WO2020107170A1 - 有机发光二极管器件、显示面板及显示装置 - Google Patents

有机发光二极管器件、显示面板及显示装置 Download PDF

Info

Publication number
WO2020107170A1
WO2020107170A1 PCT/CN2018/117482 CN2018117482W WO2020107170A1 WO 2020107170 A1 WO2020107170 A1 WO 2020107170A1 CN 2018117482 W CN2018117482 W CN 2018117482W WO 2020107170 A1 WO2020107170 A1 WO 2020107170A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
layer
light emitting
diode device
charge generation
Prior art date
Application number
PCT/CN2018/117482
Other languages
English (en)
French (fr)
Inventor
陈龙
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2018/117482 priority Critical patent/WO2020107170A1/zh
Priority to CN201880095932.5A priority patent/CN112640146A/zh
Publication of WO2020107170A1 publication Critical patent/WO2020107170A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the embodiments of the present application relate to the field of display technology, and in particular, to an organic light emitting diode device, a display panel, and a display device.
  • OLED display technology has the characteristics of active light emission, low voltage drive, high brightness, and full color. With many advantages, OLED display technology is widely used in mobile phones, computers, TVs and other fields.
  • the electron migration path in the OLED device is from the cathode to the electron transport layer to the organic light-emitting layer
  • the hole migration path is from the anode to the hole transport layer to the organic light-emitting layer.
  • the cathode is usually made of low work function materials, making the cathode easier to generate electrons.
  • the materials with low work function are relatively active, they are easily corroded by chemical reaction with oxygen or moisture, which greatly affects the life of the OLED device.
  • Embodiments of the present application provide an organic light emitting diode device, a display panel, and a display device, which can change the electron transmission mode of the existing OLED device.
  • An organic light emitting diode device including:
  • An organic light-emitting unit stacked between the anode and the cathode;
  • a first charge generation layer stacked between the anode and the organic light emitting unit, for transferring electrons to the organic light emitting unit;
  • a second charge generation layer is stacked between the cathode and the organic light-emitting unit, and is used to transport holes to the organic light-emitting unit.
  • a display panel includes the organic light emitting diode device.
  • a display device including:
  • the driving layer is provided on the substrate; and,
  • the display panel is disposed on the driving layer, and the driving layer is used to drive the display panel.
  • the first charge generation layer is stacked between the anode and the organic light emitting unit, and the first charge generation layer is used to transfer electrons to the organic light emitting unit.
  • the second charge generation layer is stacked between the cathode and the organic light-emitting unit.
  • the second charge generation layer is used to transport holes to the organic light-emitting unit. Electrons do not need to be transferred from the cathode to the organic light-emitting unit, but are generated from the first charge adjacent to the anode The layer is transferred to the organic light-emitting unit. Therefore, by changing the electron transmission method of the existing OLED device, the cathode can use an inactive material, thereby reducing the influence of the cathode on the life of the organic light-emitting diode device of this embodiment.
  • FIG. 1a to 1g are schematic structural views of an organic light emitting diode provided by various embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a basic configuration of a display device provided by an embodiment of the present application.
  • sputtering For example, sputtering, electroplating, molding, chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD), evaporation, hybrid physical-chemical vapor deposition (Hybrid Physical-Chemical Vapor Deposition, HPCVD) , Plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition (PECVD), low pressure chemical vapor deposition (Low Pressure Chemical Vapor Deposition, LPCVD), etc.
  • CVD chemical vapor deposition
  • PVD Physical vapor deposition
  • HPCVD Hybrid Physical-Chemical Vapor Deposition
  • PECVD Plasma enhanced chemical vapor deposition
  • Low Pressure Chemical Vapor Deposition Low Pressure Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • an organic light emitting diode device 10 provided by an embodiment of the present application includes an anode 11, a cathode 12, an organic light emitting unit 13, a first charge generation layer 14 and a second charge generation layer 15.
  • the anode 11 releases holes under the action of an external voltage, and the anode may be made of a material with a relatively high work function.
  • the cathode 12 releases electrons under the action of an external voltage.
  • the organic light-emitting unit 13 is used to emit light, wherein the color of light emission may be white light, or a color composed of any color ratio.
  • the first charge generation layer 14 is stacked between the anode 11 and the organic light-emitting unit 13
  • the second charge generation layer 15 is stacked between the cathode 12 and the organic light-emitting unit 13
  • the first charge generation layer 11 is used to transfer to the organic light-emitting unit 13
  • the electrons and the second charge generation layer 15 are used to transport holes to the organic light emitting unit 13.
  • the excitons When electrons and holes meet and recombine in the organic light-emitting unit 13 to form excitons in an excited state, the excitons transfer energy to the light-emitting molecules under the action of an electric field, and the electrons that excite the light-emitting molecules transition from the ground state to the excited state, the light-emitting molecules The electrons will release energy mainly in the form of light and return to a stable ground state, thereby generating electroluminescence.
  • the cathode 12 may use an inactive material. Therefore, when the inactive cathode 12 is exposed to the external environment, the cathode 12 is not likely to be chemically reacted with oxygen or moisture and other substances to be corroded, thereby reducing the cathode 12 to the organic The impact of the life of light-emitting diode devices.
  • the anode 11 may be a transmissive electrode or a transflective electrode. In one embodiment, the anode 11 may be a reflective electrode for front surface emission.
  • the anode 11 may have a single-layer structure or a multi-layer structure.
  • the single-layer anode may include a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture thereof.
  • the multilayer anode includes a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture thereof, and a transparent conductive oxide layer including a transparent conductive oxide material.
  • the transparent conductive oxide material may include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), and the like.
  • the multilayer anode may have a three-layer structure configured to include a first transparent conductive oxide layer, a metal layer, and a second transparent conductive oxide layer.
  • the multilayer anode may have a two-layer structure configured to include a transparent conductive oxide layer and a metal layer.
  • the metal layer can be used as a reflective electrode.
  • the cathode 12 may be a transmissive electrode or a transflective electrode. In one embodiment, the cathode 12 may be a transmissive electrode having a multilayer structure.
  • one of the anode 11 and the cathode 12 must be a transparent electrode, and the other can be a transparent electrode or an opaque electrode.
  • the anode uses a transparent electrode of indium tin oxide
  • the cathode 12 uses a material such as magnesium, magnesium-silver alloy, calcium, or lithium aluminum alloy.
  • the cathode in the prior art selects a metal with a low work function. As mentioned above, the active low work function metal will shorten the service life of the OLED device.
  • the electron transfer method is the first charge generation layer 14-the organic light emitting unit 13
  • the hole transfer method is the second charge generation layer 15-the organic light emitting unit 13
  • a charge generation layer 14 is stacked on the anode 11
  • a second charge generation layer 15 is stacked on the cathode 12, so electrons do not need to be injected into the organic light emitting unit 13 from the cathode 12, and the cathode 12 may not use an active low work function metal, thereby reducing
  • the influence of the cathode on the life of the organic light emitting diode device 10 increases the life of the organic light emitting diode device 10.
  • the cathode 12 selects a metal or metal compound with a work function greater than 3.0 eV.
  • the cathode selects a metal or metal compound with a work function of 4.2 eV.
  • the cathode provided by the embodiments of the present application greatly expands the selection range of materials and improves the service life of the organic light emitting diode device 10.
  • the organic light-emitting unit 13 is prepared by doping the host material with a certain proportion of organic light-emitting material.
  • the luminescent material has high quantum efficiency and sufficient thermal stability, sublimates without decomposition. When electrons and holes meet in the organic light-emitting unit 13, the electrons are continuously filled from the high orbit to the low orbit hole, thereby releasing energy.
  • the organic light-emitting material can be a small molecule-based OLED that uses organic dyes or pigments as the light-emitting material, or a polymer-based OLED that uses conjugated polymers as the light-emitting material.
  • the small molecule-based OLED can use a vacuum thermal evaporation process.
  • the base OLED can use spin coating or inkjet process. According to the types of luminous excitons, the organic light-emitting material can be selected from fluorescent materials or phosphorescent materials.
  • the first charge generation layer 14 may be an n-type dopant
  • the second charge generation layer 15 may be a p-type dopant, metal oxide, organic substance, or the like.
  • the first charge generation layer 14 may be an organic n-type dopant formed by Cs (cesium) and BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) , Organic n-type dopant formed by Li (lithium) and BCP, organic n-type dopant formed by Mg (magnesium) and Alq 3 (tris (8-hydroxyquinoline) aluminum), Li (lithium) and Bphen ( Organic n-type dopant formed by 4,7-diphenyl-1,10-phenanthroline, TPBI (1,3,5-tris(1-phenyl-1H-benzimidazole-2- Benzene)) Organics formed with Li and so on.
  • the second charge generation layer 15 may be a metal oxide formed of WO 3 (tungsten trioxide), a metal oxide formed of MoO 3 (molybdenum trioxide), V 2 O 5 (vanadium pentoxide) )
  • WO 3 tungsten trioxide
  • MoO 3 mobdenum trioxide
  • V 2 O 5 vanadium pentoxide
  • Formed metal oxides organic matter formed by HAT-CN (2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene), NPB (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine) and F 4 -TCNQ(2,3, 5,6-tetrafluoro-7,7'8,8'-tetracyanodimethyl p-benzoquinone), organic matter formed by NPB and FeCl 3 (ferric chloride
  • the first charge generation layer 14 and the second charge generation layer 15 may also be undoped.
  • the first charge generation layer 14 is n-type undoped, such as F 16 CuPc (full Fluorine phthalocyanine copper).
  • the second charge generation layer 15 is a p-type non-dopant, such as a non-dopant formed of CuPc (copper phthalocyanine).
  • the thickness of the first charge generation layer 14 and the second charge generation layer 15 may be selected from 5 nm to 20 nm.
  • the organic light-emitting unit 13 includes: an organic light-emitting layer 131 and a hole transport layer 132.
  • the organic light-emitting layer 131 is stacked between the first charge generation layer 14 and the hole transport layer 132.
  • the hole transport layer 132 is stacked between the organic light-emitting layer 131 and the second charge generation layer 15.
  • the organic light emitting layer 131 may include an organic light emitting material.
  • the organic light-emitting material may include a material that emits red light, green light, or blue light, and a fluorescent material or a phosphorescent material.
  • the organic light emitting layer 131 may include two or more light emitting materials.
  • the organic light-emitting layer 131 may include a host and a dopant.
  • a host for example, Alq 3 (tris(8-hydroxyquinoline) aluminum), CBP (4,4′-bis(N-carbazolyl)-1,1′-biphenyl), PVK (poly(n -Vinylcarbazole)), AND (9,10-bis(naphthalen-2-yl)anthracene), TCTA (4,4',4”-tris(carbazol-9-yl)-triphenylamine), TPBi (1,3,5-tris(phenylbenzimidazol-2-yl)benzene), TBADN (3-tert-butyl-9,10-bis(naphthalen-2-yl)anthracene), DSA (stilbene Arylene), CDBP (4,4'-bis(9-carbazolyl)-2,2'-dimethyl-biphenyl) or MADN (2-methyl) aluminum, C
  • the hole transport layer 132 may include carbazole-based derivatives such as n-phenylcarbazole, polyvinylcarbazole, and fluorine-based derivatives, such as TPD(N,N'-bis(3-methylbenzene Group)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine ) And other triphenylamine-based derivatives, NPB (N, N'-bis (1-naphthyl) -N, N'-diphenyl benzidine), TAPC (4,4'-cyclohexylene bis (N , N-bis(4-methylphenyl)aniline]) etc.
  • carbazole-based derivatives such as n-phenylcarbazole, polyvinylcarbazole, and fluorine-based derivatives, such as TPD(N,N
  • the organic light emitting diode device When an external voltage is applied to the organic light emitting diode device 10, electrons and holes are separated at the interface between the anode 11 and the first charge generation layer 14, the electrons of the first charge generation layer 14 are injected into the organic light emitting layer 131, the cathode 12 and the second charge The electrons and holes are separated at the interface of the generation layer 15, and the holes of the second charge generation layer 15 are injected into the organic light emitting layer 131 through the hole transport layer 132, wherein the hole transport layer 132 can improve the injection of holes into the organic light emitting layer 131 efficiency.
  • the thickness of the electron transport layer will be relatively thin, the thickness is basically With this type of structure, the distance between the light-emitting center and the cathode is relatively short. Due to the short distance, on the one hand, the light emission of the OLED device is not easy to emit, on the other hand, due to factors such as the heat is not easy to dissipate, OLED The service life of the device is greatly reduced.
  • the embodiment of the present application differs from the prior art by stacking the hole transport layer 132 between the cathode 12 and the organic light emitting layer 131.
  • the thickness of the hole transport layer 132 can be designed to be relatively thick, so that the distance between the light emitting center and the cathode 12 is relatively increased.
  • the light emission of the organic light emitting diode device 10 is easily emitted, and on the other hand, the heat is easily dissipated, thereby The service life of the organic light emitting diode device 10 is improved.
  • the thickness of the hole transport layer 132 is 10 nm to 40 nm, which is much larger than the electron transport layer in the prior art.
  • the organic light-emitting unit 13 further includes a hole injection layer 133.
  • the hole injection layer 133 is stacked between the hole transport layer 132 and the second charge generation layer 15.
  • the hole injection layer 133 may include, for example, a phthalocyanine compound such as copper phthalocyanine, DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)benzene Radical]-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino)triphenylamine), TDATA(4,4', 4”-tri(N,N-diphenylamine)triphenylamine), 2TNATA(4,4′,4”-tri ⁇ N-(2-naphthyl)-N-phenylamino ⁇ -triphenylamine), PEDOT/ PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)), PANI/DBSA (polyaniline/dodecylbenzenesulfonic acid
  • the hole injection layer 133 can effectively inject holes into the hole transport layer 132 and be injected into the organic light emitting layer 131 through the hole transport layer 132, so that holes meet electrons in the organic light emitting layer 131.
  • holes The increase of the injection layer 133 can improve the efficiency of hole injection into the organic light-emitting layer 131, on the other hand, it can also reduce the operating voltage.
  • the hole injection layer 133 may be omitted in the organic light emitting diode device 10.
  • the organic light-emitting unit 13 further includes an electron transport layer 134, which is stacked between the organic light-emitting layer 131 and the first charge generation layer 14.
  • the electron transport layer 134 includes, for example, Alq 3 (tris(8-hydroxyquinoline) aluminum), TPBi(1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl ), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), TAZ ( 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ (4-(naphthalen-1-yl)-3,5-di Phenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole ), BAlq (bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphen
  • the electron transport layer 134 can effectively inject electrons of the first charge generation layer 14 into the organic light-emitting layer 131 so that electrons recombine with holes in the organic light-emitting layer 131, thereby improving the performance of the organic light-emitting diode device 10.
  • the organic light-emitting unit 13 further includes an electron injection layer 135, which is stacked between the electron transport layer 134 and the first charge generation layer 14.
  • the electron injection layer 135 is made of an organic metal complex or an inorganic substance. In some embodiments, the electron injection layer 135 is made of an alkali metal compound. For example, the electron injection layer 135 is made of LiF, LiQ, NaF, CsF, Cs 2 One of CO 3 or other suitable materials.
  • the electron injection layer 135 can effectively inject electrons into the electron transport layer 134 and be injected into the organic light emitting layer 131 through the electron transport layer 134 so that electrons meet holes in the organic light emitting layer 131.
  • the increase of the electron transport layer 134 The efficiency of electron injection into the organic light-emitting layer 131 can be improved, and on the other hand, it can also reduce the operating voltage.
  • the electron injection layer 135 may be omitted in the organic light emitting diode device 10.
  • the organic light-emitting layer 131 includes: an organic light-emitting host layer 1311 and an organic light-emitting electron blocking layer 1312, the organic light-emitting host layer 1311 is stacked between the electron transport layer 134 and the hole transport layer 132, The organic light-emitting electron blocking layer 1312 is stacked between the organic light-emitting host layer 1311 and the hole transport layer 132.
  • the hole transport layer 132 injects holes into the organic light emitting body layer 1311, and the electron transport layer 134 injects electrons into the organic light emitting body layer 1311.
  • the organic light-emitting host layer 1311 is recombined, wherein the organic light-emitting electron blocking layer 1312 can block electrons from moving toward the hole transport layer 132, so that electrons stay in the organic light-emitting host layer 1311 to fully meet and recombine with holes, thereby improving organic The luminous efficiency and service life of the light emitting diode device 10.
  • the organic light-emitting host layer 1311 may be configured with light-emitting materials of corresponding colors to generate light of corresponding colors.
  • the organic light-emitting host layer 1311 includes multiple color light-emitting host layers, the color light-emitting host layer includes a red light-emitting host layer 1g1, a green light-emitting host layer 1g2, or a blue light-emitting host ⁇ 1g3.
  • the color electron blocking layer includes a red light electron blocking layer 1g4, a green light electron blocking layer 1g5, or a blue light electron blocking layer 1g6.
  • the red light electron blocking layer 1g4 is opposite to the red light emitting body layer 1g1
  • the green light electron blocking layer 1g5 is opposite to the green light emitting body layer 1g2
  • the blue light electron blocking layer 1g6 is opposite to the blue light emitting body layer 1g3.
  • the red light emitting host layer 1g1 emits red light
  • the red light electron blocking layer 1g4 blocks the red electrons from moving to the hole transport layer 132.
  • the green light emitting host layer 1g2 emits green light
  • the green light electron blocking layer 1g5 blocks the green light electrons from moving to the hole transport layer 132.
  • the blue light-emitting host layer 1g3 emits blue light
  • the blue electron blocking layer 1g6 blocks blue electrons from moving toward the hole transport layer 132.
  • the organic light-emitting body layer 1311 may select one or two or three of the red light-emitting body layer 1g1, the green light-emitting body layer 1g2, and the blue light-emitting body layer 1g3, and the user
  • the color material ratio in the red light-emitting host layer 1g1, the green light-emitting host layer 1g2, and the blue light-emitting host layer 1g3 can also be adjusted, thereby adjusting the color finally emitted by the organic light-emitting diode device 10.
  • the red light-emitting host layer 1g1 may include a fluorescent material containing PBD: Eu(DBM) 3 (Phen) (tris(dibenzoylmethane)phenanthroline europium) or perylene.
  • the dopant included in the red light-emitting host layer 1g1 may be selected from metal complexes, for example, organometallic complexes such as PIQIr(acac)(bis(1-phenylisoquine Phenol) acetylacetone iridium), PQIr (acac) (bis (1-phenylquinoline) acetylacetone iridium), PQIr (tris (1-phenylquinoline) iridium), PtOEP (octaethylporphyrin platinum) .
  • the red light-emitting host layer 1g1 that emits red light may include a phosphorescent material, such as Btp 2 Ir(a
  • the green light-emitting host layer 1g2 may include a fluorescent material containing Alq 3 (tris(8-hydroxyquinoline) aluminum).
  • the dopant included in the green light emitting host layer 1g2 may be selected from metal complexes, for example, organometallic complexes such as Ir(ppy)3(fac-tri(2-benzene Pyridyl) iridium).
  • the green light-emitting host layer 1g2 that emits green light may include a phosphorescent material, such as Ir(ppy)3.
  • the blue light-emitting host layer 1g3 may include spiro-DPVBi, spiro-6P, DSB (distyrylbenzene), DSA (distyryl-arylene), PFO (polyfluorene)-based polymer, and PPV (poly(poly( Fluorescent material of any one of the polymers of p-phenylene vinylene group)).
  • the dopant included in the blue light-emitting host layer 1g3 may be selected from metal complexes, for example, organic metal complexes such as (4,6-F2ppy)2Irpic.
  • the display panel includes a display area and a lead area connecting the display area.
  • the lead area is formed with leads for connecting the display area and an external circuit.
  • the lead area is bent around the bending axis to form a bending area.
  • the lead crosses the bend axis and the line crosses the bend area.
  • the lead area can be bent to the back of the display area around the bending axis, thereby reducing the border of the display panel and increasing the proportion of the display area relative to the display panel, and because the lead straight across the bend area, the lead can be reduced
  • the lateral stress that is received when bending around the bending axis reduces the probability of lead failure in the bent state.
  • the display area may include several OLED devices, and each OLED device may constitute a pixel unit, and the pixel unit is driven or controlled by an external circuit connected to the display area.
  • the leads are used to transfer signals between the display area and external circuits.
  • the display panel may include external circuits.
  • the display panel includes a flexible display panel.
  • the display panel may further include a flexible substrate.
  • the lead may be bent by bending the substrate of the lead area to control the size of the frame of the display panel, so that the display area is relatively For maximizing the proportion of the display panel.
  • the electron transfer mode of the OLED device in the display panel is the first charge generation layer—organic light emitting unit
  • the hole transfer mode is the second charge generation layer—organic light emitting unit
  • the first charge generation layer is stacked on the anode
  • the second charge generation layer is stacked on the cathode. Therefore, there is no need to inject electrons from the cathode into the organic light-emitting unit. The influence of the life of the diode device improves the service life of the organic light emitting diode device.
  • the display device 20 includes a substrate 21, a driving layer 22, a display panel 23 and a protective layer 24.
  • the base 21 may use a flexible substrate such as a thin glass, a metal foil, or a plastic base, etc. having a flexible material, for example, the plastic base has a flexible structure including coating on both sides of a base film, the base film includes such as Polyimide (PI), polycarbonate (PC), polyethylene glycol terephthalate (PET), polyethersulfone (PES), polyethylene film (PEN), fiber reinforced plastic (FRP) and other resins .
  • PI Polyimide
  • PC polycarbonate
  • PET polyethylene glycol terephthalate
  • PES polyethersulfone
  • PEN polyethylene film
  • FRP fiber reinforced plastic
  • the driving layer 22 is used to drive the display panel 23.
  • the driving layer 22 includes a scanning circuit and a switching circuit.
  • the scanning circuit is connected to the switching circuit, and the switching circuit is connected to the organic light emitting diode device in the display panel.
  • the scanning circuit scans and selects the corresponding pixel unit through the switch circuit, and applies a driving voltage to the pixel unit to make the pixel unit emit light, thereby displaying an image.
  • the driving layer 22 may use different driving methods to drive the display panel 23, and the driving methods include a passive driving method (Passive Matrix, PMOLED) and an active driving method (Active Matrix, AMOLED).
  • the driving layer 22 adopts the PMOLED method the switching circuit can select a thin-film transistor (Thin-film transistor, TFT) as the switching tube, and realizes static driving or dynamic driving through the function of the scanning circuit.
  • the switching circuit can select low-temperature polycrystalline silicon thin-film transistors (Low-Temperature Poly-Si Thin Film Transistor (LTP-Si) TFT), amorphous silicon TFT, polycrystalline silicon TFT, oxide semiconductor TFT or organic TFT, etc. as turning tube.
  • LTP-Si Low-Temperature Poly-Si Thin Film Transistor
  • the protective layer 24 is used to protect the display panel 23, wherein the protective layer 24 may include substances such as ZrO, Ce0 2 , Th0 2 and the like.
  • the protective layer 24 may form a transparent film to cover the entire surface of the display panel 23.
  • the display device 20 provided by the embodiment of the present invention is flexible by being made of a flexible material and becomes bendable.
  • the display device 20 is not only bendable, but also transparent.
  • the material for manufacturing the display device 20 uses flexible transparent elements
  • the substrate 21 is composed of a polymer such as transparent plastic
  • the driving layer 22 uses transparent transistors.
  • the organic light emitting diode device in the display panel 23 uses a transparent material, so the display device 20 can become flexible and transparent.
  • the transparent transistor is a TFT transistor manufactured by using a transparent substance such as zinc oxide or titanium dioxide to replace the related art TFT transistor made of opaque silicon.
  • the transparent electrode may be composed of materials such as indium tin oxide (ITO) or graphene.
  • ITO indium tin oxide
  • graphene has a honeycomb lattice structure composed of carbon atoms, and has transparency.
  • the transparent organic light-emitting layer can be realized with various substances.
  • the display device 20 can use various bending parameters detected by the bending sensor, such as a bending sensor, to implement various application functions, thereby greatly improving the user's experience.
  • the bending sensor such as a bending sensor
  • the electron transfer mode of the OLED device in the display device is the first charge generation layer—organic light emitting unit
  • the hole transfer mode is the second charge generation layer—organic light emitting unit
  • the first charge generation layer is stacked on the anode
  • the second charge generation layer is stacked on the cathode. Therefore, there is no need to inject electrons from the cathode into the organic light-emitting unit.
  • the influence of the life of the diode device improves the service life of the organic light emitting diode device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管器件、显示面板及显示装置,有机发光二极管器件(10)包括层叠设置的阳极(11)、阴极(12)、有机发光单元(13)、第一电荷产生层(14)及第二电荷产生层(15),第一电荷产生层(14)用于向有机发光单元(13)传输电子,第二电荷产生层(15)用于向有机发光单元(13)传输空穴。通过改变现有OLED器件的电子传输方式,阴极(12)可以使用不活泼的材质,进而降低阴极对有机发光二极管器件(10)的影响。

Description

有机发光二极管器件、显示面板及显示装置 技术领域
本申请实施例涉及显示技术领域,尤其涉及一种有机发光二极管器件、显示面板及显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术具有主动发光、低电压驱动、高亮度、全色彩等特点,凭借着诸多优点,OLED显示技术广泛应用于手机、电脑、电视等领域。
一般地,OLED器件工作时,OLED器件中电子的迁移路径是从阴极到电子传输层再到有机发光层,空穴的迁移路径是从阳极到空穴传输层再到有机发光层。为了提高OLED器件的性能,阴极通常是由低功函数材质制备而成的,使得阴极更加容易产生电子。然而,由于低功函数材质都比较活泼,容易与氧气或水分等物质发生化学反应而被腐蚀,从而极大影响OLED器件的寿命。
发明内容
本申请实施例提供一种有机发光二极管器件、显示面板及显示装置,其能够改变现有OLED器件的电子传输方式。
本申请实施例解决其技术问题提供以下技术方案:
一种有机发光二极管器件,包括:
阳极;
阴极;
有机发光单元,层叠于所述阳极与所述阴极之间;
第一电荷产生层,层叠于所述阳极与所述有机发光单元之间,用于向所述有机发光单元传输电子;
第二电荷产生层,层叠于所述阴极与所述有机发光单元之间,用于向所述有机发光单元传输空穴。
本申请实施例解决其技术问题还提供以下技术方案:
一种显示面板,包括所述的有机发光二极管器件。
本申请实施例解决其技术问题还提供以下技术方案:
一种显示装置,包括:
基底;
驱动层,设置于所述基底上;以及,
所述的显示面板,设置于所述驱动层上,所述驱动层用于驱动所述显示面板。
与现有技术相比较,在本申请实施例提供的有机发光二极管器件中,第一电荷产生层层叠于阳极与有机发光单元之间,第一电荷产生层用于向有机发光单元传输电子。第二电荷产生层层叠于阴极与有机发光单元之间,第二电荷产生层用于向有机发光单元传输空穴,电子无需从阴极传输到有机发光单元,而是从邻近阳极的第一电荷产生层传输到有机发光单元,因此,通过改变现有OLED器件的电子传输方式,阴极可以使用不活泼的材质,进而降低阴极对本实施例的有机发光二极管器件寿命的影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a至图1g是本申请各个实施例提供的一种有机发光二极管的结构示意图;
图2是本申请实施例提供的一种显示装置的基本配置的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。 当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,则属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
可以理解地是,如本文所示的本申请实施例涉及的一个或多个层间物质,层与层之间的位置关系使用了诸如术语“层叠”或“形成”或“施加”或“设置”进行表达,本领域技术人员可以理解的是:任何术语诸如“层叠”或“形成”或“施加”,其可覆盖“层叠”的全部方式、种类及技术。例如,溅射、电镀、模塑、化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、蒸发、混合物理-化学气相沉积(Hybrid Physical-Chemical Vapor Deposition,HPCVD)、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、低压化学气相沉积(Low Pressure Chemical Vapor Deposition,LPCVD)等。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1a,本申请实施例提供的有机发光二极管器件10包括:阳极11、阴极12、有机发光单元13、第一电荷产生层14及第二电荷产生层15。
阳极11在外部电压作用下,释放空穴,阳极可以是由具有相对高功函数的材质制备的。
阴极12在外部电压作用下,释放电子。
有机发光单元13用于发光,其中,发光的颜色可以为白光,亦可以为任何色彩比例组成的颜色。
第一电荷产生层14层叠于阳极11与有机发光单元13之间,第二电荷产生层15层叠于阴极12与有机发光单元13之间,第一电荷产生层11用于向有机发光单元13传输电子,第二电荷产生层15用于向有机发光单元13传输空穴。
向有机发光二极管器件10施加外部电压时,阳极11与第一电荷产生层11的界面处电子与空穴分离,第一电荷产生层11的电子注入有机发光单元13。阴极12与第二电荷产生层15的界面处电子与空穴分离,第二电荷产生层15的空穴注入有机发光单元13。当电子与空穴在有机发光单元13中相遇而复合,形成处于激发态的激子,激子在电场作用下将能量传递给发光分子,激发发光分子的电子从基态跃迁到激发态,发光分子的电子将主要以光的形式释放能量而回到稳定的基态,从而产生电致发光。
在本申请实施例中,电子无需从阴极12传输到有机发光单元13,而是从邻近阳极11的第一电荷产生层14传输到有机发光单元13,因此,通过改变现有OLED器件的电子传输方式,阴极12可以使用不活泼的材质,因此,不活泼的阴极12暴露在外界环境时,阴极12不容易与氧气或水分等物质发生化学反应而被腐蚀,进而降低阴极12对本实施例的有机发光二极管器件寿命的影响。
在一些实施例中,阳极11可以是透射式电极或半透反射式电极。在一个实施例中,阳极11可以是用于前表面发射的反射电极。阳极11可以具有单层结构或多层结构。单层阳极可以包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层。多层阳极包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层和包括透明导电氧化物材料的透明导电氧化物层。透明导电氧化物材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟锡锌(ITZO)等。多层阳极可以具有被配置为包括第一透明导电氧化物层、金属层和第二透明导电氧化物层的三层结构。多层阳极可以具有被配置为包括透 明导电氧化物层和金属层的两层结构。金属层可以用作反射电极。
阴极12可以是透射式电极或半透反射式电极。在一个实施例中,阴极12可以是具有多层结构的透射式电极。
在本实施例中,阳极11与阴极12中的一个须为透明电极,另一个可为透明电极或不透明电极。举例而言,阳极采用铟锡氧化物透明电极,阴极12采用诸如由镁、镁银合金、钙或者锂铝合金等材质。
在现有技术中,由于电子的传输方式是阴极--电子传输层--有机发光层,空穴的传输方式是阳极--空穴传输层--有机发光层,为了提高电子的注入效率,现有技术中的阴极选择低功函数的金属,如前所述,活泼的低功函数金属会缩短OLED器件的使用寿命。
然而,在本申请实施例中,由于电子的传输方式是第一电荷产生层14--有机发光单元13,空穴的传输方式是第二电荷产生层15--有机发光单元13,并且,第一电荷产生层14层叠于阳极11上,第二电荷产生层15层叠于阴极12上,因此,电子无需从阴极12注入有机发光单元13,阴极12可以不使用活泼的低功函数金属,进而降低阴极对有机发光二极管器件10寿命的影响,提高有机发光二极管器件10的使用寿命。
例如,在一些实施例中,阴极12选择功函数大于3.0eV的金属或金属化合物,可选地,在一些实施例中,阴极选择功函数为4.2eV的金属或金属化合物。相对于现有技术中的阴极选择功函数小于3.0eV的金属,本申请实施例提供的阴极极大扩展材料的选择范围,并且提高有机发光二极管器件10使用寿命。
在一些实施例中,有机发光单元13由在基质材料中掺杂一定比例的有机发光材料制备成的。发光材料具有较高的量子效率和足够的热稳定性,升华而不会分解。当电子与空穴在有机发光单元13中相遇后,电子就源源不断地从高轨道填充到低轨道的空穴中,从而释放出能量。
有机发光材料可以选择以有机染料或颜料等为发光材料的小分子基OLED,亦可以选择以共轭高分子为发光材料的高分子基OLED,小分子基OLED可以采用真空热蒸发工艺,高分子基OLED可以采用旋转涂覆或喷墨工艺。按照发光激子的种类,有机发光材料可以选择荧光材 料,亦可以选择磷光材料。
在一些实施例中,第一电荷产生层14可以为n型掺杂物,第二电荷产生层15可以为p型掺杂物、金属氧化物、有机物等。例如,第一电荷产生层14可以是由Cs(铯)与BCP(2,9-二甲基-4,7-二苯基-1,10-菲啰啉)形成的有机n型掺杂物、Li(锂)与BCP形成的有机n型掺杂物、Mg(镁)与Alq 3(三(8-羟基喹啉)铝)形成的有机n型掺杂物、Li(锂)与Bphen(4,7-二苯基-1,10-邻二氮杂菲)形成的有机n型掺杂物、TPBI(1,3,5-三(1-苯基-1H-苯并咪唑-2-基苯))与Li形成的有机物等等。
在一些实施例中,第二电荷产生层15可以是由WO 3(三氧化钨)形成的金属氧化物、MoO 3(三氧化钼)形成的金属氧化物、V 2O 5(五氧化二钒)形成的金属氧化物、HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮基苯并菲)形成的有机物、NPB(N,N’-二苯基-N,N’-双(1-萘基)-1,1’-联苯-4,4’-二胺)与F 4-TCNQ(2,3,5,6-四氟-7,7’8,8’-四氰二甲基对苯醌)形成的有机物、NPB与FeCl 3(三氯化铁)形成的有机物、m-MTDATA(4,4’,4”-三(N-3-甲基苯基-N-苯基氮基)三苯胺)和F 4-TCNQ形成的有机物、MoO3与NPB形成的有机物等等。
在一些实施例中,第一电荷产生层14与第二电荷产生层15还可以为非掺杂物,例如,第一电荷产生层14为n型非掺杂物,诸如由F 16CuPc(全氟酞菁铜)形成的非掺杂物。第二电荷产生层15为p型非掺杂物,诸如由CuPc(酞菁铜)形成的非掺杂物。
在一些实施例中,第一电荷产生层14与第二电荷产生层15的厚度可以选择5纳米-20纳米。
在一些实施例中,请参阅图1b,有机发光单元13包括:有机发光层131与空穴传输层132,有机发光层131层叠于第一电荷产生层14与空穴传输层132之间,空穴传输层132层叠于有机发光层131与第二电荷产生层15之间。
有机发光层131可以包括有机发光材料。在一些实施例中,有机发光材料可以包括发射红光、绿光或蓝光的材料以及荧光材料或磷光材 料。在一些实施例中,有机发光层131可以包括两种或更多种发光材料。
在一些实施例中,有机发光层131可以包括主体和掺杂剂。作为主体,可以使用例如Alq 3(三(8-羟基喹啉)铝)、CBP(4,4'-双(N-咔唑基)-1,1'-联苯)、PVK(聚(n-乙烯基咔唑))、AND(9,10-二(萘-2-基)蒽)、TCTA(4,4',4”-三(咔唑-9-基)-三苯胺)、TPBi(1,3,5-三(苯基苯并咪唑-2-基)苯)、TBADN(3-叔丁基-9,10-二(萘-2-基)蒽)、DSA(二苯乙烯基亚芳基)、CDBP(4,4'-双(9-咔唑基)-2,2'-二甲基-联苯)或MADN(2-甲基-9,10-双(萘-2-基)蒽)。
空穴传输层132可以包括例如n-苯基咔唑、聚乙烯基咔唑等的基于咔唑的衍生物、基于氟的衍生物、例如TPD(N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1-联苯]-4,4'-二胺)、TCTA(4,4',4”-三(N-咔唑基)三苯胺)等的基于三苯胺的衍生物、NPB(N,N'-二(1-萘基)-N,N'-二苯基联苯胺)、TAPC(4,4'-亚环己基双[N,N-双(4-甲基苯基)苯胺])等。
当外部电压施加于有机发光二极管器件10时,阳极11与第一电荷产生层14的界面处电子与空穴分离,第一电荷产生层14的电子注入有机发光层131,阴极12与第二电荷产生层15的界面处电子与空穴分离,第二电荷产生层15的空穴通过空穴传输层132注入到有机发光层131,其中,空穴传输层132能够提高空穴注入到有机发光层131的效率。
在现有技术中,由于电子传输层的电子迁移率比较低,为了保证OLED工作在比较低的工作电压下,电子传输层的厚度都会比较薄,厚度基本为
Figure PCTCN2018117482-appb-000001
采用此类结构,发光中心与阴极之间的距离是比较短的,由于短距离,一方面,OLED器件的发光不容易发射出,另一方面,受限于热量不容易散发等等因素,OLED器件的使用寿命大大降低。
一般地,空穴传输层的空穴迁移率远大于电子传输层的电子迁移率,空穴传输层的厚度比电子传输层的厚度大。因此,本申请实施例通过在阴极12与有机发光层131之间层叠空穴传输层132,区别于现有技术,在本申请实施例提供的有机发光二极管器件10中,由于邻近阴极12的空穴传输层132的厚度可以设计地比较厚,使得发光中心与阴极 12之间的距离相对地增加了,一方面,有机发光二极管器件10的发光容易发射出,另一方面,热量容易散发,从而提高有机发光二极管器件10的使用寿命。
在一些实施例中,空穴传输层132的厚度为10纳米至40纳米,其厚度远大于现有技术中的电子传输层。
在一些实施例中,请参阅图1c,有机发光单元13还包括空穴注入层133,空穴注入层133层叠于空穴传输层132与第二电荷产生层15之间。
空穴注入层133可以包括例如酞菁化合物,诸如铜酞菁、DNTPD(N,N'-二苯基-N,N'-双-[4-(苯基-m-甲苯基-氨基)苯基]-联苯-4,4'-二胺)、m-MTDATA(4,4',4”-三(3-甲基苯基苯基氨基)三苯胺)、TDATA(4,4',4”-三(N,N-二苯胺)三苯胺)、2TNATA(4,4',4”-三{N-(2-萘基)-N-苯基氨基}-三苯胺)、PEDOT/PSS(聚(3,4-亚乙基二氧噻吩)/聚(4-苯乙烯磺酸盐))、PANI/DBSA(聚苯胺/十二烷基苯磺酸)、PANI/CSA(聚苯胺/樟脑磺酸)、PANI/PSS(聚苯胺/聚(4-苯乙烯磺酸盐))等。
空穴注入层133能够将空穴有效地注入空穴传输层132,并通过空穴传输层132注入到有机发光层131,使得空穴在有机发光层131中与电子相遇,一方面,空穴注入层133的增加能够提高空穴注入有机发光层131的效率,另一方面,其还能够降低工作电压。
在一些实施例中,空穴注入层133可以在有机发光二极管器件10中被省略。
在一些实施例中,请参阅图1d,有机发光单元13还包括电子传输层134,电子传输层134层叠于有机发光层131与第一电荷产生层14之间。
电子传输层134包括例如Alq 3(三(8-羟基喹啉)铝)、TPBi(1,3,5-三(1-苯基-1H-苯并[d]咪唑-2-基)苯基)、BCP(2,9-二甲基-4,7-二苯基-1,10-菲咯啉)、Bphen(4,7-二苯基-1,10-菲咯啉)、TAZ(3-(4-联苯基)-4-苯基-5-叔丁基苯基-1,2,4-三唑)、NTAZ(4-(萘-1-基)-3,5-二苯基-4H-1,2,4-三唑)、tBu-PBD(2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-恶二唑)、BAlq(双(2-甲基 -8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝)、Bebq 2(铍双(苯并喹啉-10-酸))、AND(9,10-二(萘-2-基)蒽)或其混合物。
电子传输层134能够有效地将第一电荷产生层14的电子注入有机发光层131,使得电子在有机发光层131中与空穴复合,从而提高有机发光二极管器件10的性能。
在一些实施例中,请参阅图1e,有机发光单元13还包括电子注入层135,电子注入层135层叠于电子传输层134与第一电荷产生层14之间。
电子注入层135由有机金属络合物或无机物制成,在一些实施例中,电子注入层135由碱金属化合物制成,例如,电子注入层135由LiF、LiQ、NaF、CsF、Cs 2CO 3中的一种制成或由其它合适的材料制成。
电子注入层135能够将电子有效地注入电子传输层134,并通过电子传输层134注入到有机发光层131,使得电子在有机发光层131中与空穴相遇,一方面,电子传输层134的增加能够提高电子注入有机发光层131的效率,另一方面,其还能够降低工作电压。
在一些实施例中,电子注入层135可以在有机发光二极管器件10中被省略。
在一些实施例中,请参阅图1f,有机发光层131包括:有机发光主体层1311与有机发光电子阻挡层1312,有机发光主体层1311层叠于电子传输层134与空穴传输层132之间,有机发光电子阻挡层1312层叠于有机发光主体层1311与空穴传输层132之间。
在本实施例中,有机发光二极管器件10被施加外部电压时,空穴传输层132向有机发光主体层1311注入空穴,电子传输层134向有机发光主体层1311注入电子,空穴与电子在有机发光主体层1311复合,其中,有机发光电子阻挡层1312能够阻挡电子向空穴传输层132的方向移动,使得电子停留在有机发光主体层1311中与空穴充分地相遇以及复合,从而提高有机发光二极管器件10的发光效率以及使用寿命。
有机发光主体层1311可配置对应颜色的发光材料而产生对应颜色的光。例如,在一些实施例中,请参阅图1g,有机发光主体层1311包 括多种颜色发光主体层,所述颜色发光主体层包括红光发光主体层1g1、绿光发光主体层1g2或者蓝光发光主体层1g3。相应的,为了阻挡对应颜色材料的电子,颜色电子阻挡层包括红光电子阻挡层1g4、绿光电子阻挡层1g5或者蓝光电子阻挡层1g6。其中,红光电子阻挡层1g4与红光发光主体层1g1相对,绿光电子阻挡层1g5与绿光发光主体层1g2相对,蓝光电子阻挡层1g6与蓝光发光主体层1g3相对。
有机发光二极管器件10被施加外部电压时,红光发光主体层1g1发射红光,红光电子阻挡层1g4阻挡红光电子向空穴传输层132移动。绿光发光主体层1g2发射绿光,绿光电子阻挡层1g5阻挡绿光电子向空穴传输层132移动。蓝光发光主体层1g3发射蓝光,蓝光电子阻挡层1g6阻挡蓝光电子向空穴传输层132移动。
可以理解的是,在一些实施例中,有机发光主体层1311可以选择红光发光主体层1g1、绿光发光主体层1g2、蓝光发光主体层1g3中一种或者两种或者三种,并且,用户还可以调节红光发光主体层1g1、绿光发光主体层1g2、蓝光发光主体层1g3中的颜色材料比例,从而调节有机发光二极管器件10最终发射的颜色。
红光发光主体层1g1可以包括含有PBD:Eu(DBM) 3(Phen)(三(二苯甲酰基甲烷)菲咯啉铕)或苝的荧光材料。在一些实施例中,被包括在红光发光主体层1g1中的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如PIQIr(acac)(双(1-苯基异喹啉)乙酰丙酮铱)、PQIr(acac)(双(1-苯基喹啉)乙酰丙酮铱)、PQIr(三(1-苯基喹啉)铱)、PtOEP(八乙基卟啉铂)等。在一些实施例中,发射红光的红光发光主体层1g1可以包括磷光材料,例如Btp 2Ir(acac)。
绿光发光主体层1g2可以包括含有Alq 3(三(8-羟基喹啉)铝)的荧光材料。在一些实施例中,被包括在绿光发光主体层1g2中的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如Ir(ppy)3(fac-三(2-苯基吡啶)铱)。发射绿光的绿光发光主体层1g2可以包括磷光材料,例如Ir(ppy)3。
蓝光发光主体层1g3可以包括包含螺-DPVBi、螺-6P、DSB(二苯乙 烯基苯)、DSA(二苯乙烯基-亚芳基)、PFO(聚芴)类聚合物和PPV(聚(对亚苯基亚乙烯基))类聚合物中的任意一种的荧光材料。在一些实施例中,被包括在蓝光发光主体层1g3中的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如(4,6-F2ppy)2Irpic。
本申请实施例提供一种显示面板。在一些实施例中,显示面板包括显示区域和连接显示区域的引线区域。引线区域形成有用于连接显示区域与外部电路的引线。引线区域绕折弯轴弯折形成折弯区域。引线与折弯轴交叉且直线横跨折弯区域。
引线区域可以绕折弯轴弯折至显示区域的背面,从而减小显示面板的边框,提高显示区域相对于显示面板的占比,而且,由于引线直线横跨折弯区域,因而可以减小引线在绕折弯轴弯折时所受的侧向应力,降低引线在弯折状态下出现不良的概率。
可以理解的是,显示区域可以包含若干OLED器件,各个OLED器件可构成像素单元,像素单元由与显示区域连接的外部电路驱动或控制。引线用于在显示区域与外部电路之间传递信号。显示面板可以包括外部电路。
在一些实施例中,显示面板包括柔性显示面板。当显示面板为柔性显示面板时,显示面板还可以包括可弯曲的衬底,如此,可以通过弯折引线区域的衬底来弯折引线以实现对显示面板的边框大小的控制,实现显示区域相对于显示面板的占比的最大化。
在本申请实施例提供的显示面板中,显示面板中OLED器件的电子的传输方式是第一电荷产生层--有机发光单元,空穴的传输方式是第二电荷产生层--有机发光单元,并且,第一电荷产生层层叠于阳极上,第二电荷产生层层叠于阴极上,因此,电子无需从阴极注入有机发光单元,阴极可以不使用活泼的低功函数金属,进而降低阴极对有机发光二极管器件寿命的影响,提高有机发光二极管器件的使用寿命。
本申请实施例提供的一种显示装置,请参阅图2,显示装置20包括基底21、驱动层22、显示面板23以及保护层24。
基底21可以使用柔性基板,柔性基板诸如包括薄玻璃、金属箔片 或塑料基底等等具有柔性的材料,例如,塑料基底具有包括涂覆在基膜的两侧上的柔性结构,基膜包括诸如聚酰亚胺(PI)、聚碳酸酯(PC)、聚乙二醇对酞酸酯(PET)、聚醚砜(PES)、聚乙烯薄膜(PEN)、纤维增强塑料(FRP)等等树脂。
驱动层22用于驱动显示面板23,在一些实施例中,驱动层22包括扫描电路与开关电路,扫描电路与开关电路连接,开关电路与显示面板中有机发光二极管器件连接。
扫描电路通过开关电路扫描并选择对应的像素单元,并向像素单元施加驱动电压,以使像素单元发光,从而显示图像。
驱动层22可采用不同驱动方式驱动显示面板23,驱动方式包括无源驱动方式(Passive Matrix,PMOLED)与有源驱动方式(Active Matrix,AMOLED)。当驱动层22采用PMOLED方式,开关电路可以选择薄膜晶体管(Thin-film transistor,TFT)作为开关管,通过扫描电路的作用,实现静态驱动或动态驱动。当驱动层22采用AMOLED方式,开关电路可以选择低温多晶硅薄膜晶体管(Low Temperature Poly-Si Thin Film Transistor,LTP-Si TFT)、非晶硅TFT、多晶硅TFT、氧化物半导体TFT或者有机TFT等等作为开关管。
保护层24用于保护显示面板23,其中,保护层24可以包括诸如ZrO,Ce0 2、Th0 2等等的物质。保护层24可以形成透明膜以覆盖显示面板23的整个表面。
如前所述,本发实施例提供的显示装置20通过采用柔性材料制造而具有柔性,变得可折弯。在一些实施例中,显示装置20不仅可折弯,而且还可透明,例如,制造显示装置20的材料采用柔性透明元件,基底21由诸如透明塑料的聚合物质组成,驱动层22使用透明晶体管,显示面板23中的有机发光二极管器件采用透明材料,因此,显示装置20便可以变得柔性而透明。
透明晶体管是通过利用诸如氧化锌或二氧化钛之类的透明物质制造成的TFT晶体管替换相关技术由不透明硅制造的TFT晶体管。此外,透明电极可以由诸如铟锡氧化物(Indium tin oxide,ITO)或者石墨烯的 材料组成。石墨烯具有由碳原子构成的蜂巢晶格面结构,并且具有透明性。此外,透明有机发光层可以利用各种各样的物质实现。
借助柔性性质,显示装置20可通过设置诸如弯曲传感器之类,利用弯曲传感器检测的弯曲参数,以实现各类应用功能地执行,从而极大提升用户的体验感。
在本申请实施例提供的显示装置中,显示装置中OLED器件的电子的传输方式是第一电荷产生层--有机发光单元,空穴的传输方式是第二电荷产生层--有机发光单元,并且,第一电荷产生层层叠于阳极上,第二电荷产生层层叠于阴极上,因此,电子无需从阴极注入有机发光单元,阴极可以不使用活泼的低功函数金属,进而降低阴极对有机发光二极管器件寿命的影响,提高有机发光二极管器件的使用寿命。
本领域技术人员可以理解,本说明书中各实施例所描述工艺及材料仅为示例性,本申请实施例可以使用未来开发的适用于本申请的任何工艺或材料。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种有机发光二极管器件,其特征在于,包括:
    阳极;
    阴极;
    有机发光单元,层叠于所述阳极与所述阴极之间;
    第一电荷产生层,层叠于所述阳极与所述有机发光单元之间,用于向所述有机发光单元传输电子;
    第二电荷产生层,层叠于所述阴极与所述有机发光单元之间,用于向所述有机发光单元传输空穴。
  2. 根据权利要求1所述的有机发光二极管器件,其特征在于,所述阴极选择功函数大于3.0eV的金属或金属化合物。
  3. 根据权利要求1所述的有机发光二极管器件,其特征在于,所述第一电荷产生层包含n型掺杂物或n型非掺杂物。
  4. 根据权利要求1所述的有机发光二极管器件,其特征在于,所述第二电荷产生层包含p型掺杂物或p型非掺杂物。
  5. 根据权利要求1所述的有机发光二极管器件,其特征在于,所述阳极为铟锡氧化物透明电极。
  6. 根据权利要求1至5任一项所述的有机发光二极管器件,其特征在于,所述有机发光单元包括:
    有机发光层,层叠于所述第一电荷产生层与所述第二电荷产生层之间;
    空穴传输层,层叠于所述有机发光层与所述第二电荷产生层之间。
  7. 根据权利要求6所述的有机发光二极管器件,其特征在于,所述有机发光单元还包括空穴注入层,所述空穴注入层层叠于所述空穴传输层与所述第二电荷产生层之间。
  8. 根据权利要求6所述的有机发光二极管器件,其特征在于,所述空穴传输层的厚度为10纳米至40纳米。
  9. 根据权利要求6所述的有机发光二极管器件,其特征在于,所 述有机发光单元还包括电子传输层,所述电子传输层层叠于所述有机发光层与所述第一电荷产生层之间。
  10. 根据权利要求9所述的有机发光二极管器件,其特征在于,所述有机发光单元还包括电子注入层,所述电子注入层层叠于所述电子传输层与所述第一电荷产生层之间。
  11. 根据权利要求9所述的有机发光二极管器件,其特征在于,所述有机发光层包括:
    有机发光主体层,层叠于所述电子传输层与所述空穴传输层之间;
    有机发光电子阻挡层,层叠于所述有机发光主体层与所述空穴传输层之间。
  12. 根据权利要求11所述的有机发光二极管器件,其特征在于,
    所述有机发光主体层包括多种颜色发光主体层;
    所述有机发光电子阻挡层包括多种颜色电子阻挡层,所述颜色发光主体层与颜色相同的颜色电子阻挡层相对。
  13. 根据权利要求12所述的有机发光二极管器件,其特征在于,
    所述颜色发光主体层包括红光发光主体层、绿光发光主体层或者蓝光发光主体层;
    所述颜色电子阻挡层包括红光电子阻挡层、绿光电子阻挡层或者蓝光电子阻挡层。
  14. 一种显示面板,其特征在于,包括如权利要求1至13任一项所述的有机发光二极管器件。
  15. 一种显示装置,其特征在于,包括:
    基底;
    驱动层,设置于所述基底上;以及,
    如权利要求14所述的显示面板,设置于所述驱动层上,所述驱动层用于驱动所述显示面板。
PCT/CN2018/117482 2018-11-26 2018-11-26 有机发光二极管器件、显示面板及显示装置 WO2020107170A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/117482 WO2020107170A1 (zh) 2018-11-26 2018-11-26 有机发光二极管器件、显示面板及显示装置
CN201880095932.5A CN112640146A (zh) 2018-11-26 2018-11-26 有机发光二极管器件、显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117482 WO2020107170A1 (zh) 2018-11-26 2018-11-26 有机发光二极管器件、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020107170A1 true WO2020107170A1 (zh) 2020-06-04

Family

ID=70852495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117482 WO2020107170A1 (zh) 2018-11-26 2018-11-26 有机发光二极管器件、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN112640146A (zh)
WO (1) WO2020107170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199096B1 (en) * 2021-12-20 2024-03-27 Novaled GmbH Display device comprising a common charge generation layer and method for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169966A (zh) * 2011-04-28 2011-08-31 中国科学院长春应用化学研究所 一种有机发光二极管
CN104218165A (zh) * 2014-08-20 2014-12-17 京东方科技集团股份有限公司 一种有机发光二极管器件及显示装置
CN106654023A (zh) * 2015-10-29 2017-05-10 乐金显示有限公司 有机发光显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078611A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 白光有机电致发光器件及其制备方法
CN106058066B (zh) * 2016-08-12 2018-09-07 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN107611270B (zh) * 2017-08-10 2019-05-03 上海天马有机发光显示技术有限公司 一种oled发光器件、显示面板及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169966A (zh) * 2011-04-28 2011-08-31 中国科学院长春应用化学研究所 一种有机发光二极管
CN104218165A (zh) * 2014-08-20 2014-12-17 京东方科技集团股份有限公司 一种有机发光二极管器件及显示装置
CN106654023A (zh) * 2015-10-29 2017-05-10 乐金显示有限公司 有机发光显示装置

Also Published As

Publication number Publication date
CN112640146A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN106611821B (zh) 有机电致发光装置
CN106560935B (zh) 有机电致发光装置
US9118033B2 (en) Organic light-emitting diode and display device employing the same
US9673413B2 (en) Organic light-emitting device and display apparatus including the same
US11211566B2 (en) Organic light emitting device and display device including the same
US10177334B2 (en) Organic light emitting device and display device having the same
US10008684B2 (en) Organic light-emitting device and display apparatus including the same
US10181498B2 (en) Organic light emitting device
US9991446B2 (en) Organic light emitting device and display device having the same
US10020468B2 (en) Organic electroluminescence display device
US20170110669A1 (en) Organic light emitting device and display device having the same
US10944069B2 (en) Organic electroluminescence device, method for manufacturing the same, and display device including the same
US9876178B2 (en) Organic light emitting device and display device including the same
WO2020107170A1 (zh) 有机发光二极管器件、显示面板及显示装置
US9871218B2 (en) Organic light emitting display including color-adjusting layer and manufacturing method thereof
US20170133604A1 (en) Organic light emitting device and display device having the same
US20160285034A1 (en) Organic light-emitting display apparatus
US20160079558A1 (en) Organic light emitting device and organic light emitting display including the same
US9899625B2 (en) Display device
WO2020113517A1 (zh) 有机发光二极管器件及其制备方法、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941925

Country of ref document: EP

Kind code of ref document: A1