WO2024059964A1 - 利用涡轮驱动的变压吸附气体分离系统及分离方法 - Google Patents

利用涡轮驱动的变压吸附气体分离系统及分离方法 Download PDF

Info

Publication number
WO2024059964A1
WO2024059964A1 PCT/CN2022/119574 CN2022119574W WO2024059964A1 WO 2024059964 A1 WO2024059964 A1 WO 2024059964A1 CN 2022119574 W CN2022119574 W CN 2022119574W WO 2024059964 A1 WO2024059964 A1 WO 2024059964A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
adsorption
turbine
blower
valve
Prior art date
Application number
PCT/CN2022/119574
Other languages
English (en)
French (fr)
Inventor
李伟华
卢向银
李波
隆勇
谢志成
李辉华
李卓
李传旭
Original Assignee
重庆冲能动力机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆冲能动力机械有限公司 filed Critical 重庆冲能动力机械有限公司
Priority to PCT/CN2022/119574 priority Critical patent/WO2024059964A1/zh
Publication of WO2024059964A1 publication Critical patent/WO2024059964A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen

Definitions

  • the present invention relates to the technical field of pressure swing adsorption gas separation, and in particular to a pressure swing adsorption gas separation system and a separation method driven by a turbine.
  • the pressure swing adsorption gas separation system is a gas separation system composed of pressurized equipment, an adsorption tower with adsorbent, a vacuum pump, and a product gas buffer tank. It has the ability to separate a certain component of the mixed gas (such as oxygen in the air) It comes out and is stored in the product gas buffer tank for transmission to downstream systems and further processing or use.
  • the moving equipment including blowers, vacuum pumps, etc.
  • the moving equipment is divided into volumetric types (Roots pumps, piston pumps, There are two types of water ring pumps) and centrifugal type.
  • the positive displacement type is gradually being eliminated due to its low efficiency, large floor space, high noise, etc., while the centrifugal dynamic equipment is faced with the need to perform pulse speed regulation on the unit. to reduce energy consumption.
  • the technical threshold and processing technology requirements of the unit will be very high (for example: the motor requires active control by a frequency converter to ensure that the valve group in the system After the opening/closing action, the speed of the blower and/or vacuum pump changes accordingly, and the frequency converter components are complex and prone to failure, and at the same time, the cost is high.
  • the short replacement cycle of this component will inevitably lead to a linear increase in costs), which will instead cause The system is expensive to build.
  • the blower and vacuum pump when using a centrifugal unit, there is always a period of time when the unit is directly exposed to the air, so that the blower and vacuum pump always have ineffective working time.
  • the ineffective consumption of time also increases the average consumption of the system. Specifically, it is shown that when the air blowing of an adsorption tower has just been completed, the tower pressure at this time is positive relative to the environment. At this time, the vacuum is directly evacuated or the vacuum pump has a heavy evacuation load.
  • the common method is to first depressurize the tower through a valve. to normal pressure (venting), and then connect the vacuum pump to evacuate.
  • the vacuum pump is inactive working time in the two-tower process.
  • an adsorption tower has just been evacuated, its negative pressure is higher.
  • directly connecting the blower will also increase the load of the blower.
  • the common method is to use the same valve for pre-inflation, and then connect the blower to blow after it reaches normal pressure. Then the blower will be ineffective during the pre-inflation period. operating hours.
  • the present invention provides a pressure swing adsorption gas separation system and separation method driven by a turbine, which can improve the system cost of motor-driven centrifugal equipment in the prior art and at the same time .
  • the blower and vacuum pump have ineffective working time, resulting in increased system power consumption.
  • a pressure swing adsorption gas separation system driven by a turbine includes a blower, an adsorption tower indirectly connected to the air outlet of the blower, a vacuum pump connected to the air inlet indirectly connected to the adsorption tower, and a vacuum pump connected to the adsorption tower.
  • the product gas unit at the outlet of the adsorption tower is provided with three adsorption towers arranged in parallel; it also includes three raw material gas units, which are simultaneously connected to the air outlet of the blower and the air inlet of the vacuum pump, and are respectively It is connected to the air inlets of the three adsorption towers and is used to transmit gas; the No. 1 turbine is connected to the blower; the No.
  • the raw gas unit includes: an inflation valve, which is connected to the air outlet of the blower and the air inlet of the adsorption tower to realize the inflation of the adsorption tower; an evacuation valve, which is connected to the air inlet of the vacuum pump and the air inlet of the adsorption tower.
  • the air inlet is connected to the air inlet of the adsorption tower and is close to the adsorption tower relative to the inflation valve to achieve vacuuming of the adsorption tower.
  • the vent valve is connected to the air inlet of the adsorption tower and is close to the adsorption tower relative to the evacuation valve to achieve venting of the adsorption tower.
  • the air inlet of the buffer tank is simultaneously connected to the three No. 1 exhaust valves.
  • No. 2 exhaust valves which are respectively connected to the air outlets of the three adsorption towers, and are closer to the adsorption towers relative to the No. 1 exhaust valve; No. exhaust valve.
  • the buffer tank is connected to the pressure equalizing tower, and a main valve is provided on the connected pipeline.
  • the main valve is close to the buffer tank relative to the No. 2 exhaust valve.
  • the air inlet of the blower is connected to an air inlet filter box, and the air outlet of the vacuum pump is connected to an exhaust muffler.
  • the air outlet of the blower is connected to a No. 1 exhaust valve, and the No. 1 exhaust valve is close to the blower relative to the inflation valve.
  • the air inlet of the vacuum pump is connected to a No. 2 evacuation valve, and the No. 2 evacuation valve is closer to the vacuum pump than the evacuation valve.
  • a turbine-driven pressure swing adsorption gas separation method which includes the following steps:
  • the blower when starting the blower, first open the No. 1 exhaust valve for bypass venting; when closing the vacuum pump, first open the No. 2 exhaust valve to vent the vacuum pump.
  • the present invention includes at least one of the following beneficial technical effects:
  • Three adsorption towers are set up in parallel, and the air inlets of the three adsorption towers are connected to blowers and vacuum pumps at the same time.
  • the blowers are used to blow the three adsorption towers in sequence, and at the same time, the three adsorption towers are adsorbed in sequence through the vacuum pumps.
  • the tower is evacuated, so that the three adsorption towers are in different working (pressure) states, forming a state of inflating, emptying or vacuuming.
  • the adsorption towers, blowers and vacuum pumps are rotated without gaps, and the blowers and vacuum pumps are not Like the two-tower process, which has ineffective working time, the performance of the centrifugal unit can be fully utilized, thereby improving the problem that in the traditional two-tower process system, the blower and vacuum pump have ineffective working time, resulting in increased system power consumption; and the blower and vacuum pump both A turbine is connected, and the blower and vacuum pump are driven by the turbine.
  • the turbine and the blower/vacuum pump will form a common working line.
  • Figure 1 is a diagram of a three-tower pressure swing adsorption system using a turbine drive unit according to an embodiment of the present invention
  • Figure 2 is a power-pressure characteristic curve diagram of the turbine at different rotational speeds according to the embodiment of the present invention
  • Figure 3 is a graph of the turbine-blower/vacuum pump common working line according to the embodiment of the present invention.
  • FIG. 4 is a timing control sequence diagram of an embodiment of the present invention.
  • the embodiment of the present invention proposes a pressure swing adsorption gas separation system using turbine driven equipment, including an adsorption tower 1, a raw gas unit, a blower 5, a vacuum pump 6, a product gas unit and Control unit; three adsorption towers 1 are connected in parallel.
  • the raw gas unit includes a charging valve 2, an evacuation valve 3 and a venting valve 4 that are all connected to the air inlet end of the adsorption tower 1, and the charging valve 2 is also connected to the outlet end of the blower 5 to inflate the adsorption tower 1 through the blower 5;
  • the evacuation valve 3 is connected to the air inlet end of the vacuum pump 6, and is close to the adsorption tower 1 relative to the inflation valve 2, so as to complete the vacuuming of the adsorption tower 1 through the vacuum pump 6;
  • the vent valve 4 is close to the adsorption tower 1 relative to the evacuation valve 3, and is connected to atmosphere to complete the venting action of adsorption tower 1.
  • the air pressure in the adsorption tower 1 is higher than the external air pressure after inflation, the air pressure in the adsorption tower 1 is equal to the external air pressure after venting, and the air pressure in the adsorption tower 1 is lower than the external air pressure after vacuuming.
  • the outlet end of the blower 5 is connected to the charging valve 2 of the raw gas unit to inflate the adsorption tower 1 through the charging valve 2; the blower 5 is connected to the No. 1 turbine 7 to drive the blower 5 through the No. 1 turbine 7.
  • the air inlet end of the blower 5 is connected with an air inlet filter box 51 to filter the sucked gas.
  • the outlet end of the blower 5 is also connected to a No. 1 exhaust valve 52, which is close to the blower 5 relative to the raw gas unit; before starting the blower 5, bypass exhaust is performed through the No. 1 exhaust valve 52.
  • the air inlet end of the vacuum pump 6 is connected to the evacuation valve 3 of the raw gas unit to achieve vacuuming of any adsorption tower 1 through the evacuation valve 3; the vacuum pump 6 is connected to a No. 2 turbine 71 to drive the vacuum pump 6 through the No. 2 turbine 71 run.
  • An exhaust muffler 61 is connected to the outlet end of the vacuum pump 6 to reduce the noise caused when exhausting gas.
  • the air inlet end of the vacuum pump 6 is also connected to the No. 2 exhaust valve 62.
  • the No. 2 exhaust valve 62 is close to the vacuum pump 6 relative to the raw gas unit. When the entire system is shut down, the No. 2 exhaust valve 62 is opened to ensure that there is enough gas. The gas passes through the vacuum pump 6 to prevent pump surge in the vacuum pump 6 to ensure its service life.
  • the product gas unit is connected to the gas outlets of three adsorption towers 1 at the same time.
  • it is shown that it is connected to the upper end of the adsorption tower 1.
  • It includes three No. 1 exhaust valves 8 and a buffer tank 81; three No. 1 exhaust valves 8
  • the valve 8 is connected to the upper ends of the three adsorption towers 1, that is, to the upper ends of the first adsorption tower 1, the second adsorption tower 1, and the third adsorption tower 1 respectively; the buffer tank 81 is connected to the three No. 1s at the same time.
  • the exhaust valve 8 accepts the product gas generated by any adsorption tower 1 by opening the No. 1 exhaust valve 8 for subsequent utilization and production work, and at the same time, realizes the corresponding change in the air pressure in the adsorption tower 1.
  • control unit is simultaneously connected to the raw gas unit (charging valve 2, evacuation valve 3 and vent valve 4), turbine No. 1 7, turbine No. 2 71 and product gas unit (exhaust valve No. 1 8) to drive the raw gas unit, Opening and closing (opening and closing) of the No. 1 turbine 7, the No. 2 turbine 71 and the product gas unit.
  • the control unit may be a general-purpose processor, including a central processing unit, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components. , the disclosed methods, steps and logical block diagrams in the embodiments of the present invention can be implemented or executed.
  • the general processor can be a microprocessor or any conventional processor.
  • the control unit controls the start of the No. 1 turbine 7 and the No. 2 turbine 71.
  • the No. 1 turbine 7 and the No. 2 turbine 71 drive the blower 5/vacuum pump 6 directly connected thereto to operate.
  • the No. 2 turbine 71 will form a common working line with the blower 5/vacuum pump 6 respectively. At this time, it can be seen from Figure 2 that the power/torque characteristics of the No. 1 turbine 7 and the No.
  • the three adsorption towers 1 When separating gas, by changing the opening and closing states of the filling valve 2, evacuation valve 3 and vent valve 4 respectively connected to the three adsorption towers 1, the three adsorption towers 1 will present different air pressure states at the same time period, thereby ensuring that the blower 5 and vacuum pump 6 are kept running at all times and affect the air pressure state of the three adsorption towers 1 to ensure that the tower group composed of three adsorption towers 1 can produce product gas at any time, thus improving the traditional two-tower process system.
  • the vacuum pump 6 has invalid working time, resulting in increased system power consumption. This is explained in detail in the following methods.
  • the product gas unit also includes three No. 2 exhaust valves 9 and a pressure equalizing tower 91; the three No. 2 exhaust valves 9 are respectively connected to the gas outlets of the three adsorption towers 1, and the No. 2 exhaust valves 9 are respectively connected to the gas outlets of the three adsorption towers 1.
  • Valve 9 is close to the adsorption tower 1 relative to the No. 1 exhaust valve 8; the pressure equalizing tower 91 is connected to three No. 2 exhaust valves 9 at the same time to perform a certain degree of pressure equalization operation on the adsorption tower 1 and accelerate the pressure of the adsorption tower 1 Change process.
  • the buffer tank 81 is connected to the pressure equalizing tower 91, and a main valve 92 is provided on the connected pipeline.
  • the main valve 92 is close to the buffer tank 81 relative to the No. 2 exhaust valve 9, so as to realize the communication between the buffer tank 81 and the pressure equalizing tower 91. , the product gas entering the pressure equalizing tower 91 is transferred to the buffer tank 81 and fully utilized.
  • adjustable nozzles are provided on both the No. 1 turbine 7 and the No. 2 turbine 71 so that the turbines have greater variable power characteristics and cooperate with the operating speed to make the centrifugal blower 5/vacuum pump 6 work at Near the maximum efficiency line, a turbine-blower/vacuum pump with adjustable nozzle common working line is formed.
  • embodiments of the present invention/utility model also propose a separation method applied to a pressure swing adsorption gas separation system driven by a turbine, which includes the following steps:
  • the second adsorption tower 1 completes the vacuuming, and starts to vent the second adsorption tower 1 through the venting valve 4, the venting time is 1-3 seconds; at the same time, the venting of the third adsorption tower 1 is completed, using the vacuum pump 6 and the evacuation valve 3 pairs The third adsorption tower 1 is evacuated, and the vacuuming time is 8-12 seconds;
  • the first adsorption tower 1 completes the air blowing, cuts off the connection between the first adsorption tower 1 and the buffer tank 81 by closing the No. 1 exhaust valve 8, and starts venting through the vent valve 4, the venting time is 1-3 seconds; at the same time, through the blower 5.
  • the inflation valve 2 starts blowing air to the second adsorption tower 1.
  • the blowing time is 8-12 seconds.
  • the second adsorption tower 1 generates product gas and transmits it to the buffer tank 81 through the No. 1 exhaust valve 8. The gas transmission time 8-12 seconds; the third adsorption tower 1 continues to vacuum;
  • the first adsorption tower 1 completes the evacuation and starts vacuuming through the vacuum pump 6 and evacuation valve 3.
  • the vacuuming time is 8-12 seconds; at the same time, the third adsorption tower 1 completes the evacuation and starts vacuuming through the evacuation valve 4. Start venting, the venting time is 1-3 seconds;
  • the first adsorption tower 1 continues to evacuate; at the same time, the connection between the second adsorption tower 1 and the buffer tank 81 is cut off by closing the No. 1 exhaust valve 8, and the venting is started through the vent valve 4, and the venting time is 1-3 seconds; the third The first adsorption tower 1 is completely vented, and at the same time, the third adsorption tower 1 starts to be blown through the blower 5 and the inflation valve 2.
  • the third adsorption tower 1 generates product gas and transmits it to the buffer tank 81 through the exhaust valve 8. Qi time 8-12 seconds;
  • the first adsorption tower 1 completed the vacuuming, and started to vacuum through the venting valve 4, and the venting time was 1-3 seconds;
  • the second adsorption tower 1 completed the venting, and started to vacuum through the vacuum pump 6 and the evacuation valve 3, and the vacuuming time was 8 -12 seconds;
  • the blower 5 and the vacuum pump 6 are always in working condition, and adsorb the first adsorption tower 1, the second adsorption tower 1, and the third adsorption tower 3.
  • Tower 1 performs inflating or vacuuming operations in sequence, so that the first adsorption tower 1, the second adsorption tower 1, the second adsorption tower 1, the third adsorption tower 1, the blower 5 and the vacuum pump 6 have no gaps.
  • the blower 5 and the vacuum pump 6 no longer have ineffective working time like the two-tower process, thereby improving the existing technology problem of the ineffective working time of the blower 5 and the vacuum pump 6, resulting in increased system power consumption.

Abstract

一种利用涡轮驱动的变压吸附气体分离系统,包括鼓风机(5)、间接连通于鼓风机(5) 出气口的吸附塔(1)、进气口间接连通于吸附塔(1)的真空泵(6)以及连通于吸附塔 (1)出气口的产品气单元,吸附塔(1)设置为三座且呈并联设置;还包括:三个原料气单元,同时连通于鼓风机(5)的出气口、真空泵(6)的进气口和三座吸附塔(1)的进气口;一号涡轮(7),连接于鼓风机(5);二号涡轮(71),连接于真空泵(6);以及控制单元,用以驱动原料气单元、一号涡轮(7)、二号涡轮(71)以及产品气单元启闭,以交替实现三座吸附塔(1)的充气、放空或抽真空。该系统能减少无效工作时间,降低功耗。

Description

利用涡轮驱动的变压吸附气体分离系统及分离方法 技术领域
本发明涉及变压吸附气体分离技术领域,尤其涉及一种利用涡轮驱动的变压吸附气体分离系统及分离方法。
背景技术
变压吸附气体分离系统是一种增压设备、具有吸附剂的吸附塔、真空泵以及产品气缓冲罐等组成的气体分离系统,具备将混合气体中某一成分(例如:空气中的氧气)分离出来并储存于产品气缓冲罐内,以传输到下游系统并进一步加工或使用的作用。
现有技术中,一方面,变压吸附气体分离系统中所应用的动设备(包括鼓风机、真空泵等)都是电动机驱动的,且该动设备又分为容积式(罗茨泵、活塞泵、水环泵)和离心式两种,其中容积式因其低效、占地空间大、噪音大等原因逐渐被淘汰,而离心式动设备则面临着需通过对机组进行脉冲式调速处理,以降低能耗的问题。但现有电动机驱动的离心式动设备,如果要进行脉冲式调速处理,机组的技术门槛和加工工艺要求会非常高(例如:电动机需要变频器进行主动控制,进而保证在系统中阀组发生开/闭动作后,鼓风机和/或真空泵的转速发生相应变化,而变频器元器件复杂且容易发生故障,同时成本高昂,该元器件的短更换周期势必造成成本的直线上升),反而会使得系统造价高昂。
另一方面,在传统的两塔(具有两座吸附塔)工艺中,在应用离心式机组时,总是存在机组直接对空的时间段,使得鼓风机和真空泵总是有无效工作时间,这段时间的无效消耗也增大了系统的平均消耗。具体的,展示为在一个吸附塔刚鼓风完成时,此时塔压相对环境是正压,此时直接抽真空或使得真空泵抽气负荷大,常用的做法是通过一个阀门先将塔泄压到常压(放空),再接入真空泵抽真空,这个泄压的过程,在两塔工艺下,真空泵就处于无效工作时间;同理,在一个吸附塔刚抽完真空,其负压较高,此时直接接入鼓风机也会使得鼓风机负荷大,常用的做法是用同一个阀门进行预充气,待其达到常压后再接入鼓风机鼓风,那鼓风机在预充气这段时间内就是无效工作时间。
发明内容
针对现有技术中所存在的不足,本发明提供了一种利用涡轮驱动的变压吸附气体分离系统及分离方法,其可改善现有技术中电动机驱动的离心式动设备存在系统造价高昂,同时,在传统的两塔工艺系统中,鼓风机和真空泵存在无效工作时间,导致系统功耗增加的问题。
一方面,根据本发明的实施例,一种利用涡轮驱动的变压吸附气体分离系统,其包括 鼓风机、间接连通于鼓风机出气口的吸附塔、进气口间接连通于吸附塔的真空泵以及连通于吸附塔出气口的产品气单元,所述吸附塔设置为三座且呈并联设置;还包括,原料气单元,设置为三个,同时连通于鼓风机的出气口和真空泵的进气口,并分别连通于三座吸附塔的进气口,用于传输气体;一号涡轮,连接于鼓风机;二号涡轮,连接于真空泵;以及控制单元,用以驱动原料气单元、一号涡轮、二号涡轮以及产品气单元启闭,以交替实现三座吸附塔的充气、放空或抽真空。
优选的,所述原料气单元包括:充气阀,同时连通于鼓风机的出气口和吸附塔的进气口,以实现吸附塔的充气;抽空阀,同时连通于真空泵的进气口和吸附塔的进气口,且相对于充气阀靠近吸附塔,以实现吸附塔的抽真空;放空阀,连通吸附塔的进气口,相对于抽空阀靠近吸附塔,以实现吸附塔的放空,使吸附塔内外气压平衡。
优选的,一号排气阀,设置为三个,分别连通于三座吸附塔的出气口;缓冲罐,进气口同时连通于三个一号排气阀。
优选的,二号排气阀,设置为三个,分别连通于三座吸附塔的出气口,且相对于一号排气阀靠近吸附塔;均压塔,进气端同时连通于三个二号排气阀。
优选的,所述缓冲罐和均压塔连通,连通的管道上设置有总阀,所述总阀相对于二号排气阀靠近缓冲罐。
优选的,所述鼓风机的进气口连通有进气滤箱,所述真空泵的出气口连通有排气消声器。
优选的,所述鼓风机的出气口连通有一号排空阀,所述一号排空阀相对于充气阀靠近鼓风机。
优选的,所述真空泵的进气口连通有二号排空阀,所述二号排空阀相对于抽空阀靠近真空泵。
另一方面,根据本发明的实施例,还提供了一种利用涡轮驱动的变压吸附气体分离方法,其包括以下步骤:
S1、启动鼓风机,对第一座吸附塔充气并生成产品气;启动真空泵,对第二座吸附塔抽真空;并对第三座吸附塔进行放空;
S2、保持第一座吸附塔充气并生成产品气动作,对第二座吸附塔进行放空,并对第三座吸附塔抽真空;
S3、对第二座吸附塔充气并生成产品气,对第一座吸附塔开始放空,对第三座吸附塔持续抽真空;
S4、保持第二座吸附塔充气并生成产品气动作,对第一座吸附塔抽真空,对第三座吸附塔开始放空;
S5、对第三座吸附塔充气并生成产品气,对第一座吸附塔持续抽真空,对第二座吸附塔开始放空;
S6、保持第三座吸附塔充气并生成产品气动作,对第一座吸附塔开始放空,对第二座吸附塔开始抽真空;
S7、重复步骤S1-S6。
优选的,启动所述鼓风机时,先打开一号排空阀进行旁路放空;关闭所述真空泵时,先打开二号排空阀进行真空泵的放空。
综上所述,本发明包括以下至少一种有益技术效果:
通过并联设置三座吸附塔,并在三座吸附塔的进气口同时连通鼓风机和真空泵,在分离过程中,通过鼓风机对三座吸附塔依次进行鼓风,同时,通过真空泵依次对三座吸附塔进行抽真空,从而使得三座吸附塔处于不同的工作(压力)状态,形成充气、放空或抽真空的状态,整个流程中,吸附塔和鼓风机、真空泵得到无间隙的轮换,鼓风机和真空泵不再像两塔流程那样有无效工作时间,离心机组的效能得到充分利用,从而改善传统的两塔工艺系统中,鼓风机和真空泵存在无效工作时间,导致系统功耗增加的问题;且鼓风机和真空泵均连接有涡轮,通过涡轮驱动鼓风机和真空泵运行,涡轮与鼓风机/真空泵会形成一条共同工作线,而涡轮在驱动气源参数不变(即膨胀比)的情况下,转速的变化不会使其功率发生太大的改变,使得鼓风机/真空泵在系统中因系统压力变化而负荷变化时,涡轮由于功率/扭矩较恒定,机组的转速会自动降低或提高,实现了机组的自适应工作,而不需要对机组进行频繁的脉冲式主动调速,相应的,也不需要现有技术中需要平方更换变频器的操作,从而改善现有技术中电动机驱动的离心式动设备存在系统造价高昂的问题。
附图说明
图1是本发明实施例的应用涡轮驱动机组的三塔变压吸附系统图;
图2是本发明实施例的涡轮机在不同转速下的功率-压力特性曲线图;
图3是本发明实施例的涡轮—鼓风机/真空泵共同工作线的曲线图;
图4是本发明实施例的时序控制顺序图。
上述附图中:1、吸附塔;2、充气阀;3、抽空阀;4、放空阀;5、鼓风机;51、进气滤箱;52、一号排空阀;6、真空泵;61、排气消声器;62、二号排空阀;7、一号涡轮;71、二号涡轮;8、一号排气阀;81、缓冲罐;9、二号排气阀;91、均压塔;92、总阀。
具体实施方式
下面结合附图1-4对本发明作进一步说明。
参照图1至图3,一方面,本发明实施例提出了一种利用涡轮驱动动设备的变压吸附气体分离系统,包括吸附塔1、原料气单元、鼓风机5、真空泵6、产品气单元以及控制单元;吸附塔1并联设置为三座。
原料气单元设置为三个,分别连通于三座吸附塔1的进气口,图中,展示为连通于吸附塔1的下端。原料气单元包括均连通于吸附塔1进气端的充气阀2、抽空阀3以及放空阀4,且充气阀2还连通于鼓风机5的出气端,以通过鼓风机5朝向吸附塔1充气;抽空阀3连通于真空泵6的进气端,且相对于充气阀2靠近吸附塔1,以通过真空泵6完成对吸附塔1的抽真空;放空阀4相对于抽空阀3靠近吸附塔1,并连通于大气,以完成对吸附塔1的放空动作。
需要说明的是,本发明中,充气后使得吸附塔1内的气压高于外界气压,放空后使得吸附塔1内的气压等于外界气压,而抽真空后使得吸附塔1内的气压低于外界气压。
鼓风机5的出气端连通于原料气单元的充气阀2,以通过充气阀2实现对吸附塔1的充气;鼓风机5连接有一号涡轮7,以通过一号涡轮7驱动鼓风机5运行。在鼓风机5的进气端连通有进气滤箱51,以对抽入的气体进行过滤。且在鼓风机5的出气端还连通有一号排空阀52,一号排空阀52相对于原料气单元靠近鼓风机5;在启动鼓风机5之前,先通过一号排空阀52进行旁路放空,以保证系统的运行效果和对气体的处理效果。
真空泵6的进气端连通于原料气单元的抽空阀3,以通过抽空阀3实现对任一吸附塔1的抽真空;真空泵6连接有二号涡轮71,以通过二号涡轮71驱动真空泵6运行。在真空泵6的出气端连通有排气消声器61,以降低排出气体时所造成的噪音。在真空泵6的进气端还连通有二号排空阀62,二号排空阀62相对于原料气单元靠近真空泵6;在整个系统停机时,打开二号排空阀62,以保证有足够的气体通过真空泵6,防止真空泵6出现机泵喘振的现象,以保证使用寿命。
产品气单元同时连通于三座吸附塔1的出气口,图中,展示为连通于吸附塔1的上端,其包括三个一号排气阀8和一个缓冲罐81;三个一号排气阀8分别连通于三个吸附塔1的上端,即分别连通于第一座吸附塔1、第二座吸附塔1以及第三座吸附塔1的上端;缓冲罐81同时连通于三个一号排气阀8,以通过打开一号排气阀8的方式,接受任一吸附塔1所产生的产品气,以便后续利用、生产工作,同时,实现对应吸附塔1内气压的改变。
控制单元同时连接于原料气单元(充气阀2、抽空阀3以及放空阀4)、一号涡轮7、 二号涡轮71以及产品气单元(一号排气阀8),以驱动原料气单元、一号涡轮7、二号涡轮71以及产品气单元的启闭(开启、关闭)。本发明实施例中,控制单元可以是通用处理器,包括中央处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图,该通用处理器可以是微处理器,也可以是任何常规的处理器等。
进行气体分离时,本发明实施例中,控制单元控制一号涡轮7、二号涡轮71启动,一号涡轮7、二号涡轮71带动与其直接相连接的鼓风机5/真空泵6运行,一号涡轮7、二号涡轮71分别与鼓风机5/真空泵6会形成一条共同工作线,此时,由图2可知,一号涡轮7、二号涡轮71的功率/扭矩特性在驱动气源参数不变(即膨胀比)的情况下,转速的变化不会使其功率发生太大的改变(点A-点B-点C),这使得鼓风机5/真空泵6在变压吸附气体分离系统中因系统压力变化而负荷变化时,一号涡轮7、二号涡轮71由于功率/扭矩较恒定,机组的转速会自动降低或提高,从而实现了机组的自适应工作,形成自适应的共同工作线(参照图3),而不需要对机组进行频繁的脉冲式主动调速,从而改善了现有技术中采用电动机驱动的离心式动设备存在需频繁更换零部件,所造成的系统造价昂贵的问题。
分离气体时,通过改变分别连通于三座吸附塔1的充气阀2、抽空阀3以及放空阀4的开闭状态,使得三座吸附塔1在同一时间段呈现不同的气压状态,从而保证鼓风机5和真空泵6时刻保持运行,并对三座吸附塔1的气压状态形成影响,保证由三座吸附塔1构成的塔组能随时产生产品气,从而改善传统的两塔工艺系统中,鼓风机5和真空泵6存在无效工作时间,导致系统功耗增加的问题。在以下方法中作详细说明。
其中,产品气单元还包括设置为三个的二号排气阀9和一个均压塔91;三个二号排气阀9分别连通于三座吸附塔1的出气口,且二号排气阀9相对于一号排气阀8靠近吸附塔1;均压塔91同时连通于三个二号排气阀9,以对吸附塔1进行一定程度的均压操作,加快吸附塔1的压力改变过程。且缓冲罐81和均压塔91连通,在连通的管道上设置有总阀92,总阀92相对于二号排气阀9靠近缓冲罐81,以实现缓冲罐81和均压塔91的互通,将进入到均压塔91内的产品气传输于缓冲罐81内,并得到充分利用。
作为另一实施例,在一号涡轮7和二号涡轮71上均设置有可调喷嘴,以使涡轮具有较大的变功率特性,与运行转速相配合,使离心鼓风机5/真空泵6工作在最高效率线附近,形成涡轮-鼓风机/真空泵带喷嘴可调的共同工作线。
参照图4,另一方面,本发明/实用新型实施例还提出了一种应用于利用涡轮驱动的变压吸附气体分离系统的分离方法,其包括以下步骤:
S1、对第一座吸附塔1充气并生成产品气:
首先,打开一号排空阀52进行旁路放空,然后启动鼓风机5,通过鼓风机5、充气阀2对第一座吸附塔1和第三座吸附塔1进行充气,使得第一座吸附塔1生成产品气并通过一号排气阀8传输于缓冲罐81,充气时间6-10秒;同时启动真空泵6,通过抽空阀3对第二座吸附塔1抽真空,抽真空时间8-12秒;此时,第三座吸附塔1完成鼓风并通过放空阀4进行放空,放空时间1-3秒;
S2、保持第一座吸附塔1与相关原料气单元(充气阀2)和产品气单元(一号排气阀8、缓冲罐81)动作:
第二座吸附塔1完成抽真空,并通过放空阀4对第二座吸附塔1开始放空,放空时间1-3秒;同时第三座吸附塔1放空完成,利用真空泵6、抽空阀3对第三座吸附塔1抽真空,抽真空时间8-12秒;
S3、对第二座吸附塔1充气并生成产品气:
第一座吸附塔1完成鼓风,通过关闭一号排气阀8切断第一座吸附塔1和缓冲罐81的连接,并通过放空阀4开始放空,放空时间1-3秒;同时通过鼓风机5、充气阀2对第二座吸附塔1开始鼓风,鼓风时间8-12秒,第二座吸附塔1生成产品气并通过一号排气阀8传输于缓冲罐81,输气时间8-12秒;第三座吸附塔1持续抽真空;
S4、保持第二座吸附塔1与相关原料气单元(充气阀2)和产品气单元(一号排气阀8、缓冲罐81)动作:
第一座吸附塔1完成放空并通过真空泵6、抽空阀3开始抽真空,抽真空时间8-12秒;同时第三座吸附塔1完成抽真空,通过放空阀4对第三座吸附塔1开始放空,放空时间1-3秒;
S5、对第三座吸附塔1充气并生成产品气:
第一座吸附塔1持续抽真空;同时通过关闭一号排气阀8切断第二座吸附塔1和缓冲罐81的连接,并通过放空阀4开始放空,放空时间1-3秒;第三座吸附塔1完成放空,同时通过鼓风机5、充气阀2对第三座吸附塔1开始鼓风,第三座吸附塔1生成产品气并通过一号排气阀8传输于缓冲罐81,输气时间8-12秒;
S6、保持第三座吸附塔1与相关原料气单元(充气阀2)和产品气单元(一号排气阀8、缓冲罐81)动作:
第一座吸附塔1完成抽真空,并通过放空阀4开始放空,放空时间1-3秒;第二座吸附塔1完成放空,并通过真空泵6、抽空阀3开始抽真空,抽真空时间8-12秒;
S7、重复步骤S1-S6,形成变压吸附系统的循环周期。
通过上述分离方法,在分离过程中,鼓风机5和真空泵6始终处于工作状态中,并对第一座第一座吸附塔1、第二座第二座吸附塔1以及第三座第三座吸附塔1依次进行充气或抽真空动作,使得第一座第一座吸附塔1、第二座第二座吸附塔1以及第三座第三座吸附塔1、和鼓风机5以及真空泵6得到无间隙的轮换使用,鼓风机5和真空泵6不再像两塔流程那样有无效工作时间,从而改善了现有技术中鼓风机5和真空泵6存在无效工作时间,导致系统功耗增加的问题。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种利用涡轮驱动的变压吸附气体分离系统,包括鼓风机(5)、间接连通于鼓风机(5)出气口的吸附塔(1)、进气口间接连通于吸附塔(1)的真空泵(6)以及连通于吸附塔(1)出气口的产品气单元,其特征在于:所述吸附塔(1)设置为三座且呈并联设置;还包括,
    原料气单元,设置为三个,同时连通于鼓风机(5)的出气口和真空泵(6)的进气口,并分别连通于三座吸附塔(1)的进气口,用于传输气体;
    一号涡轮(7),连接于鼓风机(5);
    二号涡轮(71),连接于真空泵(6);
    以及控制单元,用以驱动原料气单元、一号涡轮(7)、二号涡轮(71)以及产品气单元启闭,以交替实现三座吸附塔(1)的充气、放空或抽真空。
  2. 根据权利要求1所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于,所述原料气单元包括:
    充气阀(2),同时连通于鼓风机(5)的出气口和吸附塔(1)的进气口,以实现吸附塔(1)的充气;
    抽空阀(3),同时连通于真空泵(6)的进气口和吸附塔(1)的进气口,且相对于充气阀(2)靠近吸附塔(1),以实现吸附塔(1)的抽真空;
    放空阀(4),连通吸附塔(1)的进气口,相对于抽空阀(3)靠近吸附塔(1),以实现吸附塔(1)的放空,使吸附塔(1)内外气压平衡。
  3. 根据权利要求1所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于,所述产品气单元包括:
    一号排气阀(8),设置为三个,分别连通于三座吸附塔(1)的出气口;
    缓冲罐(81),进气口同时连通于三个一号排气阀(8)。
  4. 根据权利要求3所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于,所述产品气单元还包括:
    二号排气阀(9),设置为三个,分别连通于三座吸附塔(1)的出气口,且相对于一号排气阀(8)靠近吸附塔(1);
    均压塔(91),进气端同时连通于三个二号排气阀(9)。
  5. 根据权利要求4所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于:所述缓冲罐(81)和均压塔(91)连通,连通的管道上设置有总阀(92),所述总阀(92)相对于二号排气阀(9)靠近缓冲罐(81)。
  6. 根据权利要求2所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于:所述鼓风机(5)的进气口连通有进气滤箱(51),所述真空泵(6)的出气口连通有排气消声器(61)。
  7. 根据权利要求6所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于:所述鼓风机(5)的出气口连通有一号排空阀(52),所述一号排空阀(52)相对于充气阀(2)靠近鼓风机(5)。
  8. 根据权利要求6所述的利用涡轮驱动的变压吸附气体分离系统,其特征在于:所述真空泵(6)的进气口连通有二号排空阀(62),所述二号排空阀(62)相对于抽空阀(3)靠近真空泵(6)。
  9. 一种应用于利用涡轮驱动的变压吸附气体分离系统的分离方法,其特征在于,包括以下步骤:
    S1、启动鼓风机(5),对第一座吸附塔(1)充气并生成产品气;启动真空泵(6),对第二座吸附塔(1)抽真空;并对第三座吸附塔(1)进行放空;
    S2、保持第一座吸附塔(1)充气并生成产品气动作,对第二座吸附塔(1)进行放空,并对第三座吸附塔(1)抽真空;
    S3、对第二座吸附塔(1)充气并生成产品气,对第一座吸附塔(1)开始放空,对第三座吸附塔(1)持续抽真空;
    S4、保持第二座吸附塔(1)充气并生成产品气动作,对第一座吸附塔(1)抽真空,对第三座吸附塔(1)开始放空;
    S5、对第三座吸附塔(1)充气并生成产品气,对第一座吸附塔(1)持续抽真空,对第二座吸附塔(1)开始放空;
    S6、保持第三座吸附塔(1)充气并生成产品气动作,对第一座吸附塔(1)开始放空,对第二座吸附塔(1)开始抽真空;
    S7、重复步骤S1-S6。
  10. 根据权利要求9所述的应用于利用涡轮驱动的变压吸附气体分离系统的分离方法,其特征在于:启动所述鼓风机(5)时,先打开一号排空阀(52)进行旁路放空;关闭所述真空泵(6)时,先打开二号排空阀(62)进行真空泵(6)的放空。
PCT/CN2022/119574 2022-09-19 2022-09-19 利用涡轮驱动的变压吸附气体分离系统及分离方法 WO2024059964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119574 WO2024059964A1 (zh) 2022-09-19 2022-09-19 利用涡轮驱动的变压吸附气体分离系统及分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119574 WO2024059964A1 (zh) 2022-09-19 2022-09-19 利用涡轮驱动的变压吸附气体分离系统及分离方法

Publications (1)

Publication Number Publication Date
WO2024059964A1 true WO2024059964A1 (zh) 2024-03-28

Family

ID=90453600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119574 WO2024059964A1 (zh) 2022-09-19 2022-09-19 利用涡轮驱动的变压吸附气体分离系统及分离方法

Country Status (1)

Country Link
WO (1) WO2024059964A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216454A (ja) * 1997-01-30 1998-08-18 Kagaku Gijutsu Shinko Jigyodan パルス流制御式圧力スイング吸着法およびガス流れのパルス流制御法
JPH11292506A (ja) * 1998-04-10 1999-10-26 Showa Engineering Co Ltd 低圧酸素濃縮法
CN106698357A (zh) * 2016-12-28 2017-05-24 北京金大万翔环保科技有限公司 一种三塔低压吸附真空解吸制备氧气的装置和方法
CN107243225A (zh) * 2017-07-25 2017-10-13 杨炯良 一种具有均压罐的真空变压吸附制氧系统及其制氧方法
CN110860184A (zh) * 2019-12-06 2020-03-06 马光俊 一种稳压运行的真空变压吸附系统及其工艺
CN113457373A (zh) * 2021-07-23 2021-10-01 成都华西堂投资有限公司 一种高效利用吸附剂的vpsa制氧工艺及其系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216454A (ja) * 1997-01-30 1998-08-18 Kagaku Gijutsu Shinko Jigyodan パルス流制御式圧力スイング吸着法およびガス流れのパルス流制御法
JPH11292506A (ja) * 1998-04-10 1999-10-26 Showa Engineering Co Ltd 低圧酸素濃縮法
CN106698357A (zh) * 2016-12-28 2017-05-24 北京金大万翔环保科技有限公司 一种三塔低压吸附真空解吸制备氧气的装置和方法
CN107243225A (zh) * 2017-07-25 2017-10-13 杨炯良 一种具有均压罐的真空变压吸附制氧系统及其制氧方法
CN110860184A (zh) * 2019-12-06 2020-03-06 马光俊 一种稳压运行的真空变压吸附系统及其工艺
CN113457373A (zh) * 2021-07-23 2021-10-01 成都华西堂投资有限公司 一种高效利用吸附剂的vpsa制氧工艺及其系统

Similar Documents

Publication Publication Date Title
US5529614A (en) Pressure swing adsorption unit
US7785405B2 (en) Systems and methods for gas separation using high-speed permanent magnet motors with centrifugal compressors
JPH08232870A (ja) 真空ポンプスタンド
CN108317132B (zh) 一种防止抛沙灭火车叶轮旋转过载的控制系统
WO2024059964A1 (zh) 利用涡轮驱动的变压吸附气体分离系统及分离方法
CN103597214A (zh) 抽空室
CN111691967A (zh) 两级增压器和发动机
WO2023116070A1 (zh) Vpsa气体分离系统及其控制方法
CA2673764A1 (en) Method for controlling a turbocompressor
WO2019052131A1 (zh) 低碳、无油大抽速真空抽气机组
US20080080982A1 (en) Evacuation apparatus
CN112177950B (zh) 一种循环离心气体压缩机
CN102269045B (zh) 螺杆式复合增压系统及其控制方法
JPS61123777A (ja) 真空ポンプ
CN209908792U (zh) 一种应用在psa空气分离系统中的涡轮驱动离心鼓风机
CN220758600U (zh) 变压吸附制氧装置
CN213574607U (zh) 一种使用罗茨真空泵的串并联模块式真空系统
JP3378949B2 (ja) 圧力変動式空気分離装置及びその運転方法
JP3387225B2 (ja) 多段遠心圧縮機の無負荷運転切換方法及び装置
CN202157964U (zh) 一种智能调节真空系统
CN111943145A (zh) 一种真空变压吸附氧气设备的工作方法
JP4045362B2 (ja) 多段式容積移送型ドライ真空ポンプ
CN214063070U (zh) 一种节能型低速高效汽轮机辅助供气装置
CN219993887U (zh) 一种v型正负压一体式压缩机
CN210051180U (zh) 一种电厂凝汽器抽真空高效节能真空机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958978

Country of ref document: EP

Kind code of ref document: A1