first compound and the second compound is greater than or equal to the second color light-emitting device The ratio between the weight of the third compound in the light-emitting layer and the sum of the weights of the first compound and the second compound.
  • the weight of the third compound in the light-emitting layer of the first color light-emitting device in the display panel is between the weight of the first compound and the sum of the weights of the second compound.
  • the proportion is in the range of 6% to 14%.
  • the ratio between the weight of the third compound and the sum of the weights of the first compound and the second compound is in the range of 1% to 6%. .
  • a method of preparing a display panel includes forming a first electrode.
  • a pixel defining layer is formed on the first electrode, and the pixel defining layer is provided with a plurality of light-emitting openings; the light-emitting openings expose the first electrode.
  • At least two light-emitting units covering the light-emitting opening are formed.
  • the at least two light-emitting units include a first light-emitting unit and a second light-emitting unit sequentially stacked along a first direction.
  • the first light-emitting unit includes a first light-emitting layer; the second light-emitting unit includes a second light-emitting layer.
  • the light-emitting layer in each of the light-emitting units includes a first compound, a second compound and a third compound.
  • the weight ratio of the first compound in the first light-emitting layer to the first light-emitting layer is equal to the weight ratio of the first compound in the second light-emitting layer to the second light-emitting layer.
  • the absolute value of the difference between the weight proportions is in the range of 0% to 3%; and/or the proportion of the second compound in the first luminescent layer
  • the absolute value of the difference between the weight proportion of the second compound in the second light-emitting layer and the weight proportion of the second compound in the second light-emitting layer is in the range of 0% to 3%.
  • a second electrode is formed on a side of the at least two light-emitting units away from the first electrode.
  • the first light-emitting unit is located between the first electrode and the second electrode.
  • the second light-emitting unit is located between the first light-emitting unit and the second electrode.
  • forming at least two light-emitting units covering the light-emitting opening includes: using an open mask to form a first transmission layer, the first transmission layer covering the light-emitting opening. first electrode.
  • the first luminescent layer covering the luminescent opening is formed using a high-precision metal mask; the first luminescent layer is located on the first transmission layer.
  • An open mask is used to sequentially form a second transmission layer and a third transmission layer that overlap each other, and the second transmission layer covers the first light-emitting layer.
  • An open mask is used to form a fourth transmission layer; the fourth transmission layer covers the second light-emitting layer.
  • using a high-precision metal mask to form the first light-emitting layer covering the light-emitting opening includes: simultaneously evaporating the first compound at a first temperature and evaporating at a second temperature. the second compound, so that the vaporized first compound and the vaporized second compound pass through a high-precision metal mask to form a first light-emitting layer covering the light-emitting opening.
  • the absolute value of the difference between the first temperature and the second temperature is within the range of 0°C to 10°C.
  • using a high-precision metal mask to form the first light-emitting layer covering the light-emitting opening includes: simultaneously evaporating the first compound at a first temperature and evaporating at a second temperature. The second compound, evaporating the third compound at a third temperature, so that the vaporized first compound, the vaporized second compound and the vaporized third compound pass through the high-precision metal A mask is used to form the first light-emitting layer covering the light-emitting opening.
  • the absolute value of the difference between the third temperature and the first temperature, and/or the absolute value of the difference between the third temperature and the second temperature is between 0°C and 100°C. within the range of °C.
  • Figure 1 is a perspective view of a display panel according to some embodiments.
  • Figure 2 is a cross-sectional view along line AA' of the display panel according to the embodiment shown in Figure 1;
  • Figures 3 to 7 are respectively diagrams of the arrangement structure of sub-pixels in a display panel according to some embodiments.
  • Figure 8 is a cross-sectional view of a display panel according to some embodiments.
  • Figure 9 is an enlarged view of area F in Figure 2;
  • Figure 10 is an enlarged view of area F in Figure 2;
  • Figure 11 is a structural diagram of a light emitting device according to some embodiments.
  • Figures 12A to 12C are structural diagrams of the first compound according to some embodiments.
  • Figure 13 is a structural diagram of a second compound according to some embodiments.
  • Figures 14A to 14C are structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 1;
  • Figures 15A to 15C are structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 2;
  • Figures 16A to 16C show the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 3. Structural diagram of three compounds;
  • Figures 17A to 17C are structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 4;
  • Figures 18A to 18C are structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 5;
  • Figures 19A to 19C are structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Scheme 6;
  • Figures 20A to 20C are sequentially structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Comparative Scheme 1;
  • Figures 21A to 21C are sequentially structural diagrams of the first compound, the second compound and the third compound in the light-emitting layer of the light-emitting device in Comparative Scheme 2;
  • Figure 22 is a flow chart of a method for preparing a display panel according to some embodiments.
  • Figure 23 is a flow chart of a method for preparing a display panel according to some embodiments.
  • Figure 24 is a flow chart of a method for preparing a display panel according to some embodiments.
  • FIG. 25 is a flow chart of a method for manufacturing a display panel according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • some embodiments of the present disclosure provide a light-emitting device and a display panel, which are introduced respectively below.
  • FIG. 1 is a perspective view of a display panel according to some embodiments.
  • FIG. 2 is a cross-sectional view along line AA′ of the display panel according to the embodiment shown in FIG. 1 .
  • the display panel 1000 includes a display area AA for displaying images and a non-display area SA that does not display images.
  • the non-display area SA surrounds at least one side of the display area AA (eg, one side; also, for example, All around, including the upper and lower sides and the left and right sides).
  • the non-display area SA may enclose the display area AA and may be located outside the display area AA in at least one direction.
  • the cross-sectional shape of the display panel 1000 along the plane along the second direction Y may be a rectangle, a circle, a rhombus, an ellipse, a trapezoid, or other shapes according to display requirements, which are not limited here.
  • the above display panel 1000 can be applied to a display device.
  • the display device may be a tablet computer, a smart phone, a head-mounted display, a car navigation unit, a camera, a car central information display (CID), a watch-type display device or other wearable devices, a personal digital assistant (PDA), a portable multimedia player small and medium-sized display devices for personal computers (PMPs) and game consoles, as well as medium- and large-sized electronic devices such as televisions, external billboards, monitors, home appliances including display screens, personal computers and laptop computers.
  • the above electronic device may represent a simple example of an application display device, and therefore those of ordinary skill in the art may recognize that the display device may also be other electronic devices without departing from the spirit and scope of the present disclosure.
  • some embodiments of the present disclosure provide a display panel 1000 .
  • the display panel 1000 includes a substrate SUB, a light emitting device layer LDL, a light extraction layer CPL, and a packaging layer TFE.
  • the substrate SUB includes a plurality of repeatedly arranged pixel unit areas PU.
  • Each pixel unit area PU may include first, second, and third sub-pixel areas P1, P2, and P3 displaying different colors.
  • the first sub-pixel area P1 is configured to display red light
  • the second sub-pixel area P2 is configured to display green light
  • the third sub-pixel area P3 is configured to display blue light.
  • the pixel unit area PU may also include a non-light-emitting area P4.
  • the non-emitting area P4 may be located between the first sub-pixel area P1 and the second sub-pixel area P2, between the second sub-pixel area P2 and the third sub-pixel area P3, and between the third sub-pixel area P3 and the first sub-pixel area. Between area P1.
  • a pixel unit area PU includes a first sub-pixel area P1, a second sub-pixel area P2 and a third sub-pixel area P3.
  • a first sub-pixel area P1, a second sub-pixel area P2 and a third sub-pixel area P3 may be spaced apart from each other and repeatedly arranged in the display area AA.
  • one pixel unit area PU may include two sub-pixel areas displaying the same color, and the two sub-pixel areas displaying the same color may be arranged adjacently.
  • a pixel unit area PU includes a red sub-pixel area R, two green sub-pixel areas G and a blue sub-pixel area B.
  • the two green sub-pixel areas G in a pixel unit area PU can be the same. Neighbor settings.
  • one pixel unit area PU includes one first sub-pixel area P1, two second sub-pixel areas P2, and one third sub-pixel area P3.
  • One first sub-pixel area P1, two second sub-pixel areas P2 and one third sub-pixel The areas P3 may be spaced apart from each other and repeatedly arranged in the display area AA.
  • the non-light-emitting area P4 may also be located between the two second sub-pixel areas P2.
  • the display panel 1000 may include a plurality of pixel circuits located on a base substrate SUB.
  • a first pixel circuit S1, a second pixel circuit S2, and a third pixel circuit S3 may be included.
  • the first pixel circuit S1 is located in the first sub-pixel area P1
  • the second pixel circuit S2 is located in the second sub-pixel area P2
  • the third pixel circuit S3 is located in the third sub-pixel area P3.
  • the thin film transistor of at least one of the first pixel circuit S1, the second pixel circuit S2, and the third pixel circuit S3 may be located in the non-emitting region P4.
  • the structure of the pixel circuit includes a variety of structures, which can be selected and set according to actual needs.
  • the pixel circuit may include: at least two transistors and at least one capacitor.
  • the pixel circuit S may have a structure such as "2T1C”, “6T1C”, “7T1C”, “6T2C” or "7T2C”.
  • T represents a thin film transistor
  • the number in front of "T” represents the number of thin film transistors
  • C represents a storage capacitor
  • the number in front of "C” represents the number of storage capacitors.
  • the thin film transistor of at least one of the first pixel circuit S1, the second pixel circuit S2, and the third pixel circuit S3 may be a thin film transistor including polysilicon or a thin film transistor including an oxide semiconductor.
  • the thin film transistor when it is a thin film transistor including an oxide semiconductor, it may have a top-gate thin film transistor structure.
  • the thin film transistor can be connected to signal lines, including but not limited to gate lines, data lines and power lines.
  • the display panel 1000 may include an insulating layer INL that may be located on the first, second, and third pixel circuits S1, S2, and S3.
  • the insulating layer INL may have a planarized surface.
  • the insulating layer INL may be formed of an organic layer.
  • the material of the insulating layer INL may include acrylic resin, epoxy resin, imide resin or ester resin.
  • the insulating layer INL may have through holes for exposing electrodes of the first pixel circuit S1, the second pixel circuit S2, and the third pixel circuit S3 to achieve electrical connection.
  • the display panel 1000 may include a light emitting device layer LDL and a pixel defining layer PDL located on the base substrate SUB.
  • the pixel defining layer PDL may be formed on the insulating layer INL, and the pixel defining layer PDL may be provided with a plurality of light emitting openings.
  • the pixel definition layer PDL includes a first light-emitting opening K1 located in the first sub-pixel area P1, a second light-emitting opening K2 located in the second sub-pixel area P2, and a third light-emitting opening K3 located in the third sub-pixel area P3.
  • the light-emitting device layer LDL is formed with a plurality of light-emitting devices 200 connected to the pixel circuit S, and the plurality of light-emitting devices 200 respectively cover a plurality of light-emitting openings.
  • the light-emitting device 200 includes a first light-emitting device, a second light-emitting device and a third light-emitting device.
  • the first light emitting device LD1 may cover the first light emitting opening K1
  • the second light emitting device LD2 may cover the second light emitting opening K2
  • the third light emitting device LD3 may cover the third light emitting opening K3.
  • the plurality of light-emitting devices 200 in the display panel 1000 includes a first color light-emitting device 210 and a second color light-emitting device 220 .
  • the wavelength of the light emitted by the first color light-emitting device 210 is smaller than the wavelength of the light emitted by the second color light-emitting device 220.
  • the wavelength of the light emitted is smaller than the wavelength of the light emitted by the second color light-emitting device 220.
  • the first color light-emitting device 210 may be a green light-emitting device, for example, the wavelength of the light emitted by the first color light-emitting device 210 may be 505 nm to 525 nm; the second color light-emitting device 220 may be a red light-emitting device, for example, the first color light-emitting device 210 may be a red light-emitting device.
  • the wavelength of light emitted by the two-color light-emitting device 220 may be 640 nm to 660 nm.
  • the light-emitting device 200 may include a first electrode AE, at least two light-emitting units 20 and a second electrode CE sequentially stacked along the first direction (ie, the direction perpendicular to the substrate SUB) X.
  • display panel 1000 is a top-emitting display panel.
  • the first electrode AE is a reflective electrode that can reflect light, such as an anode.
  • the second electrode CE is a transmissive electrode that can transmit light, such as a cathode. In this way, a microcavity structure is formed between the anode and cathode.
  • display panel 1000 is a bottom-emitting display panel.
  • the first electrode AE is a transmissive electrode that can transmit light, such as an anode.
  • the second electrode CE is a reflective electrode that can reflect light, such as a cathode. In this way, a microcavity structure is formed between the anode and cathode.
  • the first electrode AE includes a first electrode AE1 located in the first sub-pixel area P1, a first electrode AE2 located in the second sub-pixel area P2, and a first electrode AE3 located in the third sub-pixel area P3.
  • the first electrode AE may include a high work function material, such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir or Cr metals and mixtures thereof, or may be made of ITO , IZO or IGZO and other transparent conductive oxide materials.
  • a high work function material such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir or Cr metals and mixtures thereof, or may be made of ITO , IZO or IGZO and other transparent conductive oxide materials.
  • the display panel 1000 is a top-emission display panel.
  • the first electrode AE may include a laminated composite structure of transparent conductive oxide/metal/transparent conductive oxide.
  • the transparent conductive oxide material is, for example, ITO or IZO, and the metal material is, for example, Au, Ag, Ni or Pt.
  • the anode structure is: ITO/Ag/ITO.
  • the average reflectivity of the first electrode AE for visible light may be in the range of 85% to 95%.
  • display panel 1000 is a bottom-emitting display panel.
  • the first electrode AE may include a transparent conductive oxide such as ITO, IZO or IGZO.
  • the second electrode CE includes a second electrode CE1 located in the first sub-pixel area P1, a second electrode CE2 located in the second sub-pixel area P2, and a second electrode CE3 located in the third sub-pixel area P3.
  • the second electrode CE may include a low work function metal material or alloy material.
  • the metal material is, for example, Al, Ag or Mg
  • the alloy material is, for example, Mg:Ag alloy or Al:Li alloy.
  • At least two light emitting units 20 between the first electrode AE and the second electrode CE may be stacked in the first direction X.
  • the light-emitting unit 20 at least includes a first light-emitting unit 21 and a second light-emitting unit 22. That is, the number of the light-emitting units 20 between the first electrode AE and the second electrode CE may be two, three, or other. The quantity is not limited here.
  • At least two light-emitting units 20 include a first light-emitting unit 21 and a second light-emitting unit 22 , that is, two light-emitting units 20 are included between the first electrode AE and the second electrode CE.
  • first light emitting unit 21 The second light-emitting unit 22 is located between the first electrode AE and the second electrode CE, and the second light-emitting unit 22 is located between the first light-emitting unit 21 and the second electrode CE.
  • the first light-emitting unit 21 may be in direct contact with the first electrode AE
  • the second light-emitting unit 22 may be in direct contact with the second electrode CE.
  • the first light-emitting unit 21 includes a first light-emitting layer EML1, a first transmission layer TL1 and a second transmission layer TL2.
  • the first transport layer TL1 is located between the first light-emitting layer EML1 and the first electrode AE, and the first transport layer TL1 is configured to transport holes from the first electrode AE to the first light-emitting layer EML1.
  • the second transport layer TL2 is located between the first light-emitting layer EML1 and the second light-emitting unit 22 .
  • the second transport layer TL2 is configured to transport electrons to the first light-emitting layer EML1 . In this way, holes and electrons can recombine in the first light-emitting layer EML1, so that the first light-emitting layer EML1 emits light.
  • the second light-emitting unit 22 includes a second light-emitting layer EML2, a third transmission layer TL3 and a fourth transmission layer TL4.
  • the third transport layer TL3 is located between the second light-emitting layer EML2 and the first light-emitting unit 21, and the third transport layer TL3 is configured to transport holes to the second light-emitting layer EML2.
  • the fourth transport layer TL4 is located between the second light-emitting layer EML2 and the second electrode CE, and the fourth transport layer TL4 is configured to transport electrons from the second electrode CE to the second light-emitting layer EML2. In this way, holes and electrons can recombine in the second light-emitting layer EML2, so that the second light-emitting layer EML2 emits light.
  • At least two light-emitting units 20 further include a third light-emitting unit 23 , that is, three light-emitting units 20 are included between the first electrode AE and the second electrode CE.
  • the second light-emitting unit 22 is located between the first light-emitting unit 21 and the third light-emitting unit 23
  • the third light-emitting unit 23 is located between the second light-emitting unit 22 and the second electrode CE.
  • the first light-emitting unit 21 may be in direct contact with the first electrode AE
  • the third light-emitting unit 23 may be in direct contact with the second electrode CE.
  • the third light-emitting unit 23 includes a third light-emitting layer EML3, a fifth transmission layer TL5 and a sixth transmission layer TL6.
  • the fifth transport layer TL5 is located between the third light-emitting layer EML3 and the second light-emitting unit 22, and the fifth transport layer TL5 is configured to transport holes to the third light-emitting layer EML3.
  • the sixth transport layer TL6 is located between the third light-emitting layer EML3 and the second electrode CE, and is configured to transport electrons from the second electrode CE to the third light-emitting layer EML3. In this way, holes and electrons can recombine in the third light-emitting layer EML3, so that the third light-emitting layer EML3 emits light.
  • the difference between the wavelength of the light emitted by the first emitting layer EML1 and the wavelength of the light emitted by the second emitting layer EML2 in the same light emitting device 200 is Absolute value, less than or equal to 20nm.
  • Multiple light-emitting units 20 in the same light-emitting device 200 emit the same or similar light. In this way, the concentration of spectral superposition of multiple light-emitting units 20 in the same light-emitting device 200 can be improved, and the color purity and light extraction efficiency of the light emitted by the light-emitting device 200 can be improved.
  • the first color light emitting device 210 may be a green light emitting device.
  • the wavelength of the light emitted by the first light-emitting layer EML1 is 510 nm
  • the wavelength of the light emitted by the second light-emitting layer EML2 is 515 nm
  • the absolute value of the difference between the two is 5 nm.
  • the second color light-emitting device 220 may be a red light-emitting device.
  • the The wavelength of the light emitted by the first luminescent layer EML1 is 650 nm
  • the wavelength of the light emitted by the second luminescent layer EML2 is 660 nm
  • the absolute value of the difference between the two is 10 nm.
  • the light-emitting device further includes a charge generation layer 30 located between two adjacent light-emitting units 20 , and the charge generation layer 30 is coupled to the light-emitting units 20 .
  • the charge generation layer 30 includes a P-type charge generation sub-layer 310 and an N-type charge generation sub-layer 320.
  • the P-type charge generation sublayer 310 may be in direct contact with the third transport layer TL3 to provide holes to the second light-emitting unit 22 .
  • the N-type charge generation sublayer 320 may be in direct contact with the second transport layer TL2 to provide electrons to the first light emitting unit 21 .
  • the P-type charge generation sublayer 310 may also be in direct contact with the fifth transport layer TL5 to provide holes to the third light-emitting unit 23 .
  • the N-type charge generation sub-layer 320 may also be in direct contact with the fourth transport layer TL4 to provide electrons to the second light-emitting unit 22 .
  • the above-mentioned second transport layer TL2 is configured to transport electrons provided by the first charge generation layer 31 to the first light-emitting layer EML1 so that holes provided by the first electrode AE and the first The electrons provided by the charge generation layer 31 recombine and emit light in the first light emitting layer EML1.
  • the above-mentioned third transport layer TL3 is configured to transport holes provided by the first charge generation layer 31 to the second light-emitting layer EML2, and the above-mentioned fourth transport layer TL4 is configured to transport electrons provided by the second charge generation layer 32 to the second light-emitting layer.
  • the above-mentioned fifth transport layer TL5 is configured to transport holes provided by the second charge generation layer 32 to the third light-emitting layer EML3, so that the holes provided by the second charge generation layer 32 and the electrons provided by the second electrode CE are transmitted in the third The luminescent layer EML3 emits composite light.
  • the charge generation layer 30 may include metal, non-doped organic matter, an organic PN junction composed of P-type and N-type doping, or a metal oxide, etc., which is not limited here.
  • the first transport layer TL1 may include a first hole injection layer HIL1 and a first hole transport layer HTL1 .
  • the first hole injection layer HIL1 is located between the first electrode AE and the first hole transport layer HTL1.
  • the first hole injection layer HIL1 is configured to inject holes from the first electrode AE into the first hole transport layer HTL1 .
  • the first hole transport layer HTL1 is located between the first hole injection layer HIL1 and the first light emitting layer EML1.
  • the first hole transport layer HTL1 is configured to transport holes injected by the first hole injection layer HIL1 to the first hole injection layer HIL1.
  • the light-emitting layer EML1 causes holes to recombine with electrons in the first light-emitting layer EML1, thereby realizing the light emission of the first light-emitting layer EML1.
  • the first transmission layer TL1 may further include a first exciton blocking layer BL1.
  • the first exciton blocking layer BL1 may be located between the first hole transport layer HTL1 and the first emitting layer EML1, and the first exciton blocking layer BL1 is configured to block electrons in the first emitting layer EML1 from approaching the first electrode AE. direction movement. Therefore, the first exciton blocking layer BL1 may also be called the electron blocking layer EBL.
  • the second transport layer TL2 may include a first electron transport layer ETL1 and a first electron injection layer EIL1.
  • the first electron injection layer EIL1 is located between the first electron transport layer ETL1 and the first N-type charge generation sub-layer 302 .
  • the first electron injection layer EIL1 is configured to transfer electrons provided by the first N-type charge generation sub-layer 302 Injected into the first electron transport layer ETL1.
  • the first electron transport layer ETL1 is located between the first electron injection layer EIL1 and the first luminescent layer EML1.
  • the first electron transport layer ETL1 is configured to transport electrons injected by the first electron injection layer EIL1 to the first luminescent layer EML1, such that The electrons recombine with holes in the first light-emitting layer EML1, thereby realizing the light emission of the first light-emitting layer EML1.
  • the second transport layer TL2 may further include a second exciton blocking layer BL2.
  • the second exciton blocking layer BL2 may be located between the first electron transport layer ETL1 and the first emitting layer EML1, and the second exciton blocking layer BL2 is configured to block holes in the first emitting layer EML1 from approaching the second electrode CE. direction movement. Therefore, the second exciton blocking layer BL2 may also be called the hole blocking layer HBL.
  • the third transport layer TL3 may include a second hole injection layer HIL2 and a second hole transport layer HTL2.
  • the second hole injection layer HIL2 is located between the first P-type charge generation sub-layer 301 and the second hole transport layer HTL2.
  • the second hole injection layer HIL2 is configured to connect the holes of the first P-type charge generation sub-layer 301 to Holes are injected into the second hole transport layer HTL2.
  • the second hole transport layer HTL2 is located between the second hole injection layer HIL2 and the second light emitting layer EML2.
  • the second hole transport layer HTL2 is configured to transport holes injected by the second hole injection layer HIL2 to the second hole injection layer HIL2.
  • the light-emitting layer EML2 causes holes to recombine with electrons in the second light-emitting layer EML2, thereby achieving light emission of the second light-emitting layer EML2.
  • the third transmission layer TL3 may further include a third exciton blocking layer BL3.
  • the third exciton blocking layer BL3 may be located between the second hole transport layer HTL2 and the second emitting layer EML2, and the third exciton blocking layer BL3 is configured to block electrons in the second emitting layer EML2 from approaching the first electrode AE. direction movement. Therefore, the third exciton blocking layer BL3 may also be called an electron blocking layer.
  • the fourth transport layer TL4 may include a second electron transport layer ETL2 and a second electron injection layer EIL2.
  • the second electron injection layer EIL2 is located between the second electron transport layer ETL2 and the second electrode CE, and the second electron injection layer EIL2 is configured to inject electrons provided by the second electrode CE into the second electron transport layer ETL2.
  • the second electron transport layer ETL2 is located between the second electron injection layer EIL2 and the second luminescent layer EML2, and the second electron transport layer ETL2 is configured to transport electrons injected by the second electron injection layer EIL2 to the second luminescent layer EML2, such that The electrons recombine with holes in the second light-emitting layer EML2, thereby realizing the light emission of the second light-emitting layer EML2.
  • the fourth transmission layer TL4 may further include a fourth exciton blocking layer BL4.
  • the fourth exciton blocking layer BL4 may be located between the second electron transport layer ETL2 and the second emitting layer EML2, and the fourth exciton blocking layer BL4 is configured to block holes in the second emitting layer EML2 from approaching the second electrode CE. direction movement. Therefore, the fourth exciton blocking layer BL4 may also be called the hole blocking layer HBL.
  • the second electron injection layer EIL2 is located between the second electron transport layer ETL2 and the second N-type charge generation sublayer 304 , and the second electron injection layer EIL2 It is configured to inject electrons provided by the second N-type charge generation sub-layer 304 into the second electron transport layer ETL2.
  • the fifth transport layer TL5 may include a third hole injection layer HIL3 and a third hole transport layer HTL3.
  • the third hole injection layer HIL3 is located in the second P-type Between the charge generation sub-layer 303 and the third hole transport layer HTL3, the third hole injection layer HIL3 is configured to inject holes from the second P-type charge generation sub-layer 303 into the third hole transport layer HTL3.
  • the third hole transport layer HTL3 is located between the third hole injection layer HIL3 and the third light emitting layer EML3.
  • the third hole transport layer HTL3 is configured to transport holes injected by the third hole injection layer HIL3 to the third hole transport layer HTL3.
  • the light-emitting layer EML3 causes holes to recombine with electrons in the third light-emitting layer EML3, thereby achieving light emission of the third light-emitting layer EML3.
  • the fifth transmission layer TL5 may further include a fifth exciton blocking layer BL5.
  • the fifth exciton blocking layer BL5 may be located between the third hole transport layer HTL3 and the third light emitting layer EML3, and the fifth exciton blocking layer BL5 is configured to block electrons in the third light emitting layer EML3 from approaching the first electrode AE. direction movement. Therefore, the fifth exciton blocking layer BL5 may also be called an electron blocking layer.
  • the sixth transport layer TL6 may include a third electron transport layer ETL3 and a third electron injection layer EIL3.
  • the third electron injection layer EIL3 is located between the third electron transport layer ETL3 and the second electrode CE, and the third electron injection layer EIL3 is configured to inject electrons provided by the second electrode CE into the third electron transport layer ETL3.
  • the third electron transport layer ETL3 is located between the third electron injection layer EIL3 and the third luminescent layer EML3.
  • the third electron transport layer ETL3 is configured to transport electrons injected by the third electron injection layer EIL3 to the third luminescent layer EML3, so that The electrons recombine with holes in the third light-emitting layer EML3, thereby realizing the emission of the third light-emitting layer EML3.
  • the sixth transmission layer TL6 may further include a sixth exciton blocking layer BL6.
  • the sixth exciton blocking layer BL6 may be located between the third electron transport layer ETL3 and the third luminescent layer EML3, and the sixth exciton blocking layer BL6 is configured to block holes in the third luminescent layer EML3 from approaching the second electrode CE. direction movement. Therefore, the sixth exciton blocking layer BL6 may also be called the hole blocking layer HBL.
  • the first hole injection layer HIL1, the second hole injection layer HIL2, and the third hole injection layer HIL3 may include materials with strong hole injection capabilities such as copper phthalocyanine CuPc, HATCN, etc., to form a single layer. Membrane structure.
  • at least one of the first hole injection layer HIL1, the second hole injection layer HIL2, and the third hole injection layer HIL3 may include a P-type doped hole injection material. Materials, such as NPB:F4TCNQ, TAPC: MnO3 , etc.
  • the first hole transport layer HTL1, the second hole transport layer HTL2, and the third hole transport layer HTL3 may include carbazole-based materials with higher hole mobility, or other materials with higher hole mobility. High material.
  • the first electron injection layer EIL1, the second electron injection layer EIL2 and the third electron injection layer EIL3 may include Alq3 , oxides and halides of alkali metals and alkaline earth metals such as LiO2 , CaO, CsO or CsF 2 , or other materials with strong electron injection ability.
  • the first electron transport layer ETL1, the second electron transport layer ETL2, and the third electron transport layer ETL3 may include triazine-based materials with high electron mobility, or other materials with high electron mobility.
  • each light-emitting layer (eg, EML1 and EML2) of the light-emitting unit 20 of the light-emitting device 200 includes a first compound 41, a second compound 42, and a third compound 43.
  • the first compound 41 and the second compound 42 may be the host material of the light-emitting layer, and the third compound 43 may be the guest material (ie, doping material) of the light-emitting layer.
  • the first compound 41 may be a hole injection and transport material with better hole transport performance.
  • the first compound 41 may include, but is not limited to, aromatic amine organic materials or carbazole organic materials and their derivatives.
  • the first compound 41 may include three structures as shown in Figures 12A to 12C.
  • R1 to R6 can each be selected from any one of benzene, biphenyl, naphthalene, pyridine, dibenzofuran, dibenzothiophene or carbazole.
  • R7 to R9 can each be selected from any one of benzene, carbazole, benzocarbazole, dibenzofuran, benzodibenzofuran, dibenzothiophene or benzodibenzothiophene.
  • L1, L2 and L3 can be any one of benzene, biphenyl or naphthalene.
  • the values of n1 and n2 range from 0 to 4, such as 1, 2, 3 or 4; the values of n3, n4 and n5 are 0 or 1.
  • the * shown in Figure 12B represents the endpoint of the carbon-carbon bond on the benzene ring.
  • the two hydrogen atoms connected to the two carbon atoms of a carbon-carbon bond can be connected by any one of benzene, naphthalene, cyclopentane or cyclohexane. species replaced.
  • the second compound 42 may be an electron injection and transport material with better electron transport properties.
  • the second compound 42 may include, but is not limited to, triazine-based organic materials.
  • second compound 42 may include a structure as shown in FIG. 13 .
  • L4 to L6 can be any one of benzene, biphenyl, naphthalene, dibenzofuran or dibenzothiophene respectively.
  • the values of n6 ⁇ n8 are 0 or 1.
  • R10 ⁇ R12 can be benzene, biphenyl, naphthalene, phenanthrene, triphenylene, carbazole, benzocarbazole, dibenzofuran, benzodibenzofuran, dibenzothiophene, benzodibenzothiophene, Any of benzoxazole, naphthoxazole or phenanzoxazole.
  • the third compound 43 may be a phosphorescent material or a fluorescent material, which has better light-emitting properties.
  • phosphorescent materials may include, but are not limited to, iridium metal complexes and platinum metal complexes
  • fluorescent materials may include, but are not limited to, organic materials with thermally activated delayed fluorescence (TADF) properties.
  • the third compound 43 is an iridium metal complex and satisfies the general formula: Ir(L)2(L’).
  • L can be selected from any one of phenylpyridine ligand, phenylquinoline ligand or phenylisoquinoline ligand.
  • L' can be selected from any one of acetylacetone ligand, azadibenzofurylpyridine ligand or azadibenzothienylpyridine ligand.
  • L and L' may also include substituents, and the substituents may be alkyl or cycloalkyl groups containing one to six carbon atoms.
  • the third compound 43 in the light-emitting layer of the green light-emitting device may be a phosphorescent material, such as an iridium metal complex with a general chemical formula of Ir(L)2(L'), where L is a phenylpyridine ligand. , L' is acetylacetone ligand.
  • the third compound 43 in the light-emitting layer of the red light-emitting device may be a phosphorescent material, such as an iridium metal complex with a general chemical formula of Ir(L)2(L'), where L is a phenylquinoline complex.
  • Body, L' is azadibenzofuranylpyridine ligand.
  • the sum of the number of nitrogen atoms N in the first compound 41 , the number of nitrogen atoms N in the second compound 42 and the number of nitrogen atoms N in the third compound 43 is in the range of 7 to 12, for example 7, 8, 9, 10, 11 or 12.
  • the number of nitrogen atoms N in the first compound 41 is 2
  • the number of nitrogen atoms N in the second compound 42 is 3
  • the number of nitrogen atoms N in the third compound 43 is 2
  • the sum of the number of nitrogen atoms N in 42 and the third compound 43 is 7.
  • a light-emitting device includes multiple light-emitting layers, and the absolute value of the difference in the proportion of the weight of the first compound between different light-emitting layers to the weight of the light-emitting layer to which it belongs is in the range of 0% to 3%. within the range. It can be understood that, as shown in Figure 11, in a light-emitting device, the ratio of the weight of the first compound 41 in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1 is equal to the weight of the first compound 41 in the second light-emitting layer EML2.
  • the absolute value of the difference between the weight ratio of the second light-emitting layer EML2 is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the proportion of the weight of the first compound and/or the weight of the second compound in the weight of the light-emitting layer to which it belongs is significantly different between different light-emitting layers, which will lead to the same Tandem OLED.
  • the hole transport performance and/or electron transport performance between different light-emitting layers are greatly different, which will also lead to inconsistent exciton recombination areas between different light-emitting layers, resulting in low overall luminous efficiency and poor stability of Tandem OLED.
  • the difference range in the ratio of the weight of the first compound 41 to the weight of the light-emitting layer to which it belongs between different light-emitting layers in the same light-emitting device By defining the difference range in the ratio of the weight of the first compound 41 to the weight of the light-emitting layer to which it belongs between different light-emitting layers in the same light-emitting device. It can be understood that the difference in the weight proportion of the first compound 41 between different light-emitting layers in a light-emitting device is reduced, so that the hole injection and hole transport performance between different light-emitting layers in a light-emitting device are comparable. Close, so that the exciton recombination regions in different light-emitting layers in the same light-emitting device are basically consistent or close, thereby improving the overall luminous efficiency and stability of the light-emitting device and the display panel.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M1.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M2.
  • the absolute value of the difference between M1 and M2 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the first compound 41 is an arylamine-based organic material
  • the second compound 42 is a triazine-based organic material.
  • the ratio of the weight of the arylamine-based organic material to the sum of the weights of the arylamine-based organic material and the triazine-based organic material is M10.
  • the ratio of the weight of the arylamine-based organic material to the sum of the weights of the arylamine-based organic material and the triazine-based organic material is M20.
  • the absolute value of the difference between M10 and M20 is less than or equal to 0.5%.
  • At least two light-emitting units 20 further include a third light-emitting unit 23 .
  • the third light-emitting unit 23 is located between the second light-emitting unit 22 and the second electrode CE, and includes a third light-emitting layer EML3. It can be understood that the number of the light-emitting units 20 of a light-emitting device is three, and the three light-emitting units 20 respectively include a first light-emitting layer EML1, a second light-emitting layer EML2, and a third light-emitting layer EML3.
  • the proportion of the weight of the first compound 41 in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1 is equal to the weight of the first compound 41 in the third light-emitting layer EML3.
  • the absolute value of the difference between the weight proportions of the three light-emitting layers EML3 is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M1.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M5.
  • the absolute value of the difference between M1 and M5 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the proportion of the weight of the first compound 41 in the second light-emitting layer EML2 to the weight of the second light-emitting layer EML2 is the same as the weight of the first compound 41 in the third light-emitting layer EML3 to the weight of the third light-emitting layer EML3.
  • the absolute value of the difference between the weight proportions is also in the range of 0% to 3%.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M2.
  • the ratio of the weight of the first compound 41 to the sum of the weights of the first compound 41 and the second compound 42 is M5.
  • the absolute value of the difference between M2 and M5 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the difference in the weight of the first compound 41 in the weight of the light-emitting layer to which it belongs can be reduced between different light-emitting layers in a light-emitting device, that is, the difference in the weight of the first compound 41 between different light-emitting layers in the same light-emitting device can be reduced.
  • the difference in the proportion of the weight of hole injection and transport materials in the weight of the light-emitting layer to which they belong is to reduce the difference in the hole transport performance of different light-emitting layers in the same light-emitting device, thereby improving the overall luminous efficiency of the light-emitting device and stability.
  • a light-emitting device includes multiple light-emitting layers, and the difference in the weight ratio of the second compound 42 between different light-emitting layers to the weight of the light-emitting layer to which they belong is The absolute value of the value is in the range of 0% to 3%. It can be understood that in a light-emitting device, the proportion of the weight of the second compound 42 in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1 is equal to the weight of the second compound 42 in the second light-emitting layer EML2.
  • the absolute value of the difference between the weight proportions of the two light-emitting layers EML2 is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the difference range of the proportion of the weight of the second compound 42 to the weight of the light-emitting layer to which it belongs between different light-emitting layers is defined. It can be understood that the difference in the weight proportion of the second compound 42 between different light-emitting layers in the same light-emitting device is reduced, so that the electron injection and transport properties between different light-emitting layers in the same light-emitting device are similar. Therefore, the exciton recombination regions in different light-emitting layers in the same light-emitting device are basically consistent or close, thereby improving the overall luminous efficiency and stability of the light-emitting device and the display panel 1000.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M3.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M4.
  • the absolute value of the difference between M3 and M4 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the first compound 41 is an arylamine-based organic material
  • the second compound 42 is a triazine-based organic material.
  • the ratio of the weight of the triazine-based organic material to the sum of the weights of the arylamine-based organic material and the triazine-based organic material is M30.
  • the ratio of the weight of the triazine-based organic material to the sum of the weights of the arylamine-based organic material and the triazine-based organic material is M40.
  • the absolute value of the difference between M30 and M40 is 0.5%.
  • the proportion of the weight of the second compound 42 in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1 is the same as the weight of the second compound 42 in the third light-emitting layer to the weight of the second light-emitting layer EML2
  • the absolute value of the difference between the proportions in is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M3.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M6.
  • the absolute value of the difference between M3 and M6 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the proportion of the weight of the second compound 42 in the second light-emitting layer EML2 to the weight of the second light-emitting layer EML2 is the same as the weight of the second compound 42 in the third light-emitting layer to the weight of the second light-emitting layer EML2
  • the absolute value of the difference between the proportions in is also in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M4.
  • the ratio of the weight of the second compound 42 to the sum of the weights of the first compound 41 and the second compound 42 is M6.
  • the absolute value of the difference between M4 and M6 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the difference in the weight ratio of the second compound 42 between different light-emitting layers in a light-emitting device and the weight ratio of the light-emitting layer to which it belongs can be reduced, that is, the electron injection and transport materials between different light-emitting layers in the same light-emitting device can be reduced.
  • the difference in the proportion of the weight of the light-emitting layer to which it belongs reduces the difference in the electron transmission performance of different light-emitting layers in the same light-emitting device, and improves the overall luminous efficiency and stability of the light-emitting device.
  • the weight of the third compound 43 in the first luminescent layer EML1 and the weight of the third compound 43 in the second luminescent layer EML2 are the same: in the first luminescent layer EML1 , The proportion of the sum of the weight of the first compound 41 and the weight of the second compound 42 in the weight of the first luminescent layer EML1; in the second luminescent layer EML2, the sum of the weight of the first compound 41 and the weight of the second compound 42 and , the proportion in the weight of the second light-emitting layer EML2; the absolute value of the difference between the two is also in the range of 0% to 3%.
  • the difference in the weight ratio of the host material between different light-emitting layers in a light-emitting device and the weight ratio of the light-emitting layer to which it belongs can be reduced, and the difference between the hole transmission performance and electron transmission performance of different light-emitting layers in the same light-emitting device can be reduced.
  • the difference improves the overall luminous efficiency and stability of the light-emitting device.
  • the proportion of the weight of the third compound 43 in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1 is equal to the weight of the third compound 43 in the second light-emitting layer EML2
  • the absolute value of the difference between the proportions in the weight of the second light-emitting layer EML2 is in the range of 0% to 3%, for example, 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1 %, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the difference between the weight ratio of the guest material of different light-emitting layers in a light-emitting device and the weight of the light-emitting layer to which it belongs can be reduced, the difference between the luminous efficiency of different light-emitting layers in the same light-emitting device can be reduced, and the luminescence can be improved.
  • the overall luminous efficiency and stability of the device can be reduced.
  • the ratio between the weight of the first compound 41 and the weight of the second compound 42 is in the range of 3:7 to 7:3, for example, 3:7, 4:7, 5:6, 6:7, 7:8, 7:7, 7:6, 7:5, 7:4 or 7:3.
  • the range of the ratio between the weight of the first compound 41 and the weight of the second compound 42 in each light-emitting layer can be understood as the range of the weight ratio between the two host materials in the light-emitting layer.
  • the ratio between the weight of the first compound 41 and the weight of the second compound 42 in the light-emitting layer of the first color light-emitting device 210 is greater than or equal to the second color
  • the ratio between the weight of the first compound 41 and the weight of the second compound 42 in each light-emitting layer of the first color light-emitting device 210 is greater than or equal to the weight of the first compound 41 in each light-emitting layer of the second color light-emitting device 220 .
  • the ratio between the sum of the weight of the first compound 41 and the sum of the weight of the second compound 42 in all the light-emitting layers of the first color light-emitting device 210 is greater than or equal to that of all the light-emitting layers of the second color light-emitting device 220
  • the ratio between the weight of the first compound 41 and the weight of the second compound 42 is in the range of 5:5 to 7:3, for example, 5: 5, 7:6, 5:4, 6:5, 7:5, 7:4 or 7:3.
  • the ratio between the weight of the first compound 41 and the weight of the second compound 42 is in the range of 3:7 to 5:5, such as 3:7 or 4:7. , 5:6, 6:7, 7:8 or 5:5.
  • the first color light-emitting device 210 is a green light-emitting device. In the light-emitting layer of the first color light-emitting device 210, the ratio between the weight of the first compound 41 and the weight of the second compound 42 may be 7:3. .
  • Second color hair The optical device 220 is a red light-emitting device. In the light-emitting layer of the second color light-emitting device 220, the ratio between the weight of the first compound 41 and the weight of the second compound 42 may be 3:7.
  • the luminous efficiency of the light-emitting layers of different colors can be adjusted, thereby improving the color balance performance of the display panel.
  • the ratio between the weight of the third compound 43 and the sum of the weights of the first compound 41 and the second compound 42 is in the range of 1% to 14%, For example 1%, 2%, 3%, 5%, 6%, 8%, 10%, 12% or 14%.
  • the ratio between the weight of the third compound 43 in each light-emitting layer and the sum of the weights of the first compound 41 and the second compound 42 can be understood as the weight of the guest material in the light-emitting layer and the weight of the two host materials.
  • the ratio between the weight of the third compound 43 in the light-emitting layer of the first color light-emitting device 210 and the sum of the weights of the first compound 41 and the second compound 42 Greater than or equal to the ratio between the weight of the third compound 43 in the light-emitting layer of the second color light-emitting device 220 and the sum of the weights of the first compound 41 and the second compound 42 .
  • the ratio between the weight of the third compound 43 and the sum of the weights of the first compound 41 and the second compound 42 is in the range of 6% to 14%. , such as 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13% or 14%.
  • the ratio between the weight of the third compound 43 and the sum of the weights of the first compound 41 and the second compound 42 is in the range of 1% to 6%, for example 1%, 1.5%, 2%, 2.4%, 3%, 3.5%, 4%, 4.5%, 5%, 5.6% or 6%.
  • the first color light emitting device 210 is a green light emitting device.
  • the ratio between the weight of the third compound 43 and the sum of the weights of the first compound 41 and the second compound 42 may be 14%.
  • the second color light-emitting device 220 is a red light-emitting device. In the light-emitting layer of the second color light-emitting device 220, the ratio between the weight of the third compound 43 and the sum of the weights of the first compound 41 and the second compound 42 may be 2%.
  • the ratio between the weight of the guest material (ie, the third compound 43) in the light-emitting layer and the sum of the weights of the two host materials (ie, the first compound 41 and the second compound 42) is further defined. Reduce the difference in the ratio of the weight of the guest material between different light-emitting layers in the light-emitting device of the same color to the sum of the weights of the two host materials, further reduce the performance difference between different light-emitting layers in the light-emitting device of the same color, and improve The overall luminous efficiency and stability of the light-emitting device 200 are improved.
  • the display panel 1000 is a top-emission display panel, and the light extraction layer CPL covers the light emitting device layer LDL.
  • the light extraction layer CPL is directly located on the second electrode CE.
  • the light extraction layer CPL can improve the light extraction efficiency of the light emitting device layer LDL.
  • the light extraction layer CPL has a larger refractive index and a smaller light absorption coefficient.
  • the encapsulation layer TFE is used to encapsulate the light emitting functional layer LDL and the light extraction layer CPL.
  • the encapsulation layer TFE may include a stacked first encapsulation layer ENL1, a second encapsulation layer ENL2, and a third encapsulation layer ENL3.
  • the first encapsulation layer ENL1 and the third encapsulation layer ENL3 are made of inorganic materials.
  • the above-mentioned inorganic materials are selected from silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, oxide At least one of silicon, aluminum oxide, titanium oxide, tin oxide, cerium oxide, silicon oxynitride (SiON) or lithium fluoride.
  • the second encapsulation layer ENL2 is made of organic materials.
  • the above-mentioned organic materials are acrylic resin, methacrylic resin, polyisoprene, vinyl resin, epoxy resin, polyurethane resin, cellulose resin or diethylene resin. At least one kind of rylene resin. Those skilled in the art can change the number of layers, materials and structure of the thin film encapsulation layer TFE as needed, and the present disclosure is not limited thereto.
  • Figure 14A, Figure 15A to Figure 21A are respectively the structural diagrams of the first compound 41 in the 6 groups of regimens and the 2 groups of control regimens provided by the present disclosure.
  • Figure 14B, Figure 15B to Figure 21B are respectively the structural diagrams of the second compound 42 in the 6 groups of regimens and 2 groups of control regimens provided by the present disclosure.
  • Figure 14C, Figure 15C to Figure 21C are respectively the structural diagrams of the third compound 43 in the 6 sets of protocols and 2 sets of control protocols provided by the present disclosure.
  • the present disclosure provides 6 groups of programs and 2 groups of control programs for comparison.
  • the parameters of the 6 groups of programs and the 2 groups of control programs are detailed in Table 1.
  • the “weight ratio of the first compound” in Table 1 represents the proportion of the weight of the first compound in each light-emitting layer to the sum of the weights of the first compound and the second compound; the “weight ratio of the second compound” Indicates the proportion of the weight of the second compound in each light-emitting layer to the sum of the weights of the first compound and the second compound; “weight ratio of the third compound” indicates the weight of the third compound in each light-emitting layer The proportion of the total weight of the first compound and the second compound.
  • V in Table 2 represents the driving voltage of the light-emitting device
  • Cd/A represents the current luminous efficiency
  • CIE x represents the value of the color coordinate x of the light-emitting device
  • CIE y represents the value of the color coordinate y of the light-emitting device Value
  • LT95 indicates the length of time required for the brightness of the light-emitting device to drop to 95% of the initial brightness, that is, the effective service life of the light-emitting device.
  • the color coordinate values of scheme 1, the color coordinate value of scheme 2, the color coordinate value of scheme 5 are the same as the color coordinate values of comparison scheme 1; the parameters of the first color light-emitting device 210 in Table 2 are the parameters of scheme 1 (That is, the driving voltage, current luminous efficiency and effective service life) are set as 100% as the standard.
  • the parameters of scheme 2, the parameters of scheme 5 and the parameters of control scheme 1 are all the parameters of scheme 1. Relative quantity.
  • the color coordinate values of Scheme 3 are the same; the parameters of the second color light-emitting device 220 in Table 2 are based on the parameters of scheme 3 as the standard set to 100%, The parameters of Scheme 4, the parameters of Scheme 6 and the parameters of Comparative Scheme 2 are all the relative quantities of the parameters of Scheme 3.
  • the difference in the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound between different light-emitting layers is limited to a smaller range, and/or The difference in the ratio between the weight of the second compound and the sum of the weights of the first compound and the second compound between different light-emitting layers is limited to a smaller range, which can improve the current luminous efficiency of the light-emitting device 200 and prolong the life of the light-emitting device. Effective service life of 200.
  • the difference in the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound between different light-emitting layers is limited to a smaller range, and/or The difference in the ratio between the weight of the second compound and the sum of the weights of the first compound and the second compound between different light-emitting layers is limited to a smaller range, which can improve the current luminous efficiency of the light-emitting device 200 and prolong the life of the light-emitting device. Effective service life of 200.
  • the difference range of the weight ratio of the first compound between different light-emitting layers to the weight of the light-emitting layer to which they belong in the same light-emitting device And/or the difference range of the weight ratio of the second compound between different light-emitting layers to the weight ratio of the light-emitting layer to which it belongs can make the exciton recombination regions between different light-emitting layers in the same light-emitting device consistent or close, which can Reduce the performance difference between different light-emitting layers in the same light-emitting device, improve the luminous efficiency of the light-emitting device, and extend the effective service life of the light-emitting device. In turn, the overall luminous efficiency of the display panel can be improved and the effective service life of the display panel can be extended.
  • FIG. 22 is a flow chart of a method of manufacturing a display panel according to some embodiments.
  • some embodiments of the present disclosure also provide a method of manufacturing a display panel.
  • the display panel preparation method includes steps S510 to S540.
  • Step S510 Form a first electrode.
  • step S510 it may also include providing a substrate SUB.
  • the material of the base substrate SUB may be, for example, polyethylene terephthalate (PET), polyimide (PI), cycloolefin polymer (Cyclo Olefin Polymer, COP), etc.
  • the base substrate SUB may include a first sub-pixel area P1, a second sub-pixel area P2, and a third sub-pixel area P3.
  • the specific introduction of the first sub-pixel area P1, the second sub-pixel area P2 and the third sub-pixel area P3 has been described in detail before and will not be described again here.
  • a pixel circuit layer is formed on the base substrate SUB.
  • the pixel circuit layer includes a plurality of pixel circuits S. The specific introduction of the multiple pixel circuits S has been described in detail before and will not be described again here.
  • an insulating layer INL covering the plurality of pixel circuits is formed.
  • the first electrode may be an anode AE, and the anode may be formed on the insulating layer INL through a patterning process.
  • the anode can be made of metals and mixtures thereof such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir or Cr, or it can also be made of conductive metal oxides such as ITO, IZO or IGZO. material.
  • the anode may also include a laminated composite structure of transparent conductive oxide/metal/transparent conductive oxide.
  • the transparent conductive oxide material is, for example, ITO or IZO
  • the metal material is, for example, Au, Ag, Ni or Pt.
  • the anode structure is: ITO/Ag/ITO.
  • the anode AE may include a first anode AE1, a second anode AE2, and a third anode AE3.
  • the first anode AE1 is located in the first sub-pixel area P1
  • the second anode AE2 is located in the second sub-pixel area P2
  • the third anode AE3 is located in the third sub-pixel area P3.
  • Step S510 may then include: ultrasonically treating the base substrate SUB on which the first electrode has been formed (such as a glass plate with ITO) in a cleaning agent (such as deionized water) to wash away the first electrode and the base substrate
  • a cleaning agent such as deionized water
  • Step S520 Form a pixel defining layer on the first electrode.
  • the pixel defining layer is provided with a plurality of light-emitting openings; the light-emitting openings expose the first electrode.
  • the pixel defining layer PDL may be formed on the insulating layer and the anode AE.
  • a deposition process is used to form a layer of pixel definition material covering the insulating layer and the anode AE, and part of the pixel definition material layer is removed through an etching process to obtain the pixel definition layer PDL.
  • the pixel definition layer PDL includes a first light-emitting opening K1 located in the first sub-pixel area P1, a second light-emitting opening K2 located in the second sub-pixel area P2, and a third light-emitting opening K3 located in the third sub-pixel area P3.
  • the first light-emitting opening K1 exposes the first anode AE1
  • the second light-emitting opening K2 exposes the second anode AE2
  • the third light-emitting opening K3 exposes the third anode AE3.
  • Step S530 Form at least two light-emitting units covering the light-emitting opening.
  • the at least two light-emitting units include a first light-emitting unit and a second light-emitting unit sequentially stacked along the first direction.
  • the first light-emitting unit includes a first light-emitting layer.
  • the second light-emitting unit includes a second light-emitting layer.
  • the light-emitting layer in each light-emitting unit includes a first compound, a second compound and a third compound.
  • the absolute value of the difference between the weight proportion of the first compound in the first light-emitting layer in the first light-emitting layer and the weight proportion of the first compound in the second light-emitting layer in the second light-emitting layer in the range of 0% to 3%; and/or, the weight proportion of the second compound in the first light-emitting layer in the first light-emitting layer is the same as that of the second compound in the second light-emitting layer in the second light-emitting layer.
  • the absolute value of the difference between the weight proportions in the layers is in the range of 0% to 3%.
  • the first light-emitting unit 21 includes a first transmission layer TL1 , a first light-emitting layer, and a second transmission layer TL2
  • the second light-emitting unit 22 includes a third transmission layer TL3 , a third transmission layer TL3 , and a second transmission layer TL2
  • Step S530 may include:
  • a first transmission layer TL1 covering the first, second and third light emitting openings K1, K2 and K3 is formed.
  • the first transmission layer TL1 may also cover the pixel defining layer PDL, and the part covering the pixel defining layer PDL and the part covering the light-emitting opening form a continuous film.
  • a first light-emitting layer covering the first light-emitting opening K1, a first light-emitting layer covering the second light-emitting opening K2, and a first light-emitting layer covering the third light-emitting opening K3 are formed on the first transmission layer TL1. Two adjacent first light-emitting layers are independent of each other.
  • a second transmission layer TL2 covering the plurality of first light-emitting layers is formed.
  • the second transmission layer TL2 may also cover the pixel defining layer PDL, and the part covering the pixel defining layer PDL and the part covering the light-emitting opening form a continuous film.
  • Charge generation layer 30 is formed.
  • the charge generation layer 30 may cover the first, second, and third light emitting openings K1, K2, K3, and the pixel defining layer PDL. That is, the charge generation layer 30 covers the second transport layer TL2.
  • the third transport layer TL3 covering the charge generation layer 30 is formed.
  • the third transmission layer TL3 can cover the first light-emitting opening K1, the second light-emitting opening K2, the third light-emitting opening K3 and the pixel defining layer PDL, and the part covering the pixel defining layer PDL and the part covering the light-emitting opening form a continuous film .
  • a second light-emitting layer covering the first light-emitting opening K1, a second light-emitting layer covering the second light-emitting opening K2, and a second light-emitting layer covering the third light-emitting opening K3 are formed on the third transmission layer TL3. Two adjacent second light-emitting layers are independent of each other.
  • a fourth transmission layer TL4 covering the plurality of second light emitting layers is formed.
  • the fourth transmission layer TL4 may also cover the pixel defining layer PDL, and the part covering the pixel defining layer PDL and the part covering the light-emitting opening form a continuous film.
  • a light-emitting device includes two light-emitting layers, and the two light-emitting layers are a first light-emitting layer EML1 and a second light-emitting layer EML2 respectively.
  • the absolute value of the difference is in the range of 0% to 3%, for example, 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3% , 2.5%, 2.9% or 3%.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M1.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M2.
  • the absolute value of the difference between M1 and M2 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • a light-emitting device includes three light-emitting layers, and the three light-emitting layers are respectively a first light-emitting layer EML1, a second light-emitting layer EML2, and a third light-emitting layer EML3.
  • the proportion of the weight of the first compound in the first light-emitting layer EML1 to the weight of the first light-emitting layer EML1, and the proportion of the weight of the first compound in the third light-emitting layer EML3 to the weight of the third light-emitting layer EML3 is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the weight of the first compound is equal to the weight of the first compound
  • the ratio to the sum of the weights of the second compound is M1.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M5.
  • the absolute value of the difference between M1 and M5 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the weight of the first compound in the second light-emitting layer EML2 is proportional to the weight of the second light-emitting layer EML2, and the weight of the first compound in the third light-emitting layer EML3 is in the third
  • the absolute value of the difference between the weight proportions of the light-emitting layer EML3 is also in the range of 0% to 3%.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M2.
  • the ratio of the weight of the first compound to the sum of the weights of the first compound and the second compound is M5.
  • the absolute value of the difference between M2 and M5 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the proportion of the weight of the second compound in the first emitting layer EML1 to the weight of the first emitting layer EML1 is equal to the proportion of the weight of the second compound in the second emitting layer EML2 to the weight of the second emitting layer EML2
  • the absolute value of the difference between the proportions in the weight is in the range of 0% to 3%, for example, 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5 %, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M3.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M4.
  • the absolute value of the difference between M3 and M4 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the proportion of the weight of the second compound in the first emitting layer EML1 to the weight of the first emitting layer EML1 is the same as the proportion of the weight of the second compound in the third emitting layer to the weight of the second emitting layer EML2.
  • the absolute value of the difference between the proportions is in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M3.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M6.
  • the absolute value of the difference between M3 and M6 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • the proportion of the weight of the second compound in the second light-emitting layer EML2 to the weight of the second light-emitting layer EML2 is the same as the proportion of the weight of the second compound in the third light-emitting layer to the weight of the second light-emitting layer EML2.
  • the absolute value of the difference between the proportions is also in the range of 0% to 3%. For example, it is 0%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.7%, 2%, 2.3%, 2.5%, 2.9% or 3%.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M4.
  • the ratio of the weight of the second compound to the sum of the weights of the first compound and the second compound is M6.
  • the absolute value of the difference between M4 and M6 is in the range of 0% to 2%, such as 0%, 0.1%, 0.3%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.7% or 2%.
  • Step S540 Form a second electrode on the side of at least two light-emitting units away from the first electrode.
  • the first light-emitting unit is located between the first electrode AE and the second electrode CE
  • the second light-emitting unit is located between the first light-emitting unit and the second electrode CE. It can be understood that the second electrode is formed on a side of the second light-emitting unit away from the first electrode.
  • the second electrode CE is formed on a side of the second light-emitting unit 22 away from the first electrode AE, which can be understood as forming the second electrode CE covering the fourth transmission layer TL4.
  • the second electrode CE may cover the first light-emitting opening K1, the second light-emitting opening K2, the third light-emitting opening K3 and the pixel defining layer PDL, and the part covering the pixel defining layer PDL and the part covering the light-emitting openings form a continuous film.
  • the second electrode may be a cathode, which may have semi-transmissive or transmissive properties.
  • the cathode may include Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti or compounds or mixtures thereof, such as Ag and Mg mixture.
  • the display panel is a top-emission display panel.
  • it may also include forming a light extraction layer CPL on a side of the second electrode away from the base substrate SUB.
  • the difference range of the weight ratio of the first compound between different light-emitting layers to the weight of the light-emitting layer to which it belongs is small. and/or the difference range of the weight ratio of the second compound between different light-emitting layers to the weight ratio of the light-emitting layer to which it belongs is small, so that the exciton recombination regions between different light-emitting layers in the same light-emitting device are consistent or close , can reduce the performance difference between different light-emitting layers in the same light-emitting device, thereby improving the overall luminous efficiency and stability of the light-emitting device and display panel.
  • step S530 includes: steps S531 to step S535.
  • Step S531 Use an open mask (OPEN MASK) to form a first transmission layer TL1, and the first transmission layer TL1 covers the first electrode AE in the light-emitting opening.
  • OPEN MASK open mask
  • An open mask can be used for evaporation to form a first transmission layer TL1 covering the pixel defining layer PDL and the first electrode in each light-emitting opening.
  • the first transport layer TL1 may include a first hole injection layer HIL1, a first hole transport layer HTL1, and a first exciton blocking layer BL1.
  • the specific introduction of the first hole injection layer HIL1, the first hole transport layer HTL1 and the first exciton blocking layer BL1 has been described in detail before and will not be described again here.
  • step S531 may include:
  • a hole injection material is evaporated on the pixel definition layer PDL and the first electrode AE in each light-emitting opening to form a first hole injection layer HIL1.
  • the hole injection material can be NPB:F4TCNQ or TAPC:MnO 3 .
  • the hole transport material is evaporated on the first hole injection layer HIL1 to form the first hole transport layer HTL1.
  • the hole transport material can be carbazole organic materials with better hole migration properties.
  • the first exciton blocking material is evaporated on the first hole transport layer HTL1 to form the first exciton blocking layer BL1.
  • the first exciton blocking layer BL1 is configured to transport holes and block electrons in the subsequently formed first light-emitting layer EML1 from diffusing toward one side of the first electrode AE.
  • the first exciton blocking layer BL1 may be an electron blocking layer.
  • the first exciton blocking material may be understood as an electron blocking material, and may include, for example, one or both of TPB or ⁇ -NPD.
  • Step S532 Use a high-precision metal mask (Fine Metal Mask, FMM) to form a first light-emitting layer covering the light-emitting opening.
  • the first light-emitting layer is located on the first transmission layer.
  • a first compound, a second compound, and a third compound are evaporated simultaneously on the first exciton blocking layer BL1 of multiple light-emitting openings using a high-precision metal mask to form multiple first light-emitting layers.
  • the ratio between the weight of the first compound and the weight of the second compound is in the range of 3:7 to 7:3.
  • the ratio between the weight of the third compound and the sum of the weights of the first compound and the second compound is in the range of 1% to 14%.
  • step S532 may include:
  • the first compound, the second compound and the third compound are simultaneously evaporated using a high-precision metal mask to form the first compound covering the first light-emitting opening K1.
  • the first light-emitting layer of the color light-emitting device 210 For example, in the first light-emitting layer of the first color light-emitting device 210, the ratio between the weight of the first compound and the weight of the second compound is in the range of 5:5 ⁇ 7:3. For another example, in the first light-emitting layer of the first color light-emitting device 210, the ratio between the weight of the third compound and the sum of the weights of the first compound and the second compound is in the range of 6% to 14%.
  • the first compound, the second compound and the third compound are simultaneously evaporated using a high-precision metal mask to form a second exciton blocking layer BL1 covering the second light-emitting opening K2.
  • the first light-emitting layer of the color light-emitting device 220 For example, in the first light-emitting layer of the second color light-emitting device 220, the ratio between the weight of the first compound and the weight of the second compound is in the range of 3:7 ⁇ 5:5. For another example, in the first light-emitting layer of the second color light-emitting device 220, the ratio of the weight of the third compound to the sum of the weights of the first compound and the second compound is in the range of 1% to 6%.
  • Step S533 Use an open mask to sequentially form the second transmission layer TL2 and the third transmission layer that overlap each other.
  • the second transmission layer TL2 covers the first light-emitting layer EML1.
  • the second transport layer TL2 may include a first electron transport layer ETL1, a first electron injection layer EIL1, and a second exciton blocking layer BL2.
  • Forming the second transmission layer in step S533 may include:
  • the second exciton blocking material is evaporated to form a second exciton blocking layer BL2 covering the first exciton blocking layer BL1 and the first light-emitting layer EML1.
  • the second exciton blocking layer BL2 is configured to transport electrons and block holes in the first light-emitting layer EML1 from diffusing to one side of the second electrode CE.
  • the second exciton blocking layer BL2 may be a hole blocking layer.
  • the second exciton blocking material can be understood as a hole blocking material, for example, it can be BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (1,10- o-phenanthroline), or TPBI (1,3,5-tris(1-phenyl-benzoD-imidazol-2-yl)benzene; 1,3,5-tris(1-phenyl-1H-benzene) Any one of imidazol-2-yl) benzene).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Bphen 1,10- o-phenanthroline
  • TPBI 1,3,5-tris(1-phenyl-benzoD-imidazol-2-yl)benzene
  • 1,3,5-tris(1-phenyl-1H-benzene) Any one of imidazol-2-yl) benzene).
  • the electron transport material is evaporated to form the first electron transport layer ETL1 covering the second exciton blocking layer BL2.
  • the electron transport material can use triazine organic materials with higher electron mobility.
  • an electron injection material is evaporated to form a first electron injection layer EIL1 covering the first electron transport layer ETL1.
  • the electron injection material may be at least one material selected from lithium fluoride or lithium 8-hydroxyquinolate.
  • the second transport layer TL2 and before forming the third transport layer TL3 may further include: forming the N-type charge generation sub-layer 320 covering the first electron injection layer EIL1, and covering the N-type charge P-type charge generation sub-layer 310 of generation sub-layer 320.
  • the N-type charge generation sublayer 320 may cover the second transport layer TL2.
  • the N-type charge generation sub-layer 320 is configured to provide electrons to the first electron injection layer EIL1.
  • the P-type charge generation sub-layer 310 is configured to provide holes to the subsequently formed third transport layer TL3.
  • the third transport layer TL3 may include a second hole injection layer HIL2, a second hole transport layer HTL2, and a third exciton blocking layer BL3.
  • Forming the third transmission layer in step S533 may include:
  • a hole injection material is evaporated to form a second hole injection layer HIL2 located on the side of the first electron injection layer EIL1 away from the first electrode AE.
  • the second hole injection layer HIL2 may cover the P-type charge generation sub-layer 310 to transport holes provided by the P-type charge generation sub-layer 310 to the second hole injection layer HIL2.
  • the second hole injection layer HIL2 may have the same structural features as the first hole injection layer HIL1, which will not be described again here.
  • a hole transport material is evaporated to form a second hole transport layer HTL2 covering the second hole injection layer HIL2.
  • the second hole transport layer HTL2 may have the same structural features as the first hole transport layer HTL1, which will not be described again here.
  • a third exciton blocking material is evaporated to form a third exciton blocking layer BL3 covering the second hole transport layer HTL2.
  • the third exciton blocking layer BL3 is configured to transport holes and block electrons in the subsequently formed second light-emitting layer EML2 from diffusing toward one side of the first electrode AE.
  • the third exciton blocking layer BL3 may be called an electron blocking layer.
  • the third exciton blocking material may be the same as the first exciton blocking material.
  • the third exciton blocking layer BL3 may have the same structural features as the first exciton blocking layer BL1, which will not be described again here.
  • Step S534 Use a high-precision metal mask to form a second light-emitting layer EML2 covering the light-emitting opening; the second light-emitting layer Layer EML2 is located on the third transport layer TL3.
  • a high-precision metal mask is used to simultaneously evaporate the first compound, the second compound, and the third compound to form a second light-emitting layer EML2 covering a plurality of light-emitting openings respectively.
  • the second light emitting layer EML2 may cover the third exciton blocking layer BL3.
  • step S534 For other examples of forming the second light-emitting layer EML2 in step S534, reference can be made to the specific example of forming the first light-emitting layer EML1 in step S532, which will not be described again here.
  • Step S535 Use an open mask to form a fourth transmission layer TL4; the fourth transmission layer TL4 covers the second light-emitting layer EML2.
  • the fourth transport layer TL4 includes a fourth exciton blocking layer BL4, a second electron transport layer ETL2, and a second electron injection layer EIL2.
  • Step S535 may include:
  • a fourth exciton blocking material is evaporated to form a fourth exciton blocking layer BL4 covering the third exciton blocking layer BL3 and the second light emitting layer EML2.
  • the fourth exciton blocking layer BL4 is configured to transport electrons and block holes in the second light-emitting layer EML2 from diffusing toward one side of the second electrode CE.
  • the fourth exciton blocking layer BL4 may be called a hole blocking layer.
  • the fourth exciton blocking material may be the same as the second exciton blocking material.
  • the fourth exciton blocking layer BL4 may have the same structural characteristics as the second exciton blocking layer BL2, which will not be described again here.
  • the electron transport material is evaporated to form the second electron transport layer ETL2 covering the fourth exciton blocking layer BL4.
  • the second electron transport layer ETL2 may have the same structural features as the first electron transport layer ETL1, which will not be described again here.
  • an electron injection material is evaporated to form a second electron injection layer EIL2 covering the second electron transport layer ETL2.
  • the second electron injection layer EIL2 may have the same structural features as the first electron injection layer EIL1, which will not be described again here.
  • the open mask can be used to obtain common layers that connect and cover each light-emitting opening, such as the first transmission layer TL1, the second transmission layer TL2, the third transmission layer TL3 and the fourth transmission layer TL4; using high precision
  • the metal mask can form the first light-emitting layer EML1 and the second light-emitting layer EML2, thereby improving the position accuracy of the first light-emitting layer EML1 and the second light-emitting layer EML2, and simultaneously improving the production efficiency of the display panel.
  • step S532 may include step S551.
  • Step S551 evaporate the first compound at the first temperature and the second compound at the second temperature at the same time, so that the vaporized first compound and the vaporized second compound pass through the high-precision metal mask to form a covered luminescence The opening of the first luminescent layer.
  • the absolute value of the difference between the first temperature and the second temperature is within the range of 0°C to 10°C, such as 0°C, 2°C, 4°C, 5°C, 6°C, 8°C or 10°C. °C.
  • the first compound is evaporated at the first temperature T1
  • the evaporation rate of the first compound is at the same time
  • the second compound is evaporated at the second temperature T2
  • the evaporation rate of the second compound is also Among them, the first temperature T1
  • the absolute value of the difference from the second temperature T2 is within the range of 0°C ⁇ 5°C (that is, 0°C ⁇
  • step S551 may include: first, weigh the first compound and the second compound respectively, and the ratio between the weight of the first compound and the weight of the second compound is 3:7 ⁇ 7:3.
  • the weighed first compound is put into a first heating device (such as a crucible) for evaporation at a first temperature T1 (for example, 154.3°C).
  • the evaporation rate of the first compound is
  • put the weighed second compound into a second heating device such as a crucible
  • the second temperature T2 for example, 154.8°C
  • the evaporation rate of the second compound is also Wherein, the absolute value of the difference between the first temperature T1 and the second temperature T2 is 0.5°C.
  • the first compound and the second compound are placed in two heating devices respectively for evaporation.
  • the first compound and the second compound can also be placed in the same heating device for evaporation.
  • the first temperature T1 and the second temperature T2 are equal.
  • the evaporation temperature of the third compound may be the same as or different from the evaporation temperature of the first compound and the second compound, and is not limited here.
  • Step S534 may include step S552.
  • Step S552 may include: simultaneously evaporating the first compound at a first temperature and evaporating a second compound at a second temperature, so that the vaporized first compound and the vaporized second compound pass through the high-precision metal mask to form A second luminescent layer covering the luminescent opening.
  • step S552 For the specific example of forming the second light-emitting layer in step S552, reference can be made to the specific example of forming the first light-emitting layer in step S551, which will not be described again here.
  • each light-emitting layer or in all light-emitting layers of a light-emitting device the difference between the evaporation temperature of the first compound and the evaporation temperature of the second compound is large, which will lead to the third difference between different light-emitting layers in the same light-emitting device.
  • the weight ratios of the first compound, the second compound and the third compound each have a large difference, resulting in inconsistent exciton recombination regions in different light-emitting layers. This results in large performance differences between different light-emitting layers in the same light-emitting device, resulting in lower overall luminous efficiency and poor stability of the light-emitting device.
  • the difference between the evaporation temperature of the first compound and the evaporation temperature of the second compound is small, which can ensure that the evaporation rate of the first compound and the evaporation rate of the second compound are approximately the same, thereby ensuring During the evaporation process and after evaporation, the ratio between the weight of the first compound and the weight of the second compound in each light-emitting layer of the same light-emitting device remains unchanged, that is, even if the same light-emitting device obtained by evaporation has different
  • the difference in the ratio between the weight of the first compound and the weight of the second compound between the light-emitting layers is small, so that the exciton recombination regions in different light-emitting layers of the same light-emitting device remain consistent or close, thereby reducing
  • the performance difference between different light-emitting layers in the same light-emitting device improves the overall luminous efficiency and stability of the light-emitting device and display panel.
  • step S532 may include step S553.
  • Step S553 evaporate the first compound at the first temperature T1 and the second compound at the second temperature T2 at the same time, The third compound is evaporated at a third temperature T3, so that the vaporized first compound, the vaporized second compound and the vaporized third compound pass through the high-precision metal mask to form a first light-emitting layer covering the light-emitting opening.
  • the absolute value of the difference between the third temperature and the first temperature is within the range of 0°C to 100°C (i.e.
  • ⁇ 100°C for example, 0°C, 5°C , 15°C, 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, 85°C, 90°C, 95°C or 100°C.
  • the absolute value of the difference between the third temperature T3 and the second temperature T2 is within the range of 0°C to 100°C (that is, 0°C ⁇
  • step S553 may include: simultaneously evaporating the first compound at the first temperature T1, evaporating the second compound at the second temperature T2, and evaporating the third compound at the third temperature T3.
  • the absolute value of the difference between the third temperature T3 and the average value of the first temperature T1 and the second temperature T2 is within the range of 0°C ⁇ 90°C (that is, 0°C ⁇
  • the first compound is put into a first heating device (such as a crucible) for evaporation at a first temperature T1 (for example, 154.3°C).
  • the evaporation rate of the first compound is
  • the second compound is placed into a second heating device (such as a crucible) for evaporation at the second temperature T2 (for example, 154.8°C).
  • the evaporation rate of the second compound is also At the same time, the third compound is put into a third heating device (such as a crucible) for evaporation at a third temperature T3 (for example, 221.5°C).
  • the evaporation rate of the third compound is The absolute value of the difference between the third temperature T3 and the average value of the first temperature T1 and the second temperature T2 may be 66.95°C.
  • the first compound, the second compound and the third compound are respectively placed in three heating devices for evaporation.
  • the first compound and the second compound can also be placed in the same heating device for evaporation (that is, the first temperature T1 and the second temperature T2 are equal); at the same time, the third compound can be placed in another heating device. Perform evaporation.
  • Step S534 may include step S554.
  • Step S554 may include: simultaneously evaporating the first compound at a first temperature, evaporating a second compound at a second temperature, and evaporating a third compound at a third temperature, so that the vaporized first compound and the vaporized second compound are evaporated.
  • the compound and the vaporized third compound pass through the high-precision metal mask to form a second light-emitting layer covering the light-emitting opening.
  • step S554 For specific examples of forming the second light-emitting layer in step S554, reference may be made to the specific example of forming the first light-emitting layer in step S553, which will not be described again here.
  • the evaporation speed and evaporation temperature are different.
  • the evaporation temperature of the third compound is relatively high.
  • the high temperature easily causes overheating of the first compound and the second compound. Destruction will reduce the stability of the light-emitting layer and shorten the effective service life of the light-emitting device.
  • the evaporation temperature of the first compound by defining the evaporation temperature of the first compound, the evaporation temperature of the second compound and the third compound
  • the deviation range between the evaporation temperatures can avoid the problem of overheating damage to the first compound and the second compound caused by relatively high evaporation temperatures during the evaporation process, improve the stability of the light-emitting device, and extend the life of the light-emitting device. Effective service life.
  • first temperature T1 represents the evaporation temperature of the first compound
  • second temperature T2 represents the evaporation temperature of the second compound
  • third temperature T3 represents the evaporation temperature of the third compound.
  • the evaporation rate of the first compound and the evaporation rate of the second compound in each light-emitting layer are approximately the same, and the weight of the first compound and the weight of the second compound between different light-emitting layers in the first color light-emitting device are The ratio differences are in a smaller range. Furthermore, in the first color light-emitting device, the absolute value of the difference in the ratio of the weight of the first compound between different light-emitting layers to the sum of the weights of the first compound and the second compound, and/or the difference between the different light-emitting layers The absolute value of the difference between the weight of the second compound and the sum of the weights of the first compound and the second compound is also within a smaller range.
  • the difference in proportion between the weight of the third compound and the sum of the weights of the first compound and the second compound is within a smaller range between different light-emitting layers in the first color light-emitting device. It can be understood that in the same light-emitting device, the absolute value of the difference between the weight of the first compound between different light-emitting layers and the weight ratio of the light-emitting layer to which it belongs, and/or the weight of the second compound between different light-emitting layers The absolute value of the difference in proportion to the weight of the luminescent layer to which it belongs is in a smaller range.
  • the light-emitting device and display panel provided by the embodiments of the present disclosure have the beneficial effects of high overall luminous efficiency and long effective service life. Therefore, on the basis of preparing a light-emitting device and a display panel using the display panel manufacturing method provided by the embodiments of the present disclosure, the beneficial effects of the above-mentioned light-emitting device and display panel can also be achieved.
  • some embodiments of the present disclosure provide light-emitting devices, display panels and preparation methods thereof, by respectively defining the weight ratio of the first compound between different light-emitting layers in a light-emitting device to the weight of the light-emitting layer to which it belongs.
  • the difference range, and/or the difference range of the weight ratio of the second compound between different light-emitting layers in a light-emitting device to the weight ratio of the light-emitting layer to which it belongs can make the exciton recombination regions in different light-emitting layers consistent or similar. Being close to each other can reduce the performance difference between different light-emitting layers in the same light-emitting device, thereby improving the overall luminous efficiency and stability of the light-emitting device and display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件、显示面板及其制备方法,涉及显示技术领域,用于解决发光器件稳定性差和发光效率低的问题。发光器件包括沿第一方向依次叠置的第一电极、至少两个发光单元(20)和第二电极。至少两个发光单元(20)包括第一发光单元(21)和第二发光单元(22)。第一发光单元(21)包括第一发光层。第二发光单元(22)包括第二发光层。每个发光单元的发光层包括第一化合物、第二化合物和第三化合物。不同发光层的第一化合物的重量占其所属发光层的重量比例之间的差值的绝对值,和/或不同发光层的第二化合物的重量占其所属发光层的重量比例之间的差值的绝对值,处于0%~3%的范围内。可以提高发光器件和显示面板的稳定性和发光效率。

Description

发光器件、显示面板及其制备方法
本申请要求于2022年8月30日提交的、申请号为202211058033.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种发光器件、显示面板及其制备方法。
背景技术
有机电致发光器件(Organic Light Emitting Diode,OLED)因具有自发光、亮度高、对比度高、响应速度快、视角宽、结构简单以及柔性显示等诸多优点,受到企业和高校的重视,并获得飞速地发展。
随着有机电致发光技术的迅速发展,串联式有机电致发光器件(Tandem OLED)成为OLED显示技术的重要发展方向。
发明内容
一方面,提供一种发光器件。所述发光器件包括沿第一方向依次叠置的第一电极、至少两个发光单元和第二电极。所述至少两个发光单元包括第一发光单元和第二发光单元。所述第一发光单元位于所述第一电极和所述第二电极之间;所述第一发光单元包括第一发光层。所述第二发光单元位于所述第一发光单元与所述第二电极之间;所述第二发光单元包括第二发光层。每个所述发光单元的发光层包括第一化合物、第二化合物和第三化合物。所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
在一些实施例中,在所述第一发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M1。在所述第二发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M2。所述M1和所述M2之间差值的绝对值,处于0%~2%的范围内。
在一些实施例中,在所述第一发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M3。在所述第二发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M4。所述M3和所述M4之间差值的绝对值,处于0%~2%的范围内。
在一些实施例中,所述发光器件的每个所述发光层中,所述第一化合物的重量与所述第二化合物的重量之间的比值,处于3:7~7:3的范围内。
在一些实施例中,所述发光器件的每个所述发光层中,所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例,处于1%~14%的范围内。
在一些实施例中,所述发光器件还包括电荷产生层。所述电荷产生层设置在相邻两个所述发光单元之间,且与所述发光单元耦接。
在一些实施例中,所述发光器件的所述第一发光层发出的光线的波长,与所述第二发光层发出的光线的波长之间的差值的绝对值,小于或等于20nm。
在一些实施例中,所述至少两个发光单元还包括第三发光单元。所述第三发光单元,位于所述第二发光单元与所述第二电极之间,包括第三发光层。所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第三发光层中的所述第一化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第三发光层中的所述第二化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
在一些实施例中,在所述第一发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M1。在所述第三发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M5。所述M1和所述M5之间差值的绝对值,处于0%~2%的范围内。
在一些实施例中,在所述第一发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M3。在所述第三发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M6。所述M3和所述M6之间差值的绝对值,处于0%~2%的范围内。
在一些实施例中,所述发光器件中,所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例,与所述第三发光层中的所述第一化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例,与所述第三发光层中的所述第二化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
另一方面,提供一种显示面板。所述显示面板包括像素界定层和多个发光器件。所述像素界定层开设有多个发光开口。多个发光器件分别覆盖多个所述发光开口。每个所述发光器件为如上述任一实施例所述的发光器件。
在一些实施例中,所述显示面板中的所述多个发光器件包括第一颜色发光器件和第二颜色发光器件。所述第一颜色发光器件发出的光线的波长,小于所述第二颜色发光器件发出的光线的波长。所述第一颜色发光器件的发光层中的所述第一化合物的重量与所述第二化合物的重量之间的比值,大于或等于所述第二颜色发光器件的发光层中的所述第一化合 物的重量与所述第二化合物的重量之间的比值。
在一些实施例中,所述显示面板中的所述第一颜色发光器件的发光层中,所述第一化合物的重量,与所述第二化合物的重量之间的比值,处于5:5~7:3的范围内。所述第二颜色发光器件的发光层中,所述第一化合物的重量,与所述第二化合物的重量之间的比值,处于3:7~5:5的范围内。
在一些实施例中,所述显示面板中的所述多个发光器件包括第一颜色发光器件和第二颜色发光器件。所述第一颜色发光器件发出的光线的波长,小于所述第二颜色发光器件发出的光线的波长。所述第一颜色发光器件的发光层中的所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例,大于或等于所述第二颜色发光器件的发光层中的所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例。
在一些实施例中,所述显示面板中的所述第一颜色发光器件的发光层中,所述第三化合物的重量,与所述第一化合物和所述第二化合物的重量之和之间的比例,处于6%~14%的范围内。所述第二颜色发光器件的发光层中,所述第三化合物的重量,与所述第一化合物和所述第二化合物的重量之和之间的比例,处于1%~6%的范围内。
又一方面,提供一种显示面板的制备方法。所述显示面板的制备方法包括:形成第一电极。在所述第一电极上形成像素界定层,所述像素界定层开设有多个发光开口;所述发光开口暴露所述第一电极。形成覆盖所述发光开口的至少两个发光单元。所述至少两个发光单元包括沿第一方向依次叠置的第一发光单元和第二发光单元。所述第一发光单元包括第一发光层;所述第二发光单元包括第二发光层。每个所述发光单元中的发光层包括第一化合物、第二化合物和第三化合物。所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。在所述至少两个发光单元远离所述第一电极的一侧形成第二电极。所述第一发光单元位于所述第一电极和所述第二电极之间。所述第二发光单元位于所述第一发光单元与所述第二电极之间。
在一些实施例中,所述形成覆盖所述发光开口的至少两个发光单元,包括:利用开放式掩膜版形成第一传输层,所述第一传输层覆盖所述发光开口内的所述第一电极。利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层;所述第一发光层位于所述第一传输层上。利用开放式掩膜版依次形成相互叠置的第二传输层和第三传输层,所述第二传输层覆盖所述第一发光层。利用高精度金属掩膜版形成覆盖所述发光开口的所述第二发光 层;所述第二发光层位于所述第三传输层上。利用开放式掩膜版形成第四传输层;所述第四传输层覆盖所述第二发光层。
在一些实施例中,所述利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层,包括:同时以第一温度蒸镀所述第一化合物,以第二温度蒸镀所述第二化合物,以使气化的所述第一化合物和气化的所述第二化合物穿过高精度金属掩膜版,形成覆盖所述发光开口的第一发光层。其中,所述第一温度与所述第二温度之间的差值的绝对值,处于0℃~10℃的范围之内。
在一些实施例中,所述利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层,包括:同时以第一温度蒸镀所述第一化合物,以第二温度蒸镀所述第二化合物,以第三温度蒸镀所述第三化合物,以使气化的所述第一化合物、气化的所述第二化合物和气化的所述第三化合物穿过高精度金属掩膜版,形成覆盖所述发光开口的所述第一发光层。其中,所述第三温度与所述第一温度之间的差值的绝对值,和/或所述第三温度与所述第二温度之间的差值的绝对值,处于0℃~100℃的范围之内。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示面板的立体图;
图2为根据图1所示实施例的显示面板沿线A-A'的截面图;
图3~图7分别为根据一些实施例的显示面板中子像素的排列结构图;
图8为根据一些实施例的显示面板的截面图;
图9为图2中F区域的放大图;
图10为图2中F区域的放大图;
图11为根据一些实施例的发光器件的结构图;
图12A~图12C为根据一些实施例的第一化合物的结构图;
图13为根据一些实施例的第二化合物的结构图;
图14A~图14C依次为方案1中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图15A~图15C依次为方案2中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图16A~图16C依次为方案3中发光器件的发光层中的第一化合物、第二化合物和第 三化合物的结构图;
图17A~图17C依次为方案4中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图18A~图18C依次为方案5中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图19A~图19C依次为方案6中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图20A~图20C依次为对比方案1中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图21A~图21C依次为对比方案2中发光器件的发光层中的第一化合物、第二化合物和第三化合物的结构图;
图22为根据一些实施例的显示面板的制备方法流程图;
图23为根据一些实施例的显示面板的制备方法流程图;
图24为根据一些实施例的显示面板的制备方法流程图;
图25为根据一些实施例的显示面板的制备方法流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述 一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
如何提高Tandem OLED的整体发光效率和稳定性,是一项有待解决的技术问题。
基于此,本公开的一些实施例提供一种发光器件和显示面板,以下分别进行介绍。
图1为根据一些实施例的显示面板的立体图。图2为根据图1所示实施例的显示面板中沿线A-A'的截面图。如图1所示,显示面板1000包括用于显示图像的显示区AA和不显示图像的非显示区SA,非显示区SA围绕在显示区AA的至少一侧(例如,一侧;又如,四周,即包括上下两侧和左右两侧)。示例性地,非显示区SA可以封闭包围显示区AA,可以在至少一个方向上位于显示区AA的外侧。显示面板1000沿第二方向Y所在的平面的截面形状,可以是矩形、圆形、菱形、椭圆形、梯形或其他根据显示需要的形状,此处不做限定。
上述显示面板1000可以应用于显示装置。例如,显示装置可以为平板计算机、智能电话、头戴式显示器、汽车导航单元、照相机、车载中心信息显示器(CID)、手表型显示装置或其他穿戴设备、个人数字助理(PDA)、便携式多媒体播放器(PMP)和游戏机的中小型显示装置,以及诸如电视、外部广告牌、监控器、包含显示屏幕的家用电器、个人计算机和膝上型计算机的中大型电子装置。如上的电子装置可以代表应用显示装置的单纯示例,因此本领域普通技术人员可以认识到,在不脱离本公开的精神和范围的情况下,显示装置也可以是其他电子装置。
结合图1、图2和图8所示,本公开的一些实施例提供一种显示面板1000。
显示面板1000包括衬底SUB、发光器件层LDL、光取出层CPL和封装层TFE。
衬底SUB包括多个重复排列的像素单元区PU。每个像素单元区PU可以包括显示不同颜色的第一子像素区P1、第二子像素区P2和第三子像素区P3。示例性地,第一子像素区P1被配置为显示红色光,第二子像素区P2被配置为显示绿色光,第三子像素区P3被配置为显示蓝色光。
另外,像素单元区PU还可以包括非发光区P4。非发光区P4可以位于第一子像素区P1与第二子像素区P2之间、第二子像素区P2和第三子像素区P3之间、以及第三子像素区P3和第一子像素区P1之间。
在一些示例中,如图3~图5所示,一个像素单元区PU包括一个第一子像素区P1、一个第二子像素区P2和一个第三子像素区P3。一个第一子像素区P1、一个第二子像素区P2和一个第三子像素区P3可以相互间隔且重复性地排布于显示区AA内。
在一些示例中,如图6和图7所示,一个像素单元区PU中可以包括显示相同颜色的两个子像素区,显示相同颜色的两个子像素区可以相邻设置。例如,一个像素单元区PU内包括一个红色子像素区R、两个绿色子像素区G和一个蓝色子像素区B,其中,一个像素单元区PU内的两个绿色子像素区G可以相邻设置。
在一些示例中,一个像素单元区PU包括一个第一子像素区P1、两个第二子像素区P2和一个第三子像素区P3。一个第一子像素区P1、两个第二子像素区P2和一个第三子像素 区P3可以相互间隔且重复性地排布于显示区AA内。在此情况下,非发光区P4还可以位于两个第二子像素区P2之间。
如图8所示,显示面板1000可以包括位于衬底基板SUB上的多个像素电路。在一个像素单元区PU中,可以包括第一像素电路S1、第二像素电路S2和第三像素电路S3。例如,第一像素电路S1位于第一子像素区P1内,第二像素电路S2位于第二子像素区P2内,第三像素电路S3位于第三子像素区P3内。又例如,第一像素电路S1、第二像素电路S2和第三像素电路S3中至少一者的薄膜晶体管可以位于非发光区P4内。
像素电路的结构包括多种,可以根据实际需要选择设置。示例性地,像素电路可以包括:至少两个晶体管和至少一个电容器。例如,像素电路S可以具有“2T1C”、“6T1C”、“7T1C”、“6T2C”或“7T2C”等结构。其中,“T”表示薄膜晶体管,位于“T”前面的数字表示薄膜晶体管的个数,“C”表示存储电容器,“C”前面的数字表示存储电容器的个数。
第一像素电路S1、第二像素电路S2和第三像素电路S3中至少一者的薄膜晶体管可以是包括多晶硅的薄膜晶体管或包括氧化物半导体的薄膜晶体管。例如,当薄膜晶体管为包括氧化物半导体的薄膜晶体管时,可以具有顶栅的薄膜晶体管结构。薄膜晶体管可以和信号线连接,信号线包括但不限于栅极线、数据线和电源线。
如图8所示,显示面板1000可以包括绝缘层INL,可以位于第一像素电路S1、第二像素电路S2和第三像素电路S3上。绝缘层INL可以具有平坦化的表面。绝缘层INL可以由有机层形成。例如,绝缘层INL的材质可以包括丙烯酸树脂、环氧树脂、酰亚胺树脂或酯树脂等。绝缘层INL可以具有通孔,通孔用于暴露第一像素电路S1、第二像素电路S2和第三像素电路S3的电极,以便实现电连接。
结合图2和图8所示,显示面板1000可以包括位于衬底基板SUB上的发光器件层LDL和像素界定层PDL。像素界定层PDL可以在绝缘层INL上形成,并且像素界定层PDL可以开设有多个发光开口。例如像素界定层PDL包括位于第一子像素区P1的第一发光开口K1、位于第二子像素区P2的第二发光开口K2、以及位于第三子像素区P3的第三发光开口K3。发光器件层LDL形成有多个和像素电路S连接的发光器件200,多个发光器件200分别覆盖多个发光开口。在一个像素单元区PU内,发光器件200包括第一发光器件、第二发光器件和第三发光器件。例如,第一发光器件LD1可以覆盖第一发光开口K1,第二发光器件LD2可以覆盖第二发光开口K2,并且第三发光器件LD3可以覆盖第三发光开口K3。
在一些实施例中,如图2所示,显示面板1000中的多个发光器件200包括第一颜色发光器件210和第二颜色发光器件220。
示例性地,第一颜色发光器件210发出的光线的波长,小于第二颜色发光器件220发 出的光线的波长。
示例性地,第一颜色发光器件210可以是绿光发光器件,例如第一颜色发光器件210发出的光线的波长可以为505nm~525nm;第二颜色发光器件220可以是红光发光器件,例如第二颜色发光器件220发出的光线的波长可以为640nm~660nm。
如图2所示,发光器件200可以包括沿第一方向(即垂直于衬底SUB的方向)X依次叠置的第一电极AE、至少两个发光单元20和第二电极CE。
在一些示例中,显示面板1000为顶发射显示面板。第一电极AE为反射电极,可以反射光线,例如阳极。第二电极CE为透射电极,可以透出光线,例如阴极。这样,在阳极和阴极之间形成了微腔结构。
在另一些示例中,显示面板1000为底发射显示面板。第一电极AE为透射电极,可以透出光线,例如阳极。第二电极CE为反射电极,可以反射光线,例如阴极。这样,在阳极和阴极之间形成了微腔结构。
如图8所示,第一电极AE包括位于第一子像素区P1的第一电极AE1、位于第二子像素区P2的第一电极AE2和位于第三子像素区P3的第一电极AE3。
在一些示例中,第一电极AE可以包括高功函数的材料,例如Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir或Cr的金属及其混合物材料制成,也可以由ITO、IZO或IGZO等透明导电氧化物材料制成。
示例性地,显示面板1000为顶发射显示面板。第一电极AE可以包括透明导电氧化物/金属/透明导电氧化物这样的叠层复合结构。其中,透明导电氧化物材料例如为ITO或IZO,金属材料例如为Au、Ag、Ni或Pt。例如阳极结构为:ITO/Ag/ITO。第一电极AE对于可见光的平均反射率可以处于85%~95%的范围内。
在一些示例中,显示面板1000为底发射显示面板。第一电极AE可以包括ITO、IZO或IGZO等透明导电氧化物。
如图8所示,第二电极CE包括位于第一子像素区P1的第二电极CE1、位于第二子像素区P2的第二电极CE2和位于第三子像素区P3的第二电极CE3。
在一些示例中,第二电极CE可以包括低功函数的金属材料或合金材料。其中,金属材料例如为Al、Ag或Mg,合金材料例如为Mg:Ag合金或Al:Li合金。
在一些实施例中,如图2所示,第一电极AE和第二电极CE之间的至少两个发光单元20可以在第一方向X上叠置。发光单元20至少包括第一发光单元21和第二发光单元22,即第一电极AE和第二电极CE之间的发光单元20的数量可以是两个、也可以是三个,还可以是其他数量,此处不作限定。
在一些示例中,如图9所示,至少两个发光单元20包括第一发光单元21和第二发光单元22,即第一电极AE和第二电极CE之间包括两个发光单元20。第一发光单元21 和第二发光单元22位于第一电极AE和第二电极CE之间,第二发光单元22位于第一发光单元21与第二电极CE之间。例如,第一发光单元21可以与第一电极AE直接接触,第二发光单元22可以与第二电极CE直接接触。
第一发光单元21包括第一发光层EML1、第一传输层TL1和第二传输层TL2。第一传输层TL1位于第一发光层EML1和第一电极AE之间,第一传输层TL1被配置为从第一电极AE传输空穴至第一发光层EML1。第二传输层TL2位于第一发光层EML1与第二发光单元22之间,第二传输层TL2被配置为传输电子至第一发光层EML1。这样,空穴和电子可以在第一发光层EML1复合,使得第一发光层EML1发光。
第二发光单元22包括第二发光层EML2、第三传输层TL3和第四传输层TL4。第三传输层TL3位于第二发光层EML2和第一发光单元21之间,第三传输层TL3被配置为传输空穴至第二发光层EML2。第四传输层TL4位于第二发光层EML2与第二电极CE之间,第四传输层TL4被配置为从第二电极CE传输电子至第二发光层EML2。这样,空穴和电子可以在第二发光层EML2复合,使得第二发光层EML2发光。
在另一些示例中,如图10所示,至少两个发光单元20还包括第三发光单元23,即第一电极AE和第二电极CE之间包括三个发光单元20。上述第二发光单元22位于上述第一发光单元21与第三发光单元23之间,第三发光单元23位于第二发光单元22与第二电极CE之间。例如,第一发光单元21可以与第一电极AE直接接触,第三发光单元23可以与第二电极CE直接接触。
第三发光单元23包括第三发光层EML3、第五传输层TL5和第六传输层TL6。第五传输层TL5位于第三发光层EML3和第二发光单元22之间,第五传输层TL5被配置为传输空穴至第三发光层EML3。第六传输层TL6位于第三发光层EML3与第二电极CE之间,第六传输层TL6被配置为从第二电极CE传输电子至第三发光层EML3。这样,空穴和电子可以在第三发光层EML3复合,使得第三发光层EML3发光。
在一些实施例中,如图2和图9所示,同一个发光器件200中的第一发光层EML1发出的光线的波长,与第二发光层EML2发出的光线的波长之间的差值的绝对值,小于或等于20nm。
同一个发光器件200内的多个发光单元20发出相同或相近的光线。这样,能够提高同一个发光器件200中多个发光单元20光谱叠加的集中性,提高发光器件200发出光线的色纯度、以及出光效率。
例如,第一颜色发光器件210可以是绿光发光器件。第一颜色发光器件210中,第一发光层EML1发出的光线的波长为510nm,第二发光层EML2发出的光线的波长为515nm,两者之间的差值的绝对值为5nm。
又例如,第二颜色发光器件220可以是红光发光器件。第二颜色发光器件220中,第 一发光层EML1发出的光线的波长为650nm,第二发光层EML2发出的光线的波长为660nm,两者之间的差值的绝对值为10nm。
在一些实施例中,如图9所示,发光器件还包括位于相邻两个发光单元20之间的电荷产生层30,电荷产生层30与发光单元20耦接。
示例性地,电荷产生层30包括P型电荷产生子层310和N型电荷产生子层320。例如,如图9所示,P型电荷产生子层310可以与第三传输层TL3直接接触,将空穴提供给第二发光单元22。N型电荷产生子层320可以与第二传输层TL2直接接触,将电子提供给第一发光单元21。又例如,如图10所示,P型电荷产生子层310还可以与第五传输层TL5直接接触,将空穴提供给第三发光单元23。N型电荷产生子层320还可以与第四传输层TL4直接接触,将电子提供给第二发光单元22。
在一些示例中,如图10所示,上述第二传输层TL2被配置为传输第一电荷产生层31提供的电子至第一发光层EML1,以使第一电极AE提供的空穴和第一电荷产生层31提供的电子在第一发光层EML1复合发光。上述第三传输层TL3被配置为传输第一电荷产生层31提供的空穴至第二发光层EML2,上述第四传输层TL4被配置为传输第二电荷产生层32提供的电子至第二发光层EML2,以使第一电荷产生层31提供的空穴和第二电荷产生层32提供的电子在第二发光层EML2复合发光。上述第五传输层TL5被配置为传输第二电荷产生层32提供的空穴至第三发光层EML3,以使第二电荷产生层32提供的空穴和第二电极CE提供的电子在第三发光层EML3复合发光。
电荷产生层30可以包括金属、非掺杂有机物、P型及N型掺杂构成的有机PN结或金属氧化物等,此处不作限定。
在一些示例中,如图9所示,第一传输层TL1可以包括第一空穴注入层HIL1和第一空穴传输层HTL1。第一空穴注入层HIL1位于第一电极AE与第一空穴传输层HTL1之间,第一空穴注入层HIL1被配置为将第一电极AE的空穴注入到第一空穴传输层HTL1。第一空穴传输层HTL1位于第一空穴注入层HIL1和第一发光层EML1之间,第一空穴传输层HTL1被配置为将第一空穴注入层HIL1注入的空穴传输至第一发光层EML1,使得空穴在第一发光层EML1内与电子复合,实现第一发光层EML1的发光。
如图9所示,在一些示例中,第一传输层TL1还可以包括第一激子阻挡层BL1。第一激子阻挡层BL1可以位于第一空穴传输层HTL1和第一发光层EML1之间,第一激子阻挡层BL1被配置为阻挡第一发光层EML1中的电子向靠近第一电极AE的方向运动。因此,第一激子阻挡层BL1也可以称为电子阻挡层EBL。
在一些示例中,如图9所示,第二传输层TL2可以包括第一电子传输层ETL1和第一电子注入层EIL1。第一电子注入层EIL1位于第一电子传输层ETL1与第一N型电荷产生子层302之间,第一电子注入层EIL1被配置为将第一N型电荷产生子层302提供的电子 注入到第一电子传输层ETL1。第一电子传输层ETL1位于第一电子注入层EIL1与第一发光层EML1之间,第一电子传输层ETL1被配置为将第一电子注入层EIL1注入的电子传输至第一发光层EML1,使得电子在第一发光层EML1内与空穴复合,实现第一发光层EML1的发光。
如图9所示,在一些示例中,第二传输层TL2还可以包括第二激子阻挡层BL2。第二激子阻挡层BL2可以位于第一电子传输层ETL1和第一发光层EML1之间,第二激子阻挡层BL2被配置为阻挡第一发光层EML1中的空穴向靠近第二电极CE的方向运动。因此,第二激子阻挡层BL2也可以称为空穴阻挡层HBL。
如图9所示,在一些示例中,第三传输层TL3可以包括第二空穴注入层HIL2和第二空穴传输层HTL2。第二空穴注入层HIL2位于第一P型电荷产生子层301与第二空穴传输层HTL2之间,第二空穴注入层HIL2被配置为将第一P型电荷产生子层301的空穴注入到第二空穴传输层HTL2。第二空穴传输层HTL2位于第二空穴注入层HIL2和第二发光层EML2之间,第二空穴传输层HTL2被配置为将第二空穴注入层HIL2注入的空穴传输至第二发光层EML2,使得空穴在第二发光层EML2内与电子复合,实现第二发光层EML2的发光。
如图9所示,在一些示例中,第三传输层TL3还可以包括第三激子阻挡层BL3。第三激子阻挡层BL3可以位于第二空穴传输层HTL2和第二发光层EML2之间,第三激子阻挡层BL3被配置为阻挡第二发光层EML2中的电子向靠近第一电极AE的方向运动。因此,第三激子阻挡层BL3也可以称为电子阻挡层。
如图9所示,在一些示例中,第四传输层TL4可以包括第二电子传输层ETL2和第二电子注入层EIL2。第二电子注入层EIL2位于第二电子传输层ETL2与第二电极CE之间,第二电子注入层EIL2被配置为将第二电极CE提供的电子注入到第二电子传输层ETL2。第二电子传输层ETL2位于第二电子注入层EIL2与第二发光层EML2之间,第二电子传输层ETL2被配置为将第二电子注入层EIL2注入的电子传输至第二发光层EML2,使得电子在第二发光层EML2内与空穴复合,实现第二发光层EML2的发光。
如图9所示,在一些示例中,第四传输层TL4还可以包括第四激子阻挡层BL4。第四激子阻挡层BL4可以位于第二电子传输层ETL2和第二发光层EML2之间,第四激子阻挡层BL4被配置为阻挡第二发光层EML2中的空穴向靠近第二电极CE的方向运动。因此,第四激子阻挡层BL4也可以称为空穴阻挡层HBL。
如图10所示,在一些示例中,第四传输层TL4中,第二电子注入层EIL2位于第二电子传输层ETL2与第二N型电荷产生子层304之间,第二电子注入层EIL2被配置为将第二N型电荷产生子层304提供的电子注入到第二电子传输层ETL2。第五传输层TL5可以包括第三空穴注入层HIL3和第三空穴传输层HTL3。第三空穴注入层HIL3位于第二P型 电荷产生子层303与第三空穴传输层HTL3之间,第三空穴注入层HIL3被配置为将第二P型电荷产生子层303的空穴注入到第三空穴传输层HTL3。第三空穴传输层HTL3位于第三空穴注入层HIL3和第三发光层EML3之间,第三空穴传输层HTL3被配置为将第三空穴注入层HIL3注入的空穴传输至第三发光层EML3,使得空穴在第三发光层EML3内与电子复合,实现第三发光层EML3的发光。
如图10所示,在一些示例中,第五传输层TL5还可以包括第五激子阻挡层BL5。第五激子阻挡层BL5可以位于第三空穴传输层HTL3和第三发光层EML3之间,第五激子阻挡层BL5被配置为阻挡第三发光层EML3中的电子向靠近第一电极AE的方向运动。因此,第五激子阻挡层BL5也可以称为电子阻挡层。
如图10所示,在一些示例中,第六传输层TL6可以包括第三电子传输层ETL3和第三电子注入层EIL3。第三电子注入层EIL3位于第三电子传输层ETL3与第二电极CE之间,第三电子注入层EIL3被配置为将第二电极CE提供的电子注入到第三电子传输层ETL3。第三电子传输层ETL3位于第三电子注入层EIL3与第三发光层EML3之间,第三电子传输层ETL3被配置为将第三电子注入层EIL3注入的电子传输至第三发光层EML3,使得电子在第三发光层EML3内与空穴复合,实现第三发光层EML3的发光。
如图10所示,在一些示例中,第六传输层TL6还可以包括第六激子阻挡层BL6。第六激子阻挡层BL6可以位于第三电子传输层ETL3和第三发光层EML3之间,第六激子阻挡层BL6被配置为阻挡第三发光层EML3中的空穴向靠近第二电极CE的方向运动。因此,第六激子阻挡层BL6也可以称为空穴阻挡层HBL。
在一些示例中,第一空穴注入层HIL1、第二空穴注入层HIL2和第三空穴注入层HIL3,可以包括酞菁铜CuPc、HATCN等空穴注入能力较强的材料,形成单层膜结构。在另一些示例中,第一空穴注入层HIL1、第二空穴注入层HIL2和第三空穴注入层HIL3中的至少一者,可以包括P型掺杂空穴注入材料,P型掺杂材料,例如NPB:F4TCNQ,TAPC:MnO3等。
在一些示例中,第一空穴传输层HTL1、第二空穴传输层HTL2和第三空穴传输层HTL3,可以包括空穴迁移率较高的咔唑类材料、或其他空穴迁移率较高的材料。
在一些示例中,第一电子注入层EIL1、第二电子注入层EIL2和第三电子注入层EIL3,可以包括Alq3,碱金属和碱土金属的氧化物及卤化物例如LiO2、CaO、CsO或CsF2,或者其他电子注入能力较强的材料。
在一些示例中,第一电子传输层ETL1、第二电子传输层ETL2和第三电子传输层ETL3,可以包括电子迁移率较高的三嗪类材料、或其他电子迁移率高的材料。
在一些实施例中,如图11所示,发光器件200的发光单元20的每个发光层(例如EML1和EML2)包括第一化合物41、第二化合物42和第三化合物43。
其中,第一化合物41和第二化合物42可以是发光层的主体材料,第三化合物43可以是发光层的客体材料(即掺杂材料)。
在一些示例中,第一化合物41可以是空穴注入及传输材料,具有较佳的空穴传输性能。示例性地,第一化合物41可以包括但不限于芳胺类有机材料或者咔唑类有机材料及其衍生物。例如,第一化合物41可以包括如图12A~图12C所示的三种结构。其中,R1~R6分别可以选自苯、联苯、萘、吡啶、二苯并呋喃、二苯并噻吩或咔唑中的任意一种。R7~R9分别可以选自苯、咔唑、苯并咔唑、二苯并呋喃、苯并二苯并呋喃、二苯并噻吩或苯并二苯并噻吩中的任意一种。L1、L2和L3可以为苯,联苯或萘中的任意一种。n1和n2的取值范围为0~4的整数,例如1、2、3或4;n3、n4和n5的取值为0或1。图12B中所示的*表示苯环上碳碳键的端点,一个碳碳键的两个碳原子分别连接的2个氢原子可以被苯、萘、环戊烷或环己烷中的任意一种所取代。
在一些示例中,第二化合物42可以是电子注入及传输材料,具有较佳的电子传输性能。示例性地,第二化合物42可以包括但不限于三嗪类有机材料。例如,第二化合物42可以包括如图13所示的结构。其中,L4~L6分别可以为苯、联苯、萘、二苯并呋喃或二苯并噻吩中的任意一种。n6~n8的取值为0或1。R10~R12分别可以为苯、联苯、萘、菲、三亚苯、咔唑、苯并咔唑、二苯并呋喃、苯并二苯并呋喃、二苯并噻吩、苯并二苯并噻吩、苯并恶唑、萘并恶唑或菲并恶唑中的任意一种。
在一些示例中,第三化合物43可以是磷光材料或荧光材料,具有较佳的发光性能。示例性地,磷光材料可以包括但不限于铱金属配合物和铂金属配合物,荧光材料可以包括但不限于热活化延迟荧光(Thermally activated delayed fluorescence,TADF)特性的有机材料。例如,第三化合物43是铱金属配合物,满足通式:Ir(L)2(L’)。其中,L可以选自:苯基吡啶配体、苯基喹啉配体或苯基异喹啉配体中的任意一种。L’可以选自:乙酰丙酮配体、氮杂二苯并呋喃基吡啶配体或氮杂二苯并噻吩基吡啶配体中的任意一种。L和L’中还可以包括取代基,取代基可以为包含一个碳原子至六个碳原子的烷基或环烷基。
示例性地,绿光发光器件的发光层中的第三化合物43可以是磷光材料,例如化学通式为Ir(L)2(L’)的铱金属配合物,其中L为苯基吡啶配体,L’为乙酰丙酮配体。
示例性地,红光发光器件的发光层中的第三化合物43可以是磷光材料,例如化学通式为Ir(L)2(L’)的铱金属配合物,其中L为苯基喹啉配体,L’为氮杂二苯并呋喃基吡啶配体。
在一些示例中,第一化合物41中的氮原子N数量、第二化合物42中的氮原子N数量和第三化合物43中的氮原子N数量之和,处于7~12的范围内,例如为7、8、9、10、11或12。又例如,第一化合物41中的氮原子N数量为2、第二化合物42中的氮原子N数量为3,第三化合物43中的氮原子N数量为2,第一化合物41、第二化合物42和第三化合物43中的氮原子N数量之和为7。
在一些实施例中,一个发光器件中包括多个发光层,不同发光层之间的第一化合物的重量占其所属发光层的重量的比例的差值的绝对值,处于0%~3%的范围内。可以理解地,如图11所示,一个发光器件中,第一发光层EML1中第一化合物41的重量占第一发光层EML1的重量的比例,与第二发光层EML2中第一化合物41的重量占第二发光层EML2的重量的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
同一个Tandem OLED中,不同发光层之间的第一化合物的重量和/或第二化合物的重量分别在其所属发光层的重量中所占的比例的差异较大,会导致同一个Tandem OLED中不同发光层之间的空穴传输性能和/或电子传输性能差异大,还会导致不同发光层之间的激子复合区域不一致,造成Tandem OLED的整体发光效率较低、稳定性较差。
通过限定同一个发光器件中,不同发光层之间的第一化合物41的重量占其所属发光层的重量的比例的差值范围。可以理解为,缩小了一个发光器件中的不同发光层之间的第一化合物41的重量占比的差异率,使得一个发光器件中的不同发光层之间的空穴注入和空穴传输性能相接近,以使得同一发光器件中不同发光层中的激子复合区域基本保持一致或相接近,进而提高发光器件和显示面板的整体发光效率和稳定性。
示例性地,如图11所示,一个发光器件中,在第一发光层EML1中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M1。在第二发光层EML2中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M2。M1和M2之间差值的绝对值,处于0%~2%的范围内,例如为0%、0.1%、0.3%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
例如,在第一发光层EML1和第二发光层EML2中,第一化合物41为芳胺类有机材料,第二化合物42为三嗪类有机材料。在第一发光层EML1中,芳胺类有机材料的重量,与芳胺类有机材料和三嗪类有机材料的重量之和的比例为M10。在第二发光层EML2中,芳胺类有机材料的重量,与芳胺类有机材料和三嗪类有机材料的重量之和的比例为M20。M10和M20之间差值的绝对值小于或等于0.5%。
在一些示例中,如图10所示,一个发光器件中,至少两个发光单元20还包括第三发光单元23。第三发光单元23,位于第二发光单元22与第二电极CE之间,包括第三发光层EML3。可以理解为,一个发光器件的发光单元20的数量为三个,三个发光单元20分别包括第一发光层EML1、第二发光层EML2和第三发光层EML3。
示例性地,一个发光器件中,第一发光层EML1中第一化合物41的重量在第一发光层EML1的重量中所占的比例,与第三发光层EML3中第一化合物41的重量在第三发光层EML3的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第一发光层EML1中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M1。在第三发光层EML3中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M5。M1和M5之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
示例性地,第二发光层EML2中第一化合物41的重量在第二发光层EML2的重量中所占的比例,与第三发光层EML3中第一化合物41的重量在第三发光层EML3的重量中所占的比例之间的差值的绝对值,也处于0%~3%的范围内。
例如,一个发光器件中,在第二发光层EML2中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M2。在第三发光层EML3中,第一化合物41的重量,与第一化合物41和第二化合物42的重量之和的比例为M5。M2和M5之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
这样,可以减小一个发光器件中不同发光层之间的第一化合物41的重量在其所属发光层的重量中所占比例的差异,即可以减小同一个发光器件中不同发光层之间的空穴注入及传输材料的重量在其所属发光层的重量中所占比例的差异,以降低同一发光器件中不同发光层的空穴传输性能之间的差异,从而提高发光器件的整体发光效率和稳定性。
在一些实施例中,如图9、图10和图11所示,一个发光器件中包括多个发光层,不同发光层之间的第二化合物42的重量占其所属发光层的重量比例的差值的绝对值,处于0%~3%的范围内。可以理解为,一个发光器件中,第一发光层EML1中第二化合物42的重量在第一发光层EML1的重量中所占的比例,与第二发光层EML2中第二化合物42的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
限定同一个发光器件中,不同发光层之间的第二化合物42的重量占其所属发光层的重量的比例的差值范围。可以理解为,缩小了同一个发光器件中的不同发光层之间的第二化合物42的重量占比的差异率,使得一个发光器件中的不同发光层之间的电子注入和传输性能相接近,以使得同一发光器件中不同发光层中的激子复合区域基本保持一致或相接近,进而提高发光器件和显示面板1000的整体发光效率和稳定性。
示例性地,在第一发光层EML1中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M3。在第二发光层EML2中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M4。M3和M4之间差值的绝对值,处于0%~2%的范围内,例如为0%、0.1%、0.3%、0.6%、0.8%、1%、1.2%、1.5%、1.7% 或2%。
例如,在第一发光层EML1和第二发光层EML2中,第一化合物41为芳胺类有机材料,第二化合物42为三嗪类有机材料。在第一发光层EML1中,三嗪类有机材料的重量,与芳胺类有机材料和三嗪类有机材料的重量之和的比例为M30。在第二发光层EML2中,三嗪类有机材料的重量,与芳胺类有机材料和三嗪类有机材料的重量之和的比例为M40。M30和M40之间差值的绝对值为0.5%。
示例性地,第一发光层EML1中第二化合物42的重量在第一发光层EML1的重量中所占的比例,与第三发光层中第二化合物42的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第一发光层EML1中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M3。在第三发光层EML3中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M6。M3和M6之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
示例性地,第二发光层EML2中第二化合物42的重量在第二发光层EML2的重量中所占的比例,与第三发光层中第二化合物42的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,也处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第二发光层EML2中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M4。在第三发光层EML3中,第二化合物42的重量,与第一化合物41和第二化合物42的重量之和的比例为M6。M4和M6之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
这样,可以减小一个发光器件中不同发光层之间的第二化合物42的重量与其所属发光层的重量比例的差异,即可以减小同一发光器件中不同发光层之间的电子注入及传输材料的重量在其所属发光层的重量中所占的比例差异,降低了同一发光器件中不同发光层的电子传输性能之间的差异,提高了发光器件的整体发光效率和稳定性。
在一些示例中,如图11所示,在第一发光层EML1中第三化合物43的重量和第二发光层EML2中第三化合物43的重量相同的情况下:第一发光层EML1中,第一化合物41的重量和第二化合物42的重量之和,在第一发光层EML1的重量中所占的比例;第二发光层EML2中,第一化合物41的重量和第二化合物42的重量之和,在第二发光层EML2的重量中所占的比例;两者之间差值的绝对值,也处于0%~3%的范围内。
这样,可以减小一个发光器件中不同发光层之间的主体材料的重量与其所属发光层的重量比例的差异,降低了同一发光器件中不同发光层的空穴传输性能和电子传输性能之间的差异,提高了发光器件的整体发光效率和稳定性。
在一些实施例中,一个发光器件中,第一发光层EML1中第三化合物43的重量在第一发光层EML1的重量中所占的比例,与第二发光层EML2中第三化合物43的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内,例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
这样,可以减小一个发光器件中不同发光层的客体材料的重量与其所属发光层的重量的比例之间的差异,降低了同一发光器件中不同发光层的发光效率之间的差异,提高了发光器件的整体发光效率和稳定性。
在一些实施例中,发光器件的每个发光层中,第一化合物41的重量和第二化合物42的重量之间的比值,处于3:7~7:3的范围内,例如3:7、4:7、5:6、6:7、7:8、7:7、7:6、7:5、7:4或7:3。
每个发光层中的第一化合物41的重量和第二化合物42的重量之间的比值范围,可以理解为发光层中的两种主体材料之间的重量比值的范围。根据需要调整两种主体材料之间的重量比例,可以调整发光层的空穴传输效率或电子传输效率,进而调整发光层的发光效率。
在一些实施例中,如图2和图11所示,第一颜色发光器件210的发光层中的第一化合物41的重量与第二化合物42的重量之间的比值,大于或等于第二颜色发光器件220的发光层中的第一化合物41的重量与第二化合物42的重量之间的比值。
例如,第一颜色发光器件210的每个发光层中的第一化合物41的重量与第二化合物42的重量之间的比值,大于或等于第二颜色发光器件220的每个发光层中的第一化合物41的重量与第二化合物42的重量之间的比值。又例如,第一颜色发光器件210的所有发光层中的第一化合物41的重量之和与第二化合物42的重量之和之间的比值,大于或等于第二颜色发光器件220的所有发光层中的第一化合物41的重量之和与第二化合物42的重量之和之间的比值。
在一些示例中,第一颜色发光器件210的发光层中,第一化合物41的重量,与第二化合物42的重量之间的比值,处于5:5~7:3的范围内,例如5:5、7:6、5:4、6:5、7:5、7:4或7:3。第二颜色发光器件220的发光层中,第一化合物41的重量,与第二化合物42的重量之间的比值,处于3:7~5:5的范围内,例如3:7、4:7、5:6、6:7、7:8或5:5。
示例性地,第一颜色发光器件210是绿光发光器件,第一颜色发光器件210的发光层中,第一化合物41的重量,与第二化合物42的重量之间的比值可以为7:3。第二颜色发 光器件220是红光发光器件,第二颜色发光器件220的发光层中,第一化合物41的重量,与第二化合物42的重量之间的比值可以为3:7。
这样,通过调整发光层中两种主体材料之间的重量比例,可以调整不同颜色的发光层的发光效率,进而改善显示面板的色彩平衡性能。
在一些实施例中,发光器件的每个发光层中,第三化合物43的重量与第一化合物41和第二化合物42的重量之和之间的比例,处于1%~14%的范围内,例如1%、2%、3%、5%、6%、8%、10%、12%或14%。
每个发光层中的第三化合物43的重量,与第一化合物41和第二化合物42的重量之和之间的比例,可以理解为发光层中的客体材料的重量与两种主体材料的重量之和之间的比例。由于客体材料的发光效率高,通过在发光层的主体材料中掺杂一定比例的客体材料,可以提高发光效率、改变发光层电致发光的颜色。
在一些示例中,如图2和图11所示,第一颜色发光器件210的发光层中的第三化合物43的重量与第一化合物41和第二化合物42的重量之和之间的比例,大于或等于第二颜色发光器件220的发光层中的第三化合物43的重量与第一化合物41和第二化合物42的重量之和之间的比例。
示例性地,第一颜色发光器件210的发光层中,第三化合物43的重量,与第一化合物41和第二化合物42的重量之和之间的比例,处于6%~14%的范围内,例如6%、7%、8%、9%、10%、11%、12%、13%或14%。并且,第二颜色发光器件220的发光层中,第三化合物43的重量,与第一化合物41和第二化合物42的重量之和之间的比例,处于1%~6%的范围内,例如1%、1.5%、2%、2.4%、3%、3.5%、4%、4.5%、5%、5.6%或6%。
例如,第一颜色发光器件210是绿光发光器件。第一颜色发光器件210的发光层中,第三化合物43的重量,与第一化合物41和第二化合物42的重量之和之间的比例可以为14%。并且,第二颜色发光器件220是红光发光器件。第二颜色发光器件220的发光层中,第三化合物43的重量,与第一化合物41和第二化合物42的重量之和之间的比例可以为2%。
本实施例中,进一步限定了发光层中的客体材料(即第三化合物43)的重量与两种主体材料(即第一化合物41和第二化合物42)的重量之和之间的比例,可以降低同一颜色的发光器件中不同发光层之间的客体材料的重量与两种主体材料的重量之和的比例的差异,进一步降低了同一颜色的发光器件中不同发光层之间的性能差异,提高了发光器件200的整体发光效率和稳定性。
如图2所示,显示面板1000为顶发射显示面板,光取出层CPL覆盖发光器件层LDL,例如光取出层CPL直接位于第二电极CE上。光取出层CPL可以提高发光器件层LDL的出光效率,光取出层CPL的折射率较大,吸光系数较小。
如图8所示,封装层TFE用于封装发光功能层LDL和光取出层CPL。在一些实施例中,封装层TFE可以包括堆叠设置的第一封装层ENL1、第二封装层ENL2和第三封装层ENL3。例如,第一封装层ENL1和第三封装层ENL3由无机材料制成,上述的无机材料选自氮化硅、氮化铝、氮化锆、氮化钛、氮化铪、氮化钽、氧化硅、氧化铝、氧化钛、氧化锡、氧化铈、氮氧化硅(SiON)或氟化锂中的至少一种。又例如,第二封装层ENL2由有机材料制成,上述的有机材料为烯酸树脂、甲基丙烯酸树脂、聚异戊二烯,乙烯基树脂、环氧树脂、聚氨酯树脂、纤维素树脂或二萘嵌苯树脂中的至少一种。本领域技术人员可以根据需要改变薄膜封装层TFE的层数、材料和结构,本公开不限于此。
图14A、图15A~图21A分别为本公开提供的6组方案和2组对照方案中第一化合物41的结构图。图14B、图15B~图21B分别为本公开提供的6组方案和2组对照方案中第二化合物42的结构图。图14C、图15C~图21C分别为本公开提供的6组方案和2组对照方案中第三化合物43的结构图。
参照图14A~图21C,本公开提供6组方案和2组对照方案进行对比,6组方案和2组对照方案的参数详见表1。

表1
表1中的“第一化合物重量占比”表示每个发光层中的第一化合物的重量在第一化合物和第二化合物的重量之和中所占的比例;“第二化合物重量占比”表示每个发光层中的第二化合物的重量在第一化合物和第二化合物的重量之和中所占的比例;“第三化合物重量占比”表示每个发光层中的第三化合物的重量在第一化合物和第二化合物的重量之和中所占的比例。
表2
表2中的“V”表示发光器件的驱动电压;“Cd/A”表示电流发光效率;“CIE x”表示发光器件的色坐标x的值;“CIE y”表示发光器件的色坐标y的值;“LT95”表示发光器件的亮度下降到初始亮度的95%所需的时长,即发光器件的有效使用寿命。
方案1的色坐标值、方案2的色坐标值、方案5的色坐标值和对照方案1的色坐标值相同;表2中第一颜色发光器件210的参数是将方案1的各项参数(即驱动电压、电流发光效率和有效使用寿命)作为标准设定为100%,方案2的各项参数、方案5的各项参数和对照方案1的各项参数均是方案1的各项参数的相对量。类似地,方案3的色坐标值、 方案4的色坐标值、方案6的色坐标值和对照方案2的色坐标值相同;表2中第二颜色发光器件220的参数是将方案3的各项参数作为标准设定为100%,方案4的各项参数、方案6的各项参数和对照方案2的各项参数均是方案3的各项参数的相对量。
基于表1的数据和表2的数据可见,色坐标值相同的情形下,第一颜色发光器件210中方案1、方案2和方案5相较于对照方案1,发光器件的电流发光效率和有效使用寿命均有所提高。可以理解地,同一个发光器件200中,不同发光层之间的第一化合物的重量与第一化合物和第二化合物的重量之和的比例的差值限定在较小的范围内,和/或不同发光层之间的第二化合物的重量与第一化合物和第二化合物的重量之和的比例的差值限定在较小的范围内,能够提高发光器件200的电流发光效率,并延长发光器件200的有效使用寿命。
基于表1的数据和表2的数据可见,色坐标值相同的情形下,第二颜色发光器件220中方案3、方案4和方案6相较于对照方案2,发光器件的电流发光效率和有效使用寿命也都有所提高。可以理解地,同一个发光器件200中,不同发光层之间的第一化合物的重量与第一化合物和第二化合物的重量之和的比例的差值限定在较小的范围内,和/或不同发光层之间的第二化合物的重量与第一化合物和第二化合物的重量之和的比例的差值限定在较小的范围内,能够提高发光器件200的电流发光效率,并延长发光器件200的有效使用寿命。
综上所述,本公开实施例提供的发光器件和显示面板中,通过限定同一个发光器件中,不同发光层之间的第一化合物的重量占其所属发光层的重量比例的差值范围,和/或不同发光层之间的第二化合物的重量占其所属发光层的重量比例的差值范围,能够使得同一个发光器件中不同发光层之间的激子复合区域一致或相接近,可以降低同一个发光器件中不同发光层之间的性能差异,提高发光器件的发光效率,延长发光器件的有效使用寿命。进而可以提高显示面板的整体发光效率,延长显示面板的有效使用寿命。
图22为根据一些实施例的显示面板的制备方法流程图。
请参阅图22,本公开的一些实施例还提供了一种显示面板的制备方法。显示面板的制备方法包括步骤S510~步骤S540。
步骤S510:形成第一电极。
如图8所示,在步骤S510之前,还可以包括提供一衬底基板SUB。衬底基板SUB的材料例如可以是聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、环烯烃聚合物(Cyclo Olefin Polymer,简称COP)等。
衬底基板SUB可以包括第一子像素区P1、第二子像素区P2和第三子像素区P3。第一子像素区P1、第二子像素区P2和第三子像素区P3的具体介绍在之前已经详细说明,此处不作赘述。
在衬底基板SUB上形成像素电路层。像素电路层包括多个像素电路S。多个像素电路S的具体介绍在之前已经详细说明,此处不作赘述。
在形成多个像素电路S之后,形成覆盖多个像素电路的绝缘层INL。
在一些示例中,第一电极可以是阳极AE,阳极可以在绝缘层INL上通过一次构图工艺形成。
其中,阳极可以由如Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir或Cr的金属及其混合物材料制成,也可以由ITO、IZO或IGZO等有导电性的金属氧化物材料制成。示例性地,阳极还可以包括透明导电氧化物/金属/透明导电氧化物这样的叠层复合结构。其中,透明导电氧化物材料例如为ITO或IZO,金属材料例如为Au、Ag、Ni或Pt。例如阳极结构为:ITO/Ag/ITO。
阳极AE可以包括第一阳极AE1、第二阳极AE2和第三阳极AE3。第一阳极AE1位于第一子像素区P1内,第二阳极AE2位于第二子像素区P2内,第三阳极AE3位于第三子像素区P3内。
步骤S510之后可以包括:将已形成有第一电极的衬底基板SUB(例如带有ITO的玻璃板)在清洗剂(例如去离子水)中超声处理,以洗掉第一电极和衬底基板SUB表面残留的有机物和灰尘,再在洁净环境下以一定温度(例如100℃)烘干第一电极和衬底基板SUB。
步骤S520:在第一电极上形成像素界定层,像素界定层开设有多个发光开口;发光开口暴露第一电极。
像素界定层PDL可以在绝缘层和阳极AE上形成。例如,利用沉积工艺形成一层覆盖绝缘层和阳极AE的像素界定材料层,并通过刻蚀工艺去除部分像素界定材料层,得到像素界定层PDL。像素界定层PDL包括位于第一子像素区P1的第一发光开口K1、位于第二子像素区P2的第二发光开口K2、以及位于第三子像素区P3的第三发光开口K3。
第一发光开口K1暴露第一阳极AE1,第二发光开口K2暴露第二阳极AE2,第三发光开口K3暴露第三阳极AE3。
步骤S530:形成覆盖发光开口的至少两个发光单元。至少两个发光单元包括沿第一方向依次叠置的第一发光单元和第二发光单元。第一发光单元包括第一发光层。第二发光单元包括第二发光层。每个发光单元中的发光层包括第一化合物、第二化合物和第三化合物。第一发光层中的第一化合物在第一发光层中所占的重量比例,与第二发光层中的第一化合物在第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,第一发光层中的第二化合物在第一发光层中所占的重量比例,与第二发光层中的第二化合物在第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
如图2和图9所示,在一些示例中,第一发光单元21包括第一传输层TL1、第一发光层和第二传输层TL2,第二发光单元22包括第三传输层TL3、第二发光层和第四传输层 TL4。步骤S530可以包括:
形成覆盖第一发光开口K1、第二发光开口K2和第三发光开口K3的第一传输层TL1。其中,第一传输层TL1还可以覆盖像素界定层PDL,且覆盖像素界定层PDL的部分与覆盖发光开口的部分构成连续的薄膜。
在第一传输层TL1上形成覆盖第一发光开口K1的第一发光层、覆盖第二发光开口K2的第一发光层和覆盖第三发光开口K3的第一发光层。相邻两个第一发光层之间相互独立。
形成覆盖多个第一发光层的第二传输层TL2。其中,第二传输层TL2还可以覆盖像素界定层PDL,且覆盖像素界定层PDL的部分与覆盖发光开口的部分构成连续的薄膜。
形成电荷产生层30。电荷产生层30可以覆盖第一发光开口K1、第二发光开口K2、第三发光开口K3以及像素界定层PDL。即,电荷产生层30覆盖第二传输层TL2。
形成覆盖电荷产生层30的第三传输层TL3。其中,第三传输层TL3可以覆盖第一发光开口K1、第二发光开口K2、第三发光开口K3以及像素界定层PDL,且覆盖像素界定层PDL的部分与覆盖发光开口的部分构成连续的薄膜。
在第三传输层TL3上形成覆盖第一发光开口K1的第二发光层、覆盖第二发光开口K2的第二发光层和覆盖第三发光开口K3的第二发光层。相邻两个第二发光层之间相互独立。
形成覆盖多个第二发光层的第四传输层TL4。其中,第四传输层TL4还可以覆盖像素界定层PDL,且覆盖像素界定层PDL的部分与覆盖发光开口的部分构成连续的薄膜。
在一些示例中,如图9和图11所示,一个发光器件中包括两个发光层,两个发光层分别为第一发光层EML1和第二发光层EML2。第一发光层EML1中的第一化合物的重量在第一发光层EML1的重量中所占的比例,与第二发光层EML2中的第一化合物的重量在的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内,例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
示例性地,在第一发光层EML1中,第一化合物的重量,与第一化合物和第二化合物的重量之和的比例为M1。在第二发光层EML2中,第一化合物的重量,与第一化合物和第二化合物的重量之和的比例为M2。M1和M2之间差值的绝对值,处于0%~2%的范围内,例如为0%、0.1%、0.3%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
在一些示例中,如图10所示,一个发光器件中包括三个发光层,三个发光层分别为第一发光层EML1、第二发光层EML2和第三发光层EML3。
第一发光层EML1中第一化合物的重量在第一发光层EML1的重量中所占的比例,与第三发光层EML3中第一化合物的重量在第三发光层EML3的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第一发光层EML1中,第一化合物的重量,与第一化合物 和第二化合物的重量之和的比例为M1。在第三发光层EML3中,第一化合物的重量,与第一化合物和第二化合物的重量之和的比例为M5。M1和M5之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
示例性地,如图10所示,第二发光层EML2中第一化合物的重量在第二发光层EML2的重量中所占的比例,与第三发光层EML3中第一化合物的重量在第三发光层EML3的重量中所占的比例之间的差值的绝对值,也处于0%~3%的范围内。
例如,一个发光器件中,在第二发光层EML2中,第一化合物的重量,与第一化合物和第二化合物的重量之和的比例为M2。在第三发光层EML3中,第一化合物的重量,与第一化合物和第二化合物的重量之和的比例为M5。M2和M5之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
在一些示例中,第一发光层EML1中的第二化合物的重量在第一发光层EML1的重量中所占的比例,与第二发光层EML2中的第二化合物的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内,例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
示例性地,在第一发光层EML1中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M3。在第二发光层EML2中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M4。M3和M4之间差值的绝对值,处于0%~2%的范围内,例如为0%、0.1%、0.3%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
示例性地,第一发光层EML1中第二化合物的重量在第一发光层EML1的重量中所占的比例,与第三发光层中第二化合物的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第一发光层EML1中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M3。在第三发光层EML3中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M6。M3和M6之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
示例性地,第二发光层EML2中第二化合物的重量在第二发光层EML2的重量中所占的比例,与第三发光层中第二化合物的重量在第二发光层EML2的重量中所占的比例之间的差值的绝对值,也处于0%~3%的范围内。例如为0%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.7%、2%、2.3%、2.5%、2.9%或3%。
例如,一个发光器件中,在第二发光层EML2中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M4。在第三发光层EML3中,第二化合物的重量,与第一化合物和第二化合物的重量之和的比例为M6。M4和M6之间差值的绝对值,处于0%~2%的范围内,比如为0%、0.1%、0.3%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.7%或2%。
需要说明的是,第一化合物、第二化合物和第三化合物在前述实施例中有详细说明,此处不做赘述。
步骤S540:在至少两个发光单元远离第一电极的一侧形成第二电极。第一发光单元位于第一电极AE和第二电极CE之间,第二发光单元位于第一发光单元与第二电极CE之间。可以理解为,在第二发光单元远离第一电极的一侧形成第二电极。
在一些示例中,如图9所示,在第二发光单元22远离第一电极AE的一侧形成第二电极CE,可以理解为,形成覆盖第四传输层TL4的第二电极CE。其中,第二电极CE可以覆盖第一发光开口K1、第二发光开口K2、第三发光开口K3以及像素界定层PDL,且覆盖像素界定层PDL的部分与覆盖发光开口的部分构成连续的薄膜。
在一些示例中,第二电极可以是阴极,阴极可以具有半透射或透射性质。阴极可以包括Ag、Mg、Cu、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti或其化合物或混合物,例如Ag和Mg的混合物。
在一些示例中,如图9所示,显示面板为顶发射显示面板,在步骤S540之后,还可以包括在第二电极远离衬底基板SUB的一侧,形成光取出层CPL。
通过本实施例提供的显示面板的制备方法,制备得到的显示面板中同一个发光器件中,不同发光层之间的第一化合物的重量占其所属发光层的重量比例的差值范围较小,和/或不同发光层之间的第二化合物的重量占其所属发光层的重量比例的差值范围较小,以使得同一个发光器件中不同发光层之间的激子复合区域一致或相接近,可以降低同一个发光器件中不同发光层之间的性能差异,进而提高发光器件和显示面板的整体发光效率和稳定性。
在一些实施例中,如图9和图23所示,步骤S530包括:步骤S531~步骤S535。
步骤S531:利用开放式掩膜版(OPEN MASK)形成第一传输层TL1,第一传输层TL1覆盖发光开口内的第一电极AE。
可以利用开放式掩膜版进行蒸镀,形成覆盖像素界定层PDL以及各发光开口内的第一电极的第一传输层TL1。
在一些示例中,第一传输层TL1可以包括第一空穴注入层HIL1、第一空穴传输层HTL1和第一激子阻挡层BL1。第一空穴注入层HIL1、第一空穴传输层HTL1和第一激子阻挡层BL1的具体介绍在之前已经详细说明,此处不作赘述。
示例性地,步骤S531可以包括:
利用开放式掩膜版,在像素界定层PDL和各发光开口内的第一电极AE上蒸镀空穴注入材料,形成第一空穴注入层HIL1。其中,空穴注入材料可以选用NPB:F4TCNQ或TAPC:MnO3
利用开放式掩膜版,在第一空穴注入层HIL1上蒸镀空穴传输材料,形成第一空穴传输层HTL1。其中,空穴传输材料可以选用空穴迁移性能较佳的咔唑类有机材料。
利用开放式掩膜版,在第一空穴传输层HTL1上蒸镀第一激子阻挡材料,形成第一激子阻挡层BL1。其中,第一激子阻挡层BL1被配置为传输空穴,并阻挡后续形成的第一发光层EML1内的电子向第一电极AE的一侧扩散。第一激子阻挡层BL1可以为电子阻挡层。第一激子阻挡材料可以理解为电子阻挡材料,例如可以包括TPB或α-NPD中的一种或两种材料。
步骤S532:利用高精度金属掩膜版(Fine Metal Mask,FMM)形成覆盖发光开口的第一发光层。第一发光层位于第一传输层上。
在一些示例中,利用高精度金属掩膜版在多个发光开口的第一激子阻挡层BL1上分别同时蒸镀第一化合物、第二化合物和第三化合物,形成多个第一发光层。
示例性地,每个发光层中,第一化合物的重量和第二化合物的重量之间的比值,处于3:7~7:3的范围内。
示例性地,每个发光层中,第三化合物的重量与第一化合物和第二化合物的重量之和之间的比例,处于1%~14%的范围内。
示例性地,步骤S532可以包括:
在覆盖第一发光开口K1的第一激子阻挡层BL1上,利用高精度金属掩膜版分别同时蒸镀第一化合物、第二化合物和第三化合物,形成覆盖第一发光开口K1的第一颜色发光器件210的第一发光层。例如,第一颜色发光器件210的第一发光层中,第一化合物的重量和第二化合物的重量之间的比值,处于5:5~7:3的范围内。又例如,第一颜色发光器件210的第一发光层中,第三化合物的重量,与第一化合物和第二化合物的重量之和之间的比例,处于6%~14%的范围内。
在覆盖第二发光开口K2的第一激子阻挡层BL1上,利用高精度金属掩膜版分别同时蒸镀第一化合物、第二化合物和第三化合物,形成覆盖第二发光开口K2的第二颜色发光器件220的第一发光层。例如,第二颜色发光器件220的第一发光层中,第一化合物的重量和第二化合物的重量之间的比值,处于3:7~5:5的范围内。又例如,第二颜色发光器件220的第一发光层中,第三化合物的重量,与第一化合物和第二化合物的重量之和之间的比例,处于1%~6%的范围内。
步骤S533:利用开放式掩膜版依次形成相互叠置的第二传输层TL2和第三传输层 TL3,第二传输层TL2覆盖第一发光层EML1。
在一些示例中,第二传输层TL2可以包括第一电子传输层ETL1、第一电子注入层EIL1和第二激子阻挡层BL2。步骤S533中形成第二传输层,可以包括:
利用开放式掩膜版,蒸镀第二激子阻挡材料,形成覆盖第一激子阻挡层BL1和第一发光层EML1的第二激子阻挡层BL2。其中,第二激子阻挡层BL2被配置为传输电子,并阻挡第一发光层EML1内的空穴向第二电极CE的一侧扩散。第二激子阻挡层BL2可以为空穴阻挡层。第二激子阻挡材料可以理解为空穴阻挡材料,例如可以为BCP(2,9-二甲基-4,7-二苯基-1,10-菲咯啉),Bphen(1,10-邻二氮杂菲),或TPBI(1,3,5-三(1-苯基-苯并D咪唑-2-基)苯;1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)中的任意一种。
利用开放式掩膜版,蒸镀电子传输材料,形成覆盖第二激子阻挡层BL2的第一电子传输层ETL1。其中,电子传输材料可以选用电子迁移率较高的三嗪类有机材料。
利用开放式掩膜版,蒸镀电子注入材料,形成覆盖第一电子传输层ETL1的第一电子注入层EIL1。其中,电子注入材料可以选用氟化锂或8-羟基喹啉锂中的至少一种材料。
在一些示例中,在形成第二传输层TL2之后且在形成第三传输层TL3之前,还可以包括:形成覆盖的第一电子注入层EIL1的N型电荷产生子层320、以及覆盖N型电荷产生子层320的P型电荷产生子层310。N型电荷产生子层320可以覆盖第二传输层TL2。N型电荷产生子层320被配置为向的第一电子注入层EIL1提供电子。P型电荷产生子层310被配置为向后续形成的第三传输层TL3提供空穴。
在一些示例中,第三传输层TL3可以包括第二空穴注入层HIL2、第二空穴传输层HTL2和第三激子阻挡层BL3。步骤S533中形成第三传输层,可以包括:
利用开放式掩膜版,蒸镀空穴注入材料,形成位于第一电子注入层EIL1远离第一电极AE的一侧的第二空穴注入层HIL2。第二空穴注入层HIL2可以覆盖P型电荷产生子层310,以将P型电荷产生子层310提供的空穴传输至第二空穴注入层HIL2。第二空穴注入层HIL2可以与第一空穴注入层HIL1具有相同的结构特点,此处不作赘述。
利用开放式掩膜版,蒸镀空穴传输材料,形成覆盖第二空穴注入层HIL2的第二空穴传输层HTL2。第二空穴传输层HTL2可以与第一空穴传输层HTL1具有相同的结构特点,此处不作赘述。
利用开放式掩膜版,蒸镀第三激子阻挡材料,形成覆盖第二空穴传输层HTL2的第三激子阻挡层BL3。第三激子阻挡层BL3被配置为传输空穴,并阻挡后续形成的第二发光层EML2内的电子向第一电极AE的一侧扩散。第三激子阻挡层BL3可以称为电子阻挡层。第三激子阻挡材料可以与第一激子阻挡材料相同。第三激子阻挡层BL3可以与第一激子阻挡层BL1具有相同的结构特点,此处不作赘述。
步骤S534:利用高精度金属掩膜版形成覆盖发光开口的第二发光层EML2;第二发光 层EML2位于第三传输层TL3上。
在一些示例中,利用高精度金属掩膜版,同时蒸镀第一化合物、第二化合物和第三化合物,分别形成覆盖多个发光开口的第二发光层EML2。第二发光层EML2可以覆盖第三激子阻挡层BL3。
步骤S534中形成第二发光层EML2的其他示例可以参照前述步骤S532中形成第一发光层EML1的具体示例,此处不作赘述。
步骤S535:利用开放式掩膜版形成第四传输层TL4;第四传输层TL4覆盖第二发光层EML2。
在一些示例中,第四传输层TL4包括第四激子阻挡层BL4、第二电子传输层ETL2和第二电子注入层EIL2。
步骤S535可以包括:
利用开放式掩膜版,蒸镀第四激子阻挡材料,形成覆盖第三激子阻挡层BL3和第二发光层EML2的第四激子阻挡层BL4。第四激子阻挡层BL4被配置为传输电子,并阻挡第二发光层EML2内的空穴向第二电极CE的一侧扩散。第四激子阻挡层BL4可以称为空穴阻挡层。第四激子阻挡材料可以与第二激子阻挡材料相同。第四激子阻挡层BL4可以与第二激子阻挡层BL2具有相同的结构特点,此处不作赘述。
利用开放式掩膜版,蒸镀电子传输材料,形成覆盖第四激子阻挡层BL4的第二电子传输层ETL2。第二电子传输层ETL2可以与第一电子传输层ETL1具有相同的结构特点,此处不作赘述。
利用开放式掩膜版,蒸镀电子注入材料,形成覆盖第二电子传输层ETL2的第二电子注入层EIL2。第二电子注入层EIL2可以与第一电子注入层EIL1具有相同的结构特点,此处不作赘述。
本实施例中,利用开放式掩膜版能够得到连通覆盖各个发光开口的公共层,例如第一传输层TL1、第二传输层TL2、第三传输层TL3和第四传输层TL4;利用高精度金属掩膜版能够形成第一发光层EML1和第二发光层EML2,从而提高第一发光层EML1和第二发光层EML2的位置精度,同时提高显示面板的制作效率。
在一些实施例中,如图24所示,步骤S532可以包括步骤S551。
步骤S551:同时以第一温度蒸镀第一化合物,以第二温度蒸镀第二化合物,以使气化的第一化合物和气化的第二化合物穿过高精度金属掩膜版,形成覆盖发光开口的第一发光层。其中,第一温度与第二温度之间的差值的绝对值,处于0℃~10℃的范围之内,例如为0℃、2℃、4℃、5℃、6℃、8℃或10℃。
在一些示例中,以第一温度T1蒸镀第一化合物,第一化合物的蒸镀速率为同时以第二温度T2蒸镀第二化合物,第二化合物的蒸镀速率也为其中,第一温度T1 与第二温度T2之间的差值的绝对值,处于0℃~5℃的范围之内(即0℃≤|T1-T2|≤5℃),例如为0℃、1℃、2℃、3℃、4℃或5℃。
示例性地,步骤S551可以包括:首先,分别称取第一化合物和第二化合物,第一化合物的重量和第二化合物的重量之间的比值为3:7~7:3。之后,将称取的第一化合物放进第一加热设备(例如坩埚)以第一温度T1(例如154.3℃)进行蒸镀,第一化合物的蒸镀速率为同时将称取的第二化合物放进第二加热设备(例如坩埚)以第二温度T2(例如154.8℃)进行蒸镀,第二化合物的蒸镀速率也为其中,第一温度T1与第二温度T2之间的差值的绝对值为0.5℃。本示例中,将第一化合物和第二化合物分别置于两个加热设备中进行蒸镀。在其他示例中,第一化合物和第二化合物也可以置于同一个加热设备中进行蒸镀,此时,第一温度T1和第二温度T2相等。
第三化合物的蒸镀温度可以与第一化合物的蒸镀温度、第二化合物的蒸镀温度相同或者不同,此处不作限定。
其中,第一化合物、第二化合物和第三化合物的具体介绍在之前已经详细说明,此处不作赘述。
步骤S534可以包括步骤S552。步骤S552可以包括:同时以第一温度蒸镀第一化合物,以第二温度蒸镀第二化合物,以使气化的第一化合物和气化的第二化合物穿过高精度金属掩膜版,形成覆盖发光开口的第二发光层。
步骤S552中形成第二发光层的具体示例可以参照前述参照步骤S551中形成第一发光层的具体示例,此处不作赘述。
一个发光器件的每个发光层中或者全部发光层中,第一化合物的蒸镀温度和第二化合物的蒸镀温度之间的差异大,会导致同一个发光器件中不同发光层之间的第一化合物、第二化合物和第三化合物各自所占的重量比例的差异率大,导致不同发光层中的激子复合区域不一致。进而导致同一个发光器件中不同发光层之间的性能差异较大,造成发光器件的整体发光效率较低、稳定性较差。
本实施例中,第一化合物的蒸镀温度和第二化合物的蒸镀温度之间的差值较小,可以保证第一化合物的蒸镀速率和第二化合物的蒸镀速率大致相同,进而保证蒸镀过程中以及蒸镀后同一个发光器件的每个发光层中的第一化合物的重量和第二化合物的重量之间的比值保持不变,即使得蒸镀得到的同一个发光器件中不同发光层之间的第一化合物的重量与第二化合物的重量之间的比值的差异较小,以使得同一个发光器件的不同发光层中的激子复合区域保持一致或相接近,进而降低了同一个发光器件中不同发光层之间的性能差异,提高了发光器件和显示面板的整体发光效率和稳定性。
在一些实施例中,如图25所示,步骤S532可以包括步骤S553。
步骤S553:同时以第一温度T1蒸镀第一化合物,以第二温度T2蒸镀第二化合物, 以第三温度T3蒸镀第三化合物,以使气化的第一化合物、气化的第二化合物和气化的第三化合物穿过高精度金属掩膜版,形成覆盖发光开口的第一发光层。其中,第三温度与第一温度之间的差值的绝对值,处于0℃~100℃的范围之内(即0℃≤|T3-T1|≤100℃),例如为0℃、5℃、15℃、25℃、35℃、45℃、55℃、65℃、75℃、85℃、90℃、95℃或100℃。
在一些实施例中,上述步骤S553中,第三温度T3与第二温度T2之间的差值的绝对值,处于0℃~100℃的范围之内(即0℃≤|T3-T2|≤100℃),例如为0℃、5℃、15℃、25℃、35℃、45℃、55℃、65℃、75℃、85℃、90℃、95℃或100℃。
在一些示例中,步骤S553可以包括:同时以第一温度T1蒸镀第一化合物,以第二温度T2蒸镀第二化合物,以第三温度T3蒸镀第三化合物。其中,第三温度T3,与第一温度T1和第二温度T2的平均值之间的差值的绝对值,处于0℃~90℃的范围之内(即0℃≤|T3-(T1+T2)/2|≤90℃),例如为0℃、10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃或90℃。
示例性地,将第一化合物放进第一加热设备(例如坩埚)以第一温度T1(例如为154.3℃)进行蒸镀,第一化合物的蒸镀速率为同时将第二化合物放进第二加热设备(例如坩埚)以第二温度T2(例如为154.8℃)进行蒸镀,第二化合物的蒸镀速率也为同时将第三化合物放进第三加热设备(例如坩埚)以第三温度T3(例如为221.5℃)进行蒸镀,第三化合物的蒸镀速率为其中,第三温度T3,与第一温度T1和第二温度T2的平均值之间的差值的绝对值可以为66.95℃。本示例中,将第一化合物、第二化合物和第三化合物分别置于三个加热设备中进行蒸镀。在其他示例中,第一化合物和第二化合物也可以置于同一个加热设备中进行蒸镀(即第一温度T1和第二温度T2相等);同时第三化合物可以置于另一个加热设备中进行蒸镀。
步骤S534可以包括步骤S554。步骤S554可以包括:同时以第一温度蒸镀第一化合物,以第二温度蒸镀第二化合物,以第三温度蒸镀第三化合物,以使气化的第一化合物、气化的第二化合物和气化的第三化合物穿过高精度金属掩膜版,形成覆盖发光开口的第二发光层。
步骤S554中形成第二发光层的具体示例可以参照前述参照步骤S553中形成第一发光层的具体示例,此处不作赘述。
在蒸镀第一化合物、第二化合物和第三化合物形成发光层的过程中,由于第一化合物、第二化合物和第三化合物的材料性质不同,蒸镀速度和蒸镀温度具有差别。其中,第三化合物的蒸镀温度较高,在将第三化合物通过蒸镀掺杂到第一化合物和第二化合物中形成发光层的过程中,高温容易对第一化合物和第二化合物造成过热破坏,导致降低发光层的稳定性,也会缩短发光器件的有效使用寿命。
本实施例中,通过限定第一化合物的蒸镀温度、第二化合物的蒸镀温度和第三化合物 的蒸镀温度之间的偏差范围,蒸镀过程中可以避免相对较高的蒸镀温度对第一化合物和第二化合物造成过热破坏的问题,提高了发光器件的稳定性,延长了发光器件的有效使用寿命。
前述表1中,“第一温度T1”表示第一化合物的蒸镀温度;“第二温度T2”表示第二化合物的蒸镀温度;“第三温度T3”表示第三化合物的蒸镀温度。
参照前述表1中的参数可见,方案1、方案2和方案5分别相较于对照方案1,第一化合物的蒸镀温度T1和第二化合物的蒸镀温度T2之间的差值的绝对值(即|T1-T2|)处于较小的范围内;并且第三化合物的蒸镀温度T3,与第一化合物的蒸镀温度T1和第二化合物的蒸镀温度T2的平均值之间的差值的绝对值(即|T3-(T1+T2)/2|)也处于较小的范围内。使得各个发光层中的第一化合物的蒸镀速率和第二化合物的蒸镀速率大致相同,第一颜色发光器件中不同发光层之间的第一化合物的重量与第二化合物的重量之间的比值差异处于较小的范围内。进而使得第一颜色发光器件中,不同发光层之间的第一化合物的重量与第一化合物和第二化合物的重量之和的比例的差值的绝对值,和/或不同发光层之间的第二化合物的重量与第一化合物和第二化合物的重量之和的比例的差值的绝对值,也处于较小的范围内。并且使得第一颜色发光器件中不同发光层之间,第三化合物的重量与第一化合物和第二化合物的重量之和之间的比例差异处于较小的范围内。可以理解为,同一个发光器件中,不同发光层之间的第一化合物的重量占其所属发光层的重量比例的差值的绝对值,和/或不同发光层之间的第二化合物的重量占其所属发光层的重量比例的差值的绝对值,处于较小的范围内。
又由于前面已经详细说明本公开实施例提供的发光器件和显示面板具有整体发光效率高、有效使用寿命长的有益效果。因此,采用本公开实施例提供的显示面板的制备方法在制备得到发光器件和显示面板的基础上,同样可以具备上述发光器件和显示面板的有益效果。
综上所述,本公开的一些实施例提供的发光器件、显示面板及其制备方法,通过分别限定一个发光器件中不同发光层之间的第一化合物的重量占其所属发光层的重量比例的差值范围,和/或一个发光器件中不同发光层之间的第二化合物的重量占其所属发光层的重量比例的差值范围,可以使得不同发光层中的激子复合区域保持一致或相接近,能够降低同一发光器件中的不同发光层之间的性能差异,进而提高发光器件和显示面板的整体发光效率和稳定性。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发光器件,包括:
    沿第一方向依次叠置的第一电极、至少两个发光单元和第二电极;
    所述至少两个发光单元包括第一发光单元和第二发光单元;所述第一发光单元位于所述第一电极和所述第二电极之间;所述第一发光单元包括第一发光层;所述第二发光单元位于所述第一发光单元与所述第二电极之间;所述第二发光单元包括第二发光层;
    每个所述发光单元的发光层包括第一化合物、第二化合物和第三化合物;
    所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,
    所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
  2. 根据权利要求1所述的发光器件,其中,在所述第一发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M1;
    在所述第二发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M2;
    所述M1和所述M2之间差值的绝对值,处于0%~2%的范围内。
  3. 根据权利要求1或2所述的发光器件,其中,在所述第一发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M3;
    在所述第二发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M4;
    所述M3和所述M4之间差值的绝对值,处于0%~2%的范围内。
  4. 根据权利要求1~3中任一项所述的发光器件,其中,每个所述发光层中,所述第一化合物的重量与所述第二化合物的重量之间的比值,处于3:7~7:3的范围内。
  5. 根据权利要求1~4中任一项所述的发光器件,其中,每个所述发光层中,所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例,处于1%~14%的范围内。
  6. 根据权利要求1~5中任一项所述的发光器件,还包括:
    电荷产生层,设置在相邻两个所述发光单元之间,且与所述发光单元耦接。
  7. 根据权利要求1~6中任一项所述的发光器件,其中,所述第一发光层发出的光线的波长,与所述第二发光层发出的光线的波长之间的差值的绝对值,小于或等于20nm。
  8. 根据权利要求1~7中任一项所述的发光器件,其中,所述至少两个发光单元还包括第三发光单元;所述第三发光单元,位于所述第二发光单元与所述第二电极之间,包括 第三发光层;
    所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第三发光层中的所述第一化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,
    所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第三发光层中的所述第二化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
  9. 根据权利要求8所述的发光器件,其中,在所述第一发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M1;
    在所述第三发光层中,所述第一化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M5;
    所述M1和所述M5之间差值的绝对值,处于0%~2%的范围内。
  10. 根据权利要求8或9所述的发光器件,其中,在所述第一发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M3;
    在所述第三发光层中,所述第二化合物的重量,与所述第一化合物和所述第二化合物的重量之和的比例为M6;
    所述M3和所述M6之间差值的绝对值,处于0%~2%的范围内。
  11. 根据权利要求8~10中任一项所述的发光器件,其中,所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例,与所述第三发光层中的所述第一化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,
    所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例,与所述第三发光层中的所述第二化合物在所述第三发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内。
  12. 一种显示面板,包括:
    像素界定层,开设有多个发光开口;
    多个发光器件,分别覆盖多个所述发光开口,每个所述发光器件为如权利要求1~11中任一项所述的发光器件。
  13. 根据权利要求12所述的显示面板,其中,所述多个发光器件包括第一颜色发光器件和第二颜色发光器件;
    所述第一颜色发光器件发出的光线的波长,小于所述第二颜色发光器件发出的光线的波长;
    所述第一颜色发光器件的发光层中的所述第一化合物的重量与所述第二化合物的重量之间的比值,大于或等于所述第二颜色发光器件的发光层中的所述第一化合物的重量与 所述第二化合物的重量之间的比值。
  14. 根据权利要求13所述的显示面板,其中,
    所述第一颜色发光器件的发光层中,所述第一化合物的重量,与所述第二化合物的重量之间的比值,处于5:5~7:3的范围内;
    所述第二颜色发光器件的发光层中,所述第一化合物的重量,与所述第二化合物的重量之间的比值,处于3:7~5:5的范围内。
  15. 根据权利要求12~14中任一项所述的显示面板,其中,所述多个发光器件包括第一颜色发光器件和第二颜色发光器件;
    所述第一颜色发光器件发出的光线的波长,小于所述第二颜色发光器件发出的光线的波长;
    所述第一颜色发光器件的发光层中的所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例,大于或等于所述第二颜色发光器件的发光层中的所述第三化合物的重量与所述第一化合物和所述第二化合物的重量之和之间的比例。
  16. 根据权利要求15所述的显示面板,其中,
    所述第一颜色发光器件的发光层中,所述第三化合物的重量,与所述第一化合物和所述第二化合物的重量之和之间的比例,处于6%~14%的范围内;
    所述第二颜色发光器件的发光层中,所述第三化合物的重量,与所述第一化合物和所述第二化合物的重量之和之间的比例,处于1%~6%的范围内。
  17. 一种显示面板的制备方法,包括:
    形成第一电极;
    在所述第一电极上形成像素界定层,所述像素界定层开设有多个发光开口;所述发光开口暴露所述第一电极;
    形成覆盖所述发光开口的至少两个发光单元;所述至少两个发光单元包括沿第一方向依次叠置的第一发光单元和第二发光单元;所述第一发光单元包括第一发光层;所述第二发光单元包括第二发光层;每个所述发光单元中的发光层包括第一化合物、第二化合物和第三化合物;所述第一发光层中的所述第一化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第一化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;和/或,所述第一发光层中的所述第二化合物在所述第一发光层中所占的重量比例,与所述第二发光层中的所述第二化合物在所述第二发光层中所占的重量比例之间的差值的绝对值,处于0%~3%的范围内;
    在所述至少两个发光单元远离所述第一电极的一侧形成第二电极;所述第一发光单元位于所述第一电极和所述第二电极之间;所述第二发光单元位于所述第一发光单元与所述第二电极之间。
  18. 根据权利要求17所述的显示面板的制备方法,其中,所述形成覆盖所述发光开口的至少两个发光单元,包括:
    利用开放式掩膜版形成第一传输层,所述第一传输层覆盖所述发光开口内的所述第一电极;
    利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层;所述第一发光层位于所述第一传输层上;
    利用开放式掩膜版依次形成相互叠置的第二传输层和第三传输层,所述第二传输层覆盖所述第一发光层;
    利用高精度金属掩膜版形成覆盖所述发光开口的所述第二发光层;所述第二发光层位于所述第三传输层上;
    利用开放式掩膜版形成第四传输层;所述第四传输层覆盖所述第二发光层。
  19. 根据权利要求18所述的显示面板的制备方法,其中,所述利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层,包括:
    同时以第一温度蒸镀所述第一化合物,以第二温度蒸镀所述第二化合物,以使气化的所述第一化合物和气化的所述第二化合物穿过高精度金属掩膜版,形成覆盖所述发光开口的第一发光层;其中,所述第一温度与所述第二温度之间的差值的绝对值,处于0℃~10℃的范围之内。
  20. 根据权利要求18或19所述的显示面板的制备方法,其中,所述利用高精度金属掩膜版形成覆盖所述发光开口的所述第一发光层,包括:
    同时以第一温度蒸镀所述第一化合物,以第二温度蒸镀所述第二化合物,以第三温度蒸镀所述第三化合物,以使气化的所述第一化合物、气化的所述第二化合物和气化的所述第三化合物穿过高精度金属掩膜版,形成覆盖所述发光开口的所述第一发光层;其中,所述第三温度与所述第一温度之间的差值的绝对值,和/或所述第三温度与所述第二温度之间的差值的绝对值,处于0℃~100℃的范围之内。
PCT/CN2023/115379 2022-08-30 2023-08-29 发光器件、显示面板及其制备方法 WO2024046290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211058033.2 2022-08-30
CN202211058033.2A CN115394932A (zh) 2022-08-30 2022-08-30 发光器件、显示面板及其制备方法

Publications (2)

Publication Number Publication Date
WO2024046290A1 true WO2024046290A1 (zh) 2024-03-07
WO2024046290A9 WO2024046290A9 (zh) 2024-05-10

Family

ID=84125181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115379 WO2024046290A1 (zh) 2022-08-30 2023-08-29 发光器件、显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN115394932A (zh)
WO (1) WO2024046290A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115394932A (zh) * 2022-08-30 2022-11-25 京东方科技集团股份有限公司 发光器件、显示面板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311231A (ja) * 2003-04-08 2004-11-04 Denso Corp 有機el素子
CN109494308A (zh) * 2018-11-21 2019-03-19 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
CN110828678A (zh) * 2018-08-10 2020-02-21 株式会社Lg化学 有机发光元件
US20210151703A1 (en) * 2019-11-15 2021-05-20 Lg Display Co., Ltd. Organic light emitting device and display device using the same
CN114864852A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 发光器件和显示面板
CN114902441A (zh) * 2020-11-30 2022-08-12 京东方科技集团股份有限公司 有机发光二极管及其制备方法和显示面板
CN115394932A (zh) * 2022-08-30 2022-11-25 京东方科技集团股份有限公司 发光器件、显示面板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311231A (ja) * 2003-04-08 2004-11-04 Denso Corp 有機el素子
CN110828678A (zh) * 2018-08-10 2020-02-21 株式会社Lg化学 有机发光元件
CN109494308A (zh) * 2018-11-21 2019-03-19 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
US20210151703A1 (en) * 2019-11-15 2021-05-20 Lg Display Co., Ltd. Organic light emitting device and display device using the same
CN114902441A (zh) * 2020-11-30 2022-08-12 京东方科技集团股份有限公司 有机发光二极管及其制备方法和显示面板
CN114864852A (zh) * 2022-07-06 2022-08-05 京东方科技集团股份有限公司 发光器件和显示面板
CN115394932A (zh) * 2022-08-30 2022-11-25 京东方科技集团股份有限公司 发光器件、显示面板及其制备方法

Also Published As

Publication number Publication date
CN115394932A (zh) 2022-11-25
WO2024046290A9 (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US20220352273A1 (en) Display panel, fabrication method therefor, and display device
WO2019128948A1 (zh) 一种含有覆盖层的有机电致发光装置及用途
KR102108524B1 (ko) 유기전계발광소자
JP6770806B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
TWI703751B (zh) 包含有機發光二極體之有機發光顯示裝置
KR100975867B1 (ko) 유기 발광 표시장치
US9118033B2 (en) Organic light-emitting diode and display device employing the same
WO2018086355A1 (zh) 掩模板及其制作方法、有机发光二极管显示器的制作方法
US9780337B2 (en) Organic light-emitting diode and manufacturing method thereof
US10431765B2 (en) White organic light emitting diode and display including the same
US10950812B2 (en) Organic light emitting display device (OLED) having p-type charge generation layer (CGL) formed between emissions stack
KR102640898B1 (ko) 발광다이오드 및 전계발광 표시장치
WO2024007857A1 (zh) 发光器件和显示面板
WO2023000961A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2024046290A1 (zh) 发光器件、显示面板及其制备方法
WO2024046281A1 (zh) 发光器件及其制作方法和显示面板
CN104752613B (zh) 有机发光二极管和包括其的有机发光二极管显示装置
CN111668380B (zh) 显示基板及其制备方法、显示装置
CN106611820A (zh) 有机发光显示装置
CN109494310A (zh) 有机发光二极管和包括其的显示装置
CN111628094B (zh) 有机发光显示装置及有机发光堆叠结构
KR100594775B1 (ko) 백색 유기발광소자
Yadav et al. Advancements and Perspectives of Organic LED: In Depth Analysis of Architectural Design, Characteristics Parameters, Fabrication Techniques, and Applications
WO2020107170A1 (zh) 有机发光二极管器件、显示面板及显示装置
KR102410031B1 (ko) 유기 발광 소자, 그의 제조방법, 및 유기 발광 소자를 구비한 유기 발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859320

Country of ref document: EP

Kind code of ref document: A1