WO2019128948A1 - 一种含有覆盖层的有机电致发光装置及用途 - Google Patents

一种含有覆盖层的有机电致发光装置及用途 Download PDF

Info

Publication number
WO2019128948A1
WO2019128948A1 PCT/CN2018/123285 CN2018123285W WO2019128948A1 WO 2019128948 A1 WO2019128948 A1 WO 2019128948A1 CN 2018123285 W CN2018123285 W CN 2018123285W WO 2019128948 A1 WO2019128948 A1 WO 2019128948A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
organic
atom
substituted
Prior art date
Application number
PCT/CN2018/123285
Other languages
English (en)
French (fr)
Inventor
张兆超
李崇
唐丹丹
王立春
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019128948A1 publication Critical patent/WO2019128948A1/zh
Priority to US16/907,263 priority Critical patent/US20200388791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device comprising a capping layer which can effectively improve light extraction efficiency.
  • OLED Organic Light Emission Diodes
  • the OLED device has a sandwich-like structure, including an electrode layer and an organic light-emitting functional layer sandwiched between different electrode layers, and various electrode layers and organic light-emitting functional layers and other related material layers are superposed on each other according to the purpose.
  • OLED device is a current-driven device.
  • the positive and negative charges are further recombined in the organic light-emitting functional layer, that is, the OLED is produced. Electroluminescence.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-scale applications such as television. Due to the huge gap between the external quantum efficiency and the internal quantum efficiency of OLED, the development of OLED is greatly restricted. Therefore, how to improve the light extraction efficiency of OLED has become a research hotspot. Total reflection occurs at the interface between the ITO film and the glass substrate and at the interface between the glass substrate and the air, and the light emitted to the outer space of the OLED device accounts for about 20% of the total amount of the organic material film EL, and the remaining about 80% of the light is mainly The guided wave form is limited to an organic material film, an ITO film, and a glass substrate.
  • an important method for achieving an efficiency of OLED light extraction is to form structures such as pleats, photonic crystals, microlens arrays (MLAs), and surface covering layers on the light-emitting surface.
  • the first two methods structurally affect the angular distribution of the radiation spectrum of the OLED, and the third method is complicated in the preparation process.
  • the use of the surface coating layer is simple in process, and the luminous efficiency is improved by more than 30%, which is particularly concerned.
  • the inventors of the present invention have found that when a coating layer is prepared using a specific kind of organic compound and an organic electroluminescent device is prepared using the coating layer, since the specific kind of organic compound contains more orphans For electrons, therefore, it has high polarization ability, and can be combined with a metal electrode to form a disordered grating structure. Therefore, the current efficiency of the organic electroluminescent device prepared by the cap layer prepared thereof is improved, the light extraction efficiency is improved, and the angle dependence is dependent. Sex is relieved.
  • the present application uses an organic compound which can be used for a cover layer which can be stably formed into a film by a certain method for preparing an organic electroluminescence device, and the light extraction efficiency of the prepared OLED device is effectively improved while The angular dependence of the luminescence is alleviated.
  • the first electrode being above the substrate
  • the second electrode being above the organic light emitting functional layer
  • cover layer comprises an organic compound
  • Its molecular weight is between 500 and 1200, it contains lone pairs of electrons, and the number of lone pairs is ⁇ 2.
  • the coating material provided by the invention can improve the light extraction efficiency of the device and reduce the angle dependence after being applied to the OLED device, which is beneficial to the preparation and use of the OLED device.
  • the first electrode being above the substrate
  • the second electrode being above the organic light emitting functional layer
  • cover layer comprises an organic compound
  • Its molecular weight is between 500 and 1200, it contains lone pairs of electrons, and the number of lone pairs is ⁇ 2.
  • the organic electroluminescent device of the present invention is specifically explained below in two aspects.
  • the cover layer of the organic electroluminescence device of the present invention may be an organic material composed of an organic compound, an inorganic material, or a combination thereof.
  • the organic material of the coating layer of the organic electroluminescence device of the present invention is an organic compound containing two pairs and two or more pairs of SP2 hybridized lone pairs of electrons, and the chemical group containing SP2 hybridized lone pair electrons can be exemplified as pyridine.
  • benzimidazole benzoxazole
  • the lone pair-containing group of the organic compound of the cap layer is one or more of the following groups:
  • the inorganic material of the cover layer may include ITO, IZO, SiO 2 , SiNx, Y 2 O 3 , WO 3 , MoO 3 or Al 2 O 3 .
  • the organic compound of the cap layer has a lone electron number of 2 or more, preferably 3-15, and most preferably 3-9.
  • the atom containing the lone pair of electrons in the organic compound of the cap layer is an SP2 hybrid orbital bond.
  • the atom having a lone pair of electrons in the organic compound of the cap layer is one or more of N, O, S atoms.
  • the organic compound of the cover layer has a molecular weight of from 500 to 1100, preferably from 600 to 1,000, more preferably from 600 to 850.
  • the refractive index of the organic compound of the cover layer is 1.7 or more in the wavelength range of 380 nm to 780 nm.
  • the organic compound of the cover layer provided by the present invention has a higher refractive index than the organic light-emitting functional layer material and the first electrode and the second electrode material, and is disposed adjacent to the electrode layer.
  • the cover layer is formed outside the electrode on the light exiting side.
  • the organic electroluminescence device of the present invention when light is incident from the light-emitting function layer having a low refractive index and the electrode layer to the cover layer having a high refractive index, the light is not completely covered at the interface between the electrode layer and the cover layer. At least a part of the light is emitted to the outside through the cover layer, so that the total amount of light emitted between the cover layer and the electrode layer interface can be reduced, and the light extraction efficiency of the organic electroluminescence device can be improved.
  • the organic compound of the cover layer has a refractive index in the blue light region of 1.8 or more, preferably 2.0 or more, more preferably 2.0 to 2.4.
  • the refractive index of the refractive index in the green light region is 1.8 or more, preferably 1.9 or more, more It is preferably 1.9 to 2.2; in the red light region, the refractive index is preferably 1.7 or more, preferably 1.8 or more, more preferably 1.8 to 2.1.
  • the extinction coefficient of the organic compound of the coating layer is 1.0 or less in the range of 380 nm to 780 nm.
  • the organic compound of the cap layer has a strong absorption at 310-430 nm and no absorption in the visible region.
  • the organic compound of the cover layer of the present invention has strong absorption at 350 ⁇ 20 nm, and during the packaging process of the flexible OLED device, the UV irradiation in the CVD process can be absorbed, and the ultraviolet light is reduced on the OLED material. damage.
  • the cover layer of the present invention may have a thickness of 10 to 1000 nm, preferably 30 to 120 nm.
  • the cover layer of the present invention may be a single layer or a plurality of layers.
  • the cover layer may be formed by using two or more material layers having different refractive indices, and a material layer having a relatively high refractive index and a material layer having a relatively low refractive index are alternately stacked to form two or more layers.
  • the multilayer cover layer can cause constructive interference and improve light extraction efficiency.
  • the cover layer of the present invention is made of the organic compound.
  • the structural formula of the organic compound usable for the coating layer of the organic electroluminescent device of the present invention is as follows:
  • X 1 to X 6 are each independently represented as an N atom, a C atom or a CH, wherein the number of N atoms is 1-4;
  • o, p, q are respectively represented as numbers 0, 1, 2 or 3, and 0 ⁇ o + p + q ⁇ 4;
  • n is represented by the number 0, 1, 2 or 3, and 0 ⁇ o + p + q + m ⁇ 4;
  • Ar 1 , Ar 2 and Ar 3 may in each case be identical or different independently and independently represent the structure represented by the formula (2):
  • L represents a single bond, a substituted or unsubstituted C 6-60 arylene group, a substituted or unsubstituted 5-60 membered heteroarylene group containing one or more hetero atoms, wherein the hetero atom is nitrogen , oxygen or sulfur;
  • R 1 represents one of a group of benzimidazoles and derivatives, quinoxalines and derivatives, benzoxazoles and derivatives, naphthyridines and derivatives;
  • R represents a substituted or unsubstituted C 6-60 aryl group, a substituted or unsubstituted 5-60 membered heteroaryl group containing one or more hetero atoms, wherein the hetero atom is nitrogen, oxygen or sulfur.
  • L in the formula (2) represents a phenylene group or a biphenyl group which is substituted or unsubstituted by a C1-10 linear or branched alkyl group, a halogen atom, a ruthenium, a osmium or a ruthenium atom.
  • Base naphthylene, pyridylene or naphthyridinyl;
  • R is represented by one of the following: a phenyl group substituted or unsubstituted by a C1-10 linear or branched alkyl group, a halogen atom, a ruthenium, a osmium or a ruthenium atom; a substituted or unsubstituted naphthyl group of a branched alkyl group, a halogen atom, a ruthenium, a osmium or a ruthenium atom; or a substituted or unsubstituted C 11-10 linear or branched alkyl group, a halogen atom, a ruthenium, osmium or iridium atom; a biphenyl group, a terphenyl group or a fluorenyl group; a pyridyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazin
  • R can also be represented by the general formula (3), the general formula (4 Or a structure represented by the formula (5);
  • Ar4 in the general formula (4) and the general formula (5) are each independently represented by one of the following: substituted by a C 1-10 linear or branched alkyl group, a halogen atom, a ruthenium, osmium or iridium atom or not substituted phenyl; substituted C 1-10 straight-chain or branched-chain alkyl group, a halogen atom, protium, deuterium or tritium atoms, a substituted or unsubstituted naphthyl group; a C 1-10 straight-chain or branched-chain alkyl group, a halogen atom a substituted or unsubstituted diphenyl, terphenyl or anthracenyl group of a hydrazine, a hydrazine, a hydrazine or a hydrazine; a C 1-10 linear or branched alkyl group, a halogen atom, a hydra
  • R 2 , R 3 and R 4 are each independently represented by one of the following: a C 1-10 linear or branched alkyl group; a substituted or unsubstituted phenyl group having a halogen atom, a ruthenium, osmium or iridium atom; a naphthyl group substituted or unsubstituted by a C 1-10 linear or branched alkyl group, a halogen atom, a ruthenium, osmium or iridium atom; a substituted or unsubstituted spirobifluorenyl group of a linear or branched alkyl group, a halogen atom, a hydrazine, a hydrazine or a hydrazine atom; a C 1-10 linear or branched alkyl group, a halogen atom, a hydrazine, a hydrazine or a hydrazine
  • R 2 , R 3 , and R 4 are each independently the same or different;
  • n is represented by an integer of 1 or 2.
  • the structural formula of the organic compound usable for the cover layer of the organic electroluminescent device of the present invention is as follows:
  • R1 is selected from the group consisting of biphenyl, naphthyl, biphenyl, N-phenylcarbazolyl or
  • R 2 is selected from the group consisting of H, C 1 -C 6 alkyl, pyridyl, pyrimidinyl, ,or
  • X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 are each independently hydrogen or C1-C6 alkyl, preferably hydrogen, methyl or tert-butyl;
  • R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from hydrogen, C 1 -C 6 alkyl, pyridyl, pyrimidinyl,
  • R9 is selected from the group consisting of H, C1-C6 alkyl, pyrimidinyl, pyridyl,
  • R10 and R11 are each independently selected from or or
  • X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 are each independently hydrogen or a C1-C6 alkyl group, preferably hydrogen, methyl or t-butyl.
  • R12 is selected from
  • the material available for the cover layer of the organic electroluminescent device of the present invention is selected from one or more of the following organic compounds:
  • n is the refractive index and k is the extinction coefficient.
  • the above compounds listed in the present invention contain SP2 hybridized lone pairs of electrons ⁇ 2, and the refractive index in the blue light field is above 1.8, preferably 1.8-2.3; It is 1.8 or more, preferably 1.8-2.2; the refractive index of the red light field is 1.7 or more, preferably 1.7-2.1; and the extinction coefficient of the above materials in the visible field is 0.1 or less.
  • the second aspect is a first aspect:
  • the present invention also provides a structure and a preparation method of an organic electroluminescence device comprising a cover layer, which will be further described in detail below with reference to the accompanying drawings and embodiments. However, they may be embodied in different forms and should not be construed as being limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be more complete and thorough.
  • the organic electroluminescence device includes a substrate layer 100, and a first electrode layer 200, an organic light-emitting function layer 300, a second electrode layer 400, and a cover layer 500 which are sequentially formed on the substrate layer 100.
  • any substrate used in a typical organic light-emitting device can be selected. It may be a glass or transparent plastic substrate, a substrate of opaque material such as silicon or stainless steel, or a flexible PI film. Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water repellency, and the directions of use are different depending on the properties of the substrate.
  • the first electrode layer 200 is formed on the substrate layer 100, and the first electrode layer 200 may be a cathode or an anode.
  • the first electrode layer 200 may be a reflective electrode such as silver (Ag), magnesium (Mg), aluminum (Al), gold (Au), nickel (Ni), chromium (Cr), ytterbium (Yb) or an alloy thereof.
  • the transparent or semi-transparent electrode layer may be composed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), aluminum zinc oxide (AZO), indium gallium oxide (IGO), indium oxide (In 2 O 3 ) Or tin oxide (SnO 2 ) is formed.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • AZO aluminum zinc oxide
  • IGO indium gallium oxide
  • IGO indium oxide
  • In 2 O 3 In 2 O 3
  • tin oxide (SnO 2 ) is formed.
  • the first electrode layer 200 may be formed by a sputtering method, an ion plating method, a vacuum evaporation method, a spin coating method, an electron beam evaporation method, or a chemical vapor deposition (CVD) method, and is preferably formed by a sputtering method.
  • the thickness of the first electrode layer 200 depends on the material to be used, and is generally in the range of 5 nm or more and 1 ⁇ m or less, preferably 10 nm or more and 1 ⁇ m or less, more preferably 10 nm or more and 500 nm or less, particularly preferably 10 nm or more and 300 nm or less, and most preferably 10 nm or more and 200 nm or less.
  • the sheet resistance of the transparent electrode material is preferably set to several hundred ohms/sheet or less, more preferably set to 5 ohms/sheet or more and 50 ohms/sheet or less.
  • the surface of the material of the first electrode layer 200 (the surface in contact with the organic layer) can be subjected to ultraviolet-ozone cleaning, oxygen-rich plasma cleaning, and argon plasma cleaning.
  • the surface roughness can be preferably controlled to 20 nm or less by a method of miniaturizing the particle diameter or a method of polishing after film formation.
  • the auxiliary electrode When the resistance of the first electrode layer 200 is high, the auxiliary electrode can be set to lower the resistance.
  • the auxiliary electrode may be an electrode obtained by juxtaposing a metal such as silver, copper, chromium, aluminum, titanium, an aluminum alloy, or a silver alloy or a laminate thereof in a transparent electrode.
  • FIG. 2 is a schematic cross-sectional structural view of an organic light-emitting functional layer in an organic electroluminescent device according to the present invention.
  • the organic light-emitting function layer 300 may include a light-emitting layer 340 (EML), and a hole transport region may be formed between the EML and the first electrode layer 200, and may be between the EML and the second electrode layer 400.
  • An electron transport region is formed.
  • the hole transport region may include at least one of a hole injection layer 310 (HIL), a hole transport layer 320 (HTL), and an electron blocking layer 330 (EBL).
  • the electron transport region may include at least one of a hole blocking layer 350 (HBL), an electron transport layer 360 (ETL), and an electron injection layer 370 (EIL). Therefore, the organic light-emitting function layer 300 includes at least two combinations of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer.
  • the organic light-emitting functional layer 300 has a thickness of 50 nm to 1000 nm.
  • any material selected from related materials for OLED devices can be used.
  • Examples of the above materials may be a phthalocyanine derivative, a triazole derivative, a triarylmethane derivative, a triarylamine derivative, an oxazole derivative, an oxadiazole derivative, an anthracene derivative, an anthracene derivative, or a pyridinium derivative.
  • polysilane derivatives imidazole derivatives, phenylenediamine derivatives, amino-substituted quinone derivatives, styrylpurine derivatives, styrylamine derivatives, etc., styrene compounds, anthracene derivatives, spiro-derived derivatives , silazane derivatives, aniline copolymers, porphyrin compounds, carbazole derivatives, polyarylalkane derivatives, polyphenylenevinylene and its derivatives, polythiophene and its derivatives, poly-N- Conductive polymer oligomers such as vinyl carbazole derivatives and thiophene oligomers, aromatic tertiary amine compounds, styrylamine compounds, triamines, tetraamines, benzidines, propyne diamine derivatives, P-phenylenediamine derivative, m-phenylenediamine derivative, 1,1'-bis(4-diarylaminopheny
  • triarylamine derivative an example is a diploid, a triploid, a tetraploid, a 5-ploid, a 4,4'-bis[N-phenyl-N-(4"-methyl group of triphenylamine.
  • porphyrin compound examples include porphyrin, 1,10,15,20-tetraphenyl-21H, 23H-porphyrinone (II), 1,10,15,20-tetraphenyl-21H, 23H. - zinc porphyrin (II) or 5,10,15,20-tetrakis(pentafluorophenyl)-21H, 23H-carboline; as a phthalocyanine derivative, silicon phthalocyanine oxide, alumina phthalocyanine , metal-free phthalocyanine, dilithium phthalocyanine, tetramethyl copper phthalocyanine, copper phthalocyanine, chromium phthalocyanine, zinc phthalocyanine, aluminum phthalocyanine, titanium oxyphthalocyanine, magnesium phthalocyanine or octamethylphthalocyanine Wait.
  • a phthalocyanine derivative silicon phthalocyanine oxide, alumina phthalocyanine , metal-free phthal
  • aromatic tertiary amine compound and the styrylamine compound examples include N,N,N',N'-tetraphenyl-4,4'-diaminobenzene and N,N'-diphenyl-N.
  • an aryl-bis(4-diarylaminophenyl)amine, a p-phenylenediamine derivative, a 4,4'-diaminobiphenyl derivative, and a 4,4'-diaminodiphenylsulfide are preferable.
  • At least one of the HIL 310 and the HTL 320 may further include a charge generating material for improving conductivity.
  • the charge generating material may be a p-dopant.
  • P-dopants such as anthracene derivatives such as tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinodimethane (F4-TCNQ); or a hexazatriphenylene derivative such as 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene ( HAT-CN); or a cyclopropane derivative such as 4,4',4"-((1E,1'E,1"E)-cyclopropane-1,2,3-trimethylenetris(cyanomethyl) Acyl sub))) tris(2,3,5,6-tetrafluorobenzyl); or metal oxides such as
  • the three-state (T1) energy level of the material required in EBL330 is higher than the T1 energy level of the host material in the light-emitting layer 340, which can block the energy loss of the light-emitting layer material; the HOMO energy level of the EBL330 material is between the HOMO energy of the HTL320 material.
  • the EBL330 material is required to have high hole mobility, which facilitates hole transport and reduces device application power; EBL330 material
  • the LUMO energy level is higher than the LUMO energy level of the host material of the light-emitting layer 340, and functions as an electron blocking, that is, the EBL330 material is required to have a wide forbidden band width (Eg).
  • the EBL330 material satisfying the above conditions may be a triarylamine derivative, an anthracene derivative, a spiroindole derivative, a dibenzofuran derivative, a carbazole derivative or the like.
  • a triarylamine derivative such as N 4 , N 4 -bis([1,1'-biphenyl]-4-yl)-N 4 ' -phenyl N 4 ' -[1,1':4 is preferred.
  • the light-emitting layer 340 may be the same one of the doping materials or a plurality of doping materials, and the doping material may be a simple fluorescent material, a delayed fluorescent (TADF) material or a phosphorescent material, or
  • the light-emitting layer 340 may be a single light-emitting layer material or a composite light-emitting layer material stacked in a lateral direction or a longitudinal direction, by combining different fluorescent materials, TADF materials, and phosphorescence.
  • the light-emitting layer 340 constituting the above OLED light-emitting body is exemplified by the following various structures:
  • the organic light emitting function layer includes a light emitting layer, and the light emitting layer includes one of a blue light emitting pixel, a green light emitting pixel, a red light emitting pixel, and a yellow light emitting pixel, or a combination of at least two.
  • the film thickness of the luminescent layer 340 constituting the OLED illuminant can be arbitrarily adjusted as needed, or the luminescent layers of the non-color can be alternately superimposed and combined as needed, and the adjacent illuminating layer can also be used.
  • a charge blocking layer or the like for different functional uses is added to the organic layer of the layer.
  • the luminescent layer material of the OLED illuminant As a host material constituting the luminescent layer material of the OLED illuminant, it is required to have bipolar charge transport characteristics and an appropriate energy level, and the excitation energy generated by recombination of electrons and holes can be efficiently transmitted to the guest luminescence.
  • Material ie doped material. Examples of such a material include a distyryl arylene derivative, a stilbene derivative, a carbazole derivative, a triarylamine derivative, an anthracene derivative, an anthracene derivative, a triazine derivative, and an oxa compound.
  • An anthrone derivative a triphenylene derivative, an azabenzene derivative, a hexacenebenzene derivative or bis(2-methyl-8-quinoline)(p-phenylphenol)aluminum (BAlq) or the like.
  • a guest material capable of generating blue fluorescence, blue phosphorescence, green fluorescence, green phosphorescence, and blue-green fluorescence it is required to have not only high fluorescence quantum luminous efficiency, but also an appropriate energy level, which can effectively absorb the excitation of the host material.
  • the material which can emit light is not particularly limited. Examples thereof include a distyrylamine derivative, an anthracene derivative, an anthracene derivative, a triazine derivative, a xanthone derivative, a benzoxazole derivative, a benzothiazole derivative, and a benzimidazole derivative.
  • a derivative, a phenanthroline derivative, a distyrylbenzene derivative or a tetraphenylbutadiene derivative a derivative, a phenanthroline derivative, a distyrylbenzene derivative or a tetraphenylbutadiene derivative.
  • a derivative, a phenanthroline derivative, a distyrylbenzene derivative or a tetraphenylbutadiene derivative Among them, 4,4'-bis[2-(9-ethyloxazol-2-yl)-vinyl]biphenyl (BCzVBi), hydrazine, etc. may be used, and a tetraphenyl compound or a diphenyl group may also be mentioned.
  • the metal quinone compound or the polyphenyl compound which has an 8-quinolinol-based substance as a ligand may be used alone or in combination of two or more.
  • aromatic xylene theophylline compounds such as 4,4'-bis(2,2-di-1-butylphenylvinyl) double.
  • Phenyl abbreviation: DTBPBBi
  • 4,4'-bis(2,2-diphenylvinyl)bisphenyl abbreviation: DPVBi
  • the content (doping amount) of the fluorescent guest material is preferably 0.01% by weight or more and 20% by weight or less, and more preferably 0.1% by weight or more and 10% by weight or less based on the fluorescent host material.
  • the content thereof is preferably 0.1% by weight or more and 20% by weight or less based on the fluorescent host material. As long as it is within this range, an effective energy distribution can be achieved between the high-energy blue illuminant and the low-energy red illuminator, and a desired electroluminescence having a blue and red luminescent phase balance intensity can be obtained.
  • the light-emitting layer 340 included in the above OLED device not only the above-mentioned fluorescent material but also a phosphorescent material can be used. Compared with fluorescent materials, phosphorescent materials can utilize both singlet and triplet excitons in the luminescence process. In theory, the internal quantum efficiency can reach 100%, which can greatly improve the luminous efficiency of the illuminating device.
  • the blue phosphorescent dopant material is not particularly limited as long as it has a blue phosphorescent light-emitting function.
  • a metal complex such as ruthenium, titanium, platinum, rhodium or palladium may be mentioned.
  • at least one of the ligands of the above metal complex preferably has a complex such as a phenylpyridine skeleton, a dipyridine skeleton, or a porphyrin skeleton.
  • the green phosphorescent dopant material is not particularly limited as long as it has a green phosphorescence light-emitting function.
  • a metal complex such as ruthenium, nail, platinum, rhodium or palladium may be mentioned, and at least one of the ligands of the metal complex may have a phenylpyridine skeleton, a dipyridine skeleton, a porphyrin skeleton, or the like.
  • a green phosphorescent dopant more specifically, face-tris(2-phenylpyridine)iridium (Ir(ppy)3), bis[2-phenylpyridine-N, C2 ']-Acetylacetonate or a face-tris[5-fluoro-2-(5-trifluoromethyl-2-pyridine)phenyl-C,N]pyrene.
  • red phosphorescent dopant material octaethylporphyrin platinum (II) (PtOEP), tris(2-phenylisoquinoline) fluorene (Ir(piq) 3 ), and bis (2-(2') can be exemplified.
  • the content (doping amount) of the phosphorescent dopant is preferably 0.01% by weight or more and 30% by weight or less, and more preferably 0.1% by weight or more and 20% by weight or less based on the phosphorescent host material.
  • a green phosphorescent dopant is used, it is preferably 0.1% by weight or more and 20% by weight or less based on the phosphorescent host material.
  • the phosphorescent host material is not particularly limited as long as it has a triplet energy greater than the triplet energy of the phosphorescent dopant.
  • a carbazole derivative, a phenanthroline derivative, a triazine derivative, a triazole derivative, and a hydroxyquinoline metal complex can be mentioned.
  • 4,4',4"-tris(9-carbazolyl)triphenylamine, 4,4'-bis(9-carbazolyl)-2,2'-dimethylbiphenyl may be mentioned.
  • BCP 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 3-phenyl-4-(1'-naphthyl)-5-phenylindole Oxazole
  • the luminescent layer material may also be a non-host-guest doping system material, such as excimer-based energy transfer and interface luminescence; the luminescent layer material may also have a thermal activation delay.
  • the host-guest material of the fluorescent (TADF) function, and the combination of the TADF functional material and the above-mentioned fluorescent and phosphorescent materials are combined with each other.
  • the material of the hole blocking layer 350 and the electron transport layer 360 constituting the above OLED device can be selected by using any material selected from the materials for OLEDs having electron transport characteristics.
  • Such materials may, for example, be 1,3-bis[5'-(p-tert-butylphenyl)-1,3,4-oxadiazol-2'-yl]benzene, 2-(4-biphenylyl) Oxadiazole derivative such as 5-(4-tert-butylphenyl)-1,3,4-oxadiazole, 3-(4'-tert-butylphenyl)-4-phenyl-5-( 4"-biphenyl)-1,2,4-triazole and other triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, diphenyl hydrazine derivatives, nitro-substituted fluorenone derivatives , a thiopyran dioxide derivative, a quinodimethane derivative, a thi
  • an organometallic complex such as bis(10-benzo[h]hydroxyquinoline)fluorene, a 5-hydroxyaluminum sulfonium salt or a 5-hydroxy brass aluminum salt or 8-hydroxyquinoline or a metal complex of a derivative thereof, such as tris(8-hydroxyquinoline)aluminum (Alq), tris(5,7-dichloro-8-hydroxyquinoline)aluminum, bis(2-methyl-8-hydroxyquinoline) Porphyrin) (p-phenylphenol) aluminum (BAlq), tris(5,7-dibromo-8-hydroxyquinoline)aluminum.
  • a chelating agent-containing metal chelating agent compound such as a hydroxyquinoline metal complex such as tris(2-methyl-8-hydroxyquinoline)aluminum (generally 8-hydroxyquinoline).
  • a hydroxyquinoline metal complex such as tris(2-methyl-8-hydroxyquinoline)aluminum (generally 8-hydroxyquinoline).
  • examples in which the center metal of these metal complexes is replaced with a metal complex of ruthenium, indium, magnesium, copper, calcium, tin, zinc or aluminum may be mentioned. It is preferable to use a non-metal, a metal phthalocyanine or a substance whose terminal is substituted with an alkyl group, a sulfo group or the like.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • 3-phenyl-4-(1'-naphthalene)-5- is more preferably used.
  • Phenyl-1,2,4-triazole (TAZ) is more preferably used.
  • the three-state (T1) energy level of the material required in the HBL350 is higher than the T1 energy level of the host material in the light-emitting layer 340, and can function to block the energy loss of the light-emitting layer material; the HUMO energy level of the EBL350 material is lower than that of the light-emitting layer 340.
  • the HUMO level plays a role in hole blocking, and requires high electron mobility of HBL350 material, which facilitates electron transport and reduces device application power.
  • HBL350 materials that meet the above conditions can be triazine derivatives and azabenzene derivatives. Things and so on. Among them, a triazine derivative is preferred; however, it is not limited thereto.
  • EIL370 may be formed of one or more of the following: an alkali metal; an alkaline earth metal; a halide of an alkali metal and an alkaline earth metal; an oxide of an alkali metal and an alkaline earth metal, a carbonate of an alkali metal and an alkaline earth metal; an alkali metal And alkaline earth metal oxalate or alkali metal and alkaline earth metal fluoroaluminate. Examples thereof include Li, Ca, Sr, LiF, CsF, BaO, Li 2 CO 3 , CaCO 3 , Li 2 C 2 O 4 , Cs 2 C 2 O 4 , and CsAlF 4 .
  • EIL 370 can include at least one metal, such as one or more of Yb, Sc, V, Y, In, Ce, Sm, Eu, or Tb.
  • a second electrode layer 400 is formed on the organic light-emitting function layer 300.
  • the second electrode layer may be a cathode or an anode, and may be a transparent electrode or a translucent electrode.
  • the second electrode layer 400 may be made of a film having a low work function from lithium, calcium, lithium fluoride/calcium, lithium fluoride/aluminum, aluminum, silver, magnesium or an alloy thereof. Further, the second electrode layer 400 may be made of an alloy including silver and at least one metal including aluminum, platinum, rhodium, chromium or magnesium. Also, the weight ratio of Ag in the alloy may be the same as or greater than or less than the weight of other metals.
  • the second electrode layer 400 may be formed of an Ag-Mg alloy, wherein the mass ratio of Ag to Mg may be from 90:10 to 10:90.
  • the second electrode layer 400 may be formed of an alloy including at least one metal such as silver, gold, platinum, copper, nickel or tungsten and at least one metal such as bismuth, indium, magnesium or chromium. These metal films can form transparent or translucent electrodes by adjusting the thickness of the film. Therefore, light generated by the organic light-emitting function layer 300 can be emitted through the second electrode layer 400.
  • the second electrode layer 400 may have a thickness of 5 to 30 nm.
  • a cover layer 500 is formed on the second electrode layer 400, and the cover layer 500 may be an organic material, an inorganic material, or a combination thereof.
  • the material used for the cover layer 500 is the organic compound material described in the "first aspect" of the present invention.
  • each layer of the material for preparing the organic electroluminescent device of the present invention or the organic electroluminescent device of the present invention can be referred to the description provided above.
  • an organic electroluminescent device of the present invention includes a substrate layer 100, a first electrode layer 200, an organic light-emitting functional layer 300, a second electrode layer 400, and a capping layer 500.
  • a barrier layer (which may be composed of an inorganic material or/and an organic material for preventing foreign matter from penetrating the substrate and the device) and a wiring layer (which may include a driving TFT, a capacitor, a wire, and a low-temperature polysilicon LTPS) may be formed on the substrate layer by a known method.
  • the first electrode layer 200 can be a reflective electrode and the second electrode layer 400 is a transparent or translucent electrode. Therefore, the light generated by the organic light-emitting function layer 300 may be directly emitted from the second electrode layer 400 or may be reflected by the first electrode layer 200 toward the second electrode layer 400 and then emitted.
  • the first electrode layer 200 can be prepared by, for example, an evaporation method or a sputtering method.
  • the second electrode layer 400 can be prepared by, for example, a vacuum evaporation method.
  • the organic light-emitting functional layer 300 may include a light-emitting layer 340 (EML), and a hole transport region may be formed between the EML and the first electrode layer 200, and an electron transport region may be formed between the EML and the second electrode layer 400.
  • the hole transporting region may include at least one of a hole injection layer 310 (HIL), a hole transport layer 320 (HTL), and an electron blocking layer 330 (EBL).
  • the electron transport region may include at least one of a hole blocking layer 350 (HBL), an electron transport layer 360 (ETL), and an electron injection layer 370 (EIL).
  • the organic light-emitting functional layer 300 may be composed of a small molecule organic material or a polymer material, and the organic light-emitting functional layer 300 may be prepared by various methods such as vacuum evaporation, solution spin coating, and wire mesh. Printing, inkjet printing.
  • the cover layer 500 may be composed of an inorganic material, an organic small molecule material, and a high molecular material.
  • the cover layer 500 is composed of the organic compound material described in the "first aspect" of the present invention, and the cover layer 500 may be prepared using various methods. The various methods are exemplified by vacuum evaporation, solution spin coating, screen printing, and ink jet printing.
  • a full-color organic electroluminescence device including the structure of FIG. 3, FIG. 4, FIG. 5, FIG. 6, or FIG. 7 can be prepared by referring to the structures of the organic electroluminescent devices of FIGS. 1 and 2. That is, the organic light-emitting device according to these embodiments may be configured in various structures such as a monochromatic light-emitting device, a polychromatic light, or an organic light-emitting device of white light.
  • the organic electroluminescent device prepared by the invention containing the coating layer of the invention prepared by the compound of the invention can be used in the field of OLED illumination and display, and can be used in commercial fields, such as POS machines and ATM machines, copiers, vending machines, game machines.
  • communications such as 3G mobile phones, various video intercom systems (video phones), mobile network terminals, ebook (electronic Display screens for products such as books; computer fields such as home and business computers (PC/workstations, etc.), displays for PDAs and laptops; consumer electronics such as decorative items (soft screens) and lamps, various types of audio equipment , MP3, calculator, digital camera, head-mounted display, digital video camera, portable DVD, portable TV, electronic clock, handheld game console, display of various household appliances (OLED TV), etc.; transportation field, such as GPS, A variety of indicative display screens such as car audio, car phones, aircraft instruments and equipment.
  • the organic electroluminescent device prepared by the invention containing the coating layer of the invention prepared by the compound of the invention can be used in the field of illumination and display, preferably in the fields of smart phones, tablet computers, smart wearable devices, televisions and the like.
  • Applications, VR, micro-display, and automotive central control panels or car taillights are not limited by the large size and power consumption of the display.
  • the present invention provides an illumination or display device comprising the organic electroluminescent device of the present invention.
  • the present invention also provides an electronic device including the organic electroluminescent device as described above, the electronic device may be a mobile phone, or may be a computer, a television, a smart wearable device, etc., an embodiment of the present invention This is not specifically limited.
  • the compound of the present invention used in the examples for the cover layer material is the compound 1, 4, 5, 8, 12, 14, 18, 24, 28, 32, 34, 35, 37 of the compounds listed below. 39, 42, 44, 45, 53, 55.
  • An organic electroluminescent device is prepared by the following preparation steps, including:
  • a 7 nm ITO film (first electrode layer 200) was formed by sputtering, and etched into a desired pattern, and ultrasonically cleaned with deionized water, acetone, and ethanol, respectively. After 15 minutes, it was then treated in a plasma cleaner for 2 minutes; here the ITO electrode layer was an anode, and on the ITO anode layer, the hole injection layer material HAT-CN was vapor-deposited by vacuum evaporation to a thickness of 10 nm.
  • LTPS low temperature polysilicon
  • the hole transport material NPB is deposited by vacuum evaporation to a thickness of 110 nm, and the layer is a hole transport layer 320, which can also serve as a microcavity adjustment layer;
  • an electron blocking material TCTA is deposited by vacuum evaporation to a thickness of 10 nm, which is an electron blocking layer 330;
  • a blue light emitting layer 340 is deposited on the electron blocking layer 330, and CBP is used as a host material.
  • the mass ratio of BDAVBi and CBP is 5:95, and the thickness is 20 nm; on the light-emitting layer 340, the electron transport material TPBI is evaporated by vacuum evaporation to a thickness of 35 nm, and this layer of organic material is used as The electron transport layer 360 is used; On the electron transport layer 360, an electron injection layer LiF is vacuum-deposited to a thickness of 1 nm, and the layer is an electron injection layer 370. On the electron injection layer 370, a cathode Yb/Mg: Ag layer is vacuum-deposited, and the thickness of the Yb is 1 nm. The mass ratio of Mg to Ag is 1:9 and the thickness is 14 nm.
  • the layer is the second electrode layer 400, which is a cathode layer.
  • the compound material of the present invention is vapor-deposited by vacuum evaporation. 1.
  • the thickness is 50 nm, and this layer of organic material is used as the cover layer 500.
  • the preparation method is the same as that of the device embodiment 1, but adopts the following device structure:
  • the preparation method is the same as that of the device embodiment 1, but adopts the following device structure:
  • the preparation methods of the device embodiments 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55 are the same as those of the device embodiment 1, except The use of compounds 4, 5, 8, 12, 14, 18, 24, 28, 32, 34, 35, 37, 39, 42, 44, 45, 53, 55 as the cover material of the organic electroluminescent device .
  • the preparation methods of the device embodiments 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56 are the same as those of the device embodiment 2, and different The use of compounds 4, 5, 8, 12, 14, 18, 24, 28, 32, 34, 35, 37, 39, 42, 44, 45, 53, 55 as the cover material of the organic electroluminescent device .
  • the preparation methods of the device embodiments 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57 are the same as those of the device embodiment 3, and different The use of compounds 4, 5, 8, 12, 14, 18, 24, 28, 32, 34, 35, 37, 39, 42, 44, 45, 53, 55 as the cover material of the organic electroluminescent device .
  • the preparation method is the same as that of the device embodiment 1, but adopts the following device structure:
  • the preparation method is the same as that of the device embodiment 1, but adopts the following device structure:
  • the preparation method is the same as that of the device embodiment 1, and the device structure is different:
  • the organic electroluminescent device prepared by using the coating layer prepared by the compound of the present invention has a markedly improved current efficiency in the fields of blue light, green light, and red light, thereby correspondingly improving the light extraction efficiency.
  • the organic electroluminescent device prepared by using the coating layer prepared from the compound of the present invention has less perceptible chromatic aberration in the fields of blue light, green light, and red light, and thus has less angular dependence.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种含有覆盖层(500)的有机电致发光装置,该有机电致发光装置包括:基板层(100);第一电极(200),该第一电极(200)在所述基板(100)之上;有机发光功能层(300),该有机发光功能层(300)在所述第一电极(200)之上;第二电极(400),该第二电极(400)在所述有机发光功能层(300)之上;以及覆盖层(500),该覆盖层(500)在有机电致发光装置光线射出的一侧,其中,所述覆盖层(500)包括有机化合物,所述覆盖层(500)的有机化合物具有下列特性:其分子量在500至1200之间,含有孤对电子,且孤对电子数≥2。含有覆盖层(500)的有机电致发光装置用于显示或照明设备。

Description

一种含有覆盖层的有机电致发光装置及用途 技术领域
本发明涉及一种有机电致发光装置,尤其涉及一种含有覆盖层(capping layer)的、可以有效改善光取出效率的有机电致发光装置。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)装置技术既可以用来制造新型显示产品,也可以用于制备新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED装置具有犹如三明治的结构,包括电极层以及夹在不同电极层之间的有机发光功能层,各种不同的电极层和有机发光功能层以及其他相关的材料层根据用途相互叠加在一起共同组成OLED装置。OLED装置为一种电流驱动型装置,当对其两端电极施加电压从而通过电场作用于有机功能材料层中的正负电荷上时,正负电荷进一步在有机发光功能层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机、平板电脑等领域获得应用,还将进一步向电视等大尺寸应用领域扩展。由于OLED的外量子效率和内量子效率之间存在巨大差距,极大地制约了OLED的发展。因此,如何提高OLED的光取出效率成为研究热点。ITO薄膜和玻璃衬底的界面以及玻璃衬底和空气的界面处会发生全反射,出射到OLED装置外部空间的光约占有机材料薄膜EL总量的20%,其余约80%的光主要以导波形式限制在有机材料薄膜、ITO薄膜和玻璃衬底中。可见常规OLED装置的光取出效率较低(约为20%),这严重制约了OLED的发展和应用。因此,如何减少OLED装置中的全反射效应、提高光耦合到装置前向外部空间的比例(光取出效率)引起人们的广泛关注。
目前,实现提高OLED光取出效率的一类重要方法是在出光表面形成如褶皱、光子晶体、微透镜陈列(MLA)和添加表面覆盖层等结构。前两种方法在结构上会影响OLED的辐射光谱角度分布,第三种方法制备工艺复杂。使用表面覆盖层工艺简单,发光效率提高30%以上,尤为人们关注。
因此,针对目前OLED装置光取出效率低的现状,希望在装置结构中使用能够实现更高的光取出效率的覆盖层(光提取材料层),并希望降低装置的角度依赖性。
发明内容
针对现有技术存在的上述问题,本发明的发明人发现,当采用特定种类的有机化合物制备覆盖层且用该覆盖层制备有机电致发光装置时,由于该特定种类的有机化合物含有较多孤对电子,因此具有高的极化能力,且可以和金属电极偶合成无序光栅结构,因而由其所制备的覆盖层制备的有机电致发光装置的电流效率提高、光取出效率提高且角度依赖性得到缓解。因此,本申请使用了一种可用于覆盖层的有机化合物,该有机化合物材料可通过一定方式稳定成膜以用于制备有机电致发光装置,所制备的OLED装置的光取出效率得到有效提升同时发光的角度依赖性得到缓解。
本发明的目的是提供一种有机电致发光装置,该有机电致发光装置包括:
基板层;
第一电极,该第一电极在所述基板之上;
有机发光功能层,该有机发光功能层在所述第一电极之上;
第二电极,该第二电极在所述有机发光功能层之上;以及
覆盖层,该覆盖层在有机电致发光装置光线射出的一侧,
其中,所述覆盖层包括有机化合物,
所述覆盖层的有机化合物具有下列特性:
其分子量在500至1200之间,其含有孤对电子,且孤对电子数≥2。
本发明提供的覆盖层材料在应用于OLED装置后,可提高装置的光取出效率,降低角度依赖性,有利于OLED装置的制备及使用。
具体实施方式
本发明的一个目的是提供一种有机电致发光装置,该有机电致发光装置包括:
基板层;
第一电极,该第一电极在所述基板之上;
有机发光功能层,该有机发光功能层在所述第一电极之上;
第二电极,该第二电极在所述有机发光功能层之上;以及
覆盖层,该覆盖层在有机电致发光装置光线射出的一侧,
其中,所述覆盖层包括有机化合物,
所述覆盖层的有机化合物具有下列特性:
其分子量在500至1200之间,其含有孤对电子,且孤对电子数≥2。
下文中分两方面具体地阐释了本发明的有机电致发光装置。
第一方面:
下面结合结构式及测试数据对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。
本发明的有机电致发光装置的覆盖层可以为由有机化合物组成的有机材料、无机材料或其组合。
本发明的有机电致发光装置的覆盖层的有机材料为含有两对及两对以上SP2杂化的孤对电子的有机化合物,含有SP2杂化的孤对电子的化学基团可以例举为吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、喹喔啉、喹唑啉、噌啉、2,3-二氮杂萘、萘啶、苯并咪唑、苯并噁唑、菲啰啉、氮杂三亚苯、吲哚并吡啶、吖啶、吡唑、噁二唑、三唑、吡唑酮、咪唑、咪唑酮、酮、醚或亚砜的基团中的一种或多种组合。
优选地,所述覆盖层的有机化合物的含有孤对电子的基团为以下基团中的一种或多种:
Figure PCTCN2018123285-appb-000001
所述覆盖层的无机材料可以包括ITO、IZO、SiO 2、SiNx、Y 2O 3、WO 3、MoO 3或Al 2O 3
在一个实施方案中,所述覆盖层的有机化合物的孤对电子数为2以上,优 选为3-15,最优选为3-9
在一个优选的实施方案中,所述覆盖层的有机化合物中含孤对电子的原子为SP2杂化轨道成键。
在一个优选的实施方案中,所述覆盖层的有机化合物中具有孤对电子的原子为N、O、S原子中的一个或多个。
所述覆盖层的有机化合物的分子量为500-1100,优选为600-1000,更优选为600-850。
在一个优选的实施方案中,所述覆盖层的有机化合物的折射率在波长380nm-780nm范围内为1.7以上。
在一个优选的实施方案中,本发明提供的覆盖层的有机化合物具有比所述有机发光功能层材料和所述第一电极、第二电极材料更高的折射率,并邻近电极层设置。优选地,覆盖层形成于出光侧的电极外侧。当光从折射率低的层射入到折射率高的层时,即使入射角度大,光也不会被全反射,并且至少有一部分能射入到折射率高的层。因此,本发明的有机电致发光装置中,光从折射率低的发光功能层和电极层射入到折射率高的覆盖层时,光在电极层和覆盖层之间的界面上不被全反射,至少有一部分光能透过覆盖层发出到外部,因此,能降低光在覆盖层和电极层界面间的全发射的光量,提高有机电致发光装置的光取出效率。
优选地,所述覆盖层的有机化合物在蓝光领域的折射率在1.8以上,优选在2.0以上,更优选为2.0-2.4在绿光领域折射率的折射率在1.8以上,优选在1.9以上,更优选为1.9-2.2;在红光领域折射率优选在1.7以上,优选在1.8以上,更优选为1.8-2.1。
优选地,所述覆盖层的有机化合物的消光系数在波长380nm-780nm范围内为1.0以下。
优选地,所述覆盖层的有机化合物在310-430nm处有较强吸收且在可见光区域不具备吸收。
在一个优选的实施方案中,本发明的覆盖层的有机化合物在350±20nm处有较强吸收,在柔性OLED装置封装过程中,可吸收CVD工艺中的UV照射,降低紫外光对OLED材料的破坏。
本发明的覆盖层的厚度可以为10-1000nm,优选为30-120nm。
本发明的覆盖层可以是单层也可以是多层。优选地,所述覆盖层可以为通过使用具有不同折射率的两种以上材料层形成,具有相对高折射率的材料层和 具有相对低折射率的材料层交替叠加形成两层或多层。多层覆盖层可导致相长干涉,提高光取出效率。
优选地,本发明的覆盖层由所述有机化合物制成。
具体地,在一个实施方案中,本发明的有机电致发光装置的覆盖层可用的有机化合物的结构通式如下:
Figure PCTCN2018123285-appb-000002
其中,X 1~X 6各自独立地表示为N原子、C原子或CH,其中N原子个数为1-4个;
o、p、q分别独立地表示为数字0、1、2或3,且0≤o+p+q≤4;
m表示为数字0、1、2或3,且0≤o+p+q+m≤4;
Ar 1、Ar 2、Ar 3在每种情况下可独立地相同或不同且分别独立地表示为通式(2)所示结构:
Figure PCTCN2018123285-appb-000003
其中,L表示为单键、取代或未取代的C 6-60亚芳基、含有一个或多个杂原子的取代或未取代的5-60元杂亚芳基,其中所述杂原子为氮、氧或硫;
R 1表示为苯并咪唑及衍生物、喹喔啉及衍生物、苯并噁唑及衍生物、萘啶及衍生物的基团中的一种;
R表示为取代或未取代的C 6-60芳基、含有一个或多个杂原子的取代或未取代的5-60元杂芳基,其中所述杂原子为氮、氧或硫。
在一个优选的实施方案中,通式(2)中L表示为被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的亚苯基、亚联苯基、亚萘基、亚吡啶基或亚萘啶基;
通式(1)中R表示为下列中的一种:被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C1-10直链或支链烷基、卤素原子、 氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或萘啶基;R还可以表示为通式(3)、通式(4)或通式(5)所示的结构;
Figure PCTCN2018123285-appb-000004
通式(4)和通式(5)中的Ar4分别独立地表示为下列中的一种:被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或萘啶基;
通式(3)、通式(4)和通式(5)中,R 2、R 3和R 4分别独立的表示为下列中的一种:被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的螺二芴基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或萘啶基;
R 2、R 3、R 4各自独立地相同或不同;
通式(5)中,n表示为整数1或2。
更优选地,本发明的有机电致发光装置的覆盖层可用的有机化合物的结构式如下:
(一)
Figure PCTCN2018123285-appb-000005
和/或
Figure PCTCN2018123285-appb-000006
其中R1选自联苯基、萘基、联苯基、N-苯基咔唑基或
Figure PCTCN2018123285-appb-000007
(二)
Figure PCTCN2018123285-appb-000008
其中R2选自H、C1-C6烷基、吡啶基、嘧啶基、
Figure PCTCN2018123285-appb-000009
,或者
Figure PCTCN2018123285-appb-000010
其中X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12各自独立地为氢或C1-C6烷基,优选为氢、甲基或叔丁基;
R3、R4、R5、R6、R7、R8各自独立地选自氢、C1-C6烷基、吡啶基、嘧啶基、
Figure PCTCN2018123285-appb-000011
R9选自H、C1-C6烷基、嘧啶基、吡啶基、
Figure PCTCN2018123285-appb-000012
(三)
Figure PCTCN2018123285-appb-000013
其中R10、R11各自独立地选自
Figure PCTCN2018123285-appb-000014
或者
Figure PCTCN2018123285-appb-000015
或者
Figure PCTCN2018123285-appb-000016
其中X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12各自独立地为氢或C1-C6烷基,优选氢、甲基或叔丁基。
(四)
Figure PCTCN2018123285-appb-000017
其中R12选自
Figure PCTCN2018123285-appb-000018
在另一个实施方案中,本发明的有机电致发光装置的覆盖层可用的材料选自以下有机化合物中的一种或多种:
Figure PCTCN2018123285-appb-000019
Figure PCTCN2018123285-appb-000020
Figure PCTCN2018123285-appb-000021
Figure PCTCN2018123285-appb-000022
Figure PCTCN2018123285-appb-000023
将以上57种化合物和Alq3化合物用椭偏仪(美国J.A.WoollamCo.型号:ALPHA-SE)测量(测试为大气环境)折射率和消光系数,数据如下:
表1
Figure PCTCN2018123285-appb-000024
Figure PCTCN2018123285-appb-000025
其中n为折射率,k为消光系数。
由上表数据可知,本发明所罗列的以上化合物所含SP2杂化的孤对电子数量≥2,在蓝光领域的折射率均在1.8以上,优选为1.8-2.3;绿光领域的折射率均在1.8以上,优选为1.8-2.2;红光领域的折射率均在1.7以上,优选为1.7-2.1;且以上材料在可见领域的消光系数均在0.1以下。
第二方面:
本发明还提供了一种含有覆盖层的有机电致发光装置的结构和制备方法, 下面结合附图和实施例对本发明做进一步的详细说明。然而,它们可以以不同形式实施,并且不应解释为局限于本文所述的实施方案。相反,提供这些实施方案,使本公开更完整、透彻。
图1为本发明提供的一种含有覆盖层的有机电致发光装置的剖面结构示意图。如图1所示,有机电致发光装置包括基板层100,以及在基板层100上依次形成的第一电极层200、有机发光功能层300、第二电极层400和覆盖层500。
基板层100,可选用典型的有机发光装置中使用的任何基板。可以是玻璃或透明塑料基板,也可以是不透明材料如硅或不锈钢的基板,还可以是柔性PI膜。不同基板具有不同的机械强度、热稳定性、透明性、表面光滑度、防水性,根据基板的性质不同,使用方向不同。
在基板层100上形成第一电极层200,第一电极层200可以是阴极、也可以是阳极。此处,第一电极层200可以为反射电极如银(Ag)、镁(Mg)、铝(Al)、金(Au)、镍(Ni)、铬(Cr)、镱(Yb)或其合金形成的反射膜;以及具有高功函且在所述反射膜上形成的透明或半透明电极层。
透明或半透明电极层可以由氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铝锌(AZO)、氧化铟镓(IGO)、氧化铟(In 2O 3)或氧化锡(SnO 2)形成。
上述第一电极层200可通过溅射法、离子电镀法、真空蒸镀法、旋涂法、电子束蒸镀法或化学气相沉积(CVD)形成等方法形成,优选通过溅射法形成。
第一电极层200的厚度取决于使用的材料,一般范围在5nm以上1μm以下,优选为10nm以上1μm以下,更优选为10nm以上500nm以下,特别优选为10nm以上300nm以下,最优选为10nm以上200nm以下的范围内。透明电极材料片材电阻优选设定为数百欧姆/片材以下,更优选设定为5欧姆/片材以上50欧姆/片材以下。第一电极层200材料的表面(与有机层相接的面)可以进行紫外-臭氧清洁、富氧等离子清洁、氩等离子清洁。为了抑制OLED装置的短路、缺陷的发生,可以通过将粒径微小化的方法、成膜后进行研磨的方法,将表面粗糙度最好控制在20nm以下。
当第一电极层200的电阻高时,可设辅助电极降低电阻。辅助电极可以是在透明电极内部并列设置银、铜、铬、铝、钛、铝合金、银合金等金属或它们的层压物得到的电极。
图2为本发明提供的一种有机电致发光装置中有机发光功能层的剖面结构示意图。
如图2所示,有机发光功能层300可以包括发光层340(EML),并且可以在 EML和第一电极层200之间形成空穴传输区域,并且可以在EML和第二电极层400之间形成电子传输区域。空穴传输区域可以包括空穴注入层310(HIL)、空穴传输层320(HTL)和电子阻挡层330(EBL)中的至少一种。电子传输区域可以包括空穴阻挡层350(HBL)、电子传输层360(ETL)和电子注入层370(EIL)中的至少一种。因此,有机发光功能层300包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层、电子注入层中的至少2种组合。
有机发光功能层300的厚度为50nm-1000nm。
作为在空穴注入层材料、空穴传输层、电子阻挡层材料(HIL310、HTL320、EBL330)材料,可以从已知的用于OLED装置的相关材料中选择任意的材料进行使用。
上述材料的实例可为酞菁衍生物、三唑衍生物、三芳基甲烷衍生物、三芳基胺衍生物、噁唑衍生物、噁二唑衍生物、腙衍生物、芪衍生物、吡啶啉衍生物、聚硅烷衍生物、咪唑衍生物、苯二胺衍生物、氨基取代奎尔酮衍生物、苯乙烯基蒽衍生物、苯乙烯基胺衍生物等苯乙烯化合物、芴衍生物、螺芴衍生物、硅氮烷衍生物、苯胺类共聚物、卟啉化合物、咔唑衍生物、多芳基烷衍生物、聚亚苯基乙烯及其衍生物、聚噻吩及其衍生物、聚-N-乙烯基咔唑衍生物、噻吩低聚物等导电性高分子低聚体、芳香族叔胺化合物、苯乙烯胺化合物、三胺类、四胺类、联苯胺类、丙炔二胺衍生物、对苯二胺衍生物、间苯二胺衍生物、1,1’-双(4-二芳基氨基苯基)环己烷、4,4’-二(二芳基胺类)联苯类、双[4-(二芳基氨基)苯基]甲烷类、4,4”-二(二芳基氨基)三联苯类、4,4’”-二(二芳基氨基)四联苯类、4,4’-二(二芳基氨基)二苯基醚类,4,4’-二(二芳基氨基)二苯基硫烷类,双[4-(二芳基氨基)苯基]二甲基甲烷类、双[4-(二芳基氨基)苯基]-二(三氟甲基)甲烷类或者2,2-二苯基乙烯化合物等。
作为三芳基胺衍生物,实例为三苯基胺的2倍体、3倍体、4倍体、5倍体、4,4’-双[N-苯基-N-(4”-甲基苯基)氨基]联苯、4,4’-双[N-苯基-N-(3”-甲基苯基)氨基]联苯、4,4’-双[N-苯基-N-(3”-甲氧基苯基)氨基]联苯、N,N’-二苯基-N,N’-双(1-萘基)(1,1’-联苯)-4,4’-二胺(NPB)、4,4’-双[N-[4’-[N”-(1-萘基)-N”-苯基氨基]联苯基]-N-苯基氨基]联苯(NTPA)、3,3’-二甲基-4,4’-双[N-苯基-N-(3”-甲基苯基)氨基]联苯、1,1-双[4’-[N,N-二(4”-甲基苯基)氨基]苯基]环己烷、9,10-双[N-(4’-甲基苯基)-N-(4”-正丁基苯基)氨基]菲、3,8-双(N,N-二苯基氨基)-6-苯基菲啶、4-甲基-N,N-双[4”,4”’-双[N’,N”-二(4-甲基苯基)氨基]联苯-4-基]苯胺、N,N’-双[4-(二苯基氨基)苯基]-N,N’-二苯基-1,3-二氨基苯、1,3,5-三(三苯基氨基)苯、4,4’,4”-三(N- 咔唑)三苯胺、4,4’,4”-三[N-(3”’-甲基苯基)-N-苯基氨基]三苯胺、4,4’,4”-三[N,N-双(4’”-叔丁基苯基-4””-基)氨基]三苯胺或者1,3,5-三[N-(4’-二苯基氨基苯基)-N-苯基氨基]苯等。
作为卟啉化合物,可以举出如卟啉、1,10,15,20-四苯基-21H,23H-卟啉酮(Ⅱ)、1,10,15,20-四苯基-21H,23H-卟啉锌(Ⅱ)或者5,10,15,20-四(五氟苯基)-21H,23H-卟啉;作为酞菁衍生物,可以举出硅酞菁氧化物、氧化铝酞菁、无金属酞菁类、二锂酞菁、四甲基酞菁铜、酞菁铜、酞菁铬、酞菁锌、酞菁铝、氧化钛酞菁、酞菁镁或者八甲基酞菁铜等。
作为芳香族叔胺化合物和苯乙烯胺化合物,可以举出如N,N,N’,N’-四苯基-4,4’-二氨基苯、N,N’-二苯基-N,N’-双-(3-甲基苯基)-[1,1’-联苯基]-4,4’-二胺、2,2-双(4-二-对三氨基苯基)丙烷、1,1-双(4-二-对三氨基苯基)环己烷、N,N,N’,N’-四对甲苯基-4-4’-二氨基苯、1,1-双(4-二-对三氨基苯基)-4-苯基-环己烷、双(4-二甲基氨基-2-甲基苯基)苯基甲烷、双(4-二对甲苯基氨基苯基)苯基甲烷、N,N’-二苯基-N,N’-二(4-甲氧基苯基)-4,4’-二氨基联苯、N,N,N’,N’-四苯基-4,4’-二氨基苯基醚、4,4’-双(二苯基氨基)四联苯、N,N,N-三(对-甲苯基)胺、4-(二-对甲苯基氨基)-4’-[4(二-对甲苯基氨基)苯乙烯基]均苯二乙烯、4-N,N-二苯基氨基-2-二苯基乙烯基苯、3-甲氧基-4’-N,N-二苯基氨基均苯二乙烯或者N-苯基咔唑等。
其中,优选芳基-二(4-二芳基氨基苯基)胺类、对苯二胺衍生物、4,4’-二氨基联苯衍生物、4,4’-二氨基二苯基硫烷衍生物、4,4’-二氨基二苯基甲烷衍生物、4,4’-二氨基二苯基醚衍生物、4,4’-二氨基二苯基甲烷衍生物、4,4’-二氨基二苯基醚衍生物、4,4’-二氨基四苯基甲烷衍生物、4,4’-二氨基均苯二乙烯衍生物、1,1-二芳基环己烷类、4,4”-二氨基多苯基衍生物、5,10-二-(4-氨基苯基)蒽衍生物、2,5-二芳基吡啶、2,5-二芳基呋喃类、2,5-二芳基噻吩类、2,5-二芳基吡咯类、2,5-二芳基-1,3,4-噁二唑类、4-(二芳基氨基)均苯二乙烯类、4,4’-二(二芳基氨基)均苯二乙烯类-N,N-二芳基-4-(2,2-二苯基乙烯基)苯胺类、2,5-二芳基-1,3,4-三唑类、1,4-二(4-氨基苯基)萘衍生物、2,8-双(二芳基氨基)-5-噻吨类或者1,3-二(二芳基氨基)异吲哚类等,更优选三[4-[N-(3-甲基苯基)-N-苯基氨基]苯基]胺、N-([1,1'-联苯]-2-基)-N-(9,9-二甲基-9H-呋喃-2-基)-9,9'-螺二芴-2-胺或者三[4-[N-(2-萘基)N-苯基氨基]苯基]胺等。
HIL310和HTL320中的至少一个还可以包括用于改善传导性的电荷产生材料。所述电荷产生材料可以为p-掺杂剂。P-掺杂剂的非限定性化合物如:醌衍生物,如四氰基醌二甲烷(TCNQ)和2,3,5,6-四氟-四氰基-1,4-苯醌二甲烷 (F4-TCNQ);或六氮杂三亚苯衍生物,如2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂三亚苯(HAT-CN);或环丙烷衍生物,如4,4',4”-((1E,1'E,1”E)-环丙烷-1,2,3-三亚甲基三(氰基甲酰亚基))三(2,3,5,6-四氟苄基);或金属氧化物,如氧化钨和氧化钼,但不限于此。
EBL330中要求材料的三线态(T1)能级高于发光层340中主体材料的T1能级,能够起到阻挡发光层材料能量损失的作用;EBL330材料的HOMO能级介于HTL320材料的HOMO能级和发光层340主体材料的HOMO能级之间,利于空穴从正电极注入到发光层中,同时要求EBL330材料具有高的空穴迁移率,利于空穴传输,降低装置应用功率;EBL330材料的LUMO能级高于发光层340主体材料的LUMO能级,起到电子阻挡的作用,也就是要求EBL330材料具有宽的禁带宽度(Eg)。符合以上条件的EBL330材料可以为三芳基胺衍生物、芴衍生物、螺芴衍生物、二苯并呋喃衍生物、咔唑衍生物等。其中优选三芳基胺衍生物,如,N 4,N 4-双([1,1'-联苯]-4-基)-N 4'-苯基N 4'-[1,1':4',1”-三联苯]-4-基-[1,1'-联苯]-4,4'-二胺;螺芴衍生物,如N-([1,1'-二苯基]-4-基)-N-(9,9-二甲基-9H-呋喃-2-基)-9,9'-螺二芴-2-胺;二苯并呋喃衍生物,如N,N-二([1,1'-联苯]-4-基)-3'-(二苯并[b,d]呋喃-4-基)-[1,1'-联苯基]-4-胺,但不限于此。
为了得到高效率OLED装置,其发光层340可采用相同的一种掺杂材料,或采用多种掺杂材料,掺杂材料可为单纯的荧光材料、延迟荧光(TADF)材料或磷光材料,或由不同的荧光材料、TADF材料、磷光搭配组合而成,发光层340可为单一的发光层材料,也可以为横向或纵向叠加在一起的复合发光层材料。构成上述OLED发光体的发光层340列举出如下多种构造:
(1)单一有机发光层材料;
(2)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任一种组合,并不分前后顺序,如图3所示;
(3)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任两种组合,并不分前后顺序,如图4所示;
(4)蓝色有机发光层材料、绿色有机发光层材料、红色有机发光层材料横向排布,如图5所示;
(5)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任一种组合,并通过连接层进行电荷传输,形成两叠层装置结构,如图6所示;
(6)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并通过连接层进行电荷传输,形成三叠层装置结构,如图7所示。
优选地,所述有机发光功能层包括发光层,所述发光层包括蓝色发光像素、绿色发光像素、红色发光像素、黄色发光像素中的1种或至少2种的组合。
为了调节载流子电荷在发光层中的有效结合,上述构成OLED发光体的发光层340的膜厚可根据需要任意调节,或根据需要将不能色彩的发光层交替叠加组合,还可以在邻接发光层的有机层里添加不同功能用途的电荷阻挡层等。
作为构成上述OLED发光体的发光层物质的主体材料不但需要具备双极性的电荷传输特性,同时需要具备恰当的能阶,可将因电子和空穴复合产生的激发能有效的传递到客体发光材料,即掺杂材料。这样的材料例如可以举出二苯乙烯基亚芳基衍生物、均二苯乙烯衍生物、咔唑衍生物、三芳基胺衍生物、蒽衍生物、芘衍生物、三嗪衍生物、氧杂蒽酮衍生物、三亚苯衍生物、氮杂苯衍生物、六苯并苯衍生物或者双(2-甲基-8-喹啉)(对-苯基苯酚)铝(BAlq)等。
作为能够产生蓝色荧光、蓝色磷光、绿色荧光、绿色磷光及蓝绿色荧光的客体材料,不但需要具备极高的荧光量子发光效率,同时还需要具备恰当的能阶,可有效吸收主体材料激发能发光,这样的材料,没有特别限定。可列举出二苯乙烯胺类衍生物、芘衍生物、蒽衍生物、三嗪衍生物、氧杂蒽酮衍生物、苯并噁唑衍生物、苯并噻唑衍生物、苯并咪唑衍生物、屈衍生物、二氮杂菲衍生物、二苯乙烯基苯衍生物或者四苯基丁二烯衍生物等。其中可以使用4,4’—双[2-(9-乙基咔唑-2-基)-乙烯基]联苯(BCzVBi)、苝等,还可列举出四联苯系化合物、双苯基系化合物、苯咪唑系化合物、苯并噁唑系化合物、苯并噁二唑系化合物、苯乙烯基苯化合物、联苯乙烯吡嗪系化合物、丁二烯系化合物,萘二甲酰亚胺化合物、紫苏烯系化合物、醛连氮系化合物、环戊二烯系化合物、吡咯并吡咯甲酰系化合物、苯乙烯基胺系化合物、香豆素系化合物、芳香族二甲苯茶碱系化合物、将8-喹啉酚系物质作为配体的金属配位化合物或者聚苯系化合物等单独一种或两种以上的组合。在这些化合物材料中,本发明可列举出的具体实施材料有芳香族二甲苯茶碱系化合物,如:4,4′-双(2,2-二-1-丁基苯基乙烯基)双苯基(简称:DTBPBBi)或者4,4′-双(2,2-二苯基乙烯基)双苯基(简称:DPVBi)等和它们的衍生物。
相对于荧光主体材料,荧光客体材料的含有量(掺入量)优选为0.01重量%以上20重量%以下,更优选0.1重量%以上10重量%以下。作为荧光客体材料,使用蓝色荧光客体材料时,相对于荧光主体材料,其含有量优选为0.1重量%以上20重量%以下。只要在此范围内,才能够使高能量的蓝色发光体和低能量的红色发光体之间产生有效的能量分配平和,能够得到期望的具备蓝色和红色 发光相平衡强度的电致发光。
上述OLED装置所包括的发光层340,不仅可使用上述荧光发光材料,还可以使用磷光材料。对比荧光材料,磷光材料在发光过程中可以同时利用单线态和三线态激子,理论上内部量子效率可以达到100%,从而可以大大提高发光装置的发光效率。
作为蓝色磷光掺杂材料,只要是具有蓝色磷光发光功能的物质即可,没有特别限定。例如可以举出铱、钛、铂、铼、钯等的金属配合物。其中,优选上述金属配合物的配位体中至少一个具有苯基吡啶骨架、二吡啶骨架、卟啉骨架等的配合物。更具体地说,可以举出双[4,6-二氟苯基吡啶-N,C2’]-甲基吡啶铱、三[2-(2,4-二氟苯基)吡啶-N,C2’]铱、二[2-(3,5-三氟甲基)吡啶-N,C2’]-甲基吡啶铱或者双[4,6-二氟苯基吡啶-N,C2’]乙酰丙酮铱。
作为绿色磷光掺杂材料,只要是具有绿色磷光发光功能的物质即可,没有特别限定。例如可以举出铱、钉、铂、铼、钯等的金属配合物,还可以举出上述金属配合物的配位体中至少一个具有苯基吡啶骨架、二吡啶骨架、卟啉骨架等的配合物作为绿色磷光掺杂剂,更具体地说,可以举出面式(face)-三(2-苯基吡啶)铱(Ir(ppy)3)、双[2-苯基吡啶-N,C2’]-乙酰丙酮铱或者面式-三[5-氟-2-(5-三氟甲基-2-吡啶)苯基-C,N]铱等。
作为红色磷光掺杂材料,可以例举出八乙基卟啉铂(II)(PtOEP)、三(2-苯基异喹啉)铱(Ir(piq) 3)、双(2-(2’-苯并噻吩基)-吡啶-N,C3’)铱(乙酰丙酮化物)(Btp 2Ir(acac))等。
相对于磷光主体材料计,磷光掺杂材料的含有量(掺杂量)优选为0.01重量%以上30重量%以下,更优选为0.1重量%以上20重量%以下。使用绿色磷光掺杂材料时,相对于磷光主体材料计,优选为0.1重量%以上20重量%以下。
另外,作为磷光主体材料,只要是其三重态能量大于磷光掺杂剂的三重态能量的材料即可,没有特别限定。例如可以举出咔唑衍生物、二氮杂菲衍生物、三嗪衍生物、三唑衍生物、羟基喹啉类金属配合物。具体地说,可以举出4,4’,4”-三(9-咔唑基)三苯胺、4,4’-双(9-咔唑基)-2,2’-二甲基联苯、2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲(BCP)、3-苯基-4-(1’-萘基)-5-苯基咔唑、三(8-羟基喹啉)铝(Alq)或者双-(2-甲基-8-羟基喹啉-4-(苯基苯酚)铝等。
除了上述发光层所使用的荧光或磷光主客体材料,发光层材料还可以采用非主客体掺杂体系材料,如激基复合物能量传递以及界面发光等;发光层材料还可以采用具有热活化延迟荧光(TADF)功能的主客体材料,以及TADF功能材料 和上述的荧光、磷光材料相互组合搭配的形式。
组成上述OLED装置的空穴阻挡层350、电子传输层360的材料,可以在具备电子传输特性的用于OLED的材料中选择任意材料进行使用。这样的材料可以举出如1,3-双[5’-(对叔丁基苯基)-1,3,4-噁二唑-2’-基]苯、2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑等噁二唑衍生物、3-(4’叔丁基苯基)-4-苯基-5-(4”-联苯)-1,2,4-三唑等三唑衍生物、三嗪衍生物、喹啉衍生物、喹噁啉衍生物、二苯醌衍生物、硝基取代茐酮衍生物、噻喃二氧化物衍生物、蒽醌二甲烷衍生物、噻喃二氧化物衍生物、萘基苝等杂环四酸酐、碳化二亚胺、茐衍生物、蒽醌二甲烷衍生物、蒽酮衍生物、二苯乙烯基吡嗪衍生物、硅杂环戊二烯衍生物、二氮杂菲衍生物或者咪唑并吡啶衍生物等。
另外,还可以举出双(10-苯并[h]羟基喹啉)铍、5-羟基黄铜的铍盐、5-羟基黄铜的铝盐等有机金属配合物或者8-羟基喹啉或其衍生物的金属配合物,如三(8-羟基喹啉)铝(Alq)、三(5,7-二氯-8-羟基喹啉)铝、双(2-甲基-8-羟基喹啉)(对-苯基苯酚)铝(BAlq)、三(5,7-二溴-8-羟基喹啉)铝。三(2-甲基-8-羟基喹啉)铝等植物激素(一般而言为8-羟基喹啉)等羟基喹啉类金属配合物等的含有螯合剂的金属螯合剂化合物。另外,还可以举出这些金属配合物的中心金属被替换成铍、铟、镁、铜、钙、锡、锌或铝的金属配合物等的实例。优选使用非金属、金属酞菁或者是它们的末端被置换为烷基、磺基等的物质。其中,更优选使用2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲(BCP)、3-苯基-4-(1’-萘)-5-苯基-1,2,4-三唑(TAZ)。
HBL350中要求材料的三线态(T1)能级高于发光层340中主体材料的T1能级,能够起到阻挡发光层材料能量损失的作用;EBL350材料的HUMO能级低于发光层340主体材料的HUMO能级,起到空穴阻挡的作用,同时要求HBL350材料具有高的电子迁移率,利于电子传输,降低装置应用功率;符合以上条件的HBL350材料可以为三嗪衍生物、氮杂苯衍生物等。其中优选三嗪衍生物;但不限于此。
EIL370可以由以下物质中的一种或多种形成:碱金属;碱土金属;碱金属和碱土金属的卤化物;碱金属和碱土金属的氧化物、碱金属和碱土金属的碳酸盐;碱金属和碱土金属的草酸盐或碱金属和碱土金属的氟铝酸盐。可以例举出如Li、Ca、Sr、LiF、CsF、BaO、Li 2CO 3、CaCO 3、Li 2C 2O 4、Cs 2C 2O 4、CsAlF 4。在一些实施方案中,EIL370可以包括至少一种金属,如Yb、Sc、V、Y、In、Ce、Sm、Eu或Tb中的一种或多种。
在有机发光功能层300上形成第二电极层400,第二电极层可以是阴极,也可以是阳极,而且可以是透明电极或半透明电极。第二电极层400可以由锂、钙、氟化锂/钙、氟化锂/铝、铝、银、镁或其合金制成具有低功函的薄膜。进一步地,第二电极层400可以由包括银和至少一种金属的合金制成,所述至少一种金属包括铝、铂、镱、铬或镁。并且,Ag在所述合金中的重量比可以和其他金属比例相同或者大于或小于其他金属的重量。例如:第二电极层400可以由Ag-Mg合金形成,其中Ag和Mg的质量比可以为90:10至10:90。或者,第二电极层400可以由包括如银、金、铂、铜、镍或钨中的至少一种金属和如镱、铟、镁或铬中的至少一种金属的合金形成。这些金属膜可以通过调节膜的厚度形成透明或半透明电极。因此,由有机发光功能层300产生的光可通过第二电极层400发射出。并且,第二电极层400厚度可以为5-30nm。
在第二电极层400上形成覆盖层500,覆盖层500可以为有机材料、无机材料或其组合。特别地,覆盖层500使用的材料为本发明“第一方面”所述的有机化合物材料。
在下文中,将结合图1和图的2描述,根据具体实施方案对本发明进行进一步说明。
本发明的有机电致发光装置的制备
用于制备本发明的有机电致发光装置的每一层材料或本发明的有机电致发光装置的每一层的厚度均可参考上文提供的描述。
参考图1,本发明的有机电致发光装置包括基板层100、第一电极层200、有机发光功能层300、第二电极层400和覆盖层500。
在基板层上可以使用公知方法形成阻挡层(可以由无机材料或/和有机材料组成,用于防止异物渗透基板及装置)和布线层(可以包括驱动TFT、电容器、导线和低温多晶硅LTPS)。
在一个具体实施方案中,第一电极层200可以是反射电极并且第二电极层400是透明或半透明电极。因此,由有机发光功能层300产生的光可以直接由第二电极层400射出,或可以被第一电极层200反射向第二电极层400后射出。第一电极层200可以通过例如蒸镀法或溅射法来制备。第二电极层400可以通过例如真空蒸镀法制备。
有机发光功能层300可以包括发光层340(EML),并且可以在EML和第一电极层200之间形成空穴传输区域,并且可以在EML和第二电极层400之间形成电子传输区域。空穴传输区域可以包括空穴注入层310(HIL)、空穴传输层 320(HTL)和电子阻挡层330(EBL)中的至少一种。电子传输区域可以包括空穴阻挡层350(HBL)、电子传输层360(ETL)和电子注入层370(EIL)中的至少一种。
有机发光功能层300可以由小分子的有机材料或高分子材料组成,并且有机发光功能层300可以通过多种方法制备,所述多种方法例举如真空蒸镀法、溶液旋涂、丝网印刷、喷墨打印法。
覆盖层500可以由无机材料、有机小分子材料和高分子材料组成,特别地,覆盖层500由本发明“第一方面”中所述的有机化合物材料组成,并且可以使用多种方法制备覆盖层500,所述多种方法例举如真空蒸镀法、溶液旋涂、丝网印刷、喷墨打印法。
此外,可以通过参考图1、图2有机电致发光装置的结构来制备包括图3、图4、图5、图6或图7的结构的全色有机电致发光装置。即,根据这些实施方案的有机发光装置可以配置成多种结构,例如单色发光装置、多色光或白色光的有机电致发光装置。
本发明制备的含有由本发明化合物制备的本发明覆盖层的有机电致发光装置可用于OLED照明和显示领域,具体可以用于商业领域,例如POS机和ATM机、复印机、自动售货机、游戏机、公用电话亭、加油站、打卡机、门禁系统、电子秤等产品和设备的显示屏;通信领域,例如3G手机、各类可视对讲系统(可视电话)、移动网络终端、ebook(电子图书)等产品的显示屏;计算机领域,例如家用和商用计算机(PC/工作站等)、PDA和笔记本电脑的显示屏;消费类电子产品,例如装饰用品(软屏)与灯具、各类音响设备、MP3、计算器、数码相机、头戴显示器、数码摄像机、便携式DVD、便携式电视机、电子钟表、掌上游戏机、各种家用电器(OLED电视)等产品的显示屏;交通领域,例如GPS、车载音响、车载电话、飞机仪表和设备等各种指示标志性显示屏。如微显示器,这种技术最早用于战斗机飞行员,现在的穿戴式电脑也用它,有了它,移动设备就不再受显示器体积大、耗电多的限制。优选地,本发明制备的含有由本发明化合物制备的本发明覆盖层的有机电致发光装置可用于照明和显示领域,优选用于智能手机、平板电脑等领域,智能穿戴设备领域,电视等大尺寸应用领域,VR、微显领域,以及汽车中控屏或汽车尾灯。
优选地,本发明提供一种照明或显示装置,其包括本发明的有机电致发光装置。
此外,本发明还提供了一种电子设备,其包括含有如上所述的有机电致发光装置,所述电子设备可以为手机,也可以为电脑、电视机、智能穿戴设备等, 本发明实施方案对此不作特殊限定。
下面以实施例和比较例对比突出本实施方案的发明效果。
实施例
实施例中用到的用于覆盖层材料的本发明化合物为以下前文列举的化合物中的化合物1、4、5、8、12、14、18、24、28、32、34、35、37、39、42、44、45、53、55。
装置实施例1:
以如下制备步骤制备一种有机电致发光装置,包括:
在低温多晶硅(LTPS)基板(基板层100)上,以溅射方式形成7nm的ITO膜(第一电极层200),并蚀刻成需求的图形,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;此处ITO电极层为阳极,在ITO阳极层上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层310;在空穴注入层310上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为110nm,该层为空穴传输层320,也可作为微腔调整层;在空穴传输层320上,通过真空蒸镀方式蒸镀电子阻挡材料TCTA,厚度为10nm,该层为电子阻挡层330;在电子阻挡层330之上蒸镀蓝色发光层340,CBP作为主体材料,BDAVBi作为掺杂材料,BDAVBi和CBP的质量比为5:95,厚度为20nm;在发光层340之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为35nm,这层有机材料作为电子传输层360使用;在电子传输层360之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层370;在电子注入层370之上,真空蒸镀阴极Yb/Mg:Ag层,Yb厚度1nm,Mg和Ag的质量比为1:9,厚度14nm,该层为第二电极层400,该层为阴极层;在第二电极层400之上,通过真空蒸镀方式蒸镀本发明实例材料化合物1,厚度为50nm,这层有机材料作为覆盖层500使用。
装置实施例2:
制备方式和装置实施例1相同,但采用如下的装置结构:
ITO(7nm)/HAT-CN(10nm)/NPB(150nm)/TCTA(10nm)/CBP:Ir(PPy) 3(90:10质量比,90质量%的CBP)(40nm)//TPBI(35nm)/LiF(1nm)/Yb(1nm)/Mg:Ag(10:90质量比,10质量%的Mg)(14nm)/本发明化合物1(50nm)。
装置实施例3:
制备方式和装置实施例1相同,但采用如下的装置结构:
ITO(7nm)/HAT-CN(10nm)/NPB(190nm)/TCTA(10nm)/CBP:Ir(pq) 2acac(96:4质 量比,96质量%的CBP)(40nm)/TPBI(35nm)/LiF(1nm)/Yb(1nm)/Mg:Ag(10:90质量比,10质量%的Mg)(14nm)/本发明化合物1(50nm)。
装置实施例4、7、10、13、16、19、22、25、28、31、34、37、40、43、46、49、52、55:
装置实施例4、7、10、13、16、19、22、25、28、31、34、37、40、43、46、49、52、55的制备方法与装置实施例1相同,不同之处在于:使用化合物4、5、8、12、14、18、24、28、32、34、35、37、39、42、44、45、53、55作为有机电致发光装置的覆盖层材料。
装置实施例5、8、11、14、17、20、23、26、29、32、35、38、41、44、47、50、53、56:
装置实施例5、8、11、14、17、20、23、26、29、32、35、38、41、44、47、50、53、56的制备方法与装置实施例2相同,不同之处在于:使用化合物4、5、8、12、14、18、24、28、32、34、35、37、39、42、44、45、53、55作为有机电致发光装置的覆盖层材料。
装置实施例6、9、12、15、18、21、24、27、30、33、36、39、42、45、48、51、54、57:
装置实施例6、9、12、15、18、21、24、27、30、33、36、39、42、45、48、51、54、57的制备方法与装置实施例3相同,不同之处在于:使用化合物4、5、8、12、14、18、24、28、32、34、35、37、39、42、44、45、53、55作为有机电致发光装置的覆盖层材料。
按照上述步骤完成电致发光装置的制备后,测量装置的电流效率和可察觉色差,其结果如表2中所示。相关材料的分子结构式如下所示:
Figure PCTCN2018123285-appb-000026
Figure PCTCN2018123285-appb-000027
装置比较例1:
制备方式和装置实施例1相同,但采用如下的装置结构:
ITO(7nm)/HAT-CN(10nm)/NPB(110nm)/TCTA(10nm)/CBP:BDAVBi(95:5质量比,95质量%的CBP)(40nm)//TPBI(35nm)/LiF(1nm)/Yb(1nm)/Mg:Ag(10:90质量比,10质量%的Mg)(14nm)/Alq 3(50nm)。
装置比较例2:
制备方式和装置实施例1相同,但采用如下的装置结构:
ITO(7nm)/HAT-CN(10nm)/NPB(150nm)/TCTA(10nm)/CBP:Ir(PPy) 3(90:10质量比,90质量%的CBP)(20nm)//TPBI(35nm)/LiF(1nm)/Yb(1nm)/Mg:Ag(10:90质量比,10质量%的Mg)(14nm)/Alq 3(50nm)。
装置比较例3:
制备方式和装置实施例1相同,装置结构不同:
ITO(7nm)/HAT-CN(10nm)/NPB(190nm)/TCTA(10nm)/CBP:Ir(pq) 2acac(96:4质量比,96质量%的CBP)(40nm)/TPBI(35nm)/LiF(1nm)/Yb(1nm)/Mg:Ag(10:90质量比,10质量%的Mg)(14nm)/Alq 3(50nm)。
电流效率、CIE、可察觉色差的测定
使用IVL(电流-电压-亮度)测试系统(日本システム技研株式会社),选择软件EILV20060707,对上述实施例和比较实施例中的OLED装置进行电流效率、CIEx、CIEy及可察觉色差的测定,得到如下结果:
表2
Figure PCTCN2018123285-appb-000028
Figure PCTCN2018123285-appb-000029
Figure PCTCN2018123285-appb-000030
Figure PCTCN2018123285-appb-000031
JNCD,可察觉的色差,应理解,可察觉色差越小,色度变化量越小,意味着有机电致发光装置的出射光波长的角度依赖性被抑制的越好。
由表4的结果可以看出:
与比较例相比,用本发明化合物制备的覆盖层制备的有机电致发光装置在蓝光、绿光、红光领域的电流效率显著提高,从而相应地提高了光取出效率。
与比较例相比,用本发明化合物制备的覆盖层制备的有机电致发光装置在蓝光、绿光、红光领域的可察觉的色差较小,因而角度依赖性较小。

Claims (27)

  1. 一种有机电致发光装置,该有机电致发光装置包括:
    基板层;
    第一电极,该第一电极在所述基板之上;
    有机发光功能层,该有机发光功能层在所述第一电极之上;
    第二电极,该第二电极在所述有机发光功能层之上;以及
    覆盖层,该覆盖层在有机电致发光装置光线射出的一侧,
    其中,所述覆盖层包括有机化合物,
    所述覆盖层的有机化合物具有下列特性:
    其分子量在500至1200之间,含有孤对电子,且孤对电子数≥2。
  2. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物中具有孤对电子的原子为N、O、S原子中的一个或多个。
  3. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物中含孤对电子的原子为SP2杂化轨道成键。
  4. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物中含有孤对电子的基团为以下基团中的一种或多种:吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、喹喔啉、喹唑啉、噌啉、2,3-二氮杂萘、萘啶、苯并咪唑、苯并噁唑、菲啰啉、氮杂三亚苯、吲哚并吡啶、吖啶、吡唑、噁二唑、三唑、吡唑酮、咪唑、咪唑酮、酮、醚或亚砜的基团。
  5. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物包含一种或多种以下基团:
    Figure PCTCN2018123285-appb-100001
    Figure PCTCN2018123285-appb-100002
  6. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物的折射率在380nm-780nm的波长范围内为1.7以上。
  7. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层有机化合物的折射率在蓝光波长区域折射率在1.8以上,优选在2.0以上,更优选为2.0-2.4;在绿光波长区域折射率1.8以上,优选在1.9以上,更优选为1.9-2.2;在红光波长区域折射率在1.7以上,优选在1.8以上,更优选为1.8-2.1。
  8. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层的有机化合物的消光系数在波长380nm-780nm范围内为0.1以下。
  9. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层的有机化合物的分子量为500-1100,优选为600-1000,更优选为600-850。
  10. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层的有机化合物的孤对电子数为3-15,优选为3-9。
  11. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层的厚度为10-1000nm,优选为30-120nm。
  12. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层是单层或多层。
  13. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层通过使用具有不同折射率的两种以上材料层形成,具有相对高折射率的材料层和具有相对低折射率的材料层交替叠加形成两层或多层。
  14. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物具有比所述有机发光功能层材料和所述第一电极、第二电极材料更高的折射率。
  15. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物在440~650nm区域不具有吸收。
  16. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层由所述有机化合物组成。
  17. 根据权利要求1所述的有机电致发光装置,其特征在于:所述覆盖层的有机化合物如通式(1)所述:
    Figure PCTCN2018123285-appb-100003
    其中,X 1~X 6各自独立地表示为N原子、C原子或CH,其中N原子个数为1-4个;
    o、p、q分别独立地表示为数字0、1、2或3,且0≤o+p+q≤4;
    m表示为数字0、1、2或3,且0≤o+p+q+m≤4;
    Ar 1、Ar 2、Ar 3在每种情况下可独立地相同或不同且分别独立地表示为通式(2)所示结构:
    Figure PCTCN2018123285-appb-100004
    其中,L表示为单键、取代或未取代的C 6-60亚芳基、含有一个或多个杂原子的取代或未取代的5-60元杂亚芳基,其中所述杂原子为氮、氧或硫;
    R 1表示为苯并咪唑及衍生物、喹喔啉及衍生物、苯并噁唑及衍生物、萘啶及衍生物的基团中的一种;
    R表示为取代或未取代的C 6-60芳基、含有一个或多个杂原子的取代或未取代的5-60元杂芳基,其中所述杂原子为氮、氧或硫。
  18. 根据权利要求17所述的有机电致发光装置,其特征在于:通式(2)中L表示被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的亚苯基、亚联苯基、亚萘基、亚吡啶基或亚萘啶基;
    通式(1)中R表示为下列中的一种:被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或 萘啶基;R还可以表示为通式(3)、通式(4)或通式(5)所示的结构;
    Figure PCTCN2018123285-appb-100005
    通式(4)和通式(5)中的Ar 4分别独立地表示为下列中的一种:被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或萘啶基;
    通式(3)、通式(4)和通式(5)中,R 2、R 3和R 4分别独立的表示为下列中的一种:被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的苯基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的萘基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的螺二芴基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的二联苯基、三联苯基或蒽基;被C 1-10直链或支链烷基、卤素原子、氕、氘或氚原子取代或未取代的吡啶基、嘧啶基、吡嗪基、哒嗪基、二苯并呋喃、9,9-二甲基芴、N-苯基咔唑、喹啉基、异喹啉基或萘啶基;
    R 2、R 3、R 4可以相同或不同;
    通式(5)中,n表示为整数1或2。
  19. 根据权利要求1所述的有机电致发光装置,其中所述覆盖层的有机化合物为
    Figure PCTCN2018123285-appb-100006
    和/或
    Figure PCTCN2018123285-appb-100007
    其中R1选自联苯基、萘基、联苯基、N-苯基咔唑基或
    Figure PCTCN2018123285-appb-100008
  20. 根据权利要求1所述的有机电致发光装置,其中所述覆盖层的有机化合物为
    Figure PCTCN2018123285-appb-100009
    其中R2选自H、C1-C6烷基、吡啶基、嘧啶基、
    Figure PCTCN2018123285-appb-100010
    或者
    Figure PCTCN2018123285-appb-100011
    其中
    X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12各自独立地为氢或C1-C6烷基,优选为氢、甲基或叔丁基;
    R3、R4、R5、R6、R7、R8各自独立地选自氢、C1-C6烷基、吡啶基、嘧啶 基、
    Figure PCTCN2018123285-appb-100012
    R9选自H、C1-C6烷基、嘧啶基、吡啶基、
    Figure PCTCN2018123285-appb-100013
    Figure PCTCN2018123285-appb-100014
  21. 根据权利要求1所述的有机电致发光装置,其中所述覆盖层的有机化合物为
    Figure PCTCN2018123285-appb-100015
    其中R10、R11各自独立地选自
    Figure PCTCN2018123285-appb-100016
    或者
    Figure PCTCN2018123285-appb-100017
    或者选自
    Figure PCTCN2018123285-appb-100018
    其中,X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12各自独立地为氢或C1-C6烷基,优选为氢、甲基或叔丁基。
  22. 根据权利要求1所述的有机电致发光装置,其中所述覆盖层的有机化合物为
    Figure PCTCN2018123285-appb-100019
    其中R12选自
    Figure PCTCN2018123285-appb-100020
  23. 根据权利要求1所述的有机电致发光装置,其特征在于,所述覆盖层的有机化合物为以下化合物中的一种或多种:
    Figure PCTCN2018123285-appb-100021
    Figure PCTCN2018123285-appb-100022
  24. 根据权利要求1所述的有机电致发光装置,其特征在于,所述有机发光功能层包括发光层,所述发光层包括蓝色发光像素、绿色发光像素、红色发光像素、黄色发光像素中的1种或至少2种的组合。
  25. 根据权利要求1所述的有机电致发光装置,其特征在于,所述有机发光功能层还包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层、电子注入层中的至少2种的组合。
  26. 根据权利要求1所述的有机电致发光装置,其特征在于,所述有机发光功能层和覆盖层材料通过蒸镀、旋涂、喷墨打印或丝网印刷方式形成。
  27. 一种照明或显示装置,其特征在于,包括如权利要求1-24中任一项所述的有机电致发光装置。
PCT/CN2018/123285 2017-12-28 2018-12-25 一种含有覆盖层的有机电致发光装置及用途 WO2019128948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/907,263 US20200388791A1 (en) 2017-12-28 2020-06-21 Organic electroluminescent device containing capping layer and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711460825.1 2017-12-28
CN201711460825.1A CN109980085B (zh) 2017-12-28 2017-12-28 一种含有覆盖层的有机电致发光装置及用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/907,263 Continuation US20200388791A1 (en) 2017-12-28 2020-06-21 Organic electroluminescent device containing capping layer and use

Publications (1)

Publication Number Publication Date
WO2019128948A1 true WO2019128948A1 (zh) 2019-07-04

Family

ID=67063162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123285 WO2019128948A1 (zh) 2017-12-28 2018-12-25 一种含有覆盖层的有机电致发光装置及用途

Country Status (3)

Country Link
US (1) US20200388791A1 (zh)
CN (1) CN109980085B (zh)
WO (1) WO2019128948A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628848B1 (ko) * 2018-08-10 2024-01-25 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 발광 소자
CN112851653A (zh) * 2019-03-28 2021-05-28 江苏三月科技股份有限公司 一种基于氮杂苯的有机化合物及其在oled上的应用
CN111747933B (zh) * 2019-03-29 2022-03-01 吉林省元合电子材料有限公司 一种取代的1,3,5-三嗪化合物、组合物及其应用
CN110429202A (zh) * 2019-07-18 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板、制作方法及智能穿戴设备
CN112310292B (zh) * 2019-07-30 2022-08-23 江苏三月科技股份有限公司 一种顶发射有机电致发光装置及其应用
CN111090207A (zh) * 2020-01-09 2020-05-01 京东方科技集团股份有限公司 一种显示装置、照明装置、颜色调节方法和制作方法
CN113851589A (zh) * 2020-06-28 2021-12-28 江苏三月科技股份有限公司 一种有机电致发光器件
CN113937234B (zh) * 2020-06-29 2023-08-15 江苏三月科技股份有限公司 一种含有覆盖层的顶发射有机电致发光器件
CN113937235A (zh) * 2020-06-29 2022-01-14 江苏三月科技股份有限公司 一种包括光改善层的有机发光二极管装置及用途
CN111943902B (zh) * 2020-08-21 2021-06-08 长春海谱润斯科技股份有限公司 一种三芳胺类化合物及其有机发光器件
CN114141971A (zh) * 2020-09-04 2022-03-04 江苏三月科技股份有限公司 一种包含菲基三芳胺类化合物的有机电致发光装置及其应用
KR20220038911A (ko) * 2020-09-21 2022-03-29 (주)피엔에이치테크 복합 굴절률을 갖는 광효율 개선층을 구비한 유기발광소자
CN114335395B (zh) * 2020-09-29 2023-09-19 江苏三月科技股份有限公司 一种蓝色有机电致发光器件及其应用
CN112687803B (zh) * 2020-12-23 2022-10-04 西南大学 二羟丙茶碱在倒置钙钛矿太阳能电池中的应用及器件的制备方法
CN114805318B (zh) * 2021-01-28 2023-08-15 江苏三月科技股份有限公司 一种以三嗪衍生物为核心的有机化合物及其应用
CN114989107B (zh) * 2021-03-01 2024-01-09 武汉天马微电子有限公司 一种化合物、用于有机电致发光器件的材料及其应用
CN113248462B (zh) * 2021-05-12 2022-03-25 长春海谱润斯科技股份有限公司 一种有机电致发光器件
CN113461676B (zh) * 2021-07-06 2023-04-28 长春海谱润斯科技股份有限公司 一种杂环类化合物及其有机电致发光器件
CN115611884B (zh) * 2021-07-13 2023-12-29 江苏三月科技股份有限公司 一种含有萘并杂环基和苯并杂环基的单胺类有机化合物及包含其的有机电致发光器件
CN113594385B (zh) * 2021-07-26 2023-05-26 京东方科技集团股份有限公司 有机电致发光器件及显示面板
CN115710265A (zh) * 2021-08-19 2023-02-24 江苏三月科技股份有限公司 一种芳胺类有机化合物及其应用
CN113816911B (zh) * 2021-11-24 2022-03-08 季华实验室 一种具有多发光单元的红光材料及其制备方法和应用
KR20230109191A (ko) * 2022-01-10 2023-07-20 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치
WO2023136295A1 (ja) * 2022-01-13 2023-07-20 保土谷化学工業株式会社 ピリミジン化合物および有機エレクトロルミネッセンス素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682145A (zh) * 2012-09-11 2014-03-26 乐金显示有限公司 有机发光显示面板
CN105590948A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置及其制造方法
CN106946853A (zh) * 2017-05-11 2017-07-14 江苏三月光电科技有限公司 一种基于三嗪和苯并咪唑的有机化合物及其在有机电致发光器件上的应用
CN107513054A (zh) * 2017-09-29 2017-12-26 江苏三月光电科技有限公司 一种以三嗪和喹喔啉为核心的有机化合物及其在oled上的应用
CN107573329A (zh) * 2017-09-29 2018-01-12 江苏三月光电科技有限公司 一种基于三嗪和喹喔啉的有机化合物及其在有机电致发光器件上的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956738B2 (en) * 2005-10-26 2015-02-17 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
KR100957620B1 (ko) * 2007-11-01 2010-05-13 제일모직주식회사 유기광전소자용 재료, 및 이를 이용한 유기광전소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682145A (zh) * 2012-09-11 2014-03-26 乐金显示有限公司 有机发光显示面板
CN105590948A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置及其制造方法
CN106946853A (zh) * 2017-05-11 2017-07-14 江苏三月光电科技有限公司 一种基于三嗪和苯并咪唑的有机化合物及其在有机电致发光器件上的应用
CN107513054A (zh) * 2017-09-29 2017-12-26 江苏三月光电科技有限公司 一种以三嗪和喹喔啉为核心的有机化合物及其在oled上的应用
CN107573329A (zh) * 2017-09-29 2018-01-12 江苏三月光电科技有限公司 一种基于三嗪和喹喔啉的有机化合物及其在有机电致发光器件上的应用

Also Published As

Publication number Publication date
US20200388791A1 (en) 2020-12-10
CN109980085A (zh) 2019-07-05
CN109980085B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2019128948A1 (zh) 一种含有覆盖层的有机电致发光装置及用途
CN109860425B (zh) 一种含有覆盖层的有机电致发光装置及用途
JP6770806B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
KR101688317B1 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
US9412964B2 (en) Organic electroluminescent element
WO2016042997A1 (ja) 有機電界発光素子
WO2013187007A1 (ja) 有機電界発光素子及び表示装置
CN111029472B (zh) 有机发光二极管以及包括其的有机发光装置
TW200934289A (en) OLED device with fluoranthene electron transport materials
TW200921965A (en) Organic light emitting device
CN108476573B (zh) 发光元件和显示装置
JP6823372B2 (ja) 発光装置
TW200526069A (en) Organic electroluminescent devices
WO2013159514A1 (zh) 电致发光器件、显示装置和电致发光器件制备方法
KR20200087758A (ko) 유기 발광 소자
TWI394483B (zh) 具有穩定綠光發射層的有機發光二極體裝置
CN113555510A (zh) 有机电致发光器件、显示面板及显示装置
TW201936894A (zh) 芳香胺化合物、覆蓋層材料及發光元件
WO2024046290A9 (zh) 发光器件、显示面板及其制备方法
CN111755618B (zh) 一种含有覆盖层的有机电致发光装置及用途
CN114141963B (zh) 包含不对称性三芳胺的有机电致发光器件及其应用
CN113937234B (zh) 一种含有覆盖层的顶发射有机电致发光器件
CN112310292B (zh) 一种顶发射有机电致发光装置及其应用
CN111755619B (zh) 一种含有覆盖层的有机电致发光装置及用途
CN112310301B (zh) 一种有机电致发光器件及其制备方法与制备的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894632

Country of ref document: EP

Kind code of ref document: A1