WO2020113517A1 - 有机发光二极管器件及其制备方法、显示面板及显示装置 - Google Patents

有机发光二极管器件及其制备方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2020113517A1
WO2020113517A1 PCT/CN2018/119558 CN2018119558W WO2020113517A1 WO 2020113517 A1 WO2020113517 A1 WO 2020113517A1 CN 2018119558 W CN2018119558 W CN 2018119558W WO 2020113517 A1 WO2020113517 A1 WO 2020113517A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
light emitting
emitting
layer
unit
Prior art date
Application number
PCT/CN2018/119558
Other languages
English (en)
French (fr)
Inventor
陈龙
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880095898.1A priority Critical patent/CN112640145A/zh
Priority to PCT/CN2018/119558 priority patent/WO2020113517A1/zh
Publication of WO2020113517A1 publication Critical patent/WO2020113517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the embodiments of the present application relate to the field of display technology, and in particular, to an organic light-emitting diode device and a method for manufacturing the same, a display panel, and a display device.
  • OLED display technology has the characteristics of active light emission, low voltage drive, high brightness, and full color. With many advantages, OLED display technology is widely used in mobile phones, computers, TVs and other fields.
  • the current organic light-emitting diodes prepared by the evaporation process generally do not perform additional post-processing after the evaporation is completed, even if the prepared organic light-emitting diodes are post-processed by thermal annealing, due to the limited energy provided , Can not have a significant effect on the reorientation of the light-emitting molecules, so the light-emitting molecules in the organic light-emitting layer of the organic light-emitting diode equipped with the evaporation process tend to be randomly arranged, which is not conducive to the extraction of light, resulting in the organic light-emitting diode The current efficiency is not high.
  • the embodiments of the present application aim to provide an organic light emitting diode device, a manufacturing method thereof, a display panel, and a display device, so as to solve the technical problem that the current efficiency of the organic light emitting diode device in the prior art is not high.
  • An organic light emitting diode device including:
  • the organic light emitting layer includes a red light emitting unit, a green light emitting unit and a blue light emitting unit, the red light emitting unit, the green light emitting unit and the blue light emitting unit are arranged in the organic light emitting layer Inside.
  • the red light emitting unit includes a plurality of red light emitting molecules with magnetic anisotropy, and each of the red light emitting molecules is parallel to the light exit surface of the red light emitting unit;
  • the green light-emitting unit includes a plurality of green light-emitting molecules with magnetic anisotropy, and each of the green light-emitting molecules is parallel to the light exit surface of the green light-emitting unit;
  • the blue light-emitting unit includes a plurality of blue light-emitting molecules with magnetic anisotropy, and each of the blue light-emitting molecules is parallel to the light exit surface of the blue light-emitting unit.
  • each of the red light emitting molecules, each of the green light emitting molecules, and each of the blue light emitting molecules are in a chain shape.
  • every two red light emitting molecules are arranged in a grid shape with each other;
  • Each two of the green light-emitting molecules are arranged in a grid shape with each other;
  • Each two of the blue light-emitting molecules are arranged in a grid shape with each other.
  • every two red light-emitting molecules cross each other, and a plurality of the red light-emitting molecules together form a network structure
  • the organic light emitting diode device further includes at least one electron blocking unit, and the electron blocking unit is stacked between the organic light emitting unit and the anode.
  • the electronic blocking unit includes a red blocking unit, a green blocking unit, and a blue blocking unit;
  • the red light blocking unit is opposite to the red light emitting unit
  • the green light blocking unit is opposite to the green light emitting unit
  • the blue light blocking unit is opposite to the blue light emitting unit.
  • each of the organic light-emitting molecules contains multiple benzene ring structures.
  • the organic light emitting diode device further includes an electron transport layer and a hole transport layer;
  • the electron transport layer is stacked between the cathode and the organic light emitting layer, and is used to transport electrons to the organic light emitting unit;
  • the hole transport layer is stacked between the anode and the organic light emitting layer, and is used to transport holes to the organic light emitting unit.
  • the organic light emitting diode further includes a hole injection layer, and the hole injection layer is stacked between the hole transport layer and the anode.
  • the organic light emitting diode further includes an electron injection layer, and the electron injection layer is stacked between the electron transport layer and the cathode.
  • a method for manufacturing an organic light-emitting diode device comprising: providing an organic light-emitting prefabricated layer, the organic light-emitting prefabricated layer includes at least one organic light-emitting unit, and each of the organic light-emitting units includes a plurality of organic anisotropy with magnetic anisotropy Molecules, the organic light-emitting molecules are arranged randomly;
  • the organic light-emitting prefabricated layer, the cathode and the anode are placed in a magnetic field so that the organic light-emitting molecules are parallel to the light exit surface of the organic light-emitting unit, thereby obtaining the organic light-emitting diode device.
  • the organic light-emitting prefabricated layer includes a red light-emitting unit, a green light-emitting unit, and a blue light-emitting unit.
  • the red light emitting unit includes a plurality of red light emitting molecules with magnetic anisotropy
  • the green light emitting unit includes a plurality of green light emitting molecules with magnetic anisotropy
  • the blue light emitting unit includes a plurality of blue light emitting molecules with magnetic anisotropy.
  • the method further includes forming an electron blocking unit between the organic light emitting unit and the anode.
  • the electronic blocking unit includes a red blocking unit, a green blocking unit, and a blue blocking unit;
  • the red light blocking unit is opposite to the red light emitting unit
  • the green light blocking unit is opposite to the green light emitting unit
  • the blue light blocking unit is opposite to the blue light emitting unit.
  • each of the organic light-emitting molecules contains multiple benzene ring structures.
  • the method further includes forming an electron transport layer between the cathode and the organic light emitting layer;
  • a hole transport layer is formed between the anode and the organic light-emitting layer.
  • the method further includes forming a hole injection layer between the hole transport layer and the anode.
  • the method further includes forming an electron injection layer between the electron transport layer and the cathode.
  • a display panel including: a display unit and the organic light emitting diode device described above,
  • a display device including:
  • a driving layer provided on the substrate.
  • the display panel is provided on the driving layer, and the driving layer is used to drive the display panel.
  • the organic light emitting diode device Compared with the prior art, the organic light emitting diode device provided in the embodiments of the present application changes the random arrangement of the original organic light emitting molecules by making the organic light emitting molecules inside the organic light emitting layer parallel to the light emitting surface of the organic light emitting unit, This facilitates the extraction of light, improves the current efficiency of the organic light-emitting diode, and also increases the service life of the organic light-emitting diode at the same luminous intensity.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode device provided by one embodiment of the present application
  • FIG. 2 is a schematic structural view of an organic light emitting unit of the organic light emitting diode device in FIG. 1;
  • 3 to 5 are schematic structural diagrams of organic light emitting diode devices according to some embodiments.
  • FIG. 6 is a flowchart of a method for manufacturing an organic light emitting diode device provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a display device according to another embodiment of the present application.
  • An organic light emitting diode device 100 provided in one embodiment of the present application includes: a cathode 11, an anode 13, and an organic light emitting layer 12; the anode 13 releases holes under the action of an external voltage. The cathode 11 releases electrons under the action of an external voltage.
  • the organic light-emitting layer 12 is stacked between the anode 13 and the cathode 11, the organic light-emitting layer 12 includes at least one organic light-emitting unit 122, each of the organic light-emitting units 122 includes a plurality of magnetic anisotropy Organic light-emitting molecules 1224, the organic light-emitting molecules 1224 are parallel to the light-emitting surface 1222 of the organic light-emitting unit 122.
  • the organic light emitting diode device 100 of this embodiment by making the organic light emitting molecules 1224 inside the organic light emitting layer 12 parallel to the light emitting surface 1224 of the organic light emitting unit 122, the random arrangement of the original organic light emitting molecules is changed, there are This facilitates light extraction, improves the current efficiency of the organic light emitting diode device 100, and also increases the service life of the organic light emitting diode device 100 under the same light emission intensity.
  • the cathode 11 may be a transmissive electrode or a transflective electrode. In some embodiments, the cathode 11 may be a transmissive electrode having a multilayer structure.
  • the anode 13 includes a flexible substrate, a conductive metal wire layer, and a conductive film, and the conductive metal wire layer is disposed between the flexible substrate and the conductive film.
  • the material of the flexible substrate is a material with a visible light transmittance greater than 80%, which may be polyethylene terephthalate, ethylene glycol (PET), polyethersulfone (PES), polyethylene naphthalate (PEN) ), cycloolefin copolymer (COC) or transparent polyimide (PI).
  • the thickness of the flexible substrate may be 0.1 mm-0.5 mm.
  • the material of the conductive film may be poly(3,4-dioxoethylthiophene)/poly(p-styrenesulfonic acid) (PEDOT:PSS), and the mass ratio of PSS to PEDOT may be 1:20.
  • the thickness of the conductive film may be 15 ⁇ m-1100 ⁇ m.
  • the conductive metal wire layer includes a plurality of conductive metal wires, and the plurality of conductive metal wires are arranged on the flexible substrate.
  • the plurality of conductive metal wires are arranged on the flexible substrate in a mesh.
  • multiple conductive metal wires may also be arranged in a grid.
  • the diameter of the conductive metal wire is 10 ⁇ m-1000 ⁇ m, the distance between the two adjacent conductive metal wires is 0.2 mm-10 mm, and the material of the conductive metal wire may be gold, silver, aluminum, copper or nickel .
  • the anode 13 is provided with the conductive metal wire layer between the flexible substrate and the conductive film, and a plurality of conductive metal wires of the conductive metal wire layer are covered with a conductive film to form an internal conductive network, reducing The surface resistance improves the conductivity of the anode 13.
  • the anode 13 may be a transmissive electrode or a transflective electrode.
  • the anode 13 may be a reflective electrode for front surface emission.
  • the anode 13 may have a single-layer structure or a multi-layer structure.
  • the single-layer anode may include a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture thereof.
  • the multilayer anode includes a metal layer having Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture thereof and a transparent conductive oxide layer including a transparent conductive oxide material.
  • the transparent conductive oxide material may include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), and the like.
  • the multilayer anode may have a three-layer structure configured to include a first transparent conductive oxide layer, a metal layer, and a second transparent conductive oxide layer.
  • the multilayer anode may also have a two-layer structure configured to include a transparent conductive oxide layer and a metal layer.
  • the metal layer can be used as a reflective electrode.
  • the organic light-emitting layer 12 includes at least one of the organic light-emitting unit 122 and at least one electronic blocking unit 124, the electronic blocking unit 124 is stacked between the organic light-emitting unit 122 and the anode 13, for blocking Electrons are transferred from the organic light emitting unit 122 to the hole transport layer 16.
  • the organic light-emitting unit 122 is used to emit light, wherein the light-emitting color may be white light, or a color composed of any color ratio.
  • the organic light-emitting unit 122 is prepared by doping a matrix material with a certain proportion of organic light-emitting materials.
  • the organic light-emitting material has high quantum efficiency and sufficient thermal stability, sublimates without decomposition. When electrons and holes meet in the organic light-emitting unit, the electrons are continuously filled from high orbits to holes in low orbits, thereby releasing energy.
  • a polymer-based OLED using a conjugated polymer as a light-emitting material is selected, and the polymer-based OLED may adopt a spin coating or inkjet process.
  • the electrons injected into the organic light emitting unit 122 by the cathode 11 and the holes injected into the organic light emitting unit 122 by the anode 13 meet and recombine in the organic light emitting unit 122, forming Excitons in the excited state, excitons transfer energy to the light-emitting molecule under the action of the electric field, the electrons that excite the light-emitting molecule transition from the ground state to the excited state, the electrons of the light-emitting molecule will mainly release energy in the form of light and return to a stable ground state This produces electroluminescence.
  • the electron blocking unit 124 can block the electrons from moving toward the anode 13, so that the electrons stay in the organic light emitting unit 122 to meet and recombine with the holes, thereby improving the luminous efficiency and service life of the organic light emitting diode device 100.
  • the organic light emitting diode device 100 further includes an electron transport layer 14 and a hole transport layer 16.
  • the electron transport layer 14 is stacked between the cathode 11 and the organic light emitting layer 12 for transporting electrons to the organic light emitting unit 122; the hole transport layer 16 is stacked on the anode 13 and the The organic light emitting layer 12 is used to transport holes to the organic light emitting unit 122.
  • the electron transport layer 14 can effectively inject the electrons of the cathode 11 into the organic light-emitting layer 12 so that electrons recombine with holes in the organic light-emitting layer 12, thereby improving the performance of the organic light-emitting diode device 100.
  • the electron transport layer 14 includes, for example, Alq3 (tris(8-hydroxyquinoline) aluminum), TPBi(1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene Group), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), TAZ (3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ (4-(naphthalen-1-yl)-3,5- Diphenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiane Azole), BAlq (bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-bipheny
  • the hole transport layer 16 can effectively inject the holes of the anode 13 into the organic light emitting layer 12, so that the holes recombine with electrons in the organic light emitting layer 12, thereby improving the performance of the organic light emitting diode device 100.
  • the hole transport layer 16 may include carbazole-based derivatives such as n-phenylcarbazole, polyvinylcarbazole, and fluorine-based derivatives, such as TPD(N,N'-bis(3-methyl Phenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA (4,4',4"-tri(N-carbazolyl) Triphenylamine) and other triphenylamine-based derivatives, NPB (N,N'-bis(1-naphthyl)-N,N'-diphenylbenzidine), TAPC (4,4'-cyclohexylene bis [N,N-bis(4-methylphenyl)aniline]) etc.
  • carbazole-based derivatives such as n-phenylcarbazole, polyvinylcarbazole, and fluorine-based derivatives, such as TPD(N,N'-bis(3
  • an organic light emitting diode device 100a provided in some embodiments of the present application is basically the same as the organic light emitting diode device 100 shown in FIG. 1, except that the organic light emitting layer 12 is an RGB light emitting layer, including red The light emitting unit 122a, the green light emitting unit 122b and the blue light emitting unit 122c, the red light emitting unit 122a, the green light emitting unit 122b and the blue light emitting unit 122c are arranged in the organic light emitting layer 12; the electronic blocking unit 124 It includes a red light electron blocking unit 124a, a green light electron blocking unit 124b and a blue light electron blocking unit 124c.
  • the red light electron blocking unit 124a is opposite to the red light emitting unit 122a
  • the green light electron blocking unit 124b is opposite to the green light emitting unit 122b
  • the blue electron blocking unit 124c is opposite to the blue light emitting unit 122c.
  • the red light emitting unit 122a includes a plurality of red light emitting molecules having magnetic anisotropy, and the red light emitting molecules are parallel to the light exit surface of the red light emitting unit 122a.
  • Each of the red light-emitting molecules is in a chain shape, and every two of the red light-emitting molecules may be arranged in a grid shape with each other, or each two of the red light-emitting molecules may cross each other.
  • the light-emitting molecules together form a network structure.
  • Each of the red light-emitting molecules is an organic light-emitting molecule containing a plurality of benzene ring structures, and the organic light-emitting molecules may use PBD: Eu(DBM)3(Phen) (tris(dibenzoylmethane)phenanthroline europium ) Or perylene fluorescent material.
  • the dopant of the red light emitting unit 122a may be selected from metal complexes, for example, organometallic complexes, such as PIQIr(acac) (bis(1-phenylisoquinoline)acetylacetoneiridium), PQIr( acac) (bis(1-phenylquinoline) acetylacetone iridium), PQIr (tris(1-phenylquinoline) iridium), PtOEP (octaethylporphyrin platinum), etc.
  • the red light emitting unit 122a may include a phosphorescent material, such as Btp2Ir(acac).
  • the green light emitting unit 122b includes a plurality of green light emitting molecules having magnetic anisotropy, and the green light emitting molecules are parallel to the light exit surface of the green light emitting unit 122b.
  • Each of the green light-emitting molecules is in the form of a chain, and every two of the green light-emitting molecules may be arranged in a grid shape with each other, or each two of the green light-emitting molecules may cross each other, and a plurality of The green light-emitting molecules together form a network structure.
  • Each of the green light-emitting molecules is an organic light-emitting molecule containing a plurality of benzene ring structures, and the organic light-emitting molecule may use a fluorescent material containing Alq3 (tris(8-hydroxyquinoline) aluminum).
  • the dopant of the green light emitting unit 122b may be selected from metal complexes, for example, organometallic complexes such as Ir(ppy)3(fac-tris(2-phenylpyridine)iridium).
  • the green light emitting unit 122b may include a phosphorescent material, such as Ir(ppy)3.
  • the blue light emitting unit 122c includes a plurality of blue light emitting molecules with magnetic anisotropy, and the blue light emitting molecules are parallel to the light exit surface of the blue light emitting unit 122c.
  • Each of the blue light-emitting molecules is in a chain shape, and every two blue light-emitting molecules may be arranged in a grid shape with each other, or each two blue light-emitting molecules may cross each other horizontally, and a plurality of the blue light-emitting molecules Together form a level one mesh structure.
  • Each of the blue light-emitting molecules is an organic light-emitting molecule containing a plurality of benzene ring structures.
  • the organic light-emitting molecules may include spiro-DPVBi, spiro-6P, DSB (distyrylbenzene), DSA (distyrylbenzene) -A fluorescent material of any one of an arylene group, a PFO (polyfluorene)-based polymer, and a PPV (poly(p-phenylene vinylene))-based polymer.
  • the dopant of the blue light-emitting unit 122c may be selected from metal complexes, for example, organometallic complexes such as (4,6-F2ppy)2Irpic.
  • the organic light-emitting layer 12 may select one, two, or three of the red light-emitting unit 122a, the green light-emitting unit 122b, and the blue light-emitting unit 122c, and the user may also The ratio of color materials in the red light emitting unit 122a, the green light emitting unit 122b, and the blue light emitting unit 122c is adjusted, thereby adjusting the color finally emitted by the organic light emitting diode device 100a.
  • the red light emitting unit 122a When an external voltage is applied to the organic light emitting diode device 100a, the red light emitting unit 122a emits red light, and the red light electron blocking unit 124a blocks the red light electrons from moving toward the hole transport layer 16.
  • the green light emitting unit 122b emits green light, and the green light electron blocking unit 124b blocks the green light electrons from moving toward the hole transport layer 16.
  • the blue light emitting unit 122c emits blue light, and the blue electron blocking unit 124c blocks blue electrons from moving toward the hole transport layer 16.
  • the structure of the organic light emitting diode device 100b provided in some embodiments of the present application is basically the same as the organic light emitting diode device 100a shown in FIG. 3, except that the organic light emitting diode device 100b further includes a hole injection layer 15, The hole injection layer 15 is stacked between the hole transport layer 16 and the anode 13.
  • the hole injection layer 15 can effectively inject holes into the hole transport layer 16 and be injected into the organic light emitting layer 12 through the hole transport layer 16 so that holes are in the organic light emitting layer 12
  • the increase of the hole injection layer 15 can increase the efficiency of hole injection into the organic light-emitting layer 12, on the other hand, it can also reduce the operating voltage.
  • the hole injection layer 15 may include, for example, a phthalocyanine compound such as copper phthalocyanine, DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino )Phenyl)-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino)triphenylamine), TDATA(4,4 ',4"-tri(N,N-diphenylamine)triphenylamine), 2TNATA(4,4',4"-tri ⁇ N-(2-naphthyl)-N-phenylamino ⁇ -triphenylamine), PEDOT/PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)), PANI/DBSA (polyaniline/dodecylbenzenesulfonic acid), P
  • the structure of the organic light emitting diode device 100 c provided in some embodiments of the present application is basically the same as the organic light emitting diode device 100 b shown in FIG. 4. The difference is that the organic light emitting diode device 100 c further includes an electron injection layer 17.
  • the electron injection layer 17 is stacked between the electron transport layer 14 and the cathode 11. It can be understood that, in some embodiments, the hole injection layer 15 may be omitted.
  • the electron injection layer 17 can effectively inject electrons into the electron transport layer 14 and be injected into the organic light emitting layer 12 through the electron transport layer 14 so that electrons meet holes in the organic light emitting layer 12
  • the addition of the electron transport layer 14 can improve the efficiency of electron injection into the organic light-emitting layer 12, on the other hand, it can also reduce the operating voltage.
  • the electron injection layer 17 is made of an organic metal complex or an inorganic substance.
  • the electron injection layer 17 is made of an alkali metal compound.
  • the electron injection layer 17 is made of LiF, LiQ, One of NaF, CsF, Cs 2 CO 3 or other suitable materials.
  • sputtering For example, sputtering, electroplating, molding, chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD), evaporation, hybrid physical-chemical vapor deposition (Hybrid Physical-Chemical Vapor Deposition, HPCVD) , Plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition (PECVD), low pressure chemical vapor deposition (Low Pressure Chemical Vapor Deposition, LPCVD), etc.
  • CVD chemical vapor deposition
  • PVD Physical vapor deposition
  • HPCVD Hybrid Physical-Chemical Vapor Deposition
  • PECVD Plasma enhanced chemical vapor deposition
  • Low Pressure Chemical Vapor Deposition Low Pressure Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • an organic light emitting diode device 100 including:
  • Step S1 providing an organic light-emitting prefabricated layer, the organic light-emitting prefabricated layer includes at least one organic light-emitting unit 122, each of the organic light-emitting units 122 includes a plurality of organic light-emitting molecules with magnetic anisotropy 1224, the organic light-emitting The molecules 1224 are arranged randomly.
  • Step S2 forming a cathode 11 and an anode 13 on opposite sides of the organic light-emitting preformed layer, respectively.
  • Step S3 annealing the organic light-emitting prefabricated layer, the cathode 11 and the anode 13.
  • the annealing temperature is 80°C-100°C
  • the annealing time is 0.5h-1h.
  • Step S4 placing the organic light-emitting prefabricated layer, the cathode 11 and the anode 13 in a magnetic field so that the organic light-emitting molecules 1224 are parallel to the light-emitting surface 1222 of the organic light-emitting unit 122, thereby obtaining the organic Light-emitting diode device 100.
  • the magnetic field can be generated by permanent magnet or coil excitation
  • the strength of the magnetic field is 0.3T-8T, for example, the magnetic field strength is 2T or 5T
  • the direction of the magnetic field line generated by the permanent magnet or coil excitation is different from the
  • the organic light-emitting prefabricated layers are parallel. Since the organic light-emitting molecules 1224 in the organic light-emitting diode device 100 have magnetic anisotropy, the organic light-emitting molecules 1224 can be reoriented along the direction of the magnetic induction line so that they are parallel to the The light emitting surface 1222 of the organic light emitting unit 122 is described.
  • the organic light-emitting molecules 1224 parallel to the light-emitting surface 1222 of the organic light-emitting unit 122 can reduce the surface plasmon effect of the organic light-emitting molecules 1224 and the cathode 11, which is more conducive to light extraction, and thus can increase the current of the organic light-emitting layer 12 Efficiency, so that the efficiency of the organic light emitting diode device 100 at a specific brightness can also be improved.
  • the manufacturing method further includes forming an electron blocking unit 124 between the organic light emitting unit 122 and the anode 13.
  • the manufacturing method further includes forming an electron transport layer 14 between the cathode 11 and the organic light-emitting layer 12; and, forming an air gap between the anode 13 and the organic light-emitting layer 12 Hole transport layer 16.
  • the manufacturing method further includes forming a hole injection layer 15 between the hole transport layer 16 and the anode 13.
  • the manufacturing method further includes forming an electron injection layer 17 between the electron transport layer 14 and the cathode 11.
  • another embodiment of the present application further provides a display device 200 including a substrate 20, a driving layer 30, a display panel 40 and a protective layer 50.
  • the driving layer 30 is used to drive the display panel 40.
  • the base 20 may use a flexible substrate, such as a thin glass, metal foil, or plastic base 20 having a flexible material, for example, the plastic base 20 has a flexible structure including coating on both sides of a base film ,
  • the base film includes such as polyimide (PI), polycarbonate (PC), polyethylene glycol terephthalate (PET), polyethersulfone (PES), polyethylene film (PEN), fiber reinforced plastic ( FRP) etc. resin.
  • the driving layer 30 includes a scan circuit and a switch circuit, the scan circuit is connected to the switch circuit, and the switch circuit is connected to the organic light emitting diode device 100, 100a, 100b, or 100c in the display panel 40.
  • the scanning circuit scans and selects the corresponding pixel unit through the switching circuit, and applies a driving voltage to the pixel unit to cause the pixel unit to emit light, thereby displaying an image.
  • the driving layer 30 may use different driving methods to drive the display panel 40, and the driving methods include a passive driving method (Passive Matrix, PMOLED) and an active driving method (Active Matrix, AMOLED).
  • the switching circuit may select a thin-film transistor (TFT) as a switching tube, and realizes static driving or dynamic driving through the function of the scanning circuit.
  • the switching circuit may select a low-temperature polysilicon thin-film transistor (Low-Temperature Poly-Si Thin Film Transistor (LTP-Si TFT), amorphous silicon TFT, polysilicon TFT, oxide semiconductor TFT or organic TFT, etc. are used as switch tubes.
  • LTP-Si TFT Low-Temperature Poly-Si Thin Film Transistor
  • the display panel 40 includes the light emitting diode device 100, 100a, 100b, or 100c in any of the foregoing embodiments.
  • the protective layer 50 is used to protect the display panel 40, wherein the protective layer 50 may include substances such as ZrO, CeO 2 , ThO 2 and the like.
  • the protective layer 50 may form a transparent film to cover the entire surface of the display panel 40.
  • the display device 200 provided by the embodiment of the present application is made flexible by using a flexible material and becomes bendable.
  • the display device 200 is not only bendable, but also transparent.
  • the material of the display device 200 is a flexible transparent element
  • the substrate 20 is made of a polymer such as transparent plastic.
  • the driving layer 30 uses transparent transistors, and the organic light emitting diode devices 100, 100a, 100b, or 100c in the display panel 40 use transparent materials. Therefore, the display device 200 can become flexible and transparent.
  • the transparent transistor is a TFT transistor made of opaque silicon by replacing the TFT transistor made of a transparent substance such as zinc oxide or titanium dioxide with the related art.
  • the transparent electrode may be composed of materials such as indium tin oxide (ITO) or graphene.
  • ITO indium tin oxide
  • graphene has a honeycomb lattice structure composed of carbon atoms, and has transparency.
  • the transparent organic light-emitting layer 12 can be realized with various substances.
  • the display device 200 can implement the execution of various application functions by setting bending parameters such as a bending sensor and using bending parameters detected by the bending sensor, thereby greatly improving the user's experience.
  • an organic light emitting diode device 100, 100a, 100b or 100c is provided in the display panel 40 of the display device 200 of the present application, by making the organic light emitting molecules inside the organic light emitting layer 12 parallel to the organic light emitting
  • the light-emitting surface of the unit changes the random arrangement of the original organic light-emitting molecules, which is conducive to the extraction of light and improves the current efficiency of the organic light-emitting diode device 100, 100a, 100b or 100c, while also increasing the same luminous intensity
  • the service life of the organic light emitting diode device 100, 100a, 100b or 100c is provided in the display panel 40 of the display device 200 of the present application, by making the organic light emitting molecules inside the organic light emitting layer 12 parallel to the organic light emitting
  • the light-emitting surface of the unit changes the random arrangement of the original organic light-emitting molecules, which is conducive to the extraction of light and improves the current efficiency of the organic light-emitting diode device 100, 100

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例涉及显示技术领域,申请一种有机发光二极管器件及其制备方法、显示面板(40)及显示装置(200),有机发光二极管器件包括:阴极(11)、阳极(13)以及有机发光层(12),所述有机发光层(12)包括有机发光单元(122),所述有机发光单元(122)包括多个具有磁各向异性的有机发光分子(1224),每个所述有机发光分子(1224)平行排列于所述有机发光单元(122)的出光面(1222);通过使有机发光分子(1224)平行于所述有机发光单元(122)的出光面(1222),有利于光的取出,提高了有机发光二级管器件的电流效率。

Description

有机发光二极管器件及其制备方法、显示面板及显示装置 技术领域
本申请实施例涉及显示技术领域,尤其涉及一种有机发光二极管器件及其制备方法、显示面板及显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术具有主动发光、低电压驱动、高亮度、全色彩等特点,凭借着诸多优点,OLED显示技术广泛应用于手机、电脑、电视等领域。
然而,目前采用蒸镀工艺制备的有机发光二极管一般不会在蒸镀完成后做额外的后处理,即便是采用热退火的方式对制备完成的有机发光二极管进行后处理,由于其提供的能量有限,也无法对发光分子的重新取向产生明显的作用,所以采用蒸镀工艺装备的有机发光二极管的有机发光层内部的发光分子趋向于无规则排列,不利于光的取出,导致有机发光二级管的电流效率不高。
发明内容
本申请实施例旨在提供一种有机发光二极管器件及其制备方法、显示面板及显示装置,以解决现有技术中有机发光二极管器件电流效率不高的技术问题。
本申请实施例解决其技术问题提供以下技术方案:
一种有机发光二极管器件,包括:
阳极;
阴极;
有机发光层,所述有机发光层层叠于所述阳极与所述阴极之间,所述有机发光层包括至少一个有机发光单元,每个所述有机发光单元包括多个具有磁各向异性的有机发光分子,所述有机发光分子平行于所述有机发光单元的出光面。
可选地,所述有机发光层包括红光发光单元、绿光发光单元及蓝光发光单元,所述红光发光单元、所述绿光发光单元及所述蓝光发光单元排列于所述有机发光层内。
可选地,所述红光发光单元包括多个具有磁各向异性的红光发光分子,每个所述红光发光分子平行于所述红光发光单元的出光面;
所述绿光发光单元包括多个具有磁各向异性的绿光发光分子,每个所述绿光发光分子平行于所述绿光发光单元的出光面;
所述蓝光发光单元包括多个具有磁各向异性的蓝光发光分子,每个所述蓝光发光分子平行于所述蓝光发光单元的出光面。
可选地,每个所述红光发光分子、每个所述绿光发光分子以及每个所述蓝光发光分子均呈链条状。
可选地,每两个所述红光发光分子相互之间呈栅状排列;
每两个所述绿光发光分子相互之间呈栅状排列;
每两个所述蓝光发光分子相互之间呈栅状排列。
可选地,每两个所述红光发光分子相互交叉,多个所述红光发光分子共同组成一网状结构;
每两个所述绿光发光分子相互交叉,多个所述绿光发光分子共同组成一网状结构;
每两个所述蓝光发光分子相互交叉,多个所述蓝光发光分子共同组成一网状结构。
可选地,所述有机发光二级管器件还包括至少一种电子阻隔单元,所述电子阻隔单元层叠于所述有机发光单元与所述阳极之间。
可选地,所述电子阻隔单元包括红光阻隔单元、绿光阻隔单元以及蓝光阻隔单元;
所述红光阻隔单元与所述红光发光单元相对设置;
所述绿光阻隔单元与所述绿光发光单元相对设置;
所述蓝光阻隔单元与所述蓝光发光单元相对设置。
可选地,每个所述有机发光分子中含有多个苯环结构。
可选地,所述有机发光二极管器件还包括电子传输层和空穴传输 层;
所述电子传输层层叠于所述阴极与所述有机发光层之间,用于向所述有机发光单元传输电子;
所述空穴传输层层叠于所述阳极与所述有机发光层之间,用于向所述有机发光单元传输空穴。
可选地,所述有机发光二极管还包括空穴注入层,所述空穴注入层层叠于所述空穴传输层与所述阳极之间。
可选地,所述有机发光二极管还包括电子注入层,所述电子注入层层叠于所述电子传输层与所述阴极之间。
本申请实施例解决其技术问题还提供以下技术方案:
一种有机发光二极管器件的制造方法,包括:提供一有机发光预制层,所述有机发光预制层包括至少一个有机发光单元,每个所述有机发光单元包括多个具有磁各向异性的有机发光分子,所述有机发光分子无规则排列;
在所述有机发光预制层的相对两面分别形成阴极和阳极;
对所述有机发光预制层、所述阴极和所述阳极进行退火处理;
将所述有机发光预制层、所述阴极和所述阳极置于磁场中,使得所述有机发光分子平行于所述有机发光单元的出光面,从而获得所述有机发光二极管器件。
可选地,所述有机发光预制层包括红光发光单元、绿光发光单元及蓝光发光单元。
可选地,所述红光发光单元包括多个具有磁各向异性的红光发光分子;
所述绿光发光单元包括多个具有磁各向异性的绿光发光分子;
所述蓝光发光单元包括多个具有磁各向异性的蓝光发光分子。
可选地,所述方法还包括在所述有机发光单元与所述阳极之间形成电子阻隔单元。
可选地,所述电子阻隔单元包括红光阻隔单元、绿光阻隔单元以及蓝光阻隔单元;
所述红光阻隔单元与所述红光发光单元相对设置;
所述绿光阻隔单元与所述绿光发光单元相对设置;
所述蓝光阻隔单元与所述蓝光发光单元相对设置。
可选地,每个所述有机发光分子中含有多个苯环结构。
可选地,所述方法还包括在所述阴极与所述有机发光层之间形成电子传输层;
在所述阳极与所述有机发光层之间形成空穴传输层。
可选地,所述方法还包括在所述空穴传输层与所述阳极之间形成空穴注入层。
可选地,所述方法还包括在所述电子传输层与所述阴极之间形成电子注入层。
可选地,
本申请实施例解决其技术问题还提供以下技术方案:
一种显示面板,包括:显示单元及以上所述的有机发光二极管器件,
本申请实施例解决其技术问题还提供以下技术方案:
一种显示装置,包括:
基底;
驱动层,所述驱动层设置于所述基底上;以及
以上所述的显示面板,所述显示面板设置于所述驱动层上,所述驱动层用于驱动所述显示面板。
与现有技术相比较,在本申请实施例提供的有机发光二极管器件通过使有机发光层内部的有机发光分子平行于所述有机发光单元的出光面,改变原先有机发光分子的无规则排列,有利于光的取出,提高了有机发光二级管的电流效率,同时也增大了在相同发光强度下有机发光二极管的使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描 述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本申请其中一个实施例提供的一种有机发光二极管器件的结构示意图;
图2是图1中的有机发光二极管器件的有机发光单元的结构示意图;
图3至图5是根据不同的一些实施例示出的有机发光二极管器件的结构示意图;
图6是本申请另一实施例提供的有机发光二极管器件的制备方法流程图;
图7是本申请又一实施例提供的一种显示装置的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,则属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中 所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请一并参阅图1和图2,本申请其中一个实施例提供的有机发光二极管器件100包括:阴极11、阳极13以及有机发光层12;所述阳极13在外部电压作用下,释放空穴。所述阴极11在外部电压作用下,释放电子。所述有机发光层12层叠于所述阳极13与所述阴极11之间,所述有机发光层12包括至少一个有机发光单元122,每个所述有机发光单元122包括多个具有磁各向异性的有机发光分子1224,所述有机发光分子1224平行于所述有机发光单元122的出光面1222。
在本实施例的所述有机发光二极管器件100中,通过使有机发光层12内部的有机发光分子1224平行于所述有机发光单元122的出光面1224,改变原先有机发光分子的无规则排列,有利于光的取出,提高了有机发光二级管器件100的电流效率,同时也增大了在相同发光强度下有机发光二极管器件100的使用寿命。
所述阴极11可以是透射式电极或半透反射式电极。在一些实施例中,阴极11可以是具有多层结构的透射式电极。
所述阳极13包括柔性基板、导电金属线层以及导电薄膜,所述导电金属线层设置于所述柔性基板和所述导电薄膜之间。
所述柔性基板的材质选择可见光透过率大于80%的材料,可以为聚对苯二甲酸、乙二醇酯(PET)、聚醚砜(PES)、聚萘二甲酸乙二醇酯(PEN)、环烯烃共聚物(COC)或透明聚酰亚胺(PI)。所述柔性基板的厚度可以为0.1mm-0.5mm。
所述导电薄膜的材质可为聚(3,4-二氧乙基噻吩)/聚(对苯乙烯磺酸)(PEDOT:PSS),PSS与PEDOT的质量比可以为1:20。所述导电薄膜的厚度可以为15μm-1100μm。
所述导电金属线层包括多根导电金属线,多根所述导电金属线排布 于所述柔性基板,本实施例中,多根所述导电金属线网状排布于所述柔性基板。在一些实施例中,多根所述导电金属线也可以采用栅状排布。
所述导电金属线直径为10μm-1000μm,相邻的所述两根导电金属线之间的距离为0.2mm-10mm,所述导电金属线的材质可以为是金、银、铝、铜或镍。所述阳极13在所述柔性基板和所述导电薄膜之间设置所述导电金属线层,所述导电金属线层的多个导电金属线被导电薄膜覆盖包裹,形成一个内部的导电网络,降低了表面电阻,使得阳极13的导电能力得到提高。
在一些实施例中,所述阳极13可以是透射式电极或半透反射式电极。
在一些实施例中,所述阳极13可以是用于前表面发射的反射电极。所述阳极13可以为单层结构或多层结构。所述单层阳极可以包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层。所述多层阳极包括具有Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物的金属层和包括透明导电氧化物材料的透明导电氧化物层。所述透明导电氧化物材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟锡锌(ITZO)等。所述多层阳极可以具有被配置为包括第一透明导电氧化物层、金属层和第二透明导电氧化物层的三层结构。所述多层阳极也可以具有被配置为包括透明导电氧化物层和金属层的两层结构。所述金属层可以用作反射电极。
所述有机发光层12包括至少一种所述有机发光单元122和至少一种电子阻隔单元124,所述电子阻隔单元124层叠于所述有机发光单元122与所述阳极13之间,用于阻隔电子从所述有机发光单元122传输至所述空穴传输层16。
所述有机发光单元122用于发光,其中,发光的颜色可以为白光,亦可以为任何色彩比例组成的颜色。
所述有机发光单元122是由在基质材料中掺杂一定比例的有机发光材料制备成的。所述有机发光材料具有较高的量子效率和足够的热稳定性,升华而不会分解。当电子与空穴在有机发光单元中相遇后,电子就 源源不断地从高轨道填充到低轨道的空穴中,从而释放出能量。
所述有机发光材料选择以共轭高分子为发光材料的高分子基OLED,所述高分子基OLED可以采用旋转涂覆或喷墨工艺。
当向所述有机发光二极管器件100施加外部电压时,阴极11注入到有机发光单元122中的电子与阳极13注入到有机发光单元122中的空穴在有机发光单元122中相遇而复合,形成处于激发态的激子,激子在电场作用下将能量传递给发光分子,激发发光分子的电子从基态跃迁到激发态,发光分子的电子将主要以光的形式释放能量而回到稳定的基态,从而产生电致发光。
所述电子阻隔单元124能够阻挡电子向阳极13方向移动,使得电子停留在有机发光单元122中与空穴充分地相遇以及复合,从而提高有机发光二极管器件100的发光效率以及使用寿命。
在一些实施例中,所述有机发光二极管器件100还包括电子传输层14和空穴传输层16。所述电子传输层14层叠于所述阴极11与所述有机发光层12之间,用于向所述有机发光单元122传输电子;所述空穴传输层16层叠于所述阳极13与所述有机发光层12之间,用于向所述有机发光单元122传输空穴。
所述电子传输层14能够有效地将阴极11的电子注入所述有机发光层12,使得电子在所述有机发光层12中与空穴复合,从而提高有机发光二极管器件100的性能。
所述电子传输层14包括例如Alq3(三(8-羟基喹啉)铝)、TPBi(1,3,5-三(1-苯基-1H-苯并[d]咪唑-2-基)苯基)、BCP(2,9-二甲基-4,7-二苯基-1,10-菲咯啉)、Bphen(4,7-二苯基-1,10-菲咯啉)、TAZ(3-(4-联苯基)-4-苯基-5-叔丁基苯基-1,2,4-三唑)、NTAZ(4-(萘-1-基)-3,5-二苯基-4H-1,2,4-三唑)、tBu-PBD(2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-恶二唑)、BAlq(双(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝)、Bebq2(铍双(苯并喹啉-10-酸))、AND(9,10-二(萘-2-基)蒽)或其混合物。
所述空穴传输层16能够有效地将阳极13的空穴注入所述有机发光 层12,使得空穴在所述有机发光层12中与电子复合,从而提高有机发光二极管器件100的性能。
所述空穴传输层16可以包括例如n-苯基咔唑、聚乙烯基咔唑等的基于咔唑的衍生物、基于氟的衍生物、例如TPD(N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1-联苯]-4,4'-二胺)、TCTA(4,4',4”-三(N-咔唑基)三苯胺)等的基于三苯胺的衍生物、NPB(N,N'-二(1-萘基)-N,N'-二苯基联苯胺)、TAPC(4,4'-亚环己基双[N,N-双(4-甲基苯基)苯胺])等。
请参阅图3,本申请一些实施例提供的一种有机发光二极管器件100a与图1所示的所述有机发光二极管器件100基本相同,区别在于所述有机发光层12为RGB发光层,包括红光发光单元122a、绿光发光单元122b及蓝光发光单元122c,所述红光发光单元122a、绿光发光单元122b及蓝光发光单元122c排列于所述有机发光层12内;所述电子阻隔单元124包括红光电子阻隔单元124a、绿光电子阻隔单元124b和蓝光电子阻隔单元124c,所述红光电子阻隔单元124a与红光发光单元122a相对设置,绿光电子阻隔单元124b与绿光发光单元122b相对设置,蓝光电子阻隔单元124c与蓝光发光单元122c相对设置。
所述红光发光单元122a包括多个具有磁各向异性的红光发光分子,所述红光发光分子平行于所述红光发光单元122a的出光面。每个所述红光发光分子呈链条状,每两个所述红光发光分子可以之间相互呈栅状排列,也可为每两个所述红光发光分子相互交叉,多个所述红光发光分子共同组成一网状结构。
每个所述红光发光分子是含有多个苯环结构的有机发光分子,所述有机发光分子可以采用PBD:Eu(DBM)3(Phen)(三(二苯甲酰基甲烷)菲咯啉铕)或苝的荧光材料。所述红光发光单元122a的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如PIQIr(acac)(双(1-苯基异喹啉)乙酰丙酮铱)、PQIr(acac)(双(1-苯基喹啉)乙酰丙酮铱)、PQIr(三(1-苯基喹啉)铱)、PtOEP(八乙基卟啉铂)等。在一些实施方式中,红光发光单元122a可以包括磷光材料,例如Btp2Ir(acac)。
所述绿光发光单元122b包括多个具有磁各向异性的绿光发光分子,所述绿光发光分子平行于所述绿光发光单元122b的出光面。每个所述绿光发光分子呈链条状,每两个所述绿光发光分子可以为相互之间呈栅状排列,也可为每两个所述绿光发光分子相互交叉,多个所述绿光发光分子共同组成一网状结构。
每个所述绿光发光分子是含有多个苯环结构的有机发光分子,所述有机发光分子可以采用含有Alq3(三(8-羟基喹啉)铝)的荧光材料。所述绿光发光单元122b的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如Ir(ppy)3(fac-三(2-苯基吡啶)铱)。绿光发光单元122b可以包括磷光材料,例如Ir(ppy)3。
所述蓝光发光单元122c包括多个具有磁各向异性的蓝光发光分子,所述蓝光发光分子平行于所述蓝光发光单元122c的出光面。每个所述蓝光发光分子呈链条状,每两个所述蓝光发光分子可以相互之间呈栅状排列,也可为每两个所述蓝光发光分子水平相互交叉,多个所述蓝光发光分子共同组成水平一网状结构。
每个所述蓝光发光分子是含有多个苯环结构的有机发光分子,所述有机发光分子可以采用包含螺-DPVBi、螺-6P、DSB(二苯乙烯基苯)、DSA(二苯乙烯基-亚芳基)、PFO(聚芴)类聚合物和PPV(聚(对亚苯基亚乙烯基))类聚合物中的任意一种的荧光材料。所述蓝光发光单元122c的掺杂剂可以选自金属络合物,例如,有机金属络合物,诸如(4,6-F2ppy)2Irpic。
可以理解的是,在一些实施例中,所述有机发光层12可以选择红光发光单元122a、绿光发光单元122b、蓝光发光单元122c中一种或者两种或者三种,并且,用户还可以调节红光发光单元122a、绿光发光单元122b、蓝光发光单元122c中的颜色材料比例,从而调节有机发光二极管器件100a最终发射的颜色。
当所述有机发光二极管器件100a被施加外部电压时,红光发光单元122a发射红光,红光电子阻隔单元124a阻隔红光电子向空穴传输层16移动。绿光发光单元122b发射绿光,绿光电子阻隔单元124b阻隔绿 光电子向空穴传输层16移动。蓝光发光单元122c发射蓝光,蓝光电子阻隔单元124c阻隔蓝光电子向空穴传输层16移动。
请参阅图4,本申请一些实施例提供的有机发光二极管器件100b与图3所示的有机发光二极管器件100a的结构基本相同,区别在于所述有机发光二极管器件100b还包括空穴注入层15,所述空穴注入层15层叠于所述空穴传输层16与所述阳极13之间。
所述空穴注入层15能够将空穴有效地注入所述空穴传输层16,并通过所述空穴传输层16注入到所述有机发光层12,使得空穴在所述有机发光层12中与电子相遇,一方面,所述空穴注入层15的增加能够提高空穴注入所述有机发光层12的效率,另一方面,其还能够降低工作电压。
所述空穴注入层15可以包括例如酞菁化合物,诸如铜酞菁、DNTPD(N,N'-二苯基-N,N'-双-[4-(苯基-m-甲苯基-氨基)苯基]-联苯-4,4'-二胺)、m-MTDATA(4,4',4”-三(3-甲基苯基苯基氨基)三苯胺)、TDATA(4,4',4”-三(N,N-二苯胺)三苯胺)、2TNATA(4,4',4”-三{N-(2-萘基)-N-苯基氨基}-三苯胺)、PEDOT/PSS(聚(3,4-亚乙基二氧噻吩)/聚(4-苯乙烯磺酸盐))、PANI/DBSA(聚苯胺/十二烷基苯磺酸)、PANI/CSA(聚苯胺/樟脑磺酸)、PANI/PSS(聚苯胺/聚(4-苯乙烯磺酸盐))等。
请参阅图5,本申请一些实施例提供的有机发光二极管器件100c与图4所示的有机发光二极管器件100b的结构基本相同,区别在于所述有机发光二极管器件100c还包括电子注入层17,所述电子注入层17层叠于所述电子传输层14与阴极11之间,可以理解的是,在一些实施例中,所述空穴注入层15是可以省略的。
所述电子注入层17能够将电子有效地注入所述电子传输层14,并通过所述电子传输层14注入到所述有机发光层12,使得电子在所述有机发光层12中与空穴相遇,一方面,所述电子传输层14的增加能够提高电子注入所述有机发光层12的效率,另一方面,其还能够降低工作电压。
所述电子注入层17由有机金属络合物或无机物制成,在一些实施例中,所述电子注入层17由碱金属化合物制成,例如,所述电子注入层17由LiF、LiQ、NaF、CsF、Cs 2CO 3中的一种制成或由其它合适的材料制成。
可以理解的是,如本文所示的本申请实施例涉及的一个或多个层间物质,层与层之间的位置关系使用了诸如术语“层叠”或“形成”或“施加”或“设置”进行表达,本领域技术人员可以理解的是:任何术语诸如“层叠”或“形成”或“施加”,其可覆盖“层叠”的全部方式、种类及技术。例如,溅射、电镀、模塑、化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、蒸发、混合物理-化学气相沉积(Hybrid Physical-Chemical Vapor Deposition,HPCVD)、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、低压化学气相沉积(Low Pressure Chemical Vapor Deposition,LPCVD)等。
请参阅图6,本申请另一实施例提供一种有机发光二极管器件100的制造方法,包括:
步骤S1:提供一有机发光预制层,所述有机发光预制层包括至少一个有机发光单元122,每个所述有机发光单元122包括多个具有磁各向异性的有机发光分子1224,所述有机发光分子1224无规则排列。
步骤S2:在所述有机发光预制层的相对两面分别形成阴极11和阳极13。
步骤S3:对所述有机发光预制层、所述阴极11和所述阳极13进行退火处理。其中,退火温度为80℃-100℃,退火时间为0.5h-1h。
步骤S4:将所述有机发光预制层、所述阴极11和所述阳极13置于磁场中,使得所述有机发光分子1224平行于所述有机发光单元122的出光面1222,从而获得所述有机发光二极管器件100。
其中,所述磁场可以由永磁体或线圈励磁产生,所述磁场的强度为0.3T-8T,例如所述磁场强度为2T或5T,所述永磁体或线圈励磁产生的磁场线方向与所述有机发光预制层平行,由于所述有机发光二极管器件 100中的有机发光分子1224具有磁各向异性,因此所述有机发光分子1224可沿所述磁感线方向重新取向排列,使其平行于所述有机发光单元122的出光面1222。
所述有机发光分子1224平行于所述有机发光单元122的出光面1222可以降低有机发光分子1224与所述阴极11的表面等离子体效应,更利于光的取出,因此可以提高有机发光层12的电流效率,从而也可以提升有机发光二极管器件100在特定亮度下的效率。
在一些实施例中,所述制造方法还包括在所述有机发光单元122与所述阳极13之间形成电子阻隔单元124。
在一些实施例中,所述制造方法还包括在所述阴极11与所述有机发光层12之间形成电子传输层14;以及,在所述阳极13与所述有机发光层12之间形成空穴传输层16。
在一些实施例中,所述制造方法还包括在所述空穴传输层16与所述阳极13之间形成空穴注入层15。
在一些实施例中,所述制造方法还包括在所述电子传输层14与所述阴极11之间形成电子注入层17。
请参阅图7,本申请又一实施例还提供一种显示装置200,包括基底20、驱动层30、显示面板40以及保护层50。其中,所述驱动层30用于驱动所述显示面板40。
所述基底20可以使用柔性基板,所述柔性基板诸如包括薄玻璃、金属箔片或塑料基底20等等具有柔性的材料,例如,塑料基底20具有包括涂覆在基膜的两面上的柔性结构,基膜包括诸如聚酰亚胺(PI)、聚碳酸酯(PC)、聚乙二醇对酞酸酯(PET)、聚醚砜(PES)、聚乙烯薄膜(PEN)、纤维增强塑料(FRP)等等树脂。
所述驱动层30包括扫描电路与开关电路,所述扫描电路与所述开关电路连接,所述开关电路与所述显示面板40中的有机发光二极管器件100、100a、100b或100c连接。
所述扫描电路通过所述开关电路扫描并选择对应的像素单元,并向 像素单元施加驱动电压,以使像素单元发光,从而显示图像。
所述驱动层30可采用不同驱动方式驱动显示面板40,驱动方式包括无源驱动方式(Passive Matrix,PMOLED)与有源驱动方式(Active Matrix,AMOLED)。当所述驱动层30采用PMOLED方式,所述开关电路可以选择薄膜晶体管(Thin-film transistor,TFT)作为开关管,通过所述扫描电路的作用,实现静态驱动或动态驱动。当所述驱动层30采用AMOLED方式,所述开关电路可以选择低温多晶硅薄膜晶体管(Low Temperature Poly-Si Thin Film Transistor,LTP-Si TFT)、非晶硅TFT、多晶硅TFT、氧化物半导体TFT或者有机TFT等等作为开关管。
所述显示面板40包括上述任一实施例中的发光二极管器件100、100a、100b或100c。
所述保护层50用于保护显示面板40,其中,所述保护层50可以包括诸如ZrO,CeO 2、ThO 2等等的物质。所述保护层50可以形成透明膜以覆盖显示面板40的整个表面。
如前所述,本申请实施例提供的所述显示装置200通过采用柔性材料制造而具有柔性,变得可折弯。在一些实施例中,所述显示装置200不仅可折弯,而且还可透明,例如,制造所述显示装置200的材料采用柔性透明元件,所述基底20由诸如透明塑料的聚合物质组成,所述驱动层30使用透明晶体管,所述显示面板40中的有机发光二极管器件100、100a、100b或100c采用透明材料,因此,所述显示装置200便可以变得柔性而透明。
所述透明晶体管是通过利用诸如氧化锌或二氧化钛之类的透明物质制造成的TFT晶体管替换相关技术由不透明硅制造的TFT晶体管。此外,透明电极可以由诸如铟锡氧化物(Indium tin oxide,ITO)或者石墨烯的材料组成。石墨烯具有由碳原子构成的蜂巢晶格面结构,并且具 有透明性。此外,透明有机发光层12可以利用各种各样的物质实现。
借助柔性性质,所述显示装置200可通过设置诸如弯曲传感器之类,利用弯曲传感器检测的弯曲参数,以实现各类应用功能地执行,从而极大提升用户的体验感。
与现有技术相比较,本申请显示装置200的显示面板40中提供了一种有机发光二极管器件100、100a、100b或100c,通过使有机发光层12内部的有机发光分子平行于所述有机发光单元的出光面,改变原先有机发光分子的无规则排列,有利于光的取出,提高了有机发光二级管器件100、100a、100b或100c的电流效率,同时也增大了在相同发光强度下有机发光二极管器件100、100a、100b或100c的使用寿命。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种有机发光二极管器件,其特征在于,包括:
    阳极;
    阴极;
    有机发光层,所述有机发光层层叠于所述阳极与所述阴极之间,所述有机发光层包括至少一个有机发光单元,每个所述有机发光单元包括多个具有磁各向异性的有机发光分子,所述有机发光分子平行于所述有机发光单元的出光面。
  2. 根据权利要求1所述的有机发光二极管器件,其特征在于,所述有机发光层包括红光发光单元、绿光发光单元及蓝光发光单元,所述红光发光单元、所述绿光发光单元及所述蓝光发光单元排列于所述有机发光层内。
  3. 根据权利要求2所述的有机发光二极管器件,其特征在于,
    所述红光发光单元包括多个具有磁各向异性的红光发光分子,每个所述红光发光分子平行于所述红光发光单元的出光面;
    所述绿光发光单元包括多个具有磁各向异性的绿光发光分子,每个所述绿光发光分子平行于所述绿光发光单元的出光面;
    所述蓝光发光单元包括多个具有磁各向异性的蓝光发光分子,每个所述蓝光发光分子平行于所述蓝光发光单元的出光面。
  4. 根据权利要求3所述的有机发光二极管器件,其特征在于,每个所述红光发光分子、每个所述绿光发光分子以及每个所述蓝光发光分子均呈链条状。
  5. 根据权利要求3所述的有机发光二极管器件,其特征在于,
    每两个所述红光发光分子相互之间呈栅状排列;
    每两个所述绿光发光分子相互之间呈栅状排列;
    每两个所述蓝光发光分子相互之间呈栅状排列。
  6. 根据权利要求3所述的有机发光二极管器件,其特征在于,
    每两个所述红光发光分子相互交叉,多个所述红光发光分子共同组 成一网状结构;
    每两个所述绿光发光分子相互交叉,多个所述绿光发光分子共同组成一网状结构;
    每两个所述蓝光发光分子相互交叉,多个所述蓝光发光分子共同组成一网状结构。
  7. 根据权利要求2所述的有机发光二极管器件,其特征在于,所述有机发光二级管器件还包括至少一种电子阻隔单元,所述电子阻隔单元层叠于所述有机发光单元与所述阳极之间。
  8. 根据权利要求7所述的有机发光二极管器件,其特征在于,
    所述电子阻隔单元包括红光阻隔单元、绿光阻隔单元以及蓝光阻隔单元;
    所述红光阻隔单元与所述红光发光单元相对设置;
    所述绿光阻隔单元与所述绿光发光单元相对设置;
    所述蓝光阻隔单元与所述蓝光发光单元相对设置。
  9. 根据权利要求1所述的有机发光二极管器件,其特征在于,每个所述有机发光分子中含有多个苯环结构。
  10. 根据权利要求1所述的有机发光二极管器件,其特征在于
    所述有机发光二极管器件还包括电子传输层和空穴传输层;
    所述电子传输层层叠于所述阴极与所述有机发光层之间,用于向所述有机发光单元传输电子;
    所述空穴传输层层叠于所述阳极与所述有机发光层之间,用于向所述有机发光单元传输空穴。
  11. 根据权利要求10所述的有机发光二极管器件,其特征在于,所述有机发光二极管还包括空穴注入层,所述空穴注入层层叠于所述空穴传输层与所述阳极之间。
  12. 根据权利要求10所述的有机发光二极管器件,其特征在于,所述有机发光二极管还包括电子注入层,所述电子注入层层叠于所述电子传输层与所述阴极之间。
  13. 一种有机发光二极管器件的制造方法,其特征在于,
    提供一有机发光预制层,所述有机发光预制层包括至少一个有机发光单元,每个所述有机发光单元包括多个具有磁各向异性的有机发光分子,所述有机发光分子无规则排列;
    在所述有机发光预制层的相对两面分别形成阴极和阳极;
    对所述有机发光预制层、所述阴极和所述阳极进行退火处理;
    将所述有机发光预制层、所述阴极和所述阳极置于磁场中,使得所述有机发光分子平行于所述有机发光单元的出光面,从而获得所述有机发光二极管器件。
  14. 根据权利要求13所述的方法,其特征在于,
    所述有机发光预制层包括红光发光单元、绿光发光单元及蓝光发光单元。
  15. 根据权利要求14所述的方法,其特征在于,
    所述红光发光单元包括多个具有磁各向异性的红光发光分子;
    所述绿光发光单元包括多个具有磁各向异性的绿光发光分子;
    所述蓝光发光单元包括多个具有磁各向异性的蓝光发光分子。
  16. 根据权利要求15所述的方法,其特征在于,
    所述方法还包括在所述有机发光单元与所述阳极之间形成电子阻隔单元。
  17. 根据权利要求16所述的方法,其特征在于,
    所述电子阻隔单元包括红光阻隔单元、绿光阻隔单元以及蓝光阻隔单元;
    所述红光阻隔单元与所述红光发光单元相对设置;
    所述绿光阻隔单元与所述绿光发光单元相对设置;
    所述蓝光阻隔单元与所述蓝光发光单元相对设置。
  18. 根据权利要求13所述的方法,其特征在于,
    每个所述有机发光分子中含有多个苯环结构。
  19. 根据权利要求13所述的方法,其特征在于,
    所述方法还包括在所述阴极与所述有机发光层之间形成电子传输层;
    在所述阳极与所述有机发光层之间形成空穴传输层。
  20. 根据权利要求19所述的方法,其特征在于,
    所述方法还包括在所述空穴传输层与所述阳极之间形成空穴注入层。
  21. 根据权利要求19所述的方法,其特征在于,
    所述方法还包括在所述电子传输层与所述阴极之间形成电子注入层。
  22. 一种显示面板,其特征在于,包括如权利要求1至12任一项所述的有机发光二极管器件。
  23. 一种显示装置,其特征在于,包括:
    衬底;
    驱动层,设置于所述衬底上;以及,
    如权利要求22所述的显示面板,设置于所述驱动层上,所述驱动层用于驱动所述显示面板。
PCT/CN2018/119558 2018-12-06 2018-12-06 有机发光二极管器件及其制备方法、显示面板及显示装置 WO2020113517A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095898.1A CN112640145A (zh) 2018-12-06 2018-12-06 有机发光二极管器件及其制备方法、显示面板及显示装置
PCT/CN2018/119558 WO2020113517A1 (zh) 2018-12-06 2018-12-06 有机发光二极管器件及其制备方法、显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119558 WO2020113517A1 (zh) 2018-12-06 2018-12-06 有机发光二极管器件及其制备方法、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020113517A1 true WO2020113517A1 (zh) 2020-06-11

Family

ID=70974094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119558 WO2020113517A1 (zh) 2018-12-06 2018-12-06 有机发光二极管器件及其制备方法、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN112640145A (zh)
WO (1) WO2020113517A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290530A (zh) * 2011-09-13 2011-12-21 西南大学 一种高磁场响应的有机发光二极管
CN106057860A (zh) * 2016-08-08 2016-10-26 深圳市华星光电技术有限公司 Oled显示装置及其制作方法
CN106206992A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种薄膜封装结构及有机发光二极管器件
US20170244042A1 (en) * 2016-02-23 2017-08-24 Samsung Electronics Co., Ltd. Organic light-emitting apparatus
CN107681056A (zh) * 2016-08-01 2018-02-09 上海和辉光电有限公司 一种有机发光器件的制造方法以及有机发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171093A (ja) * 2010-02-18 2011-09-01 Konica Minolta Holdings Inc 面発光体
JP2013054331A (ja) * 2011-08-05 2013-03-21 Sony Corp 表示方法、表示装置、電子機器および照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290530A (zh) * 2011-09-13 2011-12-21 西南大学 一种高磁场响应的有机发光二极管
US20170244042A1 (en) * 2016-02-23 2017-08-24 Samsung Electronics Co., Ltd. Organic light-emitting apparatus
CN107681056A (zh) * 2016-08-01 2018-02-09 上海和辉光电有限公司 一种有机发光器件的制造方法以及有机发光器件
CN106057860A (zh) * 2016-08-08 2016-10-26 深圳市华星光电技术有限公司 Oled显示装置及其制作方法
CN106206992A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种薄膜封装结构及有机发光二极管器件

Also Published As

Publication number Publication date
CN112640145A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN106611821B (zh) 有机电致发光装置
CN106560935B (zh) 有机电致发光装置
US9118033B2 (en) Organic light-emitting diode and display device employing the same
US9780337B2 (en) Organic light-emitting diode and manufacturing method thereof
US11211566B2 (en) Organic light emitting device and display device including the same
US9515127B2 (en) Organic electroluminescent display apparatus
US9673413B2 (en) Organic light-emitting device and display apparatus including the same
US10008684B2 (en) Organic light-emitting device and display apparatus including the same
US10181498B2 (en) Organic light emitting device
KR102146104B1 (ko) 유기전계발광소자 및 이를 이용한 유기전계발광표시장치
US10020468B2 (en) Organic electroluminescence display device
US20160276601A1 (en) Organic light emitting device and display device having the same
CN106972105A (zh) 显示设备
US9537113B2 (en) Organic light emitting display device
CN101651147A (zh) 有机发光显示器及其制造方法
US20140361257A1 (en) Organic light emitting diode display
WO2020107170A1 (zh) 有机发光二极管器件、显示面板及显示装置
WO2020113517A1 (zh) 有机发光二极管器件及其制备方法、显示面板及显示装置
US20160285034A1 (en) Organic light-emitting display apparatus
US9871218B2 (en) Organic light emitting display including color-adjusting layer and manufacturing method thereof
US9899625B2 (en) Display device
KR101891720B1 (ko) 유기발광표시장치 및 그 제조 방법
CN118159055A (zh) 有机发光层、有机电致发光器件以及电子装置
KR101822071B1 (ko) 유기발광다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942253

Country of ref document: EP

Kind code of ref document: A1