WO2024057433A1 - Component mounter and component imaging method - Google Patents

Component mounter and component imaging method Download PDF

Info

Publication number
WO2024057433A1
WO2024057433A1 PCT/JP2022/034371 JP2022034371W WO2024057433A1 WO 2024057433 A1 WO2024057433 A1 WO 2024057433A1 JP 2022034371 W JP2022034371 W JP 2022034371W WO 2024057433 A1 WO2024057433 A1 WO 2024057433A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging
period
unit
head unit
Prior art date
Application number
PCT/JP2022/034371
Other languages
French (fr)
Japanese (ja)
Inventor
剣 曽根
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/034371 priority Critical patent/WO2024057433A1/en
Publication of WO2024057433A1 publication Critical patent/WO2024057433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a technique of using a camera to image a component picked up by a head unit that mounts the component on a board.
  • Patent Document 1 describes a component mounting machine that picks up components supplied to a component supply position using a nozzle of a mounting head and mounts them on a board.
  • This component mounting machine is equipped with a component recognition camera, and the nozzle that has picked up the component passes above the component recognition camera before mounting the component on the board. Take an image. In this way, the position of the component relative to the nozzle is recognized based on the result of imaging the component.
  • correction coefficients derived from predicted vibrations are stored in advance. Then, the position of the component determined from the result of imaging the component is corrected using this correction coefficient.
  • the head unit that picks up the components needs to pass above the component recognition camera before mounting the components on the board. Therefore, the time required for a mounting turn from when the head unit picks up the component to when the component is mounted on the board becomes long. Therefore, by capturing an image of the component in parallel with the movement of the head unit using a camera that is supported by the head unit and moves with the head unit, it is possible to reduce the time required for a mounting turn.
  • the camera is supported by the head unit so as to be movable in a predetermined direction with respect to the head unit, and while moving relative to the head unit in a predetermined direction, the camera takes an image of the component attracted to the head unit. Therefore, the inertial force accompanying the acceleration/deceleration of the head unit may affect the image pickup of the component by the camera, and the component may not be properly imaged.
  • This invention was made in view of the above-mentioned problem, and when an image of a part is captured by a camera that is supported by a head unit that picks up parts and moves with the head unit, the inertial force accompanying the acceleration and deceleration of the head unit is The purpose of this is to eliminate the influence that it has on imaging.
  • the component mounting machine includes a component supply section that supplies components to a component supply position, a board transport section that carries a board to a work position, and a suction operation that suctions components supplied to the component supply position.
  • a head unit a unit drive unit that performs a component transfer operation that transfers components attracted to the head unit to a position facing the substrate by driving the head unit, and a unit drive unit that can be moved in a predetermined direction with respect to the head unit.
  • a camera that is supported by the head unit and moves with the head unit driven by a unit drive section, a camera drive section that drives the camera in a predetermined direction with respect to the head unit, and a camera that is a component that is attracted to the head unit.
  • control unit that executes imaging while causing the camera drive unit to drive the camera in a predetermined direction, the control unit driving the head unit in the predetermined direction during a period different from a period in which the unit drive unit accelerates or decelerates the head unit.
  • Period-limited imaging control is executed to image the component using the camera that is used.
  • the component imaging method includes a step of performing a component transfer operation of transferring the component sucked by the head unit to a position facing a substrate by driving a head unit that sucks the component; the camera is supported by the head unit so as to be movable in a predetermined direction, and is driven in a predetermined direction.
  • Period-limited imaging control is executed in which the component is imaged by a camera driven in a predetermined direction in a period different from the period in which the component is imaged.
  • a component transfer operation is performed in which the components sucked by the head unit are transferred to a position facing the board. is executed. Then, a camera supported by the head unit so as to be movable in a predetermined direction with respect to the head unit and driven in a predetermined direction captures an image of the component attracted to the head unit. Therefore, during a period in which the head unit is accelerated or decelerated, there is a possibility that the inertial force generated due to the acceleration or deceleration may affect the imaging of the component by the camera.
  • period-limited imaging control is executed in which a camera driven in a predetermined direction images a component in a period different from the period in which the head unit is accelerated or decelerated.
  • the unit drive section accelerates the head unit to a predetermined unit speed during the acceleration period, moves the head unit at a constant speed at the unit speed during a constant speed period following the acceleration period, and moves the head unit at a constant speed during a deceleration period following the constant speed period.
  • the period-limited imaging control is a constant-velocity imaging mode in which the camera does not image the parts during the acceleration and deceleration periods, but instead allows the camera to image the parts during the constant-velocity period.
  • the component mounter may be configured to be able to perform the following steps. In this configuration, by executing the constant velocity imaging mode, it is possible to eliminate the influence of inertial force generated during the acceleration period and the deceleration period on the imaging of the component.
  • control unit may configure the component mounter to set the unit speed so that imaging of the component is completed during the constant-velocity period.
  • control is performed to reduce the unit speed so that the imaging of the component can be completed during the constant velocity period. It will be executed. As a result, it is possible to suppress the occurrence of a situation where the imaging of the component is not completed in the constant velocity period and the constant velocity imaging mode fails.
  • the period limited imaging control can further execute a stop imaging mode in which a camera takes an image of a component that is attracted to a stopped head unit before the start of the component transfer operation, and either a constant velocity imaging mode or a stop imaging mode.
  • the component mounter may be configured to perform one of the two. In this configuration, by executing the stop imaging mode, it is possible to eliminate the influence of inertial force generated during the acceleration period and the deceleration period on the imaging of the component.
  • the control unit further includes an imaging mode selection unit that accepts a user's operation to select one imaging mode from the constant velocity imaging mode and the stop imaging mode, and the control unit selects the one imaging mode selected in the imaging mode selection unit.
  • the component mounter may be configured to perform this. With this configuration, it is possible to image the component in one of the constant velocity imaging mode and the stop imaging mode, depending on the user's needs.
  • the control unit also executes a mode selection process for selecting one imaging mode from the constant velocity imaging mode and the stop imaging mode, executes the one imaging mode selected by the mode selection process, and executes the one imaging mode selected by the mode selection process. , when executing the constant speed imaging mode, the time required to complete the mounting of the component picked up by the pickup operation on the board, and when executing the stop imaging mode, the time required to complete the mounting of the component picked up by the pickup operation onto the board.
  • the component mounter may be configured to select one imaging mode based on a comparison with the time required to complete mounting.
  • the control unit controls the period-limited imaging of high-precision parts by the camera.
  • the component mounter may be configured to perform the process under control. With this configuration, it is possible to eliminate the influence of inertial force accompanying acceleration and deceleration of the head unit on imaging of high-precision parts.
  • control section does not perform period-limited imaging control regarding imaging of low-precision parts by the camera, and allows the camera to take images of low-precision parts during a period in which the unit drive section accelerates or decelerates the head unit.
  • a component mounting machine may also be configured. With such a configuration, the period during which the unit drive section accelerates or decelerates the head unit can be used to image the low-precision component, thereby making it possible to efficiently image the low-precision component.
  • the period-limited imaging control may configure the component mounter so that it can execute a stop imaging mode in which a camera takes an image of a component that is attracted to a stopped head unit before the start of the component transfer operation.
  • a stop imaging mode in which a camera takes an image of a component that is attracted to a stopped head unit before the start of the component transfer operation.
  • the control unit controls the period-limited imaging of high-precision parts by the camera.
  • the component mounter may be configured to perform the process under control. With this configuration, it is possible to eliminate the influence of inertial force accompanying acceleration and deceleration of the head unit on imaging of high-precision parts.
  • control section does not perform period-limited imaging control regarding imaging of low-precision parts by the camera, and allows the camera to take images of low-precision parts during a period in which the unit drive section accelerates or decelerates the head unit.
  • a component mounting machine may also be configured. With such a configuration, the period during which the unit drive section accelerates or decelerates the head unit can be used to image the low-precision component, thereby making it possible to efficiently image the low-precision component.
  • the head unit has a plurality of nozzles arranged in a predetermined direction, and the nozzles suck the parts
  • the camera has a retracted position provided on one side in the predetermined direction from the plurality of nozzles, and a plurality of nozzles. It is movable relative to the head unit between the head unit and the other retracted position provided on the other side in a predetermined direction, and images the high-precision parts attracted to the nozzle while moving from one retracted position to the other retracted position.
  • a scan imaging determination process is executed to determine the execution scan imaging to be performed in the stop imaging mode for the high-precision parts to be picked up by the unit from among the first scan imaging and the second scan imaging, and the scanning
  • execution scan imaging is determined according to the position in a predetermined direction of the high-precision component that is picked up by the head unit by the attraction operation, and the control unit determines when the first scan imaging is determined to be the execution scan imaging.
  • the camera is positioned at one retracted position before the start of the suction operation, and when the second scan imaging is determined to be the execution scan imaging, the camera is positioned at the other retracted position before the start of the suction operation.
  • the component mounting machine may be configured. In this configuration, the moving direction of the camera when executing the stop imaging mode is determined according to the position of the high-precision component that is attracted to the head unit. As a result, the high-precision component can be imaged while moving the camera in a rational direction depending on the position of the high-precision component, and the time required to image the high-precision component can be kept short.
  • the control unit moves the high-precision parts and low-precision parts to the head so that all of the high-precision parts are located on one side of all of the low-precision parts. Either a first suction mode in which the unit suctions the parts, or a second suction mode in which the high-precision parts and low-precision parts are suctioned to the head unit so that all the high-precision parts are located on the other side of all the low-precision parts. and when executing the first suction mode, the first scan imaging is performed in the stop imaging mode, and when executing the second suction mode, the second scan imaging is performed in the stop imaging mode.
  • the component mounting machine may be configured as follows.
  • the high-precision parts can be imaged by moving the camera from a state where the high-precision parts are gathered at the evacuation position side where the camera is located between the one evacuation position and the other evacuation position, and the high-precision parts can be imaged by the camera.
  • the time required can be kept short.
  • the control section further includes a control selection section that accepts a user's operation to select whether or not to execute the period limited imaging control, and when the control selection section selects to execute the period limited imaging control, the control section selects whether or not to perform the imaging of the part. If the period-limited imaging control is executed, but if the control selection section selects not to execute the period-limited imaging control, the period during which the unit drive section accelerates or decelerates the head unit without executing the period-limited imaging control.
  • the component mounter may be configured to allow the camera to take an image of the component. With this configuration, it is possible to determine whether or not to execute period-limited imaging control depending on the user's needs.
  • the present invention when a part is imaged by a camera that is supported by a head unit that picks up parts and moves with the head unit, the influence of inertial force caused by acceleration and deceleration of the head unit on the part image is eliminated. It becomes possible to do so.
  • FIG. 1 is a plan view schematically showing an example of a component mounting machine according to the present invention.
  • FIG. 2 is a block diagram showing the electrical configuration of the component mounting machine of FIG. 1.
  • FIG. 3 is a front view schematically showing a component recognition unit included in the component mounting machine.
  • FIG. 3B is a side view schematically showing the component recognition unit of FIG. 3A.
  • FIG. 3B is a front view schematically showing the operation of the component recognition unit in FIG. 3A.
  • FIG. 3B is a front view schematically showing the operation of the component recognition unit in FIG. 3A.
  • 5 is a flowchart showing operations in a mounting turn in which a head unit picks up a component and mounts it on a board.
  • FIG. 5 is a timing chart schematically showing an example of speed control performed on the component recognition unit in the mounting turn of FIG. 4.
  • FIG. 11 is a flowchart showing an example of a constant speed imaging mode.
  • FIG. 3 is a diagram schematically showing control contents executed in constant-velocity imaging mode.
  • FIG. 3 is a diagram schematically showing control contents executed in constant-velocity imaging mode.
  • 5 is a flowchart showing an example of a stop imaging mode.
  • FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode.
  • FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode.
  • FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode.
  • FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode.
  • 5 is a flowchart illustrating an example of imaging mode determination processing.
  • FIG. 3 is a front view schematically showing an example of a suction operation.
  • FIG. 3 is
  • FIG. 1 is a plan view schematically showing an example of a component mounter according to the present invention
  • FIG. 2 is a block diagram showing the electrical configuration of the component mounter of FIG. 1.
  • the X direction which is a horizontal direction
  • the Y direction which is a horizontal direction orthogonal to the X direction
  • the Z direction which is a vertical direction
  • This component mounting machine 1 executes component mounting to mount a component E (FIGS. 3A to 3D) onto a board B.
  • the component mounter 1 includes a control section 100 that centrally controls the operations of the component mounter 1.
  • the control unit 100 includes a main control unit 110, a storage unit 120, a drive control unit 130, an imaging control unit 140, and a UI (User Interface) 150.
  • the main control unit 110 is composed of a processor such as a CPU (Central Processing Unit), and executes signal processing necessary for controlling the component mounting machine 1. Note that the specific configuration of the main control unit 110 is not limited to a CPU, and may be, for example, an FPGA (Field Programmable Gate Array).
  • the storage unit 120 is a storage device configured with an SSD (Solid State Drive), an HHD (Hard Disk Drive), or the like.
  • the drive control section 130 controls the drive system of the component mounter 1, and the imaging control section 140 controls the imaging system of the component mounter 1.
  • the UI 150 includes input devices such as a keyboard and a mouse, and output devices such as a display. Note that the input device and the output device of the UI 150 do not need to be configured separately, and may be configured integrally using, for example, a touch panel display.
  • the storage unit 120 stores various data and information necessary for component mounting, such as board data 121 and component information 122.
  • the board data 121 indicates the type of component E to be mounted on a mounting position (for example, a land, etc.) provided on the board B, and the order in which the component E is mounted.
  • Component E is mounted on board B.
  • the component E includes a high-precision component Eh and a low-precision component El
  • the component information 122 indicates that the component E scheduled to be mounted on the board B is a high-precision component Eh and a low-precision component El. For each part E, it is shown which one it is.
  • This component information 122 is created by the user by operating the UI 150, for example, and is stored in the storage unit 120. However, the main control section 110 may automatically create the component information 122 based on the board data 121 and store it in the drive control section 130. Specifically, each component E is assigned to one of the high-precision component Eh and the low-precision component El based on the size of the component E, the arrangement pitch of the terminals of the component E, the distance between adjacent components E on the board B, etc. Part information 122 can be created by performing a classification operation.
  • the component mounting machine 1 includes a pair of conveyors 12, 12 provided on a base 11. Then, the component mounter 1 mounts the component E on the board B carried by the conveyor 12 from the upstream side in the X direction (board transport direction) to the work position 13 (the position of the board B in FIG. 1), and mounts the component E on the board B.
  • the board B (component mounting board B) that has been completed is carried out from the work position 13 to the downstream side in the X direction by the conveyor 12.
  • the component mounter 1 is provided with a pair of Y-axis rails 21, 21 extending in the Y direction, a Y-axis ball screw 22 extending in the Y-direction, and a Y-axis motor My that rotationally drives the Y-axis ball screw 22.
  • An extending X-axis rail 24 is supported by a pair of Y-axis rails 21, 21 so as to be movable in the Y direction, and is fixed to a nut of a Y-axis ball screw 22.
  • An X-axis ball screw 25 extending in the X direction and an X-axis motor Mx that rotationally drives the X-axis ball screw 25 are attached to the X-axis rail 24 .
  • the component mounting machine 1 also includes a head unit 3 supported movably in the X direction by an X-axis rail 24, and the head unit 3 is fixed to a nut of an X-axis ball screw 25. Therefore, the drive control section 130 causes the Y-axis motor My to rotate the Y-axis ball screw 22 to move the head unit 3 in the Y direction, and causes the X-axis motor Mx to rotate the X-axis ball screw 25 to move the head unit 3 in the X direction. can be moved to
  • Two component supply units 5 are lined up in the X direction on each side of the pair of conveyors 12, 12 in the Y direction, and each component supply unit 5 removably supports a plurality of tape feeders 51 arranged in the X direction. has been done.
  • the tape feeder 51 has a component supply position 52 provided at the tip end on the work position 13 side, and supplies the component E to the component supply position 52 .
  • a component storage tape is attached to the tape feeder 51, and this component storage tape stores the components E in each of a plurality of pockets arranged in a line. Then, the tape feeder 51 supplies the component E to the component supply position 52 by intermittently conveying the component storage tape toward the component supply position 52 .
  • the head unit 3 includes a plurality of mounting heads 31 (eight in the example of FIG. 1) arranged in the X direction, and a Z-axis motor Mz (FIG. 2) that moves the mounting heads 31 up and down in the Z direction.
  • the mounting head 31 has an elongated shape extending in the Z direction, and attracts and holds the component E using a nozzle N (FIGS. 3A to 3D) that is detachably attached to the lower end of the mounting head 31.
  • the nozzle N mounts the component E taken out from the component supply position 52 onto the board B.
  • the drive control unit 130 causes the nozzle N of the mounting head 31 to face the component supply position 52 from above by driving the head unit 3 using the X-axis motor Mx and the Y-axis motor My. Subsequently, the drive control unit 130 lowers the mounting head 31 using the Z-axis motor Mz, and brings the nozzle N of the mounting head 31 into contact with the component E in the component supply position 52. The mounting head 31 generates negative pressure in the nozzle N that is in contact with the component E, so that the component E is attracted to the nozzle N. When the drive control unit 130 raises the mounting head 31 using the Z-axis motor Mz, the component E attracted to the nozzle N is taken out from the component supply position 52.
  • the drive control unit 130 drives the head unit 3 using the X-axis motor Mx and the Y-axis motor My to move the component E attracted to the nozzle N of the mounting head 31 to the mounting position of the board B at the work position 13. facing from above. Subsequently, the drive control unit 130 lowers the mounting head 31 using the Z-axis motor Mz, and brings the component E attracted by the nozzle N of the mounting head 31 into contact with the mounting position of the board B. Then, the mounting head 31 releases the negative pressure of the nozzle N that sucks the component E that has come into contact with the mounting position of the board B. In this way, the component E is mounted on the mounting position of the board B.
  • the component mounting machine 1 includes a component recognition camera C that images the component E that is attracted to the mounting head 31 of the head unit 3, and a camera motor that drives the component recognition camera 41 in the X direction. It is equipped with Mc. Next, these will be explained using FIGS. 3A to 3D.
  • FIG. 3A is a front view schematically showing a component recognition unit included in a component mounter
  • FIG. 3B is a side view schematically showing the component recognition unit in FIG. 3A
  • FIGS. 3C and 3D are parts in FIG. 3A
  • FIG. 3 is a front view schematically showing the operation of the recognition unit. Note that in FIGS. 3A, 3C, and 3D, the X(+) side in the X direction and the X( ⁇ ) side opposite to the X(+) side in the X direction are shown.
  • the component recognition unit 4 is attached to the head unit 3 and moves in the X and Y directions with the head unit 3 driven by the X-axis motor Mx and the Y-axis motor My. .
  • the head unit 3 has a unit body 30 having a substantially rectangular parallelepiped shape, and the unit body 30 supports a plurality of mounting heads 31 so as to be movable up and down in the Z direction.
  • the component recognition unit 4 includes an X-axis guide member 41 that is attached to the unit body 30 and is parallel to the X-direction, and a movable supporter 42 that moves in the X-direction along the X-axis guide member 41.
  • the movable supporter 42 also includes an upright frame 421 extending in the Z direction, and a bottom frame 422 extending in the Y direction from the lower end of the upright frame 421, with the upper end of the upright frame 421 extending in the It engages with the shaft guide member 41.
  • the component recognition camera C is attached to the bottom frame 422 facing upward. In this way, the component recognition camera C supported by the movable supporter 42 is movable in the X direction while being guided by the X-axis guide member 41.
  • the camera motor Mc moves the component recognition camera C in the X direction by driving the movable supporter 42 in the X direction.
  • This camera motor Mc can be configured by, for example, a linear motor. That is, the stator of the camera motor Mc is attached to the X-axis guide member 41, and the movable element of the camera motor Mc is attached to the upper end of the movable supporter 42, and the movable supporter 42 is moved by the magnetic force generated between the stator and the movable element. Can be driven in the X direction.
  • the specific configuration of the camera motor Mc is not limited to a linear motor, and may be a ball screw, for example.
  • the camera motor Mc is located at a retracted position L(+) provided on the X(+) side of the plurality of nozzles N and a retracted position L(+) provided on the X(-) side of the plurality of nozzles N in the X direction.
  • the component recognition camera C can be moved between the retracted position L(-) provided on the side. Therefore, the drive control unit 130 controls the position of the component recognition camera C in the X direction by the camera motor Mc, so that the component recognition camera C can be opposed from below.
  • the imaging control unit 140 can obtain an image of the component E (bottom view image) obtained by the component recognition camera C capturing the opposing component E from below by causing the component recognition camera C to perform imaging.
  • the direction in which the component E is imaged is not limited to this example, and the component E may be configured to be imaged from the Y direction to obtain an image (side view image) of the component E.
  • the component recognition unit 4 can capture images of a plurality of components E each attracted to a plurality of nozzles N by scanning imaging shown in FIGS. 3C and 3D.
  • the drive control unit 130 positions the component recognition camera C at the retracted position L(-) by controlling the camera motor Mc (step S11).
  • the drive control unit 130 moves the component recognition camera C from the retracted position L(-) to the retracted position L(+) by driving the component recognition camera C toward the X(+) side in the X direction using the camera motor Mc. (step S12).
  • the drive control unit 130 stops the component recognition camera C at the retracted position L(+) by controlling the camera motor Mc (step S13).
  • the imaging control unit 140 The component recognition camera C is caused to take an image. As a result, images of the plurality of parts E each attracted by the plurality of nozzles N are acquired.
  • the drive control unit 130 positions the component recognition camera C at the retracted position L(+) by controlling the camera motor Mc (step S21). Subsequently, the drive control unit 130 moves the component recognition camera C from the retracted position L(+) to the retracted position L(-) by driving the component recognition camera C in the X(-) side of the X direction using the camera motor Mc. (step S22). When the component recognition camera C reaches the retracted position L(-), the drive control unit 130 stops the component recognition camera C at the retracted position L(-) by controlling the camera motor Mc (step S23). .
  • the imaging control unit 140 In parallel with the drive control unit 130 moving the component recognition camera C from the retracted position L(+) to the retracted position L(-) in the X(-) side (step S22), the imaging control unit 140 The component recognition camera C is caused to take an image. As a result, images of the plurality of parts E each attracted by the plurality of nozzles N are acquired.
  • the drive control unit 130 controls the camera motor Mc so that the component recognition camera C moves uniformly in the X direction at a predetermined scan speed Vc. control.
  • the camera motor Mc accelerates the component recognition camera C to the scan speed Vc.
  • the component recognition camera C that has started moving from the retracted position L(-) to the X(+) side faces the nozzle N at the end of the X(-) side of the plurality of nozzles N from below.
  • the acceleration of the component recognition camera C to the scanning speed Vc is completed by the time the component recognition camera C reaches the imaging position.
  • the deceleration of the scan speed of the component recognition camera C from Vc starts. do.
  • the speed of the component recognition camera C is similarly controlled.
  • FIG. 4 is a flowchart showing the operation in the mounting turn in which the head unit picks up components and mounts them on the board
  • FIG. 5 schematically shows an example of the speed control performed on the component recognition unit in the mounting turn in FIG. 4.
  • FIG. FIG. 5 shows a graph in which the horizontal axis represents time and the vertical axis represents speed.
  • the flowchart in FIG. 4 is executed under the control of the main control unit 110.
  • step S101 the head unit 3 suctions the component E supplied to the component supply position 52 to the nozzle N, thereby suctioning the component E to each of the plurality of nozzles N (suction operation).
  • the components E to be attracted by each nozzle N in the attraction operation are determined in advance according to the mounting order of the components E on the board B indicated by the board data 121.
  • the head unit 3 starts moving toward the substrate B.
  • the drive control unit 130 accelerates the stopped head unit 3 to a predetermined unit speed Vu (speed higher than zero) by controlling the X-axis motor Mx and the Y-axis motor My (step S102).
  • the speed of the head unit 3 increases from zero to the unit speed Vu during the acceleration period T1 from time t1 to time t2.
  • the drive control section 130 moves the head unit 3 at a constant speed at the unit speed Vu by controlling the X-axis motor Mx and the Y-axis motor My (Ste S103)
  • the speed of the head unit 3 becomes constant at the unit speed Vu during the constant speed period T2 from time t2 to time t3.
  • the drive control section 130 decelerates the head unit 3 from the unit speed Vu and stops it by controlling the X-axis motor Mx and the Y-axis motor My (step S104).
  • step S105 the head unit 3 mounts this component E on the board B (step S105).
  • the drive control unit 130 controls the mounting position of the board B by controlling the position of the nozzle N that sucks the component E based on the position of the component E indicated by the image of the component E captured by the component recognition camera C. Part E is mounted on.
  • the speed of the head unit 3 is a speed that is a combination of the speed in the X direction and the speed in the Y direction.
  • the acceleration period T1 at least one of the speed in the X direction and the speed in the Y direction increases over time.
  • both the speed in the X direction and the speed in the Y direction are constant regardless of the passage of time.
  • the deceleration period T3 at least one of the speed in the X direction and the speed in the Y direction decreases over time.
  • the component transfer operation (steps S102 to S104) of transferring the component E picked up by the head unit 3 from the component supply position 52 to a position facing the mounting position of the board B from above is performed by the X-axis motor Mx and the Y-axis motor Mx. This is executed by the control of the drive control unit 130 for the shaft motor My.
  • imaging of the plurality of components E attracted to the head unit 3 is performed in parallel with the component transfer operation. Specifically, during the period in which the head unit 3 is moving due to the component transfer operation (acceleration period T1, constant velocity period T2, and deceleration period T3), one of the scan images shown in FIGS. 3C and 3D is executed. Then, images of the plurality of parts E are captured (normal imaging mode).
  • the components E include a high-precision component Eh that requires high accuracy in the position where it is mounted on the board B, and a low-precision component El that does not require high precision in the position where it is mounted on the board B. If such imaging of the high-precision component Eh is performed during the acceleration period T1 or the deceleration period T3, the influence of inertial force accompanying acceleration and deceleration of the head unit 3 may occur. Therefore, for imaging the high-precision component Eh, a constant velocity imaging mode or a stop imaging mode, which will be described next, is executed as appropriate.
  • FIG. 6 is a flowchart showing an example of the constant-velocity imaging mode
  • FIGS. 7A, 7B, and 7C are diagrams schematically showing the control contents executed in the constant-velocity imaging mode.
  • codes N1 to N8 are given to the nozzles in order in the X direction in order to distinguish between the plurality of nozzles N
  • the horizontal axis represents time and the vertical axis represents a graph representing speed. It is shown.
  • the flowchart in FIG. 6 is executed under the control of the main control unit 110.
  • step S201 a suction operation is performed in the same manner as in step S101 above, and the plurality of nozzles N1 to N8 of the head unit 3 respectively suck a plurality of parts E.
  • the nozzles N1, N2, N4, N7, and N8 suction the low-precision component El
  • the nozzles N3, N5, and N6 suction the high-precision component Eh.
  • the plurality of parts E picked up by the head unit 3 include high-precision parts Eh and low-precision parts El.
  • step S202 the main control unit 110 calculates the high-precision component imaging time Th required to image the high-precision component Eh by scan imaging. Specifically, the existence range Rh in the X direction of the high-precision component Eh among the plurality of components E attracted to the head unit 3 is determined. When two or more, that is, Mh (Mh is an integer of 2 or more) high-precision parts Eh are attracted to the head unit 3, one of the Mh high-precision parts Eh is placed on the X(+) side end.
  • Mh Mh is an integer of 2 or more
  • the existence range Rh is determined such that the and is located at both ends of the existence range Rh. Then, the high-precision component imaging time Th is calculated by dividing the length of the existence range Rh in the X direction by the scan speed Vc.
  • step S203 the main control unit 110 calculates the constant velocity period T2. Specifically, a constant velocity period T2 in the component transfer operation for moving the head unit 3 from the start position to the target position is calculated.
  • the start position is the position of the head unit 3 at the time when the suction operation is completed
  • the target position is the part E to be mounted on the board B first among the plurality of parts E to be suctioned by the head unit 3. This is the position of the head unit 3 that faces the mounting position from above. Therefore, the closer the start position and target position are, the shorter the constant velocity period T2 becomes.
  • step S204 the main control unit 110 determines that the imaging of the high-precision component Eh is within the constant-velocity period T2 based on the comparison between the high-precision component imaging time Th calculated in step S202 and the constant-velocity period T2 calculated in step S203. Determine whether it is completed or not. If the high-precision component imaging time Th does not fall within the constant-velocity period T2, it is determined that the imaging of the high-precision component Eh is not completed within the constant-velocity period T2 (“NO” in step S204), and the main control unit 110 , the unit speed Vu is decreased in step S205, and then the constant velocity period T2 is calculated in step S203. As shown in the example of FIG.
  • the constant velocity period T2 when the unit speed Vu is the velocity V1 is shorter than the high precision component imaging time Th, and the imaging of the high precision component Eh cannot be completed within the constant velocity period T2 ( (“NO” in step S204).
  • the constant velocity period T2 when the unit speed Vu is a speed V2 lower than the speed V1, the constant velocity period T2 is longer than the high-precision component imaging time Th, and the high-precision component is captured within the constant velocity period T2. Imaging of Eh can be completed ("YES" in step S204). That is, the main control unit 110 reduces the unit speed Vu by a predetermined speed (step S205) and repeats steps S203 and S204, so that the unit Set speed Vu.
  • step S204 the drive control section 130 controls the X-axis motor Mx and the Y-axis motor My to move the head unit 3 to the unit speed Vu (speed V2). ) (step S206).
  • step S207 uniform velocity movement of the head unit 3 at the unit speed Vu is started (step S207).
  • step S208 the component recognition camera C images the component E while passing through the existence range Rh of the high-precision component Eh in the X direction, thereby performing imaging of the high-precision component Eh.
  • the unit speed of the head unit 3 is decelerated from the unit speed Vu (step S210). Further, when the head unit 3 stops, the component E that is attracted to the head unit 3 is mounted on the board B (step S211).
  • the imaging of the low-precision component El which is not the target of imaging during the high-precision component imaging time Th, is performed before or after the start of imaging of the high-precision component Eh.
  • low-precision components El to be attracted to the head unit 3 exist on both sides of the existence range Rh of the high-precision components Eh in the X direction. Therefore, as shown in FIG. 7C, a low-precision component imaging time Tl for imaging the low-precision component El exists before and after the high-precision component imaging time Th.
  • the low-precision component imaging time Tl before the high-precision component imaging time Th is provided from a point in the middle of the acceleration period T1 to a point in the middle of the constant velocity period T2 (the point in time when the high-precision component imaging time Th starts).
  • the low-precision component imaging time Tl after the high-precision component imaging time Th is provided from a point in the middle of the constant velocity period T2 (the point in time when the high-precision component imaging time Th ends) to a point in the middle of the deceleration period T3. It will be done.
  • FIG. 8 is a flowchart showing an example of the stop imaging mode
  • FIGS. 9A, 9B, and 9C are diagrams schematically showing the control contents executed in the stop imaging mode.
  • symbols N1 to N8 are sequentially attached to the nozzles in the X direction.
  • the plurality of parts E picked up by the head unit 3 include a high-precision part Eh and a low-precision part El.
  • FIG. 9C shows a graph in which the horizontal axis represents time and the vertical axis represents speed.
  • the flowchart in FIG. 8 is executed under the control of the main control unit 110.
  • step S301 the main control unit 110 determines the direction in which the component recognition camera C is moved (scan direction) when capturing an image of the high-precision component Eh by scan imaging, based on the position of the high-precision component Eh. Specifically, the main control unit 110 checks the position in the X direction of the high-precision component Eh to be sucked by the head unit 3 in the suction operation scheduled to be executed in step S303. In particular, among the high-precision parts Eh that are attracted to the head unit 3, the distance D(-) in the X direction between the one high-precision part Eh that is farthest from the retracted position L(-) and the retracted position L(-).
  • the distance D(+) in the X direction between the one high-precision component Eh that is farthest from the evacuation position L(+) among the high-precision components Eh attracted to the head unit 3 and the evacuation position L(+). are calculated respectively.
  • the component E to be picked up by each nozzle N in the picking operation is determined in advance based on the board data 121. Therefore, the position of the high-precision component Eh can be confirmed by specifying the high-precision component Eh from among the components E scheduled to be picked up by each nozzle N in the suction operation in step S303 based on the component information 122.
  • step S301 the main control unit 110 determines the scanning direction based on the position of the high-precision component Eh.
  • distance D(-) is shorter than distance D(+). Therefore, the time required to image the high-precision component Eh while moving the component recognition camera C from the retracted position L(-) toward the X(+) side is This is shorter than the time required to image the high-precision component Eh while moving the component recognition camera C toward. Therefore, it is determined that the high-precision component Eh should be imaged by scanning imaging (FIG. 3C) in which the component recognition camera C is moved in the scanning direction from the retracted position L(-) toward the X(+) side.
  • FIG. 3C scanning imaging
  • the distance D(+) is shorter than the distance D(-). Therefore, the time required to image the high-precision component Eh while moving the component recognition camera C from the retracted position L(-) toward the X(+) side is This is shorter than the time required to image the high-precision component Eh while moving the component recognition camera C toward. Therefore, it is determined that the high-precision component Eh should be imaged by scanning imaging (FIG. 3D) in which the component recognition camera C is moved in the scanning direction from the retracted position L(+) to the X(-) side.
  • step S302 the main control unit 110 positions the component recognition camera C at the retracted position corresponding to the retracted position determined in step S301, out of the retracted position L(+) and the retracted position L(-). That is, if the determined scan direction is from the retracted position L(-) toward the X(+) side, the main control section 110 positions the head unit 3 at the retracted position L(-). Furthermore, when the determined scanning direction is from the retracted position L(+) toward the X(-) side, the main control section 110 positions the head unit 3 at the retracted position L(+).
  • step S303 the head unit 3 performs a suction operation and suctions a plurality of parts E with a plurality of nozzles N. Then, scan imaging is started in a state where the head unit 3 that has completed the suction operation is stopped (step S304).
  • scan imaging is started in a state where the head unit 3 that has completed the suction operation is stopped (step S304).
  • the head unit 3 is accelerated (step S306), moved at constant speed (step S307), and Deceleration (step S308) is executed (component transfer operation). That is, as shown in FIG.
  • the stop imaging mode in the stop imaging mode, imaging of the high-precision component Eh is performed during the stop period T0 from when the head unit 3 completes the suction operation until the head unit 3 starts accelerating. . Therefore, the high-precision component imaging time Th for imaging the high-precision component Eh is included in the stop period T0, and the imaging of all the high-precision parts Eh is completed during the stop period T0.
  • the unimaged low-precision parts El are imaged by scan imaging that continues after acceleration of the head unit 3 is started in step S306.
  • the low-precision component imaging time Tl for imaging the low-precision component El is provided from the start of the acceleration period T1 to the middle of the constant velocity period T2. Then, when the component transfer operation (steps S306 to S308) is completed and the head unit 3 stops, the head unit 3 mounts the component E attracted by the nozzle N onto the substrate B (step S309).
  • imaging of the high-precision component Eh can be performed in the constant speed imaging mode and the stop imaging mode.
  • What these imaging modes have in common is a period different from the period in which the head unit 3 is accelerated or decelerated, specifically, a period in which the head unit 3 moves at a constant speed (uniform speed period T2), or a period in which the head unit 3 moves at a constant speed (uniform speed period T2)
  • the point is that imaging of the high-precision component Eh is performed during the stop period (stop period T0).
  • imaging of the high-precision component Eh is limited to a period different from the period during which the head unit 3 is accelerated or decelerated.
  • FIG. 10 is a flowchart illustrating an example of imaging mode determination processing.
  • the flowchart in FIG. 10 is executed under the control of the main control unit 110.
  • the imaging mode determination process is executed before the suction operation is started in order to determine in which imaging mode the high-precision component Eh scheduled to be suctioned in the suction operation is to be imaged.
  • step S401 it is determined whether period limited imaging control is set.
  • This period limited imaging control is a control that limits imaging of the high-precision component Eh to a period (constant velocity period T2, stop period T0) that is different from the period in which the head unit 3 is accelerated or decelerated.
  • Setting of the limited period imaging control is executed by the user's operation on the UI 150. If the period limited imaging control is not set (“NO” in step S401), the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 from now on in the normal imaging mode. It is determined to execute (step S402). Therefore, imaging of the high-precision component Eh is allowed during a period in which the head unit 3 is accelerated or decelerated (acceleration period T1 or deceleration period T3).
  • Step S401 it is determined whether the user has selected one of the constant velocity imaging mode and the stop imaging mode. (Step S403). That is, by operating the UI 150, the user can select one of the constant velocity imaging mode and the stop imaging mode.
  • step S403 it is determined whether the one imaging mode (that is, the selected imaging mode) is a constant velocity imaging mode. It will be judged. If the constant velocity imaging mode is selected (“YES” in step S404), the main control unit 110 changes the imaging of the high-precision component Eh to be picked up by the head unit 3 to the constant velocity imaging mode. It is determined that the process is to be executed (step S405). On the other hand, if the stop imaging mode is selected ("NO" in step S404), the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 in the stop imaging mode. (Step S406).
  • the takt time is calculated for each of the constant-velocity imaging mode and the stop imaging mode (step S407).
  • the takt time is the time from completion of the suction operation to completion of mounting on the board B of all the components E (high-precision components Eh and low-precision components El) that were suctioned by the suction operation. show.
  • the main control unit 110 predicts the takt time Tm when imaging the high-precision component Eh in the constant-velocity imaging mode, and predicts the takt time Tm when imaging the high-precision component Eh in the stop imaging mode. Predict time Ts.
  • step S408 the takt time Tm in the constant speed imaging mode and the takt time Ts in the stop imaging mode are compared. Then, when the tact time Tm in the constant velocity imaging mode is less than or equal to the tact time Ts in the stop imaging mode, the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 at a constant velocity. It is determined that the image capturing mode is to be executed (step S405). On the other hand, if the tact time Ts in the stop imaging mode is less than the takt time Tm in the constant velocity imaging mode, the main control unit 110 controls the stop imaging mode to stop the imaging of the high-precision component Eh to be picked up by the head unit 3 from now on. It is determined to execute depending on the mode (step S406).
  • a component transfer operation is performed to transfer the component E that is sucked by the head unit 3 to a position facing the substrate B ( Steps S102 to S104, Steps S206, S207, S209, S210, Steps S306 to S308).
  • the component E attracted to the head unit 3 is imaged by a component recognition camera C that is movably supported by the head unit 3 in the X direction (predetermined direction) and driven in the X direction. Ru.
  • the high-precision parts are detected by the part recognition camera C driven in the Control for imaging Eh (period-limited imaging control) is executed.
  • the high-precision component Eh is not imaged during the period in which the head unit 3 is accelerated or decelerated (acceleration period T1, deceleration period T3), and the timing at which the high-precision component Eh is imaged is during the stop period T0 or the constant velocity period. Limited to T2.
  • the component recognition camera C which is supported by the head unit 3 that sucks the high-precision component Eh and moves with the head unit 3
  • takes an image of the high-precision component Eh the inertial force accompanying the acceleration and deceleration of the head unit 3 is generated. This makes it possible to eliminate the influence that this would have on the imaging of the high-precision component Eh.
  • the X-axis motor Mx and the Y-axis motor My (unit drive section) accelerate the head unit 3 to a predetermined unit speed Vu during the acceleration period T1, and move the head unit 3 into the unit during the constant velocity period T2 following the acceleration period T1.
  • the component transfer operation is performed by moving the head unit 3 at a constant speed Vu and decelerating the head unit 3 from the unit speed Vu in a deceleration period T3 following the constant speed period T2.
  • the period limited imaging control does not allow the component recognition camera C to image the high-precision component Eh during the acceleration period T1 and the deceleration period T3, but causes the component recognition camera C to image the high-precision component Eh during the constant velocity period T2.
  • the control unit 100 sets the unit speed Vu so that the imaging of the high-precision component Eh is completed in the constant-velocity period T2 (steps S203 to S205).
  • the constant velocity period T2 is short because the unit speed Vu is high and the imaging of the high precision component Eh cannot be completed during the constant velocity period T2, the imaging of the high precision component Eh can be completed during the constant velocity period T2.
  • Control is executed to reduce the unit speed Vu. As a result, it is possible to suppress the occurrence of a situation where the imaging of the high-precision component Eh is not completed in the constant velocity period T2 and the constant velocity imaging mode fails.
  • the period limited imaging control includes stop imaging in which the component recognition camera C images a high-precision component Eh that is attracted to the stopped head unit 3 before the start of the component transfer operation (specifically, acceleration of the head unit 3).
  • mode (FIG. 8) can be executed. In this configuration, by executing the stop imaging mode, it is possible to eliminate the influence of the inertial force generated during the acceleration period T1 and the deceleration period T3 on the imaging of the high-precision component Eh.
  • the period limited imaging control executes either the constant speed imaging mode (FIG. 6) or the stop imaging mode (FIG. 8).
  • the constant velocity imaging mode or the stop imaging mode it is possible to eliminate the influence of the inertial force generated during the acceleration period T1 and the deceleration period T3 on the imaging of the high-precision component Eh.
  • a UI 150 (imaging mode selection unit) is provided that accepts a user's operation to select one imaging mode from the constant velocity imaging mode and the stop imaging mode, and the control unit 100 selects one of the imaging modes selected in the UI 150.
  • the imaging mode is executed (steps S403 to S406).
  • control unit 100 executes a mode selection process (steps S407, S408) for selecting one imaging mode from the constant velocity imaging mode and the stop imaging mode, and selects the one imaging mode selected by the mode selection process. (steps S405, S406).
  • the mode selection process when the constant-velocity imaging mode is executed, the amount required to complete the mounting of the parts E (high-precision parts Eh and low-precision parts El) picked up by the pick-up operation onto the board B is determined. Based on the comparison between the time Tm and the time Ts required to complete the mounting of the components E (high-precision components Eh and low-precision components El) picked up by the pickup operation onto the board B when the stop imaging mode is executed.
  • step S407, S408 selects one imaging mode (steps S407, S408).
  • control unit 100 does not execute period-limited imaging control for imaging the low-precision component El by the component recognition camera C, and does not perform period-limited imaging control for the period during which the X-axis motor Mx and the Y-axis motor My accelerate or decelerate the head unit 3 (acceleration
  • the low-precision component El is allowed to be imaged by the component recognition camera C during the period T1 and the deceleration period T3 (FIGS. 7C and 9C).
  • the low precision component imaging time Tl overlaps in the acceleration period T1 and the deceleration period T3
  • the stop imaging mode shown in FIG. 9C the low precision component imaging time Tl overlaps in the acceleration period T1.
  • the period during which the X-axis motor Mx and the Y-axis motor My accelerate or decelerate the head unit 3 can be used to image the low-precision component El, and the low-precision component El can be efficiently imaged.
  • the head unit 3 has a plurality of nozzles N arranged in the X direction (predetermined direction), and the nozzles N suck the component E.
  • the component recognition camera C is located at a retracted position L(+) (one retracted position) provided on the X(+) side (one side) in the X direction than the plurality of nozzles N, and It is movable relative to the head unit 3 between a retracted position L(-) (the other retracted position) provided on the X(-) side (the other side). Then, the component recognition camera C performs a first scan imaging (FIG.
  • control unit 100 controls the scan imaging (execution scan imaging) performed in the stop imaging mode for the high-precision component Eh that is attracted to the head unit 3 by the attraction operation to the first scan imaging (FIG. 3D) and the first scan imaging (FIG.
  • a scan imaging determination process for determining one of the two scan imagings (FIG. 3C) is executed before the start of the suction operation (step S303).
  • the scan imaging (actual scan imaging) to be used for imaging the high precision component Eh is determined according to the position in the X direction of the high precision component Eh that is attracted by the head unit 3 by the attraction operation.
  • the control unit 100 determines to perform the first scan imaging (FIG. 3D)
  • the controller 100 positions the camera at the retracted position L(+) before starting the suction operation, while the second scan imaging (FIG. 3C) ), the component recognition camera C is positioned at the retracted position L(-) before starting the suction operation (step S302).
  • the moving direction of the component recognition camera C when executing the stop imaging mode is determined according to the position of the high-precision component Eh that is attracted to the head unit 3.
  • a UI 150 control selection unit
  • step S406 if it is selected on the UI 150 not to execute the limited time imaging control ("NO" in step S401), the X-axis motor Mx and the Y-axis motor My During the period in which the head unit 3 is accelerated or decelerated (acceleration period T1, deceleration period T3), the component recognition camera C is allowed to image the component (especially the high-precision component Eh) (step S402). With this configuration, it is possible to determine whether or not to execute period-limited imaging control depending on the user's needs.
  • the component mounter 1 corresponds to an example of the "component mounter” of the present invention
  • the conveyor 12 corresponds to an example of the "board transfer section” of the present invention
  • the work position 13 corresponds to an example of the “component mounter” of the present invention.
  • the control unit 100 corresponds to an example of the “work position” of the invention
  • the control unit 100 corresponds to an example of the “control unit” of the invention
  • the UI 150 corresponds to an example of the “imaging mode selection unit” of the invention
  • the UI 150 corresponds to an example of the “imaging mode selection unit” of the invention.
  • the head unit 3 corresponds to an example of the "control selection section” of the present invention
  • the head unit 3 corresponds to an example of the "head unit” of the present invention
  • the parts supply section 5 corresponds to an example of the "components supply section” of the present invention
  • the parts supply section 5 corresponds to an example of the "control selection section” of the present invention.
  • the position 52 corresponds to an example of the "component supply position" of the present invention
  • the board B corresponds to an example of the "board” of the present invention
  • the component recognition camera C corresponds to an example of the "camera” of the present invention
  • the component recognition camera C corresponds to an example of the "camera” of the present invention.
  • E corresponds to an example of the "component” of the present invention
  • high precision component Eh corresponds to an example of the "high precision component” of the present invention
  • low precision component El corresponds to an example of the "low precision component” of the present invention
  • the retracted position L(+) corresponds to an example of the "one retracted position” of the present invention
  • the retracted position L(-) corresponds to an example of the “other retracted position” of the present invention
  • the shaft motor My cooperates to function as an example of the "unit drive section” of the present invention
  • the nozzle N corresponds to an example of the "nozzle” of the present invention
  • the acceleration period T1 is an example of the "acceleration period” of the present invention.
  • the constant velocity period T2 corresponds to an example of the "uniform velocity period” of the present invention
  • the deceleration period T3 corresponds to an example of the “deceleration period” of the present invention
  • the unit speed Vu corresponds to the "unit speed” of the present invention.
  • the X(+) side corresponds to an example of the "one side” of the present invention
  • the X(-) side corresponds to an example of the "other side” of the present invention.
  • FIGS. 11A and 11B are front views schematically showing an example of the suction operation.
  • the plurality of parts E picked up by the head unit 3 include a high-precision part Eh and a low-precision part El.
  • the example of FIG. 11A in the example of FIG. 11A, in the example of FIG.
  • a plurality of parts E are arranged on the head unit 3 such that high-precision parts Eh gather on the X(+) side and low-precision parts El gather on the X(-) side. (first adsorption mode).
  • a plurality of parts E are picked up by the head unit 3 so that the high-precision parts Eh are collected on the X(-) side and the low-precision parts El are collected on the X(+) side (second suction mode).
  • Which of the first suction mode and the second suction mode is to be executed can be determined based on, for example, the time required for the head unit 3 to complete suction of the plurality of parts E (suction completion time).
  • steps S301 to S302 are executed on the premise that the suction operation of step S303 is executed in this one suction mode.
  • the control unit 100 controls the control unit 100 so that all of the high-precision parts Eh are on the X(+) side of all the low-precision parts El (
  • a first suction mode (FIG. 11A) in which high-precision parts Eh and low-precision parts El are adsorbed to the head unit 3 so that all of the high-precision parts Eh are located on one side) and all of the low-precision parts El are
  • a second suction mode FIG.
  • the part recognition camera C is moved to collect the parts.
  • the recognition camera C can image the high-precision component Eh, and the time required to image the high-precision component Eh can be kept short.
  • the parts E to which the period-limited imaging control is executed are limited to the high-precision parts Eh of the high-precision parts Eh and the low-precision parts El.
  • the period-limited imaging control may be performed on all parts E attracted to the head unit 3 without distinguishing between high-precision parts Eh and low-precision parts El.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The present invention executes control (period-limited imaging control) of capturing images of a high-precision component Eh by a component recognition camera C in a period (constant speed period T2 or stop period T0) different from a period in which a head unit 3 is accelerated or decelerated. As a result, the present invention can eliminate the influence of an inertial force caused by acceleration or deceleration of the head unit 3 on imaging of the high-precision component Eh when capturing images of the high-precision component Eh by the component recognition camera C that is supported by and that moves with the head unit 3 which suctions and holds the high-precision component Eh.

Description

部品実装機および部品撮像方法Component mounting machine and component imaging method
 この発明は、部品を基板に実装するヘッドユニットによって吸着された部品をカメラによって撮像する技術に関する。 The present invention relates to a technique of using a camera to image a component picked up by a head unit that mounts the component on a board.
 特許文献1には、部品供給位置に供給された部品を装着ヘッドのノズルによって吸着して基板に実装する部品実装機が記載されている。この部品実装機では、部品認識カメラが具備されており、部品を吸着したノズルは、部品を基板に実装する前に、部品認識カメラの上方を経由し、部品認識カメラは上方に移動してきた部品を撮像する。こうして、部品を撮像した結果に基づき、ノズルに対する部品の位置が認識される。特に、特許文献1では、部品実装機の振動の影響を抑制するために、予測される振動から導き出した補正係数が予め記憶される。そして、部品を撮像した結果から求められる部品の位置が、この補正係数によって補正される。 Patent Document 1 describes a component mounting machine that picks up components supplied to a component supply position using a nozzle of a mounting head and mounts them on a board. This component mounting machine is equipped with a component recognition camera, and the nozzle that has picked up the component passes above the component recognition camera before mounting the component on the board. Take an image. In this way, the position of the component relative to the nozzle is recognized based on the result of imaging the component. In particular, in Patent Document 1, in order to suppress the influence of vibrations of a component mounting machine, correction coefficients derived from predicted vibrations are stored in advance. Then, the position of the component determined from the result of imaging the component is corrected using this correction coefficient.
特開2005-243668号公報Japanese Patent Application Publication No. 2005-243668
 ところで、上記の部品実装機では、部品を吸着するヘッドユニットは、部品を基板に実装する前に部品認識カメラの上方を経由する必要がある。そのため、ヘッドユニットが部品を吸着してから部品を基板に実装するまでの実装ターンに要する時間が長くなってしまう。そこで、ヘッドユニットに支持されて当該ヘッドユニットに伴って移動するカメラによって、ヘッドユニットの移動と並行して部品を撮像することで、実装ターンに要する時間の短縮を図ることができる。特に、カメラはヘッドユニットに対して所定方向に移動可能にヘッドユニットに支持されており、カメラがヘッドユニットに対して所定方向に相対移動しつつ、ヘッドユニットに吸着される部品を撮像する。そのため、ヘッドユニットの加減速に伴う慣性力がカメラによる部品の撮像に影響して、部品を適切に撮像できない場合があった。 By the way, in the above component mounting machine, the head unit that picks up the components needs to pass above the component recognition camera before mounting the components on the board. Therefore, the time required for a mounting turn from when the head unit picks up the component to when the component is mounted on the board becomes long. Therefore, by capturing an image of the component in parallel with the movement of the head unit using a camera that is supported by the head unit and moves with the head unit, it is possible to reduce the time required for a mounting turn. Particularly, the camera is supported by the head unit so as to be movable in a predetermined direction with respect to the head unit, and while moving relative to the head unit in a predetermined direction, the camera takes an image of the component attracted to the head unit. Therefore, the inertial force accompanying the acceleration/deceleration of the head unit may affect the image pickup of the component by the camera, and the component may not be properly imaged.
 この発明は上記課題に鑑みなされたものであり、部品を吸着するヘッドユニットに支持されて当該ヘッドユニットに伴って移動するカメラによって部品を撮像するにあたって、ヘッドユニットの加減速に伴う慣性力が部品の撮像に与える影響を排除可能とすることを目的とする。 This invention was made in view of the above-mentioned problem, and when an image of a part is captured by a camera that is supported by a head unit that picks up parts and moves with the head unit, the inertial force accompanying the acceleration and deceleration of the head unit is The purpose of this is to eliminate the influence that it has on imaging.
 本発明に係る部品実装機は、部品供給位置に部品を供給する部品供給部と、作業位置に基板を搬入する基板搬送部と、部品供給位置に供給された部品を吸着する吸着動作を実行するヘッドユニットと、ヘッドユニットを駆動することで、ヘッドユニットに吸着された部品を基板に対向する位置に移送する部品移送動作を実行するユニット駆動部と、ヘッドユニットに対して所定方向に移動可能にヘッドユニットに支持されて、ユニット駆動部により駆動されるヘッドユニットに伴って移動するカメラと、ヘッドユニットに対して所定方向にカメラを駆動するカメラ駆動部と、ヘッドユニットに吸着された部品のカメラによる撮像を、カメラ駆動部に所定方向にカメラを駆動させつつ実行する制御部とを備え、制御部は、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間とは異なる期間において、所定方向に駆動されるカメラにより部品を撮像する期間制限撮像制御を実行する。 The component mounting machine according to the present invention includes a component supply section that supplies components to a component supply position, a board transport section that carries a board to a work position, and a suction operation that suctions components supplied to the component supply position. A head unit, a unit drive unit that performs a component transfer operation that transfers components attracted to the head unit to a position facing the substrate by driving the head unit, and a unit drive unit that can be moved in a predetermined direction with respect to the head unit. A camera that is supported by the head unit and moves with the head unit driven by a unit drive section, a camera drive section that drives the camera in a predetermined direction with respect to the head unit, and a camera that is a component that is attracted to the head unit. and a control unit that executes imaging while causing the camera drive unit to drive the camera in a predetermined direction, the control unit driving the head unit in the predetermined direction during a period different from a period in which the unit drive unit accelerates or decelerates the head unit. Period-limited imaging control is executed to image the component using the camera that is used.
 本発明に係る部品撮像方法は、部品を吸着するヘッドユニットを駆動することで、ヘッドユニットに吸着された部品を基板に対向する位置に移送する部品移送動作を実行する工程と、ヘッドユニットに対して所定方向に移動可能にヘッドユニットに支持されて、所定方向に駆動されるカメラによってヘッドユニットに吸着された部品を撮像する工程とを備え、部品を撮像する工程では、ヘッドユニットが加速あるいは減速される期間とは異なる期間において、所定方向に駆動されるカメラにより部品を撮像する期期間制限撮像制御が実行される。 The component imaging method according to the present invention includes a step of performing a component transfer operation of transferring the component sucked by the head unit to a position facing a substrate by driving a head unit that sucks the component; the camera is supported by the head unit so as to be movable in a predetermined direction, and is driven in a predetermined direction. Period-limited imaging control is executed in which the component is imaged by a camera driven in a predetermined direction in a period different from the period in which the component is imaged.
 このように構成された本発明(部品実装機、部品撮像方法)では、部品を吸着するヘッドユニットを駆動することで、ヘッドユニットに吸着された部品を基板に対向する位置に移送する部品移送動作が実行される。そして、ヘッドユニットに対して所定方向に移動可能にヘッドユニットに支持されて、所定方向に駆動されるカメラによって、ヘッドユニットに吸着された部品が撮像される。したがって、ヘッドユニットが加速あるいは減速される期間では、加減速に伴って発生する慣性力がカメラによる部品の撮像に影響するおそれがある。これに対して、本発明では、ヘッドユニットが加速あるいは減速される期間とは異なる期間において、所定方向に駆動されるカメラにより部品を撮像する期間制限撮像制御が実行される。その結果、部品を吸着するヘッドユニットに支持されて当該ヘッドユニットに伴って移動するカメラによって部品を撮像するにあたって、ヘッドユニットの加減速に伴う慣性力が部品の撮像に与える影響を排除することが可能となる。 In the present invention (component mounting machine, component imaging method) configured as described above, by driving the head unit that sucks the components, a component transfer operation is performed in which the components sucked by the head unit are transferred to a position facing the board. is executed. Then, a camera supported by the head unit so as to be movable in a predetermined direction with respect to the head unit and driven in a predetermined direction captures an image of the component attracted to the head unit. Therefore, during a period in which the head unit is accelerated or decelerated, there is a possibility that the inertial force generated due to the acceleration or deceleration may affect the imaging of the component by the camera. In contrast, in the present invention, period-limited imaging control is executed in which a camera driven in a predetermined direction images a component in a period different from the period in which the head unit is accelerated or decelerated. As a result, when a camera that is supported by a head unit that picks up parts and moves with the head unit takes an image of the part, it is possible to eliminate the influence of inertia caused by the acceleration and deceleration of the head unit on the image of the part. It becomes possible.
 また、ユニット駆動部は、加速期間においてヘッドユニットを所定のユニット速度まで加速させ、加速期間に続く等速期間においてヘッドユニットをユニット速度で等速移動させ、等速期間に続く減速期間においてヘッドユニットをユニット速度から減速させることで、部品移送動作を実行し、期間制限撮像制御は、加速期間および減速期間ではカメラに部品を撮像させずに等速期間にカメラに部品を撮像させる等速撮像モードを実行可能であるように、部品実装機を構成してもよい。かかる構成では、等速撮像モードを実行することで、加速期間および減速期間に生じる慣性力が部品の撮像に与える影響を排除することが可能となる。 Further, the unit drive section accelerates the head unit to a predetermined unit speed during the acceleration period, moves the head unit at a constant speed at the unit speed during a constant speed period following the acceleration period, and moves the head unit at a constant speed during a deceleration period following the constant speed period. The period-limited imaging control is a constant-velocity imaging mode in which the camera does not image the parts during the acceleration and deceleration periods, but instead allows the camera to image the parts during the constant-velocity period. The component mounter may be configured to be able to perform the following steps. In this configuration, by executing the constant velocity imaging mode, it is possible to eliminate the influence of inertial force generated during the acceleration period and the deceleration period on the imaging of the component.
 また、制御部は、等速撮像モードを実行する場合には、等速期間に部品の撮像が完了するようにユニット速度を設定するように、部品実装機を構成してもよい。かかる構成では、ユニット速度が速いために等速期間が短く、等速期間に部品の撮像が完了できない場合には、等速期間に部品の撮像が完了できるようにユニット速度を低下するといった制御が実行されることとなる。これによって、部品の撮像が等速期間で完了せずに、等速撮像モードに失敗するといった状況の発生を抑制できる。 Furthermore, when executing the constant-velocity imaging mode, the control unit may configure the component mounter to set the unit speed so that imaging of the component is completed during the constant-velocity period. In such a configuration, if the constant velocity period is short because the unit speed is high and the imaging of the component cannot be completed during the constant velocity period, control is performed to reduce the unit speed so that the imaging of the component can be completed during the constant velocity period. It will be executed. As a result, it is possible to suppress the occurrence of a situation where the imaging of the component is not completed in the constant velocity period and the constant velocity imaging mode fails.
 また、期間制限撮像制御は、部品移送動作の開始前において停止するヘッドユニットに吸着される部品をカメラにより撮像する停止撮像モードをさらに実行可能であり、等速撮像モードおよび停止撮像モードのいずれか一方を実行するように、部品実装機を構成してもよい。かかる構成では、停止撮像モードを実行することで、加速期間および減速期間に生じる慣性力が部品の撮像に与える影響を排除することが可能となる。 In addition, the period limited imaging control can further execute a stop imaging mode in which a camera takes an image of a component that is attracted to a stopped head unit before the start of the component transfer operation, and either a constant velocity imaging mode or a stop imaging mode. The component mounter may be configured to perform one of the two. In this configuration, by executing the stop imaging mode, it is possible to eliminate the influence of inertial force generated during the acceleration period and the deceleration period on the imaging of the component.
 また、等速撮像モードおよび停止撮像モードのうちから一の撮像モードを選択するユーザの操作を受け付ける撮像モード選択部をさらに備え、制御部は、撮像モード選択部において選択された一の撮像モードを実行するように、部品実装機を構成してもよい。かかる構成では、等速撮像モードおよび停止撮像モードのうち、ユーザのニーズに応じた一の撮像モードによって部品を撮像することができる。 The control unit further includes an imaging mode selection unit that accepts a user's operation to select one imaging mode from the constant velocity imaging mode and the stop imaging mode, and the control unit selects the one imaging mode selected in the imaging mode selection unit. The component mounter may be configured to perform this. With this configuration, it is possible to image the component in one of the constant velocity imaging mode and the stop imaging mode, depending on the user's needs.
 また、制御部は、等速撮像モードおよび停止撮像モードのうちから一の撮像モードを選択するモード選択処理を実行し、モード選択処理によって選択された一の撮像モードを実行し、モード選択処理では、等速撮像モードを実行した場合に、吸着動作で吸着した部品の基板への実装を完了するのに要する時間と、停止撮像モードを実行した場合に、吸着動作で吸着した部品の基板への実装を完了するのに要する時間との比較に基づき、一の撮像モードを選択するように、部品実装機を構成してもよい。かかる構成では、例えば、等速撮像モードを実行した場合に、吸着動作で吸着した部品の基板への実装を完了するのに要する時間と、停止撮像モードを実行した場合に、吸着動作で吸着した部品の基板への実装を完了するのに要する時間とのうち、前者が後者より短ければ等速撮像モードを実行し、後者が前者より短ければ停止撮像モードを実行するといった制御を実行できる。その結果、部品の撮像に要する時間を短く抑えることが可能となる。 The control unit also executes a mode selection process for selecting one imaging mode from the constant velocity imaging mode and the stop imaging mode, executes the one imaging mode selected by the mode selection process, and executes the one imaging mode selected by the mode selection process. , when executing the constant speed imaging mode, the time required to complete the mounting of the component picked up by the pickup operation on the board, and when executing the stop imaging mode, the time required to complete the mounting of the component picked up by the pickup operation onto the board. The component mounter may be configured to select one imaging mode based on a comparison with the time required to complete mounting. In such a configuration, for example, when the constant velocity imaging mode is executed, the time required to complete the mounting of the component picked up by the pickup operation on the board, and when the stopped imaging mode is executed, the time required to complete the mounting of the component picked up by the pickup operation Of the time required to complete mounting of a component on a board, if the former is shorter than the latter, a constant speed imaging mode is executed, and if the latter is shorter than the former, control can be executed such as executing a stop imaging mode. As a result, it is possible to reduce the time required to image the component.
 また、部品には、期間制限撮像制御の対象となる高精度部品と、期間制限撮像制御の対象とならない低精度部品とが存在し、制御部は、カメラによる高精度部品の撮像を期間制限撮像制御によって実行するように、部品実装機を構成してもよい。かかる構成では、ヘッドユニットの加減速に伴う慣性力が高精度部品の撮像に与える影響を排除することが可能となる。 In addition, there are high-precision parts that are subject to period-limited imaging control and low-precision parts that are not subject to period-limited imaging control, and the control unit controls the period-limited imaging of high-precision parts by the camera. The component mounter may be configured to perform the process under control. With this configuration, it is possible to eliminate the influence of inertial force accompanying acceleration and deceleration of the head unit on imaging of high-precision parts.
 また、制御部は、カメラによる低精度部品の撮像については期間制限撮像制御を実行せず、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間におけるカメラによる低精度部品の撮像を許容するように、部品実装機を構成してもよい。かかる構成では、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間を低精度部品の撮像に利用して、低精度部品を効率的に撮像することができる。 Further, the control section does not perform period-limited imaging control regarding imaging of low-precision parts by the camera, and allows the camera to take images of low-precision parts during a period in which the unit drive section accelerates or decelerates the head unit. A component mounting machine may also be configured. With such a configuration, the period during which the unit drive section accelerates or decelerates the head unit can be used to image the low-precision component, thereby making it possible to efficiently image the low-precision component.
 また、期間制限撮像制御は、部品移送動作の開始前において停止するヘッドユニットに吸着される部品をカメラにより撮像する停止撮像モードを実行可能であるように、部品実装機を構成してもよい。かかる構成では、停止撮像モードを実行することで、ヘッドユニットの加減速に伴う慣性力が部品の撮像に与える影響を排除することが可能となる。 Furthermore, the period-limited imaging control may configure the component mounter so that it can execute a stop imaging mode in which a camera takes an image of a component that is attracted to a stopped head unit before the start of the component transfer operation. In this configuration, by executing the stop imaging mode, it is possible to eliminate the influence of inertial force accompanying acceleration and deceleration of the head unit on imaging of the component.
 また、部品には、期間制限撮像制御の対象となる高精度部品と、期間制限撮像制御の対象とならない低精度部品とが存在し、制御部は、カメラによる高精度部品の撮像を期間制限撮像制御によって実行するように、部品実装機を構成してもよい。かかる構成では、ヘッドユニットの加減速に伴う慣性力が高精度部品の撮像に与える影響を排除することが可能となる。 In addition, there are high-precision parts that are subject to period-limited imaging control and low-precision parts that are not subject to period-limited imaging control, and the control unit controls the period-limited imaging of high-precision parts by the camera. The component mounter may be configured to perform the process under control. With this configuration, it is possible to eliminate the influence of inertial force accompanying acceleration and deceleration of the head unit on imaging of high-precision parts.
 また、制御部は、カメラによる低精度部品の撮像については期間制限撮像制御を実行せず、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間におけるカメラによる低精度部品の撮像を許容するように、部品実装機を構成してもよい。かかる構成では、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間を低精度部品の撮像に利用して、低精度部品を効率的に撮像することができる。 Further, the control section does not perform period-limited imaging control regarding imaging of low-precision parts by the camera, and allows the camera to take images of low-precision parts during a period in which the unit drive section accelerates or decelerates the head unit. A component mounting machine may also be configured. With such a configuration, the period during which the unit drive section accelerates or decelerates the head unit can be used to image the low-precision component, thereby making it possible to efficiently image the low-precision component.
 また、ヘッドユニットは、所定方向に配列された複数のノズルを有し、ノズルによって部品を吸着し、カメラは、複数のノズルより所定方向の一方側に設けられた一方退避位置と、複数のノズルより所定方向の他方側に設けられた他方退避位置との間でヘッドユニットに対して移動可能であり、一方退避位置から他方退避位置に向けて移動しつつノズルに吸着された高精度部品を撮像する第1スキャン撮像と、他方退避位置から一方退避位置に向けて移動しつつノズルに吸着された高精度部品を撮像する第2スキャン撮像とを実行可能であり、制御部は、吸着動作によってヘッドユニットに吸着される高精度部品に対する停止撮像モードで実行する実行スキャン撮像を、第1スキャン撮像および第2スキャン撮像のうちから決定するスキャン撮像決定処理を、吸着動作の開始前に実行し、スキャン撮像決定処理では、吸着動作によってヘッドユニットにより吸着される高精度部品の所定方向における位置に応じて、実行スキャン撮像を決定し、制御部は、第1スキャン撮像が実行スキャン撮像に決定された場合には、吸着動作の開始前にカメラを一方退避位置に位置させる一方、第2スキャン撮像が実行スキャン撮像に決定された場合には、吸着動作の開始前にカメラを他方退避位置に位置させるように、部品実装機を構成してもよい。かかる構成では、停止撮像モードを実行する際のカメラの移動方向が、ヘッドユニットに吸着される高精度部品の位置に応じて決定される。その結果、高精度部品の位置に応じた合理的な方向にカメラを移動させつつ高精度部品を撮像でき、高精度部品の撮像に要する時間を短く抑えることができる。 Further, the head unit has a plurality of nozzles arranged in a predetermined direction, and the nozzles suck the parts, and the camera has a retracted position provided on one side in the predetermined direction from the plurality of nozzles, and a plurality of nozzles. It is movable relative to the head unit between the head unit and the other retracted position provided on the other side in a predetermined direction, and images the high-precision parts attracted to the nozzle while moving from one retracted position to the other retracted position. It is possible to perform a first scan imaging to move the head from the other retracted position to the other retracted position and a second scan imaging to image the high-precision component sucked by the nozzle while moving from the other retracted position to the one retracted position. Before the start of the suction operation, a scan imaging determination process is executed to determine the execution scan imaging to be performed in the stop imaging mode for the high-precision parts to be picked up by the unit from among the first scan imaging and the second scan imaging, and the scanning In the imaging determination process, execution scan imaging is determined according to the position in a predetermined direction of the high-precision component that is picked up by the head unit by the attraction operation, and the control unit determines when the first scan imaging is determined to be the execution scan imaging. In this case, the camera is positioned at one retracted position before the start of the suction operation, and when the second scan imaging is determined to be the execution scan imaging, the camera is positioned at the other retracted position before the start of the suction operation. Alternatively, the component mounting machine may be configured. In this configuration, the moving direction of the camera when executing the stop imaging mode is determined according to the position of the high-precision component that is attracted to the head unit. As a result, the high-precision component can be imaged while moving the camera in a rational direction depending on the position of the high-precision component, and the time required to image the high-precision component can be kept short.
 また、ヘッドユニットが高精度部品および低精度部品をそれぞれ吸着する場合、制御部は、高精度部品の全部が低精度部品の全部の一方側に位置するように高精度部品および低精度部品をヘッドユニットに吸着させる第1吸着モードと、高精度部品の全部が低精度部品の全部の他方側に位置するように高精度部品および低精度部品をヘッドユニットに吸着させる第2吸着モードとのいずれかを実行し、第1吸着モードを実行する場合には、停止撮像モードにおいて第1スキャン撮像が実行され、第2吸着モードを実行する場合には、停止撮像モードにおいて第2スキャン撮像が実行されるように、部品実装機を構成してもよい。かかる構成では、一方退避位置および他方退避位置のうちカメラが位置する退避位置側に高精度部品を集めた状態から、カメラを移動させて当該カメラによって高精度部品を撮像でき、高精度部品の撮像に要する時間を短く抑えることができる。 In addition, when the head unit picks up high-precision parts and low-precision parts, the control unit moves the high-precision parts and low-precision parts to the head so that all of the high-precision parts are located on one side of all of the low-precision parts. Either a first suction mode in which the unit suctions the parts, or a second suction mode in which the high-precision parts and low-precision parts are suctioned to the head unit so that all the high-precision parts are located on the other side of all the low-precision parts. and when executing the first suction mode, the first scan imaging is performed in the stop imaging mode, and when executing the second suction mode, the second scan imaging is performed in the stop imaging mode. The component mounting machine may be configured as follows. In this configuration, the high-precision parts can be imaged by moving the camera from a state where the high-precision parts are gathered at the evacuation position side where the camera is located between the one evacuation position and the other evacuation position, and the high-precision parts can be imaged by the camera. The time required can be kept short.
 また、期間制限撮像制御の実行の有無を選択するユーザの操作を受け付ける制御選択部をさらに備え、制御部は、期間制限撮像制御を実行すると制御選択部において選択された場合に、部品の撮像を期間制限撮像制御によって実行する一方、期間制限撮像制御を実行しないと制御選択部において選択された場合には、期間制限撮像制御を実行せずに、ユニット駆動部がヘッドユニットを加速あるいは減速させる期間におけるカメラによる部品の撮像を許容するように、部品実装機を構成してもよい。かかる構成では、期間制限撮像制御の実行の有無をユーザのニーズに応じて決定できる。 The control section further includes a control selection section that accepts a user's operation to select whether or not to execute the period limited imaging control, and when the control selection section selects to execute the period limited imaging control, the control section selects whether or not to perform the imaging of the part. If the period-limited imaging control is executed, but if the control selection section selects not to execute the period-limited imaging control, the period during which the unit drive section accelerates or decelerates the head unit without executing the period-limited imaging control. The component mounter may be configured to allow the camera to take an image of the component. With this configuration, it is possible to determine whether or not to execute period-limited imaging control depending on the user's needs.
 本発明によれば、部品を吸着するヘッドユニットに支持されて当該ヘッドユニットに伴って移動するカメラによって部品を撮像するにあたって、ヘッドユニットの加減速に伴う慣性力が部品の撮像に与える影響を排除することが可能となる。 According to the present invention, when a part is imaged by a camera that is supported by a head unit that picks up parts and moves with the head unit, the influence of inertial force caused by acceleration and deceleration of the head unit on the part image is eliminated. It becomes possible to do so.
本発明に係る部品実装機の一例を模式的に示す平面図。FIG. 1 is a plan view schematically showing an example of a component mounting machine according to the present invention. 図1の部品実装機が備える電気的構成を示すブロック図。FIG. 2 is a block diagram showing the electrical configuration of the component mounting machine of FIG. 1. FIG. 部品実装機が備える部品認識ユニットを模式的に示す正面図。FIG. 3 is a front view schematically showing a component recognition unit included in the component mounting machine. 図3Aの部品認識ユニットを模式的に示す側面図。FIG. 3B is a side view schematically showing the component recognition unit of FIG. 3A. 図3Aの部品認識ユニットの動作を模式的に示す正面図。FIG. 3B is a front view schematically showing the operation of the component recognition unit in FIG. 3A. 図3Aの部品認識ユニットの動作を模式的に示す正面図。FIG. 3B is a front view schematically showing the operation of the component recognition unit in FIG. 3A. ヘッドユニットにより部品を吸着して基板に実装する実装ターンでの動作を示すフローチャート。5 is a flowchart showing operations in a mounting turn in which a head unit picks up a component and mounts it on a board. 図4の実装ターンで部品認識ユニットに対して実行される速度制御の一例を模式的に示すタイミングチャート。5 is a timing chart schematically showing an example of speed control performed on the component recognition unit in the mounting turn of FIG. 4. FIG. 等速撮像モードの一例を示すフローチャート。11 is a flowchart showing an example of a constant speed imaging mode. 等速撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing control contents executed in constant-velocity imaging mode. 等速撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing control contents executed in constant-velocity imaging mode. 等速撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing control contents executed in constant-velocity imaging mode. 停止撮像モードの一例を示すフローチャート。5 is a flowchart showing an example of a stop imaging mode. 停止撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode. 停止撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode. 停止撮像モードで実行される制御内容を模式的に示す図。FIG. 3 is a diagram schematically showing the control contents executed in the stop imaging mode. 撮像モード決定処理の一例を示すフローチャート。5 is a flowchart illustrating an example of imaging mode determination processing. 吸着動作の一例を模式的に示す正面図。FIG. 3 is a front view schematically showing an example of a suction operation. 吸着動作の一例を模式的に示す正面図。FIG. 3 is a front view schematically showing an example of a suction operation.
 図1は本発明に係る部品実装機の一例を模式的に示す平面図であり、図2は図1の部品実装機が備える電気的構成を示すブロック図である。図1では、水平方向であるX方向、X方向に直交する水平方向であるY方向および鉛直方向であるZ方向を適宜示す。この部品実装機1は、部品E(図3A~図3D)を基板Bに実装する部品実装を実行する。 FIG. 1 is a plan view schematically showing an example of a component mounter according to the present invention, and FIG. 2 is a block diagram showing the electrical configuration of the component mounter of FIG. 1. In FIG. 1, the X direction, which is a horizontal direction, the Y direction, which is a horizontal direction orthogonal to the X direction, and the Z direction, which is a vertical direction, are shown as appropriate. This component mounting machine 1 executes component mounting to mount a component E (FIGS. 3A to 3D) onto a board B.
 図2に示すように、部品実装機1は、当該部品実装機1の動作を統括的に制御する制御部100を備える。制御部100は、主制御部110、記憶部120、駆動制御部130、撮像制御部140およびUI(User Interface)150を有する。主制御部110は、CPU(Central Processing Unit)等のプロセッサで構成され、部品実装機1の制御に必要となる信号処理を実行する。なお、主制御部110の具体的な構成はCPUに限られず、例えばFPGA(Field Programmable Gate Array)でもよい。記憶部120は、SSD(Solid State Drive)あるいはHHD(Hard Disk Drive)等で構成された記憶装置である。駆動制御部130は、部品実装機1の駆動系を制御し、撮像制御部140は、部品実装機1の撮像系を制御する。また、UI150は、キーボードやマウスといった入力機器と、ディスプレイといった出力機器とを有する。なお、UI150の入力機器と出力機器とを別体で構成する必要はなく、例えばタッチパネルディスプレイによってこれらを一体的に構成してもよい。 As shown in FIG. 2, the component mounter 1 includes a control section 100 that centrally controls the operations of the component mounter 1. The control unit 100 includes a main control unit 110, a storage unit 120, a drive control unit 130, an imaging control unit 140, and a UI (User Interface) 150. The main control unit 110 is composed of a processor such as a CPU (Central Processing Unit), and executes signal processing necessary for controlling the component mounting machine 1. Note that the specific configuration of the main control unit 110 is not limited to a CPU, and may be, for example, an FPGA (Field Programmable Gate Array). The storage unit 120 is a storage device configured with an SSD (Solid State Drive), an HHD (Hard Disk Drive), or the like. The drive control section 130 controls the drive system of the component mounter 1, and the imaging control section 140 controls the imaging system of the component mounter 1. Further, the UI 150 includes input devices such as a keyboard and a mouse, and output devices such as a display. Note that the input device and the output device of the UI 150 do not need to be configured separately, and may be configured integrally using, for example, a touch panel display.
 記憶部120には、基板データ121や部品情報122等の部品実装に必要となる各種のデータや情報が記憶される。ここで、基板データ121は、基板Bに設けられた実装位置(例えばランド等)に実装する部品Eの種類や、当該部品Eを実装する順序を示し、主制御部110は、基板データ121に従って基板Bに部品Eを実装する。また、後述するように、部品Eには、高精度部品Ehと低精度部品Elとが存在し、部品情報122は、基板Bに実装予定の部品Eが高精度部品Ehおよび低精度部品Elのいずれであるかを部品E毎に示す。この部品情報122は、例えばUI150への操作によってユーザにより作成されて、記憶部120に保存される。ただし、主制御部110が基板データ121に基づき部品情報122を自動的に作成して、駆動制御部130に保存してもよい。具体的には、部品Eのサイズや、部品Eの端子の配列ピッチや、基板Bで隣接する部品Eとの距離等に基づき、各部品Eを高精度部品Ehおよび低精度部品Elの一方に分類する演算を実行することで、部品情報122を作成できる。 The storage unit 120 stores various data and information necessary for component mounting, such as board data 121 and component information 122. Here, the board data 121 indicates the type of component E to be mounted on a mounting position (for example, a land, etc.) provided on the board B, and the order in which the component E is mounted. Component E is mounted on board B. Furthermore, as will be described later, the component E includes a high-precision component Eh and a low-precision component El, and the component information 122 indicates that the component E scheduled to be mounted on the board B is a high-precision component Eh and a low-precision component El. For each part E, it is shown which one it is. This component information 122 is created by the user by operating the UI 150, for example, and is stored in the storage unit 120. However, the main control section 110 may automatically create the component information 122 based on the board data 121 and store it in the drive control section 130. Specifically, each component E is assigned to one of the high-precision component Eh and the low-precision component El based on the size of the component E, the arrangement pitch of the terminals of the component E, the distance between adjacent components E on the board B, etc. Part information 122 can be created by performing a classification operation.
 図1に示すように、部品実装機1は、基台11の上に設けられた一対のコンベア12、12を備える。そして、部品実装機1は、コンベア12によりX方向(基板搬送方向)の上流側から作業位置13(図1の基板Bの位置)に搬入した基板Bに対して部品Eを実装し、部品実装を完了した基板B(部品実装基板B)をコンベア12により作業位置13からX方向の下流側へ搬出する。 As shown in FIG. 1, the component mounting machine 1 includes a pair of conveyors 12, 12 provided on a base 11. Then, the component mounter 1 mounts the component E on the board B carried by the conveyor 12 from the upstream side in the X direction (board transport direction) to the work position 13 (the position of the board B in FIG. 1), and mounts the component E on the board B. The board B (component mounting board B) that has been completed is carried out from the work position 13 to the downstream side in the X direction by the conveyor 12.
 部品実装機1では、Y方向に延びる一対のY軸レール21、21と、Y方向に延びるY軸ボールネジ22と、Y軸ボールネジ22を回転駆動するY軸モータMyとが設けられ、X方向に延びるX軸レール24が一対のY軸レール21、21にY方向に移動可能に支持された状態でY軸ボールネジ22のナットに固定されている。X軸レール24には、X方向に延びるX軸ボールネジ25と、X軸ボールネジ25を回転駆動するX軸モータMxとが取り付けられている。また、部品実装機1は、X軸レール24によってX方向に移動可能に支持されたヘッドユニット3を備え、ヘッドユニット3はX軸ボールネジ25のナットに固定されている。したがって、駆動制御部130は、Y軸モータMyによりY軸ボールネジ22を回転させてヘッドユニット3をY方向に移動させ、X軸モータMxによりX軸ボールネジ25を回転させてヘッドユニット3をX方向に移動させることができる。 The component mounter 1 is provided with a pair of Y- axis rails 21, 21 extending in the Y direction, a Y-axis ball screw 22 extending in the Y-direction, and a Y-axis motor My that rotationally drives the Y-axis ball screw 22. An extending X-axis rail 24 is supported by a pair of Y- axis rails 21, 21 so as to be movable in the Y direction, and is fixed to a nut of a Y-axis ball screw 22. An X-axis ball screw 25 extending in the X direction and an X-axis motor Mx that rotationally drives the X-axis ball screw 25 are attached to the X-axis rail 24 . The component mounting machine 1 also includes a head unit 3 supported movably in the X direction by an X-axis rail 24, and the head unit 3 is fixed to a nut of an X-axis ball screw 25. Therefore, the drive control section 130 causes the Y-axis motor My to rotate the Y-axis ball screw 22 to move the head unit 3 in the Y direction, and causes the X-axis motor Mx to rotate the X-axis ball screw 25 to move the head unit 3 in the X direction. can be moved to
 一対のコンベア12、12のY方向の両側それぞれでは2つの部品供給部5がX方向に並んでおり、各部品供給部5では、X方向に配列された複数のテープフィーダ51が着脱可能に支持されている。テープフィーダ51は、作業位置13側の先端部に設けられた部品供給位置52を有し、部品供給位置52に部品Eを供給する。具体的には、テープフィーダ51には、部品収納テープが装着されており、この部品収納テープは、一列に配列された複数のポケットのそれぞれに部品Eを収納する。そして、テープフィーダ51は、部品収納テープを部品供給位置52に向けて間欠的に搬送することで、部品供給位置52に部品Eを供給する。 Two component supply units 5 are lined up in the X direction on each side of the pair of conveyors 12, 12 in the Y direction, and each component supply unit 5 removably supports a plurality of tape feeders 51 arranged in the X direction. has been done. The tape feeder 51 has a component supply position 52 provided at the tip end on the work position 13 side, and supplies the component E to the component supply position 52 . Specifically, a component storage tape is attached to the tape feeder 51, and this component storage tape stores the components E in each of a plurality of pockets arranged in a line. Then, the tape feeder 51 supplies the component E to the component supply position 52 by intermittently conveying the component storage tape toward the component supply position 52 .
 ヘッドユニット3は、X方向に配列された複数(図1の例では8本)の実装ヘッド31と、実装ヘッド31をZ方向に昇降させるZ軸モータMz(図2)とを有する。実装ヘッド31はZ方向に延設された長尺形状を有し、当該実装ヘッド31の下端に対して着脱可能に装着されたノズルN(図3A~図3D)によって部品Eを吸着・保持することができ、このノズルNによって部品供給位置52から取り出した部品Eを基板Bに実装する。 The head unit 3 includes a plurality of mounting heads 31 (eight in the example of FIG. 1) arranged in the X direction, and a Z-axis motor Mz (FIG. 2) that moves the mounting heads 31 up and down in the Z direction. The mounting head 31 has an elongated shape extending in the Z direction, and attracts and holds the component E using a nozzle N (FIGS. 3A to 3D) that is detachably attached to the lower end of the mounting head 31. The nozzle N mounts the component E taken out from the component supply position 52 onto the board B.
 具体的には、駆動制御部130は、X軸モータMxおよびY軸モータMyによってヘッドユニット3を駆動することで、実装ヘッド31のノズルNを部品供給位置52に上方から対向させる。続いて、駆動制御部130は、Z軸モータMzによって実装ヘッド31を下降させて、当該実装ヘッド31のノズルNを部品供給位置52内の部品Eに当接させる。実装ヘッド31は、部品Eに接触したノズルNに負圧を発生させて、部品EをノズルNに吸着する。駆動制御部130がZ軸モータMzによって実装ヘッド31を上昇させると、ノズルNに吸着された部品Eが部品供給位置52から取り出される。さらに、駆動制御部130は、X軸モータMxおよびY軸モータMyによってヘッドユニット3を駆動することで、実装ヘッド31のノズルNに吸着された部品Eを、作業位置13の基板Bの実装位置に上方から対向させる。続いて、駆動制御部130は、Z軸モータMzによって実装ヘッド31を下降させて、当該実装ヘッド31のノズルNに吸着された部品Eを基板Bの実装位置に当接させる。そして、実装ヘッド31は、基板Bの実装位置に当接した部品Eを吸着するノズルNの負圧を解除する。こうして、部品Eが基板Bの実装位置に実装される。 Specifically, the drive control unit 130 causes the nozzle N of the mounting head 31 to face the component supply position 52 from above by driving the head unit 3 using the X-axis motor Mx and the Y-axis motor My. Subsequently, the drive control unit 130 lowers the mounting head 31 using the Z-axis motor Mz, and brings the nozzle N of the mounting head 31 into contact with the component E in the component supply position 52. The mounting head 31 generates negative pressure in the nozzle N that is in contact with the component E, so that the component E is attracted to the nozzle N. When the drive control unit 130 raises the mounting head 31 using the Z-axis motor Mz, the component E attracted to the nozzle N is taken out from the component supply position 52. Further, the drive control unit 130 drives the head unit 3 using the X-axis motor Mx and the Y-axis motor My to move the component E attracted to the nozzle N of the mounting head 31 to the mounting position of the board B at the work position 13. facing from above. Subsequently, the drive control unit 130 lowers the mounting head 31 using the Z-axis motor Mz, and brings the component E attracted by the nozzle N of the mounting head 31 into contact with the mounting position of the board B. Then, the mounting head 31 releases the negative pressure of the nozzle N that sucks the component E that has come into contact with the mounting position of the board B. In this way, the component E is mounted on the mounting position of the board B.
 さらに、図2に示すように、部品実装機1は、ヘッドユニット3の実装ヘッド31に吸着される部品Eを撮像する部品認識カメラCと、当該部品認識カメラ41をX方向に駆動するカメラモータMcとを備える。続いては、図3A~図3Dを用いつつ、これらについて説明する。 Furthermore, as shown in FIG. 2, the component mounting machine 1 includes a component recognition camera C that images the component E that is attracted to the mounting head 31 of the head unit 3, and a camera motor that drives the component recognition camera 41 in the X direction. It is equipped with Mc. Next, these will be explained using FIGS. 3A to 3D.
 図3Aは部品実装機が備える部品認識ユニットを模式的に示す正面図であり、図3Bは図3Aの部品認識ユニットを模式的に示す側面図であり、図3Cおよび図3Dは図3Aの部品認識ユニットの動作を模式的に示す正面図である。なお、図3A、図3Cおよび図3Dでは、X方向のX(+)側と、X方向のX(+)側と反対のX(-)側とが示されている。図3A~図3Dに示すように、部品認識ユニット4は、ヘッドユニット3に取り付けられ、X軸モータMxおよびY軸モータMyにより駆動されるヘッドユニット3に伴ってX方向およびY方向に移動する。 3A is a front view schematically showing a component recognition unit included in a component mounter, FIG. 3B is a side view schematically showing the component recognition unit in FIG. 3A, and FIGS. 3C and 3D are parts in FIG. 3A. FIG. 3 is a front view schematically showing the operation of the recognition unit. Note that in FIGS. 3A, 3C, and 3D, the X(+) side in the X direction and the X(−) side opposite to the X(+) side in the X direction are shown. As shown in FIGS. 3A to 3D, the component recognition unit 4 is attached to the head unit 3 and moves in the X and Y directions with the head unit 3 driven by the X-axis motor Mx and the Y-axis motor My. .
 ヘッドユニット3は、略直方体形状を有するユニット本体30を有し、ユニット本体30が複数の実装ヘッド31をZ方向に昇降可能に支持する。これに対して、部品認識ユニット4は、ユニット本体30に取り付けられたX方向に平行なX軸ガイド部材41と、X軸ガイド部材41に沿ってX方向に移動する可動サポータ42とを有する。また、可動サポータ42は、Z方向に延設された立設フレーム421と、立設フレーム421の下端からY方向に延設されたボトムフレーム422とを有し、立設フレーム421の上端がX軸ガイド部材41に係合する。そして、部品認識カメラCは、上方を向いて、ボトムフレーム422に取り付けられる。こうして、可動サポータ42に支持された部品認識カメラCは、X軸ガイド部材41に案内されつつX方向に移動可能である。 The head unit 3 has a unit body 30 having a substantially rectangular parallelepiped shape, and the unit body 30 supports a plurality of mounting heads 31 so as to be movable up and down in the Z direction. On the other hand, the component recognition unit 4 includes an X-axis guide member 41 that is attached to the unit body 30 and is parallel to the X-direction, and a movable supporter 42 that moves in the X-direction along the X-axis guide member 41. The movable supporter 42 also includes an upright frame 421 extending in the Z direction, and a bottom frame 422 extending in the Y direction from the lower end of the upright frame 421, with the upper end of the upright frame 421 extending in the It engages with the shaft guide member 41. The component recognition camera C is attached to the bottom frame 422 facing upward. In this way, the component recognition camera C supported by the movable supporter 42 is movable in the X direction while being guided by the X-axis guide member 41.
 そして、カメラモータMc(図2)は、可動サポータ42をX方向に駆動することで、部品認識カメラCをX方向に移動させる。このカメラモータMcは例えばリニアモータによって構成できる。つまり、X軸ガイド部材41にカメラモータMcの固定子を取り付けるとともに、可動サポータ42の上端にカメラモータMcの可動子を取り付けて、固定子と可動子との間に生じる磁力によって可動サポータ42をX方向に駆動できる。ただし、カメラモータMcの具体的な構成はリニアモータに限られず、例えばボールネジでもよい。 Then, the camera motor Mc (FIG. 2) moves the component recognition camera C in the X direction by driving the movable supporter 42 in the X direction. This camera motor Mc can be configured by, for example, a linear motor. That is, the stator of the camera motor Mc is attached to the X-axis guide member 41, and the movable element of the camera motor Mc is attached to the upper end of the movable supporter 42, and the movable supporter 42 is moved by the magnetic force generated between the stator and the movable element. Can be driven in the X direction. However, the specific configuration of the camera motor Mc is not limited to a linear motor, and may be a ball screw, for example.
 図3Aの正面視に示すように、カメラモータMcは、X方向において、複数のノズルNのX(+)側に設けられた退避位置L(+)と、複数のノズルNのX(-)側に設けられた退避位置L(-)との間で、部品認識カメラCを移動させることができる。したがって、駆動制御部130は、カメラモータMcによって、部品認識カメラCの位置をX方向に制御して、複数のノズルNのうちの一のノズルNに吸着される部品Eに対して部品認識カメラCを下方から対向させることができる。さらに、撮像制御部140は、部品認識カメラCに撮像を実行させることで、部品認識カメラCが対向する部品Eを下方から撮像した部品Eの画像(ボトムビュー画像)を取得できる。なお、部品Eを撮像する方向はこの例に限られず、Y方向から部品Eを撮像して部品Eの画像(サイドビュー画像)を取得するように構成してもよい。 As shown in the front view of FIG. 3A, the camera motor Mc is located at a retracted position L(+) provided on the X(+) side of the plurality of nozzles N and a retracted position L(+) provided on the X(-) side of the plurality of nozzles N in the X direction. The component recognition camera C can be moved between the retracted position L(-) provided on the side. Therefore, the drive control unit 130 controls the position of the component recognition camera C in the X direction by the camera motor Mc, so that the component recognition camera C can be opposed from below. Furthermore, the imaging control unit 140 can obtain an image of the component E (bottom view image) obtained by the component recognition camera C capturing the opposing component E from below by causing the component recognition camera C to perform imaging. Note that the direction in which the component E is imaged is not limited to this example, and the component E may be configured to be imaged from the Y direction to obtain an image (side view image) of the component E.
 特に、部品認識ユニット4は、図3Cおよび図3Dに示すスキャン撮像によって、複数のノズルNにそれぞれ吸着される複数の部品Eの画像を撮像することができる。図3Cに示すスキャン撮像では、駆動制御部130は、カメラモータMcを制御することで、部品認識カメラCを退避位置L(-)に位置させる(ステップS11)。続いて、駆動制御部130は、カメラモータMcによって部品認識カメラCをX方向のX(+)側に駆動することで、部品認識カメラCを退避位置L(-)から退避位置L(+)まで移動させる(ステップS12)。そして、部品認識カメラCが退避位置L(+)に到達すると、駆動制御部130は、カメラモータMcを制御することで、部品認識カメラCを退避位置L(+)に停止させる(ステップS13)。一方、駆動制御部130が退避位置L(-)から退避位置L(+)までX(+)側に部品認識カメラCを移動させるのに並行して(ステップS12)、撮像制御部140は、部品認識カメラCに撮像を実行させる。これによって、複数のノズルNにそれぞれ吸着された複数の部品Eの画像が取得される。 In particular, the component recognition unit 4 can capture images of a plurality of components E each attracted to a plurality of nozzles N by scanning imaging shown in FIGS. 3C and 3D. In the scan imaging shown in FIG. 3C, the drive control unit 130 positions the component recognition camera C at the retracted position L(-) by controlling the camera motor Mc (step S11). Subsequently, the drive control unit 130 moves the component recognition camera C from the retracted position L(-) to the retracted position L(+) by driving the component recognition camera C toward the X(+) side in the X direction using the camera motor Mc. (step S12). When the component recognition camera C reaches the retracted position L(+), the drive control unit 130 stops the component recognition camera C at the retracted position L(+) by controlling the camera motor Mc (step S13). . On the other hand, in parallel with the drive control unit 130 moving the component recognition camera C from the retraction position L(−) to the retraction position L(+) toward the X(+) side (step S12), the imaging control unit 140 The component recognition camera C is caused to take an image. As a result, images of the plurality of parts E each attracted by the plurality of nozzles N are acquired.
 一方、図3Dに示すスキャン撮像では、駆動制御部130は、カメラモータMcを制御することで、部品認識カメラCを退避位置L(+)に位置させる(ステップS21)。続いて、駆動制御部130は、カメラモータMcによって部品認識カメラCをX方向のX(-)側に駆動することで、部品認識カメラCを退避位置L(+)から退避位置L(-)まで移動させる(ステップS22)。そして、部品認識カメラCが退避位置L(-)に到達すると、駆動制御部130は、カメラモータMcを制御することで、部品認識カメラCを退避位置L(-)に停止させる(ステップS23)。一方、駆動制御部130が退避位置L(+)から退避位置L(-)までX(-)側に部品認識カメラCを移動させるのに並行して(ステップS22)、撮像制御部140は、部品認識カメラCに撮像を実行させる。これによって、複数のノズルNにそれぞれ吸着された複数の部品Eの画像が取得される。 On the other hand, in the scan imaging shown in FIG. 3D, the drive control unit 130 positions the component recognition camera C at the retracted position L(+) by controlling the camera motor Mc (step S21). Subsequently, the drive control unit 130 moves the component recognition camera C from the retracted position L(+) to the retracted position L(-) by driving the component recognition camera C in the X(-) side of the X direction using the camera motor Mc. (step S22). When the component recognition camera C reaches the retracted position L(-), the drive control unit 130 stops the component recognition camera C at the retracted position L(-) by controlling the camera motor Mc (step S23). . On the other hand, in parallel with the drive control unit 130 moving the component recognition camera C from the retracted position L(+) to the retracted position L(-) in the X(-) side (step S22), the imaging control unit 140 The component recognition camera C is caused to take an image. As a result, images of the plurality of parts E each attracted by the plurality of nozzles N are acquired.
 ちなみに、このスキャン撮像では、部品認識カメラCが部品Eの撮像を行う期間は、部品認識カメラCが所定のスキャン速度VcでX方向に等速移動するように、駆動制御部130はカメラモータMcを制御する。換言すれば、部品認識カメラCが部品Eの撮像を開始するまでに、カメラモータMcは部品認識カメラCをスキャン速度Vcまで加速する。図3Cの例では、退避位置L(-)からX(+)側に移動を開始した部品認識カメラCが、複数のノズルNのうちのX(-)側の端のノズルNに下方から対向する撮像位置に到達するまでに、部品認識カメラCのスキャン速度Vcへの加速が完了する。また、複数のノズルNのうちのX(+)側の端のノズルNに下方から対向する撮像位置を部品認識カメラCが通過してから、部品認識カメラCのスキャン速度Vcからの減速が開始する。図3Dの例についても同様に部品認識カメラCの速度が制御される。 Incidentally, in this scan imaging, during the period when the component recognition camera C images the component E, the drive control unit 130 controls the camera motor Mc so that the component recognition camera C moves uniformly in the X direction at a predetermined scan speed Vc. control. In other words, before the component recognition camera C starts imaging the component E, the camera motor Mc accelerates the component recognition camera C to the scan speed Vc. In the example of FIG. 3C, the component recognition camera C that has started moving from the retracted position L(-) to the X(+) side faces the nozzle N at the end of the X(-) side of the plurality of nozzles N from below. The acceleration of the component recognition camera C to the scanning speed Vc is completed by the time the component recognition camera C reaches the imaging position. In addition, after the component recognition camera C passes the imaging position facing the nozzle N at the end of the X (+) side of the plurality of nozzles N from below, the deceleration of the scan speed of the component recognition camera C from Vc starts. do. In the example of FIG. 3D, the speed of the component recognition camera C is similarly controlled.
 図4はヘッドユニットにより部品を吸着して基板に実装する実装ターンでの動作を示すフローチャートであり、図5は図4の実装ターンで部品認識ユニットに対して実行される速度制御の一例を模式的に示すタイミングチャートである。図5では、横軸が時間を表し、縦軸が速度を表すグラフが示されている。図4のフローチャートは、主制御部110の制御によって実行される。 FIG. 4 is a flowchart showing the operation in the mounting turn in which the head unit picks up components and mounts them on the board, and FIG. 5 schematically shows an example of the speed control performed on the component recognition unit in the mounting turn in FIG. 4. FIG. FIG. 5 shows a graph in which the horizontal axis represents time and the vertical axis represents speed. The flowchart in FIG. 4 is executed under the control of the main control unit 110.
 ステップS101では、ヘッドユニット3は、部品供給位置52に供給された部品EをノズルNに吸着することで、複数のノズルNのそれぞれに部品Eを吸着する(吸着動作)。なお、吸着動作において各ノズルNが吸着する部品Eは、基板データ121が示す基板Bへの部品Eの実装順序に従って予め決定されている。吸着動作が完了すると、ヘッドユニット3は、基板Bに向かって移動を開始する。具体的には、駆動制御部130は、X軸モータMxおよびY軸モータMyを制御することで、停止していたヘッドユニット3を所定のユニット速度Vu(ゼロより高い速度)まで加速する(ステップS102)。これによって、時刻t1から時刻t2までの加速期間T1において、ヘッドユニット3の速度がゼロからユニット速度Vuまで増加する。時刻t2においてヘッドユニット3の速度がユニット速度Vuに到達すると、駆動制御部130は、X軸モータMxおよびY軸モータMyを制御することで、ヘッドユニット3をユニット速度Vuで等速移動させる(ステップS103)これによって、時刻t2から時刻t3までの等速期間T2において、ヘッドユニット3の速度はユニット速度Vuで一定となる。時刻t3になると、駆動制御部130は、X軸モータMxおよびY軸モータMyを制御することで、ヘッドユニット3をユニット速度Vuから減速させて停止させる(ステップS104)。これによって、時刻t3から時刻t4までの減速期間T3において、ヘッドユニット3の速度がユニット速度Vuからゼロまで減少する。こうして停止したヘッドユニット3のノズルNに吸着された部品Eが基板Bの実装位置に上方から対向する。ステップS105では、ヘッドユニット3がこの部品Eを基板Bに実装する(ステップS105)。この際、駆動制御部130は、部品認識カメラCにより撮像された部品Eの画像が示す部品Eの位置に基づき、部品Eを吸着するノズルNの位置を制御することで、基板Bの実装位置に部品Eを実装する。 In step S101, the head unit 3 suctions the component E supplied to the component supply position 52 to the nozzle N, thereby suctioning the component E to each of the plurality of nozzles N (suction operation). Note that the components E to be attracted by each nozzle N in the attraction operation are determined in advance according to the mounting order of the components E on the board B indicated by the board data 121. When the suction operation is completed, the head unit 3 starts moving toward the substrate B. Specifically, the drive control unit 130 accelerates the stopped head unit 3 to a predetermined unit speed Vu (speed higher than zero) by controlling the X-axis motor Mx and the Y-axis motor My (step S102). As a result, the speed of the head unit 3 increases from zero to the unit speed Vu during the acceleration period T1 from time t1 to time t2. When the speed of the head unit 3 reaches the unit speed Vu at time t2, the drive control section 130 moves the head unit 3 at a constant speed at the unit speed Vu by controlling the X-axis motor Mx and the Y-axis motor My ( Step S103) As a result, the speed of the head unit 3 becomes constant at the unit speed Vu during the constant speed period T2 from time t2 to time t3. At time t3, the drive control section 130 decelerates the head unit 3 from the unit speed Vu and stops it by controlling the X-axis motor Mx and the Y-axis motor My (step S104). As a result, the speed of the head unit 3 decreases from the unit speed Vu to zero during the deceleration period T3 from time t3 to time t4. The component E attracted by the nozzle N of the head unit 3 thus stopped faces the mounting position of the board B from above. In step S105, the head unit 3 mounts this component E on the board B (step S105). At this time, the drive control unit 130 controls the mounting position of the board B by controlling the position of the nozzle N that sucks the component E based on the position of the component E indicated by the image of the component E captured by the component recognition camera C. Part E is mounted on.
 ちなみに、ヘッドユニット3の速度は、X方向の速度およびY方向の速度を合成した速度である。加速期間T1においては、X方向の速度およびY方向の速度の少なくとも一方が時間経過とともに増加する。等速期間T2においては、X方向の速度およびY方向の速度の両方が時間経過によらず一定となる。減速期間T3においては、X方向の速度およびY方向の速度の少なくとも一方が時間経過とともに減少する。 Incidentally, the speed of the head unit 3 is a speed that is a combination of the speed in the X direction and the speed in the Y direction. During the acceleration period T1, at least one of the speed in the X direction and the speed in the Y direction increases over time. During the constant velocity period T2, both the speed in the X direction and the speed in the Y direction are constant regardless of the passage of time. During the deceleration period T3, at least one of the speed in the X direction and the speed in the Y direction decreases over time.
 このように、ヘッドユニット3によって部品供給位置52から吸着された部品Eを基板Bの実装位置に上方から対向する位置に移送する部品移送動作(ステップS102~S104)が、X軸モータMxおよびY軸モータMyに対する駆動制御部130の制御によって実行される。これに対して、ヘッドユニット3に吸着された複数の部品Eの撮像は、部品移送動作と並行して実行される。具体的には、部品移送動作によってヘッドユニット3が移動している期間(加速期間T1、等速期間T2および減速期間T3)の間に、図3Cおよび図3Dのいずれか一方のスキャン撮像が実行されて、複数の部品Eの画像が撮像される(通常撮像モード)。 In this way, the component transfer operation (steps S102 to S104) of transferring the component E picked up by the head unit 3 from the component supply position 52 to a position facing the mounting position of the board B from above is performed by the X-axis motor Mx and the Y-axis motor Mx. This is executed by the control of the drive control unit 130 for the shaft motor My. On the other hand, imaging of the plurality of components E attracted to the head unit 3 is performed in parallel with the component transfer operation. Specifically, during the period in which the head unit 3 is moving due to the component transfer operation (acceleration period T1, constant velocity period T2, and deceleration period T3), one of the scan images shown in FIGS. 3C and 3D is executed. Then, images of the plurality of parts E are captured (normal imaging mode).
 ただし、部品Eには、基板Bへ実装する位置に高い精度が要求される高精度部品Ehと、基板Bへ実装する位置に高い精度が要求されない低精度部品Elとが存在する。このような高精度部品Ehの撮像を、加速期間T1あるいは減速期間T3に実行すると、ヘッドユニット3の加減速に伴う慣性力の影響が発生しうる。そこで、高精度部品Ehの撮像に対しては、次に説明する等速撮像モードあるいは停止撮像モードが適宜実行される。 However, the components E include a high-precision component Eh that requires high accuracy in the position where it is mounted on the board B, and a low-precision component El that does not require high precision in the position where it is mounted on the board B. If such imaging of the high-precision component Eh is performed during the acceleration period T1 or the deceleration period T3, the influence of inertial force accompanying acceleration and deceleration of the head unit 3 may occur. Therefore, for imaging the high-precision component Eh, a constant velocity imaging mode or a stop imaging mode, which will be described next, is executed as appropriate.
 図6は等速撮像モードの一例を示すフローチャートであり、図7A、図7Bおよび図7Cは等速撮像モードで実行される制御内容を模式的に示す図である。なお、図7Aでは、複数のノズルNを区別するために、X方向に順番に符号N1~N8がノズルに付されおり、図7Cでは、横軸が時間を表し、縦軸が速度を表すグラフが示されている。図6のフローチャートは、主制御部110の制御によって実行される。 FIG. 6 is a flowchart showing an example of the constant-velocity imaging mode, and FIGS. 7A, 7B, and 7C are diagrams schematically showing the control contents executed in the constant-velocity imaging mode. In addition, in FIG. 7A, codes N1 to N8 are given to the nozzles in order in the X direction in order to distinguish between the plurality of nozzles N, and in FIG. 7C, the horizontal axis represents time and the vertical axis represents a graph representing speed. It is shown. The flowchart in FIG. 6 is executed under the control of the main control unit 110.
 ステップS201では、上記のステップS101と同様に吸着動作が実行されて、ヘッドユニット3の複数のノズルN1~N8がそれぞれ複数の部品Eを吸着する。その結果、図7Aの例では、ノズルN1、N2、N4、N7、N8が低精度部品Elを吸着し、ノズルN3、N5、N6が高精度部品Ehを吸着する。このように、ヘッドユニット3によって吸着される複数の部品Eには、高精度部品Ehおよび低精度部品Elが含まれる。 In step S201, a suction operation is performed in the same manner as in step S101 above, and the plurality of nozzles N1 to N8 of the head unit 3 respectively suck a plurality of parts E. As a result, in the example of FIG. 7A, the nozzles N1, N2, N4, N7, and N8 suction the low-precision component El, and the nozzles N3, N5, and N6 suction the high-precision component Eh. In this way, the plurality of parts E picked up by the head unit 3 include high-precision parts Eh and low-precision parts El.
 ステップS202では、主制御部110は、スキャン撮像によって高精度部品Ehを撮像するのに要する高精度部品撮像時間Thを算出する。具体的には、ヘッドユニット3に吸着される複数の部品Eのうち、高精度部品EhのX方向への存在範囲Rhが求められる。2個以上、すなわちMh個(Mhは2以上の整数)の高精度部品Ehがヘッドユニット3に吸着される場合には、Mh個の高精度部品Ehのうち、X(+)側の端に位置する高精度部品Ehの撮像のために部品認識カメラCが位置する撮像位置と、X(-)側の端に位置する高精度部品Ehの撮像のために部品認識カメラCが位置する撮像位置とが存在範囲Rhの両端に位置するように、存在範囲Rhが求められる。そして、存在範囲RhのX方向の長さをスキャン速度Vcで除することで、高精度部品撮像時間Thが算出される。 In step S202, the main control unit 110 calculates the high-precision component imaging time Th required to image the high-precision component Eh by scan imaging. Specifically, the existence range Rh in the X direction of the high-precision component Eh among the plurality of components E attracted to the head unit 3 is determined. When two or more, that is, Mh (Mh is an integer of 2 or more) high-precision parts Eh are attracted to the head unit 3, one of the Mh high-precision parts Eh is placed on the X(+) side end. An imaging position where the component recognition camera C is located to take an image of the located high-precision part Eh, and an imaging position where the part recognition camera C is located to take an image of the high-precision part Eh located at the end on the X (-) side. The existence range Rh is determined such that the and is located at both ends of the existence range Rh. Then, the high-precision component imaging time Th is calculated by dividing the length of the existence range Rh in the X direction by the scan speed Vc.
 また、ステップS203では、主制御部110が等速期間T2を算出する。具体的には、スタート位置から目標位置までヘッドユニット3を移動させる部品移送動作における等速期間T2が算出される。ここで、スタート位置は、吸着動作を完了した時点におけるヘッドユニット3の位置であり、目標位置は、ヘッドユニット3により吸着される複数の部品Eのうち、最初に基板Bに実装される部品Eを実装位置に上方から対向させるヘッドユニット3の位置である。したがって、スタート位置と目標位置とが近いほど、等速期間T2は短くなる。 Furthermore, in step S203, the main control unit 110 calculates the constant velocity period T2. Specifically, a constant velocity period T2 in the component transfer operation for moving the head unit 3 from the start position to the target position is calculated. Here, the start position is the position of the head unit 3 at the time when the suction operation is completed, and the target position is the part E to be mounted on the board B first among the plurality of parts E to be suctioned by the head unit 3. This is the position of the head unit 3 that faces the mounting position from above. Therefore, the closer the start position and target position are, the shorter the constant velocity period T2 becomes.
 ステップS204では、主制御部110は、ステップS202で算出した高精度部品撮像時間ThとステップS203で算出した等速期間T2との比較に基づき、高精度部品Ehの撮像が等速期間T2内に完了するか否かを判定する。高精度部品撮像時間Thが等速期間T2に収まらない場合には、高精度部品Ehの撮像が等速期間T2内に完了しないと判定され(ステップS204で「NO」)、主制御部110は、ステップS205でユニット速度Vuを減少させてから、ステップS203で等速期間T2を算出する。図7Bの例に示すように、ユニット速度Vuが速度V1である場合の等速期間T2は、高精度部品撮像時間Thより短く、等速期間T2内に高精度部品Ehの撮像を完了できない(ステップS204で「NO」)。これに対して、図7Cに示すように、ユニット速度Vuが速度V1より低い速度V2である場合の等速期間T2は、高精度部品撮像時間Thより長く、等速期間T2内に高精度部品Ehの撮像を完了できる(ステップS204で「YES」)。つまり、主制御部110は、ユニット速度Vuを所定速度ずつ低下させつつ(ステップS205)、ステップS203、S204を繰り返すことで、高精度部品Ehの撮像が等速期間T2内に完了するようにユニット速度Vuを設定する。 In step S204, the main control unit 110 determines that the imaging of the high-precision component Eh is within the constant-velocity period T2 based on the comparison between the high-precision component imaging time Th calculated in step S202 and the constant-velocity period T2 calculated in step S203. Determine whether it is completed or not. If the high-precision component imaging time Th does not fall within the constant-velocity period T2, it is determined that the imaging of the high-precision component Eh is not completed within the constant-velocity period T2 (“NO” in step S204), and the main control unit 110 , the unit speed Vu is decreased in step S205, and then the constant velocity period T2 is calculated in step S203. As shown in the example of FIG. 7B, the constant velocity period T2 when the unit speed Vu is the velocity V1 is shorter than the high precision component imaging time Th, and the imaging of the high precision component Eh cannot be completed within the constant velocity period T2 ( (“NO” in step S204). On the other hand, as shown in FIG. 7C, when the unit speed Vu is a speed V2 lower than the speed V1, the constant velocity period T2 is longer than the high-precision component imaging time Th, and the high-precision component is captured within the constant velocity period T2. Imaging of Eh can be completed ("YES" in step S204). That is, the main control unit 110 reduces the unit speed Vu by a predetermined speed (step S205) and repeats steps S203 and S204, so that the unit Set speed Vu.
 こうして、ユニット速度Vuの設定が完了すると(ステップS204で「YES」)、駆動制御部130は、X軸モータMxおよびY軸モータMyを制御することで、ヘッドユニット3をユニット速度Vu(速度V2)まで加速する(ステップS206)。ヘッドユニット3のユニット速度Vuへの加速が完了すると、ヘッドユニット3のユニット速度Vuでの等速移動が開始される(ステップS207)。こうしてヘッドユニット3の等速移動が開始された後に、部品認識カメラCが高精度部品Ehの存在範囲RhをX方向に通過しつつ部品Eを撮像することで、高精度部品Ehの撮像が実行される(ステップS208)。そして、高精度部品Ehの撮像が完了した後に、ヘッドユニット3のユニット速度Vuからの減速が実行される(ステップS210)。また、ヘッドユニット3が停止すると、ヘッドユニット3に吸着される部品Eが基板Bに実装される(ステップS211)。 When the setting of the unit speed Vu is thus completed ("YES" in step S204), the drive control section 130 controls the X-axis motor Mx and the Y-axis motor My to move the head unit 3 to the unit speed Vu (speed V2). ) (step S206). When the acceleration of the head unit 3 to the unit speed Vu is completed, uniform velocity movement of the head unit 3 at the unit speed Vu is started (step S207). After the head unit 3 starts moving at a constant speed in this way, the component recognition camera C images the component E while passing through the existence range Rh of the high-precision component Eh in the X direction, thereby performing imaging of the high-precision component Eh. (Step S208). After the imaging of the high-precision component Eh is completed, the unit speed of the head unit 3 is decelerated from the unit speed Vu (step S210). Further, when the head unit 3 stops, the component E that is attracted to the head unit 3 is mounted on the board B (step S211).
 ちなみに、高精度部品撮像時間Thにおける撮像の対象とならない低精度部品Elの撮像は、高精度部品Ehの撮像が開始する前あるいは後に実行される。特に、図7Aに示す例では、X方向において、高精度部品Ehの存在範囲Rhの両側に、ヘッドユニット3に吸着される低精度部品Elが存在する。したがって、図7Cに示すように、低精度部品Elを撮像する低精度部品撮像時間Tlが高精度部品撮像時間Thの前後に存在する。高精度部品撮像時間Thの前の低精度部品撮像時間Tlは、加速期間T1の途中の時点から等速期間T2の途中の時点(高精度部品撮像時間Thが開始する時点)に渡って設けられ、高精度部品撮像時間Thの後の低精度部品撮像時間Tlは、等速期間T2の途中の時点(高精度部品撮像時間Thが終了する時点)から減速期間T3の途中の時点に渡って設けられる。 Incidentally, the imaging of the low-precision component El, which is not the target of imaging during the high-precision component imaging time Th, is performed before or after the start of imaging of the high-precision component Eh. In particular, in the example shown in FIG. 7A, low-precision components El to be attracted to the head unit 3 exist on both sides of the existence range Rh of the high-precision components Eh in the X direction. Therefore, as shown in FIG. 7C, a low-precision component imaging time Tl for imaging the low-precision component El exists before and after the high-precision component imaging time Th. The low-precision component imaging time Tl before the high-precision component imaging time Th is provided from a point in the middle of the acceleration period T1 to a point in the middle of the constant velocity period T2 (the point in time when the high-precision component imaging time Th starts). , the low-precision component imaging time Tl after the high-precision component imaging time Th is provided from a point in the middle of the constant velocity period T2 (the point in time when the high-precision component imaging time Th ends) to a point in the middle of the deceleration period T3. It will be done.
 図8は停止撮像モードの一例を示すフローチャートであり、図9A、図9Bおよび図9Cは停止撮像モードで実行される制御内容を模式的に示す図である。なお、図9Aおよび図9Bでは、複数のノズルNを区別するために、X方向に順番に符号N1~N8がノズルに付されている。また、図9Aおよび図9Bに示す例では、ヘッドユニット3によって吸着される複数の部品Eには、高精度部品Ehおよび低精度部品Elが含まれる。この際、図9Aの例と図9Bの例とでは、ヘッドユニット3によって吸着される高精度部品Ehの位置が異なっている。図9Cでは、横軸が時間を表し、縦軸が速度を表すグラフが示されている。図8のフローチャートは、主制御部110の制御によって実行される。 FIG. 8 is a flowchart showing an example of the stop imaging mode, and FIGS. 9A, 9B, and 9C are diagrams schematically showing the control contents executed in the stop imaging mode. Note that in FIGS. 9A and 9B, in order to distinguish the plurality of nozzles N, symbols N1 to N8 are sequentially attached to the nozzles in the X direction. Furthermore, in the example shown in FIGS. 9A and 9B, the plurality of parts E picked up by the head unit 3 include a high-precision part Eh and a low-precision part El. At this time, the position of the high-precision component Eh picked up by the head unit 3 is different between the example of FIG. 9A and the example of FIG. 9B. FIG. 9C shows a graph in which the horizontal axis represents time and the vertical axis represents speed. The flowchart in FIG. 8 is executed under the control of the main control unit 110.
 ステップS301では、主制御部110は、スキャン撮像によって高精度部品Ehを撮像する際に部品認識カメラCを移動させる方向(スキャン方向)を、高精度部品Ehの位置に基づき決定する。具体的には、主制御部110は、ステップS303で実行予定の吸着動作においてヘッドユニット3により吸着される高精度部品EhのX方向における位置を確認する。特に、ヘッドユニット3に吸着される高精度部品Ehのうち、退避位置L(-)から最も遠い一の高精度部品Ehと、退避位置L(-)とのX方向への距離D(-)と、ヘッドユニット3に吸着される高精度部品Ehのうち、退避位置L(+)から最も遠い一の高精度部品Ehと、退避位置L(+)とのX方向への距離D(+)とがそれぞれ算出される。ちなみに、上述の通り、吸着動作において各ノズルNが吸着する部品Eは、基板データ121に基づき予め決定されている。したがって、ステップS303での吸着動作で各ノズルNが吸着予定の部品Eのうちから高精度部品Ehを部品情報122に基づき特定することで、高精度部品Ehの位置を確認できる。 In step S301, the main control unit 110 determines the direction in which the component recognition camera C is moved (scan direction) when capturing an image of the high-precision component Eh by scan imaging, based on the position of the high-precision component Eh. Specifically, the main control unit 110 checks the position in the X direction of the high-precision component Eh to be sucked by the head unit 3 in the suction operation scheduled to be executed in step S303. In particular, among the high-precision parts Eh that are attracted to the head unit 3, the distance D(-) in the X direction between the one high-precision part Eh that is farthest from the retracted position L(-) and the retracted position L(-). and the distance D(+) in the X direction between the one high-precision component Eh that is farthest from the evacuation position L(+) among the high-precision components Eh attracted to the head unit 3 and the evacuation position L(+). are calculated respectively. Incidentally, as described above, the component E to be picked up by each nozzle N in the picking operation is determined in advance based on the board data 121. Therefore, the position of the high-precision component Eh can be confirmed by specifying the high-precision component Eh from among the components E scheduled to be picked up by each nozzle N in the suction operation in step S303 based on the component information 122.
 さらに、ステップS301では、主制御部110は、高精度部品Ehの位置に基づき、スキャン方向を決定する。図9Aの例では、距離D(-)が距離D(+)より短い。したがって、退避位置L(-)からX(+)側に向けて部品認識カメラCを移動させつつ高精度部品Ehを撮像するのに要する時間は、退避位置L(+)からX(-)側に向けて部品認識カメラCを移動させつつ高精度部品Ehを撮像するのに要する時間より短い。したがって、退避位置L(-)からX(+)側へ向かうスキャン方向に部品認識カメラCを移動させるスキャン撮像(図3C)によって高精度部品Ehを撮像すると決定される。一方、図9Bの例では、距離D(+)が距離D(-)より短い。したがって、退避位置L(+)からX(-)側に向けて部品認識カメラCを移動させつつ高精度部品Ehを撮像するのに要する時間は、退避位置L(-)からX(+)側に向けて部品認識カメラCを移動させつつ高精度部品Ehを撮像するのに要する時間より短い。したがって、退避位置L(+)からX(-)側へ向かうスキャン方向に部品認識カメラCを移動させるスキャン撮像(図3D)によって高精度部品Ehを撮像すると決定される。つまり、高精度部品Ehを撮像するのに要する時間の短縮を図るために、距離D(-)が距離D(+)より短い場合には、退避位置L(-)からX(+)側へ向かうスキャン方向に部品認識カメラCを移動させるスキャン撮像を実行すると決定され、距離D(+)が距離D(-)より短い場合には、退避位置L(+)からX(-)側へ向かうスキャン方向に部品認識カメラCを移動させるスキャン撮像を実行すると決定される。 Furthermore, in step S301, the main control unit 110 determines the scanning direction based on the position of the high-precision component Eh. In the example of FIG. 9A, distance D(-) is shorter than distance D(+). Therefore, the time required to image the high-precision component Eh while moving the component recognition camera C from the retracted position L(-) toward the X(+) side is This is shorter than the time required to image the high-precision component Eh while moving the component recognition camera C toward. Therefore, it is determined that the high-precision component Eh should be imaged by scanning imaging (FIG. 3C) in which the component recognition camera C is moved in the scanning direction from the retracted position L(-) toward the X(+) side. On the other hand, in the example of FIG. 9B, the distance D(+) is shorter than the distance D(-). Therefore, the time required to image the high-precision component Eh while moving the component recognition camera C from the retracted position L(-) toward the X(+) side is This is shorter than the time required to image the high-precision component Eh while moving the component recognition camera C toward. Therefore, it is determined that the high-precision component Eh should be imaged by scanning imaging (FIG. 3D) in which the component recognition camera C is moved in the scanning direction from the retracted position L(+) to the X(-) side. In other words, in order to reduce the time required to image the high-precision component Eh, if the distance D(-) is shorter than the distance D(+), move from the retracted position L(-) to the X(+) side. It is determined to perform scan imaging by moving the component recognition camera C in the scanning direction toward which it is heading, and if the distance D(+) is shorter than the distance D(-), it moves from the retreat position L(+) to the X(-) side. It is determined to perform scan imaging by moving the component recognition camera C in the scanning direction.
 ステップ302では、主制御部110は、退避位置L(+)および退避位置L(-)のうち、ステップS301での決定に対応する退避位置に部品認識カメラCを位置させる。つまり、決定されたスキャン方向が退避位置L(-)からX(+)側へ向かう方向である場合には、主制御部110は、ヘッドユニット3を退避位置L(-)に位置させる。また、決定されたスキャン方向が退避位置L(+)からX(-)側へ向かう方向である場合には、主制御部110は、ヘッドユニット3を退避位置L(+)に位置させる。 In step S302, the main control unit 110 positions the component recognition camera C at the retracted position corresponding to the retracted position determined in step S301, out of the retracted position L(+) and the retracted position L(-). That is, if the determined scan direction is from the retracted position L(-) toward the X(+) side, the main control section 110 positions the head unit 3 at the retracted position L(-). Furthermore, when the determined scanning direction is from the retracted position L(+) toward the X(-) side, the main control section 110 positions the head unit 3 at the retracted position L(+).
 続くステップS303では、ヘッドユニット3は吸着動作を実行して、複数のノズルNによって複数の部品Eを吸着する。そして、吸着動作を完了したヘッドユニット3が停止した状態において、スキャン撮像が開始される(ステップS304)。このスキャン撮像によって、ヘッドユニット3に吸着される全ての高精度部品Ehの撮像が完了すると(ステップS305で「YES」)、ヘッドユニット3の加速(ステップS306)、等速移動(ステップS307)および減速(ステップS308)が実行される(部品移送動作)。つまり、図9Cに示すように、停止撮像モードでは、ヘッドユニット3が吸着動作を完了してからヘッドユニット3の加速が開始されるまでの停止期間T0において、高精度部品Ehの撮像が実行する。したがって、高精度部品Ehを撮像する高精度部品撮像時間Thは、停止期間T0内に含まれ、全ての高精度部品Ehの撮像が停止期間T0において完了する。 In the following step S303, the head unit 3 performs a suction operation and suctions a plurality of parts E with a plurality of nozzles N. Then, scan imaging is started in a state where the head unit 3 that has completed the suction operation is stopped (step S304). When imaging of all the high-precision parts Eh attracted to the head unit 3 is completed by this scan imaging ("YES" in step S305), the head unit 3 is accelerated (step S306), moved at constant speed (step S307), and Deceleration (step S308) is executed (component transfer operation). That is, as shown in FIG. 9C, in the stop imaging mode, imaging of the high-precision component Eh is performed during the stop period T0 from when the head unit 3 completes the suction operation until the head unit 3 starts accelerating. . Therefore, the high-precision component imaging time Th for imaging the high-precision component Eh is included in the stop period T0, and the imaging of all the high-precision parts Eh is completed during the stop period T0.
 また、全ての高精度部品Ehの撮像が完了した時点において、未撮像の低精度部品Elは、ステップS306でヘッドユニット3の加速が開始された後に継続されるスキャン撮像によって撮像される。その結果、図9Cの例では、低精度部品Elを撮像する低精度部品撮像時間Tlは、加速期間T1の開始時点から等速期間T2の途中の時点に渡って設けられる。そして、部品移送動作(ステップS306~S308)が完了して、ヘッドユニット3が停止すると、ヘッドユニット3は、ノズルNに吸着される部品Eを基板Bに実装する(ステップS309)。 Furthermore, at the time when all the high-precision parts Eh have been imaged, the unimaged low-precision parts El are imaged by scan imaging that continues after acceleration of the head unit 3 is started in step S306. As a result, in the example of FIG. 9C, the low-precision component imaging time Tl for imaging the low-precision component El is provided from the start of the acceleration period T1 to the middle of the constant velocity period T2. Then, when the component transfer operation (steps S306 to S308) is completed and the head unit 3 stops, the head unit 3 mounts the component E attracted by the nozzle N onto the substrate B (step S309).
 このように、部品実装機1では、高精度部品Ehの撮像は、等速撮像モードおよび停止撮像モードによって実行することができる。これらの撮像モードに共通するのは、ヘッドユニット3が加減速された期間とは異なる期間、具体的には、ヘッドユニット3が等速移動する期間(等速期間T2)や、ヘッドユニット3が停止する期間(停止期間T0)に、高精度部品Ehの撮像が実行される点である。つまり、高精度部品Ehの撮像は、ヘッドユニット3が加減速される期間とは異なる期間に制限されている。続いては、これらの撮像モードのうちから、高精度部品Ehの撮像に実際に用いる撮像モードを決定する方法について、図10を用いて説明する。 In this manner, in the component mounter 1, imaging of the high-precision component Eh can be performed in the constant speed imaging mode and the stop imaging mode. What these imaging modes have in common is a period different from the period in which the head unit 3 is accelerated or decelerated, specifically, a period in which the head unit 3 moves at a constant speed (uniform speed period T2), or a period in which the head unit 3 moves at a constant speed (uniform speed period T2) The point is that imaging of the high-precision component Eh is performed during the stop period (stop period T0). In other words, imaging of the high-precision component Eh is limited to a period different from the period during which the head unit 3 is accelerated or decelerated. Next, a method for determining the imaging mode actually used for imaging the high-precision component Eh from among these imaging modes will be described using FIG. 10.
 図10は撮像モード決定処理の一例を示すフローチャートである。図10のフローチャートは、主制御部110の制御によって実行される。特に撮像モード決定処理は、吸着動作で吸着予定の高精度部品Ehの撮像をいずれの撮像モードで実行するかを決定するために、当該吸着動作の開始前に実行される。 FIG. 10 is a flowchart illustrating an example of imaging mode determination processing. The flowchart in FIG. 10 is executed under the control of the main control unit 110. In particular, the imaging mode determination process is executed before the suction operation is started in order to determine in which imaging mode the high-precision component Eh scheduled to be suctioned in the suction operation is to be imaged.
 ステップS401では、期間制限撮像制御が設定されているか否かが判断される。この期間制限撮像制御とは、ヘッドユニット3が加減速される期間とは異なる期間(等速期間T2、停止期間T0)に高精度部品Ehの撮像を制限する制御である。期間制限撮像制御の設定は、UI150に対するユーザの操作によって実行される。期間制限撮像制御が設定されていない場合(ステップS401で「NO」の場合)には、主制御部110は、以後にヘッドユニット3によって吸着される高精度部品Ehの撮像を、通常撮像モードによって実行すると決定する(ステップS402)。したがって、ヘッドユニット3が加減速される期間(加速期間T1あるいは減速期間T3)における高精度部品Ehの撮像が許容される。 In step S401, it is determined whether period limited imaging control is set. This period limited imaging control is a control that limits imaging of the high-precision component Eh to a period (constant velocity period T2, stop period T0) that is different from the period in which the head unit 3 is accelerated or decelerated. Setting of the limited period imaging control is executed by the user's operation on the UI 150. If the period limited imaging control is not set (“NO” in step S401), the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 from now on in the normal imaging mode. It is determined to execute (step S402). Therefore, imaging of the high-precision component Eh is allowed during a period in which the head unit 3 is accelerated or decelerated (acceleration period T1 or deceleration period T3).
 期間制限撮像制御が設定されている場合(ステップS401で「YES」の場合)には、等速撮像モードおよび停止撮像モードのいずれか一の撮像モードがユーザによって選択されているか否かが判定される(ステップS403)。つまり、ユーザは、UI150を操作することで、等速撮像モードおよび停止撮像モードのうちの一の撮像モードを選択することができる。 If the period limited imaging control is set (“YES” in step S401), it is determined whether the user has selected one of the constant velocity imaging mode and the stop imaging mode. (Step S403). That is, by operating the UI 150, the user can select one of the constant velocity imaging mode and the stop imaging mode.
 一の撮像モードがユーザによって選択されている場合(ステップS403で「YES」の場合)には、当該一の撮像モード(すなわち、選択された撮像モード)が等速撮像モードであるか否かが判定される。等速撮像モードが選択されている場合(ステップS404で「YES」の場合)には、主制御部110は、以後にヘッドユニット3によって吸着される高精度部品Ehの撮像を、等速撮像モードによって実行すると決定する(ステップS405)。一方、停止撮像モードが選択されている場合(ステップS404で「NO」の場合)には、主制御部110は、以後にヘッドユニット3によって吸着される高精度部品Ehの撮像を、停止撮像モードによって実行すると決定する(ステップS406)。 If one imaging mode is selected by the user (“YES” in step S403), it is determined whether the one imaging mode (that is, the selected imaging mode) is a constant velocity imaging mode. It will be judged. If the constant velocity imaging mode is selected (“YES” in step S404), the main control unit 110 changes the imaging of the high-precision component Eh to be picked up by the head unit 3 to the constant velocity imaging mode. It is determined that the process is to be executed (step S405). On the other hand, if the stop imaging mode is selected ("NO" in step S404), the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 in the stop imaging mode. (Step S406).
 一方、一の撮像モードがユーザによって選択されていない場合(ステップS403で「NO」の場合)には、等速撮像モードおよび停止撮像モードそれぞれについてタクトタイムが算出される(ステップS407)。ここで、タクトタイムは、吸着動作を完了してから、当該吸着動作によって吸着された全ての部品E(高精度部品Ehおよび低精度部品El)の基板Bへの実装を完了するまでの時間を示す。詳述すると、主制御部110は、等速撮像モードで高精度部品Ehの撮像を実行した場合におけるタクトタイムTmを予測するとともに、停止撮像モードで高精度部品Ehの撮像を実行した場合におけるタクトタイムTsを予測する。 On the other hand, if one imaging mode is not selected by the user ("NO" in step S403), the takt time is calculated for each of the constant-velocity imaging mode and the stop imaging mode (step S407). Here, the takt time is the time from completion of the suction operation to completion of mounting on the board B of all the components E (high-precision components Eh and low-precision components El) that were suctioned by the suction operation. show. Specifically, the main control unit 110 predicts the takt time Tm when imaging the high-precision component Eh in the constant-velocity imaging mode, and predicts the takt time Tm when imaging the high-precision component Eh in the stop imaging mode. Predict time Ts.
 ステップS408では、等速撮像モードのタクトタイムTmと、停止撮像モードのタクトタイムTsとが比較される。そして、等速撮像モードのタクトタイムTmが停止撮像モードのタクトタイムTs以下である場合には、主制御部110は、以後にヘッドユニット3によって吸着される高精度部品Ehの撮像を、等速撮像モードによって実行すると決定する(ステップS405)。一方、停止撮像モードのタクトタイムTsが等速撮像モードのタクトタイムTm未満である場合には、主制御部110は、以後にヘッドユニット3によって吸着される高精度部品Ehの撮像を、停止撮像モードによって実行すると決定する(ステップS406)。 In step S408, the takt time Tm in the constant speed imaging mode and the takt time Ts in the stop imaging mode are compared. Then, when the tact time Tm in the constant velocity imaging mode is less than or equal to the tact time Ts in the stop imaging mode, the main control unit 110 controls the imaging of the high-precision component Eh to be picked up by the head unit 3 at a constant velocity. It is determined that the image capturing mode is to be executed (step S405). On the other hand, if the tact time Ts in the stop imaging mode is less than the takt time Tm in the constant velocity imaging mode, the main control unit 110 controls the stop imaging mode to stop the imaging of the high-precision component Eh to be picked up by the head unit 3 from now on. It is determined to execute depending on the mode (step S406).
 以上に説明する本実施形態では、部品Eを吸着するヘッドユニット3を駆動することで、ヘッドユニット3に吸着された部品Eを基板Bに対向する位置に移送する部品移送動作が実行される(ステップS102~S104、ステップS206、S207、S209、S210、ステップS306~S308)。そして、ヘッドユニット3に対してX方向(所定方向)に移動可能にヘッドユニット3に支持されて、X方向に駆動される部品認識カメラCによって、ヘッドユニット3に吸着された部品Eが撮像される。したがって、ヘッドユニット3が加速あるいは減速される期間では、加減速に伴って発生する慣性力が部品認識カメラCによる部品Eの撮像に影響するおそれがある。特に、高精度部品Ehについては、かかる影響は大きな問題となる。これに対して、本実施形態では、ヘッドユニット3が加速あるいは減速される期間とは異なる期間(等速期間T2、停止期間T0)において、X方向に駆動される部品認識カメラCにより高精度部品Ehを撮像する制御(期間制限撮像制御)が実行される。換言すれば、ヘッドユニット3が加速あるいは減速される期間(加速期間T1、減速期間T3)では高精度部品Ehは撮像されず、高精度部品Ehを撮像するタイミングが、停止期間T0あるいは等速期間T2に制限されている。その結果、高精度部品Ehを吸着するヘッドユニット3に支持されて当該ヘッドユニット3に伴って移動する部品認識カメラCによって高精度部品Ehを撮像するにあたって、ヘッドユニット3の加減速に伴う慣性力が高精度部品Ehの撮像に与える影響を排除することが可能となる。 In the present embodiment described above, by driving the head unit 3 that sucks the component E, a component transfer operation is performed to transfer the component E that is sucked by the head unit 3 to a position facing the substrate B ( Steps S102 to S104, Steps S206, S207, S209, S210, Steps S306 to S308). The component E attracted to the head unit 3 is imaged by a component recognition camera C that is movably supported by the head unit 3 in the X direction (predetermined direction) and driven in the X direction. Ru. Therefore, during a period in which the head unit 3 is accelerated or decelerated, there is a possibility that the inertial force generated due to the acceleration or deceleration may affect the imaging of the component E by the component recognition camera C. In particular, for high-precision parts Eh, this influence becomes a big problem. On the other hand, in the present embodiment, the high-precision parts are detected by the part recognition camera C driven in the Control for imaging Eh (period-limited imaging control) is executed. In other words, the high-precision component Eh is not imaged during the period in which the head unit 3 is accelerated or decelerated (acceleration period T1, deceleration period T3), and the timing at which the high-precision component Eh is imaged is during the stop period T0 or the constant velocity period. Limited to T2. As a result, when the component recognition camera C, which is supported by the head unit 3 that sucks the high-precision component Eh and moves with the head unit 3, takes an image of the high-precision component Eh, the inertial force accompanying the acceleration and deceleration of the head unit 3 is generated. This makes it possible to eliminate the influence that this would have on the imaging of the high-precision component Eh.
 また、X軸モータMxおよびY軸モータMy(ユニット駆動部)は、加速期間T1においてヘッドユニット3を所定のユニット速度Vuまで加速させ、加速期間T1に続く等速期間T2においてヘッドユニット3をユニット速度Vuで等速移動させ、等速期間T2に続く減速期間T3においてヘッドユニット3をユニット速度Vuから減速させることで、部品移送動作を実行する。これに対して、期間制限撮像制御は、加速期間T1および減速期間T3では部品認識カメラCに高精度部品Ehを撮像させずに等速期間T2に部品認識カメラCに高精度部品Ehを撮像させる等速撮像モードを実行可能である(図6)。かかる構成では、等速撮像モードを実行することで、加速期間T1および減速期間T3に生じる慣性力が高精度部品Ehの撮像に与える影響を排除することが可能となる。 Further, the X-axis motor Mx and the Y-axis motor My (unit drive section) accelerate the head unit 3 to a predetermined unit speed Vu during the acceleration period T1, and move the head unit 3 into the unit during the constant velocity period T2 following the acceleration period T1. The component transfer operation is performed by moving the head unit 3 at a constant speed Vu and decelerating the head unit 3 from the unit speed Vu in a deceleration period T3 following the constant speed period T2. On the other hand, the period limited imaging control does not allow the component recognition camera C to image the high-precision component Eh during the acceleration period T1 and the deceleration period T3, but causes the component recognition camera C to image the high-precision component Eh during the constant velocity period T2. It is possible to execute constant velocity imaging mode (FIG. 6). In this configuration, by executing the constant-velocity imaging mode, it is possible to eliminate the influence of the inertial force generated during the acceleration period T1 and the deceleration period T3 on the imaging of the high-precision component Eh.
 また、制御部100は、等速撮像モードを実行する場合には、等速期間T2に高精度部品Ehの撮像が完了するようにユニット速度Vuを設定する(ステップS203~S205)。かかる構成では、ユニット速度Vuが速いために等速期間T2が短く、等速期間T2に高精度部品Ehの撮像が完了できない場合には、等速期間T2に高精度部品Ehの撮像が完了できるようにユニット速度Vuを低下するといった制御が実行される。これによって、高精度部品Ehの撮像が等速期間T2で完了せずに、等速撮像モードに失敗するといった状況の発生を抑制できる。 Furthermore, when executing the constant-velocity imaging mode, the control unit 100 sets the unit speed Vu so that the imaging of the high-precision component Eh is completed in the constant-velocity period T2 (steps S203 to S205). In this configuration, if the constant velocity period T2 is short because the unit speed Vu is high and the imaging of the high precision component Eh cannot be completed during the constant velocity period T2, the imaging of the high precision component Eh can be completed during the constant velocity period T2. Control is executed to reduce the unit speed Vu. As a result, it is possible to suppress the occurrence of a situation where the imaging of the high-precision component Eh is not completed in the constant velocity period T2 and the constant velocity imaging mode fails.
 また、期間制限撮像制御は、部品移送動作(具体的には、ヘッドユニット3の加速)の開始前において停止するヘッドユニット3に吸着される高精度部品Ehを部品認識カメラCにより撮像する停止撮像モード(図8)を実行可能である。かかる構成では、停止撮像モードを実行することで、加速期間T1および減速期間T3に生じる慣性力が高精度部品Ehの撮像に与える影響を排除することが可能となる。 In addition, the period limited imaging control includes stop imaging in which the component recognition camera C images a high-precision component Eh that is attracted to the stopped head unit 3 before the start of the component transfer operation (specifically, acceleration of the head unit 3). mode (FIG. 8) can be executed. In this configuration, by executing the stop imaging mode, it is possible to eliminate the influence of the inertial force generated during the acceleration period T1 and the deceleration period T3 on the imaging of the high-precision component Eh.
 特に、期間制限撮像制御は、等速撮像モード(図6)および停止撮像モード(図8)のいずれか一方を実行する。かかる構成では、等速撮像モードあるいは停止撮像モードを実行することで、加速期間T1および減速期間T3に生じる慣性力が高精度部品Ehの撮像に与える影響を排除することが可能となる。 In particular, the period limited imaging control executes either the constant speed imaging mode (FIG. 6) or the stop imaging mode (FIG. 8). In this configuration, by executing the constant velocity imaging mode or the stop imaging mode, it is possible to eliminate the influence of the inertial force generated during the acceleration period T1 and the deceleration period T3 on the imaging of the high-precision component Eh.
 また、等速撮像モードおよび停止撮像モードのうちから一の撮像モードを選択するユーザの操作を受け付けるUI150(撮像モード選択部)が具備されており、制御部100は、UI150において選択された一の撮像モードを実行する(ステップS403~S406)。かかる構成では、等速撮像モードおよび停止撮像モードのうち、ユーザのニーズに応じた一の撮像モードによって高精度部品Ehを撮像することができる。 Further, a UI 150 (imaging mode selection unit) is provided that accepts a user's operation to select one imaging mode from the constant velocity imaging mode and the stop imaging mode, and the control unit 100 selects one of the imaging modes selected in the UI 150. The imaging mode is executed (steps S403 to S406). With this configuration, the high-precision component Eh can be imaged in one of the constant-velocity imaging mode and the stop imaging mode, depending on the user's needs.
 また、制御部100は、等速撮像モードおよび停止撮像モードのうちから一の撮像モードを選択するモード選択処理(ステップS407、S408)を実行し、当該モード選択処理によって選択された一の撮像モードを実行する(ステップS405、S406)。具体的には、モード選択処理では、等速撮像モードを実行した場合に、吸着動作で吸着した部品E(高精度部品Ehおよび低精度部品El)の基板Bへの実装を完了するのに要する時間Tmと、停止撮像モードを実行した場合に、吸着動作で吸着した部品E(高精度部品Ehおよび低精度部品El)の基板Bへの実装を完了するのに要する時間Tsとの比較に基づき、一の撮像モードを選択する(ステップS407、S408)。具体的には、等速撮像モードを実行した場合に、吸着動作で吸着した部品Eの基板Bへの実装を完了するのに要する時間Tmと、停止撮像モードを実行した場合に、吸着動作で吸着した部品Eの基板Bへの実装を完了するのに要する時間Tsとのうち、前者が後者より短ければ等速撮像モードが実行され、後者が前者より短ければ停止撮像モードが実行される。その結果、部品Eの撮像に要する時間を短く抑えることが可能となる。 Further, the control unit 100 executes a mode selection process (steps S407, S408) for selecting one imaging mode from the constant velocity imaging mode and the stop imaging mode, and selects the one imaging mode selected by the mode selection process. (steps S405, S406). Specifically, in the mode selection process, when the constant-velocity imaging mode is executed, the amount required to complete the mounting of the parts E (high-precision parts Eh and low-precision parts El) picked up by the pick-up operation onto the board B is determined. Based on the comparison between the time Tm and the time Ts required to complete the mounting of the components E (high-precision components Eh and low-precision components El) picked up by the pickup operation onto the board B when the stop imaging mode is executed. , selects one imaging mode (steps S407, S408). Specifically, when the constant speed imaging mode is executed, the time Tm required to complete the mounting of the component E picked up by the suction operation on the board B, and when the stop imaging mode is executed, the time required by the suction operation is Of the time Ts required to complete the mounting of the picked-up component E onto the board B, if the former is shorter than the latter, the constant speed imaging mode is executed, and if the latter is shorter than the former, the stop imaging mode is executed. As a result, the time required to image the component E can be kept short.
 また、制御部100は、部品認識カメラCによる低精度部品Elの撮像については期間制限撮像制御を実行せず、X軸モータMxおよびY軸モータMyがヘッドユニット3を加速あるいは減速させる期間(加速期間T1、減速期間T3)における部品認識カメラCによる低精度部品Elの撮像を許容する(図7C、図9C)。例えば、図7Cに示す等速撮像モードでは、加速期間T1および減速期間T3に低精度部品撮像時間Tlが重複し、図9Cに示す停止撮像モードでは、加速期間T1に低精度部品撮像時間Tlが重複する。かかる構成では、X軸モータMxおよびY軸モータMyがヘッドユニット3を加速あるいは減速させる期間を低精度部品Elの撮像に利用して、低精度部品Elを効率的に撮像することができる。 In addition, the control unit 100 does not execute period-limited imaging control for imaging the low-precision component El by the component recognition camera C, and does not perform period-limited imaging control for the period during which the X-axis motor Mx and the Y-axis motor My accelerate or decelerate the head unit 3 (acceleration The low-precision component El is allowed to be imaged by the component recognition camera C during the period T1 and the deceleration period T3 (FIGS. 7C and 9C). For example, in the constant velocity imaging mode shown in FIG. 7C, the low precision component imaging time Tl overlaps in the acceleration period T1 and the deceleration period T3, and in the stop imaging mode shown in FIG. 9C, the low precision component imaging time Tl overlaps in the acceleration period T1. Duplicate. With this configuration, the period during which the X-axis motor Mx and the Y-axis motor My accelerate or decelerate the head unit 3 can be used to image the low-precision component El, and the low-precision component El can be efficiently imaged.
 また、ヘッドユニット3は、X方向(所定方向)に配列された複数のノズルNを有し、ノズルNによって部品Eを吸着する。また、部品認識カメラCは、複数のノズルNよりX方向のX(+)側(一方側)に設けられた退避位置L(+)(一方退避位置)と、複数のノズルNよりX方向のX(-)側(他方側)に設けられた退避位置L(-)(他方退避位置)との間でヘッドユニット3に対して移動可能である。そして、部品認識カメラCは、退避位置L(+)から退避位置L(-)に向けて移動しつつノズルNに吸着された高精度部品Ehを撮像する第1スキャン撮像(図3D)と、退避位置L(-)から退避位置L(+)に向けて移動しつつノズルNに吸着された高精度部品Ehを撮像する第2スキャン撮像(図3C)とを実行可能である。これに対して、制御部100は、吸着動作によってヘッドユニット3に吸着される高精度部品Ehに対する停止撮像モードで実行するスキャン撮像(実行スキャン撮像)を、第1スキャン撮像(図3D)および第2スキャン撮像(図3C)のうちから決定するスキャン撮像決定処理(ステップS301)を、吸着動作(ステップS303)の開始前に実行する。このスキャン撮像決定処理では、吸着動作によってヘッドユニット3により吸着される高精度部品EhのX方向における位置に応じて、高精度部品Ehの撮像に用いるスキャン撮像(実行スキャン撮像)が決定される。そして、制御部100は、第1スキャン撮像(図3D)を実行すると決定した場合には、吸着動作の開始前にカメラを退避位置L(+)に位置させる一方、第2スキャン撮像(図3C)を実行すると決定した場合には、吸着動作の開始前に部品認識カメラCを退避位置L(-)に位置させる(ステップS302)。かかる構成では、停止撮像モードを実行する際の部品認識カメラCの移動方向が、ヘッドユニット3に吸着される高精度部品Ehの位置に応じて決定される。その結果、高精度部品Ehの位置に応じた合理的な方向に部品認識カメラCを移動させつつ高精度部品Ehを撮像でき、高精度部品Eh高精度部品の撮像に要する時間を短く抑えることができる。 Further, the head unit 3 has a plurality of nozzles N arranged in the X direction (predetermined direction), and the nozzles N suck the component E. In addition, the component recognition camera C is located at a retracted position L(+) (one retracted position) provided on the X(+) side (one side) in the X direction than the plurality of nozzles N, and It is movable relative to the head unit 3 between a retracted position L(-) (the other retracted position) provided on the X(-) side (the other side). Then, the component recognition camera C performs a first scan imaging (FIG. 3D) in which the high-precision component Eh is captured by the nozzle N while moving from the retracted position L(+) to the retracted position L(-). It is possible to perform a second scan imaging (FIG. 3C) in which the high-precision component Eh sucked by the nozzle N is imaged while moving from the retracted position L(−) toward the retracted position L(+). On the other hand, the control unit 100 controls the scan imaging (execution scan imaging) performed in the stop imaging mode for the high-precision component Eh that is attracted to the head unit 3 by the attraction operation to the first scan imaging (FIG. 3D) and the first scan imaging (FIG. 3D) A scan imaging determination process (step S301) for determining one of the two scan imagings (FIG. 3C) is executed before the start of the suction operation (step S303). In this scan imaging determination process, the scan imaging (actual scan imaging) to be used for imaging the high precision component Eh is determined according to the position in the X direction of the high precision component Eh that is attracted by the head unit 3 by the attraction operation. When the control unit 100 determines to perform the first scan imaging (FIG. 3D), the controller 100 positions the camera at the retracted position L(+) before starting the suction operation, while the second scan imaging (FIG. 3C) ), the component recognition camera C is positioned at the retracted position L(-) before starting the suction operation (step S302). In this configuration, the moving direction of the component recognition camera C when executing the stop imaging mode is determined according to the position of the high-precision component Eh that is attracted to the head unit 3. As a result, it is possible to image the high-precision component Eh while moving the component recognition camera C in a rational direction according to the position of the high-precision component Eh, and it is possible to shorten the time required to image the high-precision component Eh. can.
 また、期間制限撮像制御の実行の有無を選択するユーザの操作を受け付けるUI150(制御選択部)が具備されている。そして、制御部100は、期間制限撮像制御を実行するとUI150において選択された場合(ステップS401で「YES」の場合)に、高精度部品Ehの撮像を期間制限撮像制御によって実行する一方(ステップS405、S406)、期間制限撮像制御を実行しないとUI150において選択された場合(ステップS401で「NO」の場合)には、期間制限撮像制御を実行せずに、X軸モータMxおよびY軸モータMyがヘッドユニット3を加速あるいは減速させる期間(加速期間T1、減速期間T3)における部品認識カメラCによる部品(特に、高精度部品Eh)の撮像を許容する(ステップS402)。かかる構成では、期間制限撮像制御の実行の有無をユーザのニーズに応じて決定できる。 Additionally, a UI 150 (control selection unit) is provided that accepts a user's operation to select whether or not to execute period-limited imaging control. Then, when executing the period limited imaging control is selected on the UI 150 ("YES" in step S401), the control unit 100 executes imaging of the high precision component Eh by the period limited imaging control (step S405). , S406), if it is selected on the UI 150 not to execute the limited time imaging control ("NO" in step S401), the X-axis motor Mx and the Y-axis motor My During the period in which the head unit 3 is accelerated or decelerated (acceleration period T1, deceleration period T3), the component recognition camera C is allowed to image the component (especially the high-precision component Eh) (step S402). With this configuration, it is possible to determine whether or not to execute period-limited imaging control depending on the user's needs.
 このように上記の実施形態では、部品実装機1が本発明の「部品実装機」の一例に相当し、コンベア12が本発明の「基板搬送部」の一例に相当し、作業位置13が本発明の「作業位置」の一例に相当し、制御部100が本発明の「制御部」の一例に相当し、UI150が本発明の「撮像モード選択部」の一例に相当し、UI150が本発明の「制御選択部」の一例に相当し、ヘッドユニット3が本発明の「ヘッドユニット」の一例に相当し、部品供給部5が本発明の「部品供給部」の一例に相当し、部品供給位置52が本発明の「部品供給位置」の一例に相当し、基板Bが本発明の「基板」の一例に相当し、部品認識カメラCが本発明の「カメラ」の一例に相当し、部品Eが本発明の「部品」の一例に相当し、高精度部品Ehが本発明の「高精度部品」の一例に相当し、低精度部品Elが本発明の「低精度部品」の一例に相当し、退避位置L(+)が本発明の「一方退避位置」の一例に相当し、退避位置L(-)が本発明の「他方退避位置」の一例に相当し、X軸モータMxおよびY軸モータMyが協働して本発明の「ユニット駆動部」の一例として機能し、ノズルNが本発明の「ノズル」の一例に相当し、加速期間T1が本発明の「加速期間」の一例に相当し、等速期間T2が本発明の「等速期間」の一例に相当し、減速期間T3が本発明の「減速期間」の一例に相当し、ユニット速度Vuが本発明の「ユニット速度」の一例に相当し、X(+)側が本発明の「一方側」の一例に相当し、X(-)側が本発明の「他方側」の一例に相当する。 In the above embodiment, the component mounter 1 corresponds to an example of the "component mounter" of the present invention, the conveyor 12 corresponds to an example of the "board transfer section" of the present invention, and the work position 13 corresponds to an example of the "component mounter" of the present invention. The control unit 100 corresponds to an example of the “work position” of the invention, the control unit 100 corresponds to an example of the “control unit” of the invention, the UI 150 corresponds to an example of the “imaging mode selection unit” of the invention, and the UI 150 corresponds to an example of the “imaging mode selection unit” of the invention. The head unit 3 corresponds to an example of the "control selection section" of the present invention, the head unit 3 corresponds to an example of the "head unit" of the present invention, the parts supply section 5 corresponds to an example of the "components supply section" of the present invention, and the parts supply section 5 corresponds to an example of the "control selection section" of the present invention. The position 52 corresponds to an example of the "component supply position" of the present invention, the board B corresponds to an example of the "board" of the present invention, the component recognition camera C corresponds to an example of the "camera" of the present invention, and the component recognition camera C corresponds to an example of the "camera" of the present invention. E corresponds to an example of the "component" of the present invention, high precision component Eh corresponds to an example of the "high precision component" of the present invention, and low precision component El corresponds to an example of the "low precision component" of the present invention. However, the retracted position L(+) corresponds to an example of the "one retracted position" of the present invention, the retracted position L(-) corresponds to an example of the "other retracted position" of the present invention, and the X-axis motor Mx and Y The shaft motor My cooperates to function as an example of the "unit drive section" of the present invention, the nozzle N corresponds to an example of the "nozzle" of the present invention, and the acceleration period T1 is an example of the "acceleration period" of the present invention. , the constant velocity period T2 corresponds to an example of the "uniform velocity period" of the present invention, the deceleration period T3 corresponds to an example of the "deceleration period" of the present invention, and the unit speed Vu corresponds to the "unit speed" of the present invention. '', the X(+) side corresponds to an example of the "one side" of the present invention, and the X(-) side corresponds to an example of the "other side" of the present invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、停止撮像モードの実行時における吸着動作を図11Aおよび図11Bに示すように実行してもよい。ここで、図11Aおよび図11Bは吸着動作の一例を模式的に示す正面図である。図11Aおよび図11Bの例では、ヘッドユニット3によって吸着される複数の部品Eには、高精度部品Ehおよび低精度部品Elが含まれる。特に、図11Aの例では、図11Bの例では、高精度部品EhがX(+)側に集まるとともに低精度部品ElがX(-)側に集まるように、複数の部品Eがヘッドユニット3によって吸着される(第1吸着モード)。一方、高精度部品EhがX(-)側に集まるとともに低精度部品ElがX(+)側に集まるように、複数の部品Eがヘッドユニット3によって吸着される(第2吸着モード)。第1吸着モードおよび第2吸着モードのいずれを実行するかは、例えば、ヘッドユニット3が複数の部品Eの吸着を完了するのに要する時間(吸着完了時間)に基づき決定できる。つまり、第1吸着モードおよび第2吸着モードのうち、吸着完了時間が短い一の吸着モードで吸着動作を行うように決定される。そして、図8の停止撮像モードでは、この一の吸着モードでステップS303の吸着動作が実行されるとの前提で、ステップS301~S302が実行される。 Note that the present invention is not limited to the embodiments described above, and various changes can be made to what has been described above without departing from the spirit thereof. For example, the suction operation during execution of the stop imaging mode may be performed as shown in FIGS. 11A and 11B. Here, FIGS. 11A and 11B are front views schematically showing an example of the suction operation. In the example of FIGS. 11A and 11B, the plurality of parts E picked up by the head unit 3 include a high-precision part Eh and a low-precision part El. In particular, in the example of FIG. 11A, in the example of FIG. 11B, a plurality of parts E are arranged on the head unit 3 such that high-precision parts Eh gather on the X(+) side and low-precision parts El gather on the X(-) side. (first adsorption mode). On the other hand, a plurality of parts E are picked up by the head unit 3 so that the high-precision parts Eh are collected on the X(-) side and the low-precision parts El are collected on the X(+) side (second suction mode). Which of the first suction mode and the second suction mode is to be executed can be determined based on, for example, the time required for the head unit 3 to complete suction of the plurality of parts E (suction completion time). That is, it is determined that the suction operation is performed in one of the first suction mode and the second suction mode, which has the shortest suction completion time. In the stop imaging mode of FIG. 8, steps S301 to S302 are executed on the premise that the suction operation of step S303 is executed in this one suction mode.
 つまり、この例では、ヘッドユニット3が高精度部品Ehおよび低精度部品Elをそれぞれ吸着する場合、制御部100は、高精度部品Ehの全部が低精度部品Elの全部のX(+)側(一方側)に位置するように高精度部品Ehおよび低精度部品Elをヘッドユニット3に吸着させる第1吸着モード(図11A)と、高精度部品Ehの全部が低精度部品Elの全部のX(-)側(他方側)に位置するように高精度部品Ehおよび低精度部品Elをヘッドユニット3に吸着させる第2吸着モード(図11B)とのいずれかを実行する。そして、第1吸着モード(図11A)を実行する場合には、停止撮像モード(図8)において図3Dのスキャン撮像(第1スキャン撮像)が実行され、第2吸着モード(図11B)を実行する場合には、停止撮像モード(図8)において図3Cのスキャン撮像(第2スキャン撮像)が実行される。かかる構成では、退避位置L(+)および退避位置L(-)のうち部品認識カメラCが位置する退避位置側に高精度部品Ehを集めた状態から、部品認識カメラCを移動させて当該部品認識カメラCによって高精度部品Ehを撮像でき、高精度部品Ehの撮像に要する時間を短く抑えることができる。 That is, in this example, when the head unit 3 picks up the high-precision parts Eh and the low-precision parts El, the control unit 100 controls the control unit 100 so that all of the high-precision parts Eh are on the X(+) side of all the low-precision parts El ( A first suction mode (FIG. 11A) in which high-precision parts Eh and low-precision parts El are adsorbed to the head unit 3 so that all of the high-precision parts Eh are located on one side) and all of the low-precision parts El are A second suction mode (FIG. 11B) in which the high-precision component Eh and the low-precision component El are suctioned to the head unit 3 so as to be located on the −) side (the other side) is executed. When executing the first suction mode (FIG. 11A), scan imaging in FIG. 3D (first scan imaging) is executed in the stop imaging mode (FIG. 8), and the second suction mode (FIG. 11B) is executed. In this case, scan imaging (second scan imaging) in FIG. 3C is executed in the stop imaging mode (FIG. 8). In this configuration, from a state where high-precision parts Eh are gathered on the side of the evacuation position where the component recognition camera C is located between the evacuation position L (+) and the evacuation position L (-), the part recognition camera C is moved to collect the parts. The recognition camera C can image the high-precision component Eh, and the time required to image the high-precision component Eh can be kept short.
 また、上記の実施形態では、期間制限撮像制御の実行対象となる部品Eが高精度部品Ehおよび低精度部品Elのうちの高精度部品Ehに限定されている。しかしながら、高精度部品Ehおよび低精度部品Elを区別せずに、ヘッドユニット3に吸着された全ての部品Eに対して期間制限撮像制御を実行してもよい。 Furthermore, in the above embodiment, the parts E to which the period-limited imaging control is executed are limited to the high-precision parts Eh of the high-precision parts Eh and the low-precision parts El. However, the period-limited imaging control may be performed on all parts E attracted to the head unit 3 without distinguishing between high-precision parts Eh and low-precision parts El.
 また、期間制限撮像制御において、等速撮像モードおよび停止撮像モードの両方が実行可能である必要はなく、等速撮像モードおよび停止撮像モードのうち、一方の撮像モードのみを実行するように構成してもよい。 In addition, in period-limited imaging control, it is not necessary to be able to execute both the constant-velocity imaging mode and the stopped imaging mode, and the configuration is such that only one of the constant-velocity imaging mode and the stopped imaging mode is executed. You can.
 1…部品実装機
 12…コンベア(基板搬送部)
 13…作業位置
 100…制御部
 150…UI(撮像モード選択部、制御選択部)
 3…ヘッドユニット
 5…部品供給部
 52…部品供給位置
 B…基板
 C…部品認識カメラ(カメラ)
 E…部品
 Eh…高精度部品
 El…低精度部品
 L(+)…退避位置(一方退避位置)
 L(-)…退避位置(他方退避位置)
 Mx…X軸モータ(ユニット駆動部)
 My…Y軸モータ(ユニット駆動部)
 N…ノズル
 T1…加速期間
 T2…等速期間
 T3…減速期間
 Vu…ユニット速度
 X(+)…X(+)側(一方側)
 X(-)…X(-)側(他方側)
 
 
1...Component mounter 12...Conveyor (board transfer section)
13...Working position 100...Control unit 150...UI (imaging mode selection unit, control selection unit)
3... Head unit 5... Component supply section 52... Component supply position B... Board C... Component recognition camera (camera)
E...Parts Eh...High precision parts El...Low precision parts L(+)...Evacuation position (one evacuation position)
L(-)...Evacuation position (other evacuation position)
Mx...X-axis motor (unit drive part)
My...Y-axis motor (unit drive part)
N...Nozzle T1...Acceleration period T2...Constant velocity period T3...Deceleration period Vu...Unit speed X(+)...X(+) side (one side)
X(-)...X(-) side (other side)

Claims (15)

  1.  部品供給位置に部品を供給する部品供給部と、
     作業位置に基板を搬入する基板搬送部と、
     前記部品供給位置に供給された前記部品を吸着する吸着動作を実行するヘッドユニットと、
     前記ヘッドユニットを駆動することで、前記ヘッドユニットに吸着された前記部品を前記基板に対向する位置に移送する部品移送動作を実行するユニット駆動部と、
     前記ヘッドユニットに対して所定方向に移動可能に前記ヘッドユニットに支持されて、前記ユニット駆動部により駆動される前記ヘッドユニットに伴って移動するカメラと、
     前記ヘッドユニットに対して前記所定方向に前記カメラを駆動するカメラ駆動部と、
     前記ヘッドユニットに吸着された前記部品の前記カメラによる撮像を、前記カメラ駆動部に前記所定方向に前記カメラを駆動させつつ実行する制御部と
    を備え、
     前記制御部は、前記ユニット駆動部が前記ヘッドユニットを加速あるいは減速させる期間とは異なる期間において、前記所定方向に駆動される前記カメラにより前記部品を撮像する期間制限撮像制御を実行する部品実装機。
    a parts supply unit that supplies parts to a parts supply position;
    a board transport section that transports the board to a working position;
    a head unit that performs a suction operation to suction the component supplied to the component supply position;
    a unit driving section that performs a component transfer operation of driving the head unit to transfer the component attracted to the head unit to a position facing the substrate;
    a camera that is supported by the head unit so as to be movable in a predetermined direction relative to the head unit and moves with the head unit driven by the unit drive section;
    a camera drive unit that drives the camera in the predetermined direction with respect to the head unit;
    a control unit configured to cause the camera drive unit to drive the camera in the predetermined direction while causing the camera to take an image of the component attracted to the head unit;
    The control unit is configured to perform period-limited imaging control in which the camera driven in the predetermined direction images the component in a period different from a period in which the unit drive unit accelerates or decelerates the head unit. .
  2.  前記ユニット駆動部は、加速期間において前記ヘッドユニットを所定のユニット速度まで加速させ、前記加速期間に続く等速期間において前記ヘッドユニットを前記ユニット速度で等速移動させ、前記等速期間に続く減速期間において前記ヘッドユニットを前記ユニット速度から減速させることで、前記部品移送動作を実行し、
     前記期間制限撮像制御は、前記加速期間および前記減速期間では前記カメラに前記部品を撮像させずに前記等速期間に前記カメラに前記部品を撮像させる等速撮像モードを実行可能である請求項1に記載の部品実装機。
    The unit driving section accelerates the head unit to a predetermined unit speed during an acceleration period, moves the head unit at a constant speed at the unit speed during a constant speed period following the acceleration period, and decelerates the head unit following the constant speed period. performing the component transfer operation by decelerating the head unit from the unit speed during a period;
    1 . The period-limited imaging control is capable of executing a constant-velocity imaging mode in which the camera does not image the component during the acceleration period and the deceleration period and causes the camera to image the component during the constant-velocity period. Component mounting machine described in .
  3.  前記制御部は、前記等速撮像モードを実行する場合には、前記等速期間に前記部品の撮像が完了するように前記ユニット速度を設定する請求項2に記載の部品実装機。 The component mounting machine according to claim 2, wherein the control unit sets the unit speed so that imaging of the component is completed during the constant velocity period when executing the constant velocity imaging mode.
  4.  前記期間制限撮像制御は、前記部品移送動作の開始前において停止する前記ヘッドユニットに吸着される前記部品を前記カメラにより撮像する停止撮像モードをさらに実行可能であり、前記等速撮像モードおよび前記停止撮像モードのいずれか一方を実行する請求項2または3に記載の部品実装機。 The period-limited imaging control can further execute a stop imaging mode in which the camera takes an image of the component attracted to the head unit that stops before the start of the component transfer operation, and the constant velocity imaging mode and the stop The component mounting machine according to claim 2 or 3, wherein the component mounting machine executes one of the imaging modes.
  5.  前記等速撮像モードおよび前記停止撮像モードのうちから一の撮像モードを選択するユーザの操作を受け付ける撮像モード選択部をさらに備え、
     前記制御部は、前記撮像モード選択部において選択された前記一の撮像モードを実行する請求項4に記載の部品実装機。
    further comprising an imaging mode selection unit that accepts a user's operation to select one imaging mode from the constant velocity imaging mode and the stop imaging mode,
    The component mounter according to claim 4, wherein the control section executes the one imaging mode selected by the imaging mode selection section.
  6.  前記制御部は、前記等速撮像モードおよび前記停止撮像モードのうちから一の撮像モードを選択するモード選択処理を実行し、前記モード選択処理によって選択された前記一の撮像モードを実行し、
     前記モード選択処理では、前記等速撮像モードを実行した場合に、前記吸着動作で吸着した前記部品の前記基板への実装を完了するのに要する時間と、前記停止撮像モードを実行した場合に、前記吸着動作で吸着した前記部品の前記基板への実装を完了するのに要する時間との比較に基づき、前記一の撮像モードを選択する請求項4に記載の部品実装機。
    The control unit executes a mode selection process for selecting one imaging mode from the constant velocity imaging mode and the stop imaging mode, and executes the one imaging mode selected by the mode selection process,
    In the mode selection process, when the constant velocity imaging mode is executed, the time required to complete mounting of the component picked up by the suction operation on the board, and when the stop imaging mode is executed, 5. The component mounting machine according to claim 4, wherein the first imaging mode is selected based on a comparison with a time required to complete mounting of the component picked up by the pickup operation onto the board.
  7.  前記部品には、前記期間制限撮像制御の対象となる高精度部品と、前記期間制限撮像制御の対象とならない低精度部品とが存在し、
     前記制御部は、前記カメラによる前記高精度部品の撮像を前記期間制限撮像制御によって実行する請求項1ないし6のいずれか一項に記載の部品実装機。
    The parts include high-precision parts that are subject to the period-limited imaging control and low-precision parts that are not subject to the period-limited imaging control,
    The component mounting machine according to any one of claims 1 to 6, wherein the control unit executes imaging of the high-precision component by the camera using the period-limited imaging control.
  8.  前記制御部は、前記カメラによる前記低精度部品の撮像については前記期間制限撮像制御を実行せず、前記ユニット駆動部が前記ヘッドユニットを加速あるいは減速させる期間における前記カメラによる前記低精度部品の撮像を許容する請求項7に記載の部品実装機。 The control unit does not execute the period-limited imaging control regarding the imaging of the low-precision component by the camera, and controls the imaging of the low-precision component by the camera during the period in which the unit drive unit accelerates or decelerates the head unit. 8. The component mounting machine according to claim 7, which allows the following.
  9.  前記期間制限撮像制御は、前記部品移送動作の開始前において停止する前記ヘッドユニットに吸着される前記部品を前記カメラにより撮像する停止撮像モードを実行可能である請求項1に記載の部品実装機。 The component mounter according to claim 1, wherein the period-limited imaging control is capable of executing a stop imaging mode in which the camera images the component that is attracted to the head unit, which stops before the start of the component transfer operation.
  10.  前記部品には、前記期間制限撮像制御の対象となる高精度部品と、前記期間制限撮像制御の対象とならない低精度部品とが存在し、
     前記制御部は、前記カメラによる前記高精度部品の撮像を前記期間制限撮像制御によって実行する請求項9に記載の部品実装機。
    The parts include high-precision parts that are subject to the period-limited imaging control and low-precision parts that are not subject to the period-limited imaging control,
    10. The component mounting machine according to claim 9, wherein the control unit executes imaging of the high-precision component by the camera using the period-limited imaging control.
  11.  前記制御部は、前記カメラによる前記低精度部品の撮像については前記期間制限撮像制御を実行せず、前記ユニット駆動部が前記ヘッドユニットを加速あるいは減速させる期間における前記カメラによる前記低精度部品の撮像を許容する請求項10に記載の部品実装機。 The control unit does not execute the period-limited imaging control regarding the imaging of the low-precision component by the camera, and controls the imaging of the low-precision component by the camera during the period in which the unit drive unit accelerates or decelerates the head unit. The component mounting machine according to claim 10, which allows the following.
  12.  前記ヘッドユニットは、前記所定方向に配列された複数のノズルを有し、前記ノズルによって前記部品を吸着し、
     前記カメラは、前記複数のノズルより前記所定方向の一方側に設けられた一方退避位置と、前記複数のノズルより前記所定方向の他方側に設けられた他方退避位置との間で前記ヘッドユニットに対して移動可能であり、前記一方退避位置から前記他方退避位置に向けて移動しつつ前記ノズルに吸着された前記高精度部品を撮像する第1スキャン撮像と、前記他方退避位置から前記一方退避位置に向けて移動しつつ前記ノズルに吸着された前記高精度部品を撮像する第2スキャン撮像とを実行可能であり、
     前記制御部は、前記吸着動作によって前記ヘッドユニットに吸着される前記高精度部品に対する前記停止撮像モードで実行する実行スキャン撮像を、前記第1スキャン撮像および前記第2スキャン撮像のうちから決定するスキャン撮像決定処理を、前記吸着動作の開始前に実行し、
     前記スキャン撮像決定処理では、前記吸着動作によって前記ヘッドユニットにより吸着される前記高精度部品の前記所定方向における位置に応じて、前記実行スキャン撮像を決定し、
     前記制御部は、前記第1スキャン撮像が前記実行スキャン撮像に決定された場合には、前記吸着動作の開始前に前記カメラを前記一方退避位置に位置させる一方、前記第2スキャン撮像が前記実行スキャン撮像に決定された場合には、前記吸着動作の開始前に前記カメラを前記他方退避位置に位置させる請求項10または11に記載の部品実装機。
    The head unit has a plurality of nozzles arranged in the predetermined direction, and the nozzles suck the component,
    The camera is mounted on the head unit between one retracted position provided on one side of the plurality of nozzles in the predetermined direction and the other retracted position provided on the other side of the plurality of nozzles in the predetermined direction. a first scan imaging that is movable relative to the one retracted position and images the high-precision component adsorbed by the nozzle while moving from the one retracted position to the other retracted position; and from the other retracted position to the one retracted position. a second scan imaging of the high-precision component adsorbed by the nozzle while moving toward the nozzle;
    The control unit determines an execution scan imaging to be executed in the stop imaging mode for the high-precision component attracted to the head unit by the attraction operation, from among the first scan imaging and the second scan imaging. performing an imaging determination process before the start of the suction operation;
    In the scan imaging determination process, the execution scan imaging is determined according to the position in the predetermined direction of the high-precision component that is attracted by the head unit by the attraction operation,
    When the first scan imaging is determined to be the execution scan imaging, the control unit positions the camera at the one retracted position before starting the suction operation, while the second scan imaging is determined to be the execution scan imaging. 12. The component mounting machine according to claim 10, wherein when scan imaging is determined, the camera is positioned at the other retracted position before starting the suction operation.
  13.  前記ヘッドユニットが前記高精度部品および前記低精度部品をそれぞれ吸着する場合、前記制御部は、前記高精度部品の全部が前記低精度部品の全部の一方側に位置するように前記高精度部品および前記低精度部品を前記ヘッドユニットに吸着させる第1吸着モードと、前記高精度部品の全部が前記低精度部品の全部の他方側に位置するように前記高精度部品および前記低精度部品を前記ヘッドユニットに吸着させる第2吸着モードとのいずれかを実行し、
     前記第1吸着モードを実行する場合には、前記停止撮像モードにおいて前記第1スキャン撮像が実行され、
     前記第2吸着モードを実行する場合には、前記停止撮像モードにおいて前記第2スキャン撮像が実行される請求項12に記載の部品実装機。
    When the head unit picks up the high-precision parts and the low-precision parts, the control section adsorbs the high-precision parts and the low-precision parts so that all the high-precision parts are located on one side of all the low-precision parts. a first suction mode in which the low-precision parts are suctioned onto the head unit; and a first suction mode in which the high-precision parts and the low-precision parts are suctioned onto the head unit so that all the high-precision parts are located on the other side of all the low-precision parts. Execute either the second adsorption mode to adsorb to the unit,
    When performing the first suction mode, the first scan imaging is performed in the stop imaging mode;
    13. The component mounting machine according to claim 12, wherein when executing the second suction mode, the second scan imaging is executed in the stop imaging mode.
  14.  前記期間制限撮像制御の実行の有無を選択するユーザの操作を受け付ける制御選択部をさらに備え、
     前記制御部は、前記期間制限撮像制御を実行すると前記制御選択部において選択された場合に、前記部品の撮像を前記期間制限撮像制御によって実行する一方、前記期間制限撮像制御を実行しないと前記制御選択部において選択された場合には、前記期間制限撮像制御を実行せずに、前記ユニット駆動部が前記ヘッドユニットを加速あるいは減速させる期間における前記カメラによる前記部品の撮像を許容する請求項1ないし13のいずれか一項に記載の部品実装機。
    further comprising a control selection unit that accepts a user operation to select whether or not to execute the period-limited imaging control;
    The control unit executes imaging of the component by the period limited imaging control when executing the period limited imaging control is selected in the control selection unit, and controls the control when the period limited imaging control is not executed. 2. The method according to claim 1, wherein when selected by the selection section, the unit drive section allows the camera to take an image of the component during a period in which the head unit is accelerated or decelerated without executing the period limited imaging control. 14. The component mounting machine according to any one of Item 13.
  15.  部品を吸着するヘッドユニットを駆動することで、前記ヘッドユニットに吸着された前記部品を基板に対向する位置に移送する部品移送動作を実行する工程と、
     前記ヘッドユニットに対して所定方向に移動可能に前記ヘッドユニットに支持されて、前記所定方向に駆動されるカメラによって前記ヘッドユニットに吸着された前記部品を撮像する工程と
    を備え、
     前記部品を撮像する工程では、前記ヘッドユニットが加速あるいは減速される期間とは異なる期間において、前記所定方向に駆動される前記カメラにより前記部品を撮像する期期間制限撮像制御が実行される部品撮像方法。
     
    a step of performing a component transfer operation of transferring the component attracted by the head unit to a position facing the substrate by driving a head unit that absorbs the component;
    a step of capturing an image of the component attracted to the head unit by a camera supported by the head unit so as to be movable in a predetermined direction with respect to the head unit and driven in the predetermined direction;
    In the step of imaging the component, period-limited imaging control is executed in which the camera driven in the predetermined direction images the component in a period different from a period in which the head unit is accelerated or decelerated. Method.
PCT/JP2022/034371 2022-09-14 2022-09-14 Component mounter and component imaging method WO2024057433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034371 WO2024057433A1 (en) 2022-09-14 2022-09-14 Component mounter and component imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034371 WO2024057433A1 (en) 2022-09-14 2022-09-14 Component mounter and component imaging method

Publications (1)

Publication Number Publication Date
WO2024057433A1 true WO2024057433A1 (en) 2024-03-21

Family

ID=90274593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034371 WO2024057433A1 (en) 2022-09-14 2022-09-14 Component mounter and component imaging method

Country Status (1)

Country Link
WO (1) WO2024057433A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035707A1 (en) * 1999-11-05 2001-05-17 Matsushita Electric Industrial Co., Ltd. Component mounting machine and method
JP2006073960A (en) * 2004-09-06 2006-03-16 Yamaha Motor Co Ltd Component recognition device, surface mounting machine and component testing device
JP2009140945A (en) * 2007-12-03 2009-06-25 Yamaha Motor Co Ltd Component sucking apparatus, sucking position correcting method thereof and mounter
WO2018173137A1 (en) * 2017-03-22 2018-09-27 ヤマハ発動機株式会社 Component mounting machine and nozzle height control method
JP2019161249A (en) * 2018-03-07 2019-09-19 Juki株式会社 Image processing device, mounting device, image processing method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035707A1 (en) * 1999-11-05 2001-05-17 Matsushita Electric Industrial Co., Ltd. Component mounting machine and method
JP2006073960A (en) * 2004-09-06 2006-03-16 Yamaha Motor Co Ltd Component recognition device, surface mounting machine and component testing device
JP2009140945A (en) * 2007-12-03 2009-06-25 Yamaha Motor Co Ltd Component sucking apparatus, sucking position correcting method thereof and mounter
WO2018173137A1 (en) * 2017-03-22 2018-09-27 ヤマハ発動機株式会社 Component mounting machine and nozzle height control method
JP2019161249A (en) * 2018-03-07 2019-09-19 Juki株式会社 Image processing device, mounting device, image processing method, and program

Similar Documents

Publication Publication Date Title
JP4722714B2 (en) Electronic component mounting machine
WO2015029209A1 (en) Component mounting device, control method for same, and program for component mounting device
JP2007012929A (en) Method for checking interference of surface mounting machine, device for checking interference, surface mounting machine with the device and mounting system
JP4728759B2 (en) Electronic component mounting equipment
WO2024057433A1 (en) Component mounter and component imaging method
JP5696247B2 (en) Mounting machine and head unit drive control method
JP6356222B2 (en) Component mounting device
JP2010098016A (en) Mounting device and drive control method of head unit
JP2009238873A (en) Component-mounting method
KR102432998B1 (en) Electronic component mounting device
JP4750664B2 (en) Component mounting method
JP2015204377A (en) Processing apparatus
JP6242478B2 (en) Component mounting device
JPH11126996A (en) Component mounting device
JP5873988B2 (en) Parts transfer device
WO2024084703A1 (en) Component-mounting work machine and mounting line
KR101910804B1 (en) Transfer robot and substrate transferring method
JP6906706B2 (en) Electronic component mounting device and control method
JP6046362B2 (en) Electronic component mounting device
JP4712287B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP6887024B2 (en) Mounting device
JP3805512B2 (en) Positioning control method
JP2013142949A (en) Device and method for processing image
JP6353371B2 (en) Surface mounter and component mounting method
WO2020161802A1 (en) Allowable value setting device and allowable value setting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958316

Country of ref document: EP

Kind code of ref document: A1