WO2024055756A1 - 一种晶圆对中调节装置及调节方法 - Google Patents

一种晶圆对中调节装置及调节方法 Download PDF

Info

Publication number
WO2024055756A1
WO2024055756A1 PCT/CN2023/109214 CN2023109214W WO2024055756A1 WO 2024055756 A1 WO2024055756 A1 WO 2024055756A1 CN 2023109214 W CN2023109214 W CN 2023109214W WO 2024055756 A1 WO2024055756 A1 WO 2024055756A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
center
adsorption platform
edge
clamping
Prior art date
Application number
PCT/CN2023/109214
Other languages
English (en)
French (fr)
Inventor
张一平
王晖
Original Assignee
盛美半导体设备(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛美半导体设备(上海)股份有限公司 filed Critical 盛美半导体设备(上海)股份有限公司
Publication of WO2024055756A1 publication Critical patent/WO2024055756A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of integrated circuits, specifically a wafer centering adjustment device and an adjustment method.
  • the uniformity of the etch width at the wafer edge cannot be strictly controlled, effective removal of thin films and contaminants will not be achieved. Since the placement position of the wafer on the carrying platform depends on the transfer position of the wafer, if there is a deviation in the transfer, the concentricity of the wafer and the carrying platform cannot be effectively guaranteed, thus affecting the uniformity of the etching width at the edge of the wafer.
  • the purpose of the present invention is to provide a wafer centering adjustment device and an adjustment method so that the center of the wafer coincides with the center of the adsorption platform to ensure the uniformity of the etching width at the edge of the wafer.
  • a wafer centering and adjusting device includes a first adsorption platform, and the adjusting device also includes a wafer centering system and a wafer edge cleaning effect detection system;
  • the wafer centering system is located in the process chamber and is used to measure the deviation of the wafer center from the first adsorption plane.
  • the first offset data at the center of the stage and correct the wafer position based on the first offset data and the second offset data obtained after the previous wafer is etched before the wafer is etched, so that the The center of the wafer coincides with the center of the first adsorption platform;
  • the wafer edge cleaning effect detection system is located outside the process chamber and is used to measure the edge etching width WE of the etched wafer and obtain the deviation of the wafer center based on the edge etching width WE.
  • the second offset data of the center of the first adsorption platform is fed back to the wafer centering system.
  • a wafer centering adjustment method includes the following steps:
  • the first adsorption platform adsorbs the wafer
  • the wafer centering system measures the first offset data of the center of the wafer from the center of the first adsorption platform, and based on the first offset data and the previous wafer etching The obtained second offset data corrects the center of the wafer to coincide with the center of the first adsorption platform;
  • the wafer edge cleaning effect detection system After the wafer is etched, it is sent to the wafer edge cleaning effect detection system;
  • the wafer edge cleaning effect detection system measures the edge etching width of the etched wafer, and obtains the second deviation of the wafer center from the center of the first adsorption platform based on the edge etching width WE. Movement data is fed back to the wafer alignment system.
  • the present invention has the following beneficial effects:
  • the wafer centering system confirms whether the center of the wafer coincides with the center of the first adsorption platform. If the wafer is offset, the wafer centering system corrects the position of the wafer.
  • the wafer edge cleaning effect detection system confirms whether the center of the wafer coincides with the center of the first adsorption platform during the wafer etching process and obtains the second offset data.
  • the wafer edge cleaning effect detection system feeds back the second offset data to the wafer centering system.
  • the wafer centering system Before etching the next wafer, the wafer centering system first obtains the first offset data and corrects it, and then performs a second correction on the wafer position based on the second offset data obtained by etching the previous wafer. Realize closed-loop control of the centering adjustment device. In addition, the two corrections greatly improved the coincidence between the center of the wafer and the center of the first adsorption platform, effectively ensuring the uniformity of the etching width at the edge of the wafer.
  • Figure 1 is a top view of the wafer centering system in the wafer centering adjustment device provided in Embodiment 1 of the present invention
  • Figure 2 is a side view of the wafer centering system in the wafer centering adjustment device provided in Embodiment 1 of the present invention
  • Figure 3 is a schematic structural diagram of the wafer edge cleaning effect detection system in the wafer centering adjustment device provided in Embodiment 1 of the present invention.
  • Figure 4 is a flow chart of a wafer centering adjustment method provided by Embodiment 2 of the present invention.
  • Figure 5 is a relationship curve between the angle and the periodic change of the displacement sensor reading according to the present invention.
  • Figure 6 is a schematic diagram 1 of the wafer of the present invention deviating from the first adsorption platform
  • Figure 7 is a second schematic diagram of the wafer of the present invention deviating from the first adsorption platform
  • Figure 8 is a periodic variation relationship curve between angle and etching width according to the present invention.
  • Figure 9 is a schematic diagram of the etching results after the wafer of the present invention deviates from the first adsorption platform.
  • Wafer centering system 1 Wafer edge cleaning effect detection system 2, first adsorption platform 3, wafer 4, drive module 5;
  • the second adsorption platform 20 The second adsorption platform 20 , the light source 21 , and the camera 22 .
  • the present invention provides a wafer centering and adjusting device.
  • the adjusting device includes a first adsorption platform 3, a wafer centering system 1 and a wafer edge cleaning effect detection system 2.
  • the wafer centering system 1 is located in the etching process chamber, and the wafer edge cleaning effect detection system 2 is located outside the etching process chamber.
  • the wafer centering system 1 measures the first offset data of the center of the wafer 4 deviating from the center of the first adsorption platform 3 .
  • the wafer centering system 1 corrects the position of the wafer 4 based on the first offset data so that the center of the wafer 4 coincides with the center of the first adsorption platform 3 .
  • the wafer edge cleaning effect detection system 2 measures the edge etching width WE of the wafer 4, and at the same time obtains the second offset data of the center of the wafer 4 from the center of the first adsorption platform 3 based on the edge etching width WE, and sets the second offset data The shift data is fed back to the wafer alignment system 1.
  • the wafer centering system 1 corrects the position of the current wafer based on the first offset data of the current wafer and the second offset data of the previous wafer.
  • the offset data obtained by the wafer centering system 1 before each wafer is etched is collectively referred to as the first offset data
  • the offset data obtained by the wafer edge cleaning effect detection system after each wafer is etched is collectively called the second offset data.
  • the wafer centering system 1 obtains the first offset data. If the first offset data indicates that the wafer 4 is offset, the wafer centering system 1 corrects the wafer. 4 positions. After the etching of wafer 4 is completed, in view that there may still be errors in the data measured when the wafer centering system 1 is corrected, the wafer edge cleaning effect detection system 2 once again confirms that the center of the wafer 4 is in contact with the first adsorption platform 3 during the etching process. Whether the centers coincide and obtain the second offset data. The wafer edge cleaning effect detection system 2 feeds back the second offset data to the wafer centering system 1 .
  • the wafer centering system 1 Before etching the next wafer, the wafer centering system 1 first obtains the first offset data of the wafer and corrects it, and then aligns the wafer based on the second offset data obtained after etching the previous wafer.
  • the circular position is corrected twice, thereby realizing closed-loop control of the centering adjustment device.
  • the two corrections greatly improved the coincidence degree between the center of the wafer and the center of the first adsorption platform 3, effectively ensuring the uniformity of the etching width at the edge of the wafer.
  • the wafer centering system 1 specifically includes a clamping component, a measurement module, a driving module 5 and a data processing module 14 .
  • the clamping component limits the position of the wafer 4. When the wafer 4 does not deviate, the clamping component contacts the outer edge of the wafer 4. Therefore, when the wafer 4 rotates, the clamping component does not hinder the movement of the wafer 4. If the wafer 4 is in a deflected state, it will act on the clamping component when rotating. The clamping component moves, and the clamping component is connected to the measurement module.
  • the measurement module measures the movement data generated by the clamping component and transmits it to the data processing module 14 .
  • the data processing module 14 sends a correction instruction to the driving module 5 .
  • the driving module 5 is connected to the clamping assembly.
  • the driving module 5 drives the clamping assembly to move based on the correction instruction, and the clamping assembly corrects the position of the wafer 4 .
  • the measurement module includes an elastic member 12 and a recording unit 13, and the clamping assembly includes a first clamping member 10 and a second clamping member 11.
  • the first clamping part 10 and the second clamping part 11 are symmetrically arranged on both sides of the first adsorption platform 3.
  • the symmetry axis is a straight line along the radial direction of the first adsorption platform 3 and passing through the center of the first adsorption platform 3.
  • the second The clamping member 11 is connected to the recording unit 13 through an elastic member 12 .
  • the recording unit 13 records the initial compression amount of the elastic member 12 .
  • the data processing module 14 sends a correction instruction to the driving module 5 based on the compression data.
  • the driving module 5 drives the first clamping member 10 and the second clamping member 11 to clamp the wafer 4 and move it so that the center of the wafer 4 is in line with the first clamping member.
  • the centers of the three adsorption platforms overlap.
  • multiple measurement points can be set on the outer edge of the wafer 4 to record the compression amount data of the multiple measurement points. By comparing the compression amount data with the initial compression amount, the deviation of the wafer can be determined.
  • two cylindrical rollers 15 are installed on the front ends of the first clamping member 10 and the second clamping member 11 .
  • the roller 15 is preferably made of a material that is not easily deformed and has no metal or other impurities, such as ceramic material.
  • the advantage of the four-point contact is that even if the notched part of the wafer 4 happens to be in contact with one of the contact points, the two clamping members can use the remaining three contact points to push the wafer 4 to its center position.
  • the recording unit 13 is a displacement sensor
  • the elastic member 12 is a spring, rubber, etc.
  • the centers of the first clamping member 10 and the second clamping member 11 are on the same horizontal line as the center of the first adsorption platform 3 . The distance the spring is compressed can be read by the displacement sensor.
  • four measurement points are evenly spaced on the wafer 4 along the circumferential direction of the wafer 4, that is, one measurement point is each at 0°, 90°, 180°, and 270°.
  • the corresponding reading of the displacement sensor is a. Wafer 4 first rotates 90°, and the offset part of the measurement point pushes the second clamping member 11 to move, and the corresponding reading of the displacement sensor is recorded as b. Similarly, wafer 4 continues to rotate 180°, 270°, 180°, The corresponding readings of the displacement sensor at the measurement point of 270° are c and d respectively.
  • the four values a, b, c, and d should be approximately equal within the allowable error range. If the wafer 4 is in a deviation state, the first clamping member 10 and the second clamping member 11 clamp the wafer 4 and move to adjust the position of the wafer 4 so that the values of a, b, c, and d are within the allowable error range. equal, achieving wafer 4 centering. After the centering of wafer 4 is completed, the wafer edge etching process will be performed in the process chamber.
  • the wafer 4 when using the first clamping member 10 and the second clamping member 11 to correct the center position of the wafer 4, multiple measurement points are set and the compression amount data of the multiple measurement points are recorded.
  • the wafer 4 can rotate slowly from the initial position of 0°, and record the compression data of 360° in one circle, and obtain the periodic change relationship curve between the angle and the displacement sensor reading as shown in Figure 5, and can be obtained in the figure.
  • the line connecting the centers of the first clamping member 10 and the second clamping member 11 is defined as the X-axis
  • the direction perpendicular to the X-axis is defined as the Y-axis.
  • Point O in the figure represents the actual center position of the wafer 4
  • O' point represents the center position of the first adsorption platform 3, so the wafer 4 rotates with the O' point as the rotation center.
  • the displacement sensor reading appears as the minimum value Z1
  • the wafer center is at O2 point
  • the maximum value Z2 appears in the displacement sensor reading
  • O', O1, O2 are on the same horizontal line as the centers of the two clamping parts. From this, we can know the distance of OO', which is the first distance from the center of wafer 4.
  • the offset is (Z2-Z1)/2.
  • the center when correcting the center position of the wafer 4, the center can be rotated at a certain angle to the position of point O1 or point O2, and then the first clamping member 10 and the second clamping member 11 can be moved to the right or to the right at the same time. Move left by (Z2-Z1)/2 distance.
  • the wafer edge cleaning effect detection system 2 includes a second adsorption platform 20, a light source 21, a camera 22 and a computing module.
  • the wafer 4 with the edge etching completed is transferred to the second adsorption platform 20 , and at the same time, the light source 21 emits light to provide light to the surface of the wafer 4 .
  • the camera 22 acquires the edge pattern of the etched wafer 4, and the calculation module calculates the edge etching width WE based on the edge pattern.
  • the wafer edge cleaning effect detection system 2 includes a judgment module.
  • Four measurement points are set evenly spaced along the circumferential direction of the wafer 4, that is, one measurement point is set at 0°, 90°, 180°, and 270° respectively.
  • the edge etching width WE corresponding to the 0°, 90°, 180°, and 270° measurement points are i, f, g, and h respectively.
  • the judgment module determines the offset of the wafer 4 relative to the first adsorption platform 3 and feeds it back to the data processing module.
  • the relationship between the angle and the etching width can be obtained as shown in Figure 8 Periodic change relationship curve, and the data of the maximum value point A and the minimum value point B can be known in the figure.
  • the defined X-axis and Y-axis directions are the same as Figure 6-7.
  • the dotted and dashed lines in the figure represent the etching edge formed after etching is completed, the solid line represents the actual position of wafer 4, and the dotted line represents the wafer.
  • the ideal position W' when completely concentric with the first adsorption platform.
  • this embodiment provides a wafer centering and adjusting method, which includes the following steps:
  • the wafer centering system 1 measures the first offset data of the center of the wafer 4 from the center of the first adsorption platform 3, and obtains it based on the first offset data and the previous wafer after etching.
  • the second offset data corrects the position of the wafer 4 so that the center of the wafer 4 coincides with the center of the first adsorption platform 3;
  • the wafer edge cleaning effect detection system 2 measures the edge etching width of the etched wafer 4, obtains the second offset data of the center of the wafer 4 from the center of the first adsorption platform 3 based on the edge etching width WE and feeds back to wafer alignment system 1.
  • the wafer edge cleaning effect detection system 2 further detects the adjustment accuracy of the wafer centering system 1. In the next Before the wafer is etched, the position of the wafer is corrected based on the first offset data of the wafer and the second offset data of the previous wafer, effectively ensuring the uniformity of the etching width at the edge of the wafer.
  • the wafer centering system 1 includes a clamping component, a measurement module, a driving module 5 and a data processing module 14.
  • the clamping component is always in contact with the outer edge of the wafer 4. touch.
  • the deflected part of the wafer 4 pushes the clamping assembly to move.
  • the measurement module measures the movement data and transmits it to the data processing module 14.
  • the data processing module 14 sends a correction instruction to the drive module 5, and the driver
  • the module 5 drives the clamping component to move based on the correction instruction.
  • the clamping component clamps the wafer 4 and adjusts the position of the wafer 4 so that the center of the wafer 4 coincides with the center of the first adsorption platform 3 .
  • the measurement module includes an elastic member 12 and a displacement sensor.
  • the clamping assembly includes a first clamping member 10 and a second clamping member 11 .
  • the first clamping member 10 and the second clamping member 11 are connected to the first adsorption platform 3
  • the centers are arranged opposite to the symmetry axis, and the second clamping member 11 is connected to the displacement sensor through the elastic member 12 .
  • the wafer edge cleaning effect detection system 2 includes a second adsorption platform 20, a light source 21, a camera 22, a calculation module and a judgment module.
  • the second adsorption platform 20 adsorbs the etched wafer 4 , the light source 21 provides light to the surface of the wafer 4 , and the camera 22 acquires the edge pattern of the etched wafer 4 .
  • the edge etching widths WE corresponding to the 0°, 90°, 180°, and 270° measurement points are i, f, g, and h respectively;
  • the wafer edge cleaning effect detection system 2 measures the edge etching width WE of a full 360° circle of the etched wafer.
  • the calculation module calculates the edge etching width WE based on the edge pattern and transmits it to the judgment module.
  • the judgment module forms second offset data based on the edge etching width WE, and feeds back the second offset data to the wafer centering system 1 .
  • the wafer centering system 1 corrects the position of the wafer 4 based on the second offset data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种晶圆对中调节方法,包括:在晶圆(4)刻蚀前,晶圆对中系统(1)确认晶圆(4)圆心与第一吸附平台(3)中心是否重合,若不重合,则晶圆对中系统(1)修正晶圆(4)的位置;晶圆(4)刻蚀完成后,晶圆洗边效果检测系统(2)确认晶圆刻蚀过程中晶圆(4)圆心与第一吸附平台(3)中心是否重合并获得第二偏移数据;晶圆洗边效果检测系统(2)将第二偏移数据反馈至晶圆对中系统(1);在下一片晶圆刻蚀前,晶圆对中系统(1)先获取第一偏移数据并修正,再依据前一片晶圆刻蚀后所获得的第二偏移数据对晶圆位置进行二次修正,由此实现对中调节装置的闭环控制。此外,二次修正极大地提高了晶圆圆心与第一吸附平台中心的重合度,有效保证了晶圆边缘刻蚀宽度的均一性。

Description

一种晶圆对中调节装置及调节方法 技术领域
本发明涉及集成电路技术领域,具体为一种晶圆对中调节装置及调节方法。
背景技术
随着集成电路技术节点不断进步,半导体器件也越来越接近晶圆的边缘。而从晶圆边缘转移的各种缺陷成为限制器件良率的主要原因之一。在器件制造过程中,薄膜沉积、光刻、刻蚀和化学机械抛光之间复杂的相互作用在晶圆的边缘造成了不稳定的薄膜堆积。这些薄膜之间的弱粘合力以及晶圆边缘区域超厚介电膜的固有应力可能会导致严重的剥离缺陷、颗粒污染等问题,进而影响产品良率。
综上所述,晶圆边缘清洗蚀刻在复杂薄膜叠层芯片制造工艺中的重要性日益凸显。制造过程中可利用不同的化学药液有效去除晶圆边缘上的各种类型的电介质膜、金属膜、有机材料膜、颗粒污染物等,避免其对后续工艺产生影响,从而提高芯片制造良率。
然而,如果晶圆边缘刻蚀宽度的均一性无法被严格地控制,将无法达到有效去除薄膜和污染物的效果。由于晶圆在承载平台上的放置位置取决于晶圆的传送位置,若传送产生偏差,则晶圆与其承载平台的同心度无法得到有效保证,从而影响晶圆边缘刻蚀宽度的均一性。
发明内容
针对上述存在的问题,本发明的目的在于提供一种晶圆对中调节装置及调节方法,使得晶圆圆心与吸附平台的中心重合,保证晶圆边缘刻蚀宽度的均一性。
为实现上述目的,本发明提供如下技术方案:
一种晶圆对中调节装置,包括第一吸附平台,所述调节装置还包括晶圆对中系统和晶圆洗边效果检测系统;
所述晶圆对中系统,位于工艺腔室内,用于测量晶圆圆心偏离所述第一吸附平 台中心时的第一偏移数据,并在晶圆刻蚀前基于所述第一偏移数据和前一片晶圆刻蚀后获得的第二偏移数据修正所述晶圆位置,使所述晶圆的圆心与所述第一吸附平台的中心重合;
所述晶圆洗边效果检测系统,位于工艺腔室外部,用于测量刻蚀后的所述晶圆的边缘刻蚀宽度WE并基于所述边缘刻蚀宽度WE获取所述晶圆圆心偏离所述第一吸附平台中心的第二偏移数据并反馈至所述晶圆对中系统。
一种晶圆对中调节方法,包括如下步骤:
第一吸附平台吸附晶圆;
所述晶圆刻蚀前,晶圆对中系统测量所述晶圆圆心偏离所述第一吸附平台中心的第一偏移数据,并基于所述第一偏移数据与前一片晶圆刻蚀获得的第二偏移数据修正所述晶圆圆心与所述第一吸附平台中心重合;
所述晶圆刻蚀完成后传送至晶圆洗边效果检测系统;
所述晶圆洗边效果检测系统测量刻蚀后的所述晶圆的边缘刻蚀宽度、基于所述边缘刻蚀宽度WE获取所述晶圆圆心偏离所述第一吸附平台中心的第二偏移数据并反馈至所述晶圆对中系统。
与现有技术相比,本发明具有以下有益效果:
在晶圆刻蚀前,晶圆对中系统确认晶圆圆心与第一吸附平台中心是否重合,若晶圆偏移,晶圆对中系统则修正晶圆的位置。
晶圆刻蚀完成后传送至晶圆洗边效果检测系统,晶圆洗边效果检测系统确认晶圆刻蚀过程中晶圆圆心与第一吸附平台中心是否重合并获得第二偏移数据。晶圆洗边效果检测系统将第二偏移数据反馈至所述晶圆对中系统。
在下一片晶圆刻蚀前,晶圆对中系统先获取第一偏移数据并修正,再依据前一片晶圆刻蚀所获得的第二偏移数据对晶圆位置进行二次修正,由此实现对中调节装置的闭环控制。此外,两次修正极大地提高了晶圆圆心与第一吸附平台中心的重合度,有效保证了晶圆边缘刻蚀宽度的均一性。
附图概述
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例一提供的晶圆对中调节装置中的晶圆对中系统俯视图;
图2为本发明实施例一提供的晶圆对中调节装置中的晶圆对中系统侧视图;
图3为本发明实施例一提供的晶圆对中调节装置中的晶圆洗边效果检测系统结构示意图;
图4为本发明实施例二提供的晶圆对中调节方法流程图;
图5为本发明角度与位移传感器读数的周期性变化关系曲线;
图6为本发明晶圆偏离第一吸附平台的示意图一;
图7为本发明晶圆偏离第一吸附平台的示意图二;
图8为本发明角度与刻蚀宽度的周期性变化关系曲线;
图9为本发明晶圆偏离第一吸附平台后刻蚀结果示意图。
【图号说明】:晶圆对中系统1、晶圆洗边效果检测系统2、第一吸附平台3、晶圆4、驱动模块5;
第一夹持件10、第二夹持件11、弹性件12、记录单元13、数据处理模块14、滚轮15;
第二吸附平台20、发光源21、相机22。
本发明的较佳实施方式
为使得本发明的目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中设置的组件。当一个组件被认为是“设置在”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中设置的组件。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
请参阅图1-3,本发明提供了一种晶圆对中调节装置,调节装置包括第一吸附平台3、晶圆对中系统1和晶圆洗边效果检测系统2。晶圆对中系统1位于刻蚀工艺腔室内,晶圆洗边效果检测系统2位于刻蚀工艺腔室外部。
在晶圆4刻蚀前,晶圆对中系统1测量晶圆4圆心偏离第一吸附平台3中心的第一偏移数据。晶圆对中系统1基于第一偏移数据修正晶圆4位置,使得晶圆4的圆心与第一吸附平台3的中心重合。
晶圆4刻蚀完成后,传送至刻蚀工艺腔室外。晶圆洗边效果检测系统2测量晶圆4的边缘刻蚀宽度WE,同时基于边缘刻蚀宽度WE获取晶圆4圆心偏离第一吸附平台3中心的第二偏移数据,并将第二偏移数据反馈至晶圆对中系统1。
在下一片晶圆刻蚀前,晶圆对中系统1基于本片晶圆的第一偏移数据和前一片晶圆的第二偏移数据修正本片晶圆的位置。在本申请的上下文中,将各晶圆刻蚀前由晶圆对中系统1获得的偏移数据统一称为第一偏移数据,将各晶圆刻蚀后由晶圆洗边效果检测系统2获得的偏移数据统一称为第二偏移数据。
具体的,在晶圆4刻蚀前,晶圆对中系统1获取第一偏移数据,若第一偏移数据表明晶圆4存在偏移的情况,则晶圆对中系统1修正晶圆4的位置。晶圆4刻蚀完成后,鉴于晶圆对中系统1修正时测量的数据仍有可能存在误差,晶圆洗边效果检测系统2再次确认刻蚀过程中晶圆4圆心与第一吸附平台3中心是否重合并获得第二偏移数据。晶圆洗边效果检测系统2将第二偏移数据反馈至晶圆对中系统1。在下一片晶圆刻蚀之前,晶圆对中系统1先获取该片晶圆的第一偏移数据并修正,再依据前一片晶圆刻蚀后所获得的第二偏移数据对该片晶圆位置进行二次修正,由此实现对中调节装置的闭环控制。此外,两次修正极大地提高了晶圆圆心与第一吸附平台3中心的重合度,有效保证了晶圆边缘刻蚀宽度的均一性。
在一个可选的实施方式中,晶圆对中系统1具体包括夹持组件、测量模块、驱动模块5和数据处理模块14。夹持组件限制晶圆4的位置,晶圆4未偏离时,夹持组件与晶圆4的外边缘接触,因此晶圆4转动时,夹持组件不会阻碍晶圆4运动。晶圆4若为偏离状态,在转动时则会作用在夹持组件上,夹持组件移动,夹持组件与测量模块连接,测量模块测量夹持组件产生的移动数据并传输至数据处理模块14。
在晶圆4的圆心偏离第一吸附平台3中心的情况下,数据处理模块14向驱动模块5发送矫正指令。驱动模块5与夹持组件连接,驱动模块5基于矫正指令驱动夹持组件移动,夹持组件修正晶圆4的位置。
进一步地,测量模块包括弹性件12和记录单元13,夹持组件包括第一夹持件10和第二夹持件11。第一夹持件10和第二夹持件11对称设置在第一吸附平台3的两侧,对称轴为沿第一吸附平台3径向方向且过第一吸附平台3中心的直线,第二夹持件11通过弹性件12与记录单元13连接。
晶圆4在未偏离状态下,记录单元13记录弹性件12的初压缩量。
晶圆4在偏离状态下,晶圆4在转动的过程中晶圆4偏离部分会推动第二夹持件11朝向弹性件12的方向移动,记录单元13记录压缩量数据。数据处理模块14基于压缩量数据发送矫正指令给驱动模块5,驱动模块5基于矫正指令驱动第一夹持件10和第二夹持件11夹持晶圆4移动使得晶圆4圆心与第一吸附平台3中心重合。在实际生产中,晶圆4外边缘可设置多个测量点,记录多个测量点的压缩量数据,通过比对压缩量数据和初压缩量,从而判定晶圆的偏离部分。
在一个可选的实施方式中,第一夹持件10与第二夹持件11的前端均安装有两个圆柱形滚轮15。在使用两个夹持件对晶圆中心进行修正时,保证4个滚轮15与晶圆4的侧面的四点接触,并且在对晶圆4进行转动时,滚轮15也会随之转动,防止对晶圆4的边缘摩擦造成损伤。滚轮15优选采用不易变形且无金属等杂质的材料,例如陶瓷材料。另外,四点式接触的优点在于,即使出现晶圆4的缺口部分恰好与其中一个接触点接触的情况,两个夹持件也可利用剩余的3个接触点推动晶圆4对其中心位置进行修正,不存在必须使晶圆4转动一定角度从而避开缺口位置的情况。在一个可选的实施方式中,记录单元13为位移传感器,弹性件12为弹簧、橡胶等。第一夹持件10和第二夹持件11的中心与第一吸附平台3中心处于同一条水平线上。弹簧被压缩的距离可被位移传感器读取。
如图5所示,沿着晶圆4周向在晶圆4上均匀间隔设置四个测量点,即在0°、90°、180°、270°处各为一个测量点。晶圆4在0°位置时,位移传感器对应的读数为a。晶圆4先转动90°,该测量点的偏离部分推动第二夹持件11移动,记录位移传感器对应的读数为b,同样,晶圆4再继续分别转动180°、270°,180°、270°的测量点处位移传感器对应的读数分别为c、d,若晶圆4的圆心与第一吸附平台3的 中心重合,则a、b、c、d四个值应在误差允许范围内大致相等。若晶圆4处于偏离状态,第一夹持件10和第二夹持件11夹持晶圆4并移动以此调整晶圆4的位置使得a、b、c、d数值在误差允许范围内相等,实现晶圆4对中。晶圆4对中完成之后,将在工艺腔室内进行晶圆边缘刻蚀工艺。
在一个可选的实施方式中,在使用第一夹持件10和第二夹持件11对晶圆4中心位置进行修正时,设置多个测量点,记录多个测量点的压缩量数据。例如晶圆4可从初始位置0°开始缓速旋转一周,记录一圈360°的压缩量数据,得到如图5所示角度与位移传感器读数的周期性变化关系曲线,并可在图中得知最小值O1点与最大值O2点的数据。如图6-7,第一夹持件10和第二夹持件11中心的连线定义为X轴,垂直于X轴方向定义为Y轴,图中O点表示晶圆4实际的中心位置,O’点表示第一吸附平台3的中心位置,因此晶圆4以O’点为旋转中心转动,当晶圆中心在O1点时,位移传感器读数出现最小值Z1,而晶圆中心在O2点时,位移传感器读数出现最大值Z2,并且O’,O1,O2与两个夹持件的中心处于同一条水平线上,由此可得知OO’的距离,即晶圆4中心的第一偏移量为(Z2-Z1)/2。因此,在对晶圆4中心位置进行修正时,可先将其中心旋转一定角度至O1点或O2点所在位置,然后将第一夹持件10和第二夹持件11同时向右或向左移动(Z2-Z1)/2的距离。
实际工艺中,记录单元13的精准度不够造成记录的数据与实际存在偏差,因此需要借助晶圆洗边效果检测系统2进一步修正晶圆圆心的位置。在一个可选的实施方式中,晶圆洗边效果检测系统2包括第二吸附平台20、发光源21、相机22和计算模块。
将边缘刻蚀完成的晶圆4传送到第二吸附平台20上,同时发光源21发光,向晶圆4的表面提供光线。相机22获取刻蚀后的晶圆4的边缘图形,计算模块基于边缘图形计算边缘刻蚀宽度WE。
进一步地,晶圆洗边效果检测系统2包括判断模块。沿着晶圆4的周向均匀间隔设置四个测量点,即分别在0°、90°、180°、270°各设置一个测量点。在0°、90°、180°、270°测量点所对应的边缘刻蚀宽度WE分别为i、f、g、h。基于i、f、g、h数值,判断模块判定晶圆4相对第一吸附平台3的偏移情况并反馈至数据处理模块。若i、f、g、h四个值在误差允许范围内大致相等,则可认为晶圆4在边缘 刻蚀工艺时与第一吸附平台3的同心度较好。
在一个可选的实施方式中,晶圆洗边效果检测系统2测量刻蚀后的晶圆一整圈360°的边缘刻蚀宽度WE后,可得到如图8所示角度与刻蚀宽度的周期性变化关系曲线,并且可在图中得知最大值A点与最小值B点的数据。如图9中,定义的X轴、Y轴方向与图6-7相同,图中点划线表示刻蚀结束后形成的刻蚀边缘,实线表示晶圆4的实际位置,虚线表示晶圆与第一吸附平台完全同心时的理想位置W’。若刻蚀时晶圆4的中心O偏离第一吸附平台3中心O’,则A点与B点必定出现在两中心OO’的连线上,且OO’的距离就是晶圆4的中心的偏移量e。假设A点对应角度为β2,刻蚀宽度为Y2;而B点对应角度为β1,刻蚀宽度为Y1,则可得出如下关系式:
β2-β1=180°
Y2-Y1=2e
因此可求得偏移量e,即OO’=e=(Y2-Y1)/2。同时,根据A点对应的角度β2,可求得晶圆4中心在X轴方向的偏移量eX=esinβ2,在Y轴方向的偏移量eY=ecosβ2。因此可通过上述计算方法,可得到具体的第二偏移数据并反馈至所述晶圆对中系统1,从而对晶圆4中心进行进一步修正。
实施例二
参考图4,针对实施例一的晶圆对中调节装置,本实施例提供一种晶圆对中调节方法,包括如下步骤:
S11:第一吸附平台3吸附晶圆4;
S12:晶圆4刻蚀前,晶圆对中系统1测量晶圆4圆心偏离第一吸附平台3中心的第一偏移数据,并基于第一偏移数据与前一片晶圆刻蚀后获得的第二偏移数据修正晶圆4位置,使晶圆4圆心与第一吸附平台3中心重合;
S13:晶圆4刻蚀完成后传送至晶圆洗边效果检测系统2;
S14:晶圆洗边效果检测系统2测量刻蚀后的晶圆4的边缘刻蚀宽度,基于边缘刻蚀宽度WE获取晶圆4圆心偏离第一吸附平台3中心的第二偏移数据并反馈至晶圆对中系统1。
晶圆洗边效果检测系统2进一步检测晶圆对中系统1的调节精度,在下一片 晶圆刻蚀之前,基于该片晶圆的第一偏移数据以及前一片晶圆的第二偏移数据修正该片晶圆的位置,有效保证晶圆边缘刻蚀宽度的均一性。
上述调节方法中,进一步地,晶圆对中系统1包括夹持组件、测量模块、驱动模块5和数据处理模块14,晶圆4未偏离时,夹持组件与晶圆4的外边缘始终保持接触。
晶圆4在偏离状态下,晶圆4转动时晶圆4偏离部分推动夹持组件移动,测量模块测量移动数据并传输至数据处理模块14,数据处理模块14向驱动模块5发送矫正指令,驱动模块5基于矫正指令驱动夹持组件移动,夹持组件夹持晶圆4,调整晶圆4位置,使得晶圆4的圆心与第一吸附平台3的中心重合。
进一步地,测量模块包括弹性件12和位移传感器,夹持组件包括第一夹持件10和第二夹持件11,第一夹持件10和第二夹持件11以第一吸附平台3的中心为对称轴相对设置,第二夹持件11通过弹性件12与位移传感器连接。
沿着晶圆4的周向均匀间隔设置四个测量点,晶圆4顺时针转动0°、90°、180°、270°时位移传感器对应的读数分别为a、b、c、d;
若c<a,d<b,则表明晶圆4圆心相对于第一吸附平台3中心向第一象限偏离,修正时将晶圆4往第三象限推移一定距离;
同样,若a<c,d<b,则表明晶圆4圆心相对于第一吸附平台3中心向第二象限偏离;
若a<c,b<d,则表明晶圆4圆心相对于第一吸附平台3中心向第三象限偏离;
若c<a,b<d,则表明晶圆4圆心相对于第一吸附平台3中心向第四象限偏离。
进一步地,晶圆洗边效果检测系统2包括第二吸附平台20、发光源21、相机22、计算模块和判断模块。
第二吸附平台20吸附刻蚀后的晶圆4,发光源21向晶圆4的表面提供光线,相机22获取刻蚀后的晶圆4的边缘图形。
沿着晶圆4的周向均匀间隔设置四个测量点,在0°、90°、180°、270°测量点所对应的边缘刻蚀宽度WE分别为i、f、g、h;
若g<i,h<f,则表明晶圆4圆心相对于第一吸附平台3中心向第一象限偏离;
若i<g,h<f,则表明晶圆4圆心相对于第一吸附平台3中心向第二象限偏 离;
若i<g,f<h,则表明晶圆4圆心相对于第一吸附平台3中心向第三象限偏离;
若g<i,f<h,则表明晶圆4圆心相对于第一吸附平台3中心向第四象限偏离。
在一个可选的实施方式中,晶圆洗边效果检测系统2测量刻蚀后的晶圆一整圈360°的边缘刻蚀宽度WE。
若eX<0,eY>0,说明晶圆4中心相对于第一吸附平台3中心向第一象限偏离;
若eX>0,eY>0,说明晶圆4中心相对于第一吸附平台3中心向第二象限偏离;
若eX>0,eY<0,说明晶圆4中心相对于第一吸附平台3中心向第三象限偏离;
若eX<0,eY<0,说明晶圆4中心相对于第一吸附平台3中心向第四象限偏离。
计算模块依据边缘图形计算边缘刻蚀宽度WE并传输至判断模块,判断模块依据边缘刻蚀宽度WE形成第二偏移数据,反馈第二偏移数据至晶圆对中系统1。在下一片晶圆刻蚀前,晶圆对中系统1根据第二偏移数据修正晶圆4位置。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

  1. 一种晶圆对中调节装置,包括第一吸附平台(3),其特征在于,所述调节装置还包括晶圆对中系统(1)和晶圆洗边效果检测系统(2);
    所述晶圆对中系统(1),位于工艺腔室内,用于测量晶圆(4)圆心偏离所述第一吸附平台(3)中心时的第一偏移数据,并在晶圆(4)刻蚀前基于所述第一偏移数据和前一片晶圆刻蚀后获得的第二偏移数据修正所述晶圆(4)的位置,使所述晶圆(4)的圆心与所述第一吸附平台(3)的中心重合;
    所述晶圆洗边效果检测系统(2),位于工艺腔室外部,用于测量刻蚀后的所述晶圆(4)的边缘刻蚀宽度WE并基于所述边缘刻蚀宽度WE获取所述晶圆(4)圆心偏离所述第一吸附平台(3)中心的第二偏移数据并反馈至所述晶圆对中系统(1)。
  2. 根据权利要求1所述的晶圆对中调节装置,其特征在于,所述晶圆对中系统(1)包括夹持组件、测量模块、驱动模块(5)和数据处理模块(14);
    所述夹持组件与所述测量模块连接,所述夹持组件在所述晶圆(4)未偏离时与所述晶圆(4)的外边缘接触,所述驱动模块(5)与所述夹持组件连接;
    所述测量模块用于测量所述夹持组件在所述晶圆(4)转动时产生的移动数据并传输至所述数据处理模块(14),所述数据处理模块(14)用于在所述晶圆(4)的圆心偏离所述第一吸附平台(3)中心时向所述驱动模块(5)发送矫正指令,所述驱动模块(5)用于基于所述矫正指令驱动所述夹持组件移动,所述夹持组件用于修正所述晶圆(4)的位置。
  3. 根据权利要求2所述的晶圆对中调节装置,其特征在于,所述测量模块包括弹性件(12)和记录单元(13),所述夹持组件包括第一夹持件(10)和第二夹持件(11),所述第一夹持件(10)和所述第二夹持件(11)对称设置在所述第一吸附平台(3)的两侧,所述第二夹持件(11)通过所述弹性件(12)与所述记录单元(13)连接,所述记录单元(13)用于记录所述弹性件(12)的压缩量;
    所述晶圆(4)在未偏离状态下,所述记录单元(13)记录初压缩量;
    所述晶圆(4)在偏离状态下,所述晶圆(4)在转动的过程中所述晶圆(4) 偏离部分推动所述第二夹持件(11)朝向所述弹性件(12)的方向移动,所述记录单元(13)记录压缩量数据,所述数据处理模块(14)基于所述压缩量数据发送矫正指令给驱动模块(5),驱动模块(5)驱动所述第一夹持件(10)和所述第二夹持件(11)夹持所述晶圆(4)移动使得所述晶圆(4)圆心与所述第一吸附平台(3)中心重合。
  4. 根据权利要求3所述的晶圆对中调节装置,其特征在于,所述记录单元(13)为位移传感器,沿着所述晶圆(4)周向均匀间隔设置四个测量点,所述晶圆(4)在转动所述四个测量点位置时所述位移传感器对应的读数分别为a/b/c/d,所述第一夹持件(10)和所述第二夹持件(11)用于修正所述晶圆(4)圆心的位置使得a、b、c、d在误差允许范围内数值相等。
  5. 根据权利要求3所述的晶圆对中调节装置,其特征在于,所述夹持组件与所述晶圆(4)采用四点式接触,所述第一夹持件(10)与所述第二夹持件(11)与所述晶圆(4)的接触位置均安装有圆柱形滚轮(15)。
  6. 根据权利要求3所述的晶圆对中调节装置,其特征在于,所述记录单元(13)记录所述晶圆(4)旋转一周的压缩量数据,得到角度与位移传感器读数的周期性变化关系曲线,所述压缩量数据的最小值为Z1,最大值为Z2,则所述第一偏移数据为(Z2-Z1)/2。
  7. 根据权利要求1所述的晶圆对中调节装置,其特征在于,所述晶圆洗边效果检测系统(2)包括第二吸附平台(20)、相机(22)和计算模块;
    所述第二吸附平台(20)用于吸附刻蚀后的所述晶圆(4),所述相机(22)用于获取刻蚀后的所述晶圆(4)的边缘图形,所述计算模块用于依据所述边缘图形计算边缘刻蚀宽度WE。
  8. 根据权利要求7所述的晶圆对中调节装置,其特征在于,所述晶圆洗边效果检测系统(2)还包括判断模块;
    沿着所述晶圆(4)周向均匀间隔设置四个测量点,在所述四个测量点所对应的边缘刻蚀宽度WE分别为i/f/g/h,所述判断模块用于基于所述i/f/g/h数值判定所述晶圆(4)相对所述第一吸附平台(3)的偏移情况并反馈至所述晶圆对中系统(1)。
  9. 根据权利要求7所述的晶圆对中调节装置,其特征在于,所述晶圆洗边 效果检测系统(2)测量刻蚀后的所述晶圆(4)一整圈的边缘刻蚀宽度WE后,得到角度与刻蚀宽度的周期性变化关系曲线;
    最大值A点对应角度为β2,刻蚀宽度为Y2,最小值B点对应角度为β1,刻蚀宽度为Y1,所述晶圆(4)的中心的偏移量为e,则得出如下关系式:
    β2-β1=180°
    Y2-Y1=2e
    求得e=(Y2-Y1)/2,所述晶圆(4)中心在X轴方向的偏移量eX=esinβ2,在Y轴方向的偏移量eY=ecosβ2。
  10. 一种晶圆对中调节方法,其特征在于,包括如下步骤:
    第一吸附平台(3)吸附晶圆(4);
    所述晶圆(4)刻蚀前,晶圆对中系统(1)测量所述晶圆(4)圆心偏离所述第一吸附平台(3)中心的第一偏移数据,并基于所述第一偏移数据与前一片晶圆刻蚀后获得的第二偏移数据修正所述晶圆(4)位置,使得所述晶圆(4)圆心与所述第一吸附平台(3)中心重合;
    所述晶圆(4)刻蚀完成后传送至晶圆洗边效果检测系统(2);
    所述晶圆洗边效果检测系统(2)测量刻蚀后的所述晶圆(4)的边缘刻蚀宽度并基于所述边缘刻蚀宽度WE获取所述晶圆(4)圆心偏离所述第一吸附平台(3)中心的第二偏移数据并反馈至所述晶圆对中系统(1)。
  11. 根据权利要求10所述的晶圆对中调节方法,其特征在于,所述晶圆对中系统(1)包括夹持组件、测量模块、驱动模块(5)和数据处理模块(14),在所述晶圆(4)未偏离时,所述夹持组件与所述晶圆(4)的外边缘接触;
    所述晶圆(4)在偏离状态下,所述晶圆(4)转动时,所述晶圆(4)偏离部分推动所述夹持组件移动,所述测量模块测量移动数据并传输至所述数据处理模块(14),所述数据处理模块(14)向所述驱动模块(5)发送矫正指令,所述驱动模块(5)基于所述矫正指令驱动所述夹持组件移动,所述夹持组件夹持所述晶圆(4)使得所述晶圆(4)的圆心与所述第一吸附平台(3)的中心重合。
  12. 根据权利要求11所述的晶圆对中调节方法,其特征在于,所述测量模块包括弹性件(12)和位移传感器,所述夹持组件包括第一夹持件(10)和第 二夹持件(11),所述第一夹持件(10)和所述第二夹持件(11)对称设置在所述第一吸附平台(3)的两侧,所述第二夹持件(11)通过所述弹性件(12)与所述位移传感器连接;
    所述晶圆(4)在转动的过程中,所述晶圆(4)偏离部分推动所述第二夹持件(11)朝向所述弹性件(12)的方向移动,所述位移传感器记录压缩量数据,基于所述压缩量数据,驱动模块(5)驱动所述第一夹持件(10)和所述第二夹持件(11)夹持所述晶圆(4)移动使得所述晶圆(4)圆心与所述第一吸附平台(3)中心重合。
  13. 根据权利要求12所述的晶圆对中调节方法,其特征在于,沿着所述晶圆(4)周向均匀间隔设置四个测量点,所述晶圆(4)转动到所述四个测量点位置时所述位移传感器对应的读数分别为a/b/c/d;
    若c<a,d<b,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第一象限偏离;
    若a<c,d<b,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第二象限偏离;
    若a<c,b<d,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第三象限偏离;
    若c<a,b<d,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第四象限偏离。
  14. 根据权利要求12所述的晶圆对中调节方法,其特征在于,所述位移传感器记录所述晶圆(4)旋转一周的压缩量数据,得到角度与位移传感器读数的周期性变化关系曲线,所述压缩量数据的最小值为Z1,最大值为Z2,则所述第一偏移数据为(Z2-Z1)/2。
  15. 根据权利要求10所述的晶圆对中调节方法,其特征在于,所述晶圆洗边效果检测系统(2)包括第二吸附平台(20)、相机(22)、计算模块和判断模块;
    所述第二吸附平台(20)吸附刻蚀后的所述晶圆(4),所述相机(22)获取刻蚀后的所述晶圆(4)的边缘图形,所述计算模块依据边缘图形计算边缘刻蚀宽度WE并传输至所述判断模块,所述判断模块依据所述边缘刻蚀宽度WE 形成第二偏移数据并反馈至所述晶圆对中系统(1)。
  16. 根据权利要求15所述的晶圆对中调节方法,其特征在于,沿着所述晶圆(4)周向均匀间隔设置四个测量点,在所述四个测量点所对应的边缘刻蚀宽度WE分别为i/f/g/h;
    若g<i,h<f,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第一象限偏离;
    若i<g,h<f,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第二象限偏离;
    若i<g,f<h,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第三象限偏离;
    若g<i,f<h,则表明所述晶圆(4)圆心相对于所述第一吸附平台(3)中心向第四象限偏离。
  17. 根据权利要求15所述的晶圆对中调节方法,其特征在于,所述晶圆洗边效果检测系统(2)测量刻蚀后的所述晶圆(4)一整圈的边缘刻蚀宽度WE后,得到角度与刻蚀宽度的周期性变化关系曲线;
    最大值A点对应角度为β2,刻蚀宽度为Y2,最小值B点对应角度为β1,刻蚀宽度为Y1,所述晶圆(4)的中心的偏移量为e,则得出如下关系式:
    β2-β1=180°
    Y2-Y1=2e
    求得e=(Y2-Y1)/2,所述晶圆(4)中心在X轴方向的偏移量eX=esinβ2,在Y轴方向的偏移量eY=ecosβ2;
    若eX<0,eY>0,说明所述晶圆(4)中心相对于所述第一吸附平台(3)中心向第一象限偏离;
    若eX>0,eY>0,说明所述晶圆(4)中心相对于所述第一吸附平台(3)中心向第二象限偏离;
    若eX>0,eY<0,说明所述晶圆(4)中心相对于所述第一吸附平台(3)中心向第三象限偏离;
    若eX<0,eY<0,说明所述晶圆(4)中心相对于所述第一吸附平台(3)中心向第四象限偏离。
PCT/CN2023/109214 2022-09-14 2023-07-26 一种晶圆对中调节装置及调节方法 WO2024055756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117036.9 2022-09-14
CN202211117036.9A CN117747518A (zh) 2022-09-14 2022-09-14 一种晶圆对中调节装置及调节方法

Publications (1)

Publication Number Publication Date
WO2024055756A1 true WO2024055756A1 (zh) 2024-03-21

Family

ID=90274180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109214 WO2024055756A1 (zh) 2022-09-14 2023-07-26 一种晶圆对中调节装置及调节方法

Country Status (2)

Country Link
CN (1) CN117747518A (zh)
WO (1) WO2024055756A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343501A (ja) * 1992-06-10 1993-12-24 Daihen Corp 半導体ウエハのセンタ合せ装置
JPH0685038A (ja) * 1992-09-03 1994-03-25 Tokyo Electron Yamanashi Kk ウエハの位置合わせ方法及びその装置並びに透明ウエハの位置合わせ装置
CN101807537A (zh) * 2009-02-12 2010-08-18 株式会社迪思科 位置对准机构、加工装置以及位置对准方法
CN104979258A (zh) * 2014-04-14 2015-10-14 睿励科学仪器(上海)有限公司 一种晶圆对准系统和晶圆对准方法
CN112951733A (zh) * 2019-12-11 2021-06-11 长鑫存储技术有限公司 晶边检测系统及检测方法
CN114975154A (zh) * 2022-05-31 2022-08-30 北京北方华创微电子装备有限公司 一种晶圆偏心的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343501A (ja) * 1992-06-10 1993-12-24 Daihen Corp 半導体ウエハのセンタ合せ装置
JPH0685038A (ja) * 1992-09-03 1994-03-25 Tokyo Electron Yamanashi Kk ウエハの位置合わせ方法及びその装置並びに透明ウエハの位置合わせ装置
CN101807537A (zh) * 2009-02-12 2010-08-18 株式会社迪思科 位置对准机构、加工装置以及位置对准方法
CN104979258A (zh) * 2014-04-14 2015-10-14 睿励科学仪器(上海)有限公司 一种晶圆对准系统和晶圆对准方法
CN112951733A (zh) * 2019-12-11 2021-06-11 长鑫存储技术有限公司 晶边检测系统及检测方法
CN114975154A (zh) * 2022-05-31 2022-08-30 北京北方华创微电子装备有限公司 一种晶圆偏心的检测方法

Also Published As

Publication number Publication date
CN117747518A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP4402811B2 (ja) 被処理体の搬送システムおよび被処理体の位置ずれ量の検出方法
US10468284B2 (en) Substrate processing apparatus and substrate processing method
KR101817209B1 (ko) 기판 처리 장치 및 방법
US7406360B2 (en) Method for detecting transfer shift of transfer mechanism and semiconductor processing equipment
TWI375293B (en) Method to position a wafer
JP2008173744A (ja) 搬送システムの搬送位置合わせ方法
WO2015010396A1 (zh) 对位系统
US7918640B2 (en) Position correcting apparatus, vacuum processing equipment and position correcting method
JP2008004358A (ja) アライメント方法及びアライメント装置並びに有機el素子形成装置
WO2024055756A1 (zh) 一种晶圆对中调节装置及调节方法
JP4289961B2 (ja) 位置決め装置
JPS5864043A (ja) 円板形状体の位置決め装置
TW202412163A (zh) 一種晶圓對中調節裝置及調節方法
KR20200131764A (ko) 기판 처리 장치 및 기판 처리 방법
US20170016112A1 (en) Apparatus for processing substrate and method of manufacturing article
JP2016152284A (ja) 位置決め装置、リソグラフィー装置、および基板位置決め方法
JP4026904B2 (ja) 基板搬送装置および露光装置
JP5687165B2 (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
KR102307183B1 (ko) 기판 처리 시스템
JP4312145B2 (ja) 基板位置補正装置および基板位置補正方法
TWM585428U (zh) 基板傳送設備及半導體製程機台
KR102175088B1 (ko) 기재 위치 보정 방법
JPH01209740A (ja) 半導体基板の位置決め方法
JP2007324199A (ja) 露光システムおよび露光方法
WO2024106266A1 (ja) 基板処理方法及び基板処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864490

Country of ref document: EP

Kind code of ref document: A1