WO2024055929A1 - 医用介入导管 - Google Patents

医用介入导管 Download PDF

Info

Publication number
WO2024055929A1
WO2024055929A1 PCT/CN2023/118008 CN2023118008W WO2024055929A1 WO 2024055929 A1 WO2024055929 A1 WO 2024055929A1 CN 2023118008 W CN2023118008 W CN 2023118008W WO 2024055929 A1 WO2024055929 A1 WO 2024055929A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
channel
tube
temperature control
electrode
Prior art date
Application number
PCT/CN2023/118008
Other languages
English (en)
French (fr)
Inventor
周奇
张正海
岳斌
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Publication of WO2024055929A1 publication Critical patent/WO2024055929A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system

Definitions

  • the present invention relates to the technical field of medical devices, and in particular to a medical interventional catheter integrating diagnosis and treatment.
  • Atherosclerosis is a syndrome affecting arterial blood vessels. Atherosclerosis results in a chronic inflammatory response in the walls of arteries, mostly due to the accumulation of lipids, macrophages, foam cells, and the formation of plaque in the arterial walls. Atherosclerosis is commonly referred to as arteriosclerosis, and the pathophysiology of the disease manifests itself in several different types of lesions, ranging from fibrotic to lipid-laden to calcified. At present, the main mature clinical treatments for atherosclerosis include drugs, interventional and bypass surgery, but there are still problems such as long-term restenosis and thrombosis.
  • Thermal physical therapy has been widely used in clinical practice due to its relatively low cost, few side effects, and short treatment time.
  • the means to achieve thermal physical therapy is thermal ablation.
  • the main energy generation methods of thermal ablation include cryoballoon, focused ultrasound, laser and radio frequency.
  • Clinical studies have shown that radiofrequency ablation has the advantages of definite safe frequency, controllable thermal energy output, and easier functional integration.
  • thermal physical therapy in order to ensure the ablation effect, a certain range of tissue damage needs to be caused.
  • Intravascular imaging is the main monitoring method.
  • This technology mainly includes OCT (optical coherence tomography), IVUS (intravascular ultrasound imaging), angioscope and intravascular MRI.
  • OCT technology has obvious advantages in imaging resolution (resolution is better than 10 ⁇ m) and can obtain high-definition images of biological tissues, which is very conducive to accurate imaging and identification of intravascular plaques.
  • imaging diagnosis and treatment processes are usually separated. Not only is the operation during the treatment process cumbersome, but also the treatment effect cannot be monitored in real time, timely treatment cannot be provided, and in some cases there is still a high recurrence rate. At the same time, Will increase overall treatment costs.
  • the purpose of the present invention is to provide a medical interventional catheter that integrates diagnosis and treatment, which can realize real-time imaging monitoring during the treatment process and improve the accuracy and effectiveness of the treatment.
  • the present invention provides a medical interventional catheter, which includes a catheter body that integrates diagnosis and treatment.
  • the catheter body includes a functional part located at the distal end, and the functional part is used for imaging within the target lumen. Monitoring is also used to release a therapeutic source including therapeutic energy and/or therapeutic substances to a target location within the target lumen.
  • the medical interventional catheter further includes a head end, the distal end of the functional part is connected to the proximal end of the head end through an elastic connection part, the connection part seals the distal end of the functional part , and the head end is provided with a guidewire cavity.
  • the functional unit uses one or more imaging methods to achieve imaging monitoring of the target lumen.
  • the functional unit uses an OCT imaging method to achieve imaging monitoring within the target lumen.
  • the functional part includes an imaging probe and a transparent imaging window, and the imaging probe is disposed at the transparent imaging window.
  • the functional portion is capable of releasing one or more of the therapeutic energies.
  • the functional part can release at least one treatment energy among radio frequency, ultrasound, laser and cryogenic fluid.
  • the functional part uses one or more methods to release the therapeutic substance to a target location within the target lumen.
  • the therapeutic substance is a drug
  • the functional part adopts a drug coating, a drug administration hole, and a drug At least one of the microneedles releases the drug to a target location within the target lumen.
  • the functional part adopts a drug administration hole and/or a drug administration microneedle
  • the catheter body further includes a tube body, and the drug administration hole and/or the drug administration microneedle are arranged in the tube.
  • a drug administration channel is provided in the tube body.
  • the drug administration channel extends axially from the tube body of the functional part to the proximal end of the tube body. The distal end of the drug administration channel The end is connected to the drug administration hole and/or the drug administration microneedle.
  • the functional part includes an imaging probe, an electrode and a temperature measurement component.
  • the imaging probe is used for imaging monitoring
  • the electrode is used to release radio frequency
  • the temperature measurement component is disposed on the electrode and used To monitor the surface temperature of the electrode.
  • the catheter body further includes a tube body, the imaging probe is disposed inside the tube body, and the electrode is disposed on an outer surface of the tube body;
  • An independent imaging channel, an electrode wire channel and a temperature control wire channel are provided in the tube body.
  • the imaging channel, the electrode wire channel and the temperature control wire channel are all axially oriented from the tube body of the functional part. Extending to the proximal end of the tube body, the imaging channel is arranged at the center of the tube body, and the electrode wire channel and the temperature control wire channel are both arranged around the imaging channel;
  • An imaging transmission structure connected to the imaging probe is arranged in the imaging channel, an electrode wire connected to the electrode is arranged in the electrode wire channel, and a temperature control wire connected to the temperature measuring component is arranged in the temperature control wire channel. control wire.
  • a temperature control fluid channel is further provided in the tube body.
  • the temperature control fluid channel is independently provided with respect to the imaging channel, the electrode wire channel and the temperature control wire channel, and is arranged in On the periphery of the imaging channel, the electrode is provided with a temperature-control fluid output hole.
  • the temperature-control fluid channel extends axially from the proximal end of the tube body and is connected to the temperature-control fluid output hole. The temperature control fluid channel is used to transport the temperature control fluid, and the temperature control fluid output hole releases the temperature control fluid to the target position.
  • the tube body is a single-lumen braided tube, and a temperature-controlled fluid tube, an imaging tube, an electrode wire tube, and a temperature-controlled wire tube are arranged inside the single-lumen braided tube.
  • the inner cavity of the temperature-controlled fluid tube is The temperature control fluid channel is formed, the inner cavity of the imaging tube forms the imaging channel, the inner cavity of the electrode lead tube forms the electrode lead channel, and the inner cavity of the temperature control lead tube forms the temperature control
  • the wall thickness of the wire channel, the temperature control fluid tube, the imaging tube, the electrode wire tube and the temperature control wire tube are all less than 0.2 mm.
  • the temperature control fluid tube, the imaging tube, the electrode wire tube and the temperature control wire tube are fixedly connected to each other.
  • the outer diameter of the tube body is 1.0 mm to 3.0 mm
  • the diameter of the imaging channel does not exceed 1.0 mm
  • the diameter of the temperature control fluid channel does not exceed 0.5 mm
  • the diameter of the electrode lead channel The diameter is 0.1mm ⁇ 0.5mm
  • the diameter of the temperature control wire channel is 0.1mm ⁇ 0.5mm.
  • the temperature control fluid output hole is a micropore, and the diameter of the micropore is 50 ⁇ m to 200 ⁇ m.
  • the number of the electrodes is multiple, the plurality of electrodes are arranged at intervals along the axial direction and/or circumferential direction of the catheter body, and at least two of the plurality of electrodes are Ring electrodes, at least two of the ring electrodes are arranged at intervals along the axial direction of the catheter body, and the imaging probe is disposed between two adjacent ring electrodes.
  • the medical interventional catheter further comprises an interface portion, the proximal end of the catheter body is connected to the interface portion, and the interface portion comprises:
  • an imaging interface connected to the proximal end of the imaging transmission structure
  • a fluid perfusion interface connected to the proximal end of the temperature-controlled fluid channel
  • An electrical signal interface connected to the proximal end of the electrode lead and the temperature control lead.
  • the functional part includes an imaging probe, the imaging probe is used for imaging monitoring, the catheter body further includes a tube body, the imaging probe is disposed in the tube body, and the catheter body is disposed in the tube body.
  • An imaging transmission structure connected to the imaging probe is provided in the imaging channel.
  • the imaging transmission structure The structure is used to be driven by a driving device to bring The imaging probe is moved to rotate along the circumferential direction of the catheter body and/or move along the axial direction of the catheter body.
  • the imaging transmission structure includes an imaging optical fiber, a protective tube and a torsion spring.
  • the protective tube is sleeved on the imaging optical fiber, and the torsion spring is provided between the protective tube and the imaging optical fiber. During this time, one end of the imaging optical fiber is connected to the imaging probe, and the other end is used to connect to the driving device.
  • the catheter body includes a functional part located at the distal end, and the functional part is used for imaging monitoring in the target lumen (such as a blood vessel), and is also used for releasing to a target location in the target lumen.
  • a therapeutic source including therapeutic energy and/or therapeutic substances.
  • Figure 1 is a schematic diagram of the overall structure of a medical interventional catheter in one embodiment of the present invention
  • Figure 2 is a detailed structural diagram of a medical interventional catheter in one embodiment of the present invention.
  • FIG. 3 is a detailed structural schematic diagram of the medical interventional catheter used as an ablation catheter in Embodiment 1 of the present invention.
  • Figure 4 is a partial enlarged view of the medical interventional catheter at position a in Figure 3;
  • Figure 5a is a cross-sectional view of the structure in Figure 4 along line A-A;
  • Figure 5b is a cross-sectional view of the structure in Figure 4 along the line B-B;
  • Figure 5c is a cross-sectional view of the structure in Figure 4 along line C-C.
  • distal and proximal are used; “distal” is the side away from the operator of the medical interventional catheter; “proximal” “is the side close to the operator of the medical interventional catheter; “axial” refers to the direction along the central axis of the medical interventional catheter; “circumferential” refers to the direction around the central axis of the medical interventional catheter; “central axis” The reference is the length direction of the medical interventional catheter.
  • one embodiment of the present invention provides a medical interventional catheter that integrates diagnosis and treatment.
  • the medical interventional catheter is mainly used to intervene in coronary arteries for treatment, such as the treatment of atherosclerosis and other diseases. .
  • This medical interventional catheter can perform real-time imaging monitoring during the treatment process, improving the accuracy and effectiveness of treatment.
  • the medical interventional catheter in the embodiment of the present application includes a catheter body 2 that integrates diagnosis and treatment.
  • the catheter body 2 includes a functional part 210 located at the distal end.
  • the functional part 210 is used for imaging monitoring within the target lumen, and is also used for releasing the treatment source to a target location within the target lumen.
  • the therapeutic source includes therapeutic energy and/or therapeutic substances.
  • the target lumen here refers to a blood vessel, and the blood vessel is preferably a coronary artery.
  • the functional unit 210 may use one or more imaging methods to achieve imaging monitoring within the target lumen, such as at least one imaging method among optical imaging and ultrasonic imaging, preferably OCT optical coherence tomography.
  • OCT has the highest imaging resolution, which is beneficial to the imaging and resolution of intravascular plaques.
  • the functional part 210 can release one or more types of therapeutic energy.
  • the functional part 210 can release at least one type of therapeutic energy among radio frequency, ultrasound, laser and freezing fluid.
  • the functional part 210 may use one or more methods to release the therapeutic substance to the target location.
  • the therapeutic substance refers to a therapeutic agent, and the therapeutic agent is a drug.
  • the invention does not limit the types of drugs.
  • the drugs can be selected according to needs, such as anti-proliferation, anti-proliferation, anti-restenosis, anti-inflammatory, antibacterial, anti-tumor, anti-mitosis, anti-metastasis, Antithrombotic, anti-osteoporotic, anti-angiogenic, cytostatic, microtubule-inhibiting drugs.
  • the functional part 210 can use at least one of drug coating, drug delivery holes, and drug delivery microneedles to release the drug to the target location.
  • the medical interventional catheter provided by the embodiment of the present application has the functions of both an imaging catheter and a treatment catheter, realizing the integration of diagnosis and treatment.
  • the imaging catheter and the treatment catheter When performing interventional treatment on the lesion, there is no need to replace the imaging catheter and the treatment catheter, thereby eliminating the need for It not only simplifies the operation of exchanging catheters, but also avoids the difficulty of finding a treatment site after exchanging different catheters, reduces the difficulty of surgery, and can monitor the treatment effect with real-time imaging during the treatment process, improving the accuracy and effectiveness of treatment. It also increases the success rate of the operation and shortens the operation time.
  • the functional part 210 includes a treatment component 211 and an imaging probe 212 .
  • the treatment component 211 is used to release a treatment source to a target location (including a lesion).
  • the treatment component 211 can release at least one treatment energy from radio frequency, ultrasound, laser, and cryogenic fluid, and/or the treatment component 211 uses one or more structures to release treatment substances to the target location.
  • the treatment component 211 includes an energy output structure for outputting treatment energy.
  • the energy output structure may be at least one structure among an electrode, an ultrasonic transducer, a laser focusing lens, and a freezing fluid channel.
  • the electrodes are used to output radio frequencies.
  • the ultrasonic transducer is used to generate ultrasonic waves.
  • the laser focusing lens is used to output laser light.
  • the cryofluid channel is used to seal in a medical interventional catheter and perform cryoablation by conducting energy.
  • treatment component 211 includes a therapeutic agent output structure for releasing therapeutic agent to a target location.
  • the therapeutic agent output structure may be any suitable structure, for example, the therapeutic agent output structure includes at least one of a drug coating and a drug release structure.
  • the drug release structure includes drug delivery holes and/or drug delivery microneedles.
  • the drug delivery microneedles here can store drugs in advance and can also deliver drugs through the drug delivery channel.
  • the catheter body 2 further includes a tube body, and the drug coating, administration holes and/or administration microneedles are disposed on the outer surface of the tube body, that is, the functional part 210 itself includes a tube body.
  • the main body is provided with a drug coating, a drug administration hole and/or a drug administration microneedle on the outer surface of the tube body.
  • the therapeutic agent output structure may release therapeutic agents in one way or in a combination of two or more, such as providing both a drug coating and a drug release structure. It should be noted that the energy output structure and the therapeutic agent output structure can be set at the same time or alternatively.
  • a drug administration channel is provided in the tube body, and the drug administration channel extends axially from the tube body of the functional part 210 to The proximal end of the tube body and the distal end of the drug administration channel are connected to the drug administration hole and/or the drug administration microneedle.
  • the imaging probe 212 is used for imaging monitoring in the blood vessel cavity, specifically for imaging monitoring of the lesion area, so as to facilitate the identification of the location and components of the lesion before treatment, and also facilitate the monitoring of the treatment effect or the release degree of the therapeutic agent during the treatment process. It also facilitates imaging scanning to evaluate the treatment effect after the treatment of the diseased area.
  • This application does not limit the imaging method of the imaging probe 212.
  • the imaging probe 212 may use optical imaging or ultrasound imaging, preferably OCT optical coherence tomography.
  • the imaging probe 212 may use at least one of microlenses (light gathering components), ultrasonic probes, and light reflecting mirrors. One less. That is, the imaging mode of the imaging probe 212 may be one or a combination of two or more.
  • the imaging probe 212 is provided in the tube body, and the imaging channel 21 is provided in the tube body.
  • the imaging channel 21 extends axially from the tube body of the functional part 210 to the proximal end of the tube body, and an imaging transmission structure 213 connected to the imaging probe 212 is provided in the imaging channel 21 .
  • the imaging transmission structure 213 is used to be driven by a driving device to drive the imaging probe 212 to rotate along the circumference of the catheter body 2 and/or move along the axial direction of the catheter body 2, so as to adjust the position and direction of the imaging probe 212, Makes intravascular imaging monitoring more flexible and convenient.
  • the imaging transmission structure 213 is used to transmit collected signals and energy for imaging.
  • the imaging probe 212 adopts optical imaging.
  • the imaging transmission structure 213 includes an imaging optical fiber, and the imaging probe 212 is an optical probe.
  • the imaging transmission structure 213 also includes a protective tube and a torsion spring.
  • the protective tube is sleeved on the imaging fiber.
  • the torsion spring is arranged between the protection tube and the imaging fiber.
  • One end of the imaging fiber is connected to the imaging probe 212, and the other end is used to connect to the driving device. The setting of the torsion spring can better conduct the torsion, so as to smoothly drive the imaging fiber and the imaging probe 212 to move.
  • the imaging probe 212 adopts OCT imaging, which uses ultra-low propagation loss and extremely low diameter (such as 200 ⁇ m) imaging optical fiber as the light guide medium, and uses micro-lenses to collect and transmit optical signals.
  • the micro-lenses are Light focusing components.
  • the light focusing component may be a ball lens or a gradient index lens. Since the optical fiber itself is glass fiber and is very brittle, it can easily break if not protected during use. Therefore, the entire conductive optical fiber is encapsulated in a protective tube to form a conductive optical cable to avoid damage during the movement of the optical element and the remote light focusing component. Mechanical damage, and better tensile and bending resistance.
  • the protective tube may be a transparent tube.
  • the functional part 210 includes a transparent imaging window 214 .
  • the imaging probe 212 is disposed at a position corresponding to the imaging window 214 .
  • Imaging window 214 facilitates imaging probe 212 to transmit and receive optical signals.
  • the axial length of the imaging window 214 may be 2 mm to 100 mm.
  • the imaging window 214 can be understood as the tube body of the functional part 210 being set transparently.
  • the transparent material may be transparent nylon.
  • the part of the tube body except the imaging window 214 is mainly made of opaque materials, such as polyamide and other materials. Preferably, this part is a braided tube.
  • the proximal end of the catheter body 2 is connected to the interface portion 1 .
  • the interface unit 1 serves as an interface connected to an external device and is used to input and output information.
  • the information input and output by the interface unit 1 at least includes energy and collected signals, the energy at least includes energy for imaging monitoring, and the collected signals at least include the collected image signals.
  • the interface unit 1 includes several interfaces, and the number and type of interfaces should be set according to the functions of the functional unit 210 itself.
  • the interface portion 1 includes a fluid perfusion interface 11 , an imaging interface 12 , an electrical signal interface 13 (such as a current interface) and a mechanical power transmission interface 14 .
  • the fluid perfusion interface 11 is used to connect with a fluid perfusion device to inject temperature-control fluid into the medical interventional catheter.
  • the temperature-control fluid is generally physiological saline.
  • the imaging interface 12 is used to connect to an external imaging system.
  • the imaging system outputs energy for imaging (such as laser, electric energy) to the medical interventional catheter, and receives acquisition signals fed back from the medical interventional catheter.
  • the electrical signal interface 13 is used to connect to an external energy output device.
  • the energy output device outputs electrical energy for treatment to the medical interventional catheter, and can also output electrical energy for temperature monitoring to the medical interventional catheter.
  • the electrical signal interface 13 can also be connected to an external control device, and the control device receives the temperature signal fed back from the medical interventional catheter.
  • the mechanical power transmission interface 14 is used to connect with a driving device that drives the imaging probe 212 to rotate along the circumferential direction of the catheter body 2 and/or to move along the axial direction of the catheter body 2 .
  • the other end of the imaging transmission structure 213 is connected to the mechanical power transmission interface 14 .
  • the mechanical power transmission interface 14 can be integrated with the imaging interface 12 .
  • the driving device drives the imaging transmission structure 213 and the imaging probe 212 to move and rotate through the mechanical power transmission interface 14 .
  • the driving device may be a motor.
  • the central axis of the imaging channel 21 coincides with the central axis of the tube body, that is, the imaging channel 21 is at the center of the tube body. Since imaging channel 21 is the entire medical Using the largest part of the interventional catheter and placing it in the middle of the catheter is beneficial to the overall coaxiality of the catheter and the arrangement of various components. Specifically, it is convenient to arrange channels with other functions on the periphery of the imaging channel 21, so that the internal space of the tube body is effectively utilized, while ensuring that the catheter body 2 has sufficient strength, while avoiding increasing the outer diameter of the medical interventional catheter to facilitate intervention. treatment in small blood vessels.
  • the tube body of the catheter body 2 also provides a channel for the treatment component 211 to transmit therapeutic energy and/or therapeutic agents in some embodiments.
  • the number of channels in the tube body is set according to actual needs, and is not limited in this application.
  • the tube body is directly a multi-lumen tube, and the lumen of the multi-lumen tube itself is used as a channel, or the tube body is a single-lumen tube, and a tube is arranged in the single-lumen tube to form a channel.
  • the tube body should have adequate strength to support each channel.
  • the single-lumen tube is preferably a braided tube, which can reduce the thickness of the tube wall while ensuring the strength of the tube body to ensure effective integration space in the tube lumen.
  • the functional part 210 includes an imaging probe 212, an electrode and a temperature measurement component, in which case the energy output structure includes an electrode.
  • the electrodes are used to deliver radiofrequency.
  • the temperature measuring component is arranged on the electrode and used to monitor the surface temperature of the electrode. At this time, in order to ensure the miniaturization of the entire medical interventional catheter, it is necessary to rationally arrange the imaging transmission structure 213 connected to the imaging probe 212, as well as the temperature control wires connected to the temperature measurement component and the electrode wires connected to the electrodes.
  • the number of the electrodes is multiple, and the plurality of electrodes are arranged at intervals along the axial direction and/or circumferential direction of the catheter body 2 .
  • the electrodes may be ring electrodes or non-ring electrodes. When the electrode is in a ring shape, it can be suitable for concentric diffuse plaque ablation. When the electrode is non-circular, it is suitable for eccentric plaque ablation.
  • the medical interventional catheter in the embodiment of the present application preferably integrates both ring electrodes and non-ring electrodes, so that the medical interventional catheter can perform conformal treatment on the treatment area, that is, it can adapt to the treatment of different lesion shapes to meet different clinical treatment needs.
  • the electrodes are attached to the outer surface of the tube body of the functional part 210 .
  • the electrode can be in a ring shape or a strip shape, and can be prepared into a sheet structure or a mesh structure.
  • the electrode may or may not have developability, which is not required.
  • a certain insulation distance needs to exist between the electrodes, and the insulation distance should not be too small or too large.
  • the insulation distance between the electrodes is 1 mm to 5 mm in order to accurately control the ablation range and avoid discharge phenomena caused by the electrodes being too close.
  • the size of the electrode can be set according to actual needs.
  • the width of the electrode along the axial direction of the medical interventional catheter is 2 mm to 10 mm, and the thickness of the electrode along the radial direction of the medical interventional catheter may be 0.05 mm to 0.5 mm.
  • the electrode size should be set according to the size of the lesion. Generally, the larger the electrode size, the larger the ablation range. Since the size of plaque is usually around 1 mm, the axial width of the electrode can basically meet the treatment needs when set to 2 mm to 10 mm.
  • the temperature measuring component monitors the temperature at the target position during the treatment energy output process, thereby accurately controlling the treatment energy output intensity.
  • the temperature measuring component can obtain more accurate temperature information of the lesion, thereby improving the treatment effect.
  • the temperature measuring component may be any suitable structure, such as a thermocouple, a thermistor or a thermal signal collection lens.
  • the temperature measurement component may use at least one of a thermocouple, a thermistor, and a thermal signal collection lens.
  • the temperature measuring component uses a thermocouple and directly monitors the surface temperature of the electrode to determine the temperature of the lesion based on the surface temperature of the electrode.
  • the electrode is provided on the outer surface of the tube body.
  • an independent imaging channel 21, a temperature control wire channel 23 and an electrode wire channel 24 are provided in the tube body.
  • the imaging channel 21 , the electrode wire channel 24 and the temperature control wire channel 23 all extend axially from the tube body of the functional part 210 to the proximal end of the tube body.
  • the imaging channel 21 is provided at the center of the tube body.
  • the electrode wire channels 24 and the temperature control wire channels 23 are both arranged around the imaging channel 21 .
  • the electrode wires 6 connected to the electrodes are arranged in the electrode wire channels 24 .
  • temperature control wire A temperature control wire 5 connected to the temperature measuring component is provided in the channel 23 .
  • the temperature control wire 5 and the electrode wire 6 can share a wire channel.
  • the two can be isolated from each other with an insulating coating to avoid mutual interference.
  • the number of electrodes is multiple, and the number of electrodes is arranged corresponding to the temperature measuring component.
  • Each electrode is connected to an electrode lead 6.
  • One end of the electrode lead 6 is welded to the inner surface of the electrode, and the other end passes through the electrode lead channel 24 and is connected to the electrical signal interface 13.
  • the material of the electrode lead 6 should be set according to actual needs, for example, the material of the electrode lead should be selected based on different length impedance values.
  • the temperature measurement component is connected to a temperature control wire 5.
  • the electrode wire 6 and the temperature control wire 5 can be connected to the same electrical signal interface 13 or different electrical signal interfaces 13 .
  • the electrode wire 6 and the temperature control wire 5 of hundreds of microns are used, which helps reduce the difficulty of controlling the overall size of the catheter.
  • a temperature control fluid channel 22 is also provided in the tube body.
  • the temperature control fluid channel 22, the imaging channel 21, the temperature control wire channel 23 and the electrode wire channel 24 are set independently of each other, that is, each channel is isolated from each other and does not interfere with each other.
  • the temperature control fluid channel 22 is arranged on the periphery of the imaging channel 21 .
  • a temperature control fluid output hole 215 is provided on the electrode, and a temperature control fluid channel 22 extends axially from the proximal end of the tube body and is connected to the temperature control fluid output hole 215 .
  • the temperature control fluid channel 22 is used to transport the temperature control fluid, and the temperature control fluid output hole 215 releases the temperature control fluid to the target position.
  • the proximal end of the temperature control fluid channel 22 is connected to the interface portion 1 , such as the fluid perfusion interface 11 .
  • the temperature-controlled fluid output hole 215 is used to release temperature-controlled fluid (such as hot gas or cold saline, etc.) with a certain temperature to a target location (such as an ablation site), thereby reducing overheating damage or supercooling damage to the tissue. Therefore, during the energy treatment process, cold or hot fluid can be delivered to the target location with the help of the temperature-controlled fluid channel 22 to maintain the temperature of the contact surface between the medical interventional catheter and the target tissue within the normal body temperature range, thereby protecting the non-treatment area. Increase the safety of the treatment process.
  • temperature-controlled fluid such as hot gas or cold saline, etc.
  • the temperature control fluid output hole 215 is preferably a micropore. If the diameter of the micropore is too large, it will affect the overall shape of the electrode and affect ablation; if the diameter of the micropore is too small, it will cause the problem that the fluid viscosity is too high and cannot flow out of the micropore. For this reason, the pore diameter of the micropores is preferably 50 ⁇ m to 200 ⁇ m. The setting of micropores can reduce the impact on the electrode when the temperature control fluid is output.
  • the temperature of the temperature control fluid can be adjusted according to actual needs, for example, it can be 15°C to 30°C.
  • the temperature and energy output of the temperature-controlled fluid can be adjusted simultaneously to achieve complete endothelial-protective ablation.
  • the tube body is a single-lumen braided tube, and a temperature-controlled fluid tube, an imaging tube, an electrode wire tube, and a temperature-controlled wire tube are arranged inside the single-lumen braided tube.
  • the inner cavity of the temperature control fluid tube forms a temperature control fluid channel 22 .
  • the inner cavity of the imaging tube forms an imaging channel 21 .
  • the inner cavity of the electrode lead tube forms an electrode lead channel 24 .
  • the inner cavity of the temperature control wire tube forms a temperature control wire channel 23 .
  • the temperature-controlled fluid tube, imaging tube, electrode wire tube and temperature-controlled wire tube in the single-lumen braided tube can be arranged at intervals from each other, can also be arranged next to each other without being connected, or can be fixedly connected to each other, such as outside each other.
  • the surface is glued and fixed.
  • the wall thickness of the temperature-controlled fluid tube, imaging tube, electrode wire tube and temperature-controlled wire tube is less than 0.2mm, so as to reduce the overall size of the medical interventional catheter and reduce the difficulty of size control.
  • the medical interventional catheter of this embodiment is applied to coronary arteries.
  • the outer diameter of the tube body is preferably 1.0 mm to 3.0 mm, preferably 1.8 mm to 2.0 mm. If the outer diameter of the tube body exceeds 3.0 mm, the size is too large and it is difficult to intervene in the coronary artery. If the outer diameter of the tube body is less than 1.0 mm, it is difficult to integrate various channels inside it, increasing the difficulty of the process.
  • the wall thickness of the tube body can be 0.1 mm to 0.5 mm, which not only ensures the overall strength of the medical interventional catheter, but also ensures that the interventional catheter has good flexibility.
  • the diameter of the imaging channel 21 does not exceed 1.0mm
  • the diameter of the temperature control fluid channel 22 does not exceed 0.5mm
  • the diameter of the electrode wire channel 24 is 0.1mm ⁇ 0.5mm
  • the diameter of the temperature control wire channel 23 is 0.1mm ⁇ 0.5 mm; by controlling the diameter of each channel, while being able to fully accommodate each part of the structure, it also reduces the mutual influence between the various parts of the structure, ensuring that each function can be operated and realized normally.
  • two electrodes are used as a schematic.
  • the two electrodes are the proximal electrode 216 and the distal electrode 217.
  • the two electrodes are both provided with temperature control fluids.
  • the temperature control fluid output hole 215 is preferably provided at least on the proximal electrode 216, and the temperature control fluid is released through the temperature control fluid output hole 215 on the proximal electrode 216, so that the temperature control fluid fills the entire ablation zone.
  • the proximal electrode 216 and the distal electrode 217 are both ring-shaped electrodes, which are arranged at a certain distance in the axial direction, and the imaging probe 212 is arranged between the proximal electrode 216 and the distal electrode 217. between distal electrodes 217.
  • the space between the proximal electrode 216 and the distal electrode 217 is used as an ablation zone to perform radiofrequency ablation of the lesion, while the imaging probe 212 monitors the therapeutic effect of the lesion in the ablation zone.
  • the outer diameter of the medical interventional catheter provided in the embodiment of the present application should be set in conjunction with the diameter of the blood vessel to be intervened.
  • the outer diameter of medical interventional catheters can be 1.0mm ⁇ 10.0mm to adapt to systemic diseases.
  • the outer diameter of the medical interventional catheter provided by the embodiment of the present application does not exceed 2 mm to solve the problem of ablation plaque treatment in a smaller size.
  • the outer diameter of the medical interventional catheter mainly refers to the outer diameter of the catheter body 2 and the connecting part 4 and the head end 3 in the following content.
  • the outer diameters of the catheter body 2 and the connecting part 4 are usually the same, and the outer diameter of the head end 3 is usually the same.
  • the proximal outer diameter of the end 3 is the same as the outer diameter of the catheter body 2, that is, the part of the medical interventional catheter that enters the human body, and its outer surface is smooth and smooth.
  • the catheter body 2 includes an imaging channel 21, a temperature control fluid channel 22 and a plurality of wire channels.
  • the plurality of wire channels are specifically four wire channels, and the two wire channels are temperature control wire channels 23.
  • the temperature control wire channel 23 is used to lay out the temperature control wires 5 on the thermocouples.
  • the other two wire channels are electrode wire channels 24, and the electrode wire channels 24 are used to lay the electrode wires 6.
  • the temperature control fluid channel 22, the temperature control wire channel 23 and the electrode wire channel 24 are all arranged around the imaging channel 21, and the imaging channel 21 is arranged at the center of the medical interventional catheter.
  • the two temperature control wire channels 23 are symmetrically arranged relative to the imaging channel 21
  • the two electrode wire channels 24 are also symmetrically arranged relative to the imaging channel 21
  • the temperature control fluid channel 22 is arranged in parallel with the imaging channel 21 .
  • the medical interventional catheter further includes a head end 3 , and the head end 3 is connected to the distal end of the functional part 210 through the connecting part 4 .
  • the connecting part 4 serves as a physical end and connects the functional part 210 and the head end 3 .
  • the connecting part 4 is a solid body and can further seal the distal end of the functional part 210 .
  • the connecting portion 4 is made of elastomer to reduce the risk of damage to the head end 3 .
  • the material of the connecting part 4 may be polyurethane or silicone.
  • the diameter of the connecting portion 4 is consistent with the diameter of the catheter body 2 .
  • the length of the connecting part 4 should not be too long or too short; if it is too long, the bending radius of the entire distal end will be increased, and the passing ability when encountering expected lesions will be reduced; if it is too short, the protective effect on the head end 3 will be limited.
  • the axial length of the connecting portion 4 is 1 mm to 10 mm.
  • the head end 3 is usually soft and has a damage-free structure, which can reduce damage to blood vessels or tissues.
  • the head end 3 is preferably provided with a guide wire lumen 31 for the guide wire to pass through to achieve rapid exchange.
  • the inner diameter of the guide wire cavity 31 can be set in combination with the diameter of the guide wire.
  • the inner diameter of the guide wire cavity 31 is 0.1 mm to 2 mm.
  • the size of the head end 3 should not be too large, otherwise it will be difficult to pass through the stenotic lesion. Therefore, the size of the head end 3 should be small.
  • the head end 3 is a tapered head, and the head end 3 is not likely to be too long. If it is too long, the head end 3 will be sharp and may damage blood vessels or tissues. If the head end 3 is too short, it will affect the penetrating performance.
  • the axial length of the head end 3 can be 5.0 mm to 50 mm, preferably 20 mm.
  • the medical interventional catheter of the present invention can be used in the following manner, specifically including:
  • the functional part 210 is transported to the designated lesion location, and then the energy output device is turned on to release the therapeutic energy and/or therapeutic agent to the lesion location. During this period, the imaging system continues to work and monitor The effectiveness of energy healing or the degree of release of therapeutic agents;
  • the medical interventional catheter provided by the embodiment of the present application is an ablation catheter, and OCT imaging is used and radiofrequency ablation, which is used in the treatment of atherosclerotic plaques.
  • the ablation catheter includes an interface part 1, a catheter body 2, a head end 3 and a connecting part 4.
  • the interface part 1 includes a fluid perfusion interface 11 , an imaging interface 12 and an electrical signal interface 13 .
  • the outer diameter of the catheter body 2 is 1.8 mm and the wall thickness is 0.2 mm, and can be applied to coronary atherosclerosis.
  • the functional part 210 includes a proximal electrode 216 and a distal electrode 217 spaced apart along the axial direction.
  • the proximal electrode 216 and the distal electrode 217 are both ring-shaped and made of platinum-iridium alloy. Proximal electrode 216 and distal electrode 217 are used to output radiofrequency energy.
  • the thickness of the proximal electrode 216 and the distal electrode 217 is both 0.1 mm, the axial width is 2.0 mm, and the diameter of the electrode lead 6 is 200 ⁇ m.
  • Temperature control fluid output holes 215 are provided on both the proximal electrode 216 and the distal electrode 217 .
  • the temperature control fluid output holes 215 are evenly distributed along the circumferential direction of the corresponding electrode.
  • the number of temperature control fluid output holes 215 is 12, and the hole diameter is 90 ⁇ m.
  • the tube body between the proximal electrode 216 and the distal electrode 217 has a transparent structure and serves as the imaging window 214 .
  • a part of the tube body on the proximal side of the proximal electrode 216 can also serve as the imaging window 214 .
  • An imaging channel 21 , a temperature control fluid channel 22 , two temperature control wire channels 23 and two electrode wire channels 24 are formed inside the tube body.
  • the proximal electrode 216 and the distal electrode 217 are connected to the two thermocouples in one-to-one correspondence, and the diameter of the temperature control wire 5 is 200 ⁇ m.
  • the diameter of imaging channel 21 is 0.5mm.
  • the imaging probe 212 uses a gradient refractive index (GRIN) lens.
  • the gradient refractive index lens is disposed between the proximal electrode 216 and the distal electrode 217 and can receive and emit optical signals through the imaging window 214.
  • the imaging optical fiber moves and rotates axially with the driving device in the imaging channel 21, and at the same time transmits and collects optical signals through the gradient refractive index lens.
  • the temperature control fluid channel 22 is located on one side of the imaging channel 21.
  • the diameter of the temperature control fluid channel 22 is 0.3mm.
  • Cold saline enters the temperature control fluid channel 22 from the fluid perfusion device through the fluid perfusion interface 11, and is output through the temperature control fluid on the electrode. Hole 215, flows to the lesion, cools down during radiofrequency ablation, and protects endothelial cells. The flow rate of cold brine can be adjusted to meet different cooling needs.
  • Each electrode is welded with an electrode wire 6 and a temperature control wire 5 used for the thermocouple.
  • the electrode wire 6 is made of platinum-iridium alloy, and the temperature control wire 5 is made of copper-nickel alloy.
  • the two temperature control wires 5 and the two electrode wires 6 are distributed in corresponding wire channels, and are symmetrically distributed relative to the imaging channel 21 and the temperature control fluid channel 22.
  • the imaging interface 12 and the mechanical power transmission interface 14 are integrated into one body, and this integrated interface is connected to the imaging system.
  • the imaging probe 212 emits laser light and collects blood vessel reflected light signals through a combination of imaging optical fibers and microlenses.
  • the guide wire delivers the ablation catheter into the blood vessel through the guide wire lumen 31 of the head end 3 .
  • the head end 3 has a quick-exchange design. By placing the guidewire lumen 31 in front, interventional instruments can be quickly replaced and the overall design size of the catheter can be reduced.
  • the inner diameter of the guide wire cavity 31 is 0.5 mm.
  • the axial length of the head end 3 is 20mm.
  • the use process of the ablation catheter in this embodiment includes: first using the OCT imaging system to image the blood vessels and analyzing the plaque morphology and composition; then, based on the imaging results, the two ring-shaped electrodes (ie, the proximal electrode 216 Align the ablation site with the distal electrode 217); turn on the radio frequency system (energy output device), apply radio frequency current through the electrical signal interface 13, generate impedance heat in the plaque, and ablate the vascular plaque.
  • the imaging probe 212 continuously rotates to collect real-time signal imaging and monitor the degree of ablation.
  • thermocouples on the surface of the two ring-shaped electrodes monitor the ablation temperature in real time; at the same time, cold saline is continuously poured from the temperature-controlled fluid output hole 215 to flush the electrode and the surface of the ablated tissue, adjust the temperature, and reduce the endothelium. Cell damage; after ablation is completed, the medical interventional catheter is moved to the next lesion for ablation treatment; after treatment is completed, OCT imaging of the entire blood vessel is performed to evaluate the treatment effect. Finally, the catheter is withdrawn and the procedure is completed.
  • the ablation catheter in the embodiment of the present invention is not limited to a radiofrequency ablation catheter, and may also be a cryoablation catheter. If it is a cryoablation catheter, a freezing fluid channel needs to be set up inside the tube body. An outlet is set at the far end of the freezing fluid channel and is used to spray freezing liquid onto the inner surface of the balloon. At this time, the balloon can be wrapped around the functional part. It is also important to understand that in the current technology, there is no radiofrequency ablation of atherosclerotic plaques guided by intravascular imaging and temperature control.
  • the outer diameter of the medical interventional catheter provided by the present invention can be no more than 2 mm. At this time, the problem of thermal ablation plaque treatment in smaller sizes can be solved, and through the effective combination of imaging, temperature monitoring and radiofrequency ablation, the Radiofrequency ablation is more precise and has better ablation effects.
  • the medical interventional catheter provided by the present invention can diagnose and treat vascular diseases, heart diseases, etc. in one or more ways, such as using OCT imaging to formulate a treatment plan before treatment, and during the treatment process, OCT imaging and temperature monitoring Real-time feedback on the treatment effect, and overall evaluation of the treatment effect after the treatment is completed, effectively improving the treatment effect.
  • OCT imaging to formulate a treatment plan before treatment
  • OCT imaging and temperature monitoring Real-time feedback on the treatment effect
  • overall evaluation of the treatment effect after the treatment is completed, effectively improving the treatment effect.
  • the catheter is set up in sections and the nesting of functional blocks is used to solve the technical problems of component distribution and function realization in a small physical space, and realize the multi-functional and integrated diagnosis and treatment in one tube.
  • the application of this catheter It can effectively improve the expected clinical effect.
  • the medical interventional catheter of the present invention can accurately locate the lesion and perform real-time monitoring and treatment, simplifying the treatment steps and making it easier for doctors to operate. At the same time, the medical interventional catheter of the present invention can be reused during the treatment process until the treatment is complete, saving material consumption, helping to reduce the incidence of complications after current interventional surgeries, improving clinical treatment effects, reducing re-hospitalization rates, and reducing disease-related complications. family burden and social and economic losses, and has good economic and ecological benefits.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Otolaryngology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Plasma & Fusion (AREA)
  • Pulmonology (AREA)
  • Optics & Photonics (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明涉及一种医用介入导管,包括集成了诊断和治疗的导管主体,所述导管主体包括位于远端的功能部,所述功能部用于目标管腔内的成像监控,还用于向目标管腔内的目标位置释放治疗源,所述治疗源包括治疗能量和/或治疗物质。本发明的医用介入导管集诊断和治疗为一体,可以实现治疗过程中的实时成像监控,提高治疗的精准性和有效性。

Description

医用介入导管 技术领域
本发明涉及医疗器械技术领域,特别涉及一种诊疗一体的医用介入导管。
背景技术
动脉粥样硬化是影响动脉血管的综合征。动脉粥样硬化导致在动脉的壁中的慢性炎性响应,其大部分是由于脂质、巨噬细胞、泡沫细胞的累积以及在动脉壁中形成斑块所导致。动脉粥样硬化通常称为动脉硬化,疾病的病理生理学显现几种不同类型的病变,范围从纤维化到充满脂质到钙化。目前,临床上针对动脉粥样硬化主要的成熟治疗手段包括药物、介入和搭桥手术,但仍然存在远期再狭窄及血栓形成等问题。
热物理治疗,由于其相对较低的成本、很少的副作用以及较短的治疗时间,已经广泛用于临床中。实现热物理治疗的手段为热消融术,热消融术的能量产生方式主要有冷冻球囊、聚焦超声、激光和射频等。临床研究表明,射频消融有确定的安全频率、热能量输出可控以及更易于功能集成等优势。在热物理治疗时,为了保证消融效果,需要造成一定的组织损伤范围,但是目前还没有相关的技术手段来对纤维斑块消融范围进行精准的监控和控制。
血管腔内成像是主要的监控手段,该技术主要包括OCT(光学相干断层成像)、IVUS(血管内超声成像)、血管镜及血管内MRI等。相较于其他成像技术而言,OCT技术在成像分辨率方面具有明显优势(分辨率优于10μm),更能够获得生物组织的高清图像,非常有利于血管内斑块的精准成像与识别。但在治疗过程中,成像诊断和治疗过程通常是分开的,不仅治疗过程中操作繁琐,而且无法实时监控治疗效果,不能提供及时的治疗,在某些情况下仍具有较高的复发率,同时会增加整体治疗成本。
发明内容
本发明的目的在于提供一种集诊断和治疗为一体的医用介入导管,可以实现治疗过程中的实时成像监控,提高治疗的精准性和有效性。
为实现上述目的,本发明提供了一种医用介入导管,其包括集成了诊断和治疗的导管主体,所述导管主体包括位于远端的功能部,所述功能部用于目标管腔内的成像监控,还用于向所述目标管腔内的目标位置释放治疗源,所述治疗源包括治疗能量和/或治疗物质。
在一实施方式中,所述医用介入导管还包括头端,所述功能部的远端通过弹性连接部与所述头端的近端连接,所述连接部密封所述功能部的远端端部,且所述头端设置有导丝腔。
在一实施方式中,所述功能部采用一种或多种成像方式实现对所述目标管腔内的成像监控。
在一实施方式中,所述功能部采用OCT成像方式实现对所述目标管腔内的成像监控。
在一实施方式中,所述功能部包括成像探头和透明的成像窗口,所述成像探头设置在所述透明的成像窗口处。
在一实施方式中,所述功能部能够释放一种或多种所述治疗能量。
在一实施方式中,所述功能部能够释放射频、超声波、激光及冷冻流体中的至少一种治疗能量。
在一实施方式中,所述功能部采用一种或多种方式向所述目标管腔内的目标位置释放所述治疗物质。
在一实施方式中,所述治疗物质为药物,所述功能部采用药物涂层、给药孔以及给药 微针中的至少一种方式向所述目标管腔内的目标位置释放所述药物。
在一实施方式中,所述功能部采用给药孔和/或给药微针,所述导管主体还包括管本体,所述给药孔和/或所述给药微针设置在所述管本体的外表面上,所述管本体内设置有给药通道,所述给药通道自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述给药通道的远端与所述给药孔和/或所述给药微针连接。
在一实施方式中,所述功能部包括成像探头、电极和测温部件,所述成像探头用于成像监控,所述电极用于释放射频,所述测温部件设置在所述电极上,并用于监控所述电极的表面温度。
在一实施方式中,所述导管主体还包括管本体,所述成像探头设置在所述管本体内,所述电极设置在所述管本体的外表面上;
所述管本体内设置有独立的成像通道、电极导线通道和温控导线通道,所述成像通道、所述电极导线通道和所述温控导线通道均自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述成像通道设置在所述管本体的中心位置,所述电极导线通道和所述温控导线通道均围绕所述成像通道布设;
所述成像通道内设置与所述成像探头连接的成像传输结构,所述电极导线通道内设置与所述电极连接的电极导线,所述温控导线通道内设置与所述测温部件连接的温控导线。
在一实施方式中,所述管本体内还设置有控温流体通道,所述控温流体通道相对于所述成像通道、所述电极导线通道和所述温控导线通道独立设置,并布设在所述成像通道的外围,所述电极上设置有控温流体输出孔,所述控温流体通道自所述管本体的近端沿轴向延伸并与所述控温流体输出孔连接,所述控温流体通道用于输送控温流体,并由所述控温流体输出孔向所述目标位置释放所述控温流体。
在一实施方式中,所述管本体为单腔编织管,所述单腔编织管内布设有温控流体管、成像管、电极导线管及温控导线管,所述温控流体管的内腔形成所述控温流体通道,所述成像管的内腔形成所述成像通道,所述电极导线管的内腔形成所述电极导线通道,所述温控导线管的内腔形成所述温控导线通道,所述温控流体管、所述成像管、所述电极导线管及所述温控导线管的壁厚均小于0.2mm。
在一实施方式中,所述温控流体管、所述成像管、所述电极导线管及所述温控导线管彼此固定连接。
在一实施方式中,所述管本体的外径为1.0mm~3.0mm,所述成像通道的直径不超过1.0mm,所述控温流体通道的直径不超过0.5mm,所述电极导线通道的直径为0.1mm~0.5mm,所述温控导线通道的直径为0.1mm~0.5mm。
在一实施方式中,所述控温流体输出孔为微孔,所述微孔的孔径为50μm~200μm。
在一实施方式中,所述电极的数量为多个,多个所述电极沿所述导管主体的轴向和/或周向间隔排布,多个所述电极中至少两个所述电极为环形电极,至少两个所述环形电极沿所述导管主体的轴向间隔排布,所述成像探头设置在相邻两个所述环形电极之间。
在一实施方式中,所述医用介入导管还包括接口部,所述导管主体的近端连接所述接口部,所述接口部包括:
与所述成像传输结构的近端连接的成像接口;
与所述控温流体通道的近端连接的流体灌注接口;以及,
与所述电极导线和所述温控导线的近端相连接的电信号接口。
在一实施方式中,所述功能部包括成像探头,所述成像探头用于成像监控,所述导管主体还包括管本体,所述成像探头设置在所述管本体内,所述管本体内设置有成像通道,所述成像通道自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述成像通道内设置与所述成像探头连接的成像传输结构,所述成像传输结构用于被驱动装置所驱动,以带 动所述成像探头沿所述导管主体的周向旋转和/或沿所述导管主体的轴向移动。
在一实施方式中,所述成像传输结构包括成像光纤、保护管和扭力弹簧,所述保护管套设于所述成像光纤上,所述扭力弹簧设置在所述保护管和所述成像光纤之间,所述成像光纤的一端连接所述成像探头,另一端用于连接所述驱动装置。
根据本发明提供的医用介入导管,其导管主体包括位于远端的功能部,且该功能部用于目标管腔(如血管)内的成像监控,还用于向目标管腔内的目标位置释放治疗源,所述治疗源包括治疗能量和/或治疗物质。如此设置后,使得本发明的医用介入导管兼具成像导管和治疗导管的功能,实现了诊断和治疗的一体化,那么在对病灶部位进行介入治疗时,无需更换成像导管和治疗导管,从而省去了交换导管的操作,不仅简化了手术过程,也避免了交换不同导管后寻找治疗位点的困难,降低了手术难度,并且在治疗过程中可以实时成像监测治疗效果,以便精准靶向治疗病灶,提高治疗的精准性和有效性,也使得手术成功率增加,还缩短了手术时间。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。附图中:
图1是本发明一实施方式中的医用介入导管的整体结构示意图;
图2是本发明一实施方式中的医用介入导管的详细结构示意图;
图3是本发明实施例一中的医用介入导管作为消融导管使用时的详细结构示意图;
图4是图3中医用介入导管在a位置的局部放大图;
图5a是图4中结构沿A-A连线的剖面图;
图5b是图4中结构沿B-B连线的剖面图;
图5c是图4中结构沿C-C连线的剖面图。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,“若干”的含义是数量不作限定。另外,在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
在以下说明中,为了便于描述,使用了“远端”和“近端”、“轴向”以及“周向”;“远端”是远离医用介入导管的操作者的一侧;“近端”是靠近医用介入导管的操作者的一侧;“轴向”参照的是沿着医用介入导管的中心轴线方向;“周向”参照的是围绕医用介入导管的中心轴线方向;“中心轴线”参照的是医用介入导管的长度方向。
以下结合附图和优选实施例对本发明提出的技术方案作进一步的说明,且在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互补充或相互组合。
如图1和图2所示,本发明一实施方式提供了一种集诊断和治疗为一体的医用介入导管,该医用介入导管主要用于介入冠状动脉进行治疗,如治疗动脉粥样硬化等疾病。该医用介入导管可以在治疗过程中实时成像监控,提高了治疗的精准性和有效性。
本申请实施例的医用介入导管包括集成了诊断和治疗的导管主体2,导管主体2包括位于远端的功能部210。功能部210用于目标管腔内的成像监控,还用于向目标管腔内的目标位置释放治疗源。所述治疗源包括治疗能量和/或治疗物质。这里的目标管腔指的是血管,血管优选为冠状动脉。
功能部210可以采用一种或多种成像方式实现对目标管腔内的成像监控,如光学成像及超声成像中的至少一种成像方式,优选采用OCT光学相干断层成像。OCT的成像分辨率最高,有利于血管内斑块的成像和分辨。
功能部210能够释放一种或多种治疗能量,如功能部210能够释放射频、超声波、激光及冷冻流体中的至少一种治疗能量。
功能部210可以采用一种或多种方式向目标位置释放治疗物质。所述治疗物质是指治疗剂,所述治疗剂为药物。本发明对药物的种类不作限定,所述药物可根据需求选择,如抗增殖的、抗增生的、抗再狭窄的、抗炎的、抗菌的、抗肿瘤的、抗有丝分裂的、抗转移的、抗血栓的、抗骨质疏松症的、抗血管生成的、抑制细胞的、抑制微管的药物。功能部210可以采用药物涂层、给药孔以及给药微针中的至少一种方式向目标位置释放药物。
因此,本申请实施例提供的医用介入导管兼具成像导管和治疗导管的功能,实现了诊断和治疗的一体化,在对病灶部位进行介入治疗时,无需更换成像导管和治疗导管,从而省去了交换导管的操作,不仅简化了手术过程,也避免了交换不同导管后寻找治疗位点的困难,降低了手术难度,并且在治疗过程中可以实时成像监测治疗效果,提高治疗的精准性和有效性,也使得手术成功率增加,还缩短了手术时间。
如图1和图2所示,在一实施方式中,功能部210包括治疗部件211和成像探头212。治疗部件211用于向目标位置(包括病灶)释放治疗源。治疗部件211可以释放射频、超声波、激光及冷冻流体中的至少一种治疗能量,和/或,治疗部件211采用一种或多种结构向目标位置释放治疗物质。
在一实施例中,治疗部件211包括能量输出结构,用于输出治疗能量。所述能量输出结构可以是电极、超声换能器、激光聚焦透镜及冷冻流体通道中的至少一种结构。所述电极用于输出射频。所述超声换能器用于产生超声波。所述激光聚焦透镜用于输出激光。所述冷冻流体通道用于密封在医用介入导管中通过传导能量进行冷冻消融。
在一实施例中,治疗部件211包括治疗剂输出结构,所述治疗剂输出结构用于向目标位置释放治疗剂。所述治疗剂输出结构可以是任意合适的结构,如治疗剂输出结构包括药物涂层和药物释放结构中的至少一种。所述药物释放结构包括给药孔和/或给药微针。这里的给药微针可以事先存储药物,也可以经给药通道给药。
在一具体示例中,导管主体2还包括管本体,所述药物涂层、给药孔和/或给药微针设置在所述管本体的外表面上,也即,功能部210本身包括管本体,在管本体的外表面上设置药物涂层、给药孔和/或给药微针。所述治疗剂输出结构释放治疗剂的方式可以是一种或两种以上的组合,如既设置药物涂层,又设置药物释放结构。需说明的是,所述能量输出结构和治疗剂输出结构可以同时设置或者择一设置。此外,当所述治疗剂输出结构采用给药孔和/或给药微针时,所述管本体内设置有给药通道,所述给药通道自功能部210的管本体沿轴向延伸至所述管本体的近端,所述给药通道的远端与所述给药孔和/或所述给药微针连接。
成像探头212用于血管腔内的成像监控,具体用于对病变区域进行成像监控,便于在治疗之前分辨病灶位置和病灶组分,也便于在治疗过程中监控治疗效果或者监控治疗剂释放程度,还便于在病变区域治疗完毕后,进行成像扫描评估治疗效果。本申请对成像探头212的成像方式不限定。成像探头212可以采用光学成像或超声成像,优选采用OCT光学相干断层成像。成像探头212可以采用微透镜(光聚集组件)、超声探针和光反射镜中的至 少一种。也即,成像探头212的成像方式可以是一种或两种以上的组合。
如图2~图3、图4、图5a及图5b所示,成像探头212设置在所述管本体内,所述管本体内设置有成像通道21。成像通道21自功能部210的管本体沿轴向延伸至所述管本体的近端,成像通道21内设置与成像探头212连接的成像传输结构213。优选地,成像传输结构213用于被驱动装置所驱动,以带动成像探头212沿导管主体2的周向旋转和/或沿导管主体2的轴向移动,以便调整成像探头212的位置和方向,使血管腔内成像监控更为灵活和方便。
具体地,成像传输结构213的一端连接成像探头212,另一端穿过成像通道21延伸至导管主体2的近端。可选地,成像传输结构213的另一端与接口部1连接。成像传输结构213用于传输采集的信号和成像用的能量。在一实施方式中,成像探头212采用光学成像,此时,成像传输结构213包括成像光纤,成像探头212为光学探头。优选地,成像传输结构213还包括保护管和扭力弹簧。所述保护管套设于成像光纤上。所述扭力弹簧设置在保护管和成像光纤之间。所述成像光纤的一端连接成像探头212,另一端用于连接驱动装置。扭力弹簧的设置,可以更好地传导扭力,以便顺利地驱动成像光纤和成像探头212运动。
在一实施方式中,成像探头212采用OCT成像,其采用超低传播损耗、极低直径(如200μm)的成像光纤作为导光介质,并采用微透镜进行光信号的采集与发射,微透镜为光聚焦组件。所述光聚焦组件可以是球透镜或梯度折射率透镜。由于光纤本身是玻璃丝,很脆,使用时如果不加以保护,极易折断,因此,整根传导光纤封装在一个保护管中形成传导光缆,以避免光学元件和远端光聚焦组件运动过程中的机械损伤,而且抗拉和抗弯折性能更好。所述保护管可选为透明管。
如图2和图4所示,功能部210包括透明的成像窗口214。成像探头212设置在对应成像窗口214的位置。成像窗口214便于成像探头212发射和接收光信号。成像窗口214的轴向长度可以为2mm~100mm,如从连接部4的近端向远端延伸的管本体长度为成像窗口214的轴向长度。成像窗口214可以理解为功能部210的管本体设置为透明。透明材料可以是透明尼龙。所述管本体除成像窗口214外的部分主要是不透明材料制成,如聚酰胺等材料,优选该部分为编织管。
如图1和图2所示,在一实施方式中,导管主体2的近端连接接口部1。接口部1作为与外部装置连接的接口,用于输入和输出信息。接口部1所输入和输出的信息至少包括能量和采集的信号,能量至少包括成像监控用的能量,采集的信号至少包括所采集的图像信号。接口部1包括若干接口,接口的数量和种类应根据功能部210本身的功能设定。
在一实施方式中,接口部1包括流体灌注接口11、成像接口12、电信号接口13(如电流接口)和机械动力传导接口14。流体灌注接口11用于与流体灌注装置连接,以向医用介入导管注入控温流体,控温流体一般为生理盐水。成像接口12用于与外部的成像系统连接,成像系统向医用介入导管输出成像用的能量(如激光、电能),并接收从医用介入导管反馈回的采集信号。电信号接口13用于与外部的能量输出装置连接,能量输出装置向医用介入导管输出治疗用的电能,还可以向医用介入导管输出温度监控用的电能。电信号接口13还可以与外部的控制装置连接,控制装置接收从医用介入导管反馈回的温度信号。机械动力传导接口14用于与驱动装置连接,所述驱动装置驱动成像探头212沿导管主体2的周向旋转和/或沿导管主体2的轴向移动。在一实施例中,成像传输结构213的另一端连接机械动力传导接口14。机械动力传导接口14可与成像接口12集成为一体。所述驱动装置通过机械动力传导接口14带动成像传输结构213和成像探头212移动和旋转。所述驱动装置可选用马达。
如图4所示,并结合图5a和图5b,在一优选方案中,成像通道21的中心轴线与管本体的中心轴线重合,即,成像通道21处于管本体的中心位置。由于成像通道21是整个医 用介入导管内尺寸最大的部分,将其设置在导管的中间有利于导管整体的同轴性和各部件的排布。具体地,方便在成像通道21的外围布置其他功能的通道,使管本体的内部空间被有效利用,在确保导管主体2具有足够强度的同时,避免加大医用介入导管的外径,以便于介入细小的血管中治疗。
导管主体2的管本体除了为成像监控提供成像通道21外,在一些实施例中,还为治疗部件211提供治疗能量和/或治疗剂传输用的通道。所述管本体中通道的数量根据实际需要设置,本申请对此不限定。
所述管本体中通道的形成方式也不作特殊要求。如,所述管本体直接为多腔管,由多腔管本身的腔道作为通道,或者,所述管本体为单腔管,并在所述单腔管内设置管子形成通道。无论何种结构,所述管本体应具备适当的强度以支撑各个通道。所述单腔管优选为编织管,在保证管体强度的同时降低管壁厚度,保证管腔内有效的集成空间。
在一优选实施例中,功能部210包括成像探头212、电极和测温部件,此时能量输出结构包括电极。所述电极用于释放射频。所述测温部件设置在电极上,并用于监控电极的表面温度。此时,为了确保医用介入导管整体的微型化,需要合理地排布与成像探头212连接的成像传输结构213,以及与测温部件连接的温控导线和与电极连接的电极导线。
在一实施方式中,所述电极的数量为多个,多个所述电极沿导管主体2的轴向和/或周向间隔排布。电极可以是环形电极或非环形电极。当电极为环形时,可适用于同心弥漫斑块消融。当电极为非环形时,适用于偏心斑块消融。本申请实施例的医用介入导管优选同时集成了环形电极和非环形电极,使得医用介入导管能够对治疗区域进行适形治疗,即适应于不同病灶形状的治疗,以满足临床不同的治疗需求。
所述电极贴在功能部210的管本体的外表面上。所述电极可以是环状或条状,且可以制备成片状结构或网状结构。所述电极可以具有显影性或不具有显影性,对此不作要求。本申请对电极的材料没有特殊限定,如可以采用铂铱合金、铂金、铜、铁或不锈钢等材料制作射频电极。此外,所述电极之间需要存在一定的绝缘距离,绝缘距离不宜过小和过大。产生脉冲电场时,由于脉冲电场在正电极和负电极间以正负电极信号释放,此时,若电极间绝缘距离过小,易产生电火花现象及低温等离子效应,若绝缘距离过大,则会对电场强度产生影响。为此,电极之间的绝缘距离不能随意地设置,绝缘距离应保证电场能量强度并且不产生电离,确保作用在病变处的能量和安全性。在一实施方式中,所述电极之间的绝缘距离为1mm~5mm,以便精确地控制消融范围,并避免电极距离太近而出现放电现象。电极的大小可以根据实际需求设置。在一实施方式中,所述电极沿医用介入导管轴向的宽度为2mm~10mm,电极沿医用介入导管径向的厚度可以为0.05mm~0.5mm。需理解,电极尺寸应根据病灶部位的大小设定,一般地,电极尺寸越大,消融范围越大。鉴于斑块的尺寸通常在1mm左右,故而电极的轴向宽度设置为2mm~10mm时基本可以满足治疗需求。
所述测温部件监控治疗能量输出过程中目标位置处的温度,以此精确地控制治疗能量输出强度。所述测温部件可获得更为准确的病灶的温度信息,从而改善治疗效果。所述测温部件可以是任意合适的结构,诸如:热电偶、热敏电阻或者热信号采集镜头。所述测温部件可以采用热电偶、热敏电阻以及热信号采集镜头中的至少一种。在本申请实施例中,所述测温部件采用热电偶,并直接监控电极的表面温度,以根据电极的表面温度确定病灶部位的温度。
进一步地,所述电极设置在所述管本体的外表面上。如图5a和图5b所示,所述管本体内设置有独立的成像通道21、温控导线通道23和电极导线通道24。成像通道21、电极导线通道24和温控导线通道23均自功能部210的管本体沿轴向延伸至所述管本体的近端。成像通道21设置在所述管本体的中心位置。电极导线通道24和温控导线通道23均围绕成像通道21布设。电极导线通道24内设置与所述电极连接的电极导线6。温控导线 通道23内设置与所述测温部件连接的温控导线5。在其他实施例中,温控导线5和电极导线6可以共用一个导线通道,此时,两者可以用绝缘涂层的方式互相隔离,避免相互干扰。进一步地,电极的数量为多个,电极的数量与测温部件对应地设置。每个电极连接有电极导线6,电极导线6的一端焊接于电极的内表面,另一端穿过电极导线通道24与电信号接口13连接。电极导线6的材料应根据实际需求设置,如通过不同长度阻抗值选择电极导线的材料。所述测温部件连接有温控导线5,温控导线5的一端与测温部件连接,另一端穿过温控导线通道23与电信号接口13连接。电极导线6和温控导线5可与同一个电信号接口13或不同的电信号接口13连接。优选地,采用百微米级的电极导线6与温控导线5,有利于降低导管整体尺寸的控制难度。
作为进一步改进,所述管本体内还设置有控温流体通道22。控温流体通道22、成像通道21、温控导线通道23和电极导线通道24是相互独立设置的,即各个通道是相互隔离,互不干扰。控温流体通道22布设在成像通道21的外围。并且所述电极上设置有控温流体输出孔215,控温流体通道22自所述管本体的近端沿轴向延伸并与控温流体输出孔215连接。控温流体通道22用于输送控温流体,并由控温流体输出孔215向目标位置释放控温流体。可选地,控温流体通道22的近端与接口部1连接,如与流体灌注接口11连接。控温流体输出孔215用于向目标位置(如消融位置)释放具有一定温度的控温流体(如热气体或冷盐水等),以此减小组织的过热损伤或过冷损伤。因此,在能量治疗过程中,可以借助于控温流体通道22,向目标位置输送冷或热流体,以维持医用介入导管与目标组织接触面的温度在正常体温范围内,从而保护非治疗区域,增加治疗过程的安全性。
控温流体输出孔215优选为微孔。所述微孔的孔径若太大,则会影响电极整体形状影响消融;微孔的孔径若太小,则会导致因流体粘度太高而无法流出微孔的问题。为此,所述微孔的孔径优选为50μm~200μm。微孔的设置,可以减小控温流体输出时对电极的影响。控温流体的温度可以根据实际需要调整,例如可以为15℃~30℃。控温流体的温度和能量输出功率可以同时调整,以此达到完整的保护内皮的消融功效。
作为一实施例,所述管本体为单腔编织管,所述单腔编织管内布设有温控流体管、成像管、电极导线管及温控导线管。所述温控流体管的内腔形成控温流体通道22。所述成像管的内腔形成成像通道21。所述电极导线管的内腔形成电极导线通道24。所述温控导线管的内腔形成温控导线通道23。所述单腔编织管内的温控流体管、成像管、电极导线管及温控导线管可以彼此间隔地设置,也可以彼此紧挨着设置而不连接,还可以彼此固定连接,如彼此的外表面胶水粘接固定。所述温控流体管、成像管、电极导线管及温控导线管的壁厚均小于0.2mm,以减小医用介入导管的整体尺寸,降低尺寸控制难度。
在一具体的应用场景中,本实施例的医用介入导管应用于冠状动脉,此时,优选管本体的外径为1.0mm~3.0mm,优选1.8mm~2.0mm。如果管本体的外径超过3.0mm,则尺寸过大,难以介入冠状动脉,如果管本体的外径小于1.0mm,则难以在其内部集成各个通道,增加工艺难度。所述管本体的壁厚可以为0.1mm~0.5mm,在确保医用介入导管整体强度的同时,还确保介入导管具有较好的柔顺性。进一步地,成像通道21的直径不超过1.0mm,控温流体通道22的直径不超过0.5mm,电极导线通道24的直径为0.1mm~0.5mm,温控导线通道23的直径为0.1mm~0.5mm;通过对各个通道直径的控制,在能够充分容纳各部分结构时,还减小了各部分结构之间的相互影响,确保各个功能能够正常操作并实现。
如图3和图4所示,并结合图5a~图5c,以两个电极为示意,两个电极分别为近端电极216和远端电极217,该两个电极上均设置有控温流体输出孔215,优选至少在近端电极216上设置控温流体输出孔215,经由近端电极216上的控温流体输出孔215释放控温流体,使控温流体灌满整个消融区。在图示的实施方式中,近端电极216和远端电极217均为环形电极,两者在轴向上间距一定距离设置,且成像探头212设置在近端电极216和 远端电极217之间。近端电极216和远端电极217之间作为消融区,对病灶进行射频消融,同时成像探头212在消融区监控病灶的治疗效果。
本申请实施例提供的医用介入导管的外径应结合所介入血管的管径设定。如医用介入导管的外径可以为1.0mm~10.0mm,以适应全身疾病。优选地,本申请实施例提供的医用介入导管的外径不超过2mm,以解决在更小尺寸下的消融斑块治疗问题。此处,需理解,医用介入导管的外径主要指导管主体2以及下述内容中的连接部4和头端3的外径,导管主体2和连接部4的外径通常是相同的,头端3的近端外径与导管主体2的外径是相同的,即医用介入导管进入人体的部分,其外表面是光滑平顺的。
作为一具体实施例,如图4、以及图5a至图5c所示,导管主体2包括一个成像通道21、一个控温流体通道22和多个导线通道。以两个电极和两个热电偶为示意,多个导线通道具体为四个导线通道,两个导线通道为温控导线通道23,温控导线通道23用于布设热电偶上的温控导线5,另外两个导线通道为电极导线通道24,电极导线通道24用于布设电极导线6。控温流体通道22、温控导线通道23和电极导线通道24均布设在成像通道21的周围,成像通道21设置在医用介入导管的中心位置。两个温控导线通道23相对于成像通道21对称设置,两个电极导线通道24也相对于成像通道21对称设置,且控温流体通道22与成像通道21并行排列。如此设置,解决了光、电和热兼容的问题,减小了三者之间的相互影响和干扰。
如图2所示,在一实施方式中,所述医用介入导管还包括头端3,头端3通过连接部4连接功能部210的远端。连接部4起到实体封端以及连接功能部210和头端3的作用。连接部4为实心体,可以进一步密封功能部210的远端端部。优选地,连接部4为弹性体,以减小头端3的损伤风险。制作连接部4的材料可以是聚氨酯或者硅酮。连接部4的直径与导管主体2的直径一致。连接部4的长度不宜过长或过短;若过长,则会使得整个远端的弯曲半径增加,遇到预期病变时的通过能力降低;若过短,对头端3的保护效果有限,为此,连接部4的轴向长度为1mm~10mm。
头端3通常较软且为无损伤结构,可以减小对血管或组织的损伤。头端3优选设置有导丝腔31,可供导引导丝穿过,以实现快速交换。通过导丝腔31前置,能够在不影响医用介入导管整体尺寸的情况下,更加方便进行医用介入导管的更换与操作。导丝腔31的内径可结合导引导丝的直径设定,如导丝腔31的内径为0.1mm~2mm。头端3的尺寸不宜过大,否则不容易通过狭窄病变,因此,头端3的尺寸较小。头端3为锥形头,头端3不易过长,若过长则头端3比较尖锐,会损伤血管或组织,头端3若过短,则会影响穿越性能。头端3的轴向长度可以为5.0mm~50mm,优选为20mm。
在一非限制性实施例中,可按照如下方式使用本发明的医用介入导管,具体包括:
(1)将成像接口12接入成像系统,电信号接口13接入能量输出装置,流体灌注接口11接入流体灌注装置,机械动力传导接口14接入驱动装置;
(2)经由导引导丝,将医用介入导管输送到病变血管段,然后,开启成像系统,对病变区域进行成像分辨病灶位置和病灶组分;
(3)经过成像诊断后,将功能部210输送到指定病灶位置,然后,开启能量输出装置,将治疗能量和/或治疗剂靶向释放到病灶部位,在此期间,成像系统持续工作不断监控能量治疗效果或者治疗剂释放程度;
(4)一处病灶治疗完毕,移动医用介入导管至下一处重复上述过程进行治疗;
(5)病变区域全部治疗完毕,对治疗区域段再进行整段成像扫描评估治疗效果;
(6)最后经由导引导丝,撤出整根医用介入导管,完成治疗过程。
接下去结合具体的应用场景对本申请实施例提供的医用介入导管作进一步说明。
在一应用场景中,本申请实施例提供的医用介入导管为消融导管,并且采用OCT成像 以及射频消融,其应用于动脉粥样硬化斑块的治疗。
如图3、图4以及图5a~图5c所示,所述消融导管包括接口部1、导管主体2、头端3和连接部4。接口部1包括流体灌注接口11、成像接口12和电信号接口13。导管主体2中管本体的外径为1.8mm,壁厚为0.2mm,可以应用于冠状动脉粥样硬化。功能部210包括沿轴向间隔设置的近端电极216和远端电极217。近端电极216和远端电极217均为环形,并由铂铱合金制成。近端电极216和远端电极217用于输出射频能量。近端电极216和远端电极217的厚度均为0.1mm,轴向宽度为2.0mm,电极导线6的直径为200μm。近端电极216和远端电极217上均设置有控温流体输出孔215。控温流体输出孔215沿对应电极的周向均匀布设。控温流体输出孔215的数量为12个,孔径为90μm。其中,近端电极216和远端电极217之间的管本体为透明结构,作为成像窗口214,此外,近端电极216的近端侧的一部分管本体也可作为成像窗口214。管本体的内部形成相互单独设置的成像通道21、控温流体通道22、两个温控导线通道23和两个电极导线通道24。近端电极216和远端电极217与两个热电偶一一对应地连接,且温控导线5的直径为200μm。成像通道21的直径为0.5mm。成像探头212选用梯度折射率(GRIN)透镜,梯度折射率透镜设置在近端电极216和远端电极217之间,可通过成像窗口214接收和发射光信号。成像光纤在成像通道21内随着驱动装置进行轴向移动和旋转,同时通过梯度折射率透镜进行光信号的发射与采集。控温流体通道22位于成像通道21的一侧,控温流体通道22的直径为0.3mm,冷盐水由流体灌注装置经流体灌注接口11进入控温流体通道22,通过电极上的控温流体输出孔215,流到病灶处,在射频消融过程中降温,保护内皮细胞。冷盐水可进行流量大小调控,以满足不同的降温需求。每个电极上均焊接有电极导线6和热电偶所用的温控导线5。电极导线6由铂铱合金制成,温控导线5由铜镍合金制成。两路温控导线5和两路电极导线6分布在对应的导线通道内,相对于成像通道21、控温流体通道22对称分布。成像接口12和机械动力传导接口14集成为一体,将此集成式接口接入成像系统。成像探头212通过成像光纤与微透镜组合发射激光与采集血管反射光信号。手术过程中,导引导丝经由头端3的导丝腔31,将消融导管输送到血管中。头端3为快速交换式设计,通过将导丝腔31前置,可以快速进行介入器械更换以及降低导管整体设计尺寸。导丝腔31的内径为0.5mm。头端3的轴向长度为20mm。
更详细地,本实施例的消融导管的使用过程包括:首先采用OCT成像系统对血管进行成像并分析斑块形貌及成分;然后,根据成像结果,将两个环形电极(即近端电极216和远端电极217)对齐消融部位;打开射频系统(能量输出装置),通过电信号接口13施加射频电流,在斑块内产生阻抗热,对血管斑块进行消融,在该过程中,成像探头212持续旋转采集实时信号成像,监控消融程度,两个环形电极表面的热电偶实时监测消融温度;同时,不断从控温流体输出孔215灌注冷盐水冲刷电极与消融组织表面,调节温度,减少内皮细胞的损伤;在对一处消融完成后,将医用介入导管移至下一处病灶进行消融处理;治疗完毕后,对整段血管进行OCT成像评估治疗效果。最后,回撤导管,完成手术。
特别需要说明的是,本发明实施例的消融导管不限于为射频消融导管,也可以是冷冻消融导管。若为冷冻消融导管,需要在管本体的内部设置冷冻流体通道,冷冻流体通道的远端设置出口,并用于向球囊内表面喷射冷冻液体,此时可在功能部上外套球囊。还需理解,在现有技术中,并没有在血管腔内成像和温控指导下针对粥样硬化斑块的射频消融。而本发明提供的医用介入导管的外径可做到不大于2mm,此时,可以解决在更小尺寸下的热消融斑块治疗问题,并通过成像、温度监控和射频消融有效地结合,使射频消融更为精准,消融效果更好。
本发明提供的医用介入导管可以通过一种或多种方式对血管疾病、心脏疾病等进行诊断和治疗,如在治疗前使用OCT成像制定治疗计划,治疗过程中,OCT成像和温度监控 实时反馈治疗效果,治疗结束后再整体评估治疗效果,有效地改善治疗效果。并且在制备医用介入导管时,将导管分段设置并利用功能区块的嵌套,解决了狭小物理空间的组件分布与功能实现的技术难题,实现了一管多功能以及诊疗一体,该导管应用后可以有效提高预期临床效果。本发明的医用介入导管能够实现病灶部位的精准化并进行实时监控治疗,精简了治疗步骤,方便了医生操作。同时,本发明的医用介入导管在治疗过程中可以重复使用直至治疗完全,节省物料消耗,有利于降低当前介入术后并发症发生率,提高临床治疗效果,减少再住院率,减少因疾病带来的家庭负担和社会经济损失,具有较好的经济效益和生态效益。
虽然本发明披露如上,但并不局限于此。本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (21)

  1. 一种医用介入导管,其特征在于,包括集成了诊断和治疗的导管主体,所述导管主体包括位于远端的功能部,所述功能部用于目标管腔内的成像监控,还用于向所述目标管腔内的目标位置释放治疗源,所述治疗源包括治疗能量和/或治疗物质。
  2. 根据权利要求1所述的医用介入导管,其特征在于,还包括头端,所述功能部的远端通过弹性连接部与所述头端的近端连接,所述连接部密封所述功能部的远端端部,且所述头端设置有导丝腔。
  3. 根据权利要求1或2所述的医用介入导管,其特征在于,所述功能部采用一种或多种成像方式实现对所述目标管腔内的成像监控。
  4. 根据权利要求3所述的医用介入导管,其特征在于,所述功能部采用OCT成像方式实现对所述目标管腔内的成像监控。
  5. 根据权利要求4所述的医用介入导管,其特征在于,所述功能部包括成像探头和透明的成像窗口,所述成像探头设置在所述透明的成像窗口处。
  6. 根据权利要求1或2所述的医用介入导管,其特征在于,所述功能部能够释放一种或多种所述治疗能量。
  7. 根据权利要求6所述的医用介入导管,其特征在于,所述功能部能够释放射频、超声波、激光及冷冻流体中的至少一种治疗能量。
  8. 根据权利要求1或2所述的医用介入导管,其特征在于,所述功能部采用一种或多种方式向所述目标管腔内的目标位置释放所述治疗物质。
  9. 根据权利要求8所述的医用介入导管,其特征在于,所述治疗物质为药物,所述功能部采用药物涂层、给药孔以及给药微针中的至少一种方式向所述目标管腔内的目标位置释放所述药物。
  10. 根据权利要求9所述的医用介入导管,其特征在于,所述功能部采用给药孔和/或给药微针,所述导管主体还包括管本体,所述给药孔和/或所述给药微针设置在所述管本体的外表面上,所述管本体内设置有给药通道,所述给药通道自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述给药通道的远端与所述给药孔和/或所述给药微针连接。
  11. 根据权利要求1或2所述的医用介入导管,其特征在于,所述功能部包括成像探头、电极和测温部件,所述成像探头用于成像监控,所述电极用于释放射频,所述测温部件设置在所述电极上,并用于监控所述电极的表面温度。
  12. 根据权利要求11所述的医用介入导管,其特征在于,所述导管主体还包括管本体,所述成像探头设置在所述管本体内,所述电极设置在所述管本体的外表面上;
    所述管本体内设置有独立的成像通道、电极导线通道和温控导线通道,所述成像通道、所述电极导线通道和所述温控导线通道均自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述成像通道设置在所述管本体的中心位置,所述电极导线通道和所述温控导线通道均围绕所述成像通道布设;
    所述成像通道内设置与所述成像探头连接的成像传输结构,所述电极导线通道内设置与所述电极连接的电极导线,所述温控导线通道内设置与所述测温部件连接的温控导线。
  13. 根据权利要求12所述的医用介入导管,其特征在于,所述管本体内还设置有控温流体通道,所述控温流体通道相对于所述成像通道、所述电极导线通道和所述温控导线通道独立设置,并布设在所述成像通道的外围,所述电极上设置有控温流体输出孔,所述控温流体通道自所述管本体的近端沿轴向延伸并与所述控温流体输出孔连接,所述控温流体通道用于输送控温流体,并由所述控温流体输出孔向所述目标位置释放所述控温流体。
  14. 根据权利要求13所述的医用介入导管,其特征在于,所述管本体为单腔编织管, 所述单腔编织管内布设有温控流体管、成像管、电极导线管及温控导线管,所述温控流体管的内腔形成所述控温流体通道,所述成像管的内腔形成所述成像通道,所述电极导线管的内腔形成所述电极导线通道,所述温控导线管的内腔形成所述温控导线通道,所述温控流体管、所述成像管、所述电极导线管及所述温控导线管的壁厚均小于0.2mm。
  15. 根据权利要求14所述的医用介入导管,其特征在于,所述温控流体管、所述成像管、所述电极导线管及所述温控导线管彼此固定连接。
  16. 根据权利要求13所述的医用介入导管,其特征在于,所述管本体的外径为1.0mm~3.0mm,所述成像通道的直径不超过1.0mm,所述控温流体通道的直径为不超过0.5mm,所述电极导线通道的直径为0.1mm~0.5mm,所述温控导线通道的直径为0.1mm~0.5mm。
  17. 根据权利要求13所述的医用介入导管,其特征在于,所述控温流体输出孔为微孔,所述微孔的孔径为50μm~200μm。
  18. 根据权利要求11所述的医用介入导管,其特征在于,所述电极的数量为多个,多个所述电极沿所述导管主体的轴向和/或周向间隔排布,多个所述电极中至少两个所述电极为环形电极,至少两个所述环形电极沿所述导管主体的轴向间隔排布,所述成像探头设置在相邻两个所述环形电极之间。
  19. 根据权利要求13所述的医用介入导管,其特征在于,还包括接口部,所述导管主体的近端连接所述接口部,所述接口部包括:
    与所述成像传输结构的近端连接的成像接口;
    与所述控温流体通道的近端连接的流体灌注接口;以及,
    与所述电极导线和所述温控导线的近端相连接的电信号接口。
  20. 根据权利要求1或2所述的医用介入导管,其特征在于,所述功能部包括成像探头,所述成像探头用于成像监控,所述导管主体还包括管本体,所述成像探头设置在所述管本体内,所述管本体内设置有成像通道,所述成像通道自所述功能部的管本体沿轴向延伸至所述管本体的近端,所述成像通道内设置与所述成像探头连接的成像传输结构,所述成像传输结构用于被驱动装置所驱动,以带动所述成像探头沿所述导管主体的周向旋转和/或沿所述导管主体的轴向移动。
  21. 根据权利要求20所述的医用介入导管,其特征在于,所述成像传输结构包括成像光纤、保护管和扭力弹簧,所述保护管套设于所述成像光纤上,所述扭力弹簧设置在所述保护管和所述成像光纤之间,所述成像光纤的一端连接所述成像探头,另一端用于连接所述驱动装置。
PCT/CN2023/118008 2022-09-15 2023-09-11 医用介入导管 WO2024055929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211124333.6 2022-09-15
CN202211124333.6A CN115463308A (zh) 2022-09-15 2022-09-15 医用介入导管

Publications (1)

Publication Number Publication Date
WO2024055929A1 true WO2024055929A1 (zh) 2024-03-21

Family

ID=84371355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118008 WO2024055929A1 (zh) 2022-09-15 2023-09-11 医用介入导管

Country Status (2)

Country Link
CN (1) CN115463308A (zh)
WO (1) WO2024055929A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463308A (zh) * 2022-09-15 2022-12-13 上海微创医疗器械(集团)有限公司 医用介入导管
CN116172695B (zh) * 2023-03-02 2024-03-01 哈尔滨工业大学(威海) 一种介入式血管内多模态成像及消融一体化导管

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099560A1 (en) * 2007-10-15 2009-04-16 Boston Scientific Scimed, Inc. Percutaneous tissue ablation probe with occlusive bodies
CN102743225A (zh) * 2012-07-18 2012-10-24 深圳市惠泰医疗器械有限公司 肾动脉射频消融可控电极导管
CN105877910A (zh) * 2015-01-16 2016-08-24 上海交通大学 一种对硬化血管或肿瘤进行精确诊断与治疗的一体化系统
CN106691405A (zh) * 2016-12-29 2017-05-24 天津恒宇医疗科技有限公司 一种超细oct成像导管
CN108495596A (zh) * 2015-12-17 2018-09-04 科瑞欧医疗有限公司 递送微波能量的电外科探头
CN114469277A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺微波消融系统
CN114469276A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺冷冻消融系统
CN114469275A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺射频消融系统
CN115463308A (zh) * 2022-09-15 2022-12-13 上海微创医疗器械(集团)有限公司 医用介入导管
CN115463307A (zh) * 2022-09-15 2022-12-13 上海微创医疗器械(集团)有限公司 医疗导管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099560A1 (en) * 2007-10-15 2009-04-16 Boston Scientific Scimed, Inc. Percutaneous tissue ablation probe with occlusive bodies
CN102743225A (zh) * 2012-07-18 2012-10-24 深圳市惠泰医疗器械有限公司 肾动脉射频消融可控电极导管
CN105877910A (zh) * 2015-01-16 2016-08-24 上海交通大学 一种对硬化血管或肿瘤进行精确诊断与治疗的一体化系统
CN108495596A (zh) * 2015-12-17 2018-09-04 科瑞欧医疗有限公司 递送微波能量的电外科探头
CN106691405A (zh) * 2016-12-29 2017-05-24 天津恒宇医疗科技有限公司 一种超细oct成像导管
CN114469277A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺微波消融系统
CN114469276A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺冷冻消融系统
CN114469275A (zh) * 2022-01-18 2022-05-13 蓝线铂立生命科技(苏州)有限公司 可视穿刺射频消融系统
CN115463308A (zh) * 2022-09-15 2022-12-13 上海微创医疗器械(集团)有限公司 医用介入导管
CN115463307A (zh) * 2022-09-15 2022-12-13 上海微创医疗器械(集团)有限公司 医疗导管

Also Published As

Publication number Publication date
CN115463308A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2024055929A1 (zh) 医用介入导管
JP7069236B2 (ja) イメージングシステムの動作を制御する方法及びイメージを取得するシステム
CN105877910B (zh) 一种对硬化血管或肿瘤进行精确诊断与治疗的一体化系统
EP3071125B1 (en) Devices for thrombus dispersal
JP6453769B2 (ja) 高周波焼灼方法、システム及び高周波焼灼設備
CN105920717B (zh) 具有流体旋转接头的医疗探针
WO2024055927A1 (zh) 医疗导管
JP5570496B2 (ja) 経皮プローブを備えた医療システム
US20100081873A1 (en) Systems and methods for optical viewing and therapeutic intervention in blood vessels
JP6153751B2 (ja) 複合式構成体を有するカテーテル
US20160095656A1 (en) Ablation techniques for the treatment of atrial fibrillation
US20020068928A1 (en) Apparatus and method to diagnose and treat vulnerable plaque
US8784401B2 (en) Steerable catheter device and method for the chemoembolization and/or embolization of vascular structures, tumours and/or organs
WO2003070098A2 (en) Magnetic resonance imaging capable catheter assembly
CN115105018A (zh) 具有可旋转芯的成像探针
CN112842522A (zh) 一种血管内光学相干断层成像激光消融导管
KR20220162745A (ko) 적분된 a 모드 신호를 사용한 기관지 신경 제거
CN219941532U (zh) 医用介入导管
CN102100533A (zh) 一体化红外线热扫描膀胱镜系统
CN209360892U (zh) 用于治疗cto病变的激光消融系统
JP2014184134A (ja) 生体環境を監視するためのカテーテル
CN219110541U (zh) 医疗导管
CN216823634U (zh) 一种针对肥厚型心肌病的治疗针组件及治疗系统
US20180317879A1 (en) Guarded imaging devices and methods
US20230000321A1 (en) Optical imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864661

Country of ref document: EP

Kind code of ref document: A1