WO2024055702A1 - 信道测量方法及相关装置 - Google Patents

信道测量方法及相关装置 Download PDF

Info

Publication number
WO2024055702A1
WO2024055702A1 PCT/CN2023/104252 CN2023104252W WO2024055702A1 WO 2024055702 A1 WO2024055702 A1 WO 2024055702A1 CN 2023104252 W CN2023104252 W CN 2023104252W WO 2024055702 A1 WO2024055702 A1 WO 2024055702A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
sensing
distances
weight vector
measurement
Prior art date
Application number
PCT/CN2023/104252
Other languages
English (en)
French (fr)
Inventor
杜瑞
史书瑜
王炜
娜仁格日勒
狐梦实
韩霄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055702A1 publication Critical patent/WO2024055702A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a channel measurement method and related devices.
  • wireless communication devices With the development of wireless communication technology, various types of wireless communication devices have been deployed in large numbers in people's daily lives and work. For example, these wireless communication devices can include mobile phones, computers, wireless routers, smart home devices, and wireless sensors. In a common home environment, there are often more than ten or even hundreds of wireless communication devices. During the process of wireless communication, these wireless communication devices can sense the interference of radio waves by moving objects or human bodies. Wireless sensing technology can measure such interference to sense the surrounding environment.
  • the wireless signal received by the signal receiving end from the signal transmitting end may include direct signals and reflected signals reflected by detected targets in the surrounding environment. In this way, the signal receiving end will detect that the channel of the wireless link has occurred. Changes. In communication protocols, channels are quantified into channel state information (CSI). Correspondingly, changes in the channel can be expressed as changes in the amplitude and phase of CSI. If the perception is processed at the signal transmitter, the signal The receiving end needs to send the CSI to the signal transmitting end, and the signal transmitting end processes the CSI to obtain the sensing information, or the signal receiving end can process the CSI itself to obtain the sensing information.
  • CSI channel state information
  • This application provides a channel measurement method and related devices, which can improve the sensing performance of sensing.
  • this application provides a channel measurement method, which can be applied to a first device.
  • the first device may be an access point or station in a wireless local area network (WLAN), or it may be a cellular device.
  • the network equipment or terminal equipment in the network may also be a chip in the writing device, etc., which is not limited in this application.
  • the method is described by taking the first device as the signal receiving end as an example.
  • the method includes: the first device obtains a weight vector W, and sends channel state information processed based on the weight vector W; wherein the signal-to-noise ratio or energy of the processed channel state information at P first distances is enhanced, and/or, the signal-to-noise ratio or energy at Q second distances is suppressed, P, Q being positive integers.
  • the channel state information processed based on the weight vector W takes into account the need for enhancement and/or suppression distance, thereby using the processed channel state information to implement sensing-related applications. Compared with the channel state information obtained directly using channel estimation, it can be more effective. Improves perceived perceptual performance. In addition, the signal-to-noise ratio or energy of the processed channel state information at P first distances is enhanced and/or the signal-to-noise ratio or energy at Q second distances is suppressed, which is obtained directly from the channel estimate. Compared with the case of channel state information, it can also greatly reduce the amount of channel measurement data, thereby reducing the bandwidth required for transmitting channel measurement results and reducing the processing power required for processing channel measurement results.
  • the first device before the first device acquires the weight vector W, it may receive a request frame for requesting to establish a channel measurement session based on the weight vector W, and send a response frame for responding to the request frame.
  • the request frame may include a measurement type field, which is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the response frame may also include the measurement type field, so that both parties agree to establish a channel measurement session based on the weight vector W.
  • the request frame may be a sensing session establishment request frame in the sensing session establishment phase
  • the response frame may be a sensing session establishment response frame
  • the first device obtains the weight vector W, including: the first device receives a first frame, the first frame includes a first field; the first field is used to indicate the weight vector W; or, using P first distances indicating that the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances at which the signal-to-noise ratio or energy needs to be suppressed.
  • the method further includes: the first device determines the P first distances and/or the Q second distances. , determine the weight vector W. It can be seen that in this implementation, the first device can obtain the weight vector W through the first frame.
  • the first device may also obtain the weight vector locally, such as from a predefined weight vector set.
  • the first frame received by the first device may also include a second field; if the second field is the first value, then The first field is used to indicate the weight vector W, if the first field includes the weight vector W or the index of the weight vector W; if the second field is a second value, the first field is used to indicate the signal-to-noise ratio or P first distances where the energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed, for example, the first field includes the P first distances and/or Q second distances information.
  • the first frame is a sensing session setup request frame in the sensing session setup phase, which is used to request the establishment of a sensing session based on the weight vector W; accordingly, After receiving the sensing session setup request frame, the first device may also send a sensing session setup response (sensing session setup response) frame to respond to the sensing session setup request frame.
  • the sensing session setup request frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the sensing session setup response frame may include a third field to indicate agreement to open a sensing session based on the weight vector W.
  • the sensing session establishment response frame may include a first field to match the first device to establish a sensing session based on the weight vector.
  • the first frame is a sensing measurement setup request frame in the sensing measurement setup stage, used to request to start sensing measurement based on the weight vector W; accordingly After receiving the sensing measurement setup request frame, the first device may also send a sensing measurement setup response (sensing measurement setup response) frame to respond to the sensing measurement setup request frame.
  • the sensing measurement setup request frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the sensing measurement setup response frame may include a third field to indicate agreement to enable sensing measurement based on the weight vector W.
  • the perception measurement establishment response frame may include a first field to match the weight vector or distance information with the first device.
  • the first frame may be a sensing polling trigger (sensing polling trigger) frame in the sensing measurement instance (sensing measurement instance) stage.
  • a polling frame used to ask whether to participate in the perceptual measurement based on the weight vector W.
  • the sensing polling trigger frame may include the above-mentioned first field, or the above-mentioned first field and second field.
  • the first device may also send a self-transmission confirmation (CTS-to-Self) frame to confirm participation in the sensing measurement based on the weight vector W.
  • CTS-to-Self self-transmission confirmation
  • the user information field in the sensing polling trigger frame or polling frame can indicate the signal receiving end to be queried.
  • the first frame may be an empty data packet statement.
  • NDPA non-trigger-based
  • the NDPA frame is used to inform the first device that the next frame of the NDPA frame is a perception measurement frame, and related parameters of the subsequently sent NDP frame.
  • the NDPA frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the first frame may be a perception measurement frame or a perception detection frame, such as a sounding frame or a null data packet (NDP) frame.
  • the perceptual measurement frame or the perceptual detection frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the first device sends channel state information processed based on weight vector W, including: the first device sends a feedback frame, the feedback frame includes channel state information processed based on weight vector W, and in the feedback frame The value of the feedback type field is used to indicate that the feedback frame includes channel state information processed based on the weight vector W.
  • the first device before sending the feedback frame, may also receive a trigger frame, and the value of the feedback type field in the trigger frame is used to trigger the first device to send channel state information processed based on the weight vector W. It can be seen that in this embodiment, the first device can select to feedback the corresponding type of channel state information according to the value of the feedback type field in the trigger frame.
  • the first device may not receive the trigger frame before sending the feedback frame, and inform the receiving end of the type of channel state information fed back through the value of the feedback type field in the feedback frame.
  • the first device determines the weight vector W based on P first distances and/or Q second distances, which may include: the first device determines the weight vector W based on P first distances and/or Q second distances. Second distance, select the corresponding weight vector W from the predefined weight vector set.
  • the first device determines the weight vector W based on P first distances and/or Q second distances, including: based on P first distances and/or Q second distances, Determine the steering matrix V.
  • the steering matrix V is composed of the steering row vector corresponding to each of the L distances.
  • the steering row vector corresponding to each distance is obtained based on the propagation delay corresponding to the distance.
  • the L distances are It is composed of P first distances and/or Q second distances; according to the steering matrix V, the weight vector W is determined.
  • S represents the noise on the path where L distances are located, and is a row vector with a column number of L;
  • U is a row vector composed of L elements corresponding to L distances, and the elements corresponding to the first distance are all 1.
  • the elements corresponding to the second distance are all 0.
  • the present application provides a channel measurement method, which can be applied to a second device, and the second device can be an access point or station in a wireless local area network (WLAN), or a network device or terminal device in a cellular network, etc., which is not limited in the present application.
  • the method is described by taking the second device as a signal transmitter as an example.
  • the method includes: the second device receives channel state information processed based on a weight vector W, and the channel state information processed based on the weight vector W has an enhanced signal-to-noise ratio or energy at P first distances, and/or, the signal-to-noise ratio or energy at Q second distances is suppressed, and P and Q are positive integers.
  • the channel measurement information obtained by this channel measurement method takes into account the need for distance enhancement and/or suppression, thereby using the channel measurement information to implement perception-related applications. Compared with the channel state information obtained directly by channel estimation, it can effectively improve perception. perceived performance. In addition, the signal-to-noise ratio or energy of the channel measurement information obtained by the channel measurement method is enhanced at P first distances and/or the signal-to-noise ratio or energy at Q second distances is suppressed, which is directly obtained from the channel estimation. Compared with the situation of channel state information, it can also greatly reduce the amount of channel measurement data, thereby reducing the bandwidth required for channel measurement information transmission and reducing the processing power required for channel measurement information processing.
  • the second device before receiving the channel state information, the second device also sends a request frame.
  • the request frame is used to request the establishment of a channel measurement session based on the weight vector W; accordingly, a response frame can be received.
  • frame is used to respond to the request frame.
  • the request frame may be a sensing session establishment request frame in the sensing session establishment phase, and correspondingly, the response frame may be a sensing session establishment response frame.
  • the request frame may include a measurement type field, which is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the response frame may also include the measurement type field, so that both parties agree to establish a channel measurement session based on the weight vector W.
  • the second device may also send a first frame, where the first frame includes a first field; the first field is used to indicate the weight vector W; or the first field is used to indicate the signal-to-noise value.
  • the first frame also includes a second field; if the second field is the first value, the first field is used to indicate the weight vector W, for example, the first field includes the weight vector W or the index of the weight vector W; if the second field is the second value, the first field is used to indicate the P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or, where the signal-to-noise ratio or energy needs to be suppressed Q second distances, for example, the first field includes distance information of the P first distances and/or Q second distances.
  • the first frame is a sensing measurement setup request frame in the sensing measurement setup stage, used to request to start sensing measurement based on the weight vector W; accordingly, the second device sends the sensing measurement setup request frame Afterwards, the sensing measurement setup response frame can also be received to respond to the sensing measurement setup request frame.
  • the sensing measurement setup request frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the sensing measurement setup response frame may include a third field to indicate agreement to enable sensing measurement based on the weight vector W.
  • the sensing measurement setup response frame may include a first field to match the weight vector or distance information with the first device.
  • the first frame may be the sensing polling trigger frame in the sensing measurement instance stage, used to inquire whether to participate in sensing measurement based on the weight vector W.
  • the sensing polling trigger frame may include the above-mentioned first field, or include the above-mentioned first field and second field.
  • the second device can also receive a CTS-to-Self frame to confirm participation in the sensing measurement based on the weight vector W.
  • the user information field in the sensing polling trigger frame can indicate the signal receiving end to be queried.
  • the first frame in the perceptual measurement process for TB or Non TB, may be an NDPA frame, and the NDPA frame is used to inform the first device that the next frame of the NDPA frame is a perceptual measurement frame and This perceptron measures the relevant parameters of the frame.
  • the NDPA frame may include the above-mentioned first field, or may include the above-mentioned first field and the second field.
  • the first frame may be a perceptual measurement frame, such as a sounding frame or an NDP frame.
  • the perceptual measurement frame may include the above-mentioned first field, or may include the above-mentioned first field and second field.
  • the second device receives channel state information, including: receiving a feedback frame, the feedback frame includes channel state information processed based on weight vector W, and the value of the feedback type field in the feedback frame is used to indicate feedback.
  • the frame includes channel state information processed based on the weight vector W.
  • the method before the second device receives the channel state information, the method further includes: the second device sends a trigger frame, and the value of the feedback type field in the trigger frame is used to trigger the sending of the feedback type processed based on the weight vector W. Channel status information. It can be seen that in this embodiment, the second device can notify the first device to feedback the corresponding type of channel state information by triggering the value of the feedback type field in the frame.
  • the second device may not send a trigger frame before receiving the feedback frame, and learn the type of channel state information fed back by the first device through the value of the feedback type field in the feedback frame.
  • the P first distances and/or the Q second distances are used to determine the weight vector W, specifically: weight The vector W is selected from a predefined set of weight vectors based on P first distances and/or Q second distances.
  • the P first distances and/or the Q second distances are used to determine the weight vector W, specifically: the weight vector W is determined using the steering matrix V, and the steering matrix V is Determined using P first distances and/or Q second distances, the steering matrix V is composed of the steering row vector corresponding to each of the L distances, and the steering row vector corresponding to each distance is based on the distance corresponding Obtained from the propagation delay, L distances are composed of P first distances and/or Q second distances.
  • S represents the noise on the path where L distances are located, and is a row vector with a column number of L;
  • U is a row vector composed of L elements corresponding to L distances, and the elements corresponding to the first distance are all 1.
  • the elements corresponding to the second distance are all 0.
  • the present application provides a communication device that can perform the channel measurement method described in the first aspect.
  • the communication device may include: a processing unit configured to obtain the weight vector W; and a communication unit configured to send a signal based on Channel state information processed by weight vector W; signal-to-noise ratio or energy at P first distances based on channel state information processed by weight vector W is enhanced, and/or, signal-to-noise ratio or energy at Q second distances is suppressed, and the P and Q are positive integers.
  • the communication unit before the processing unit obtains the weight vector W, the communication unit is also configured to receive a request frame, which is used to request the establishment of a channel measurement session based on the weight vector W; the communication unit is also configured to send a response frame. , this response frame is used to respond to the request frame.
  • the request frame includes a measurement type field; the measurement type field is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the communication unit is further configured to receive a first frame, where the first frame includes a first field; the first field is used to indicate the weight vector W; or, is used to indicate the signal-to-noise ratio or energy requirement. P first distances for enhancement, and/or Q second distances for which the signal-to-noise ratio or energy needs to be suppressed. If the first field is used to indicate the P first distances and/or the Q second distances, the processing unit is further configured to determine a weight vector according to the P first distances and/or the Q second distances. W; if the first field is used to indicate the weight vector W, the processing unit is specifically configured to obtain the weight vector W from the first field.
  • the first frame further includes a second field; if the second field is a first value, the first field is used to indicate the weight vector W; if the second field is The second value, the first field is used to indicate P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed.
  • the first frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame, Empty Packet Frame, or Probe Frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame Empty Packet Frame, or Probe Frame.
  • the communication unit is configured to send channel state information processed based on the weight vector W, specifically: sending a feedback frame, where the feedback frame includes the channel state information processed based on the weight vector W, And the value of the feedback type field in the feedback frame is used to indicate that the feedback frame includes channel state information processed based on the weight vector W.
  • the communication unit is further configured to receive a trigger frame before sending the channel state information processed based on the weight vector W.
  • the value of the feedback type field in the trigger frame is used to trigger sending the channel state information based on the weight vector W.
  • the weight vector W handles the channel state information.
  • the processing unit determines the weight vector W based on the P first distances and/or the Q second distances, specifically: based on the P first distances and/or the Q second distances.
  • the Q second distances determine the steering matrix V.
  • the steering matrix V is composed of the steering row vector corresponding to each distance in the L distances.
  • the steering row vector corresponding to each distance is based on the distance.
  • the propagation time delay is obtained, and the L distances are composed of the P first distances and/or the Q second distances; according to the steering matrix V, the weight vector W is determined.
  • the S represents the noise on the path where the L distances are located, and is a row vector with the number of columns being the L;
  • the U is a row vector composed of L elements corresponding to the L distances, and The elements corresponding to the first distance are all 1, and the elements corresponding to the second distance are all 0.
  • the present application provides another communication device that can perform the related operations of the second device in the above second aspect.
  • the communication device includes: a communication unit configured to receive channel state information processed based on the weight vector W; the signal-to-noise ratio or energy at P first distances of the channel state information processed based on the weight vector W is enhanced, and/or, The signal-to-noise ratio or energy is suppressed at Q second distances, where P and Q are positive integers.
  • the communication unit is also configured to send a request frame, the request frame is used to request the establishment of a channel measurement session based on the weight vector W; the communication unit is also configured to receive a response frame, the response frame Used to respond to the request frame.
  • the request frame includes a measurement type field; the measurement type field is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the communication unit is also configured to send a first frame, where the first frame includes a first field; the first field is used to indicate the weight vector W; or, the first field is P first distances indicating that the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances at which the signal-to-noise ratio or energy needs to be suppressed; the P first distances and/or the Q second distances used to determine the weight vector W.
  • the first frame further includes a second field; if the second field is a first value, the first field is used to indicate the weight vector W; if the second field is The second value, the first field is used to indicate P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed.
  • the first frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame, Empty Packet Frame, or Probe Frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame Empty Packet Frame, or Probe Frame.
  • the communication unit receives channel state information, specifically: receiving a feedback frame, the feedback frame includes channel state information processed based on the weight vector W, and the value of the feedback type field in the feedback frame is The indication feedback frame includes channel state information processed based on the weight vector W.
  • the communication unit before receiving the channel state information, is also used to send a trigger frame, and the value of the feedback type field in the trigger frame is used to trigger the sending of the channel state information processed based on the weight vector W.
  • the P first distances and/or the Q second distances are used to determine the weight vector W, specifically: the weight vector W is determined using the steering matrix V, and the steering The matrix V is determined using the P first distances and/or the Q second distances.
  • the steering matrix V is composed of the steering row vector corresponding to each of the L distances.
  • Each of the The steering row vector corresponding to the distance is obtained based on the propagation delay corresponding to the distance, and the L distances are composed of the P first distances and/or the Q second distances.
  • the S represents the noise on the path where the L distances are located, and is a row vector with the number of columns being the L;
  • the U is a row vector composed of L elements corresponding to the L distances, and The elements corresponding to the first distance are all 1, and the elements corresponding to the second distance are all 0.
  • this application provides a communication device, including a processor and an interface circuit.
  • the processor is used to obtain the weight vector W; the interface circuit is used to send channel state information processed based on the weight vector W; the processed channel state information is The signal-to-noise ratio or energy at P first distances is enhanced, and/or the signal-to-noise ratio or energy at Q second distances is suppressed, and the P and Q are positive integers.
  • the interface circuit is also used to receive a request frame or send a response frame, or to receive the first frame and other related steps described in the first aspect, which will not be described in detail here.
  • the processor is also configured to determine the weight vector W according to the first field in the first frame and other related steps described in the first aspect, which will not be described in detail here.
  • the communication device may also include a memory, which is coupled to the processor and stores necessary program instructions and data for the communication device.
  • the present application provides a communication device, including an interface circuit for receiving channel state information processed based on the weight vector W; the signal-to-noise ratio or energy of the processed channel state information at P first distances is The signal-to-noise ratio or energy at Q second distances is enhanced, and/or suppressed, where P and Q are positive integers.
  • the interface circuit is also used to send a request frame or receive a response frame, or is also used to send a first frame and other optional implementations described in the second aspect, which will not be described in detail here.
  • the communication device may further include a processor, which is configured to process the received channel state information processed based on the weight vector W to obtain a sensing result.
  • the communication device may also include a memory, which is coupled to the processor and stores necessary program instructions and data for the communication device.
  • the present application provides a computer-readable storage medium that stores instructions that can be executed by one or more processors on a processing circuit. When it is run on the computer, the computer is caused to execute the above first aspect or the second aspect The channel measurement method described above.
  • the computer-readable storage medium may be a non-volatile readable storage medium.
  • the present application provides a computer program product containing instructions that, when run on a computer, cause the computer to perform the channel measurement method described in the first or second aspect.
  • the present application provides a chip or chip system, including a processing circuit.
  • the processing circuit may be used to perform the following related operations in the above-mentioned first aspect or second aspect.
  • the chip or chip system may also include an input and output interface.
  • the input and output interface can be used to output one or more of the following information: channel state information processed based on the weight vector W, request frame, response frame, first frame, etc.
  • Figure 1 is a schematic structural diagram of a wireless sensing system
  • Figure 2 is a schematic structural diagram of another wireless sensing system
  • Figure 3 is a schematic diagram of an application scenario where the wireless sensing system shown in Figure 2 is applied to a home environment;
  • Figure 4 is a schematic diagram of a perceptual measurement process for TB
  • Figure 5 is a schematic diagram of another perceptual measurement process for TB
  • Figure 6 is a schematic diagram of the perceptual measurement process for Non TB
  • Figure 7 is a schematic flow chart of a channel measurement method provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of another channel measurement method provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of each stage in a sensing method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a sensing measurement setup request frame
  • Figure 11 is a schematic structural diagram of a Sensing Measurement Parameters Element
  • Figure 12 is a schematic structural diagram of the Sensing Measurement Parameters field
  • Figure 13 is a schematic flow chart of a perceptual measurement method provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of another perceptual measurement method provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • This application provides a channel measurement method.
  • the channel measurement information obtained by the channel measurement method is based on the channel state information processed by the weight vector W.
  • the channel measurement information takes into account the requirements for enhancement and/or suppression distance, thereby utilizing the channel measurement information. Implementing perception-related applications can effectively improve perception performance.
  • This application can be applied to a wireless communication system, which can be a wireless local area network or a cellular network.
  • this application can be applied to support IEEE 802.11ax next-generation Wi-Fi protocols, such as 802.11be, Wi-Fi7 or Extremely High Throughput (EHT), and 802.11be next-generation, such as supporting Wi-Fi Fi8, ultra-high reliability (UultraHhighRreliability, UHR), ultra-high reliability and throughput (UultraHhighRreliability and Tthroughput, UHRT) systems and other 802.11 series protocol wireless LAN systems can also be applied to wireless personal area network systems based on ultra-bandwidth UWB .
  • IEEE 802.11ax next-generation Wi-Fi protocols such as 802.11be, Wi-Fi7 or Extremely High Throughput (EHT)
  • 802.11be next-generation such as supporting Wi-Fi Fi8, ultra-high reliability (UultraHhighRreliability, UHR), ultra-high reliability and throughput (UultraHhighRreliability
  • the method may be implemented by a communication device in a wireless communication system or a chip or a processor in the communication device.
  • the communication device may be an access point (AP) or a station (STA).
  • AP access point
  • STA station
  • the AP and STA can be either single-link devices or multi-link devices.
  • AP is a device with wireless communication functions that supports communication using WLAN protocols and has the function of communicating with other devices in the WLAN network (such as STA or other APs). Of course, it can also have the function of communicating with other devices.
  • an AP can be called an AP device or AP station (AP STA).
  • the device with wireless communication function can be a complete device, or it can be a chip or processing system installed in the complete device. The devices equipped with these chips or processing systems can be controlled by the chip or processing system.
  • the AP is a device that provides services for STA and can support the 802.11 series protocols.
  • AP can be communication entities such as communication servers, routers, switches, and bridges; AP can include various forms of macro base stations, micro base stations, relay stations, etc. Of course, AP can also be chips and processing in these various forms of equipment. system, thereby realizing the methods and functions of the embodiments of this application.
  • STA is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or APs in the WLAN network.
  • a station may be called a non-access point station (non-AP STA).
  • STA is any user communication device that allows users to communicate with APs and then with WLAN.
  • the device can be a complete device, or it can be a chip or processing system installed in the complete device. These chips or processing systems are installed on the STA.
  • the equipment of the system can implement the methods and functions of the embodiments of the present application under the control of the chip or processing system.
  • STA can be a tablet computer, desktop, laptop, notebook computer, ultra-mobile personal computer (UMPC), handheld computer, netbook, personal computer, etc.
  • UMPC ultra-mobile personal computer
  • PDA Personal Digital Assistant
  • IoT nodes in the Internet of Things
  • vehicle-mounted communication devices in the Internet of Vehicles
  • entertainment equipment game equipment or systems
  • STA can also be the chip or processing system in the above-mentioned terminals.
  • the wireless sensing system may include a signal transmitting end 101 and a signal receiving end 102.
  • the signal transmitting end 101 may be an AP or an STA
  • the signal receiving end 102 may be an STA or an AP.
  • the signal transmitting end and the signal receiving end can be arranged in the same physical device or different physical devices, which is not limited in the embodiment of this application.
  • the wireless sensing system shown in FIG. 1 is explained by taking humans as the detection target 103 of the sensing measurement as an example.
  • the wireless signal received by the signal receiving end 102 includes a direct signal and The reflected signal reflected back from the detected target 103.
  • the reflected signal will change, so that the superimposed wireless signal received by the signal receiving end 102 will also change accordingly.
  • the signal receiving end 102 will detect that the channel of the wireless link has changed.
  • the channel of the wireless link is quantified and expressed as channel state information (CSI) in the communication protocol.
  • CSI channel state information
  • Wireless sensing technology can be used in applications such as intrusion detection, elderly care, gesture recognition, breathing and sleep monitoring, and indoor people counting.
  • the use of radio waves for human body motion sensing has the following advantages over traditional camera-based or wearable device-based sensing such as bracelets:
  • the channel is subject to interference;
  • users do not need to wear any equipment, which causes little interference to users. It can be convenient for monitoring the elderly and children, and can also detect non-cooperating targets, such as intrusion by thieves;
  • Wireless sensing technology has little impact on user privacy and can be deployed in more sensitive areas such as bedrooms and bathrooms.
  • wireless sensing technology can still effectively perform sensing under poor lighting conditions and obstructions such as curtains and wooden furniture. Multi-room sensing can also be performed across walls; finally, wireless sensing has very high sensing accuracy and can sense tiny movements as weak as centimeters such as breathing.
  • the wireless sensing system may include an initiating node and a responding node.
  • the initiating node is mainly used to initiate the sensing measurement process (also called initiating sensing measurement instance).
  • the response node is mainly used to participate in the sensing measurement process and respond to the sensing measurement process initiated by the initiating node.
  • the same communication device can play different roles at different times.
  • the initiating node can be called initiator or sensing initiator, and the responding node can be called responder or sensing. Sensing responder.
  • the communication device serves as the initiator of the perception measurement process and performs related operations of the initiator; at time T2, the communication device can serve as the responder of the perception measurement process and participates in the perception measurement process initiated by other communication devices.
  • the same communication device can serve as both the initiator and the responder of the perception measurement process at the same time.
  • the wireless sensing system shown in Figure 2 is described by taking an initiating node, such as the initiating node 201, and three response nodes participating in the sensing measurement process, such as the response node 202, the response node 203, and the response node 204 as an example.
  • the initiating node can serve as a signal transmitter and send a sensing measurement frame, and the responding node feeds back the measured CSI to the initiating node, and then the initiating node processes the CSI to obtain the sensing information.
  • the initiating node serves as the signal receiving end. After the response node sends the perception measurement frame, the initiating node measures and obtains the CSI to process the CSI and obtain the perception information.
  • the wireless sensing system shown in Figure 2 can be deployed in indoor scenes, such as home environment, office environment, etc., to obtain sensing information of indoor scenes.
  • the initiating node 201 can be a wireless router in the home environment, and the wireless devices in the home environment can serve as response nodes, as shown in Figure In the home environment shown in Figure 3, the wireless device in the bathroom can serve as the response node 202, the wireless device in the kitchen can serve as the response node 203, and the wireless device in the bedroom can serve as the response node 204.
  • the initiating node can interact with multiple responding nodes in the sensing measurement process respectively in Figure 3.
  • the sensing information can be obtained to monitor the entire home environment.
  • the link between the initiating node 201 and the response node 202 can be used to sense and measure the movement of the bathroom. If a slip is detected, the initiating node 201 can issue a warning in time and notify medical staff; the initiating node 201 and the response node
  • the link between 204 can be used to sense and measure the movement of people in the bedroom to detect the user's sleeping status; the link between the initiating node 201 and the response node 203 can be used to sense and measure the movement of people in the kitchen to detect the current kitchen. Are there any people moving around?
  • the AP as the Initiator can send Sensing Polling Trigger frame (Sensing Polling Trigger frame) to Poll one or more STAs to see if they can participate in this perception measurement; STA, as a Responder, agrees to participate in this perception measurement and can feed back a CTS-to-Self frame to confirm its participation in the perception measurement.
  • STA acts as the initiator and the AP acts as the responder. There is no need to use a trigger mechanism (such as sensing polling trigger frame) for message transmission.
  • the sensing NDPA frame informs the Sensing Responder that its next frame is a sensing measurement frame and the related parameters of the sensing measurement frame. Then, the AP can feed back CSI to the STA.
  • Figure 4 is a schematic diagram of a perceptual measurement process for TB. As shown in Figure 4:
  • Sensing session setup phase 1) The Initiator sends a sensing session setup request frame to the Responder(s) that it wishes to open a sensing session to request the establishment of a sensing session; 2) The Responder(s) agree to establish the sensing session After receiving the sensing session setup request frame, a sensing session setup response (sensing session setup response) frame can be fed back to confirm the establishment of the sensing session.
  • the sensing session setup phase can also be called the sensing session setup phase, whose purpose is to realize that both sensing parties agree to establish a CSI-based sensing session.
  • Sensing measurement setup stage 3) Initiator sends a sensing measurement setup request frame to Responder(s) to request to start sensing measurement with Responder(s); 4) Respondent agrees to start sensing measurement ( s) After receiving the sensing measurement setup request frame, a sensing measurement setup response (sensing measurement setup response) frame can be fed back to confirm the startup of sensing measurement with the Initiator.
  • the sensing measurement setup phase can also be called the sensing measurement setup phase, which is used to set the configuration, role, parameters, matching and other operations of each node participating in sensing measurement.
  • Sensing measurement instance phase can include three sub-phases, namely polling, sounding and reporting. Among them, polling sub-phase: 5) Initiator sends sensing polling trigger frame to Responder(s) , to ask the Responder(s) whether to participate in this perception measurement; 6) The Responder(s) participating in this perception measurement can send a CTS-to-Self frame to confirm participation in this perception measurement. Sounding sub-stage: 7) The Initiator sends a sensing sounding frame (which can be an empty data packet NDP) to the Responder(s). Then, the Responder(s) can use the received sensing sounding frame to perform channel estimation and obtain CSI.
  • polling sub-phase 5) Initiator sends sensing polling trigger frame to Responder(s) , to ask the Responder(s) whether to participate in this perception measurement; 6) The Responder(s) participating in this perception measurement can send a CTS-to-Self frame to confirm participation in this perception measurement.
  • Initiator sends sensing trigger report frame to Responder(s), which is used to trigger Responder(s) to feedback the obtained CSI to Initiator; 9) Respondent(s) sends sensing measurement report to Initiator (sensing measurement report) frame, where the sensing measurement report frame carries the obtained CSI.
  • the perceptual measurement process for TB shown in Figure 5 is compared to the perceptual measurement process for TB shown in Figure 4 .
  • the perceptual measurement process for TB shown in Figure 5 is In the measurement instance stage of the perceptual measurement process, the sounding sub-stage is: 7)
  • the Initiator sends an NDPA frame to the Responder(s).
  • the NDPA frame is used to inform the Responder(s) that the next frame is an NDP frame and the relevant parameters of the NDP frame; 8)
  • the Initiator sends an NDP frame to the Responder(s), and then performs related operations in the Reporting subphase.
  • the frames transmitted at each stage in the perceptual measurement process for TB may include, but are not limited to, some or all types of frames in the above-described embodiments.
  • Figure 6 is a schematic diagram of a Non TB sensing measurement process.
  • the sensing session setup phase and sensing measurement setup phase shown in Figure 6 are the same as those described in Figure 4 and will not be described in detail here.
  • the sensing measurement instance stage shown in Figure 6 is the sensing measurement instance stage of Non TB: 5)
  • the Initiator sends an NDPA frame to the Responder(s).
  • the NDPA frame is used to inform the Responder(s) that the next frame is an NDP frame, and Relevant parameters of the NDP frame; 6) Initiator sends NDP frame to Responder(s); 7) Responder(s) uses the received NDP frame to perform channel estimation, obtain CSI, and send sensing measurement report frame to Initiator, where, sensing measurement
  • the report frame carries the obtained CSI.
  • the perception instance solutions in the perception measurement process can be divided into two types: perception measurement reports that require feedback and those that do not require feedback. Both of the above two perceptual measurement processes require feedback of perceptual measurement reports.
  • the Responder can directly use CSI for sensing-related applications; that is, the Responder does not need to feed back the CSI, and the Responder uses the CSI for sensing.
  • the frames transmitted at each stage in the Non TB sensing measurement process may include but are not limited to some of the implementation methods described above. or all types of frames.
  • the "frame" described in this application can also be described as a "message”, “message”, etc.
  • a sensing session setup request frame can be described as a sensing session setup request message
  • a sensing session setup response frame can be Described as sensing session setup response message, etc., I will not list them one by one here.
  • the responder For types of perception measurement reports that require feedback, the responder needs to send the measured CSI to the initiator wirelessly, which requires higher requirements for wireless bandwidth resources and processing capabilities of the initiator; for types that do not require feedback for perception measurement reports, the initiator is required. Processing the measured CSI to obtain sensing information requires high processing capabilities of the initiator. Therefore, when wireless bandwidth resources are limited, or the processing capabilities of the initiator and responder are limited, how to improve the perception performance is an urgent problem to be solved.
  • This application provides a channel measurement method.
  • the channel measurement information obtained by this method not only considers the need for enhancement and/or suppression distance, but also greatly reduces the amount of data that needs to be transmitted or processed compared to directly using CSI to obtain sensing information. , Therefore, using the channel measurement information obtained by this method to implement sensing-related applications can effectively improve sensing performance. This is explained in detail below with reference to the accompanying drawings.
  • Figure 7 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application.
  • the channel measurement method shown in Figure 7 is explained from the perspective of interaction between the channel transmitter and the channel receiver.
  • Figure 7 takes the signal transmitting end as the initiator of channel measurement, the signal receiving end as the responder of channel measurement, and the signal receiving end needs to feed back the channel measurement information obtained by processing to the signal transmitting end as an example for explanation.
  • this application divides the channel measurement information into two categories, respectively called the first CSI and the second CSI.
  • the first CSI is the channel directly obtained by the signal receiving end using the received wireless signal to perform channel estimation. Measurement information; the second CSI is the channel measurement information obtained by processing the first CSI using the weight vector W.
  • the channel measurement method may include but is not limited to the following steps:
  • the signal receiving end obtains the weight vector W;
  • the weight vector W is sent by the signal transmitting end.
  • the signal transmitting end needs to perform sensing measurements on a position that is P first distances away from the signal receiving end, but does not need to conduct sensing measurements on a position that is Q second distances away from the signal receiving end. Then, the signal transmitting end can The weight vector W is sent to the signal receiving end, and the weight vector W is used to enhance the signal-to-noise ratio or energy of the P first distances, and/or to suppress the signal-to-noise ratio or energy of the Q second distances.
  • the distance where the signal-to-noise ratio or energy needs to be enhanced is called the first distance
  • the distance where the signal-to-noise ratio or energy needs to be suppressed is called the second distance.
  • the weight vector W is calculated by the signal receiving end based on the P first distances and/or Q second distance information sent from the signal transmitting end.
  • the signal receiving end determines the weight vector W based on P first distances and/or Q second distances, including: determining the steering matrix V based on P first distances and/or Q second distances, where The steering matrix V is composed of the steering row vector corresponding to each of the L distances. The steering row vector corresponding to each distance is obtained based on the propagation delay corresponding to the distance.
  • the L distances are composed of P first distances. and/or Q second distances; according to the steering matrix V, determine the weight vector W.
  • the L distances may also be called L paths, that is, the L paths are propagation paths with corresponding propagation delays.
  • S represents the noise on the path where L distances are located, and is a row vector with a column number of L;
  • U is a base vector composed of L elements corresponding to L distances, and the element corresponding to the first distance in the base vector is 1, and the elements corresponding to the second distance are all 0.
  • ⁇ f is the bandwidth of a subcarrier.
  • the first distance is the distance corresponding to path l, that is, the weight vector W is used to enhance the signal-to-noise ratio or energy of path l, and to enhance the signal-to-noise ratio or energy of path l.
  • V H represents the conjugate transposed matrix of the steering matrix V
  • () -1 represents the inverse matrix of the matrix obtained by the operation in parentheses.
  • the signal receiving end processes the first CSI based on the weight vector W to obtain the second CSI;
  • the signal-to-noise ratio or energy of the second CSI at P first distances is enhanced, and/or the signal-to-noise ratio or energy at Q second distances is suppressed, and P and Q are both positive integers.
  • the second CSI may be a vector or a value related to the number of first distances that need to be enhanced.
  • the first CSI is obtained by the signal receiving end performing channel estimation using the received wireless signal.
  • the signal transmitting end can send a wireless signal, and correspondingly, the signal receiving end receives the wireless signal; wherein, the wireless signal received by the signal receiving end is the signal after channel attenuation of the wireless signal sent by the signal transmitting end. , such as the direct signal of the wireless signal or the reflected signal of the wireless signal reflected by objects in the environment.
  • step S102 processes the first CSI based on the weight vector W to obtain the second CSI, which may include: performing a dot multiplication operation on the weight vector W and the first CSI, and obtaining the dot multiplication operation result as the second CSI.
  • the second CSI can be truncated indicated power (truncated PDP), recorded as PDP truncated , or channel measurement information of truncated channel impulse response (truncated Channel Impulse Response, truncated CIR).
  • truncated PDP truncated indicated power
  • PDP truncated channel impulse response
  • CIR channel measurement information of truncated channel impulse response
  • step S102 processes the first CSI based on the weight vector W to obtain the second CSI, which may include: performing a dot multiplication operation on the weight vector W and the first CSI to obtain the channel measurement information truncated PDP. ; Perform modulo processing on the channel measurement information truncated PDP, and obtain the modulus of the truncated PDP as the second CSI.
  • the second CSI in this implementation can be recorded as
  • step S102 processes the first CSI based on the weight vector W to obtain the second CSI, which may include: performing a dot multiplication operation on the weight vector W and the first CSI to obtain the channel measurement information truncated PDP. ; Perform modular simplification processing on the channel measurement information truncated PDP, and obtain the square of the module of the truncated PDP as the second CSI.
  • the second CSI in this implementation can be recorded as
  • step S102 processes the first CSI based on the weight vector W to obtain the second CSI, which may include: performing a dot multiplication operation on the weight vector W and the first CSI to obtain the channel measurement information truncated PDP. ; Perform modular simplification processing on the channel measurement information truncated PDP to obtain the channel measurement information
  • the second CSI in this embodiment can be recorded as
  • the following takes a single transmitting antenna and a single receiving antenna as an example to illustrate the channel measurement information step S102 between the channel transmitting end and the signal receiving end.
  • the bandwidth of the wireless signal used for channel measurement between the signal transmitter and the signal receiver is N subcarriers
  • the first CSI is a matrix of dimension 1*N, and the first CSI can be expressed as:
  • f 1 , f 2 ,...f N respectively represent the frequency points of N sub-carriers arranged from low to high frequency
  • H(f n ,t) represents the channel response of sub-carrier f n
  • the value of n can be 1 to N.
  • H(f n ,t) in the form of complex numbers in the polar coordinate system, it can be expressed as:
  • ⁇ n represents the sampling time offset (sampling Time Offset, STO), carrier frequency offset (Carrier Frequency Offset, CFO), phase-locked loop (phase-locked loop, PLL), etc. on the subcarrier f n .
  • Phase offset where, assuming that in the environment where the signal transmitter and the signal receiver are located, the wireless signal transmitted by the signal transmitter has L propagation paths, where the path l is a path reflected by a moving object, so the subcarrier f n
  • w 1 , w 2 ,...w N respectively represent the weights of N sub-carriers arranged from low to high frequencies, where ⁇ 1 to ⁇ N respectively represent the amplitude factors on N sub-carriers, and ⁇ 1 to ⁇ N respectively represent Phase factor on N subcarriers.
  • the truncated PDP obtained by performing a dot multiplication operation on the weight vector W and the first CSI can be:
  • ⁇ i and ⁇ k are subcarriers f i and subcarrier f k due to packet detection delay, sampling time offset (sampling time offset, STO), carrier frequency offset (Carrier Frequency Offset, CFO), phase locked loop
  • STO sampling time offset
  • CFO carrier frequency offset
  • PLL phase-locked loop
  • each of the above-mentioned optional second CSIs is enhanced at 1 first distance (i.e., the distance corresponding to path l), and at the remaining L-1 second distances (i.e., except for path l) The signal-to-noise ratio or energy of the distance corresponding to the outer L-1 paths) is suppressed.
  • each of the above-mentioned optional second CSI can learn that the length of the path l changes with time, so that the movement speed of the moving object on the path l can be inferred. Spend. Therefore, the second CSI, as a kind of channel measurement information, can be used to obtain sensing information like the first CSI.
  • the signal receiving end sends the second CSI to the signal transmitting end.
  • the signal transmitting end receives the second CSI.
  • the signal receiving end can send the second CSI to a third party, such as a perception information processing device, and the perception information processing device processes the second CSI to obtain the perception information.
  • a third party such as a perception information processing device
  • the perception information processing device processes the second CSI to obtain the perception information.
  • the signal-to-noise ratio or energy of the second CSI at P first distances is enhanced, and/or the signal-to-noise ratio or energy at Q second distances is suppressed.
  • the second CSI can be a complex number (such as PDP truncated shown in formula (10)), or a real number (such as
  • the channel measurement method provided by this application can effectively improve the sensing effect when the wireless bandwidth is limited or the processing capability of the sensing information processing device is limited.
  • the second CSI takes into account the distance information that needs to be enhanced or suppressed. In this way, in sensing applications that obtain sensing information based on the second CSI, the sensing performance can be greatly improved.
  • Figure 8 Based on the channel measurement method based on the weight vector W shown in Figure 7, Figure 8 provides a schematic flow chart of another channel measurement method.
  • the channel measurement method shown in Figure 8 is between the signal transmitting end and the signal receiving end.
  • the establishment of a channel measurement method based on weight vector W is taken as an example to illustrate.
  • the channel measurement method may include but is not limited to the following steps:
  • the signal transmitting end sends a request frame to the signal receiving end, and accordingly, the signal receiving end receives the request frame;
  • the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the request frame may carry indication information, and the indication information is used to indicate a request to establish a channel measurement session based on the weight vector W.
  • the indication information may be a measurement type field, used to indicate a request to establish a channel measurement session based on the weight vector W.
  • the signal receiving end sends a response frame to the signal transmitting end.
  • the signal transmitting end receives the response frame, and the response frame is used to respond to the request frame.
  • the response frame may carry the same indication information as the request frame to indicate agreement to establish a channel measurement session based on the weight vector W.
  • the signal transmitting end sends the first frame to the signal receiving end, and accordingly, the signal receiving end receives the first frame
  • the first frame includes a first field, and the first field is used to indicate the weight vector W.
  • the first field may carry the weight vector W, such as the amplitude, phase and other information of each element in the weight vector shown in the above formula (9).
  • the first field may carry the index of the weight vector W, and the signal receiving end may determine the corresponding weight vector based on the index.
  • the optional weight vector can be stored locally on both sides of the channel measurement. In this way, the weight vector used for this channel measurement can be obtained based on the index of the weight vector indicated by the peer.
  • the first frame includes a first field, which is used to indicate P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or the signal-to-noise ratio or energy needs to be suppressed.
  • the Q second distance In this way, the signal receiving end can determine the weight vector W based on the distance information.
  • the calculation method of the weight vector W can be found in the relevant content of formulas (1) to (5) described in Figure 7, which will not be discussed here. Elaborate.
  • the first frame also includes a second field, the second field is used to indicate whether the first field indicates the weight vector W, or the P first distances where the signal-to-noise ratio or energy needs to be enhanced. , and/or, Q second distances where the signal-to-noise ratio or energy needs to be suppressed.
  • the second field is a first value, such as 1, then the first field is used to indicate the weight vector W; if the second field is a second value, such as 2, then the first field is used to indicate the signal-to-noise ratio or energy requirement.
  • the signal receiving end determines the weight vector W used for channel measurement based on the first frame, and determines the channel state information based on the weight vector W;
  • the signal receiving end determines the relevant operations of the channel state information based on the weight vector W.
  • the signal transmitting end sends a wireless signal
  • the signal receiving end performs channel estimation on the received wireless signal to obtain the first CSI
  • the weight vector W processes the first CSI to obtain the second CSI, that is, the channel state information processed based on the weight vector W.
  • the signal receiving end sends the channel state information processed based on the weight vector W to the signal transmitting end.
  • the signal transmitting end receives the channel state information processed based on the weight vector W.
  • step S205 may include: the signal receiving end sends a feedback frame to the signal transmitting end, the feedback frame includes channel state information processed based on the weight vector W, and the value of the feedback type field in the feedback frame may be used to indicate that the feedback frame includes Channel state information processed based on weight vector W.
  • the signal receiving end before sending the feedback frame to the signal transmitter, can also receive a trigger frame, and the value of the feedback type field in the trigger frame Used to trigger the transmission of channel state information processed based on weight vector W.
  • the trigger frame may be a sensing trigger report frame.
  • the feedback type field may adopt the values shown in Table 1 to indicate that the corresponding type of channel state information is to be fed back.
  • the value of the feedback type field is 0, indicating that the channel state information that triggers feedback or feedback is the channel state information obtained directly from channel estimation; the value of the feedback type field is 1, indicating that the channel that triggers feedback or feedback is
  • the state information is channel state information processed based on the weight vector W.
  • Figure 8 provides a channel measurement method based on the weight vector W.
  • a channel measurement session based on the weight vector W is negotiated and the channel is exchanged through the first frame.
  • the weight vector used or the above-mentioned distance information is measured, so that the signal receiving end can obtain the channel state information based on the weight vector processing in the channel measurement and feed it back to the signal transmitting end. It can be seen that the data amount of the channel measurement information exchanged by this method is greatly reduced, thereby reducing the demand for wireless bandwidth.
  • an embodiment of the present application also provides a schematic flow chart of a sensing method.
  • the sensing method shown in Figure 9 is proposed on the basis of the channel measurement method based on the weight vector W shown in Figure 8, that is, the sensing method is a sensing method based on the weight vector W.
  • the negotiation is based on the weight vector
  • the channel measurement session of W can correspond to the sensing session setup stage shown in Figure 9; the first frame of the weight vector or distance information used for interactive channel measurement in Figure 8 can be the relevant frame in the sensing measurement setup stage. , or the relevant frame in the sensing measurement instance stage, so that the channel measurement information used to implement sensory feedback is no longer the first CSI, but the second CSI.
  • the perception method based on the weight vector W shown in Figure 9 includes but is not limited to the three stages shown in Figure 4 or Figure 5:
  • Sensing session setup stage the sensing session setup stage shown in Figure 4 to Figure 6, this stage is used for the exchange, provision and establishment of sensing session between the two sensing parties (i.e. Sensing Initiator (Sensing Initiator) and Sensing Responder (Sensing Responder)) Relevant parameters.
  • the parameters related to the establishment of the sensing session at this stage may include identification information of the sensing session based on the weight vector W. In this way, both sensing parties at this stage can exchange and specify that the sensing procedure (sensing procedure) is based on the weight vector W. perception session.
  • the weight vector W used by both sensing parties to perform sensing measurements or the P first distances and/or Q second distances mentioned above
  • the distance information remains unchanged (that is, the weight vector W used in multiple sensing measurement instance stages under the sensing measurement setup stage, or the P first distances and/or Q second distances mentioned above In the case where the distance information remains unchanged)
  • the weight vector W can be exchanged at this stage, or the distance information of the P first distances and/or Q second distances mentioned above.
  • the sensing measurement setup request frame sent by the Sensing Initiator to the Sensing Responder can carry the information of the weight vector W used in the sensing measurement setup stage, or the distance information of P first distances and/or Q second distances, correspondingly Yes, after the Sensing Responder receives the sensing measurement setup request frame, if it agrees to enable sensing measurement based on the weight vector W, it can feed back the sensing measurement setup response frame to the Sensing Initiator.
  • the sensing measurement setup response frame may include a third field to indicate agreement to enable sensing measurement based on the weight vector W.
  • the sensing measurement setup response frame can also include information about the weight vector W at this stage, or distance information about P first distances and/or Q second distances to ensure that both sensing parties know or obtain the same weight vector for subsequent perceptual measurements.
  • FIG 10 is a structural diagram of a sensing measurement setup request frame.
  • the sensing measurement setup request frame may include but is not limited to one or more of the following elements or fields: Category, Public Action, Dialog Token, Measurement Establishment Identity (Measurement Setup ID), DMG Sensing Measurement Setup Element (DMG Sensing Measurement Setup Element), Sensing Measurement Parameters Element (Sensing Measurement Parameters Element).
  • the information of the weight vector W, or the distance information of the P first distances and/or Q second distances mentioned above, etc. that need to be interacted can be carried in the Sensing Measurement Parameters Element shown in Figure 10 and /or other fields.
  • FIG 11 is a schematic structural diagram of a Sensing Measurement Parameters Element.
  • the Sensing Measurement Parameters Element includes but is not limited to the following fields: element identification (Element ID), length (Length), element identification extension (Element ID Extension), Sensing Measurement Parameters, TBD.
  • element ID element identification
  • Length length
  • element ID Extension element identification extension
  • Sensing Measurement Parameters TBD.
  • the information of the weight vector W, or the distance information of the P first distances and/or Q second distances mentioned above, and other information that needs to be interacted can be carried in the Sensing Measurement Parameters Element shown in Figure 11 Sensing Measurement Parameters field and / or other fields.
  • FIG 12 is a schematic structural diagram of the Sensing Measurement Parameters field.
  • the Sensing Measurement Parameters field includes but is not limited to the following subfields: Sensing Transmitter (Sensing Transmitter), Sensing Receiver (Sensing Receiver), Sensing Measurement Report (Sensing Measurement Report), Measurement Report Type (Measurement Report Type), to be determined (TBD) elements.
  • the Sensing Transmitter is similar to the signal transmitter described in this article, and is used to send sensing measurement frames in the sensing measurement, such as the sensing sounding frame, NDP frame and other sensing measurement frames mentioned above;
  • the Sensing Receiver is similar to the sensing measurement frame described in this article.
  • the signal receiving end is used to receive the perception measurement frame in the perception measurement.
  • Sensing Measurement Report is used to indicate the requested or returned sensing measurement report
  • Measurement Report Type is used to indicate the type of requested or returned sensing measurement report.
  • TBD elements represent potential additional information or fields that are under discussion or to be finalized.
  • the Measurement Report Type is the first value (such as 1), it may indicate that the requested or returned perception measurement report is the first CSI obtained directly based on the perception measurement frame; if the Measurement Report Type is the second value (such as 0) , may indicate that the requested or returned sensing measurement report is the second CSI obtained based on the weight vector.
  • Sensing measurement instance stage the sensing measurement instance stage shown in Figure 4 to Figure 6, optionally, it is necessary to sense the weight vector W of the interaction between the two parties, or the P first distances and/or Q second distances mentioned above
  • the distance information, etc. can also be interacted in the perception instance stage.
  • the weight vector W of the interaction between the two parties that needs to be sensed, or the distance information of the P first distances and/or Q second distances mentioned above can be carried in the following sensing polling trigger frame , CTS-to-Self frame, NDPA frame, NDP frame in one or more frames.
  • the weight vector W that needs to be sensed for the interaction between the two parties, or the distance information of the P first distances and/or Q second distances mentioned above can be carried in one of the NDPA frames, NDP frames, or in multiple frames.
  • information such as the interaction weight vector W, or the distance information of the P first distances and/or Q second distances mentioned above to be unstable in the establishment of a perceptual measurement, such as interactive information. It is necessary to flexibly adjust the information required for interaction to improve the performance of perceptual measurement when changes occur in each perceptual measurement instance or part of the perceptual measurement instances.
  • the perception instance solution in the perception measurement process can be divided into two types: perception measurement reports that require feedback and no feedback.
  • the Responder In response to the Initiator's need for the Responder to feed back the perception measurement report, the Responder needs to calculate the second CSI based on the weight vector and the first CSI, and then feed it back to the Initiator through the perception measurement report based on weight vector perception. After the initiator obtains the channel measurement, the second CSI can be used for sensing-related applications.
  • the Responder needs to calculate the second CSI based on the weight vector and the first CSI, and then feeds it back to the Initiator through the perception measurement report based on the weight vector perception; after the Initiator obtains the channel measurement, it can use The second CSI performs sensing-related applications.
  • the Responder can calculate the second CSI based on the weight vector and the first CSI, and then directly use the second CSI for perception-related applications; that is, the Responder does not need to feedback the first CSI or the second CSI.
  • the Responder uses the first CSI or the second CSI for sensing.
  • the sensing method based on the weight vector W shown in Figure 9 also includes the following two stages to end the sensing measurement process:
  • Sensing measurement setup termination (sensing measurement setup) phase is used to end the sensing measurements previously established by both sensing parties, and to stop the use of the parameters interacted in the corresponding sensing measurement setup phase.
  • Sensing session termination (sensing session termination) phase, this phase is used to sense that both parties end the sensing session established before, and stop the use of the parameters exchanged in the corresponding sensing session establishment phase.
  • FIG. 13 is a schematic flowchart of a perceptual measurement method provided by an embodiment of the present application.
  • the perceptual measurement method shown in Figure 13 is a weight vector-based perceptual measurement process provided based on the perceptual measurement process for TB shown in Figure 4.
  • This sensing measurement method is a sensing measurement method for the TB mechanism.
  • the AP serves as the Sensing Initiator and the STA serves as the Sensing Responder.
  • the AP requires the STA to feedback channel measurement information.
  • the detailed process of the sensing measurement method may include but is not limited to the following steps:
  • the Sensing Initiator sends a sensing session setup request frame to the Sensing Responder.
  • the Sensing Responder receives the sensing session setup request frame.
  • the sensing session setup request frame is used to request the establishment of a sensing session based on the weight vector;
  • the sensing session setup request frame may carry the measurement type field as described in step S201.
  • the sensing session setup request frame may carry a sensing measurement type field, which is used to indicate that the sensing session setup request frame is used to request the establishment of a sensing session based on the weight vector W, which is different from the sensing where the channel measurement information is CSI. session.
  • the sensing measurement Type field may use a value of 0 to indicate a CSI-based sensing session, and a value of 1 to indicate a weight vector-based sensing session.
  • the Sensing Responder sends a sensing session setup response frame to the Sensing Initiator.
  • the Sensing Initiator receives the sensing session setup response frame.
  • the sensing session setup response frame is used to respond to the sensing session setup request frame.
  • the sensing session setup response frame can carry the same sensing measurement Type field, for example, set to a value of 1, so that both sensing parties agree to establish a sensing session based on the weight vector.
  • the AP and STA participating in the sensing session can be successfully associated, and can subsequently perform the following operations in the sensing measurement establishment phase to exchange weight vectors and other related information.
  • the Sensing Initiator sends a sensing measurement setup request frame to the Sensing Responder.
  • the Sensing Responder receives the sensing measurement setup request frame.
  • the sensing measurement setup request frame is used to request to start sensing measurement based on the weight vector W;
  • the sensing measurement setup request frame can be the first frame as shown in Figure 8. As shown in Figure 9, in the sensing measurement setup stage, the weight vector W used by both sensing parties to perform sensing measurements, or the above If the distance information of the P first distances and/or Q second distances remains unchanged, the weight vector W can be interacted at this stage, or the P first distances and/or Q mentioned above can be used distance information of the second distance. That is to say, in this embodiment, the sensing measurement setup request frame may include the first field described in Figure 8, which is used to indicate the weight vector W, or to indicate that the signal-to-noise ratio or energy needs to be enhanced.
  • the first field indicates P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed.
  • the Sensing Responder can also be based on The distance information uses the method described above to calculate the weight vector, which will not be described in detail here.
  • the first field may be a weight vector field, which may be located in the Sensing Measurement Parameters Element shown in Figure 10 and/or other fields, or located in the Sensing Measurement Parameters Element shown in Figure 11 Measurement Parameters field and/or other fields, or in the TBD shown in Figure 12.
  • the sensing measurement setup request frame may include, in addition to the first field described in Figure 8, the second field described in Figure 8.
  • the position of the second field in the sensing measurement setup request frame is before the first field.
  • the second field is the first value
  • it means that the subsequent first field is the value or index of the weight vector W
  • the second field is the second value.
  • the subsequent first field is the distance information mentioned above.
  • the Sensing Responder sends the sensing measurement setup response frame to the Sensing Initiator.
  • the Sensing Initiator receives the sensing measurement setup response frame.
  • the sensing measurement setup response frame is used to respond to the sensing measurement setup request frame;
  • the sensing measurement setup response frame can be used to confirm the establishment of weight vector-based sensing measurements with the Sensing Initiator.
  • the sensing measurement setup response frame may include the aforementioned third field.
  • the sensing measurement setup response frame may include a first field, or may also include a second field, wherein the first field and the second field in the sensing measurement setup response frame may be the same as the sensing measurement setup request frame. The first field and the second field have the same value.
  • the sensing measurement setup response frame can copy the values of the first field and the second field in the sensing measurement setup request frame.
  • the AP and STA participating in sensing measurement can be associated and set up successfully, and then the sensing measurement instance stage can be entered to obtain channel measurement information.
  • this embodiment is aimed at the TB-based mechanism, and step S305 needs to be executed.
  • the Sensing Initiator sends the sensing polling trigger frame to the Sensing Responder.
  • the Sensing Responder receives the sensing polling trigger frame.
  • the sensing polling trigger frame is used to ask the Sensing Responder to participate in the perception measurement based on the weight vector;
  • the user information field (User Information field) in the sensing polling trigger frame will indicate the receiving end that participates in the weight vector-based sensing measurement, that is, the Sensing Responder, such as STA.
  • this implementation can support the Sensing Initiator, such as the AP side, to dynamically modify the information in the first field and the second field, and notify the Sensing Responder, such as the STA, to update the corresponding information in a timely manner, thereby enabling the In a perceptual measurement example, the STA can obtain the latest channel measurement information based on the latest weight vector or distance information.
  • Sensing Responder sends CTS-to-Self ACK frame to Sensing Initiator, and accordingly, Sensing Initiator receives The CTS-to-Self ACK frame, the CTS-to-Self ACK frame is used to respond to the sensing polling trigger frame;
  • the CTS-to-Self ACK frame is used to inform the Sensing Initiator that the Sensing Responder participates in the perception measurement based on the weight vector.
  • the Sensing Initiator sends a sounding frame to the Sensing Responder.
  • the Sensing Responder receives the sounding frame.
  • the sounding frame is used to obtain channel measurement information based on the weight vector;
  • placing the first field and the second field in the sounding frame can also support the Sensing Initiator, such as the AP side, dynamically modify the first field, The information in the two fields is notified to the Sensing Responder, such as STA, to update the corresponding information in a timely manner, so that in a sensing measurement instance, the STA can obtain the latest channel measurement information based on the latest weight vector or distance information.
  • the Sensing Initiator sends the sensing trigger report frame to the Sensing Responder.
  • the Sensing Responder receives the sensing trigger report frame.
  • the sensing trigger report frame is used to inform the Sensing Responder to feedback the channel state information processed based on the weight vector W;
  • the feedback type field in the sensing trigger report frame can be as described in S205, indicating that the feedback frame sent by the Sensing Responder needs to include channel state information processed based on the weight vector W.
  • the sensing trigger report frame can also specify whether the Sensing Responder performs an immediate feedback (immediate feedback) mechanism or a delayed feedback (delayed feedback) mechanism.
  • the Sensing Responder sends the Sensing Measurement Report frame to the Sensing Initiator.
  • the Sensing Initiator receives the Sensing Measurement Report frame.
  • the Sensing Measurement Report frame can be the feedback frame described in step S205 in Figure 8, including the one processed based on the weight vector W. Channel status information.
  • the value of the sensing measurement type in the Sensing Measurement Report frame can be used to indicate that the channel state information placed in the Sensing Measurement Report field is processed based on the weight vector W.
  • the perceptual measurement method shown in Figure 13 can obtain channel state information based on weight vector processing, which is different from the channel state information obtained by direct channel estimation. It greatly reduces the data amount of channel measurement information, thereby reducing the demand for wireless bandwidth. , which is also conducive to improving the sensing performance based on the obtained channel measurement information.
  • FIG 14 is a flowchart of another sensing measurement method provided by an embodiment of the present application.
  • the sensing measurement method shown in Figure 14 is based on the Non-TB mechanism shown in Figure 6, where STA acts as a Sensing Initiator, AP acts as a Sensing Responder, and STA needs the AP to feedback the channel measurement information of the Sensing measurement instance.
  • the detailed process of the sensing measurement method may include but is not limited to the following steps:
  • the Sensing Initiator sends a sensing session setup request frame to the Sensing Responder.
  • the Sensing Responder receives the sensing session setup request frame.
  • the sensing session setup request frame is used to request the establishment of a sensing session based on the weight vector;
  • Sensing Responder sends sensing session setup response frame to Sensing Initiator.
  • Sensing Initiator receives the sensing session setup response frame.
  • the sensing session setup response frame is used to respond to sensing session setup request frame;
  • the Sensing Initiator sends a sensing measurement setup request frame to the Sensing Responder.
  • the Sensing Responder receives the sensing measurement setup request frame.
  • the sensing measurement setup request frame is used to request to start sensing measurement based on the weight vector W;
  • the Sensing Responder sends the sensing measurement setup response frame to the Sensing Initiator.
  • the Sensing Initiator receives the sensing measurement setup response frame.
  • the sensing measurement setup response frame is used to respond to the sensing measurement setup request frame;
  • steps S401 to S404 are the same as steps S301 to S302 in the above-mentioned Figure 13.
  • the difference is that the STA serves as the Sensing Initiator and the AP serves as the Sensing Responder. Therefore, the relevant content of steps S401 to S404 can be found in the content described in the above-mentioned Figure 13. Here No further details will be given.
  • the Sensing Initiator sends a sensing NDPA frame to the Sensing Responder.
  • the Sensing Responder receives the sensing NDPA frame.
  • the sensing NDPA frame is used to inform the Sensing Responder that the next frame is a sensing measurement frame, such as an NDP frame, and the sensing measurement frame. related parameters;
  • the above-mentioned implementation of placing the first field and the second field outside the sensing measurement setup request frame there is another optional implementation.
  • the first field and the second field can be located in the sensing NDPA frame.
  • This implementation can support the Sensing Initiator, such as the STA side, to dynamically modify the information in the first field and the second field. , and inform the Sensing Responder, such as the AP, to update the corresponding information in a timely manner, so that the AP can obtain the latest channel measurement information based on the latest weight vector or distance information.
  • the Sensing Initiator sends the NDP frame to the Sensing Responder.
  • the Sensing Responder receives the NDP frame.
  • the NDP frame is used to determine the channel state information based on weight vector processing;
  • the first field and the second field can be located in the sensing NDPA frame.
  • the first field and the second field can be located in the NDP frame.
  • This implementation can support the Sensing Initiator, such as the STA side, to dynamically modify the information in the first field and the second field and notify the Sensing Responder, such as The AP updates the corresponding information in a timely manner, so that the AP can obtain the latest channel measurement information based on the latest weight vector or distance information.
  • the Sensing Responder sends the Sensing Measurement Report frame to the Sensing Initiator.
  • the Sensing Initiator receives the Sensing Measurement Report frame.
  • the Sensing Measurement Report frame can be the feedback frame described in step S205 in Figure 8, including the one processed based on the weight vector W. Channel status information.
  • the value of the sensing measurement type in the Sensing Measurement Report frame can be used to indicate that the channel state information placed in the Sensing Measurement Report field is processed based on the weight vector W.
  • the sensing measurement method shown in FIG14 is for the non-TB mechanism. It does not need to use a trigger mechanism (such as sending a sensing polling trigger frame in FIG13) to transmit messages. Instead, it uses a random competitive access mechanism to use a sensing NDPA frame to inform the Sensing Responder that its next frame is a sensing measurement frame and related parameters of the sensing measurement frame. In this way, the AP can obtain the channel state information processed based on the weight vector W based on the sensing measurement frame in a timely manner, and then feed it back to the STA. It can be seen that the sensing measurement method shown in FIG14 greatly reduces the amount of channel measurement information data, thereby reducing the demand for wireless bandwidth, and is also conducive to improving the perception performance of perception based on the obtained channel measurement information.
  • the difference from the perception measurement method shown in Figure 13 and the perception measurement method shown in Figure 14 is that in this embodiment, after step S306 described in Figure 13, the perception for TB
  • the measurement method may also include the operation of the NDPA frame described in step S405 described in Figure 14 and the content of the NDP frame described in step S406.
  • the perceptual measurement method for TB uses the NDP frame to replace the sounding described in Figure 13 frame, as the perceptual measurement frame. That is to say, corresponding to the perceptual measurement process for TB including NDPA frames shown in Figure 5, this application also provides an embodiment.
  • the perceptual measurement method provided by this embodiment includes the perceptual measurement method shown in Figure 13 except Related operations outside the sounding frame may also include the sounding sub-stage of the NDPA frame and NDP frame in the perceptual measurement method shown in Figure 14. It can be seen that the perceptual measurement based on the weight vector W described in this embodiment includes not only the polling sub-stage, but also the sounding sub-stage of the NDPA frame and the NDP frame, thereby improving the perceptual performance of sensing using the perceptual measurement information of the perceptual measurement.
  • pluricity means two or more than two.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easier understanding.
  • A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
  • Embodiments of the present application can divide the first device and the second device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 15 and FIG. 16 .
  • the communication device is the above-mentioned signal transmitter, Initiator, Sensing Initiator or Sensing Transmitter, or the communication device can be the above-mentioned signal receiver, Responder, Sensing Responder or Sensing Receiver.
  • Figure 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 includes a processing unit 1501 and a communication unit 1502.
  • the communication device 1500 can be used to perform the above-mentioned related operations of the signal transmitter, Initiator, Sensing Initiator or Sensing Transmitter, wherein:
  • Processing unit 1501 used to obtain the weight vector W
  • Communication unit 1502 configured to send channel state information processed based on the weight vector W;
  • the signal-to-noise ratio or energy at P first distances of the channel state information processed based on the weight vector W is enhanced, and/or, the signal-to-noise ratio or energy at Q second distances is suppressed, said P.
  • the Q is a positive integer.
  • the communication unit 1502 before the processing unit 1501 obtains the weight vector W, the communication unit 1502 is also used to receive a request frame, which is used to request the establishment of a channel measurement session based on the weight vector W, and is also used to send a response frame. , the response frame is used to respond to the request frame.
  • the request frame includes a measurement type field; the measurement type field is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the processing unit 1501 obtains the weight vector W, which may be based on the first frame.
  • the communication unit 1502 is also configured to receive the first frame, which includes a first field; the first field is used to indicate the weight vector W; or, is used to indicate the signal-to-noise ratio or the energy P that needs to be enhanced. first distances, and/or Q second distances at which the signal-to-noise ratio or energy needs to be suppressed.
  • the processing unit 1501 is further configured to indicate the P first distances and/or the Q second distances. The second distance determines the weight vector W.
  • the processing unit 1501 determines the weight vector W according to the P first distances and/or the Q second distances, specifically: according to the P first distances and/or the Q second distances.
  • the Q second distances determine the steering matrix V.
  • the steering matrix V is composed of the steering row vector corresponding to each distance in the L distances.
  • the steering row vector corresponding to each distance is based on the distance corresponding to Obtained from the propagation delay, the L distances are composed of the P first distances and/or the Q second distances;
  • the weight vector W is determined.
  • the S represents the noise on the path where the L distances are located, and is a row vector with the number of columns being the L;
  • the U is a row vector composed of L elements corresponding to the L distances, and the elements corresponding to the first distance are all 1, and the elements corresponding to the second distance are all 0.
  • the first frame also includes a second field; if the second field is the first value, the first field is used to indicate the weight vector W; if the second field is the second value, the first field is used P first distances indicating that the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances at which the signal-to-noise ratio or energy needs to be suppressed.
  • the first frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • frame empty packet declaration frame, empty packet frame, or probe frame.
  • the communication unit 1502 sends the channel state information processed based on the weight vector W, specifically: sending a feedback frame, the feedback frame includes the channel state information processed based on the weight vector W, and The value of the feedback type field in the feedback frame is used to indicate that the feedback frame includes channel state information processed based on the weight vector W.
  • the communication unit 1502 before the communication unit 1502 sends the channel state information processed based on the weight vector W, the communication unit 1502 is also configured to receive a trigger frame, and the value of the feedback type field in the trigger frame is used to trigger the transmission. Channel state information processed based on the weight vector W.
  • the communication device 1500 can perform the above-mentioned related operations of the signal receiving end, Responder, Sensing Responder or Sensing Receiver, wherein:
  • Communication unit 1502 configured to receive channel state information processed based on weight vector W;
  • the signal-to-noise ratio or energy at P first distances of the channel state information processed based on the weight vector W is enhanced, and/or, the signal-to-noise ratio or energy at Q second distances is suppressed, and the P , the Q is a positive integer.
  • the communication unit 1502 is also configured to send a request frame, the request frame is used to request the establishment of a channel measurement session based on the weight vector W; and receive a response frame, the response frame is used to respond to the request frame.
  • the request frame includes a measurement type field; the measurement type field is used to indicate that the request frame is used to request the establishment of a channel measurement session based on the weight vector W.
  • the communication unit 1502 is also configured to send a first frame, where the first frame includes a first field; the first field is used to indicate the weight vector W; or, the first field Used to indicate P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed; the P first distances and/or the Q second distances The distance is used to determine the weight vector W.
  • the first frame further includes a second field; if the second field is a first value, the first field is used to indicate the weight vector W; if the second field is The second value, the first field is used to indicate P first distances where the signal-to-noise ratio or energy needs to be enhanced, and/or Q second distances where the signal-to-noise ratio or energy needs to be suppressed.
  • the first frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame, Empty Packet Frame, or Probe Frame is a sensing session establishment request frame in the sensing session establishment phase, a sensing measurement establishment request frame in the sensing measurement establishing phase, or a sensing polling trigger frame or polling frame in the sensing measurement phase.
  • Empty Packet Announcement Frame Empty Packet Frame, or Probe Frame.
  • the communication unit 1502 receives channel state information, specifically: receiving a feedback frame, the feedback frame includes channel state information processed based on the weight vector W, and the value of the feedback type field in the feedback frame It is used to indicate that the feedback frame includes channel state information processed based on the weight vector W.
  • the communication unit 1502 is also configured to send a trigger frame before receiving the channel state information.
  • the value of the feedback type field in the trigger frame is used to trigger the sending of the channel state processed based on the weight vector W. information.
  • the P first distances and/or the Q second distances are used to determine the weight vector W, specifically: the weight vector W is determined using the steering matrix V, so The steering matrix V is determined using the P first distances and/or the Q second distances.
  • the steering matrix V is composed of the steering row vector corresponding to each of the L distances.
  • the steering row vector corresponding to each distance is obtained based on the propagation delay corresponding to the distance, and the L distances are composed of the P first distances and/or the Q second distances.
  • S represents the noise on the path where the L distances are located, and is a row vector with the column number being L;
  • U is a row vector composed of L elements corresponding to the L distances, and the The elements corresponding to the first distance are all 1, and the elements corresponding to the second distance are all 0.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a chip or a circuit, such as a chip or circuit that may be disposed in a network device.
  • the communication device performs related operations of the receiving end in the above method.
  • the device may include a processor 1610 and may also include a memory 1620.
  • the memory 1620 is used to store instructions.
  • the processor 1610 is used to execute the instructions stored in the memory 1620, so that the device implements the above-mentioned signal transmitting end. Initiator, Sensing Initiator or Sensing Transmitter related operations, or to implement the above-mentioned related operations of the signal receiver, Responder, Sensing Responder or Sensing Receiver.
  • the communication device may also include a receiver 1640 and a transmitter 1650. Furthermore, the communication device may also include a bus system 1630.
  • the processor 1610, the memory 1620, the receiver 1640 and the transmitter 1650 are connected through the bus system 1630.
  • the processor 1610 is used to execute instructions stored in the memory 1620 to control the receiver 1640 to receive signals and to control the transmitter 1650 to send signals. , complete the steps for the network device in the above method.
  • the receiver 1640 and the transmitter 1650 may be the same or different physical entities. When they are the same physical entity, they can be collectively called transceivers.
  • the memory 1620 may be integrated in the processor 1610 or may be provided separately from the processor 1610 .
  • the functions of the receiver 1640 and the transmitter 1650 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 1610 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the related operations of the receiving end provided by the embodiments of the present application.
  • the program codes that implement the functions of the processor 1610, the receiver 1640 and the transmitter 1650 are stored in the memory, and the general-purpose processor implements the functions of the processor 1610, the receiver 1640 and the transmitter 1650 by executing the codes in the memory, such as processing
  • the receiver 1610 can call the program code in the memory 1620, or based on the receiver 1640 and the transmitter 1650, so that the computer or network device performs the steps shown in Figure 15 Related operations of the processing unit, communication unit, etc. in the embodiment, or related operations or implementation methods performed by the receiving end of the above method embodiment.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned signal transmitter, Initiator, Sensing Initiator or Sensing Transmitter, and one or more of the aforementioned signal receivers, Responder, Sensing Responder or Sensing Receiver.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU”).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), special-purpose integrated processors, etc. circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC special-purpose integrated processors
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory may include read-only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • bus system may also include a power bus, a control bus, a status signal bus, etc.
  • bus system may also include a power bus, a control bus, a status signal bus, etc.
  • various buses are labeled as bus systems in the figure.
  • this application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on a computer, they cause the computer to execute the precoding matrix indication method described in the embodiment of the application. corresponding operations and/or processes performed by the transmitting end, or causing the computer to perform corresponding operations and/or processes performed by the receiving end in the precoding matrix indication method described in the embodiments of this application.
  • the present application also provides a computer program product.
  • the computer program product includes a computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the steps performed by the transmitter in the precoding matrix indication method described in the embodiment of the present application. Corresponding operations and/or processes; or causing the computer to perform corresponding operations and/or processes performed by the receiving end in the precoding matrix indication method described in the embodiments of this application.
  • This application also provides a chip including a processor.
  • the processor is used to call and run the computer program stored in the memory to perform corresponding operations and/or processes performed by the transmitter in the precoding matrix indication method described in the embodiments of this application, or to perform the precoding matrix indication method described in the embodiments of this application.
  • the encoding matrix indicates the corresponding operations and/or processes performed by the receiving end in the method.
  • the chip further includes a memory, which is connected to the processor through circuits or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip also includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed.
  • the processor obtains the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input-output interface.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can be physically separated. exist, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请应用于无线通信技术领域,如应用于支持IEEE 802.11ax的下一代Wi-Fi协议,如802.11be,Wi-Fi 7或EHT,再如802.11be下一代,如Wi-Fi8,UHR、UHRT的系统等802.11系列协议的无线局域网系统,感知sensing系统等。本申请提供了信道测量方法及相关装置,该方法包括:获取权重向量W;发送基于该权重向量W处理后的信道状态信息;该处理后的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,P和Q均是正整数。本申请实施例中的信道状态信息考虑了增强和/或抑制距离的需求,从而有利于提升感知的感知性能。

Description

信道测量方法及相关装置
本申请要求于2022年09月16日提交中国专利局、申请号为202211131509.0、申请名称为“信道测量方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信道测量方法及相关装置。
背景技术
随着无线通信技术的发展,各类无线通信设备已大量部署到人们的日常生活和工作中,例如,这些无线通信设备可以包括手机、电脑、无线路由器、智能家居设备以及无线传感器等。在常见的家庭环境中,往往会存在十余个甚至上百个无线通信设备,这些无线通信设备以无线方式进行通信的过程中,能够感知到移动物体或人体对无线电波的干扰。无线感知技术可对此类干扰进行测量,以对周围环境进行感知。
例如,无线感知系统中,信号接收端从信号发射端接收的无线信号可包括直达信号以及周围环境中被检测目标反射回来的反射信号,这样,信号接收端会探测到无线链路的信道发生了变化,在通信协议中,将信道量化为信道状态信息(channel state information,CSI),相应的,信道发生的变化可表现为CSI的幅度和相位的变化,如果感知在信号发射端进行处理,信号接收端需要将CSI发送给信号发射端,由信号发射端对该CSI处理获得感知信息,或者信号接收端可自身对CSI处理以获得感知信息。
然而,由于无线带宽资源有限,或信号接收端、信号发射端的处理能力有限,因此,如何提升感知的感知性能成为一个亟待解决的问题。
发明内容
本申请提供一种信道测量方法及相关装置,能够提升感知的感知性能。
第一方面,本申请提供一种信道测量方法,该方法可应用于第一装置,该第一装置可以是无线局域网(wireless local area networks,WLAN)中的接入点或站点,也可以是蜂窝网络中的网络设备或终端设备,也可以是撰写设备中芯片等,本申请不做限定。该方法以第一装置为信号接收端为例进行阐述。该方法包括:第一装置获取权重向量W,发送基于该权重向量W处理后的信道状态信息;其中,该处理后的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,P、Q是正整数。
可见,基于权重向量W处理的信道状态信息考虑了增强和/或抑制距离的需求,从而利用处理后的信道状态信息实现感知相关应用,与直接利用信道估计获得的信道状态信息相比,能够有效提升感知的感知性能。另外,该处理后的信道状态信息在P个第一距离的信噪比或能量是增强的和/或在Q个第二距离的信噪比或能量是抑制的情况,与信道估计直接获得的信道状态信息的情况相比,还能够大大减少信道测量的数据量,从而能够降低信道测量结果传输所需的带宽,以及降低信道测量结果处理所需的处理能力。
一种可选的实施方式中,第一装置获取权重向量W之前,可接收请求帧,该请求帧用于请求建立基于权重向量W的信道测量会话,以及发送响应帧,该响应帧用于响应该请求帧。
可选的,该请求帧可包括测量类型字段,用于指示该请求帧用于请求建立基于权重向量W的信道测量会话。可选的,该响应帧中也可包括该测量类型字段,以实现双方均同意建立基于权重向量W的信道测量会话。
可选的,请求帧可以是感知会话建立阶段的感知会话建立请求帧,相应的,响应帧可以是感知会话建立响应帧。
一种可选的实施方式中,第一装置获取权重向量W,包括:第一装置接收第一帧,该第一帧包括第一字段;该第一字段用于指示权重向量W;或者,用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离。其中,如果第一字段用于指示所述P个第一距离和/或所述Q个第二距离,所述方法还包括:第一装置根据P个第一距离和/或Q个第二距离,确定权重向量W。可见,该实施方式中,第一装置可通过第一帧获得该权重向量W。
另一种可选的实施方式中,第一装置也可从本地,如预定义的权重向量集合中,获取该权重向量。
一种可选的实施方式中,第一装置接收的该第一帧还可包括第二字段;如果该第二字段为第一值,则 第一字段用于指示权重向量W,如该第一字段包括了该权重向量W或该权重向量W的索引;如果该第二字段为第二值,则第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离,如第一字段中包括该P个第一距离和/或Q个第二距离的距离信息。
一种可选的实施方式中,该第一帧为感知会话建立(sensing session setup)阶段的感知会话建立请求(sensing sessionsetup request)帧,用于请求建立基于权重向量W的感知会话;相应的,第一装置接收该sensing session setup request帧后,还可发送感知会话建立响应(sensing session setup response)帧,用于响应该sensing session setup request帧。可选的,该实施方式中,sensing session setup request帧中可包括上述所述的第一字段,或者,可包括上述所述的第一字段和第二字段。可选的,sensing session setup response帧中可包括第三字段,用于指示同意开启基于权重向量W的感知会话。可选的,感知会话建立响应帧中可包括第一字段,以与第一装置匹配建立基于权重向量的感知会话。
另一种可选的实施方式中,该第一帧为感知测量建立(sensing measurement setup)阶段的感知测量建立请求(sensing measurement setup request)帧,用于请求开启基于权重向量W的感知测量;相应的,第一装置接收该sensing measurement setup request帧后,还可发送感知测量建立响应(sensing measurement setup response)帧,用于响应该sensing measurement setup request帧。可选的,该实施方式中,sensing measurement setup request帧中可包括上述所述的第一字段,或者,可包括上述所述的第一字段和第二字段。可选的,sensing measurement setup response帧中可包括第三字段,用于指示同意开启基于权重向量W的感知测量。可选的,感知测量建立响应帧中可包括第一字段,以与第一装置匹配权重向量或距离信息。
又一种可选的实施方式中,针对基于触发(trigger based,TB)的感知测量流程,该第一帧可为感知测量实例(sensing measurement instance)阶段的感知轮询触发(sensing polling trigger)帧或轮询(polling)帧,用于询问是否参与基于权重向量W的感知测量。可选的,该sensing polling trigger帧可包括上述所述的第一字段,或者包括上述所述的第一字段和第二字段。相应的,第一装置接收该sensing polling trigger帧或polling帧之后,还可发送自我发送确认(CTS-to-Self)帧,用于确认参与基于权重向量W的感知测量。可选的,sensing polling trigger帧或polling帧中用户信息字段可指示所需询问的信号接收端。
又一种可选的实施方式中,针对基于触发(trigger based,TB)感知测量流程,或非基于触发(non trigger based,Non TB)感知测量流程中,该第一帧可以为空数据包声明(null data packet announcement,NDPA)帧,该NDPA帧用于告知第一装置NDPA帧的下一帧为感知测量帧,以及后续发送的NDP帧的相关参数。可选的,该实施方式中,该NDPA帧中可包括上述所述的第一字段,或可包括上述所述的第一字段和第二字段。
又一种可选的实施方式中,该第一帧可以为感知测量帧或感知探测帧,如探测(sounding)帧或空数据包(NDP)帧。可选的,感知测量帧或感知探测帧可包括上述所述的第一字段,或可包括上述所述的第一字段和第二字段。
一种可选的实施方式中,第一装置发送基于权重向量W处理的信道状态信息,包括:第一装置发送反馈帧,该反馈帧包括基于权重向量W处理的信道状态信息,且反馈帧中反馈类型字段的值用于指示该反馈帧包括基于权重向量W处理的信道状态信息。
一种可选的实施方式中,第一装置发送反馈帧之前,还可接收触发帧,该触发帧中反馈类型字段的值用于触发第一装置发送基于权重向量W处理的信道状态信息。可见,该实施方式中,第一装置可根据触发帧中反馈类型字段的值,选择反馈对应类型的信道状态信息。
可选的,第一装置发送反馈帧之前也可不接收触发帧,通过反馈帧中的反馈类型字段的值,告知接收端所反馈的信道状态信息的类型。
一种可选的实施方式中,第一装置根据P个第一距离和/或Q个第二距离,确定权重向量W,可包括:第一装置根据P个第一距离和/或Q个第二距离,从预定义的权重向量集合中选择对应的权重向量W。
另一种可选的实施方式中,第一装置根据P个第一距离和/或Q个第二距离,确定权重向量W,包括:根据P个第一距离和/或Q个第二距离,确定转向矩阵V,该转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,每个距离对应的转向行向量是基于该距离对应的传播时延获得的,L个距离是由P个第一距离和/或Q个第二距离构成的;根据转向矩阵V,确定权重向量W。
可选的,权重向量W与转向矩阵V满足如下关系:
W×V+S=U;
其中,S表示L个距离所在路径上的噪声,且是列数为L的行向量;U是由L个距离对应的L个元素构成的行向量,且第一距离对应的元素均为1,第二距离对应的元素均为0。
第二方面,本申请提供一种信道测量方法,该方法可应用于第二装置,该第二装置可以是无线局域网(wireless local area networks,WLAN)中的接入点或站点,也可以是蜂窝网络中的网络设备或终端设备等,本申请不做限定。该方法以第二装置为信号发射端为例进行阐述。该方法包括:第二装置接收基于权重向量W处理的信道状态信息,该基于权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,P、Q是正整数。
可见,该信道测量方法获得的信道测量信息考虑了增强和/或抑制距离的需求,从而利用该信道测量信息实现感知相关应用,与直接利用信道估计获得的信道状态信息相比,能够有效提升感知的感知性能。另外,该信道测量方法获得的信道测量信息在P个第一距离的信噪比或能量是增强的和/或在Q个第二距离的信噪比或能量是抑制的,与信道估计直接获得的信道状态信息的情况相比,还能够大大减少信道测量的数据量,从而能够降低信道测量信息传输所需的带宽,以及降低对信道测量信息处理所需的处理能力。
一种可选的实施方式中,第二装置接收信道状态信息之前,还会发送请求帧,该请求帧用于请求建立基于权重向量W的信道测量会话;相应的,可接收响应帧,该响应帧用于响应该请求帧。可选的,该请求帧可以是感知会话建立阶段的感知会话建立请求帧,相应的,响应帧可以是感知会话建立响应帧。可选的,该请求帧可包括测量类型字段,用于指示该请求帧用于请求建立基于权重向量W的信道测量会话。可选的,该响应帧中也可包括该测量类型字段,以实现双方均同意建立基于权重向量W的信道测量会话。
一种可选的实施方式中,第二装置还可发送第一帧,该第一帧包括第一字段;该第一字段用于指示权重向量W;或者,该第一字段用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离;P个第一距离和/或所述Q个第二距离用于确定所述权重向量W。
一种可选的实施方式中,该第一帧还包括第二字段;如果第二字段为第一值,第一字段用于指示所述权重向量W,如该第一字段包括了该权重向量W或该权重向量W的索引;如果第二字段为第二值,第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离,如第一字段中包括该P个第一距离和/或Q个第二距离的距离信息。
一种可选的实施方式中,该第一帧为sensing measurement setup阶段的sensing measurement setup request帧,用于请求开启基于权重向量W的感知测量;相应的,第二装置发送该sensing measurement setup request帧后,还可接收sensing measurement setup response帧,用于响应该sensing measurement setup request帧。可选的,该实施方式中,sensing measurement setup request帧中可包括上述所述的第一字段,或者,可包括上述所述的第一字段和第二字段。可选的,sensing measurement setup response帧中可包括第三字段,用于指示同意开启基于权重向量W的感知测量。可选的,sensing measurement setup response帧中可包括第一字段,以与第一装置匹配权重向量或距离信息。
又一种可选的实施方式中,针对TB的感知测量流程,该第一帧可为sensing measurement instance阶段的sensing polling trigger帧,用于询问是否参与基于权重向量W的感知测量。可见,该sensing polling trigger帧可包括上述所述的第一字段,或者包括上述所述的第一字段和第二字段。相应的,第二装置发送该sensing polling trigger帧之后,还可接收CTS-to-Self帧,用于确认参与基于权重向量W的感知测量。可选的,sensing polling trigger帧中用户信息字段可指示所需询问的信号接收端。
又一种可选的实施方式中,针对TB或Non TB的感知测量流程中,该第一帧可以为NDPA帧,该NDPA帧用于告知第一装置NDPA帧的下一帧为感知测量帧以及该感知测量帧的相关参数。可见,该实施方式中,该NDPA帧中可包括上述所述的第一字段,或可包括上述所述的第一字段和第二字段。
又一种可选的实施方式中,该第一帧可以为感知测量帧,如sounding帧或NDP帧。可选的,感知测量帧可包括上述所述的第一字段,或可包括上述所述的第一字段和第二字段。
一种可选的实施方式中,第二装置接收信道状态信息,包括:接收反馈帧,该反馈帧包括基于权重向量W处理的信道状态信息,且反馈帧中反馈类型字段的值用于指示反馈帧包括的是基于所述权重向量W处理后的信道状态信息。
一种可选的实施方式中,第二装置接收信道状态信息之前,所述方法还包括:第二装置发送触发帧,该触发帧中反馈类型字段的值用于触发发送基于权重向量W处理的信道状态信息。可见,该实施方式中,第二装置可通过触发帧中反馈类型字段的值,告知第一装置反馈对应类型的信道状态信息。
可选的,第二装置接收反馈帧之前也可不发送触发帧,通过反馈帧中的反馈类型字段的值,获知第一装置所反馈的信道状态信息的类型。
一种可选的实施方式中,P个第一距离和/或所述Q个第二距离用于确定权重向量W,具体为:权重 向量W是根据P个第一距离和/或Q个第二距离,从预定义的权重向量集合中选择的。
另一种可选的实施方式中,P个第一距离和/或所述Q个第二距离用于确定权重向量W,具体为:权重向量W是利用转向矩阵V确定的,转向矩阵V是利用P个第一距离和/或Q个第二距离确定的,转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,每个距离对应的转向行向量是基于该距离对应的传播时延获得的,L个距离是由P个第一距离和/或Q个第二距离构成的。
可选的,权重向量W与转向矩阵V满足如下关系:
W×V+S=U;
其中,S表示L个距离所在路径上的噪声,且是列数为L的行向量;U是由L个距离对应的L个元素构成的行向量,且第一距离对应的元素均为1,第二距离对应的元素均为0。
该方面中,可选的实施方式及其有益效果可参见第一方面中的阐述,此处不再展开阐述。
第三方面,本申请提供一种通信装置,该通信装置可执行上述第一方面所述的信道测量方法,该通信装置可包括:处理单元,用于获取权重向量W;通信单元用于发送基于权重向量W处理的信道状态信息;基于权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
一种可选的实施方式中,处理单元获取权重向量W之前,通信单元还用于接收请求帧,该请求帧用于请求建立基于权重向量W的信道测量会话;通信单元还用于发送响应帧,该响应帧用于响应该请求帧。
一种可选的实施方式中,请求帧包括测量类型字段;该测量类型字段用于指示请求帧用于请求建立基于权重向量W的信道测量会话。
一种可选的实施方式中,通信单元还用于接收第一帧,所述第一帧包括第一字段;第一字段用于指示权重向量W;或者,用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离。如果第一字段用于指示所述P个第一距离和/或所述Q个第二距离,处理单元还用于根据P个第一距离和/或所述Q个第二距离,确定权重向量W;如果第一字段用于指示权重向量W,处理单元具体用于从该第一字段获取权重向量W。
一种可选的实施方式中,第一帧还包括第二字段;如果所述第二字段为第一值,所述第一字段用于指示所述权重向量W;如果所述第二字段为第二值,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
一种可选的实施方式中,第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或探测帧。
一种可选的实施方式中,通信单元用于发送基于所述权重向量W处理的信道状态信息,具体为:发送反馈帧,所述反馈帧包括基于所述权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示所述反馈帧包括基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,通信单元用于发送基于所述权重向量W处理的信道状态信息之前,还用于接收触发帧,该触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,处理单元根据所述P个第一距离和/或所述Q个第二距离,确定权重向量W,具体为:根据所述P个第一距离和/或所述Q个第二距离,确定转向矩阵V,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的;根据所述转向矩阵V,确定权重向量W。
一种可选的实施方式中,权重向量W与所述转向矩阵V满足如下关系:
W×V+S=U;
其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;所述U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
该方面中,可选的实施方式及其有益效果可参见第一方面中的阐述,此处不再展开阐述。
第四方面,本申请提供另一种通信装置,该通信装置可执行上述第二方面中第二装置的相关操作。该通信装置包括:通信单元,用于接收基于权重向量W处理的信道状态信息;基于权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
一种可选的实施方式中,通信单元,还用于发送请求帧,所述请求帧用于请求建立基于权重向量W的信道测量会话;通信单元,还用于接收响应帧,所述响应帧用于响应所述请求帧。
一种可选的实施方式中,请求帧包括测量类型字段;所述测量类型字段用于指示所述请求帧用于请求建立基于权重向量W的信道测量会话。
一种可选的实施方式中,通信单元,还用于发送第一帧,所述第一帧包括第一字段;所述第一字段用于指示权重向量W;或者,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离;所述P个第一距离和/或所述Q个第二距离用于确定所述权重向量W。
一种可选的实施方式中,第一帧还包括第二字段;如果所述第二字段为第一值,所述第一字段用于指示所述权重向量W;如果所述第二字段为第二值,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
一种可选的实施方式中,第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或探测帧。
一种可选的实施方式中,通信单元接收信道状态信息,具体为:接收反馈帧,所述反馈帧包括基于权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示反馈帧包括的是基于权重向量W处理的信道状态信息。
一种可选的实施方式中,通信单元接收信道状态信息之前,还用于发送触发帧,所述触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,P个第一距离和/或所述Q个第二距离用于确定权重向量W,具体为:所述权重向量W是利用转向矩阵V确定的,所述转向矩阵V是利用所述P个第一距离和/或所述Q个第二距离确定的,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的。
一种可选的实施方式中,权重向量W与所述转向矩阵V满足如下关系:
W×V+S=U;
其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;所述U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
该方面中,可选的实施方式及其有益效果可参见第二方面中的阐述,此处不再展开阐述。
第五方面,本申请提供一种通信设备,包括处理器和接口电路,该处理器用于获取权重向量W;该接口电路用于发送基于权重向量W处理的信道状态信息;处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
可选的,该接口电路还用于接收请求帧或发送响应帧,或者,还用于接收第一帧等第一方面中所述的相关步骤,此处不再详述。可选的,处理器还用于根据第一帧中第一字段确定权重向量W等第一方面中所述的相关步骤,此处不再详述。
可选的,该通信设备还可以包括存储器,该存储器用于与处理器耦合,其保存通信设备必要的程序指令和数据。
该方面中,其他可选的实施方式及其有益效果可参见第一方面中的阐述,此处不再展开阐述。
第六方面,本申请提供一种通信设备,包括接口电路,该接口电路用于接收基于权重向量W处理的信道状态信息;处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
可选的,该接口电路还用于发送请求帧或接收响应帧,或者,还用于发送第一帧等第二方面中所述的可选的实施方式,此处不再详述。可选的,该通信设备还可包括处理器,该处理器用于对接收的基于权重向量W处理的信道状态信息进行处理,获得感知结果。
可选的,该通信设备还可以包括存储器,该存储器用于与处理器耦合,其保存通信设备必要的程序指令和数据。
该方面中,其他可选的实施方式及其有益效果可参见第二方面中的阐述,此处不再展开阐述。
第七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,该指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面或第二方 面所述的信道测量方法。可选的,该计算机可读存储介质可以是非易失性可读存储介质。
第八方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的信道测量方法。
第九方面,本申请提供一种芯片或芯片系统,包括处理电路。该处理电路可用于执行以下上述第一方面或第二方面中的相关操作。可选的,该芯片或芯片系统还可以包括输入输出接口。该输入输出接口可以用于输出以下一种或多种信息:基于权重向量W处理后的信道状态信息、请求帧、响应帧、第一帧等。
附图说明
图1是一种无线感知系统的结构示意图;
图2是另一种无线感知系统的结构示意图;
图3是一种图2所示的无线感知系统应用于家庭环境的应用场景示意图;
图4是一种针对TB的感知测量流程的示意图;
图5是另一种针对TB的感知测量流程的示意图;
图6是一种针对Non TB的感知测量流程的示意图;
图7是本申请实施例提供的一种信道测量方法的流程示意图;
图8是本申请实施例提供的另一种信道测量方法的流程示意图;
图9是本申请实施例提供的一种感知方法中各阶段的示意图;
图10是一种sensing measurement setup request帧的结构示意图;
图11是一种Sensing Measurement Parameters Element的结构示意图;
图12是一种Sensing Measurement Parameters字段的结构示意图;
图13是本申请实施例提供的一种感知测量方法的流程示意图;
图14是本申请实施例提供的另一种感知测量方法的流程示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的一通信设备的结构示意图。
具体实施方式
本申请提供一种信道测量方法,该信道测量方法获得的信道测量信息是基于权重向量W处理的信道状态信息,该信道测量信息考虑了增强和/或抑制距离的需求,从而利用该信道测量信息实现感知相关应用,能够有效提升感知性能。
本申请可以应用于无线通信系统中,该无线通信系统可以为无线局域网或蜂窝网。例如,本申请可应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi7或极高的吞吐量(Extremely High Throughput,EHT),再如802.11be下一代,如支持Wi-Fi8,超高可靠性(UultraHhighRreliability,UHR),超高可靠性和吞吐量(UultraHhighRreliability and Tthroughput,UHRT)的系统等802.11系列协议的无线局域网系统,还可以应用于基于超带宽UWB的无线个人局域网系统。该方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点(access point,AP)或站点(station,STA)。该AP和STA既可以是单链路设备,也可以是多链路设备。
AP是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如STA或其他AP)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,AP可以称为AP设备或AP站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中,AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
STA是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或AP通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个 人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片或处理系统。
本申请还可应用于感知系统。示例性的,请参见图1,图1是一种无线感知系统的结构示意图。如图1所示,该无线感知系统可包括信号发射端101和信号接收端102。其中,信号发射端101可以为AP或STA,信号接收端102可以为STA或AP。该无线感知系统中的信号发射端可以是一个或多个,信号接收端也可以是一个或多个。可选的,信号发射端和信号接收端可设置在同一个物理设备或不同的物理设备中,本申请实施例不作限定。其中,图1所示的无线感知系统以人作为感知测量的检测目标103为例进行阐述。
如图1所示,信号发射端101发送无线信号(如用于探测信道状态的参考信号或用于传输数据或控制信息的信号等)后,信号接收端102收到的无线信号包括直达信号以及被检测目标103反射回来的反射信号。当检测目标103运动时,反射信号会发生变化,这样,信号接收端102收到的叠加无线信号也会相应产生变化。此时,信号接收端102会探测到无线链路的信道产生了变化。通常,无线链路的信道在通信协议中被量化表示为信道状态信息(channel state information,CSI),这样,无线链路的信道变化表现为CSI的幅度和相位的变化。可见,无线感知技术通过分析信号接收端102测量得到的CSI随时间的变化,可以感知周围是否有人运动,以及具体在做什么动作。
无线感知技术可以应用于入侵检测、老人看护、手势识别、呼吸睡眠监测及室内人数统计等应用。另外,利用无线电波来进行人体动作感知相对于传统的基于摄像头或者基于手环等穿戴设备来进行感知有以下的好处:首先,无需任何硬件成本,无线通信协议可以支持以CSI的方式来测量无线信道受到的干扰;其次,用户无需佩戴任何设备,对用户干扰小,可以方便对老人、小孩等进行监护,也可以对非配合目标,如窃贼入侵等进行检测;第三,相比于摄像头,无线感知技术对用户隐私影响小,可以部署在卧室、卫生间等较敏感区域;第四,无线感知技术在光照条件差,有遮挡物,如窗帘、木制家具等条件下仍然可以有效进行感知,也可以跨越墙壁进行多房间感知;最后,无线感知在感知精度上非常高,可以感知到呼吸这样微弱的厘米量级的微小运动。
示例性的,请参见图2,图2是另一种无线感知系统的结构示意图。如图2所示,该无线感知系统可包括发起节点和响应节点。其中,发起节点主要用于发起感知测量流程(也可以称为发起感知测量实例(sensing measurement instance))。响应节点主要用于参与感知测量流程,响应发起节点所发起的感知测量流程。
可选的,同一个通信设备在不同时刻可分别担任不同的角色,如发起节点可称为发起者(initiator)或感知发起端(sensing initiator),响应节点可称为响应者(responder)或者感知响应端(sensing responder)。如在时刻T1,通信设备作为感知测量流程的发起者,执行发起者的相关操作;在时刻T2,该通信设备可作为感知测量流程的响应者,参与其他通信设备发起的感知测量流程。可选的,同一个通信设备在同一时刻既可以担任感知测量流程的发起者,也可以担任感知测量流程的响应者。
图2所示的无线感知系统以一个发起节点,如发起节点201,以及参与感知测量流程的三个响应节点,如响应节点202、响应节点203、响应节点204为例进行阐述。一种情况,发起节点可以作为信号发射端,发送感知测量帧,由响应节点将测量的CSI反馈给发起节点,再由发起节点处理该CSI,获得感知信息。另一种情况,发起节点作为信号接收端,由响应节点发送感知测量帧后,发起节点测量获得CSI,以对CSI进行处理,获得感知信息。
例如,图2所示的无线感知系统可部署到室内场景,如家庭环境、办公环境等,以获得室内场景的感知信息。以图2所示的无线感知系统部署在如图3所示的家庭环境的应用场景为例,发起节点201可以是家庭环境中的无线路由器,家庭环境中的无线设备可以作为响应节点,如图3所示的家庭环境中,卫生间的无线设备可以作为响应节点202,厨房中的无线设备作为响应节点203,卧室中的无线设备可作为响应节点204。发起节点可以与图3中多个响应节点之间分别进行感知测量流程的交互,获取信道测量数据后,实现感知信息的获取,从而对整个家居环境进行监控。例如,发起节点201和响应节点202之间的链路可以用于感知测量卫生间的动作情况,如果监测到滑倒的动作,发起节点201可以及时发出警告,通知医护人员;发起节点201与响应节点204之间的链路可用于感知测量卧室中的动作情况,以检测用户的睡眠状况;发起节点201与响应节点203之间的链路可用于感知测量厨房中人员的走动情况,以检测当前厨房中是否有人员走动。
为便于理解,本申请先对几种可选的感知测量流程进行阐述。
Initiator作为信号发射端,Responder作为信号接收端的感知测量流程包括两种:一种是针对TB的感知测量流程,该流程中,AP作为Initiator可发送感知轮询触发帧(Sensing Polling Trigger frame),以轮询一个或者多个STA是否能够参与本次感知测量;STA作为Responder,同意参与本次感知测量的STA可反馈CTS-to-Self帧,以确认参与感知测量。另一种是Non TB的感知测量流程,该流程中,STA作为Initiator,AP作为Responder,无需采用触发机制(如sensing polling trigger帧)进行报文传输,而是通过随机竞争接入的机制,利用sensing NDPA帧告知Sensing Responder,其下一帧是感知测量帧以及该感知测量帧的相关参数,进而,AP可向STA反馈CSI。以下从感知流程包括sensing session setup阶段、sensing measurement setup阶段和measurement instance三个阶段,对感知测量流程进行阐述。
1、针对TB的感知测量流程
请参阅图4,图4是一种针对TB的感知测量流程的示意图。如图4所示:
sensing session setup阶段:1)Initiator向自己期望开启感知会话的Responder(s)发送感知会话建立请求(sensing session setup request)帧,用于请求建立感知会话;2)同意建立感知会话的Responder(s)在接收到该sensing session setup request帧后,可反馈感知会话建立响应(sensing session setup response)帧,用于确认建立感知会话。其中,sensing session setup阶段也可以称为感知会话设置阶段,其目的是实现感知双方均同意建立基于CSI的感知会话。
sensing measurement setup阶段:3)Initiator向Responder(s)发送感知测量建立请求(sensing measurement setup request)帧,用于请求开启与Responder(s)之间的感知测量;4)同意开启感知测量的Responder(s)在接收到该sensing measurement setup request帧后,可反馈感知测量建立响应(sensing measurement setup response)帧,用于确认开启与Initiator之间的感知测量。其中,sensing measurement setup阶段也可称为感知测量设置阶段,用于设置参与感知测量的各节点的配置、角色、参数和匹配等操作。
sensing measurement instance阶段:该阶段可包括三个子阶段,分别是轮询(polling)、探测(sounding)以及报告(reporting),其中,polling子阶段:5)Initiator向Responder(s)发送sensing polling trigger帧,以询问Responder(s)是否参与本次感知测量;6)参与本次感知测量的Responder(s)可发送CTS-to-Self帧,以确认参与本次感知测量。sounding子阶段:7)Initiator向Responder(s)发送感知探测(sensing sounding)帧(可以为空数据包NDP),进而,Responder(s)可利用接收的sensing sounding帧进行信道估计,获得CSI。reporting子阶段:8)Initiator向Responder(s)发送感知触发报告(sensing trigger report frame)帧,用于触发Responder(s)向Initiator反馈获得的CSI;9)Responder(s)向Initiator发送感知测量报告(sensing measurement report)帧,其中,sensing measurement report帧中携带获得的CSI。
一种可选的实施方式中,如图5所示,图5所示的针对TB的感知测量流程相对于图4所示的针对TB的感知测量流程来说,图5所示的针对TB的感知测量流程中measurement instance阶段,sounding子阶段为:7)Initiator向Responder(s)发送NDPA帧,该NDPA帧用于告知Responder(s)下一帧为NDP帧,以及该NDP帧的相关参数;8)Initiator向Responder(s)发送NDP帧,然后再执行Reporting子阶段的相关操作。
本申请中,针对TB的感知测量流程中每个阶段传输的帧可包括但不限于上述描述的实施方式中部分或全部类型的帧。
2、Non TB的感知测量流程
请参阅图6,图6是一种Non TB的感知测量流程的示意图。其中,图6所示的sensing session setup阶段、sensing measurement setup阶段与图4所述的相关内容相同,此处不再详述。其中,图6所示的sensing measurement instance阶段是Non TB的sensing measurement instance阶段:5)Initiator向Responder(s)发送NDPA帧,该NDPA帧用于告知Responder(s)下一帧为NDP帧,以及该NDP帧的相关参数;6)Initiator向Responder(s)发送NDP帧;7)Responder(s)利用接收的NDP帧进行信道估计,获得CSI,并向Initiator发送sensing measurement report帧,其中,sensing measurement report帧中携带获得的CSI。
从Responder是否需要反馈感知测量报告的角度,感知测量流程中感知实例的方案可以分为需要反馈和无需反馈感知测量报告两种类型。上述两种感知测量流程中,均是需要反馈感知测量报告的类型。在无需反馈感知测量报告的类型中,Responder可直接利用CSI进行感知相关应用;也就是说,Responder不需要反馈CSI,由Responder使用CSI进行感知。
上述对本申请实施例提供的信道测量方法的系统架构和/或应用场景进行的说明,是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请中,Non TB的感知测量流程中每个阶段传输的帧可包括但不限于上述描述的实施方式中部分 或全部类型的帧。
可选的,本申请阐述所述的“帧”,也可描述为“报文”、“消息”等,如sensing session setup request帧可描述为sensing session setup request报文,sensing session setup response帧可描述为sensing session setup response报文,等等,此处不再一一列举。
针对需要反馈感知测量报告的类型,responder需将测量获得的CSI通过无线方式发送给initiator,对无线带宽资源的需求和initiator的处理能力的需求均较高;无需反馈感知测量报告的类型,需initiator对测量获得的CSI进行处理获得感知信息,对initiator的处理能力的需求较高。因此,在无线带宽资源有限,或initiator、responder处理能力有限的情况下,如何提升感知性能是一个亟待解决的问题。
本申请提供一种信道测量方法,该方法获得的信道测量信息不仅考虑了增强和/或抑制距离的需求,而且相比于直接利用CSI获取感知信息,该方法需传输或处理的数据量大大减少,因此,利用该方法获得的信道测量信息实现感知相关应用,能够有效提升感知性能。以下结合附图进行详细阐述。
请参阅图7,图7是本申请实施例提供的一种信道测量方法的流程示意图。图7所示的信道测量方法从信道发射端与信道接收端之间交互的角度进行阐述。图7以信号发射端作为信道测量的发起者,信号接收端是信道测量的响应者,信号接收端需要将处理获得的信道测量信息反馈给信号发射端为例,进行阐述。
另外,为便于阐述,本申请将信道测量信息分为两类,分别称为第一CSI和第二CSI,其中,第一CSI是信号接收端利用接收的无线信号进行信道估计,直接获得的信道测量信息;第二CSI是利用权重向量W对第一CSI进行处理,获得的信道测量信息。
如图7所示,该信道测量方法可包括但不限于以下步骤:
S101、信号接收端获取权重向量W;
一种可选的实施方式中,该权重向量W是由信号发射端发送的。例如,信号发射端根据感知需求,需要对距离信号接收端P个第一距离的位置进行感知测量,而无需对距离信号接收端Q个第二距离的位置进行感知测量,那么,信号发射端可向信号接收端发送权重向量W,且该权重向量W用于对P个第一距离的信噪比或能量进行增强,和/或,对Q个第二距离的信噪比或能量进行抑制。其中,为便于阐述,将信噪比或能量需要增强的距离称为第一距离,将信噪比或能量需要抑制的距离称为第二距离。
另一种可选的实施方式中,该权重向量W是由信号接收端根据来自信号发射端发送的P个第一距离和/或Q个第二距离的信息进行计算获得的。可选的,信号接收端根据P个第一距离和/或Q个第二距离,确定权重向量W,包括:根据P个第一距离和/或Q个第二距离,确定转向矩阵V,该转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,每个距离对应的转向行向量是基于该距离对应的传播时延获得的,L个距离是由P个第一距离和/或Q个第二距离构成的;根据转向矩阵V,确定权重向量W。可选的,本申请中,L个距离也可以称为L个路径,即该L个路径是分别具有对应传播时延的传播路径。
可选的,权重向量W与转向矩阵V满足如下关系:
W×V+S=U (1)
其中,S表示L个距离所在路径上的噪声,且是列数为L的行向量;U是由L个距离对应的L个元素构成的基向量,且该基向量中第一距离对应的元素为1,第二距离对应的元素均为0。
例如,假设利用频谱分析预测L个距离对应的L个路径的延迟时间为[τ1,τ2,...,τL],信道测量使用的无线信号的带宽为N个子载波,那么,对于第i个路径的延迟时间τi,其转向向量(steering vector)v(τi):
其中,Δf为一个子载波的带宽。那么,对于所有路径(即L个路径)的延迟时间[τ1,τ2,...,τL],转向矩阵(matrix of steering vectors)V可表示为:
V=[v(τ1),v(τ2),...,v(τL)]T (3)
假设该L个距离中,P等于1,Q等于L-1,该第一距离为路径l对应的距离,即权重向量W用于对路径l的信噪比或能量进行增强,对其余路径上的信噪比或能量进行抑制,那么,基向量U中第l个元素为1,其余元素均为0,即U=[0,...,0,1,0,...,0,0]1×L
那么,权重向量W与转向矩阵V满足的关系,可表示为:
W×[v(τ1),v(τ2),...,v(τL)]T+S=U (4)
基于公式(3),通过矩阵运算,可获得权重向量W:
W=U×VH×(V×VH+S)-1 (5)
其中,VH表示转向矩阵V的共轭转置矩阵,()-1表示括号中运算获得的矩阵的逆矩阵。
S102、信号接收端基于权重向量W对第一CSI进行处理,获得第二CSI;
其中,第二CSI在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,P、Q均是正整数。可选的,第二CSI可以是向量或是一个值,与所需增强的第一距离的个数有关。第一CSI是信号接收端利用接收的无线信号进行信道估计获得的。相应的,在步骤S102之前,信号发射端可发送无线信号,相应的,信号接收端接收该无线信号;其中,信号接收端接收的无线信号是信号发射端发送的无线信号经过信道衰减后的信号,如包括该无线信号的直射信号或该无线信号由环境中物体反射的反射信号等。
一种可选的实施方式中,步骤S102基于权重向量W对第一CSI进行处理,获得第二CSI,可包括:将权重向量W与第一CSI进行点乘运算,获得点乘运算结果作为第二CSI。可选的,该第二CSI可为截断的指示功率(truncated PDP),记为PDPtruncated,或截断的信道脉冲响应(truncated Channel Impulse Response,truncated CIR)的信道测量信息,以下以truncated PDP为例进行阐述。
另一种可选的实施方式中,步骤S102基于权重向量W对第一CSI进行处理,获得第二CSI,可包括:将权重向量W与第一CSI进行点乘运算,获得信道测量信息truncated PDP;对该信道测量信息truncated PDP进行求模处理,获得truncated PDP的模作为第二CSI。可选的,该实施方式中的第二CSI可记为|PDPtruncated|。
又一种可选的实施方式中,步骤S102基于权重向量W对第一CSI进行处理,获得第二CSI,可包括:将权重向量W与第一CSI进行点乘运算,获得信道测量信息truncated PDP;对该信道测量信息truncated PDP进行求模简化处理,获得truncated PDP的模的平方作为第二CSI。可选的,该实施方式中的第二CSI可记为|PDPtruncated|2
又一种可选的实施方式中,步骤S102基于权重向量W对第一CSI进行处理,获得第二CSI,可包括:将权重向量W与第一CSI进行点乘运算,获得信道测量信息truncated PDP;对该信道测量信息truncated PDP进行求模简化处理,获得信道测量信息|truncated PDP|2;对信道测量信息|truncated PDP|2进行线性拟合处理,将线性拟合处理后的结果作为第二CSI。可选的,该实施方式中的第二CSI可记为线性拟合处理后的|PDPtruncated|2
以下以单发送天线、单接收天线为例,对信道发射端与信号接收端之间的信道测量信息步骤S102进行举例阐述。假设信号发射端与信号接收端之间信道测量使用的无线信号的带宽为N个子载波,那么,第一CSI是维度1*N的矩阵,该第一CSI可表示为:
其中,f1,f2,…fN分别表示频率从低到高排列的N个子载波的频点,H(fn,t)表示子载波fn的信道响应,n的取值可为1至N。以极坐标系下的复数形式表示该信道响应H(fn,t),可表示为:
其中,θn表示在子载波fn上由于采样时间偏移(sampling Time Offset,STO)、载波频率偏移(Carrier Frequency Offset,CFO)、锁相环(phase-locked loop,PLL)等引起的相位偏移;其中,假设信号发射端与信号接收端所在的环境中,信号发射端发射的无线信号的传播路径为L个,其中,路径l是有运动物体反射的路径,故子载波fn上的第l个路径的幅度αln、相位2πfnτl(t)随着时间的变化而变化,其余路径 为静态路径,故将子载波fn上的其余路径的频域响应称为静态部分,以表示,其中,Hsn表示静态路径的频率响应中的幅度,εn表示静态路径的频率响应中的相位偏移。
相应的,基于公式(7),将f1至fN的信道响应展开,则公式(6)表示为:
假设信号接收端获取的权重向量W,在极坐标系下的复数形式为:
其中,w1,w2,…wN分别表示频率从低到高排列的N个子载波的权重,其中,ω1至ωN分别表示N个子载波上的幅度因子,φ1至φN分别表示N个子载波上的相位因子。
假设第一CSI为公式(8)所示,权重向量W为公式(9)所示,那么,将权重向量W与第一CSI进行点乘运算获得的truncated PDP可为:
对truncated PDP进行求模简化处理,获得truncated PDP的模的平方|truncated PDP|2可为:
其中,θi,θk是子载波fi、子载波fk由于包检测时延、采样时间偏移(sampling Time Offset,STO)、载波频率偏移(Carrier Frequency Offset,CFO)、锁相环(phase-locked loop,PLL)等引起的相位偏移,在一个数据包内,对于子载波fi、子载波fk来说,包检测时延和STO是相同的,因此,对|truncated PDP| 2进行线性拟合消除处理后,获得线性拟合处理后的|truncated PDP|2可为:
可见,上述可选的各第二CSI,在1个第一距离(即路径l对应的距离)的信噪比或能量是增强的,在其余L-1个第二距离(即除路径l之外的L-1个路径对应的距离)的信噪比或能量是抑制的。另外,上述可选的各第二CSI可获知随着时间变化,路径l的长度变化,从而可推断出路径l上运动物体的运动速 度。因此,第二CSI作为一种信道测量信息,与第一CSI一样,均可用于获得感知信息。
S103、信号接收端向信号发射端发送第二CSI,相应的,信号发射端接收该第二CSI。
可选的,该信道测量方法中,信号接收端可向第三方,如感知信息处理设备发送第二CSI,由感知信息处理设备对该第二CSI进行处理,获得感知信息。其中,第二CSI在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的。
可见,该信道测量方法中,第二CSI可为复数(如公式(10)所示的PDPtruncated)、或为实数(如公式(11)所示的|PDPtruncated|2或如公式(12)所示的|PDPtruncated|2),而公式(8)所示的第一CSI为多维向量或矩阵,故该信道测量方法获得的信道测量信息的数据量大大减少,相比于直接利用第一CSI获得感知信息的方式相比,本申请提供的信道测量方法能够在无线带宽有限或感知信息处理设备的处理能力有限的情况下,有效提升感知效果。另外,第二CSI考虑了所需增强或抑制的距离信息,这样,基于第二CSI获得感知信息的感知应用中,可大大改善感知性能。
在图7所示的基于权重向量W的信道测量方法的基础上,图8提供了另一种信道测量方法的流程示意图,图8所示的信道测量方法以信号发射端与信号接收端之间建立基于权重向量W的信道测量方法为例进行阐述。该信道测量方法可包括但不限于以下步骤:
S201、信号发射端向信号接收端发送请求帧,相应的,信号接收端接收该请求帧;
其中,该请求帧用于请求建立基于权重向量W的信道测量会话。可选的,该请求帧可携带指示信息,该指示信息用于指示请求建立基于权重向量W的信道测量会话。例如,该指示信息可以是测量类型字段,用于指示请求建立基于权重向量W的信道测量会话。
S202、信号接收端向信号发射端发送响应帧,相应的,信号发射端接收该响应帧,该响应帧用于响应该请求帧。
可选的,该响应帧中可携带与请求帧中同样的指示信息,以指示同意建立基于权重向量W的信道测量会话。
S203、信号发射端向信号接收端发送第一帧,相应的,信号接收端接收该第一帧;
一种可选的实施方式中,该第一帧包括第一字段,该第一字段用于指示权重向量W。例如,第一字段可携带权重向量W,如上述公式(9)所示的权重向量中各元素的幅度、相位等信息。再例如,第一字段可携带权重向量W的索引,信号接收端可基于该索引确定对应的权重向量。可选的,信道测量双方中可本地存储可选的权重向量,这样,基于对端指示的权重向量的索引,即可获知本次信道测量所使用的权重向量。
另一种可选的实施方式中,该第一帧包括第一字段,该第一字段用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离。这样,信号接收端可基于这些距离信息,确定权重向量W,可选的,该权重向量W的计算方法可参见图7所述的公式(1)至(5)的相关内容,此处不再详述。
一种可选的实施方式中,该第一帧还包括第二字段,该第二字段用于指示第一字段指示的是权重向量W,还是信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。例如,第二字段为第一值,如1,那么,第一字段用于指示权重向量W;第二字段为第二值,如2,那么,第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
S204、信号接收端基于第一帧,确定信道测量使用的权重向量W,以及确定基于权重向量W的信道状态信息;
可选的,信号接收端确定基于权重向量W的信道状态信息的相关操作,如信号发射端发送无线信号,信号接收端对接收的无线信号进行信道估计,获得第一CSI,继而,基于权重向量W对第一CSI处理,获得第二CSI,即基于权重向量W处理的信道状态信息,可参见图7所述的信道测量方法中的相关内容,此处不再详述。
S205、信号接收端向信号发射端发送基于权重向量W处理的信道状态信息,相应的,信号发射端接收该基于权重向量W处理的信道状态信息。
可选的,步骤S205可包括:信号接收端向信号发射端发送反馈帧,该反馈帧包括基于权重向量W处理的信道状态信息,且该反馈帧中反馈类型字段的值可用于指示反馈帧包括基于权重向量W处理的信道状态信息。
可选的,信号接收端向信号发射端发送反馈帧之前,还可接收触发帧,该触发帧中反馈类型字段的值 用于触发发送基于权重向量W处理的信道状态信息。可选的,该触发帧可为sensing trigger report frame帧。
可选的,反馈类型字段可采用表1所示的值,指示反馈对应类型的信道状态信息。例如,如表1所示,反馈类型字段的值为0,表示触发反馈或反馈的信道状态信息是信道估计直接获得的信道状态信息;反馈类型字段的值为1,表示触发反馈或反馈的信道状态信息是基于权重向量W处理的信道状态信息。
表1
可见,图8提供了一种基于权重向量W的信道测量方法,该方法中在信道测量之前,基于请求帧和响应帧,协商建立基于权重向量W的信道测量会话,以及通过第一帧交互信道测量所使用的权重向量或上述所述的距离信息,这样,信号接收端可在信道测量中获得基于权重向量处理的信道状态信息,并反馈给信号发射端。可见,该方法交互的信道测量信息的数据量大大减少,从而减低了对无线带宽的需求。
请参阅图9,本申请实施例还提供了一种感知方法的流程示意图。图9所示的感知方法是在图8所示的基于权重向量W的信道测量方法的基础上提出,即该感知方法是基于权重向量W的感知方法,例如,图8中协商建立基于权重向量W的信道测量会话,可对应于图9所示的sensing session setup阶段;图8中用于交互信道测量所使用的权重向量或距离信息的第一帧,可以是sensing measurement setup阶段中的相关帧,或是sensing measurement instance阶段的相关帧,这样,用于实现感知反馈的信道测量信息不再是第一CSI,而是第二CSI。例如,图9所示的基于权重向量W的感知方法包括但不限于如图4或图5所示的三个阶段:
sensing session setup阶段,如图4至图6所示的sensing session setup阶段,该阶段用于感知双方(即感知发起者(Sensing Initiator)和感知响应者(Sensing Responder))交换、规定与感知会话建立相关的参数,可选的,该阶段与感知会话建立相关的参数可包括基于权重向量W的感知会话的标识信息,这样,该阶段感知双方可交换规定感知流程(sensing procedure)是基于权重向量W的感知会话。
sensing measurement setup阶段,如图4至图6所示的sensing measurement setup阶段,在感知双方进行感知测量使用的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息保持不变的情况下(即在该sensing measurement setup阶段下的多个sensing measurement instance阶段中使用的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息不变的情况),可在该阶段交互权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息。例如,Sensing Initiator发送给Sensing Responder的sensing measurement setup request帧中可携带该sensing measurement setup阶段中使用的权重向量W的信息,或P个第一距离和/或Q个第二距离的距离信息,相应的,Sensing Responder接收到该sensing measurement setup request帧后,如果同意开启基于权重向量W的感知测量,可向Sensing Initiator反馈sensing measurement setup response帧。可选的,可选的,sensing measurement setup response帧中可包括第三字段,用于指示同意开启基于权重向量W的感知测量。可选的,该sensing measurement setup response帧也可包含该阶段的权重向量W的信息,或P个第一距离和/或Q个第二距离的距离信息,以确保感知双方都已知或获得相同的权重向量,以便后续的感知测量。
例如,图10是一种sensing measurement setup request帧的结构示意图。如图10所示,该sensing measurement setup request帧可包括但不限于以下一项或多项元素或域:类别(Category)、公共行为(Public Action)、对话令牌(Dialog Token)、测量建立标识(Measurement Setup ID)、DMG感知测量建立元素(DMG Sensing Measurement Setup Element)、感知测量参数元素(Sensing Measurement Parameters Element)。其中,该阶段,权重向量W的信息,或上述所述的P个第一距离和/或Q个第二距离的距离信息等需要交互的信息可携带在图10所示的Sensing Measurement Parameters Element和/或其他字段中。
例如,图11是一种Sensing Measurement Parameters Element的结构示意图,如图11所示,该Sensing Measurement Parameters Element包括但不限于以下字段:元素标识(Element ID)、长度(Length)、元素标识扩展(Element ID Extension)、感知测量参数(Sensing Measurement Parameters)、TBD。其中,该阶段,权重向量W的信息,或上述所述的P个第一距离和/或Q个第二距离的距离信息等需要交互的信息可携带在图11所示的Sensing Measurement Parameters Element中的Sensing Measurement Parameters字段和/ 或其他字段中。
例如,图12是一种Sensing Measurement Parameters字段的结构示意图,如图12所示,该Sensing Measurement Parameters字段包括但不限于以下子字段:感知发送端(Sensing Transmitter)、感知接收端(Sensing Receiver)、感知测量报告(Sensing Measurement Report)、测量报告类型(Measurement Report Type)、待确定的(to be determined,TBD)元素。其中,Sensing Transmitter类似于本文中所述的信号发射端,用于在感知测量中发送感知测量帧,如上述所述的sensing sounding帧、NDP帧等感知测量帧;Sensing Receiver类似于本文所述的信号接收端,用于在感知测量中接收感知测量帧。Sensing Measurement Report用于指示请求或返回的感知测量报告,Measurement Report Type用于指示请求或返回的感知测量报告的类型。TBD元素表示潜在的,正在讨论的或待最终确定的其他信息或字段。
可选的,本申请中,感知测量报告的类型有两种,一种是基于感知测量帧直接获得的第一CSI,另一种是基于权重向量获得的第二CSI。这两种类型,可通过Measurement Report Type子字段分别指示。例如,若该Measurement Report Type为第一值(如1),可指示请求或返回的感知测量报告是基于感知测量帧直接获得的第一CSI;若该Measurement Report Type为第二值(如0),可指示请求或返回的感知测量报告是基于权重向量获得的第二CSI。
sensing measurement instance阶段,如图4至图6所示的sensing measurement instance阶段,可选的,需要感知双方交互的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息等也可在感知实例阶段进行交互。
例如,针对TB的感知测量流程来说,需要感知双方交互的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息等可携带在以下sensing polling trigger帧、CTS-to-Self帧、NDPA帧、NDP帧中一个或多个帧中。Non TB的感知测量流程中,需要感知双方交互的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息等可携带在NDPA帧、NDP帧中一个或多个帧中。该实施方式中,有利于在交互权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息等信息,在一个感知测量建立中不稳定,如交互的信息需要在每个感知测量实例或部分感知测量实例中发生变化的情况下,灵活调整所需交互的信息,提升感知测量的性能。
可选的,从Responder是否需要反馈感知测量报告的角度,感知测量流程中感知实例的方案可以分为需要反馈和无需反馈感知测量报告两种类型。针对Initiator需要Responder反馈感知测量报告的需求,Responder需根据权重向量、第一CSI计算第二CSI,然后通过基于权重向量感知的感知测量报告反馈给Initiator。Initiator获取该信道测量后,可以利用第二CSI进行感知相关应用。
可选的,需要反馈感知测量报告的类型中,Responder需根据权重向量、第一CSI计算第二CSI,然后通过基于权重向量感知的感知测量报告反馈给Initiator;Initiator获取该信道测量后,可以利用第二CSI进行感知相关应用。无需反馈感知测量报告的类型中,Responder可根据权重向量、第一CSI计算第二CSI,然后,直接利用第二CSI进行感知相关应用;也就是说,Responder不需要反馈第一CSI或第二CSI,由Responder使用第一CSI或第二CSI进行感知。
可选的,图9所示的基于权重向量W的感知方法还包括如下两个阶段结束感知测量流程:
感知测量建立终止(sensing measurement setuptermination)阶段,该阶段用于结束感知双方之前建立的感知测量,以及停止对应的感知测量建立阶段所交互的参数的使用。
感知会话终止(sensing session termination)阶段,该阶段用于感知双方结束之前建立的感知会话,以及停止对应的感知会话建立阶段所交互的参数的使用。
请参阅图13,图13是本申请实施例提供的一种感知测量方法的流程示意图。图13所示的感知测量方法,是基于图4所示的针对TB的感知测量流程,提供的基于权重向量的感知测量流程。该感知测量方法是针对TB机制,AP作为Sensing Initiator,STA作为Sensing Responder,AP需要STA反馈信道测量信息的Sensing measurement instance的感知测量方法,该感知测量方法的详细流程可包括但不限于以下步骤:
S301、Sensing Initiator向Sensing Responder发送sensing session setup request帧,相应的,Sensing Responder接收该sensing session setup request帧,该sensing session setup request帧用于请求建立基于权重向量的感知会话;
可选的,该sensing session setup request帧可携带如步骤S201部分所述的测量类型字段。例如,该sensing session setup request帧可携带感知测量类型(sensing measurement Type)字段,用于指示该sensing session setup request帧用于请求建立基于权重向量W的感知会话,不同于信道测量信息是CSI的感知会话。例如, 该sensing measurement Type字段可用值0指示基于CSI的感知会话,用值1指示基于权重向量的感知会话。
S302、Sensing Responder向Sensing Initiator发送sensing session setup response帧,相应的,Sensing Initiator接收该sensing session setup response帧,该sensing session setup response帧用于响应sensing session setup request帧。
可选的,sensing session setup response帧可携带相同的sensing measurement Type字段,例如,设置为值1,以实现感知双方均同意建立基于权重向量的感知会话。
基于上述步骤S301、S302,参与感知会话的AP与STA可关联成功,后续可执行感知测量建立阶段的如下操作,以交互权重向量等相关信息。
S303、Sensing Initiator向Sensing Responder发送sensing measurement setup request帧,相应的,Sensing Responder接收该sensing measurement setup request帧,该sensing measurement setup request帧用于请求开启基于权重向量W的感知测量;
一种可选的实施方式中,该sensing measurement setup request帧可以是图8所述的第一帧,如图9所述,sensing measurement setup阶段,感知双方进行感知测量使用的权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息,保持不变的情况下,可在该阶段交互权重向量W,或上述所述的P个第一距离和/或Q个第二距离的距离信息。也就是说,该实施方式中,该sensing measurement setup request帧可包括图8所述的第一字段,该第一字段用于指示权重向量W,或者,用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离。其中,如图8所述,第一字段指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离的情况,Sensing Responder还可基于该距离信息采用前文所述的方法计算权重向量,此处不再详述。
可选的,该第一字段可以是权重向量(weight vector)字段,可以位于图10所示的Sensing Measurement Parameters Element和/或其他字段中,或者位于图11所示的Sensing Measurement Parameters Element中的Sensing Measurement Parameters字段和/或其他字段中,或者位于图12所示的TBD中。
可选的,该sensing measurement setup request帧可包括图8所述的第一字段外,还可包括图8所述的第二字段。例如,第二字段在sensing measurement setup request帧中的位置位于第一字段之前,第二字段为第一值时,表示后续第一字段是权重向量W的值或索引;第二字段为第二值时,表示后续的第一字段是上述所述的距离信息。
S304、Sensing Responder向Sensing Initiator发送sensing measurement setup response帧,相应的,Sensing Initiator接收该sensing measurement setup response帧,该sensing measurement setup response帧用于响应sensing measurement setup request帧;
可选的,该sensing measurement setup response帧可用于确认建立与Sensing Initiator之间的基于权重向量的感知测量。可选的,该sensing measurement setup response帧中可包括前述的第三字段,如状态机字段(Status code field)为0,可表示Sensing Responder同意开启基于权重向量的感知测量。可选的,该sensing measurement setup response帧可包括第一字段,或还可包括第二字段,其中,该sensing measurement setup response帧中第一字段、第二字段可与sensing measurement setup request帧中的第一字段、第二字段具有相同的值,比如,该sensing measurement setup response帧可复制sensing measurement setup request帧中第一字段、第二字段的值。
基于上述步骤S301至S304,参与感知测量的AP与STA可关联且设置成功,后续可进入sensing measurement instance阶段,获取信道测量信息。其中,该实施例针对TB-based的机制,需执行步骤S305。
S305、Sensing Initiator向Sensing Responder发送sensing polling trigger帧,相应的,Sensing Responder接收该sensing polling trigger帧,该sensing polling trigger帧用于询问Sensing Responder参与基于权重向量的感知测量;
其中,该sensing polling trigger帧中用户信息字段(User Information field)中会指明参与基于权重向量的感知测量的接收端,即Sensing Responder,如STA,有哪些。
可选的,步骤S303、S304中所述的将第一字段、第二字段放置在sensing measurement setup request帧的实施方式外,还有另一种可选的实施方式,第一字段、第二字段位于该sensing polling trigger帧中,该实施方式可支持Sensing Initiator,如AP侧,动态修改第一字段、第二字段中的信息,并告知Sensing Responder,如STA,及时更新对应的信息,从而使得在一个感知测量实例中,STA可根据最新的权重向量或距离信息,获取最新的信道测量信息。
S306、Sensing Responder向Sensing Initiator发送CTS-to-Self ACK帧,相应的,Sensing Initiator接收 该CTS-to-Self ACK帧,该CTS-to-Self ACK帧用于响应sensing polling trigger帧;
可选的,该CTS-to-Self ACK帧用于告知Sensing Initiator,Sensing Responder参与基于权重向量的感知测量。
S307、Sensing Initiator向Sensing Responder发送sounding帧,相应的,Sensing Responder接收该sounding帧,该sounding帧用于获得基于权重向量的信道测量信息;
可选的,步骤S303中所述的将第一字段、第二字段放置在sensing measurement setup request帧的实施方式,或步骤S305中所述的将第一字段、第二字段放置在sensing polling trigger帧的实施方式外,还存在又一种可选的实施方式,将第一字段、第二字段放置在该sounding帧,该实施方式可同样支持Sensing Initiator,如AP侧,动态修改第一字段、第二字段中的信息,并告知Sensing Responder,如STA,及时更新对应的信息,从而使得在一个感知测量实例中,STA可根据最新的权重向量或距离信息,获取最新的信道测量信息。
S308、Sensing Initiator向Sensing Responder发送sensing trigger report frame帧,相应的,Sensing Responder接收该sensing trigger report frame帧,该sensing trigger report frame帧用于告知Sensing Responder反馈基于权重向量W处理的信道状态信息;
可选的,该sensing trigger report frame帧中反馈类型字段可如S205所述,指示Sensing Responder发送的反馈帧中需包括基于权重向量W处理的信道状态信息。可选的,该sensing trigger report frame帧中还可规定Sensing Responder是进行立即反馈(immediate feedback)机制,还是延迟反馈(delayed feedback)机制。
S309、Sensing Responder向Sensing Initiator发送Sensing Measurement Report帧,相应的,Sensing Initiator接收该Sensing Measurement Report帧,该Sensing Measurement Report帧可以是图8中步骤S205所述的反馈帧,包括基于权重向量W处理的信道状态信息。
可选的,该Sensing Measurement Report帧中感知测量类型的值可用于指示Sensing Measurement Report字段中放置的是基于权重向量W处理的信道状态信息。
可见,图13所示的感知测量方法能够获得基于权重向量处理的信道状态信息,不同于直接信道估计获得的信道状态信息,大大减少了信道测量信息的数据量,从而降低了对无线带宽的需求,也有利于提升基于获得的信道测量信息进行感知的感知性能。
请参阅图14,图14是本申请实施例提供的另一种感知测量方法的流程示意图。图14所示的感知测量方法,是基于图6所示的Non-TB机制,STA作为Sensing Initiator,AP作为Sensing Responder,STA需要AP反馈信道测量信息的Sensing measurement instance的感知测量方法,该感知测量方法的详细流程可包括但不限于以下步骤:
S401、Sensing Initiator向Sensing Responder发送sensing session setup request帧,相应的,Sensing Responder接收该sensing session setup request帧,该sensing session setup request帧用于请求建立基于权重向量的感知会话;
S402、Sensing Responder向Sensing Initiator发送sensing session setup response帧,相应的,Sensing Initiator接收该sensing session setup response帧,该sensing session setup response帧用于响应sensing session setup request帧;
S403、Sensing Initiator向Sensing Responder发送sensing measurement setup request帧,相应的,Sensing Responder接收该sensing measurement setup request帧,该sensing measurement setup request帧用于请求开启基于权重向量W的感知测量;
S404、Sensing Responder向Sensing Initiator发送sensing measurement setup response帧,相应的,Sensing Initiator接收该sensing measurement setup response帧,该sensing measurement setup response帧用于响应sensing measurement setup request帧;
其中,步骤S401至S404与上述图13中步骤S301至S302相同,不同之处在于STA作为Sensing Initiator,AP作为Sensing Responder,故步骤S401至S404的相关内容可参见上述图13所述的内容,此处不再详述。
S405、Sensing Initiator向Sensing Responder发送sensing NDPA帧,相应的,Sensing Responder接收该sensing NDPA帧,该sensing NDPA帧用于告知Sensing Responder,下一帧是感知测量帧,如NDP帧,以及该感知测量帧的相关参数;
可选的,上述所述的将第一字段、第二字段放置在sensing measurement setup request帧的实施方式外, 还有另一种可选的实施方式,第一字段、第二字段可位于该sensing NDPA帧中,该实施方式可支持Sensing Initiator,如STA侧,动态修改第一字段、第二字段中的信息,并告知Sensing Responder,如AP,及时更新对应的信息,从而使得AP可根据最新的权重向量或距离信息,获取最新的信道测量信息。
S406、Sensing Initiator向Sensing Responder发送该NDP帧,相应的,Sensing Responder接收该NDP帧,该NDP帧用于确定基于权重向量处理的信道状态信息;
可选的,上述所述的将第一字段、第二字段放置在sensing measurement setup request帧的实施方式,第一字段、第二字段可位于该sensing NDPA帧的实施方式外,还存在又一种可选的实施方式,第一字段、第二字段可位于该NDP帧,该实施方式可支持Sensing Initiator,如STA侧,动态修改第一字段、第二字段中的信息,并告知Sensing Responder,如AP,及时更新对应的信息,从而使得AP可根据最新的权重向量或距离信息,获取最新的信道测量信息。
S407、Sensing Responder向Sensing Initiator发送Sensing Measurement Report帧,相应的,Sensing Initiator接收该Sensing Measurement Report帧,该Sensing Measurement Report帧可以是图8中步骤S205所述的反馈帧,包括基于权重向量W处理的信道状态信息。
可选的,该Sensing Measurement Report帧中感知测量类型的值可用于指示Sensing Measurement Report字段中放置的是基于权重向量W处理的信道状态信息。
图14所示的感知测量方法针对non-TB机制,无需采用触发机制(如图13中通过发送sensing polling trigger帧)进行报文传输,而是通过随机竞争接入的机制,利用sensing NDPA帧告知Sensing Responder,其下一帧是感知测量帧以及该感知测量帧的相关参数。这样,AP可及时基于该感知测量帧,获得基于权重向量W处理的信道状态信息,从而反馈给STA。可见,图14所示的感知测量方法大大减少了信道测量信息的数据量,从而降低了对无线带宽的需求,也有利于提升基于获得的信道测量信息进行感知的感知性能。
又一实施例中,与图13所示的感知测量方法、图14所示的感知测量方法的不同之处在于,该实施例中,在图13所述的步骤S306之后,该针对TB的感知测量方法还可包括图14所述的步骤S405所述的NDPA帧的操作、S406所述的NDP帧的内容,相应的,该针对TB的感知测量方法利用NDP帧,替代图13所述的sounding帧,作为感知测量帧。也就是说,对应于图5所示的包含NDPA帧的针对TB的感知测量流程,本申请还提供一实施例,该实施例提供的感知测量方法,包括图13所示的感知测量方法中除sounding帧外的相关操作,还可包括图14所示的感知测量方法中NDPA帧和NDP帧的sounding子阶段。可见,该实施例所述的基于权重向量W的感知测量既包括polling子阶段,也包括NDPA帧、NDP帧的sounding子阶段,从而提升利用该感知测量的感知测量信息进行感知的感知性能。
在本申请的描述中,除非另有说明,"多个"是指两个或多于两个。"以下至少一项(个)"或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了"第一"、"第二"等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解"第一"、"第二"等字样并不对数量和执行次序进行限定,并且"第一"、"第二"等字样也并不限定一定不同。同时,在本申请实施例中,"示例性的"或者"例如"等词用于表示作例子、例证或说明。本申请实施例中被描述为"示例性的"或者"例如"的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用"示例性的"或者"例如"等词旨在以具体方式呈现相关概念,便于理解。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
本申请实施例可以根据上述方法示例对第一设备和第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图15和图16详细描述本申请实施例的通信装置。其中,该通信装置是上述所述的信号发射端、Initiator、Sensing Initiator或Sensing Transmitter,或者,该通信装置可以是上述所述的信号接收端、Responder、Sensing Responder或Sensing Receiver。
参见图15,图15是本申请实施例提供的一种通信装置1500的结构示意图。如图15所示,该通信装置1500包括处理单元1501和通信单元1502。
可选的,该通信装置1500可用于执行上述所述的信号发射端、Initiator、Sensing Initiator或Sensing Transmitter的相关操作,其中:
处理单元1501,用于获取权重向量W;
通信单元1502,用于发送基于所述权重向量W处理的信道状态信息;
该基于所述权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
一种可选的实施方式中,处理单元1501获取权重向量W之前,通信单元1502还用于接收请求帧,请求帧用于请求建立基于权重向量W的信道测量会话,以及还用于发送响应帧,响应帧用于响应所述请求帧。
一种可选的实施方式中,该请求帧包括测量类型字段;所述测量类型字段用于指示所述请求帧用于请求建立基于权重向量W的信道测量会话。
一种可选的实施方式中,处理单元1501获取权重向量W,可以为根据第一帧获取权重向量W。相应的,通信单元1502还用于接收第一帧,所述第一帧包括第一字段;所述第一字段用于指示权重向量W;或者,用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离。其中,如果所述第一字段用于指示所述P个第一距离和/或所述Q个第二距离,处理单元1501还用于根据所述P个第一距离和/或所述Q个第二距离,确定权重向量W。
一种可选的实施方式中,处理单元1501根据所述P个第一距离和/或所述Q个第二距离,确定权重向量W,具体为:根据所述P个第一距离和/或所述Q个第二距离,确定转向矩阵V,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的;
根据所述转向矩阵V,确定权重向量W。
一种可选的实施方式中,权重向量W与所述转向矩阵V满足如下关系:
W×V+S=U;
其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;
所述U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
一种可选的实施方式中,第一帧还包括第二字段;如果第二字段为第一值,第一字段用于指示权重向量W;如果第二字段为第二值,第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
一种可选的实施方式中,所述第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或探测帧。
一种可选的实施方式中,通信单元1502发送基于所述权重向量W处理的信道状态信息,具体为:发送反馈帧,所述反馈帧包括基于所述权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示所述反馈帧包括基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,通信单元1502发送基于所述权重向量W处理的信道状态信息之前,通信单元1502还用于接收触发帧,所述触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
可选的,通信装置1500可执行上述所述的信号接收端、Responder、Sensing Responder或Sensing Receiver的相关操作,其中:
通信单元1502,用于接收基于权重向量W处理的信道状态信息;
所述基于权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
一种可选的实施方式中,通信单元1502,还用于发送请求帧,所述请求帧用于请求建立基于权重向量W的信道测量会话;以及接收响应帧,所述响应帧用于响应所述请求帧。
一种可选的实施方式中,所述请求帧包括测量类型字段;所述测量类型字段用于指示所述请求帧用于请求建立基于权重向量W的信道测量会话。
一种可选的实施方式中,通信单元1502,还用于发送第一帧,所述第一帧包括第一字段;所述第一字段用于指示权重向量W;或者,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离;所述P个第一距离和/或所述Q个第二距离用于确定所述权重向量W。
一种可选的实施方式中,第一帧还包括第二字段;如果所述第二字段为第一值,所述第一字段用于指示所述权重向量W;如果所述第二字段为第二值,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
一种可选的实施方式中,第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或探测帧。
一种可选的实施方式中,通信单元1502接收信道状态信息,具体为:接收反馈帧,所述反馈帧包括基于权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示所述反馈帧包括的是基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,通信单元1502还用于在接收信道状态信息之前,发送触发帧,所述触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
一种可选的实施方式中,所述P个第一距离和/或所述Q个第二距离用于确定权重向量W,具体为:所述权重向量W是利用转向矩阵V确定的,所述转向矩阵V是利用所述P个第一距离和/或所述Q个第二距离确定的,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的。
一种可选的实施方式中,权重向量W与所述转向矩阵V满足如下关系:
W×V+S=U;
其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
请参阅图16,图16为本申请实施例提供的一通信设备的结构示意图,如图16所示,该通信设备可以为芯片或电路,如可设置于网络设备内的芯片或电路。该通信设备执行上述方法中的接收端的相关操作。该设备可以包括处理器1610,还可以包括存储器1620,该存储器1620用于存储指令,该处理器1610用于执行该存储器1620存储的指令,以使所述设备实现上述所述的信号发射端、Initiator、Sensing Initiator或Sensing Transmitter的相关操作,或者,实现上述所述的信号接收端、Responder、Sensing Responder或Sensing Receiver的相关操作。
进一步的,该通信设备还可以包括接收器1640和发送器1650。再进一步的,该通信设备还可以包括总线系统1630。
其中,处理器1610、存储器1620、接收器1640和发送器1650通过总线系统1630相连,处理器1610用于执行该存储器1620存储的指令,以控制接收器1640接收信号,并控制发送器1650发送信号,完成上述方法中网络设备的步骤。其中,接收器1640和发送器1650可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器1620可以集成在所述处理器1610中,也可以与所述处理器1610分开设置。
作为一种实现方式,接收器1640和发送器1650的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器1610可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的接收端的相关操作。即将实现处理器1610,接收器1640和发送器1650功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器1610,接收器1640和发送器1650的功能,比如,处理器1610可以调用存储器1620中的程序代码,或者基于接收器1640和发送器1650,使得计算机或网络设备执行图15所示的 实施例中处理单元、通信单元等的相关操作,或者执行上述方法实施例接收端执行的相关操作或实施方式。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的信号发射端、Initiator、Sensing Initiator或Sensing Transmitter,和一个或多个前述的信号接收端、Responder、Sensing Responder或Sensing Receiver。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
此外,本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程,或使得计算机执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程;或使得计算机执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例所述预编码矩阵指示方法中由发射端执行的相应操作和/或流程,或以执行本申请实施例所述预编码矩阵指示方法中由接收端执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理 存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种信道测量方法,其特征在于,所述方法包括:
    获取权重向量W;
    发送基于所述权重向量W处理的信道状态信息;
    所述基于所述权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取权重向量W之前,所述方法还包括:
    接收请求帧,所述请求帧用于请求建立基于权重向量W的信道测量会话;
    发送响应帧,所述响应帧用于响应所述请求帧。
  3. 根据权利要求2所述的方法,其特征在于,所述请求帧包括测量类型字段;
    所述测量类型字段用于指示所述请求帧用于请求建立基于权重向量W的信道测量会话。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述获取权重向量W,包括:
    接收第一帧,所述第一帧包括第一字段;
    所述第一字段用于指示权重向量W;或者,用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离;
    如果所述第一字段用于指示所述P个第一距离和/或所述Q个第二距离,所述方法还包括:
    根据所述P个第一距离和/或所述Q个第二距离,确定权重向量W。
  5. 根据权利要求4所述的方法,其特征在于,所述第一帧还包括第二字段;
    如果所述第二字段为第一值,所述第一字段用于指示所述权重向量W;
    如果所述第二字段为第二值,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量实例阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或感知探测帧。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述发送基于所述权重向量W处理的信道状态信息,包括:
    发送反馈帧,所述反馈帧包括基于所述权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示所述反馈帧包括基于所述权重向量W处理的信道状态信息。
  8. 根据权利要求7所述的方法,其特征在于,所述发送基于所述权重向量W处理的信道状态信息之前,所述方法还包括:
    接收触发帧,所述触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
  9. 根据权利要求4所述的方法,其特征在于,所述根据所述P个第一距离和/或所述Q个第二距离,确定权重向量W,包括:
    根据所述P个第一距离和/或所述Q个第二距离,确定转向矩阵V,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的;
    根据所述转向矩阵V,确定权重向量W。
  10. 根据权利要求9所述的方法,其特征在于,所述权重向量W与所述转向矩阵V满足如下关系:
    W×V+S=U;
    其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;
    所述U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
  11. 一种信道测量方法,其特征在于,所述方法包括:
    接收基于权重向量W处理的信道状态信息;
    所述基于权重向量W处理的信道状态信息在P个第一距离的信噪比或能量是增强的,和/或,在Q个第二距离的信噪比或能量是抑制的,所述P、所述Q是正整数。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    发送请求帧,所述请求帧用于请求建立基于权重向量W的信道测量会话;
    接收响应帧,所述响应帧用于响应所述请求帧。
  13. 根据权利要求12所述的方法,其特征在于,所述请求帧包括测量类型字段;
    所述测量类型字段用于指示所述请求帧用于请求建立基于权重向量W的信道测量会话。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述方法还包括:
    发送第一帧,所述第一帧包括第一字段;
    所述第一字段用于指示权重向量W;或者,
    所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或信噪比或能量需抑制的Q个第二距离;所述P个第一距离和/或所述Q个第二距离用于确定所述权重向量W。
  15. 根据权利要求14所述的方法,其特征在于,所述第一帧还包括第二字段;
    如果所述第二字段为第一值,所述第一字段用于指示所述权重向量W;
    如果所述第二字段为第二值,所述第一字段用于指示信噪比或能量需增强的P个第一距离,和/或,信噪比或能量需抑制的Q个第二距离。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一帧为感知会话建立阶段的感知会话建立请求帧、感知测量建立阶段的感知测量建立请求帧,或感知测量阶段的感知轮询触发帧、轮询帧、空数据包声明帧、空数据包帧或探测帧。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述接收信道状态信息,包括:
    接收反馈帧,所述反馈帧包括基于权重向量W处理的信道状态信息,且所述反馈帧中反馈类型字段的值用于指示所述反馈帧包括的是基于所述权重向量W处理的信道状态信息。
  18. 根据权利要求17所述的方法,其特征在于,所述接收信道状态信息之前,所述方法还包括:
    发送触发帧,所述触发帧中反馈类型字段的值用于触发发送基于所述权重向量W处理的信道状态信息。
  19. 根据权利要求14所述的方法,其特征在于,所述P个第一距离和/或所述Q个第二距离用于确定权重向量W,具体为:所述权重向量W是利用转向矩阵V确定的,所述转向矩阵V是利用所述P个第一距离和/或所述Q个第二距离确定的,所述转向矩阵V是由L个距离中每个距离对应的转向行向量构成的,所述每个距离对应的转向行向量是基于该距离对应的传播时延获得的,所述L个距离是由所述P个第一距离和/或所述Q个第二距离构成的。
  20. 根据权利要求19所述的方法,其特征在于,所述权重向量W与所述转向矩阵V满足如下关系:
    W×V+S=U;
    其中,所述S表示所述L个距离所在路径上的噪声,且是列数为所述L的行向量;
    所述U是由所述L个距离对应的L个元素构成的行向量,且所述第一距离对应的元素均为1,所述第二距离对应的元素均为0。
  21. 一种通信装置,其特征在于,包括一个或多个功能单元,所述一个或多个功能单元用于执行如权利要求1至10任一项所述的方法,或用于执行如权利要求11至20任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10中任一项所述的方法,或者,用于实现如权利要求11至20中任一项所述的方法。
  23. 一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法,或执行如权利要求11至20中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器,所述处理器调用存储器中存储的计算机程序以使得所述通信装置实现如权利要求1至10任一项的方法,或者,实现如权利要求11至20任一项的方法。
  25. 一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有计算机程序,当计算机程序被运行时,实现如权利要求1至10任一项的方法,或者,实现如权利要求11至20任一项的方法。
  26. 一种芯片,其特征在于,包括处理器,所述处理器调用存储器中存储的计算机程序以使得包括所述芯片的通信装置实现如权利要求1至10任一项的方法,或者,实现如权利要求11至20任一项的方法。
PCT/CN2023/104252 2022-09-16 2023-06-29 信道测量方法及相关装置 WO2024055702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211131509.0 2022-09-16
CN202211131509.0A CN117768936A (zh) 2022-09-16 2022-09-16 信道测量方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024055702A1 true WO2024055702A1 (zh) 2024-03-21

Family

ID=90274165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104252 WO2024055702A1 (zh) 2022-09-16 2023-06-29 信道测量方法及相关装置

Country Status (2)

Country Link
CN (1) CN117768936A (zh)
WO (1) WO2024055702A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034803A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 无线通信系统中信道状态信息反馈方法和装置
CN112075034A (zh) * 2018-05-04 2020-12-11 三星电子株式会社 高级无线通信系统的预编码
US20220036123A1 (en) * 2021-10-20 2022-02-03 Intel Corporation Machine learning model scaling system with energy efficient network data transfer for power aware hardware
US20220159736A1 (en) * 2019-08-06 2022-05-19 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
WO2022124869A1 (ko) * 2020-12-11 2022-06-16 엘지전자 주식회사 개선된 센싱 절차
WO2022148461A1 (zh) * 2021-01-08 2022-07-14 华为技术有限公司 无线局域网感知方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034803A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 无线通信系统中信道状态信息反馈方法和装置
CN112075034A (zh) * 2018-05-04 2020-12-11 三星电子株式会社 高级无线通信系统的预编码
US20220159736A1 (en) * 2019-08-06 2022-05-19 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
WO2022124869A1 (ko) * 2020-12-11 2022-06-16 엘지전자 주식회사 개선된 센싱 절차
WO2022148461A1 (zh) * 2021-01-08 2022-07-14 华为技术有限公司 无线局域网感知方法及装置
CN114760640A (zh) * 2021-01-08 2022-07-15 华为技术有限公司 无线局域网感知方法及装置
US20220036123A1 (en) * 2021-10-20 2022-02-03 Intel Corporation Machine learning model scaling system with energy efficient network data transfer for power aware hardware

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAZZELLA LORENZO; TAGLIAFERRI DARIO; MIZMIZI MAROUAN; MATTEUCCI MATTEO; BADINI DAMIANO; MAZZUCCO CHRISTIAN; SPAGNOLINI UMBERTO: "Position-agnostic Algebraic Estimation of 6G V2X MIMO Channels via Unsupervised Learning", 2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), IEEE, 10 April 2022 (2022-04-10), pages 740 - 745, XP034123370, DOI: 10.1109/WCNC51071.2022.9771914 *

Also Published As

Publication number Publication date
CN117768936A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021023093A1 (zh) 感知方法和通信装置
EP3158359B1 (en) Asymmetric double-sided two-way ranging in an ultrawideband communication system
TWI611716B (zh) 用於全雙工無線通訊的媒體存取控制(mac)通訊協定
US20150365913A1 (en) Failure conditions for fine timing measurement (ftm) protocol
US10386451B2 (en) Method for an enhanced time of arrival positioning system
WO2022105756A1 (zh) 定位方法、装置、终端设备、基站及位置管理服务器
WO2021047666A1 (zh) 一种探测参考信号传输的方法、相关设备以及存储介质
TW202239230A (zh) 通訊方法以及通訊裝置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2024055702A1 (zh) 信道测量方法及相关装置
WO2023016441A1 (zh) 通信方法以及装置
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2022206328A1 (zh) 一种通信协作方法及装置
WO2021204253A1 (zh) 一种波束训练方法及装置
WO2022160298A1 (zh) 时间同步方法、装置和系统
WO2021072602A1 (zh) 链路失败检测的方法和装置
WO2024078309A1 (zh) 一种感知的方法和通信装置
WO2024027539A1 (zh) 支持Wi-Fi感知的通信方法和相关产品
WO2024078255A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2023143153A1 (zh) 管理波束的方法和装置
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2024078196A1 (zh) 定位方法与通信装置
WO2023185342A1 (zh) 测量方法及测量装置
WO2024114189A1 (zh) 一种定位方法及通信装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864441

Country of ref document: EP

Kind code of ref document: A1