WO2022148461A1 - 无线局域网感知方法及装置 - Google Patents

无线局域网感知方法及装置 Download PDF

Info

Publication number
WO2022148461A1
WO2022148461A1 PCT/CN2022/071029 CN2022071029W WO2022148461A1 WO 2022148461 A1 WO2022148461 A1 WO 2022148461A1 CN 2022071029 W CN2022071029 W CN 2022071029W WO 2022148461 A1 WO2022148461 A1 WO 2022148461A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
indicate
area network
local area
message
Prior art date
Application number
PCT/CN2022/071029
Other languages
English (en)
French (fr)
Inventor
杜瑞
丁文博
韩霄
刘辰辰
张美红
孙滢翔
陈凯彬
杨讯
李杨
张云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22736622.6A priority Critical patent/EP4266729A4/en
Publication of WO2022148461A1 publication Critical patent/WO2022148461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communications, and in particular, to a wireless local area network sensing method and device.
  • Wireless local area network (WLAN) sensing is a technology that uses existing WLAN signals to detect the motion of target objects. Based on the radio's ability to measure or sample the environment, each communication path between two physical devices provides an opportunity to extract information about their surroundings.
  • a WLAN network consists of multiple devices located within a given communication range.
  • the 802.11ac protocol defines beamforming technology and multi-user multiple input multiple output technology (multi user multiple input multiple output, MU-MIMO). As shown in Figure 1, the 802.11ac standard uses the channel sounding frame to measure the channel. The device that beamforms and sends the channel sounding frame is called the beamformer (Beamformer), and the device that receives the beamforming frame is called the auxiliary The party that completes the beamforming adjustment (Beamformee). 802.11ac has made a new definition for the sender and receiver to transmit beamforming frames, because a single exchange can only have one initiator and one responder.
  • Beamformer beamformer
  • Beamformee The party that completes the beamforming adjustment
  • Beamformer sends a No Data Packet Announcement (NDPA) frame, informing the No Data Packet (sensing null data packet, sensing NDP) frame to be sent, and interacts with Beamformee for channel information.
  • Beamformee obtains the channel state information from the channel detection, and sends the feedback matrix through the channel state information.
  • the control matrix of the antenna can be obtained.
  • the control matrix includes how to set the amplitude and phase of each antenna element in the transmitting end antenna such that The antenna radiation pattern is superimposed in the far field and directed towards the receiving end.
  • Figure 2 shows the frame format of the feedback matrix.
  • Category is used to represent the type of feedback frame (action frame), and for very high throughput (VHT), the value is 21.
  • VHT Action indicates the type of VHT feedback frame (VHT action frame), and the value is 0 for compressed beamforming.
  • VHT MIMO Control indicates the parameters of the compressed beamforming report.
  • the Compressed Beamforming Report and MU Exclusive Beamforming Report Field sections contain the signal-to-noise ratio information of the feedback matrix and sub-carrier subsets.
  • the existing WLAN sensing technology adopts the above-mentioned existing scheme to perform the sensing process, and the method has poor spatial pointing ability, and it is difficult to distinguish the target from the interference on different distance units.
  • the embodiments of the present application provide a wireless local area network sensing method and device, which can realize focusing on a specific position in space, thereby improving the sensing capability.
  • a wireless local area network sensing method includes: sending a first message to a second device, and sending a first sensing waveform to the second device.
  • the first message is used to indicate at least one parameter included in the first sensing waveform
  • the first sensing waveform is used to sense the target object in the environment
  • the first message carries two adjacent antennas among the multiple antennas of the first device The difference between the frequencies of the corresponding carriers.
  • the first device sends a first message to the second device that is used to indicate at least one parameter included in the first sensing waveform, where the first sensing waveform is used to perform a measurement on a target object in the environment.
  • the first message carries the difference between the frequencies of the carrier waves corresponding to two adjacent antennas in the multiple antennas of the first device, and sends the first sensing waveform to the second device, so that the second device receives the first signal from the first device.
  • Perception waveform perceiving the target object according to the first message and the first perception waveform to obtain perceptual feedback information. In this way, the frequencies of the carriers corresponding to each antenna are different, which can realize focusing on a specific position in space, not limited to a certain angle unit, and can improve the perception ability.
  • the first message may include one or more of the following: first indication information, second indication information, third indication information, and fourth indication information.
  • first indication information can be used to indicate the quantity information of the beams corresponding to the multiple antennas of the first device
  • second indication information can be used to indicate whether the difference between the frequencies of the carriers corresponding to all the adjacent two antennas corresponding to the current beam is whether are equal
  • third indication information may be used to indicate the difference between the frequencies of the carriers corresponding to two adjacent antennas
  • the fourth indication information may be used to indicate quantity information of the third indication information corresponding to the current beam.
  • the first indication information may be used to indicate whether the current beam is the last beam corresponding to multiple antennas of the first device.
  • the first indication information may be used to indicate the number of beams corresponding to multiple antennas of the first device.
  • the third indication information and the fourth indication information may belong to the first field of the first message, and the fourth indication information may be used to indicate whether the next first field of the current first field includes the corresponding current beam the third indication information.
  • the fourth indication information may be used to indicate the quantity of the third indication information corresponding to the current beam.
  • the fourth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal.
  • the first message may further include fifth indication information, and the fifth indication information may be used to indicate that the parameters included in the first message are frequency-controlled array FDA parameters.
  • the wireless local area network sensing method provided by the first aspect may further include: receiving a first request message from a second device, and sending a first response message to the second device.
  • the first request message may be used to request to perceive the target object, and the first response message may be used to confirm the perception of the target object.
  • the wireless local area network sensing method provided by the first aspect may further include: receiving sensing feedback information from the second device.
  • a wireless local area network sensing method includes: receiving a first message from a first device, receiving a first sensing waveform from the first device, and pairing the first message and the first sensing waveform according to The target object is perceived, and the sensory feedback information is obtained.
  • the first message is used to indicate at least one parameter included in the first sensing waveform
  • the first sensing waveform is used to sense the target object in the environment
  • the first message carries two adjacent antennas among the multiple antennas of the first device The difference between the frequencies of the corresponding carriers.
  • the first message may include one or more of the following: first indication information, second indication information, third indication information, and fourth indication information.
  • first indication information can be used to indicate the quantity information of the beams corresponding to the multiple antennas of the first device
  • second indication information can be used to indicate whether the difference between the frequencies of the carriers corresponding to all the adjacent two antennas corresponding to the current beam is whether are equal
  • third indication information may be used to indicate the difference between the frequencies of the carriers corresponding to two adjacent antennas
  • the fourth indication information may be used to indicate quantity information of the third indication information corresponding to the current beam.
  • the first indication information may be used to indicate whether the current beam is the last beam corresponding to multiple antennas of the first device.
  • the first indication information may be used to indicate the number of beams corresponding to multiple antennas of the first device.
  • the fourth indication information may be used to indicate the quantity of the third indication information corresponding to the current beam.
  • the third indication information and the fourth indication information may belong to the first field of the first message, and the fourth indication information may be used to indicate whether the next first field of the current first field includes the corresponding current beam the third indication information.
  • the fourth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal.
  • the first message may further include fifth indication information, and the fifth indication information may be used to indicate that the parameters included in the first message are frequency-controlled array FDA parameters.
  • the wireless local area network sensing method provided by the second aspect may further include: sending sensing feedback information to the first device.
  • a wireless local area network sensing method comprising: sending a second message to a second device, receiving a second sensing waveform from the second device, and sensing a target object according to the second sensing waveform, Get sensory feedback.
  • the second message is used to indicate at least one parameter included in the second sensing waveform
  • the second sensing waveform is used to sense the target object in the environment
  • the second message carries two adjacent antennas among the multiple antennas of the second device The difference between the frequencies of the corresponding carriers.
  • the second device receives a second message from the first device indicating at least one parameter included in the second sensing waveform, where the second sensing waveform is used to sense the target object in the environment , the second message carries the difference between the frequencies of the carriers corresponding to two adjacent antennas among the multiple antennas of the second device, the second device determines the second sensing waveform according to the second message, and sends the second sensing waveform to the first The first device perceives the target object according to the second perception waveform, and obtains perception feedback information. In this way, the frequencies of the carriers corresponding to each antenna are different, which can realize focusing on a specific position in space, not limited to a certain angle unit, and can improve the perception ability.
  • the second message may include one or more of the following: sixth indication information, seventh indication information, eighth indication information, and ninth indication information.
  • the sixth indication information may be used to indicate the quantity information of the beams corresponding to the multiple antennas of the second device
  • the seventh indication information may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is whether are equal
  • the eighth indication information may be used to indicate the difference between the frequencies of the carriers corresponding to two adjacent antennas
  • the ninth indication information may be used to indicate quantity information of the eighth indication information corresponding to the current beam.
  • the sixth indication information may be used to indicate whether the current beam is the last beam corresponding to multiple antennas of the second device.
  • the sixth indication information may be used to indicate the number of beams corresponding to multiple antennas of the second device.
  • the eighth indication information and the ninth indication information may belong to the second field of the second message, and the ninth indication information may be used to indicate whether the next second field of the current second field includes the corresponding current beam The eighth instruction information.
  • the ninth indication information may be used to indicate the quantity of the eighth indication information corresponding to the current beam.
  • the ninth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal.
  • the second message may further include tenth indication information, and the tenth indication information may be used to indicate that the parameters included in the second message are frequency-controlled array FDA parameters.
  • the wireless local area network sensing method provided by the third aspect may further include: sending a second request message to the second device, and receiving a second response message from the second device.
  • the second request message may be used to request to perceive the target object
  • the second response message may be used to confirm the perception of the target object.
  • a wireless local area network sensing method includes: receiving a second message from a first device, determining a second sensing waveform according to the second message, and sending the second sensing waveform to the first device.
  • the second message is used to indicate at least one parameter included in the second sensing waveform
  • the second sensing waveform is used to sense the target object in the environment
  • the second message carries two adjacent antennas among the multiple antennas of the second device The difference between the frequencies of the corresponding carriers.
  • the second message may include one or more of the following: sixth indication information, seventh indication information, eighth indication information, and ninth indication information.
  • the sixth indication information may be used to indicate the quantity information of the beams corresponding to the multiple antennas of the second device
  • the seventh indication information may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is whether are equal
  • the eighth indication information may be used to indicate the difference between the frequencies of the carriers corresponding to two adjacent antennas
  • the ninth indication information may be used to indicate quantity information of the eighth indication information corresponding to the current beam.
  • the sixth indication information may be used to indicate whether the current beam is the last beam corresponding to multiple antennas of the second device.
  • the sixth indication information may be used to indicate the number of beams corresponding to multiple antennas of the second device.
  • the ninth indication information may be used to indicate the quantity of the eighth indication information corresponding to the current beam.
  • the eighth indication information and the ninth indication information may belong to the second field of the second message, and the ninth indication information may be used to indicate whether the next second field of the current second field includes the corresponding current beam The eighth indication information.
  • the ninth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal.
  • the second message may further include tenth indication information, and the tenth indication information may be used to indicate that the parameters included in the second message are frequency-controlled array FDA parameters.
  • the wireless local area network sensing method provided by the third aspect may further include: receiving a second request message from the first device, and sending a second response message to the first device.
  • the second request message may be used to request to perceive the target object
  • the second response message may be used to confirm the perception of the target object.
  • a communication device in a fifth aspect, includes a unit or module for performing any of the methods of the first aspect.
  • the communication apparatus described in the fifth aspect may be the first device, or may be provided in a chip (system) or other components or assemblies of the first device.
  • a communication device in a sixth aspect, includes means or modules for performing any of the methods of the second aspect.
  • the communication apparatus described in the sixth aspect may be the second device, or may be provided in a chip (system) or other components or assemblies of the second device.
  • a communication device in a seventh aspect, includes a unit or module for performing any of the methods of the third aspect.
  • the communication apparatus described in the seventh aspect may be the first device, or may be provided in a chip (system) or other components or assemblies of the first device.
  • a communication device in an eighth aspect, includes means or modules for performing any of the methods of the fourth aspect.
  • the communication apparatus described in the eighth aspect may be the second device, or may be provided in a chip (system) or other components or assemblies of the second device.
  • a communication device comprising: a processor coupled to a memory. Memory for storing computer programs. A processor for executing the computer program stored in the memory, so that the communication apparatus executes the wireless local area network sensing method according to any one of the first to fourth aspects.
  • the communication device of the ninth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an input/output port.
  • the transceiver may be used for the communication device to communicate with other communication devices.
  • the communication apparatus described in the ninth aspect may be the first device or the second device, or a chip or a chip system provided inside the first device or the second device.
  • a tenth aspect provides a chip system, the chip system includes a processor and an input/output port, the processor is configured to implement the processing function involved in any one of the first aspect to the fourth aspect, the input/output port The output port is used to implement the transceiving function involved in any one of the first aspect to the fourth aspect.
  • the chip system further includes a memory for storing program instructions and data for implementing the functions involved in any one of the first to fourth aspects.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a communication system in an eleventh aspect, includes a first device and one or more second devices.
  • a twelfth aspect provides a computer-readable storage medium, the computer-readable storage medium comprising a computer program or an instruction, when the computer program or instruction is executed on a computer, the computer is made to perform any one of the first to fourth aspects.
  • a thirteenth aspect provides a computer program product, the computer program product comprising: a computer program or instructions, when the computer program or instructions are run on a computer, the computer can perform any one of the first to fourth aspects.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a transmitting array provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a direction of a frequency-controlled array provided by an embodiment of the present application.
  • FIG. 5 is a schematic direction diagram of a phased array provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the angle orientation of a phased array provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an angle pointing of a frequency-controlled array provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a corresponding relationship between a carrier and an antenna provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an array orientation with angle and distance dependence provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart 1 of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram 1 of a frame format of an NDPA frame provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a Sounding Dialog Token field provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram 2 of an STA info field provided by an embodiment of the present application.
  • 16 is a schematic diagram three of the STA info field provided by the embodiment of the present application.
  • 17 is a second schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram 3 of a frame format of an NDPA frame provided by an embodiment of the present application.
  • FIG. 19 is a fourth schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • 20 is a schematic diagram four of the STA info field provided by the embodiment of the present application.
  • 21 is a schematic diagram five of a frame format of an NDPA frame provided by an embodiment of the present application.
  • 22 is a schematic diagram six of a frame format of an NDPA frame provided by an embodiment of the present application.
  • FIG. 23 is a seventh schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram five of the STA info field provided by the embodiment of the present application.
  • 25 is a schematic diagram eight of a frame format of an NDPA frame provided by an embodiment of the present application.
  • 26 is a schematic diagram 9 of a frame format of an NDPA frame provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram one of the Frame Control field provided by the embodiment of the present application.
  • FIG. 28 is a second schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram 1 of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 30 is a third schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 31 is a second application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 32 is a fourth schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 33 is a third application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 34 is a fifth schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • 35 is a schematic diagram 1 of a frame format of a trigger frame provided by an embodiment of the present application.
  • 36 is a schematic diagram 1 of a Common Info field provided by an embodiment of the present application.
  • Figure 46 is a schematic diagram ten of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • FIG. 47 is a sixth schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 48 is a fourth application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 49 is a seventh schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 50 is a schematic diagram five of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 51 is a schematic flowchart eight of a wireless local area network sensing method provided by an embodiment of the present application.
  • FIG. 52 is a sixth application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • FIG. 53 is a schematic structural diagram 1 of a communication device provided by an embodiment of the present application.
  • FIG. 54 is a second schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 55 is a third schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 56 is a fourth schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • 802.11ax can also be called high efficiency wireless (HEW), wireless fidelity (WiFi)6, 802.11be can also be called extreme high throughput (extremely high throughput, EHT), WiFi7, etc. .
  • HEW high efficiency wireless
  • WiFi wireless fidelity
  • EHT extreme high throughput
  • WiFi7 etc.
  • the frequency diverse array transmits coherent signals, and adds a small frequency offset to the transmit beams of different antennas, so that the frequency center of the transmitted signal is shifted to some extent.
  • the additional offset on the transmit beams of different antennas is much smaller than the carrier frequency of the transmit beams, and the main frequency components transmitted by different antennas overlap.
  • the frequency-controlled array radar is similar to the phased-array radar.
  • the frequency-controlled-array radar can be regarded as an extension of the phased-array radar, and the phased-array radar can be regarded as a special case of the frequency-controlled-array radar.
  • FIG. 3 is a schematic diagram of a transmitting array provided by an embodiment of the present application.
  • the frequency-controlled array radar adds a frequency increment ⁇ f to the transmit signal on the adjacent array elements, which is much smaller than the carrier frequency of the transmit beam.
  • the transmit carrier frequency of the first array element is f 0
  • its first The carrier frequency of the transmitted signal of m array elements is shown in the following formula (1).
  • m 0,1,2...M-1
  • m is an integer greater than or equal to 0 and less than or equal to M-1
  • M is the number of array elements
  • d is the interval between array elements
  • r 0 is the target
  • is the angle between the target and the array element
  • the y-axis represents the distance
  • the x-axis represents the frequency
  • the array element can also be called an antenna.
  • the uniformly weighted transmitting beam pattern can be approximately deduced as the following formula (2).
  • t is the time
  • is the angle between the target and the array element
  • r is the distance from the target to the array element
  • e is a mathematical constant, which is the base of the natural logarithmic function, also known as the Euler number
  • M is the number of array elements
  • j is a complex number
  • ⁇ f is the frequency increment, also known as the frequency offset value
  • c is the speed of light
  • d is the interval between the array elements
  • ⁇ 0 is the phase factor
  • the frequency-controlled array radar has the following characteristics: (1) The frequency-controlled array radar is different from the frequency-sweeping radar. The frequency offset of the frequency-sweeping radar is the same frequency offset value applied at different times, and all the array elements are at the same time. The frequency offset is the same; while the frequency offset of a frequency-controlled array radar is a different frequency offset value applied to different array elements at the same time. (2) The frequency offset of the frequency-controlled array radar is additionally attached, rather than the array itself transmitting orthogonal multi-frequency signals.
  • the transmitted signal of the frequency-controlled array radar is the same coherent signal as the transmitted signal of the phased array radar, but After additional frequency offset control, the radiated signal frequencies are different, which is different from orthogonal frequency division multiplexing (OFDM) radars that transmit different carrier frequencies.
  • OFDM orthogonal frequency division multiplexing
  • the array pointing of the frequency-controlled array radar is affected by the loaded frequency offset value. When the specified distance r is constant, the beam pointing changes with the change of the frequency offset value, that is, the frequency-controlled array radar has frequency offset correlation. When the frequency offset is constant, the beam pointing changes with the distance, that is, the frequency-controlled array radar has distance correlation.
  • the pattern of the frequency-controlled array changes with time, which is embodied in the fact that the pattern propagates at the speed of light over distance, and the pattern of the frequency-controlled array has periodicity along the distance.
  • FIG. 4 is a schematic diagram of a direction of a frequency-controlled array provided by an embodiment of the present application.
  • the pattern of the frequency-controlled array is the pattern of the frequency-controlled array when eight transmitting antennas are used, the frequency point is 5GHz, and the frequency offset is 1250KHz.
  • the abscissa represents the distance, and the ordinate represents the angle.
  • the pattern of the frequency-controlled array has distance dependence, which can avoid clutter interference in the uninteresting area and realize the perception under high signal-to-noise ratio.
  • FIG. 5 is a schematic direction diagram of a phased array provided by an embodiment of the present application.
  • the pattern of the phased array is a pattern with eight transmitting antennas and no frequency offset.
  • the abscissa represents the distance and the ordinate represents the angle.
  • the pattern of the frequency-controlled array shown in Fig. 4 has distance dependence, and the pattern of the S-type array shown in Fig. 4 is determined by its array factor caused.
  • the peak value of the array pattern refers to the following formula (4).
  • t is the time
  • is the angle between the target and the array element
  • r is the distance from the target to the array element
  • ⁇ f is the frequency increment, also known as the frequency offset value
  • c is the speed of light
  • d is the distance between the array elements.
  • interval f 0 is the transmit carrier frequency of the first array element
  • k 0, ⁇ 1, ⁇ 2, . . .
  • the above formula (4) indicates that the peak value of the pattern of the frequency-controlled array depends on the two parameters r and t, and the array pattern of the frequency-controlled array has distance dependence and time-varying characteristics.
  • FIG. 6 is a schematic diagram of an angle orientation of a phased array provided by an embodiment of the present application. As shown in Figure 6, the phased array only changes the phase and can achieve a pattern with directional pointing. When the target and the interference are on different distance units of the same angle unit, the use of changing different antenna phases to form an angle-dependent array pattern will jointly perceive the target and the interference, reducing the signal-to-noise ratio of the target perception.
  • FIG. 7 is a schematic diagram of an angular orientation of a frequency-controlled array according to an embodiment of the present application.
  • the frequency-controlled array can realize the direction map with directional pointing.
  • the target and the interference are on different distance units of the same angle unit, the target can also be flexibly identified and the interference can be eliminated.
  • FIG. 8 is a schematic diagram of a correspondence between a carrier and an antenna according to an embodiment of the present application.
  • FIG. 9 provides a schematic diagram of an array orientation with angle and distance dependence according to an embodiment of the present application.
  • the y-axis represents the frequency
  • the x-axis represents the distance
  • A0 represents the array element or antenna
  • A1 to A7 are similar.
  • f0 represents the 0th subcarrier
  • f4 represents the 4th subcarrier
  • the frequency offset between the antennas is a uniform frequency offset
  • d is the interval between the array elements.
  • the sub-carriers of the OFDM signal are placed on different antennas, and a distance-dependent pattern can be formed according to the principle of frequency-controlled array, as shown in Fig. 9.
  • the pattern shown in Figure 9 has an angle and distance dependence, and the beam is concentrated in a specified distance angle unit. Due to the propagation characteristics of electromagnetic waves, the pattern propagates at the speed of light in distance, forming a distance scanning characteristic in distance.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 10 is a schematic structural diagram of a communication system to which the wireless local area network sensing method provided by the embodiment of the present application is applied.
  • the communication system includes a first device and at least one second device.
  • the above-mentioned first device is a device located on the network side of the above-mentioned communication system and has a function of wireless transmission and reception, or a chip or a chip system that can be provided in the device.
  • the first device in the embodiment of the present application is a device that provides services for the second device, and may be an access point (access point, AP).
  • the first device may be a communication entity such as a communication server, a router, a switch, and a network bridge.
  • the first device may include various forms of macro base station, micro base station, relay station, etc.
  • the first device may also be a chip and a processing system in these various forms of devices, so as to realize the embodiments of the present application. methods and functions.
  • the first device can also be applied in more scenarios, such as sensor nodes in smart cities (for example, smart water meters, smart electricity meters, smart air detection nodes), smart home smart devices (such as smart cameras, projectors, display screens, televisions, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (For example, printers, projectors, etc.), Internet of Vehicles devices in the Internet of Vehicles, and some infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.).
  • smart cities for example, smart water meters, smart electricity meters, smart air detection nodes
  • smart home smart devices such as smart cameras, projectors, display screens, televisions, stereos, refrigerators, washing machines, etc.
  • nodes in the Internet of Things such as AR, VR and other wearable devices
  • smart devices in smart office For example, printers, projectors, etc.
  • the second device is a device with a wireless communication function
  • the device may be a device of a whole machine, or it may be a chip or a processing system installed in the device of the whole machine, etc. Under the control of these chips or processing systems, the methods and functions of the embodiments of the present application are implemented.
  • the second device in this embodiment of the present application has a wireless transceiver function, and may be a station (station, STA), which may communicate with the first device or other devices.
  • the second device allows a user to communicate with the first device and further Any user communication device that communicates with a WLAN.
  • the second device may be a tablet, desktop, laptop, notebook, Ultra-mobile Personal Computer (UMPC), handheld computer, netbook, Personal Digital Assistant (PDA), User equipment that can be connected to the Internet, such as a mobile phone, or an IoT node in the Internet of Things, or an in-vehicle communication device in the Internet of Vehicles, etc., the second device can also be the chips and processing systems in these terminals.
  • the specific forms of the first device and the second device are not particularly limited in the embodiments of the present application, which are merely exemplary descriptions herein.
  • wireless local area network sensing method provided in this embodiment of the present application can be applied between the first device and the second device shown in FIG.
  • FIG. 10 is only a simplified schematic diagram for easy understanding, and the communication system may also include other devices, which are not shown in FIG. 10 .
  • FIG. 11 is a first schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the downlink application scenario is specifically described below based on FIG. 11 .
  • the wireless local area network sensing method includes the following steps:
  • the first device sends a first message to the second device. Accordingly, the second device receives the first message from the first device.
  • the first message is used to indicate at least one parameter included in the first perception waveform, and the first perception waveform is used to perceive the target object in the environment.
  • the first message may include a sensing null data packet announcement (sensing NDPA) frame
  • the first sensing waveform may include a sensing null data packet (sensing NDP) frame.
  • the first device sends the sensing NDPA frame to the second device to indicate various parameters of the sensing NDP frame to be sent, so that each second device can use the received target echo signal for measurement.
  • the first message carries a difference in frequencies of carriers corresponding to two adjacent antennas among the multiple antennas of the first device.
  • the frequency offset mode on different antennas, spatial beams with different properties can be obtained, and a more flexible sensing mode can be realized.
  • the first message may include one or more of the following: first indication information, second indication information, third indication information, and fourth indication information.
  • the first indication information may be used to indicate quantity information of beams corresponding to multiple antennas of the first device.
  • the first indication information may include the Multi-beam End indication bit of the STA info field of the sensing NDPA frame or the Beam indication bit of the STA info field of the sensing NDPA frame. In this way, the first indication information may be used to indicate the first indication bit.
  • the specific number of beams corresponding to multiple antennas of a beam may be a single beam, multiple beams, or the like.
  • STA info field can be called the STA info field, and the meanings to be expressed are the same when the difference is not emphasized.
  • the first indication information may be used to indicate whether the current beam is the last beam corresponding to multiple antennas of the first device.
  • the first indication information may include the Multi-beam End indication bit of the STA info field of the sensing NDPA frame.
  • the first indication information may be used to indicate the number of beams corresponding to multiple antennas of the first device.
  • the first indication information may include the Beam indication bit of the STA info field field of the sensing NDPA frame.
  • the second indication information may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. In this way, the second indication information can be used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the second indication information may include the Uniform Offset indication bit of the STA info field field of the sensing NDPA frame.
  • the third indication information may be used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas. In this way, the third indication information can be used to indicate the frequency offset value.
  • the third indication information may include the Frequency Offset indication bit of the STA info field field of the sensing NDPA frame.
  • the fourth indication information may be used to indicate quantity information of the third indication information corresponding to the current beam.
  • the fourth indication information may include the Beam End indication bit of the STA info field field of the sensing NDPA frame or the Antenna indication bit of the STA info field field of the sensing NDPA frame.
  • the third indication information and the fourth indication information may belong to the first field of the first message, and the fourth indication information is used to indicate whether the next first field of the current first field includes the third indication information corresponding to the current beam.
  • the first field can be the STA info field field.
  • the second device may need to continuously read multiple first fields until the fourth indication information indicates that the next first field of the current first field does not include the current first field.
  • the third indication information corresponding to the beam marks the end of the indication of the beam. For example, when the frequency offset is non-uniform, the second device may need to continuously read multiple STA info field fields until the Beam End indication bit is 1, which marks the end of the indication of the beam.
  • the fourth indication information may be used to indicate the quantity of the third indication information corresponding to the current beam.
  • the fourth indication information may include the Antenna field of the STA info field of the sensing NDPA frame, where the Antenna field is 1, indicating that the current beam corresponds to a frequency offset value, and the number of antennas is 2; the Antenna field is 2, indicating that the current beam The beam corresponds to two frequency offset values, and the number of antennas is three, which are not listed one by one in this application.
  • the fourth indication information may be used to indicate the quantity of the third indication information corresponding to the current beam, and the fourth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is not. equal. For example, when the Antenna field is 0, it can indicate that the frequency offset between the antennas is a uniform frequency offset, and the number of antennas can be two or more.
  • the first message may include fifth indication information, and the fifth indication information may be used to indicate that the parameter included in the first message is a frequency diversity array (frequency diverse array, FDA) parameter.
  • a frequency diversity array frequency diverse array, FDA
  • the fifth indication information may include the FDA NDP Announcement indication bit in the sensing NDPA frame, and the FDA NDP Announcement indication bit may be used to indicate that the sensing NDPA frame is an FDA parameter indication frame.
  • the first message can be used to indicate that the first sensing waveform is a single beam with uniform frequency offset, a single beam with non-uniform frequency offset, multiple beams and all beams with uniform frequency offset, multiple beams and some beams with uniform frequency offset, and more. beam and all beams are non-uniform frequency offset, etc.
  • the first message is described in detail by taking the sensing NDPA frame as an example below.
  • the above-mentioned sensing NDPA frame can be called NDPA FDA Sensing frame, or NDPA frame, etc.
  • the NDPA frame is taken as an example for description below.
  • the above-mentioned sensing NDP frame can be called NDP frame, etc.
  • the meaning to be expressed is the same.
  • the following takes the sensing NDP frame as an example to illustrate.
  • FIG. 12 is a frame format of an NDPA frame provided by an embodiment of the present application.
  • the fifth indication information may include the Reserved field of the Sounding Dialog Token field of the NDPA frame shown in FIG. 12 .
  • FIG. 13 is a schematic diagram of a Sounding Dialog Token field provided by an embodiment of the present application.
  • the Reserved field shown in FIG. 13 may be used to indicate that the parameters included in the first message are frequency-controlled array FDA parameters.
  • An indication manner of the Reserved field is shown in Table 1. When the Reserved field is 0, it indicates that the parameter included in the first message is a frequency-controlled array FDA parameter.
  • FIG. 14 is a schematic diagram 1 of an STA info field provided by an embodiment of the present application.
  • the Reserved field in Fig. 14 has a size of 1 bit.
  • the indication manner of the Reserved field is shown in Table 2. When the Reserved field is 0, it indicates that the parameter included in the first message is the frequency-controlled array FDA parameter.
  • FIG. 15 is a second schematic diagram of an STA info field provided by an embodiment of the present application.
  • the STA info field may include the following indicator bits: Beam Number Subfield, Uniform Indication Subfield, Offset Number Subfield, Frequency offset value Subfield.
  • the above-mentioned Beam Number Subfield can be called Beam Number.
  • the above-mentioned Uniform Indication Subfield can be called Uniform Indication.
  • the above Offset Number Subfield can be called Offset Number.
  • the above Frequency offset value Subfield can be called Frequency offset value, Frequency Offset subfield value, or Frequency Offset Subfield.
  • the first indication information may include a Beam Number Subfield indication bit, and the Beam Number Subfield may be used to indicate quantity information of beams corresponding to multiple antennas of the first device.
  • the Beam Number Subfield may be used to indicate quantity information of beams corresponding to multiple antennas of the first device.
  • it can be realized by means of stop bits or specific quantity indication.
  • the second indication information may include a Uniform Indication Subfield, which may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, indicating whether the current beam is a uniform frequency offset.
  • a Uniform Indication Subfield which may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, indicating whether the current beam is a uniform frequency offset.
  • the third indication information may include a Frequency offset value Subfield, which may be used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas. For example, it is used to indicate a specific frequency offset value.
  • the fourth indication information may include an Offset Number Subfield, which is used to indicate quantity information of the third indication information corresponding to the current beam.
  • an Offset Number Subfield which is used to indicate quantity information of the third indication information corresponding to the current beam.
  • it can be realized by means of stop bits or specific quantity indication.
  • each sub-region shown in FIG. 15 may be combined into one or several large sub-regions in implementation, and the number of bits occupied by each sub-region may vary with the number of bits allowed by the corresponding standard.
  • FIG. 16 is a schematic diagram three of the STA info field provided by the embodiment of the present application.
  • the first indication information may include a Multi-beam End indication bit, indicating whether the current beam is the last beam corresponding to multiple antennas of the first device.
  • the Multi-beam End indication bit when the Multi-beam End indication bit is set to 0, it means that the current STA info field is not the last field indicated by the beam; when the Multi-beam End indication bit is set to 1, it means that the current field is the last field indicated by the beam, This application does not limit this.
  • the content represented by setting the indicator bit to 0 and the content represented by setting the indicator bit to 1 can be replaced with each other, whichever can achieve the corresponding function.
  • the second indication information may include a Uniform Offset indication bit, which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the Uniform Offset indication bit is set to 1, it means that the current beam is a uniform frequency offset, there is only one Frequency offset field in this field to indicate the frequency offset value, and the next Beam End should be set to 1. If the Uniform Offset indicator bit is set to 0, it means that the current beam is non-uniform frequency offset, and multiple Frequency offset fields may need to be read.
  • the third indication information may include a Frequency Offset Subfield indication bit, which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • the Frequency Offset Subfield indicator bit may include 5 bits, and the corresponding relationship between the value of the Frequency Offset Subfield indicator bit and the frequency offset is shown in Table 3 above, with uniform intervals, the minimum frequency offset is 78.125KHz, and the maximum frequency offset is 1250KHz .
  • the fourth indication information may include a Beam End indication bit, which is used to indicate whether the next STA info field of the current STA info field includes the third indication information corresponding to the current beam. That is to say, it can indicate whether the STA info field is the last field used when the current beam indicates the frequency offset value.
  • the Beam End indicator bit is set to 0, indicating that the current STA info field is not the last field used by the beam, and the Beam End indicator bit is set to 1, indicating that the current STA info field is the last field used by the current beam.
  • the following describes the single beam and uniform frequency offset, single beam and non-uniform frequency offset, and multi-beam in the STA info field corresponding to Mode 1.
  • FIG. 17 is a second schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of the sensing NDPA frame and the STA info field when the beam is a single beam and has a uniform frequency offset.
  • the Multi-beam End indication bit can be set to 1, indicating that the indication information of the beam ends in the STA Info field, that is, there is only one beam.
  • the Uniform Offset indicator bit can be set to 1, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, that is, the frequency offset between the antennas is a uniform frequency offset.
  • the Beam End indication bit can be set to 1, indicating that the indication information of the current beam ends in the STA Info field.
  • the Frequency offset field indicates the value of the uniform frequency offset.
  • FIG. 18 is a third schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of the sensing NDPA frame and the STA info field field when the beam is a single beam and has a non-uniform frequency offset.
  • the Multi-beam End indication bit in the first STA info field can be set to 0, and the Multi-beam End indication bit in the second STA info field can be set to 1, indicating that the multi-beam indication ends in the STA Info field, that is, there is only one beam.
  • the two Uniform Offset indication bits are both set to 0, indicating that the beam is non-uniform frequency offset, and the STA info field includes multiple Frequency offset Subfield indication bits.
  • the beam End indication bit in the first STA info field can be set to 0, and the Beam End indication bit in the second STA info field can be set to 1, indicating that the current beam ends in the STA Info field.
  • the Frequency offset field indicates the frequency offset value between each two antennas.
  • FIG. 19 is a fourth schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of the sensing NDPA frame and the STA info field field when the beam is multi-beam.
  • the two single-beam cases in Figures 17 and 18 can be combined to form a multi-beam case.
  • the Multi-beam End indication bit in the STA Info 1 subfield indicating the uniform frequency offset is set to 0, and the values of the other indication bits remain unchanged, indicating that the STA info field shown in Figure 19 has multiple beams.
  • the value of each indication bit in the STA Info 2 subfield and the STA Info 3 subfield remains unchanged, and the Multi-beam End position 1 in the STA Info 3 subfield indicates the end of the indication process of multiple beams.
  • FIG. 20 is a schematic diagram four of the STA info field provided by the embodiment of the present application.
  • the first indication information may include a Beam Subfield indication bit, indicating the number of beams corresponding to multiple antennas of the first device, and indicating information indicating how many beams are included in the current NDPA frame.
  • the Beam Subfield indication bit is set to 00, the current NDPA frame includes the indication information of one beam; the Beam Subfield indication bit is set to 01, and the current NDPA frame includes the indication information of two beams; the Beam Subfield indication bit is set to 10, indicating that The current NDPA frame includes indication information of three beams in total, and the Beam Subfield indication bit is set to 11, indicating that the current NDPA frame includes indication information of four beams in total, which is not limited in this embodiment of the present application.
  • the fourth indication information may include an Antenna field, which is used to indicate whether the next STA info field of the current STA info field includes the third indication information corresponding to the current beam. That is, it is used to indicate the number of Frequency Offset Subfields corresponding to the current beam.
  • the Antenna Subfield indication bit when the Antenna Subfield indication bit is set to 0, it represents a uniform frequency offset, and the current beam corresponds to a Frequency Offset Subfield. When the Antenna Subfield indication bit is set to 1, it represents a non-uniform frequency offset, and the current beam corresponds to multiple Frequency Offset Subfields.
  • the third indication information may include a Frequency offset Subfield indication bit, which may be used to indicate a difference in the frequencies of carriers corresponding to two adjacent antennas, that is, to indicate a frequency offset value between every two antennas.
  • the Frequency offset indication bit may include 5 bits, and the corresponding relationship between the value of the Frequency offset Subfield and the frequency offset is the same as that of Mode 1.
  • the minimum frequency offset is 78.125KHz
  • the maximum frequency offset is 78.125KHz. It is 1250KHz, which will not be repeated here.
  • the following describes the single beam with uniform frequency offset, single beam and non-uniform frequency offset, and multi-beam with the STA info field corresponding to the second mode.
  • FIG. 21 is a fifth schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of the sensing NDPA frame and the STA info field when the beam is a single beam and has a uniform frequency offset.
  • the Beam Subfield indicator bit can be set to 00, indicating that there is only one beam.
  • the Antenna Subfield indicator bit can be set to 0, indicating that it can be used to indicate that the frequency offset between the antennas is a uniform frequency offset, and only one Frequency offset Subfield indicator bit is included in the STA info field.
  • the Frequency offset field indicates the value of the uniform frequency offset.
  • FIG. 22 is a sixth schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of the frame structure of the STA info field field of the sensing NDPA frame when the beam is a single beam and has a non-uniform frequency offset.
  • the Beam Subfield indication bit in the first STA info field is set to 00, indicating that there is only one beam.
  • the Antenna Subfield indication bit is set to 5, which represents a non-uniform frequency offset, and the STA info field includes 5 Frequency offset Subfield indication bits.
  • the Frequency offset field indicates the frequency offset value between each two antennas.
  • FIG. 23 is a seventh schematic diagram of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of the sensing NDPA frame and the STA info field field when the beam is multi-beam.
  • the two single-beam cases in Figures 21 and 22 can be combined to form a multi-beam case.
  • the number of beams is indicated by the Beam subfield in the STA Info 1 subfield, and the Beam subfield is set to 2, indicating that the number of beams is 2.
  • Antenna is set to 5 in the STA Info 2 subfield, indicating that the STA Info 2 subfield includes 5 Frequency Offset Subfield indications, and the values of other indication bits remain unchanged.
  • FIG. 24 is a schematic diagram five of the STA info field provided by the embodiment of the present application.
  • the third mode is to remove the Multi-Beam End bit of the first mode, and use the Beam indicator bit in the second mode to indicate the number of beams corresponding to the multiple antennas of the first device.
  • the first indication information may include a Beam indication bit, which is used to indicate the number of beams.
  • a Beam indication bit which is used to indicate the number of beams.
  • the value of the Beam indication bit is 01
  • the number of beams is 1, and the specific implementation method can refer to the above-mentioned method 2, which is not repeated here.
  • the second indication information may include a Uniform Offset indication bit, which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • a Uniform Offset indication bit which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the third indication information may include a Frequency Offset Subfield indication bit, which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • a Frequency Offset Subfield indication bit which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • the fourth indication information may include a Beam End indication bit, which is used to indicate whether the next STA info field of the current STA info field includes the third indication information corresponding to the current beam. That is to say, it can indicate whether the STA info field is the last field used when the current beam indicates the frequency offset value.
  • a Beam End indication bit which is used to indicate whether the next STA info field of the current STA info field includes the third indication information corresponding to the current beam. That is to say, it can indicate whether the STA info field is the last field used when the current beam indicates the frequency offset value.
  • FIG. 25 is a schematic diagram 8 of a frame format of an NDPA frame provided by an embodiment of the present application.
  • Figure 25 is a schematic diagram of the sensing NDPA frame and the STA info field field when the beam is multi-beam.
  • the Beam indicator bit in the STA Info 1 subfield can be set to 01, indicating that the sensing NDPA frame includes two beams.
  • the Uniform Offset indicator bit in the STA Info 1 subfield can be set to 1, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, that is, the frequency offset between the antennas is a uniform frequency offset,
  • the current STA info field includes only one Frequency offset Subfield indication bit.
  • the Beam End indication bit in the STA Info 1 subfield can be set to 1, indicating that the indication information of the current beam ends in this STA Info field.
  • the Frequency offset field indicator bit in the STA Info 1 subfield represents the value of the uniform frequency offset.
  • the Uniform Offset indication bit in the STA Info 2 subfield can be set to 0, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is not equal.
  • the Beam End indication bit in the STA Info 2 subfield can be set to 0, indicating that the indication information of the current beam also includes the next STA Info field.
  • the Frequency offset field indicator in the STA Info 2 subfield indicates the value of the non-uniform frequency offset.
  • the Uniform Offset indication bit in the STA Info 3 subfield can be set to 0, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is not equal.
  • the Beam End indication bit in the STA Info 3 subfield can be set to 1, indicating that the indication information of the current beam ends in this STA Info field.
  • the Frequency offset field indicator bit in the STA Info 3 subfield indicates the value of the non-uniform frequency offset.
  • an ending STA Info field indicates a beam, and multiple antennas transmit a beam at the same frequency or at different frequencies.
  • the STA Info field corresponding to Mode 3 can indicate a single beam with uniform frequency offset or a single beam with non-uniform frequency offset.
  • the STA Info field only includes the STA Info 1 subfield shown in Figure 25 it can indicate a single beam Beam and uniform frequency offset; when the STA Info field only includes the STA Info 2 subfield and STA Info 3 subfield shown in FIG. 25, it can indicate a single beam and non-uniform frequency offset, which is not described in detail here in this embodiment of the present application.
  • the Multi-beam End indication bit in Mode 1 can be combined with the Antenna indicator bit in Mode 2 to obtain the STA info field in Mode 4.
  • the Multi-beam End indication bit please refer to the first mode
  • the specific implementation of the Antenna indicator bit please refer to the second mode, which will not be repeated here.
  • the first message is specifically described below by taking the FDA perception frame as an example.
  • FIG. 26 is a schematic diagram 9 of a frame format of an NDPA frame provided by an embodiment of the present application.
  • the NDPA frame shown in Figure 26 is different from the NDPA frame shown in Figure 12 above.
  • the NDPA frame shown in Figure 26 is created by rewriting the Subtype indicator bit of Frame Control.
  • the NDPA frame shown in Figure 26 can be called FDA awareness Frame (FDA Sensing Frame).
  • the STA Info indication bit of the NDPA frame in Figure 26 includes 8octets, and the STA Info field of the NDPA frame shown in Figure 12 includes 4octets.
  • the NDPA frame in Figure 26 can alleviate the situation that the number of bits in the STA Info Subfield is insufficient when the frequency offset is indicated .
  • FIG. 27 is a schematic diagram one of the Frame Control field provided by an embodiment of the present application.
  • the previous Type field of the Subtype field is set to 01, indicating a control frame.
  • the Subtype field may be set to 1, indicating that the parameters included in the first message are frequency-controlled array FDA parameters, and the corresponding relationship between the value of the Subtype field and the frame type is shown in Table 4.
  • STA Info field of the NDPA frame shown in FIG. 26 can also be implemented in the specific implementation manners described in the above-mentioned manners 1, 2, 3, and 4, which will not be repeated in this application.
  • the first device sends the first sensing waveform to the second device. Accordingly, the second device receives the first sensed waveform from the first device.
  • the first perception waveform is used to perceive the target object in the environment.
  • the second device perceives the target object according to the first message and the first perception waveform, and obtains perception feedback information.
  • the wireless local area network sensing method provided by the embodiment of the present application may further include: the second device sends sensing feedback information to the first device. Accordingly, the first device receives sensory feedback information from the second device.
  • the second device may send sensing feedback information to the first device through a sensing feedback (Sensing feedback) frame.
  • Sensing feedback sensing feedback
  • the first device may send response information, such as an Ack frame, to the second device, thereby ending the perception feedback process.
  • response information such as an Ack frame
  • the wireless local area network sensing method provided by the embodiment of the present application may further include the following steps 1 and 2.
  • Step 1 the second device sends a first request message to the first device. Accordingly, the first device receives the first request message from the second device.
  • the first request message may be used to request sensing of the target object.
  • the first request message may include a sensing request (Sensing request) frame, requesting to start a sensing process.
  • Sensing request sensing request
  • Step 2 the first device sends a first response message to the second device. Accordingly, the second device receives the first reply message from the first device.
  • the first response message may be used to confirm the perception of the target object.
  • the first response message may include an Ack frame, ending the sensing negotiation phase.
  • the above-mentioned steps 1 and 2 may be performed before the above-mentioned S1101, so as to perform sensing after the sensing negotiation phase is completed.
  • the first device sends a first message to the second device that is used to indicate at least one parameter included in the first sensing waveform, where the first sensing waveform is used to perform a measurement on a target object in the environment.
  • the first message carries the difference between the frequencies of the carrier waves corresponding to two adjacent antennas in the multiple antennas of the first device, and sends the first sensing waveform to the second device, so that the second device receives the first signal from the first device.
  • Perception waveform perceiving the target object according to the first message and the first perception waveform to obtain perceptual feedback information. In this way, the frequencies of the carriers corresponding to each antenna are different, which can realize focusing on a specific position in space, not limited to a certain angle unit, and can improve the perception ability.
  • FIG. 28 is a second schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the downlink single-beam uniform frequency offset is specifically described.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a first message to the STA. Accordingly, the STA receives the first message from the AP.
  • FIG. 29 is a schematic diagram 1 of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • the first message may include the sensing NDPA frame shown in FIG. 29 .
  • the AP can send the NDPA frame shown in FIG. 12 or FIG. 26 to the STA, and can set the value of each indicator bit in the STA Info field by using the above-mentioned method 1, method 2, method 3 or method 4, so that the beam is a single beam.
  • the uniform frequency offset is not repeated here.
  • the AP sends the first sensing waveform to the STA. Accordingly, the STA receives the first sensed waveform from the STA.
  • the first perceptual waveform may include the perceptual NDP frame shown in FIG. 29 .
  • the frequency offset between the antenna A0 and the antenna A7 in FIG. 29 is a uniform frequency offset.
  • the STA perceives the target object according to the first message and the first perception waveform, and obtains perception feedback information.
  • the STA can obtain the beam pointing weight information of the transmitted beam through the first message.
  • the beam pointing weight information can include the correspondence between the subcarriers and the antennas.
  • the STA at any position can echo the transmitted signal. analysis. By applying different frequency offsets to different antennas, focusing on a specific position in space and automatic scanning of different positions in space are realized.
  • FIG. 30 is a third schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the downlink single-beam non-uniform frequency offset is specifically described.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a first message to the STA. Accordingly, the STA receives the first message from the AP.
  • FIG. 31 is a second application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • the first message may include the sensing NDPA frame shown in FIG. 31 .
  • the AP can send the NDPA frame shown in FIG. 12 or FIG. 26 to the STA, and can set the value of each indicator bit in the STA Info field by using the above-mentioned method 1, method 2, method 3 or method 4, so that the beam is a single beam.
  • the non-uniform frequency offset is not repeated here.
  • the AP sends the first sensing waveform to the STA. Accordingly, the STA receives the first sensing waveform from the STA.
  • the first perceptual waveform may include the perceptual NDP frame shown in FIG. 31 .
  • the frequency offset between the antenna A0 and the antenna A7 in FIG. 31 is a non-uniform frequency offset.
  • the STA perceives the target object according to the first message and the first perception waveform, and obtains perception feedback information.
  • the STA can obtain the beam pointing weight information of the transmit beam through the first message, and through the beam pointing weight information, the STA at any position can analyze the echo of the transmit signal.
  • the STA can obtain the beam pointing weight information of the transmit beam through the first message, and through the beam pointing weight information, the STA at any position can analyze the echo of the transmit signal.
  • FIG. 32 is a third schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the downlink multi-beam is described in detail.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a first message to the STA. Accordingly, the STA receives the first message from the AP.
  • FIG. 33 is a schematic diagram 3 of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • the first message may include the sensing NDPA frame shown in FIG. 33 .
  • the AP can send the NDPA frame shown in FIG. 12 or FIG. 26 to the STA, and can set the value of each indicator bit in the STA Info field by using the above-mentioned method 1, method 2, method 3 or method 4, so that the beam is multi-beam. , and will not be repeated here.
  • the AP sends the first sensing waveform to the STA. Accordingly, the STA receives the first sensing waveform from the STA.
  • the first perceptual waveform may include the perceptual NDP frame shown in FIG. 33 .
  • the STA perceives the target object according to the first message and the first perception waveform, and obtains perception feedback information.
  • the STA can obtain the beam pointing weight information of multiple consecutively transmitted beams through the first message.
  • the perception ability of different modes can be realized, and the distance periodicity problem of FDA technology can be solved.
  • the sub-carriers transmitted by each antenna are different, and at the same time, by indicating multiple waveforms at the same time, different perception modes and perception capabilities for different areas are realized.
  • FIG. 34 is a second schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the uplink application scenario is described in detail below based on FIG. 34 .
  • the wireless local area network sensing method includes the following steps:
  • the first device sends a second message to the second device. Accordingly, the second device receives the second message from the first device.
  • the second message is used to indicate at least one parameter included in the second perception waveform, and the second perception waveform is used to perceive the target object in the environment.
  • the second message may include a trigger (Trigger) frame
  • the second sensing waveform may include a sensing null data packet (sensing NDP) frame.
  • the first device sends a trigger frame to the second device indicating the parameters of the sensing NDP frame to be received, so that each second device sends an NDP frame to the first device according to the received trigger frame, so that the first device according to the NDP frame Take measurements.
  • the second message carries a difference in frequencies of carriers corresponding to two adjacent antennas among the multiple antennas of the second device.
  • the second message may include one or more of the following: sixth indication information, seventh indication information, eighth indication information, and ninth indication information.
  • the second message may include the Trigger Dependent Common Info field in the Common Info field of the trigger frame.
  • the sixth indication information may be used to indicate quantity information of beams corresponding to multiple antennas of the second device.
  • the sixth indication information may include the Multi-beam End indication bit of the trigger frame or the Beam indication bit of the trigger frame, so the sixth indication information may be used to indicate the specific number of beams corresponding to multiple antennas of the first beam. , or a single beam, multiple beams, etc.
  • the sixth indication information may be used to indicate whether the current beam is the last beam corresponding to the multiple antennas of the first device.
  • the sixth indication information may include the Multi-beam End indication bit of the Trigger Dependent Common Info field of the trigger frame.
  • the sixth indication information may be used to indicate the number of beams corresponding to multiple antennas of the first device.
  • the sixth indication information may include the Beam indication bit of the Trigger Dependent Common Info field of the trigger frame.
  • the above trigger frame may be called a perceptual trigger frame, and the meanings to be expressed are the same when the difference is not emphasized.
  • the above Trigger Dependent Common Info field can be called the Trigger Dependent Common Info Subfield field. When the difference is not emphasized, the meaning to be expressed is the same.
  • the seventh indication information may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. In this way, the seventh indication information can be used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the seventh indication information may include the Uniform Offset indication bit of the Trigger Dependent Common Info field of the trigger frame.
  • the eighth indication information may be used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas. In this way, the eighth indication information can be used to indicate the frequency offset value.
  • the eighth indication information may include the Frequency Offset indication bit of the Trigger Dependent Common Info field of the trigger frame.
  • the ninth indication information may be used to indicate quantity information of the eighth indication information corresponding to the current beam.
  • the ninth indication information may include the Beam End indication bit of the Trigger Dependent Common Info field of the trigger frame or the Antenna indication bit of the Trigger Dependent Common Info field of the trigger frame.
  • the eighth indication information and the ninth indication information may belong to the second field of the second message, and the ninth indication information is used to indicate whether the next second field of the current second field includes the eighth indication information corresponding to the current beam.
  • the second field can be the Trigger Dependent Common Info field.
  • the ninth indication information may be used to indicate the quantity of the eighth indication information corresponding to the current beam.
  • the ninth indication information may include the Antenna field of the Trigger Dependent Common Info field of the trigger frame, where the Antenna field is 1, indicating that the current beam corresponds to a frequency offset value, and the number of antennas is 2; the Antenna field is 2, indicating that the current beam The beam corresponds to two frequency offset values, and the number of antennas is three, which are not listed one by one in this application.
  • the ninth indication information may be used to indicate the quantity of the eighth indication information corresponding to the current beam, and the ninth indication information may also be used to indicate whether the difference between the frequencies of the carriers corresponding to all the adjacent two antennas corresponding to the current beam is? equal. For example, when the Antenna field is 0, it can indicate that the frequency offset between the antennas is a uniform frequency offset, and the number of antennas can be two or more.
  • the second message may include tenth indication information, and the tenth indication information may be used to indicate that the parameter included in the second message is a frequency diversity array (frequency diverse array, FDA) parameter.
  • a frequency diversity array frequency diverse array, FDA
  • the tenth indication information may include the Trigger Type field of the Common Info field of the trigger frame, and the Trigger Type field may be used to indicate that the trigger frame is an FDA parameter indication frame.
  • FIG. 35 is a schematic diagram 1 of a frame format of a trigger frame provided by an embodiment of the present application.
  • the tenth indication information may include the Trigger Type field of the Common Info field of the trigger frame shown in FIG. 35 , as shown in Table 5 below, when the value of the Trigger Type is set to 9, it indicates that the parameter included in the trigger frame is: Frequency Controlled Array FDA Parameters.
  • FIG. 36 is a schematic diagram 1 of a Common Info field provided by an embodiment of the present application.
  • the format of the Common Info field of the trigger frame shown in FIG. 35 may be as shown in FIG. 36 , the Common Info field includes the Trigger Dependent Common Info field, and the Trigger Dependent Common Info field may be used to indicate the FDA parameter.
  • FIG. 37 is a schematic diagram one of the Trigger Dependent Common Info field provided by an embodiment of the present application.
  • the Trigger Dependent Common Info field may include the following indicator bits: Beam Number Subfield, Uniform Indication Subfield, Offset Number Subfield, Frequency offset value Subfield.
  • the Trigger Dependent Common Info field is similar to the STA Info field of the NDPA frame.
  • the above-mentioned Beam Number Subfield can be called Beam Number.
  • the above-mentioned Uniform Indication Subfield can be called Uniform Indication.
  • the above Offset Number Subfield can be called Offset Number.
  • the above Frequency offset value Subfield can be called Frequency offset value, Frequency Offset subfield value, or Frequency Offset Subfield.
  • the sixth indication information may include a Beam Number Subfield indication bit, and the Beam Number Subfield may be used to indicate quantity information of beams corresponding to multiple antennas of the first device.
  • the Beam Number Subfield may be used to indicate quantity information of beams corresponding to multiple antennas of the first device.
  • it can be implemented in the form of stop bits or specific quantity indication.
  • the seventh indication information may include a Uniform Indication Subfield, which may be used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, indicating whether the current beam is a uniform frequency offset.
  • the eighth indication information may include a Frequency offset value Subfield, which may be used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas. For example, it is used to indicate a specific frequency offset value.
  • the ninth indication information may include Offset Number Subfield, which is used to indicate quantity information of the eighth indication information corresponding to the current beam.
  • Offset Number Subfield which is used to indicate quantity information of the eighth indication information corresponding to the current beam.
  • it can be realized by means of stop bits or specific quantity indication.
  • each sub-region shown in FIG. 37 can be combined into one or several large sub-regions in implementation, and the number of bits occupied by each sub-region can vary with the number of bits allowed by the corresponding standard.
  • FIG. 38 is a second schematic diagram of a Trigger Dependent Common Info field provided by an embodiment of the present application.
  • the format of the Trigger Dependent Common Info field is similar to that of the STA Info field of an NDPA frame.
  • the sixth mode is similar to the first mode
  • the seventh mode is similar to the second mode
  • the eighth mode is similar to the third mode
  • the ninth mode is similar to the fourth mode.
  • the Trigger Dependent Common Info field is continuous. In the frame structure of Mode 6, 18 bits are set as a Trigger Dependent Common Info field.
  • the sixth indication information may include a Multi-beam End indication bit, indicating whether the current beam is the last beam corresponding to multiple antennas of the first device.
  • the Multi-beam End indication bit when the Multi-beam End indication bit is set to 0, it means that the current Trigger Dependent Common Info field is not the last field of the beam indication. When the Multi-beam End indication bit is set to 1, it means that the current field is the last field indicated by the beam. field, which is not limited in this application.
  • the content represented by setting the indicator bit to 0 and the content represented by setting the indicator bit to 1 can be replaced with each other, whichever can achieve the corresponding function.
  • the seventh indication information may include a Uniform Offset indication bit, which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the Trigger Dependent Common Info indication bit includes 8 bits.
  • the Uniform Offset indication bit is set to 1, it means that the current beam is a uniform frequency offset, there is only one Frequency offset field in this field to indicate the frequency offset value, and the next Beam End should be set to 1. If the Uniform Offset indicator bit is set to 0, it means that the current beam is non-uniform frequency offset, and multiple Frequency offset fields may need to be read.
  • the eighth indication information may include a Frequency Offset Subfield indication bit, which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • a Frequency Offset Subfield indication bit which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • the ninth indication information may include a Beam End indication bit, which is used to indicate whether the next Trigger Dependent Common Info field of the current Trigger Dependent Common Info field includes the eighth indication information corresponding to the current beam. That is to say, it can indicate whether the Trigger Dependent Common Info field is the last field used when the current beam indicates the frequency offset value.
  • the Beam End indication bit is set to 0, it means that the current Trigger Dependent Common Info field is not the last field used to indicate beam use, and the Beam End indication bit is set to 1, indicating that the current Trigger Dependent Common Info field is used to indicate the use of the current beam. last field.
  • FIG. 39 is a schematic diagram three of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • Figure 39 is a schematic diagram of the Common Info field and the Trigger Dependent Common Info field when the beam is a single beam and has a uniform frequency offset.
  • the Multi-beam End indication bit can be set to 1, which means that the indication information of the beam ends in the Trigger Dependent Common Info field, that is, there is only one beam.
  • the Uniform Offset indicator bit can be set to 1, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, that is, the frequency offset between the antennas is a uniform frequency offset, and the current Trigger Dependent Common Info field Include only one Frequency offset Subfield indicator bit.
  • the Beam End indication bit can be set to 1, indicating that the indication information of the current beam ends in the Trigger Dependent Common Info field.
  • the Frequency offset field indicates the value of the uniform frequency offset.
  • FIG. 40 is a schematic diagram four of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • Figure 40 is a schematic diagram of the Common Info field and the Trigger Dependent Common Info field when the beam is a single beam and has a non-uniform frequency offset.
  • the Multi-beam End indicator bit can be set to 0, indicating that there is only one beam.
  • the Uniform Offset indication bits are all set to 0, indicating that the beam is non-uniform frequency offset
  • the Trigger Dependent Common Info field includes multiple Frequency offset Subfield indication bits.
  • the beam End indication bit can be set to 1, indicating that the current beam ends in the Trigger Dependent Common Info field.
  • the Frequency offset field indicates the frequency offset value between each two antennas.
  • FIG. 41 is a schematic diagram five of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • Figure 41 is a schematic diagram of the Common Info field and the Trigger Dependent Common Info field when the beam is multi-beam.
  • the two single-beam cases in Figures 39 and 40 can be combined to form the multi-beam case.
  • the Multi-beam End indication bit in the first Trigger Dependent Common Info field can be set to 0, and the values of other indication bits remain unchanged, indicating that the Trigger Dependent Common Info field shown in Figure 41 has multiple beams.
  • the value of each indication bit in the second Trigger Dependent Common Info field remains unchanged, and the Multi-beam End position 1 in the second Trigger Dependent Common Info field indicates the end of the indication process of multiple beams.
  • FIG. 42 is a schematic diagram six of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • the sixth indication information may include a Beam Subfield indication bit, indicating the number of beams, and indicating the indication information of how many beams the current trigger frame includes in total.
  • the Beam Subfield indication bit is set to 00, the current trigger frame includes the indication information of one beam; the Beam Subfield indication bit is set to 01, and the current trigger frame includes the indication information of two beams; the Beam Subfield indication bit is set to 10, indicating that The current trigger frame includes indication information of three beams in total, and the Beam Subfield indication bit is set to 11, indicating that the current trigger frame includes indication information of four beams in total, which is not limited in this embodiment of the present application.
  • the ninth indication information may include an Antenna field, which is used to indicate whether the next Trigger Dependent Common Info field of the current Trigger Dependent Common Info field includes the eighth indication information corresponding to the current beam. That is, it is used to indicate the number of Frequency Offset Subfields corresponding to the current beam.
  • the Antenna Subfield indication bit when the Antenna Subfield indication bit is set to 0, it represents a uniform frequency offset, and the current beam corresponds to a Frequency Offset Subfield. When the Antenna Subfield indication bit is set to 1, it represents a non-uniform frequency offset, and the current beam corresponds to multiple Frequency Offset Subfields.
  • the eighth indication information may include a Frequency offset Subfield indication bit, which may be used to indicate the difference between the frequencies of the carriers corresponding to two adjacent antennas, that is, to indicate the frequency offset value between every two antennas.
  • a Frequency offset Subfield indication bit For the specific implementation of the Frequency offset Subfield indication bit, reference may be made to the specific implementation of the Frequency offset Subfield indication bit in the above-mentioned mode 2, which will not be repeated here.
  • the following describes the single beam and uniform frequency offset, single beam and non-uniform frequency offset, and multi-beam with the Trigger Dependent Common Info field corresponding to the second mode.
  • Figure 42 is a schematic diagram of the Common Info field and the Trigger Dependent Common Info field when the beam is a single beam and has a uniform frequency offset.
  • the Beam Subfield indicator bit can be set to 00, indicating that there is only one beam.
  • the Antenna Subfield indicator bit can be set to 0, indicating that it can be used to indicate that the frequency offset between the antennas is a uniform frequency offset, and the Trigger Dependent Common Info field includes only one Frequency offset Subfield indicator bit.
  • the Frequency offset field indicates the value of the uniform frequency offset.
  • FIG. 43 is a schematic diagram seven of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • Figure 43 is a schematic diagram of the structure of the Common Info field and the Trigger Dependent Common Info field when the beam is a single beam and has a non-uniform frequency offset.
  • the Beam Subfield indicator bit is set to 00, indicating that there is only one beam.
  • the Antenna Subfield indication bit is set to 3, which means non-uniform frequency offset, and the Trigger Dependent Common Info field includes 3 Frequency offset Subfield indication bits.
  • the Frequency offset field indicates the frequency offset value between each two antennas.
  • FIG. 44 is a schematic diagram eight of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • Figure 44 is a schematic diagram of the Common Info field and the Trigger Dependent Common Info field when the beam is multi-beam.
  • the Beam subfield in the first Trigger Dependent Common Info field is set to 2, indicating that the number of beams is 2.
  • Set Antenna in the first Trigger Dependent Common Info field to 3 indicating that the first Trigger Dependent Common Info field includes 3 Frequency Offset Subfields.
  • Figure 45 is a schematic diagram 9 of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • the Uniform Offset indicator bit and the Beam End indicator bit in the sixth mode can be combined with the Beam Subfield indicator bit in the seventh mode to obtain the Trigger Dependent Common Info field in the eighth mode, as shown in Figure 45.
  • the sixth indication information may include a Beam indication bit, which is used to indicate the number of beams.
  • a Beam indication bit which is used to indicate the number of beams.
  • the seventh indication information may include a Uniform Offset indication bit, which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • a Uniform Offset indication bit which is used to indicate whether the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal. That is, it is used to indicate whether the frequency offset between the antennas is a uniform frequency offset.
  • the eighth indication information may include a Frequency Offset Subfield indication bit, which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • a Frequency Offset Subfield indication bit which is used to indicate a difference in frequencies of carriers corresponding to two adjacent antennas.
  • the ninth indication information may include a Beam End indication bit, which is used to indicate whether the next Trigger Dependent Common Info field of the current Trigger Dependent Common Info field includes the eighth indication information corresponding to the current beam. That is to say, it can indicate whether the Trigger Dependent Common Info field is the last field used when the current beam indicates the frequency offset value.
  • a Beam End indication bit which is used to indicate whether the Trigger Dependent Common Info field is the last field used when the current beam indicates the frequency offset value.
  • Figure 45 shows the Common Info field and the Trigger Dependent Common Info field when the beam is multi-beam.
  • the Beam indicator bit in the first Trigger Dependent Common Info field can be set to 01, indicating that the trigger frame includes two beams.
  • the Uniform Offset indication bit of the first Trigger Dependent Common Info field can be set to 0, indicating that the frequency difference of the carriers corresponding to all adjacent two antennas corresponding to the current beam is not equal.
  • the Beam End indication bit in the first Trigger Dependent Common Info field can be set to 1, indicating that the indication information of the current beam ends in the Trigger Dependent Common Info field.
  • the Frequency offset field in the first Trigger Dependent Common Info field indicates the value of the non-uniform frequency offset.
  • the Uniform Offset indicator bit of the second Trigger Dependent Common Info field can be set to 1, indicating that the difference between the frequencies of the carriers corresponding to all adjacent two antennas corresponding to the current beam is equal, that is, the frequency offset between the antennas is uniform.
  • Frequency offset the current Trigger Dependent Common Info field includes only one Frequency offset Subfield indicator bit.
  • the Beam End indication bit in the second Trigger Dependent Common Info field may be set to 1, indicating that the indication information of the current beam ends in this Trigger Dependent Common Info field.
  • the Frequency offset field in the second Trigger Dependent Common Info field indicates the value of the uniform frequency offset.
  • the Trigger Dependent Common Info field corresponding to Mode 8 can indicate a single beam with uniform frequency offset or a single beam and non-uniform frequency offset.
  • the Trigger Dependent Common Info field only includes the second Trigger Dependent shown in Figure 45 When the Common Info field is used, it can indicate a single beam with a uniform frequency offset; when the Trigger Dependent Common Info field only includes the first Trigger Dependent Common Info field shown in Figure 45, it can indicate a single beam with a non-uniform frequency offset.
  • This embodiment of the present application The details are not repeated here.
  • FIG. 46 is a schematic diagram six of the Trigger Dependent Common Info field provided by the embodiment of the present application.
  • the Multi-beam End indicator bit in the sixth mode can be combined with the Antenna indicator bit in the seventh mode to obtain the Trigger Dependent Common Info field in the ninth mode, as shown in FIG. 45 .
  • Multi-beam End indication bit please refer to the sixth mode
  • Antenna indicator bit please refer to the seventh mode, which will not be repeated here.
  • Figure 46 shows the Common Info field and the Trigger Dependent Common Info field when the beam is multi-beam, which will not be described in detail here.
  • the second device determines the second sensing waveform according to the second message.
  • the second sensing waveform is used to sense the target object in the environment.
  • the second device sends the second sensing waveform to the first device. Accordingly, the first device receives the second sensed waveform from the second device.
  • the second sensing waveform is used to sense the target object in the environment.
  • the first device perceives the target object according to the second perception waveform, and obtains perception feedback information.
  • the wireless local area network sensing method provided by the embodiment of the present application may further include the following steps 3 to 4.
  • Step 3 the first device sends a second request message to the second device. Accordingly, the second device receives the second request message from the first device.
  • the second request message may be used to request sensing of the target object.
  • the second request message may include a sensing polling (Sensing poll) frame to start the sensing polling process.
  • Sensing poll sensing poll
  • Step 4 The first device receives the second response message from the second device.
  • the second device sends a second reply message to the first device.
  • the second response message may be used to confirm the perception of the target object.
  • the second response message may include a Clear to Send-to-Self (Clear to Send-to-Self, CTS-to-Self) frame, ending the sensing polling process.
  • a Clear to Send-to-Self Clear to Send-to-Self (Clear to Send-to-Self, CTS-to-Self) frame, ending the sensing polling process.
  • the second device receives a second message from the first device indicating at least one parameter included in the second sensing waveform, and the second sensing waveform is used to sense the target object in the environment,
  • the second message carries the difference between the frequencies of the carriers corresponding to two adjacent antennas among the multiple antennas of the second device.
  • the second device determines the second sensing waveform according to the second message, and sends the second sensing waveform to the first device.
  • the first device perceives the target object according to the second perception waveform, and obtains perception feedback information.
  • the frequencies of the carriers corresponding to each antenna are different, which can realize focusing on a specific position in space, not limited to a certain angle unit, and can improve the perception ability.
  • FIG. 47 is a sixth schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the uplink single-beam uniform frequency offset is described in detail.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a second message to the STA. Accordingly, the STA receives the second message from the AP.
  • FIG. 48 is a fourth schematic diagram of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • the second message may include the sensing trigger frame shown in FIG. 35 .
  • the AP can send the sensing trigger frame shown in Figure 35 to the STA, and can set the value of each indicator bit in the Trigger Dependent Common Info field in the sixth, seventh, eighth, or ninth mode, so that the beam is a single The uniform frequency offset of the beam is not repeated here.
  • the STA determines the second sensing waveform according to the second message.
  • the STA sends the second sensing waveform to the AP. Accordingly, the AP receives the second sensing waveform from the STA.
  • the AP perceives the target object according to the second perception waveform, and obtains perception feedback information.
  • the AP after obtaining the sensing feedback information, the AP sends a trigger frame to the next STA participating in the sensing during the negotiation and performs an uplink measurement process until all the STAs participating in the measurement are traversed.
  • FIG. 49 is a seventh schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the uplink single-beam non-uniform frequency offset is described in detail.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a second message to the STA. Accordingly, the STA receives the second message from the AP.
  • FIG. 50 is a fifth application schematic diagram of the wireless local area network sensing method provided by the embodiment of the present application.
  • the second message may include the sensing trigger frame shown in FIG. 35 .
  • the AP can send the sensing trigger frame shown in Figure 35 to the STA, and can set the value of each indicator bit in the Trigger Dependent Common Info field in the sixth, seventh, eighth, or ninth mode, so that the beam is a single The non-uniform frequency offset of the beam will not be repeated here.
  • the STA determines the second sensing waveform according to the second message.
  • the STA sends the second sensing waveform to the AP. Accordingly, the AP receives the second sensing waveform from the STA.
  • the AP perceives the target object according to the second perception waveform, and obtains perception feedback information.
  • the AP after obtaining the sensing feedback information, the AP sends a trigger frame to the next STA participating in the sensing during the negotiation and performs an uplink measurement process until all the STAs participating in the measurement are traversed.
  • FIG. 51 is an eighth schematic flowchart of a wireless local area network sensing method provided by an embodiment of the present application.
  • the wireless local area network sensing method can be applied to the communication between the first device and the second device shown in FIG. 10 .
  • the first device as the AP
  • the second device as the STA
  • the application scenario of the uplink multi-beam is described in detail.
  • the wireless local area network sensing method includes the following steps:
  • the AP sends a second message to the STA. Accordingly, the STA receives the second message from the AP.
  • FIG. 52 is a sixth schematic diagram of the application of the wireless local area network sensing method provided by the embodiment of the present application.
  • the second message may include the sensing trigger frame shown in FIG. 35 .
  • the AP can send the sensing trigger frame shown in Figure 35 to the STA, and can set the value of each indicator bit in the Trigger Dependent Common Info field by using the above-mentioned way six, way seven, way eight, or way nine, so that the beam is multi- beam, which will not be repeated here.
  • the STA determines the second sensing waveform according to the second message.
  • the STA sends the second sensing waveform to the AP. Accordingly, the AP receives the second sensing waveform from the STA.
  • the AP perceives the target object according to the second perception waveform, and obtains perception feedback information.
  • the AP after obtaining the sensing feedback information, the AP sends a trigger frame to the next STA participating in the sensing during the negotiation and performs an uplink measurement process until all the STAs participating in the measurement are traversed.
  • the wireless local area network sensing method provided by the embodiments of the present application has been described in detail above with reference to FIG. 3 to FIG. 52 .
  • the communication apparatus provided by the embodiments of the present application will be described in detail below with reference to FIG. 53 to FIG. 56 .
  • FIG. 53 is a first structural schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 5300 may be a first device or a second device, capable of implementing the solutions shown in FIG. 11 , FIG. 28 , FIG. 30 , FIG. 32 , FIG. 34 , FIG. 47 , FIG. 49 , or FIG. 51
  • the first device or the second device side method in the method embodiment; the communication apparatus 5300 may also be an apparatus capable of supporting the first device or the second device to implement the method, and the communication apparatus 5300 may be installed in the first device or the second device , or matched with the first device or the second device.
  • the communication device 5300 includes a receiving antenna, a full-band filter and a sub-band filter. After passing the perceptual waveform through the full-band filter and the sub-band filter, a receiving matrix formed by the perceptual waveform in different sub-bands of different antennas can be obtained.
  • FIG. 54 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device may be the first device or the second device, or may be a chip (system) or other components or assemblies that can be provided in the first device or the second device.
  • the communication apparatus 5400 may include a processor 5401.
  • the communication device 5400 may further include a memory 5402 and/or a transceiver 5403 .
  • the processor 5401 is coupled with the memory 5402 and the transceiver 5403, such as can be connected through a communication bus.
  • the processor 5401 is the control center of the communication device 5400, which may be one processor or a general term for multiple processing elements.
  • the processor 5401 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 5401 may execute various functions of the communication device 5400 by running or executing software programs stored in the memory 5402 and calling data stored in the memory 5402 .
  • the processor 5401 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 54 .
  • the communication apparatus 5400 may also include multiple processors, for example, the processor 5401 and the processor 5404 shown in FIG. 54 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 5402 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 5401.
  • the memory 5402 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 5401.
  • memory 5402 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of static storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disks storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 5402 may be integrated with the processor 5401, or may exist independently, and be coupled to the processor 5401 through an input/output port (not shown in FIG. 54) of the communication device 5400, which is not specifically limited in this embodiment of the present application.
  • the transceiver 5403 is used for communication with other communication devices.
  • the communication apparatus 5400 is the first device, and the transceiver 5403 can be used to communicate with the second device or communicate with another second device.
  • the communication apparatus 5400 is the second device, and the transceiver 5403 can be used to communicate with the first device.
  • transceiver 5403 may include a receiver and a transmitter (not shown separately in Figure 54). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 5403 may be integrated with the processor 5401, or may exist independently, and be coupled to the processor 5401 through an input/output port (not shown in FIG. 54) of the communication device 5400. This is not specifically limited.
  • the structure of the communication device 5400 shown in FIG. 54 does not constitute a limitation of the communication device, and an actual communication device may include more or less components than those shown in the figure, or combine some components, or Different component arrangements.
  • FIG. 55 is a third schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 5500 may be the first device or the second device, capable of implementing the method shown in FIG. 11 , FIG. 28 , FIG. 30 , FIG. 32 , FIG. 34 , FIG. 47 , FIG. 49 , or FIG. 51 .
  • the first device or the second device side method in the embodiment; the communication apparatus 5500 may also be an apparatus capable of supporting the first device or the second device to implement the method, such as a chip system, and the communication apparatus 5500 may be installed in the first device or the second device. In the second device, or matched with the first device or the second device.
  • the communication apparatus 5500 includes RAM, ROM, and CPU.
  • a physical layer physical layer, PHY
  • a medium access control media access control, MAC
  • FIG. 56 is a fourth schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 5600 may be a first device or a second device, capable of implementing the solutions shown in FIG. 11 , FIG. 28 , FIG. 30 , FIG. 32 , FIG. 34 , FIG. 47 , FIG. 49 , or FIG. 51
  • the first device or the second device side method in the method embodiment; the communication apparatus 5600 may also be an apparatus capable of supporting the first device or the second device to implement the method, such as a chip system, and the communication apparatus 5600 may be installed in the first device or In the second device, or matched with the first device or the second device.
  • the communication apparatus 5600 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication apparatus 5600 may be implemented by a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 5600 includes a processing module 5610 and a communication module 5620.
  • the processing module 5610 can generate the signal to be transmitted and can utilize the communication module 5620 to transmit the signal.
  • the processing module 5610 can utilize the communication module 5620 to receive signals and process the received signals.
  • the processing module 5610 and the communication module 5620 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the coupling can be wired or wireless.
  • the communication module may be a circuit, a module, a bus, an interface, a transceiver, a pin, or any other device that can implement a transceiver function, which is not limited in the embodiment of the present application.
  • Embodiments of the present application provide a communication system.
  • the communication system includes the above-mentioned first device, and one or more second devices.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor and an input/output port, where the processor is used to implement the processing functions involved in the wireless local area network sensing method provided by the embodiment of the present application, the input/output port It is used for the transceiver function involved in the wireless local area network sensing method provided by the embodiment of the present application.
  • the chip system further includes a memory, where the memory is used to store program instructions and data for implementing the functions involved in the wireless local area network sensing method provided by the embodiments of the present application.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium includes a computer program or instructions, and when the computer program or instructions run on a computer, enables the computer to execute the wireless local area network sensing method provided by the embodiments of the present application.
  • the embodiments of the present application provide a computer program product, the computer program product includes: computer programs or instructions, when the computer programs or instructions are run on a computer, the computer can execute the wireless local area network sensing method provided by the embodiments of the present application.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like containing one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线局域网感知方法及装置,可以实现对空间特定位置的聚焦,从而可以提高感知能力,可应用于802.11ax、802.11be以及未来的WLAN通信系统中。该方法包括:第一设备向第二设备发送第一消息,向第二设备发送第一感知波形。第二设备接收来自第一设备的第一消息,接收来自第一设备的第一感知波形,根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。其中,第一消息用于指示第一感知波形包括的至少一个参数,第一感知波形用于对环境中的目标物体进行感知,第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值。

Description

无线局域网感知方法及装置
本申请要求于2021年01月08日提交国家知识产权局、申请号为202110024615.8、申请名称为“无线局域网感知方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种无线局域网感知方法及装置。
背景技术
无线局域网(wireless local area network,WLAN)感知(sensing)是一种利用现有的WLAN信号进行目标物体的运动检测的技术。基于无线电测量或采样环境的能力,两个物理设备之间的每个通信路径都提供了提取其周围环境信息的机会。WLAN网络由位于给定通信范围内的多个设备构成。
802.11ac协议定义了波束成形技术与多用户的多输入多输出技术(multi user multiple input multiple output,MU-MIMO)。如图1所示,802.11ac标准使用信道探测帧对信道进行测量,将信道探测帧波束成形并发送出去的设备称作进行波束成形调整的一方(Beamformer),接收波束成形帧的设备称为辅助完成波束成形调整的一方(Beamformee)。802.11ac对发送方和接收方传输具有波束成形帧做了新的定义,因为单一的交换只能有一个发起者,一个应答者。如图1所示,Beamformer发送一个无数据包宣告(null data packet announcement,NDPA)帧,告知将要发送的无数据包(sensing null data packet,sensing NDP)帧,与Beamformee进行信道信息的交互。Beamformee从信道探测中得到信道状态信息,通过信道状态信息发送反馈矩阵,Beamformer接收反馈矩阵后,可以得到天线的控制矩阵,控制矩阵包括如何设置发射端天线中每个天线单元的幅度和相位,使得天线辐射方向图在远场叠加后指向接收端。
图2为反馈矩阵的帧格式。结合图2,Category用于表示反馈帧(action frame)的种类,对于非常高的吞吐量(very high throughput,VHT)来说,该值为21。VHT Action表示VHT反馈帧(VHT action frame)的种类,对于压缩波束成形(compressed beamforming)来说该值为0。VHT MIMO Control表示压缩波束成形报告(compressed beamforming report)的参数。Compressed Beamforming Report与MU Exclusive Beamforming Report Field部分包含反馈矩阵与子载波子集的信噪比信息。
现有的WLAN感知技术采用上述已有的方案进行感知过程,该方法空间指向能力不强,难以区分目标与在不同距离单元上的干扰。
发明内容
本申请实施例提供一种无线局域网感知方法及装置,可以实现对空间特定位置的聚焦,从而可以提高感知能力。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种无线局域网感知方法,该无线局域网感知方法包括:向第二设备发送第一消息,向第二设备发送第一感知波形。其中,第一消息用于指示第一感知波形包括的至少一个参数,第一感知波形用于对环境中的目标物体进行感知,第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值。
基于第一方面所述的无线局域网感知方法,第一设备向第二设备发送用于指示第一感知波形包括的至少一个参数的第一消息,第一感知波形用于对环境中的目标物体进行感知,第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值,向第二设备发送第一感知波形,从而第二设备接收来自第一设备的第一感知波形,根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。如此,各个天线对应的载波的频率不相同,可以实现对空间特定位置的聚焦,不仅限于某一角度单元之内,可以提高感知能力。
在一种可能的实现方式中,第一消息可以包括如下一项或多项:第一指示信息、第二指示信息、第三指示信息和第四指示信息。其中,第一指示信息可用于指示第一设备的多个天线对应的波束的数量信息,第二指示信息可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等,第三指示信息可用于指示相邻两个天线对应的载波的频率的差值,第四指示信息可用于指示当前波束对应的第三指示信息的数量信息。
在一种可能的实现方式中,第一指示信息可用于指示当前波束是否为第一设备的多个天线对应的最后一个波束。
在一种可能的实现方式中,第一指示信息可用于指示第一设备的多个天线对应的波束的数量。
在一种可能的实现方式中,第三指示信息和第四指示信息可属于第一消息的第一字段,第四指示信息可用于指示当前第一字段的下一第一字段是否包括当前波束对应的第三指示信息。
在一种可能的实现方式中,第四指示信息可用于指示当前波束对应的第三指示信息的数量。
在一种可能的实现方式中,第四指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。
在一种可能的实现方式中,第一消息还可包括第五指示信息,第五指示信息可用于指示第一消息包括的参数为频控阵FDA参数。
在一种可能的实现方式中,第一方面提供的无线局域网感知方法,还可以包括:接收来自第二设备的第一请求消息,向第二设备发送第一应答消息。其中,第一请求消息可用于请求对目标物体进行感知,第一应答消息可用于确认对目标物体进行感知。
在另一种可能的实现方式中,第一方面提供的无线局域网感知方法,还可以包括:接收来自第二设备的感知反馈信息。
第二方面,提供一种无线局域网感知方法,该无线局域网感知方法包括:接收来自第一设备的第一消息,接收来自第一设备的第一感知波形,根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。其中,第一消息用于指示第一感知波形包括的至少一个参数,第一感知波形用于对环境中的目标物体进行感知,第一消 息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值。
在一种可能的实现方式中,第一消息可以包括如下一项或多项:第一指示信息、第二指示信息、第三指示信息和第四指示信息。其中,第一指示信息可用于指示第一设备的多个天线对应的波束的数量信息,第二指示信息可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等,第三指示信息可用于指示相邻两个天线对应的载波的频率的差值,第四指示信息可用于指示当前波束对应的第三指示信息的数量信息。
在一种可能的实现方式中,第一指示信息可用于指示当前波束是否为第一设备的多个天线对应的最后一个波束。
在一种可能的实现方式中,第一指示信息可用于指示第一设备的多个天线对应的波束的数量。
在一种可能的实现方式中,第四指示信息可用于指示当前波束对应的第三指示信息的数量。
在一种可能的实现方式中,第三指示信息和第四指示信息可属于第一消息的第一字段,第四指示信息可用于指示当前第一字段的下一第一字段是否包括当前波束对应的第三指示信息。
在一种可能的实现方式中,第四指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。
在一种可能的实现方式中,第一消息还可包括第五指示信息,第五指示信息可用于指示第一消息包括的参数为频控阵FDA参数。
在一种可能的实现方式中,第二方面提供的无线局域网感知方法,还可以包括:向第一设备发送感知反馈信息。
此外,第二方面所述的无线局域网感知方法的技术效果可以参考第一方面中任一种可能的实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第三方面,提供一种无线局域网感知方法,该无线局域网感知方法包括:向第二设备发送第二消息,接收来自第二设备的第二感知波形,根据第二感知波形对目标物体进行感知,获得感知反馈信息。其中,第二消息用于指示第二感知波形包括的至少一个参数,第二感知波形用于对环境中的目标物体进行感知,第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值。
基于第三方面所述的无线局域网感知方法,第二设备接收来自第一设备的指示第二感知波形包括的至少一个参数的第二消息,第二感知波形用于对环境中的目标物体进行感知,第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值,第二设备根据第二消息确定第二感知波形,并将第二感知波形发送给第一设备,第一设备根据第二感知波形对目标物体进行感知,获得感知反馈信息。如此,各个天线对应的载波的频率不相同,可以实现对空间特定位置的聚焦,不仅限于某一角度单元之内,可以提高感知能力。
在一种可能的实现方式中,第二消息可以包括如下一项或多项:第六指示信息、第七指示信息、第八指示信息和第九指示信息。其中,第六指示信息可用于指示第二设备的多个天线对应的波束的数量信息,第七指示信息可用于指示当前波束对应的所 有的相邻两个天线对应的载波的频率的差值是否相等,第八指示信息可用于指示相邻两个天线对应的载波的频率的差值,第九指示信息可用于指示当前波束对应的第八指示信息的数量信息。
在一种可能的实现方式中,第六指示信息可用于指示当前波束是否为第二设备的多个天线对应的最后一个波束。
在一种可能的实现方式中,第六指示信息可用于指示第二设备的多个天线对应的波束的数量。
在一种可能的实现方式中,第八指示信息和第九指示信息可属于第二消息的第二字段,第九指示信息可用于指示当前第二字段的下一第二字段是否包括当前波束对应的第八指示信息。
在一种可能的实现方式中,第九指示信息可用于指示当前波束对应的第八指示信息的数量。
在一种可能的实现方式中,第九指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。
在一种可能的实现方式中,第二消息还可包括第十指示信息,第十指示信息可用于指示第二消息包括的参数为频控阵FDA参数。
在一种可能的实现方式中,第三方面提供的无线局域网感知方法,还可以包括:向第二设备发送第二请求消息,接收来自第二设备的第二应答消息。其中,第二请求消息可用于请求对目标物体进行感知,第二应答消息可用于确认对目标物体进行感知。
第四方面,提供一种无线局域网感知方法,该无线局域网感知方法包括:接收来自第一设备的第二消息,根据第二消息确定第二感知波形,向第一设备发送第二感知波形。其中,第二消息用于指示第二感知波形包括的至少一个参数,第二感知波形用于对环境中的目标物体进行感知,第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值。
在一种可能的实现方式中,第二消息可以包括如下一项或多项:第六指示信息、第七指示信息、第八指示信息和第九指示信息。其中,第六指示信息可用于指示第二设备的多个天线对应的波束的数量信息,第七指示信息可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等,第八指示信息可用于指示相邻两个天线对应的载波的频率的差值,第九指示信息可用于指示当前波束对应的第八指示信息的数量信息。
在一种可能的实现方式中,第六指示信息可用于指示当前波束是否为第二设备的多个天线对应的最后一个波束。
在一种可能的实现方式中,第六指示信息可用于指示第二设备的多个天线对应的波束的数量。
在一种可能的实现方式中,第九指示信息可用于指示当前波束对应的第八指示信息的数量。
在一种可能的实现方式中,第八指示信息和第九指示信息可属于第二消息的第二字段,第九指示信息可用于指示当前第二字段的下一第二字段是否包括当前波束对应的第八指示信息。
在一种可能的实现方式中,第九指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。
在一种可能的实现方式中,第二消息还可包括第十指示信息,第十指示信息可用于指示第二消息包括的参数为频控阵FDA参数。
在一种可能的实现方式中,第三方面提供的无线局域网感知方法,还可以包括:接收来自第一设备的第二请求消息,向第一设备发送第二应答消息。其中,第二请求消息可用于请求对目标物体进行感知,第二应答消息可用于确认对目标物体进行感知。
此外,第四方面所述的无线局域网感知方法的技术效果可以参考第三方面中任一种可能的实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括用于执行第一方面中任一项方法的单元或模块。
在本申请中,第五方面所述的通信装置可以为第一设备,或者可设置于第一设备的芯片(系统)或其他部件或组件。
此外,第五方面所述的通信装置的技术效果可以参考第一方面中的任意一种实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括用于执行第二方面中任一项方法的单元或模块。
在本申请中,第六方面所述的通信装置可以为第二设备,或者可设置于第二设备的芯片(系统)或其他部件或组件。
此外,第六方面所述的通信装置的技术效果可以参考第一方面中的任意一种实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括用于执行第三方面中任一项方法的单元或模块。
在本申请中,第七方面所述的通信装置可以为第一设备,或者可设置于第一设备的芯片(系统)或其他部件或组件。
此外,第七方面所述的通信装置的技术效果可以参考第三方面中的任意一种实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括用于执行第四方面中任一项方法的单元或模块。
在本申请中,第八方面所述的通信装置可以为第二设备,或者可设置于第二设备的芯片(系统)或其他部件或组件。
此外,第八方面所述的通信装置的技术效果可以参考第三方面中的任意一种实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置,该通信装置包括:处理器,处理器与存储器耦合。存储器,用于存储计算机程序。处理器,用于执行存储器中存储的计算机程序,以使得通信装置执行如第一方面至第四方面中任一项的无线局域网感知方法。
在一种可能的设计中,第九方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他通信装置通信。
在本申请中,第九方面所述的通信装置可以为第一设备或第二设备,或者设置于 第一设备或第二设备内部的芯片或芯片系统。
此外,第九方面所述的通信装置的技术效果可以参考第一方面至第四方面中任一种实现方式所述的无线局域网感知方法的技术效果,此处不再赘述。
第十方面,提供了一种芯片系统,该芯片系统包括处理器和输入/输出端口,所述处理器用于实现第一方面至第四方面中任一项所涉及的处理功能,所述输入/输出端口用于实现第一方面至第四方面中任一项所涉及的收发功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第四方面中任一项所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供一种通信系统。该系统包括第一设备和一个或多个第二设备。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第四方面中任一种可能的实现方式所述的无线局域网感知方法。
第十三方面,提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第四方面中任一种可能的实现方式所述的无线局域网感知方法。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的无线局域网感知方法的流程示意图;
图3为本申请实施例提供的发射阵列的示意图;
图4为本申请实施例提供的频控阵的方向示意图;
图5为本申请实施例提供的相控阵的方向示意图;
图6为本申请实施例提供的相控阵的角度指向示意图;
图7为本申请实施例提供的频控阵的角度指向示意图;
图8为本申请实施例提供的载波与天线的对应关系的示意图;
图9为本申请实施例提供的具有角度与距离依赖的阵列方向的示意图;
图10为本申请实施例提供的通信系统的架构示意图;
图11为本申请实施例提供的无线局域网感知方法的流程示意图一;
图12为本申请实施例提供的NDPA帧的帧格式示意图一;
图13为本申请实施例提供的Sounding Dialog Token字段的示意图;
图14为本申请实施例提供的STA info字段的示意图一;
图15为本申请实施例提供的STA info字段的示意图二;
图16为本申请实施例提供的STA info字段的示意图三;
图17为本申请实施例提供的NDPA帧的帧格式示意图二;
图18为本申请实施例提供的NDPA帧的帧格式示意图三;
图19为本申请实施例提供的NDPA帧的帧格式示意图四;
图20为本申请实施例提供的STA info字段的示意图四;
图21为本申请实施例提供的NDPA帧的帧格式示意图五;
图22为本申请实施例提供的NDPA帧的帧格式示意图六;
图23为本申请实施例提供的NDPA帧的帧格式示意图七;
图24为本申请实施例提供的STA info字段的示意图五;
图25为本申请实施例提供的NDPA帧的帧格式示意图八;
图26为本申请实施例提供的NDPA帧的帧格式示意图九;
图27为本申请实施例提供的Frame Control字段的示意图一;
图28为本申请实施例提供的无线局域网感知方法的流程示意图二;
图29为本申请实施例提供的无线局域网感知方法的应用示意图一;
图30为本申请实施例提供的无线局域网感知方法的流程示意图三;
图31为本申请实施例提供的无线局域网感知方法的应用示意图二;
图32为本申请实施例提供的无线局域网感知方法的流程示意图四;
图33为本申请实施例提供的无线局域网感知方法的应用示意图三;
图34为本申请实施例提供的无线局域网感知方法的流程示意图五;
图35为本申请实施例提供的触发帧的帧格式示意图一;
图36为本申请实施例提供的Common Info字段的示意图一;
图37为本申请实施例提供的Trigger Dependent Common Info字段的示意图一;
图38为本申请实施例提供的Trigger Dependent Common Info字段的示意图二;
图39为本申请实施例提供的Trigger Dependent Common Info字段的示意图三;
图40为本申请实施例提供的Trigger Dependent Common Info字段的示意图四;
图41为本申请实施例提供的Trigger Dependent Common Info字段的示意图五;
图42为本申请实施例提供的Trigger Dependent Common Info字段的示意图六;
图43为本申请实施例提供的Trigger Dependent Common Info字段的示意图七;
图44为本申请实施例提供的Trigger Dependent Common Info字段的示意图八;
图45为本申请实施例提供的Trigger Dependent Common Info字段的示意图九;
图46为本申请实施例提供的Trigger Dependent Common Info字段的示意图十;
图47为本申请实施例提供的无线局域网感知方法的流程示意图六;
图48为本申请实施例提供的无线局域网感知方法的应用示意图四;
图49为本申请实施例提供的无线局域网感知方法的流程示意图七;
图50为本申请实施例提供的无线局域网感知方法的应用示意图五;
图51为本申请实施例提供的无线局域网感知方法的流程示意图八;
图52为本申请实施例提供的无线局域网感知方法的应用示意图六;
图53为本申请实施例提供的通信装置的结构示意图一;
图54为本申请实施例提供的通信装置的结构示意图二;
图55为本申请实施例提供的通信装置的结构示意图三;
图56为本申请实施例提供的通信装置的结构示意图四。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如应用于802.11ax,802.11be以及未来的WLAN系统中等。其中,802.11ax也可称为高效无线网络(high efficiency wireless,HEW)、无线保真(wireless fidelity,WiFi)6,802.11be也可称 为极端高吞吐量(extremely high throughput,EHT)、WiFi7等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“字段”,“指示位”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
首先,为了便于理解,下面先对本申请实施例可能涉及的相关术语和概念进行介绍。
频控阵雷达(frequency diverse array,FDA)发射相参信号,并在不同天线的发射波束上附加较小的频偏,使得发射出去的信号的频率中心有所偏移。一般在不同天线的发射波束上附加的偏移远小于发射波束的载频,不同天线发射的主要频率成分是重叠的。频控阵雷达与相控阵雷达类似,频控阵雷达可以看作相控阵雷达的一种扩展,相控阵雷达可以看作频控阵雷达的一种特例。
图3为本申请实施例提供的发射阵列的示意图。如图3所示,频控阵雷达在相邻阵元上对发射信号附加一个远小于发射波束载频的频率增量Δf,设第一个阵元的发射载频为f 0,则其第m个阵元的发射信号载频见下述公式(1)。
f m=f 0+m×Δf             (1)
其中,m=0,1,2…M-1,m为大于或等于0且小于或等于M-1的整数,M为阵元的数量,d为阵元之间的间隔,r 0为目标到阵元的距离,θ为目标与阵元之间的角度,y轴表示距离,x轴表示频率,阵元也可称为天线。
以图3所示的一维线性均匀的发射阵列为例,其均匀加权的发射波束方向图可以近似推导为下述公式(2)。
Figure PCTCN2022071029-appb-000001
Figure PCTCN2022071029-appb-000002
其中,t为时间,θ为目标与阵元之间的角度,r为目标到阵元的距离,e为数学常数,是自然对数函数的底数,也称为欧拉数(euler number),M为阵元的数量,j为 复数,Δf为频率增量,也称为频偏数值,c为光速,d为阵元之间的间隔,θ 0为相位因子,具体可用上述公式(3)表示。
具体地,频控阵雷达具有以下特点:(1)频控阵雷达与频率扫频雷达不相同,频率扫描雷达的频偏是在不同时间施加的相同频偏数值,所有阵元在相同时刻的频偏是相同的;而频控阵雷达的频偏是在同一时间对不同阵元施加的不同的频偏数值。(2)频控阵雷达的频偏是额外附加的,而不是阵列本身发射正交多频信号,频控阵雷达发射的发射信号是与相控阵雷达的发射信号相同的相参信号,只是经过附加的频偏控制后辐射出去的信号频率不同,这与发射不同载频的正交频分复用(orthogonal frequency division multiplexing,OFDM))雷达不同。(3)频控阵雷达的阵列指向受所加载的频偏数值影响,当指定距离r一定时,波束指向随着频偏数值的变化而变化,即频控阵雷达具有频偏相关性。当频偏一定时,波束指向随距离的变化而变化,即频控阵雷达具有距离相关性。(4)频控阵的方向图随时间而变化,具体体现为方向图在距离上以光速传播,频控阵的方向图沿着距离具有周期性。
图4为本申请实施例提供的频控阵的方向示意图。如图4所示,频控阵的方向图为使用八根发射天线,频点在5GHz,频偏为1250KHz时的频控阵方向图,横坐标表示距离,纵坐标表示角度。其中,频控阵的方向图具有距离依赖性,可以避开不感兴趣区域内的杂波干扰,实现高信噪比下的感知。
图5为本申请实施例提供的相控阵的方向示意图。如图5所示,相控阵的方向图为使用八根发射天线、无频偏的方向图,横坐标表示距离,纵坐标表示角度。
图4所示的频控阵的方向图具有距离依赖性,图4所示的S型的阵列方向图是由其阵列因子中的
Figure PCTCN2022071029-appb-000003
引起的。阵列方向图的峰值参照下述公式(4)。
Figure PCTCN2022071029-appb-000004
其中,t为时间,θ为目标与阵元之间的角度,r为目标到阵元的距离,Δf为频率增量,也称为频偏数值,c为光速,d为阵元之间的间隔,f 0为第一个阵元的发射载频,k=0,±1,±2,…。上述公式(4)表示频控阵的方向图的峰值依赖于r和t这两个参数,频控阵的阵列方向图具有距离依赖性和时变特性。
图6为本申请实施例提供的相控阵的角度指向示意图。如图6所示,相控阵只改变相位,可以实现具有方向指向的方向图。当目标与干扰在同一角度单元的不同距离单元上时,使用通过改变不同天线相位形成具有角度依赖的阵列方向图,会将目标与干扰共同感知到,降低了对目标进行感知的信噪比。
图7为本申请实施例提供的频控阵的角度指向示意图。如图7所示,频控阵可以实现具有方向指向的方向图,当目标与干扰在同一角度单元的不同距离单元上时,也能灵活识别出目标,排除干扰。
图8为本申请实施例提供的载波与天线的对应关系的示意图。图9为本申请实施例提供具有角度与距离依赖的阵列方向的示意图。
如图8所示,y轴表示频率,x轴表示距离,A0表示阵元或天线,A1至A7类似。 f0表示第0个子载波,f4表示第4个子载波,各天线之间的频偏为均匀频偏,d为阵元之间的间隔。结合图8,将OFDM信号的子载波放在不同天线上,根据频控阵原理可以形成具有距离依赖的方向图,如图9。图9所示的方向图具有角度与距离依赖,波束集中于指定的距离角度单元,由于电磁波的传播特性,该方向图在距离上以光速进行传播,在距离上形成距离扫描特性。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图10中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图10为本申请实施例提供的无线局域网感知方法所适用的一种通信系统的架构示意图。
如图10所示,该通信系统包括第一设备和至少一个第二设备。
其中,上述第一设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。本申请实施例中的第一设备是为第二设备提供服务的装置,可以为接入点(access point,AP),例如,第一设备可以为通信服务器、路由器、交换机、网桥等通信实体,或,所述第一设备可以包括各种形式的宏基站,微基站,中继站等,当然第一设备还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。并且,随着无线局域网应用场景的不断演进,第一设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。
示例性的,第二设备为具有无线通信功能的装置,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,本申请实施例中的第二设备具有无线收发功能,可以为站点(station,STA),可以与第一设备或其它设备进行通信,例如,第二设备是允许用户与第一设备通信进而与WLAN通信的任何用户通信设备。例如,第二设备可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等,第二设备还可以为上述这些终端中的芯片和处理系统。本申请实施例中对于第一设备和第二设备的具体形式不做特殊限制,在此仅是示例性说明。
需要说明的是,本申请实施例提供的无线局域网感知方法,可以适用于图10所示的第一设备与第二设备之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名 称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图10仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他设备,图10中未予以画出。
下面将结合图11-图52对本申请实施例提供的无线局域网感知方法进行具体阐述。
示例性地,图11为本申请实施例提供的无线局域网感知方法的流程示意图一。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。下面基于图11对下行应用场景进行具体阐述。
如图11所示,该无线局域网感知方法包括如下步骤:
S1101,第一设备向第二设备发送第一消息。相应地,第二设备接收来自第一设备的第一消息。
示例性地,第一消息用于指示第一感知波形包括的至少一个参数,第一感知波形用于对环境中的目标物体进行感知。
在一些实施例中,第一消息可以包括感知无数据包宣告(sensing null data packet announcement,sensing NDPA)帧,第一感知波形可以包括感知无数据包(sensing null data packet,sensing NDP)帧。
如此,第一设备向第二设备发送sensing NDPA帧指示将要发送的sensing NDP帧的各项参数,使得各第二设备能够使用接收到的目标回波信号进行测量。
示例性地,第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值。如此,通过改变不同天线之上的频偏方式,可以得到具有不同性质的空间波束,可实现较为灵活的感知模式。
在一些实施例中,第一消息可以包括如下一项或多项:第一指示信息、第二指示信息、第三指示信息和第四指示信息。
可选的,第一指示信息可用于指示第一设备的多个天线对应的波束的数量信息。
示例性地,第一指示信息可以包括sensing NDPA帧的STA info field字段的Multi-beam End指示位或sensing NDPA帧的STA info field字段的Beam指示位,如此,第一指示信息可以用于指示第一波束的多个天线对应的波束的具体数量、或为单一波束、多波束等。
需要说明的是,上述STA info field字段可以称为STA info字段,在不强调其区别时,其所要表达的含义是一致的。
示例性地,第一指示信息可用于指示当前波束是否为第一设备的多个天线对应的最后一个波束。例如,第一指示信息可以包括sensing NDPA帧的STA info field字段的Multi-beam End指示位。
又示例性地,第一指示信息可用于指示第一设备的多个天线对应的波束的数量。例如,第一指示信息可以包括sensing NDPA帧的STA info field字段的Beam指示位。
可选的,第二指示信息可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。如此,第二指示信息可用于指示天线之间的频偏是否为均匀频偏。
示例性地,第二指示信息可以包括sensing NDPA帧的STA info field字段的Uniform Offset指示位。
可选的,第三指示信息可用于指示相邻两个天线对应的载波的频率的差值。如此,第三指示信息可用于指示频偏数值。
示例性地,第三指示信息可以包括sensing NDPA帧的STA info field字段的Frequency Offset指示位。
可选的,第四指示信息可用于指示当前波束对应的第三指示信息的数量信息。示例性地,第四指示信息可以包括sensing NDPA帧的STA info field字段的Beam End指示位或sensing NDPA帧的STA info field字段的Antenna指示位。
示例性地,第三指示信息和第四指示信息可属于第一消息的第一字段,第四指示信息用于指示当前第一字段的下一第一字段是否包括当前波束对应的第三指示信息,第一字段可以为STA info field字段。
如此,当为天线之间的频偏为非均匀频偏时,第二设备可能需要连续读取多个第一字段直到其中第四指示信息指示当前第一字段的下一第一字段不包括当前波束对应的第三指示信息,标志对该波束的指示结束。例如,当为非均匀频偏时,第二设备可能需要连续读取多个STA info field字段直到其中Beam End指示位为1,标志对该波束的指示结束。
又示例地,第四指示信息可用于指示当前波束对应的第三指示信息的数量。例如,第四指示信息可以包括sensing NDPA帧的STA info field字段的Antenna字段,Antenna字段为1,指示当前波束对应有一个频偏数值,天线的个数为2个;Antenna字段为2,指示当前波束对应有两个频偏数值,天线的个数为3个,本申请不一一列举。
又示例地,第四指示信息可用于指示当前波束对应的第三指示信息的数量,第四指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。例如,Antenna字段为0时,可指示天线之间的频偏为均匀频偏,天线的数量可以为两个或多个。
在一些实施例中,第一消息可以包括第五指示信息,第五指示信息可用于指示第一消息包括的参数为频控阵(frequency diverse array,FDA)参数。
示例性地,第五指示信息可以包括sensing NDPA帧中的FDA NDP Announcement指示位,FDA NDP Announcement指示位可用于指示该sensing NDPA帧为FDA参数指示帧。
如此,可通过第一消息指示第一感知波形为单波束且均匀频偏、单波束且非均匀频偏、多波束且全部波束均为均匀频偏、多波束且部分波束为均匀频偏,多波束且全部波束均为非均匀频偏等。
下面以sensing NDPA帧为例,对第一消息进行具体阐述。
上述sensing NDPA帧可以称为NDPA FDA Sensing frame、或NDPA帧等,在不强调其区别时,其所要表达的含义是一致的。下面以NDPA帧为例,进行阐述。上述sensing NDP帧可以称为NDP帧等,在不强调其区别时,其所要表达的含义是一致的。下面以sensing NDP帧为例,进行阐述。
图12为本申请实施例提供的NDPA帧的帧格式。
示例性地,第五指示信息可以包括图12所示的NDPA帧的Sounding Dialog Token字段的Reserved字段。
图13为本申请实施例提供的Sounding Dialog Token字段的示意图。结合图13,可采用图13所示的Reserved字段指示第一消息包括的参数为频控阵FDA参数。该Reserved字段的指示方式如表1所示,当Reserved字段取值为0时,指示第一消息包括的参数为频控阵FDA参数。
表1
感知FDA子区域取值 帧类型
0 NDPA
1 FDA Sensing
图14为本申请实施例提供的STA info字段的示意图一。
又示例性地,第五指示信息可以包括AID=2047的STA Info中的Reserved的字段。例如,图14中的大小为1bit的Reserved字段。该Reserved字段的指示方式如表2所示,当Reserved字段取值为0时,指示第一消息包括的参数为频控阵FDA参数。
表2
感知FDA子区域取值 帧类型
0 NDPA
1 FDA Sensing
图15为本申请实施例提供的STA info字段的示意图二。
在一些实施例中,STA info字段可以包括如下指示位:Beam Number Subfield,Uniform Indication Subfield,Offset Number Subfield,Frequency offset value Subfield。
需要说明的是,上述Beam Number Subfield可以称为Beam Number,在不强调其区别时,其所要表达的含义是一致的。上述Uniform Indication Subfield可以称为Uniform Indication,在不强调其区别时,其所要表达的含义是一致的。上述Offset Number Subfield可以称为Offset Number,在不强调其区别时,其所要表达的含义是一致的。上述Frequency offset value Subfield可以称为Frequency offset value、Frequency Offset subfield value、或Frequency Offset Subfield,在不强调其区别时,其所要表达的含义是一致的。
示例性地,第一指示信息可以包括Beam Number Subfield指示位,Beam Number Subfield可用于指示第一设备的多个天线对应的波束的数量信息。例如,以终止位或具体数量指示等方式实现。
示例性地,第二指示信息可以包括Uniform Indication Subfield,可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等,指示当前波束是否为均匀频偏。
示例性地,第三指示信息可以包括Frequency offset value Subfield,可用于指示相邻两个天线对应的载波的频率的差值。例如,用于指示具体的频偏数值。
示例性地,第四指示信息可以包括Offset Number Subfield,用于指示当前波束对 应的第三指示信息的数量信息。例如,以终止位或具体数量指示等方式实现。
需要说明的是,图15所示的各个子区域在实现上可以合并为一个或几个大的子区域,各个子区域占用的比特数可以随相应标准允许使用的比特位的数量变化而变化。
下面结合下述方式一、方式二以及方式三对STA info字段进行具体阐述。
方式一
图16为本申请实施例提供的STA info字段的示意图三。
结合图16,第一指示信息可以包括Multi-beam End指示位,指示当前波束是否为第一设备的多个天线对应的最后一个波束。
例如,该Multi-beam End指示位设为0时,表示当前STA info字段不是波束指示的最后一个字段,该Multi-beam End指示位设为1时,表示当前字段为波束指示的最后一个字段,本申请对此不进行限定。
需要说明的是,本申请实施例中下述以及上述将指示位设为0表示的内容,和将指示位设为1表示的内容可以互相替换,以能够实现相应功能为准。
示例性地,第二指示信息可以包括Uniform Offset指示位,用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。也就是说,用于指示天线之间的频偏是否为均匀频偏。
例如,若该Uniform Offset指示位设为1,则表示当前波束为均匀频偏,该字段内仅有一个Frequency offset字段指示频偏数值,下一位Beam End应当设为1。若该Uniform Offset指示位设为0,表示当前波束为非均匀频偏,可能需要读取多个Frequency offset字段。
表3
Figure PCTCN2022071029-appb-000005
示例性地,第三指示信息可以包括Frequency Offset Subfield指示位,用于指示相邻两个天线对应的载波的频率的差值。例如,Frequency Offset Subfield指示位可以包 括5个bits,Frequency Offset Subfield指示位的取值与频偏的对应关系如上述表3所示,采用均匀间隔,最小频偏为78.125KHz,最大频偏为1250KHz。
示例性地,第四指示信息可以包括Beam End指示位,用于指示当前STA info字段的下一STA info字段是否包括当前波束对应的第三指示信息。也就是说,可以指示该STA info字段是否为当前波束指示频偏数值时使用的最后一个字段。
例如,该Beam End指示位设为0,表示当前STA info字段并不是指示波束使用的最后一个字段,该Beam End指示位设为1,表示当前STA info字段为指示当前波束使用的最后一个字段。
下面以方式一对应的STA info字段对单波束且均匀频偏、单波束且非均匀频偏和多波束进行具体阐述。
图17为本申请实施例提供的NDPA帧的帧格式示意图二。
图17为波束为单波束且均匀频偏时,sensing NDPA帧以及STA info field字段的示意图。其中,可将Multi-beam End指示位设为1,表示波束的指示信息在该STA Info field结束,即只有一个波束。可将Uniform Offset指示位设为1,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值相等,即天线之间的频偏为均匀频偏,当前STA info字段中只包括一个Frequency offset Subfield指示位。可将Beam End指示位设为1,表示当前波束的指示信息在该STA Info字段结束。Frequency offset field指示位表示均匀频偏的数值。
图18为本申请实施例提供的NDPA帧的帧格式示意图三。
图18为波束为单波束且非均匀频偏时,sensing NDPA帧以及STA info field字段的示意图。以第一设备包括6个天线为例,其中,可将第一个STA info字段中的Multi-beam End指示位设为0,将第二个STA info字段中的Multi-beam End指示位设为1,表示多波束指示在该STA Info field结束,即只有一个波束。两个Uniform Offset指示位均设为0,表示为波束为非均匀频偏,STA info字段中包括多个Frequency offset Subfield指示位。其中,可将第一个STA info字段中beam End指示位设为0、第二个STA info字段中Beam End指示位设为1,表示当前波束在该STA Info字段结束。Frequency offset field指示每两个天线之间的频偏数值。
图19为本申请实施例提供的NDPA帧的帧格式示意图四。
图19为波束为多波束时,sensing NDPA帧以及STA info field字段的示意图。在多波束情况下,可以将图17和图18中的两个单波束情况结合形成多波束情况。其中,指示均匀频偏的STA Info 1 subfield中Multi-beam End指示位设为0,其他指示位的取值不变,表示图19所示的STA info字段具有多个波束。STA Info 2 subfield与STA Info 3 subfield中的各指示位的取值不变,由STA Info 3 subfield中的Multi-beam End位置1表示多个波束的指示过程的结束。
方式二
图20为本申请实施例提供的STA info字段的示意图四。
结合图20,第一指示信息可以包括Beam Subfield指示位,指示第一设备的多个天线对应的波束的数量,指示当前NDPA帧共包括多少个波束的指示信息。
例如,Beam Subfield指示位设为00,当前NDPA帧共包括一个波束的指示信息; Beam Subfield指示位设为01,当前NDPA帧共包括两个波束的指示信息;Beam Subfield指示位设为10,表示当前NDPA帧共包括三个波束的指示信息,Beam Subfield指示位设为11,表示当前NDPA帧共包括四个波束的指示信息,本申请实施例对此不进行限定。
示例性地,第四指示信息可以包括Antenna字段,用于指示当前STA info字段的下一STA info字段是否包括当前波束对应的第三指示信息。也就是说,用于指示当前波束对应的Frequency Offset Subfield的数量。
例如,当该Antenna Subfield指示位设为0时,代表为均匀频偏,当前波束对应一个Frequency Offset Subfield。当该Antenna Subfield指示位设为1时,代表为非均匀频偏,当前波束对应多个Frequency Offset Subfield。
示例性地,第三指示信息可以包括Frequency offset Subfield指示位,可用于指示相邻两个天线对应的载波的频率的差值,即指示每两个天线之间的频偏数值。
例如,Frequency offset指示位可以包括5个bits,Frequency offset Subfield的取值与频偏的对应关系与方式一相同,具体可参照上述表3,采用均匀间隔,最小频偏为78.125KHz,最大频偏为1250KHz,此处不再赘述。
下面以方式二对应的STA info字段对单波束且均匀频偏、单波束且非均匀频偏和多波束进行具体阐述。
图21为本申请实施例提供的NDPA帧的帧格式示意图五。
图21为波束为单波束且均匀频偏时,sensing NDPA帧以及STA info field字段的示意图。其中,可将Beam Subfield指示位设为00,表示只有一个波束。可将Antenna Subfield指示位设为0,表示为可用于指示天线之间的频偏为均匀频偏,STA info字段中只包括一个Frequency offset Subfield指示位。Frequency offset field指示位表示均匀频偏的数值。
图22为本申请实施例提供的NDPA帧的帧格式示意图六。
图22为波束为单波束且非均匀频偏时,sensing NDPA帧的STA info field字段帧结构示意图。以第一设备包括6个天线为例,其中,第一个STA info字段中Beam Subfield指示位设为00,表示只有一个波束。Antenna Subfield指示位设5,表示为非均匀频偏,STA info字段中包括5个Frequency offset Subfield指示位。Frequency offset field指示每两个天线之间的频偏数值。
图23为本申请实施例提供的NDPA帧的帧格式示意图七。
图23为波束为多波束时,sensing NDPA帧以及STA info field字段的示意图。在多波束情况下,可以将图21和图22中的两个单波束情况结合形成多波束情况。其中,由STA Info 1 subfield中的Beam subfield指示波束的数量,Beam subfield置为2,指示波束的数量为2个。在STA Info 2 subfield中Antenna置5,表示STA Info 2 subfield中包括5个Frequency Offset Subfield指示,其它各指示位的取值不变。
方式三
图24为本申请实施例提供的STA info字段的示意图五。
方式三与图16所示的方式一相比,去掉方式一Multi-Beam End位,采用方式二中的Beam指示位指示第一设备的多个天线对应的波束的数量。
示例性地,第一指示信息可以包括Beam指示位,用于指示波束的数量。例如,当该Beam指示位的值为01时,波束的数量为1个,具体实现方式可参照上述方式二,此处不再一一赘述。
示例性地,第二指示信息可以包括Uniform Offset指示位,用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。也就是说,用于指示天线之间的频偏是否为均匀频偏。具体实现方式可参照上述方式一,此处不再赘述。
示例性地,第三指示信息可以包括Frequency Offset Subfield指示位,用于指示相邻两个天线对应的载波的频率的差值。具体实现方式可参照上述方式一,此处不再赘述。
示例性地,第四指示信息可以包括Beam End指示位,用于指示当前STA info字段的下一STA info字段是否包括当前波束对应的第三指示信息。也就是说,可以指示该STA info字段是否为当前波束指示频偏数值时使用的最后一个字段。具体实现方式可参照上述方式一,此处不再赘述。
下面以方式三对应的STA info字段对多波束进行具体阐述。
图25为本申请实施例提供的NDPA帧的帧格式示意图八。
图25为波束为多波束时,sensing NDPA帧以及STA info field字段的示意图。在多波束情况下,可将STA Info 1 subfield中的Beam指示位设为01,表示该sensing NDPA帧包括两个波束。可将STA Info 1 subfield中的Uniform Offset指示位设为1,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值相等,即天线之间的频偏为均匀频偏,当前STA info字段中只包括一个Frequency offset Subfield指示位。可将STA Info 1 subfield中的Beam End指示位设为1,表示当前波束的指示信息在该STA Info字段结束。STA Info 1 subfield中的Frequency offset field指示位表示均匀频偏的数值。
以第一设备包括6个天线为例,可将STA Info 2 subfield中的Uniform Offset指示位设为0,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值不相等。可将STA Info 2 subfield中的Beam End指示位设为0,表示当前波束的指示信息还包括下一个STA Info字段。STA Info 2 subfield中的Frequency offset field指示位表示非均匀频偏的数值。
可将STA Info 3 subfield中的Uniform Offset指示位设为0,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值不相等。可将STA Info 3 subfield中的Beam End指示位设为1,表示当前波束的指示信息在该STA Info字段结束。STA Info 3 subfield中的Frequency offset field指示位表示非均匀频偏的数值。
如此,一个结束的STA Info字段指示一个波束,多个个天线以相同的频率或不同的频率发射一个波束。
需要说明的是,方式三对应的STA Info字段可以指示单波束且均匀频偏或单波束且非均匀频偏,例如,STA Info字段只包括图25所示的STA Info 1 subfield时,可以表示单波束且均匀频偏;STA Info字段只包括图25所示的STA Info 2 subfield和STA Info 3 subfield时,可以表示单波束且非均匀频偏,本申请实施例此处不再详细赘述。
方式四
示例性地,可将方式一中的Multi-beam End指示位与方式二中Antenna指示位结合, 得出方式四中的STA info字段。关于Multi-beam End指示位的具体实现方式可参照方式一,关于Antenna指示位的具体实现方式可参照方式二,此处不再赘述。
下面以FDA感知帧为例,对第一消息进行具体阐述。
图26为本申请实施例提供的NDPA帧的帧格式示意图九。
图26所示的NDPA帧与上述图12所示的NDPA帧不相同,图26所示的NDPA帧是通过改写Frame Control的Subtype指示位创建的,图26所示的NDPA帧可以称为FDA感知帧(FDA Sensing Frame)。图26中的NDPA帧的STA Info指示位包括8octets,图12所示的NDPA帧的STA Info字段包括4octets,图26中的NDPA帧可以缓解在指示频偏时,STA Info Subfield位数不足的情况。
图27为本申请实施例提供的Frame Control字段的示意图一。
表4
Figure PCTCN2022071029-appb-000006
结合图27,Subtype字段的前一个Type字段设为01,表示控制帧。Subtype字段可以设为1,指示第一消息包括的参数为频控阵FDA参数,Subtype字段的取值与帧类型的对应关系如表4所示。
需要说明的是,图26所示的NDPA帧的STA Info字段同样可以以上述方式一、方式二、方式三以及方式四所记载的具体实现方式实现,本申请不再赘述。
S1102,第一设备向第二设备发送第一感知波形。相应地,第二设备接收来自第一设备的第一感知波形。
示例性地,第一感知波形用于对环境中的目标物体进行感知。
S1103,第二设备根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。
在一种可能的设计方案中,本申请实施例提供的无线局域网感知方法,还可以包括:第二设备向第一设备发送感知反馈信息。相应地,第一设备接收来自第二设备的感知反馈信息。
示例性地,第二设备可以通过感知反馈(Sensing feedback)帧向第一设备发送感知反馈信息。
可选地,第一设备可以向第二设备发送应答信息,如Ack帧,从而结束感知反馈过程。
在一种可能的设计方案中,本申请实施例提供的无线局域网感知方法,还可以包括下述步骤一和步骤二。
步骤一,第二设备向第一设备发送第一请求消息。相应地,第一设备接收来自第二设备的第一请求消息。
可选地,第一请求消息可用于请求对目标物体进行感知。
示例性地,第一请求消息可以包括感知请求(Sensing request)帧,请求开始感知过程。
步骤二,第一设备向第二设备发送第一应答消息。相应地,第二设备接收来自第一设备的第一应答消息。
可选地,第一应答消息可用于确认对目标物体进行感知。
示例性地,第一应答消息可以包括Ack帧,结束感知协商阶段。
如此,上述步骤一和步骤二可以在上述S1101之前执行,以完成感知协商阶段后,进行感知。
基于第一方面所述的无线局域网感知方法,第一设备向第二设备发送用于指示第一感知波形包括的至少一个参数的第一消息,第一感知波形用于对环境中的目标物体进行感知,第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值,向第二设备发送第一感知波形,从而第二设备接收来自第一设备的第一感知波形,根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。如此,各个天线对应的载波的频率不相同,可以实现对空间特定位置的聚焦,不仅限于某一角度单元之内,可以提高感知能力。
示例性地,图28为本申请实施例提供的无线局域网感知方法的流程示意图二。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对下行单波束均匀频偏应用场景进行具体阐述。
如图28所示,该无线局域网感知方法包括如下步骤:
S2801,AP向STA发送第一消息。相应地,STA接收来自AP的第一消息。
关于第一消息的具体实现方式可参照上述S1101,此处不再赘述。
图29为本申请实施例提供的无线局域网感知方法的应用示意图一。结合图29,第一消息可以包括图29所示的sensing NDPA帧。
示例性地,AP可以向STA发送图12或图26所示的NDPA帧,可以采用上述方式一、方式二、方式三或方式四设置STA Info字段中各指示位的值,使波束为单波束均匀频偏,此处不再赘述。
S2802,AP向STA发送第一感知波形。相应地,STA接收来自STA的第一感知 波形。
结合图29,第一感知波形可以包括图29所示的感知NDP帧。图29中天线A0与天线A7之间的频偏为均匀频偏。
S2803,STA根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。
关于S2803的具体实现方式可参照上述S1103,此处不再赘述。
如此,STA可以通过第一消息得到发射波束的波束指向权重信息,波束指向权重信息可以包括子载波与天线对应关系,通过该波束指向权重信息,在任意位置的STA都可以实现对发射信号回波的分析。通过将不同天线施加不同的频偏,实现对于空间特定位置的聚焦,与对空间不同位置的自动扫描。
示例性地,图30为本申请实施例提供的无线局域网感知方法的流程示意图三。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对下行单波束非均匀频偏应用场景进行具体阐述。
如图30所示,该无线局域网感知方法包括如下步骤:
S3001,AP向STA发送第一消息。相应地,STA接收来自AP的第一消息。
关于第一消息的具体实现方式可参照上述S1101,此处不再赘述。
图31为本申请实施例提供的无线局域网感知方法的应用示意图二。结合图31,第一消息可以包括图31所示的sensing NDPA帧。
示例性地,AP可以向STA发送图12或图26所示的NDPA帧,可以采用上述方式一、方式二、方式三或方式四设置STA Info字段中各指示位的值,使波束为单波束非均匀频偏,此处不再赘述。
S3002,AP向STA发送第一感知波形。相应地,STA接收来自STA的第一感知波形。
结合图31,第一感知波形可以包括图31所示的感知NDP帧。图31中天线A0与天线A7之间的频偏为非均匀频偏。
S3003,STA根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。
关于S3003的具体实现方式可参照上述S1103,此处不再赘述。
如此,STA通过第一消息可以得到发射波束的波束指向权重信息,通过该波束指向权重信息,在任意位置的STA都可以实现对发射信号回波的分析。通过改变频偏与天线对应关系,使其为非均匀频偏,可实现具有不同性质的方向图,调整阵列主瓣的位置,从而实现对不同区域的精准感知。
示例性地,图32为本申请实施例提供的无线局域网感知方法的流程示意图三。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对下行多波束应用场景进行具体阐述。
如图32所示,该无线局域网感知方法包括如下步骤:
S3201,AP向STA发送第一消息。相应地,STA接收来自AP的第一消息。
关于第一消息的具体实现方式可参照上述S1101,此处不再赘述。
图33为本申请实施例提供的无线局域网感知方法的应用示意图三。结合图33, 第一消息可以包括图33所示的sensing NDPA帧。
示例性地,AP可以向STA发送图12或图26所示的NDPA帧,可以采用上述方式一、方式二、方式三或方式四设置STA Info字段中各指示位的值,使波束为多波束,此处不再赘述。
S3202,AP向STA发送第一感知波形。相应地,STA接收来自STA的第一感知波形。
结合图33,第一感知波形可以包括图33所示的感知NDP帧。
S3203,STA根据第一消息和第一感知波形对目标物体进行感知,获得感知反馈信息。
关于S3203的具体实现方式可参照上述S1103,此处不再赘述。
如此,STA通过第一消息可以得到多个接连发射波束的波束指向权重信息,通过对不同波束的回波信息的分析,可以实现不同模式的感知能力,可以解决FDA技术具有的距离周期性问题,提高感知的精度与感知能力,各天线所发射的子载波不相同,同时通过同时指示多个波形实现了不同感知模式与对于不同区域的感知能力。
图34为本申请实施例提供的无线局域网感知方法的流程示意图二。
该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。下面基于图34对上行应用场景进行具体阐述。
如图34所示,该无线局域网感知方法包括如下步骤:
S3401,第一设备向第二设备发送第二消息。相应地,第二设备接收来自第一设备的第二消息。
示例性地,第二消息用于指示第二感知波形包括的至少一个参数,第二感知波形用于对环境中的目标物体进行感知。
在一些实施例中,第二消息可以包括触发(Trigger)帧,第二感知波形可以包括感知无数据包(sensing null data packet,sensing NDP)帧。
如此,第一设备向第二设备发送触发帧指示将要接收的sensing NDP帧的各项参数,使得各第二设备根据接收的触发帧,向第一设备发送NDP帧,从而第一设备根据NDP帧进行测量。
示例性地,第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值。
在一些实施例中,第二消息可以包括如下一项或多项:第六指示信息、第七指示信息、第八指示信息和第九指示信息。
示例性地,第二消息可以包括触发帧的Common Info字段中的Trigger Dependent Common Info字段。
可选的,第六指示信息可用于指示第二设备的多个天线对应的波束的数量信息。
示例性地,第六指示信息可以包括触发帧的Multi-beam End指示位或触发帧的Beam指示位,如此,第六指示信息可以用于指示第一波束的多个天线对应的波束的具体数量、或为单一波束、多波束等。
示例性地,第六指示信息可用于指示当前波束是否为第一设备的多个天线对应的最后一个波束。例如,第六指示信息可以包括触发帧的Trigger Dependent Common Info 字段的Multi-beam End指示位。
又示例性地,第六指示信息可用于指示第一设备的多个天线对应的波束的数量。例如,第六指示信息可以包括触发帧的Trigger Dependent Common Info字段的Beam指示位。
需要说明的是,上述触发帧可以称为感知触发帧,在不强调其区别时,其所要表达的含义是一致的。上述Trigger Dependent Common Info字段可以称为Trigger Dependent Common Info Subfield字段,在不强调其区别时,其所要表达的含义是一致的。
可选的,第七指示信息可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。如此,第七指示信息可用于指示天线之间的频偏是否为均匀频偏。
示例性地,第七指示信息可以包括触发帧的Trigger Dependent Common Info字段的Uniform Offset指示位。
可选的,第八指示信息可用于指示相邻两个天线对应的载波的频率的差值。如此,第八指示信息可用于指示频偏数值。
示例性地,第八指示信息可以包括触发帧的Trigger Dependent Common Info字段的Frequency Offset指示位。
可选的,第九指示信息可用于指示当前波束对应的第八指示信息的数量信息。示例性地,第九指示信息可以包括触发帧的Trigger Dependent Common Info字段的Beam End指示位或触发帧的Trigger Dependent Common Info字段的Antenna指示位。
示例性地,第八指示信息和第九指示信息可属于第二消息的第二字段,第九指示信息用于指示当前第二字段的下一第二字段是否包括当前波束对应的第八指示信息,第二字段可以为Trigger Dependent Common Info字段。
又示例地,第九指示信息可用于指示当前波束对应的第八指示信息的数量。例如,第九指示信息可以包括触发帧的Trigger Dependent Common Info字段的Antenna字段,Antenna字段为1,指示当前波束对应有一个频偏数值,天线的个数为2个;Antenna字段为2,指示当前波束对应有两个频偏数值,天线的个数为3个,本申请不一一列举。
又示例地,第九指示信息可用于指示当前波束对应的第八指示信息的数量,第九指示信息还可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。例如,Antenna字段为0时,可指示天线之间的频偏为均匀频偏,天线的数量可以为两个或多个。
在一些实施例中,第二消息可以包括第十指示信息,第十指示信息可用于指示第二消息包括的参数为频控阵(frequency diverse array,FDA)参数。
示例性地,第十指示信息可以包括触发帧的Common Info字段的Trigger Type字段,Trigger Type字段可用于指示该触发帧为FDA参数指示帧。
图35为本申请实施例提供的触发帧的帧格式示意图一。
示例性地,第十指示信息可以包括图35所示的触发帧的Common Info字段的Trigger Type字段,如下述表5所示,当Trigger Type的值设为9时,指示触发帧包括 的参数为频控阵FDA参数。
图36为本申请实施例提供的Common Info字段的示意图一。
示例性地,图35所示的触发帧的Common Info字段的的格式可以如图36所示,Common Info字段包括Trigger Dependent Common Info字段,可采用Trigger Dependent Common Info字段指示FDA参数。
图37为本申请实施例提供的Trigger Dependent Common Info字段的示意图一。
在一些实施例中,Trigger Dependent Common Info字段可以包括如下指示位:Beam Number Subfield,Uniform Indication Subfield,Offset Number Subfield,Frequency offset value Subfield。Trigger Dependent Common Info字段与NDPA帧的STA Info字段类似。
需要说明的是,上述Beam Number Subfield可以称为Beam Number,在不强调其区别时,其所要表达的含义是一致的。上述Uniform Indication Subfield可以称为Uniform Indication,在不强调其区别时,其所要表达的含义是一致的。上述Offset Number Subfield可以称为Offset Number,在不强调其区别时,其所要表达的含义是一致的。上述Frequency offset value Subfield可以称为Frequency offset value、Frequency Offset subfield value、或Frequency Offset Subfield,在不强调其区别时,其所要表达的含义是一致的。
表5
Figure PCTCN2022071029-appb-000007
Figure PCTCN2022071029-appb-000008
示例性地,第六指示信息可以包括Beam Number Subfield指示位,Beam Number Subfield可用于指示第一设备的多个天线对应的波束的数量信息。例如,以终止位或具体数量指示等方式实现。
示例性地,第七指示信息可以包括Uniform Indication Subfield,可用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等,指示当前波束是否为均匀频偏。
示例性地,第八指示信息可以包括Frequency offset value Subfield,可用于指示相邻两个天线对应的载波的频率的差值。例如,用于指示具体的频偏数值。
示例性地,第九指示信息可以包括Offset Number Subfield,用于指示当前波束对应的第八指示信息的数量信息。例如,以终止位或具体数量指示等方式实现。
需要说明的是,图37所示的各个子区域在实现上可以合并为一个或几个大的子区域,各个子区域占用的比特数可以随相应标准允许使用的比特位的数量变化而变化。
下面结合下述方式六、方式七、方式八、以及方式九对Trigger Dependent Common Info字段进行具体阐述。
图38为本申请实施例提供的Trigger Dependent Common Info字段的示意图二。
Trigger Dependent Common Info字段的格式与NDPA帧的STA Info字段的格式类似。其中,方式六与方式一类似,方式七与方式二类似,方式八与方式三类似,方式九与方式四类似,具体见下述相应阐述。
方式六
与STA info Subfield字段不同的是,Trigger Dependent Common Info字段是连续的。在方式六的帧结构中,设定18个bits作为一个Trigger Dependent Common Info字段进行。
结合图38,第六指示信息可以包括Multi-beam End指示位,指示当前波束是否为第一设备的多个天线对应的最后一个波束。
例如,该Multi-beam End指示位设为0时,表示当前Trigger Dependent Common Info字段不是波束指示的最后一个字段,该Multi-beam End指示位设为1时,表示当前字段为波束指示的最后一个字段,本申请对此不进行限定。
需要说明的是,本申请实施例中下述以及上述将指示位设为0表示的内容,和将指示位设为1表示的内容可以互相替换,以能够实现相应功能为准。
示例性地,第七指示信息可以包括Uniform Offset指示位,用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。也就是说,用于指示天线之间的频偏是否为均匀频偏。当为均匀频偏时,Frequency offset Subfield只有一个,即该Trigger Dependent Common Info指示位包括8个bits。
例如,若该Uniform Offset指示位设为1,则表示当前波束为均匀频偏,该字段内仅有一个Frequency offset字段指示频偏数值,下一位Beam End应当设为1。若该Uniform Offset指示位设为0,表示当前波束为非均匀频偏,可能需要读取多个Frequency offset字段。
示例性地,第八指示信息可以包括Frequency Offset Subfield指示位,用于指示相邻两个天线对应的载波的频率的差值。具体实现方式可参照上述方式一中的Frequency Offset Subfield指示位的具体实现方式,此处不再赘述。
示例性地,第九指示信息可以包括Beam End指示位,用于指示当前Trigger Dependent Common Info字段的下一Trigger Dependent Common Info字段是否包括当前波束对应的第八指示信息。也就是说,可以指示该Trigger Dependent Common Info字段是否为当前波束指示频偏数值时使用的最后一个字段。
例如,该Beam End指示位设为0,表示当前Trigger Dependent Common Info字段并不是指示波束使用的最后一个字段,该Beam End指示位设为1,表示当前Trigger Dependent Common Info字段为指示当前波束使用的最后一个字段。
下面以方式六对应的Trigger Dependent Common Info字段对单波束且均匀频偏、单波束且非均匀频偏和多波束进行具体阐述。
图39为本申请实施例提供的Trigger Dependent Common Info字段的示意图三。
图39为波束为单波束且均匀频偏时,Common Info字段以及Trigger Dependent Common Info字段的示意图。其中,可将Multi-beam End指示位设为1,表示波束的指示信息在该Trigger Dependent Common Info字段结束,即只有一个波束。可将Uniform Offset指示位设为1,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值相等,即天线之间的频偏为均匀频偏,当前Trigger Dependent Common Info字段中只包括一个Frequency offset Subfield指示位。可将Beam End指示位设为1,表示当前波束的指示信息在该Trigger Dependent Common Info字段结束。Frequency offset field指示位表示均匀频偏的数值。
图40为本申请实施例提供的Trigger Dependent Common Info字段的示意图四。
图40为波束为单波束且非均匀频偏时,Common Info字段以及Trigger Dependent Common Info字段的示意图。以4个天线为例,其中,可将Multi-beam End指示位设为0,表示只有一个波束。Uniform Offset指示位均设为0,表示为波束为非均匀频偏,Trigger Dependent Common Info字段中包括多个Frequency offset Subfield指示位。可将beam End指示位设为1,表示当前波束在该Trigger Dependent Common Info字段结束。Frequency offset field指示每两个天线之间的频偏数值。
图41为本申请实施例提供的Trigger Dependent Common Info字段的示意图五。
图41为波束为多波束时,Common Info字段以及Trigger Dependent Common Info字段的示意图。在多波束情况下,可以将图39和图40中的两个单波束情况结合形成多波束情况。其中,可将第一个Trigger Dependent Common Info字段中Multi-beam End指示位设为0,其他指示位的取值不变,表示图41所示的Trigger Dependent Common Info字段具有多个波束。第二个Trigger Dependent Common Info字段中的各指示位的取值不变,由第二个Trigger Dependent Common Info字段中的Multi-beam End位置1表示多个波束的指示过程的结束。
方式七
图42为本申请实施例提供的Trigger Dependent Common Info字段的示意图六。
结合图42,第六指示信息可以包括Beam Subfield指示位,指示波束的数量,指示 当前触发帧共包括多少个波束的指示信息。
例如,Beam Subfield指示位设为00,当前触发帧共包括一个波束的指示信息;Beam Subfield指示位设为01,当前触发帧共包括两个波束的指示信息;Beam Subfield指示位设为10,表示当前触发帧共包括三个波束的指示信息,Beam Subfield指示位设为11,表示当前触发帧共包括四个波束的指示信息,本申请实施例对此不进行限定。
示例性地,第九指示信息可以包括Antenna字段,用于指示当前Trigger Dependent Common Info字段的下一Trigger Dependent Common Info字段是否包括当前波束对应的第八指示信息。也就是说,用于指示当前波束对应的Frequency Offset Subfield的数量。
例如,当该Antenna Subfield指示位设为0时,代表为均匀频偏,当前波束对应一个Frequency Offset Subfield。当该Antenna Subfield指示位设为1时,代表为非均匀频偏,当前波束对应多个Frequency Offset Subfield。
示例性地,第八指示信息可以包括Frequency offset Subfield指示位,可用于指示相邻两个天线对应的载波的频率的差值,即指示每两个天线之间的频偏数值。关于Frequency offset Subfield指示位的具体实现方式可参照上述方式二中Frequency offset Subfield指示位的具体实现方式,此处不再赘述。
下面以方式二对应的Trigger Dependent Common Info字段对单波束且均匀频偏、单波束且非均匀频偏和多波束进行具体阐述。
图42为波束为单波束且均匀频偏时,Common Info字段以及Trigger Dependent Common Info字段的示意图。其中,可将Beam Subfield指示位设为00,表示只有一个波束。可将Antenna Subfield指示位设为0,表示为可用于指示天线之间的频偏为均匀频偏,Trigger Dependent Common Info字段中只包括一个Frequency offset Subfield指示位。Frequency offset field指示位表示均匀频偏的数值。
图43为本申请实施例提供的Trigger Dependent Common Info字段的示意图七。
图43为波束为单波束且非均匀频偏时,Common Info字段以及Trigger Dependent Common Info字段结构示意图。以4个天线为例,其中,Beam Subfield指示位设为00,表示只有一个波束。Antenna Subfield指示位设3,表示为非均匀频偏,Trigger Dependent Common Info字段中包括3个Frequency offset Subfield指示位。Frequency offset field指示每两个天线之间的频偏数值。
图44为本申请实施例提供的Trigger Dependent Common Info字段的示意图八。
图44为波束为多波束时,Common Info字段以及Trigger Dependent Common Info字段的示意图。其中,将第一个Trigger Dependent Common Info字段中的Beam subfield置为2,指示波束的数量为2个。将第一个Trigger Dependent Common Info字段中的Antenna设为3,表示第一个Trigger Dependent Common Info字段包括3个Frequency Offset Subfield。将第二个Trigger Dependent Common Info字段中的Antenna设为1,表示第二个Trigger Dependent Common Info字段包括1个Frequency Offset Subfield。
方式八
图45为本申请实施例提供的Trigger Dependent Common Info字段的示意图九。
示例性地,可将方式六中的Uniform Offset指示位、Beam End指示位与方式七中Beam Subfield指示位结合,得出方式八中的Trigger Dependent Common Info字段,如图 45所示。
示例性地,第六指示信息可以包括Beam指示位,用于指示波束的数量。具体实现方式可参照上述方式七,此处不再一一赘述。
示例性地,第七指示信息可以包括Uniform Offset指示位,用于指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值是否相等。也就是说,用于指示天线之间的频偏是否为均匀频偏。具体实现方式可参照上述方式六,此处不再赘述。
示例性地,第八指示信息可以包括Frequency Offset Subfield指示位,用于指示相邻两个天线对应的载波的频率的差值。具体实现方式可参照上述方式六,此处不再赘述。
示例性地,第九指示信息可以包括Beam End指示位,用于指示当前Trigger Dependent Common Info字段的下一Trigger Dependent Common Info字段是否包括当前波束对应的第八指示信息。也就是说,可以指示该Trigger Dependent Common Info字段是否为当前波束指示频偏数值时使用的最后一个字段。具体实现方式可参照上述方式六,此处不再赘述。
下面以方式八对应的Trigger Dependent Common Info字段对多波束进行具体阐述。
图45为波束为多波束时,Common Info字段以及Trigger Dependent Common Info字段。在多波束情况下,可将第一个Trigger Dependent Common Info字段中的Beam指示位设为01,表示该触发帧包括两个波束。可将第一个Trigger Dependent Common Info字段的Uniform Offset指示位设为0,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值不相等。可将第一个Trigger Dependent Common Info字段中的Beam End指示位设为1,表示当前波束的指示信息在该Trigger Dependent Common Info字段结束。第一个Trigger Dependent Common Info字段中的Frequency offset field指示位表示非均匀频偏的数值。
可将第二个Trigger Dependent Common Info字段的Uniform Offset指示位设为1,指示当前波束对应的所有的相邻两个天线对应的载波的频率的差值相等,即天线之间的频偏为均匀频偏,当前Trigger Dependent Common Info字段中只包括一个Frequency offset Subfield指示位。可将第二个Trigger Dependent Common Info字段中的Beam End指示位设为1,表示当前波束的指示信息在该Trigger Dependent Common Info字段结束。第二个Trigger Dependent Common Info字段中的Frequency offset field指示位表示均匀频偏的数值。
需要说明的是,方式八对应的Trigger Dependent Common Info字段可以指示单波束且均匀频偏或单波束且非均匀频偏,例如,Trigger Dependent Common Info字段只包括图45所示的第二个Trigger Dependent Common Info字段时,可以表示单波束且均匀频偏;Trigger Dependent Common Info字段只包括图45所示的第一个Trigger Dependent Common Info字段时,可以表示单波束且非均匀频偏,本申请实施例此处不再详细赘述。
方式九
图46为本申请实施例提供的Trigger Dependent Common Info字段的示意图六。
示例性地,可将方式六中的Multi-beam End指示位与方式七中Antenna指示位结合, 得出方式九中的Trigger Dependent Common Info字段,如图45所示。
关于Multi-beam End指示位的具体实现方式可参照方式六,关于Antenna指示位的具体实现方式可参照方式七,此处不再赘述。
图46为波束为多波束时,Common Info字段以及Trigger Dependent Common Info字段,此处不再详细赘述。
S3402,第二设备根据第二消息确定第二感知波形。
示例性地,第二感知波形用于对环境中的目标物体进行感知。第二感知波形的具体实现方式可参照上述S3401,此处不再赘述。
S3403,第二设备向第一设备发送第二感知波形。相应地,第一设备接收来自第二设备的第二感知波形。
示例性地,第二感知波形用于对环境中的目标物体进行感知。
S3404,第一设备根据第二感知波形对目标物体进行感知,获得感知反馈信息。
在一种可能的设计方案中,本申请实施例提供的无线局域网感知方法,还可以包括下述步骤三至步骤四。
步骤三,第一设备向第二设备发送第二请求消息。相应地,第二设备接收来自第一设备的第二请求消息。
可选地,第二请求消息可用于请求对目标物体进行感知。
示例性地,第二请求消息可以包括感知轮询(Sensing poll)帧,开始感知轮询过程。
步骤四,第一设备接收来自第二设备的第二应答消息。相应地,第二设备向第一设备发送第二应答消息。
可选地,第二应答消息可用于确认对目标物体进行感知。
示例性地,第二应答消息可以包括允许发送(Clear to Send-to-Self,CTS-to-Self)帧,结束感知轮询过程。
基于图34所述的无线局域网感知方法,第二设备接收来自第一设备的指示第二感知波形包括的至少一个参数的第二消息,第二感知波形用于对环境中的目标物体进行感知,第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值,第二设备根据第二消息确定第二感知波形,并将第二感知波形发送给第一设备,第一设备根据第二感知波形对目标物体进行感知,获得感知反馈信息。如此,各个天线对应的载波的频率不相同,可以实现对空间特定位置的聚焦,不仅限于某一角度单元之内,可以提高感知能力。
示例性地,图47为本申请实施例提供的无线局域网感知方法的流程示意图六。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对上行单波束均匀频偏应用场景进行具体阐述。
如图47所示,该无线局域网感知方法包括如下步骤:
S4701,AP向STA发送第二消息。相应地,STA接收来自AP的第二消息。
关于第二消息的具体实现方式可参照上述S3401,此处不再赘述。
图48为本申请实施例提供的无线局域网感知方法的应用示意图四。结合图48,第二消息可以包括图35所示的感知触发帧。
示例性地,AP可以向STA发送图35所示的感知触发帧,可以采用上述方式六、方式七、方式八、或方式九设置Trigger Dependent Common Info字段中各指示位的值,使波束为单波束均匀频偏,此处不再赘述。
S4702,STA根据第二消息确定第二感知波形。
关于S4702的具体实现方式可参照上述S3402,此处不再赘述。
S4703,STA向AP发送第二感知波形。相应地,AP接收来自STA的第二感知波形。
关于S4703的具体实现方式可参照上述S3403,此处不再赘述。
S4704,AP根据第二感知波形对目标物体进行感知,获得感知反馈信息。
关于S4704的具体实现方式可参照上述S3404,此处不再赘述。
示例性地,AP获得感知反馈信息后,对协商时参与感知的下一个STA发送触发帧进行上行测量过程,直到遍历完参与测量的所有STA。
图49为本申请实施例提供的无线局域网感知方法的流程示意图七。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对上行单波束非均匀频偏应用场景进行具体阐述。
如图49所示,该无线局域网感知方法包括如下步骤:
S4901,AP向STA发送第二消息。相应地,STA接收来自AP的第二消息。
关于第二消息的具体实现方式可参照上述S3401,此处不再赘述。
图50为本申请实施例提供的无线局域网感知方法的应用示意图五。结合图50,第二消息可以包括图35所示的感知触发帧。
示例性地,AP可以向STA发送图35所示的感知触发帧,可以采用上述方式六、方式七、方式八、或方式九设置Trigger Dependent Common Info字段中各指示位的值,使波束为单波束非均匀频偏,此处不再赘述。
S4902,STA根据第二消息确定第二感知波形。
关于S4902的具体实现方式可参照上述S3402,此处不再赘述。
S4903,STA向AP发送第二感知波形。相应地,AP接收来自STA的第二感知波形。
关于S4903的具体实现方式可参照上述S3403,此处不再赘述。
S4904,AP根据第二感知波形对目标物体进行感知,获得感知反馈信息。
关于S4904的具体实现方式可参照上述S3404,此处不再赘述。
示例性地,AP获得感知反馈信息后,对协商时参与感知的下一个STA发送触发帧进行上行测量过程,直到遍历完参与测量的所有STA。
图51为本申请实施例提供的无线局域网感知方法的流程示意图八。该无线局域网感知方法可以适用于图10所示的第一设备与第二设备之间的通信。以第一设备为AP、第二设备为STA为例,对上行多波束应用场景进行具体阐述。
如图51所示,该无线局域网感知方法包括如下步骤:
S5101,AP向STA发送第二消息。相应地,STA接收来自AP的第二消息。
关于第二消息的具体实现方式可参照上述S3401,此处不再赘述。
图52为本申请实施例提供的无线局域网感知方法的应用示意图六。结合图52, 第二消息可以包括图35所示的感知触发帧。
示例性地,AP可以向STA发送图35所示的感知触发帧,可以采用上述方式六、方式七、方式八、或方式九设置Trigger Dependent Common Info字段中各指示位的值,使波束为多波束,此处不再赘述。
S5102,STA根据第二消息确定第二感知波形。
关于S5102的具体实现方式可参照上述S3402,此处不再赘述。
S5103,STA向AP发送第二感知波形。相应地,AP接收来自STA的第二感知波形。
关于S5103的具体实现方式可参照上述S3403,此处不再赘述。
S5104,AP根据第二感知波形对目标物体进行感知,获得感知反馈信息。
关于S5104的具体实现方式可参照上述S3404,此处不再赘述。
示例性地,AP获得感知反馈信息后,对协商时参与感知的下一个STA发送触发帧进行上行测量过程,直到遍历完参与测量的所有STA。
以上结合图3-图52详细说明了本申请实施例提供的无线局域网感知方法。以下结合图53-图56详细说明本申请实施例提供的通信装置。
示例性地,图53是本申请实施例提供的通信装置的结构示意图一。
在一种可能的实现中,通信装置5300可以是第一设备或第二设备,能够实现图11、图28、图30、图32、图34、图47、图49、或图51所示的方法实施例中的第一设备或第二设备侧方法;通信装置5300也可以是能够支持第一设备或第二设备实现该方法的装置,通信装置5300可以安装在第一设备或第二设备中、或者和第一设备或第二设备匹配使用。该通信装置5300包括接收天线和全带滤波器与子带滤波器,在将感知波形通过全带滤波器与子带滤波器后可以得到感知波形在不同天线的不同子带形成的接收矩阵。
示例性地,图54为本申请实施例提供的通信装置的结构示意图二。该通信装置可以是第一设备或第二设备,也可以是可设置于第一设备或第二设备的芯片(系统)或其他部件或组件。如图54所示,通信装置5400可以包括处理器5401。可选地,通信装置5400还可以包括存储器5402和/或收发器5403。其中,处理器5401与存储器5402和收发器5403耦合,如可以通过通信总线连接。
下面结合图54对通信装置5400的各个构成部件进行具体的介绍:
其中,处理器5401是通信装置5400的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器5401是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器5401可以通过运行或执行存储在存储器5402内的软件程序,以及调用存储在存储器5402内的数据,执行通信装置5400的各种功能。
在具体的实现中,作为一种实施例,处理器5401可以包括一个或多个CPU,例如图54中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置5400也可以包括多个处理器,例如图54中所示的处理器5401和处理器5404。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器5402用于存储执行本申请方案的软件程序,并由处理器5401来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器5402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器5402可以和处理器5401集成在一起,也可以独立存在,并通过通信装置5400的输入/输出端口(图54中未示出)与处理器5401耦合,本申请实施例对此不作具体限定。
收发器5403,用于与其他通信装置之间的通信。例如,通信装置5400为第一设备,收发器5403可以用于与第二设备通信,或者与另一个第二设备通信。又例如,通信装置5400为第二设备,收发器5403可以用于与第一设备通信。
可选地,收发器5403可以包括接收器和发送器(图54中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器5403可以和处理器5401集成在一起,也可以独立存在,并通过通信装置5400的输入/输出端口(图54中未示出)与处理器5401耦合,本申请实施例对此不作具体限定。
需要说明的是,图54中示出的通信装置5400的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图55为本申请的实施例提供的通信装置的结构示意图三。
在一种可能的实现中,通信装置5500可以第一设备或第二设备,能够实现图11、图28、图30、图32、图34、图47、图49、或图51所示的方法实施例中的第一设备或第二设备侧方法;通信装置5500也可以是能够支持第一设备或第二设备实现该方法的装置,比如芯片系统,通信装置5500可以安装在第一设备或第二设备中、或者和第一设备或第二设备匹配使用。
如图55所示,通信装置5500包括RAM和ROM、CPU。可选地,还可以包括物理层(physical layer,PHY)和介质访问控制(media access control,MAC)层。
图56为本申请的实施例提供的通信装置的结构示意图四。
在一种可能的实现中,通信装置5600可以是第一设备或第二设备,能够实现图11、图28、图30、图32、图34、图47、图49、或图51所示的方法实施例中的第一设备或第二设备侧方法;通信装置5600也可以是能够支持第一设备或第二设备实现该 方法的装置,比如芯片系统,通信装置5600可以安装在第一设备或第二设备中、或者和第一设备或第二设备匹配使用。
通信装置5600可以是硬件结构、软件模块、或硬件结构加软件模块。通信装置5600可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。通信装置5600中包括处理模块5610和通信模块5620。处理模块5610可以生成将要发送的信号,并可以利用通信模块5620发送该信号。处理模块5610可以利用通信模块5620接收信号,并处理该接收到的信号。处理模块5610和通信模块5620耦合。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。耦合可以是有线连接,也可以是无线连接。
在本申请实施例中,通信模块可以是电路、模块、总线、接口、收发器、管脚或者其它可以实现收发功能的装置,本申请实施例不做限制。
本申请实施例提供一种通信系统。该通信系统包括上述第一设备,以及一个或多个第二设备。
本申请实施例提供一种芯片系统,该芯片系统包括处理器和输入/输出端口,所述处理器用于实现本申请实施例提供的无线局域网感知方法所涉及的处理功能,所述输入/输出端口用于本申请实施例提供的无线局域网感知方法所涉及的收发功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的无线局域网感知方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行本申请实施例提供的无线局域网感知方法。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行本申请实施例提供的无线局域网感知方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性 说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所 述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种无线局域网感知方法,其特征在于,包括:
    向第二设备发送第一消息;其中,所述第一消息用于指示第一感知波形包括的至少一个参数,所述第一感知波形用于对环境中的目标物体进行感知,所述第一消息携带第一设备的多个天线中相邻两个天线对应的载波的频率的差值;
    向所述第二设备发送所述第一感知波形。
  2. 根据权利要求1所述的无线局域网感知方法,其特征在于,所述第一消息包括如下一项或多项:第一指示信息、第二指示信息、第三指示信息和第四指示信息;其中,所述第一指示信息用于指示所述第一设备的多个天线对应的波束的数量信息,所述第二指示信息用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等,所述第三指示信息用于指示所述相邻两个天线对应的载波的频率的差值,第四指示信息用于指示当前波束对应的所述第三指示信息的数量信息。
  3. 根据权利要求2所述的无线局域网感知方法,其特征在于,所述第一指示信息用于指示当前波束是否为所述第一设备的多个天线对应的最后一个波束。
  4. 根据权利要求2所述的无线局域网感知方法,其特征在于,所述第一指示信息用于指示所述第一设备的多个天线对应的波束的数量。
  5. 根据权利要求2-4中任一项所述的无线局域网感知方法,其特征在于,所述第三指示信息和所述第四指示信息属于所述第一消息的第一字段,所述第四指示信息用于指示当前第一字段的下一第一字段是否包括当前波束对应的所述第三指示信息。
  6. 根据权利要求2-4中任一项所述的无线局域网感知方法,其特征在于,所述第四指示信息用于指示当前波束对应的所述第三指示信息的数量。
  7. 根据权利要求6所述的无线局域网感知方法,其特征在于,第四指示信息还用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等。
  8. 根据权利要求1-7中任一项所述的无线局域网感知方法,其特征在于,所述第一消息还包括第五指示信息,所述第五指示信息用于指示所述第一消息包括的参数为频控阵FDA参数。
  9. 一种无线局域网感知方法,其特征在于,包括:
    接收来自第一设备的第一消息;其中,所述第一消息用于指示第一感知波形包括的至少一个参数,所述第一感知波形用于对环境中的目标物体进行感知,所述第一消息携带所述第一设备的多个天线中相邻两个天线对应的载波的频率的差值;
    接收来自所述第一设备的所述第一感知波形;
    根据所述第一消息和所述第一感知波形对所述目标物体进行感知,获得感知反馈信息。
  10. 根据权利要求9所述的无线局域网感知方法,其特征在于,所述第一消息包括如下一项或多项:第一指示信息、第二指示信息、第三指示信息和第四指示信息;其中,所述第一指示信息用于指示所述第一设备的多个天线对应的波束的数量信息,所述第二指示信息用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等,所述第三指示信息用于指示所述相邻两个天线对应的载波的频率的差值,第四指示信息用于指示当前波束对应的所述第三指示信息的数量信息。
  11. 根据权利要求10所述的无线局域网感知方法,其特征在于,所述第一指示信息用于指示当前波束是否为所述第一设备的多个天线对应的最后一个波束。
  12. 根据权利要求10所述的无线局域网感知方法,其特征在于,所述第一指示信息用于指示所述第一设备的多个天线对应的波束的数量。
  13. 根据权利要求10-12中任一项所述的无线局域网感知方法,其特征在于,所述第四指示信息用于指示当前波束对应的所述第三指示信息的数量。
  14. 一种无线局域网感知方法,其特征在于,包括:
    向第二设备发送第二消息;其中,所述第二消息用于指示第二感知波形包括的至少一个参数,所述第二感知波形用于对环境中的目标物体进行感知,所述第二消息携带所述第二设备的多个天线中相邻两个天线对应的载波的频率的差值;
    接收来自所述第二设备的所述第二感知波形;
    根据所述第二感知波形对所述目标物体进行感知,获得感知反馈信息。
  15. 根据权利要求14所述的无线局域网感知方法,其特征在于,所述第二消息包括如下一项或多项:第六指示信息、第七指示信息、第八指示信息和第九指示信息;其中,所述第六指示信息用于指示所述第二设备的多个天线对应的波束的数量信息,所述第七指示信息用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等,所述第八指示信息用于指示所述相邻两个天线对应的载波的频率的差值,第九指示信息用于指示当前波束对应的所述第八指示信息的数量信息。
  16. 根据权利要求15所述的无线局域网感知方法,其特征在于,所述第六指示信息用于指示当前波束是否为所述第二设备的多个天线对应的最后一个波束。
  17. 根据权利要求15所述的无线局域网感知方法,其特征在于,所述第六指示信息用于指示所述第二设备的多个天线对应的波束的数量。
  18. 根据权利要求15-17中任一项所述的无线局域网感知方法,其特征在于,所述第八指示信息和所述第九指示信息属于所述第二消息的第二字段,所述第九指示信息用于指示当前第二字段的下一第二字段是否包括当前波束对应的所述第八指示信息。
  19. 根据权利要求15-17中任一项所述的无线局域网感知方法,其特征在于,所述第九指示信息用于指示当前波束对应的所述第八指示信息的数量。
  20. 根据权利要求19所述的无线局域网感知方法,其特征在于,第九指示信息还用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等。
  21. 根据权利要求14-20中任一项所述的无线局域网感知方法,其特征在于,所述第二消息还包括第十指示信息,所述第十指示信息用于指示所述第二消息包括的参数为频控阵FDA参数。
  22. 一种无线局域网感知方法,其特征在于,包括:
    接收来自第一设备的第二消息;其中,所述第二消息用于指示第二感知波形包括的至少一个参数,所述第二感知波形用于对环境中的目标物体进行感知,所述第二消息携带第二设备的多个天线中相邻两个天线对应的载波的频率的差值;
    根据所述第二消息确定所述第二感知波形;
    向所述第一设备发送所述第二感知波形。
  23. 根据权利要求22所述的无线局域网感知方法,其特征在于,所述第二消息包 括如下一项或多项:第六指示信息、第七指示信息、第八指示信息和第九指示信息;其中,所述第六指示信息用于指示所述第二设备的多个天线对应的波束的数量信息,所述第七指示信息用于指示当前波束对应的所有的所述相邻两个天线对应的载波的频率的差值是否相等,所述第八指示信息用于指示所述相邻两个天线对应的载波的频率的差值,第九指示信息用于指示当前波束对应的所述第八指示信息的数量信息。
  24. 根据权利要求23所述的无线局域网感知方法,其特征在于,所述第六指示信息用于指示当前波束是否为所述第二设备的多个天线对应的最后一个波束。
  25. 根据权利要求23所述的无线局域网感知方法,其特征在于,所述第六指示信息用于指示所述第二设备的多个天线对应的波束的数量。
  26. 根据权利要求23-25中任一项所述的无线局域网感知方法,其特征在于,所述第九指示信息用于指示当前波束对应的所述第八指示信息的数量。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至8、权利要求9至13、权利要求14至21、或权利要求22至26中任一项所述方法的单元或模块。
  28. 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置执行如权利要求1-26中任一项所述的无线局域网感知方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-26中任一项所述的无线局域网感知方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-26中任一项所述的无线局域网感知方法。
PCT/CN2022/071029 2021-01-08 2022-01-10 无线局域网感知方法及装置 WO2022148461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22736622.6A EP4266729A4 (en) 2021-01-08 2022-01-10 METHOD AND APPARATUS FOR DETECTING WIRELESS LOCAL NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110024615.8A CN114760640B (zh) 2021-01-08 2021-01-08 无线局域网感知方法及装置
CN202110024615.8 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022148461A1 true WO2022148461A1 (zh) 2022-07-14

Family

ID=82324927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071029 WO2022148461A1 (zh) 2021-01-08 2022-01-10 无线局域网感知方法及装置

Country Status (3)

Country Link
EP (1) EP4266729A4 (zh)
CN (1) CN114760640B (zh)
WO (1) WO2022148461A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11617100B2 (en) 2021-02-15 2023-03-28 Cognitive Systems Corp. Systems and methods for Wi-Fi sensing
US11835615B2 (en) 2021-05-14 2023-12-05 Cognitive Systems Corp. Systems and methods for Wi-Fi sensing using uplink orthogonal frequency division multiple access (UL-OFDMA)
WO2024055702A1 (zh) * 2022-09-16 2024-03-21 华为技术有限公司 信道测量方法及相关装置
WO2024055156A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 代理感知测量方法、电子设备及存储介质
US11950202B2 (en) 2021-05-26 2024-04-02 Cognitive Systems Corp. Systems and methods for accommodating flexibility in sensing transmissions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040541A1 (zh) * 2022-08-25 2024-02-29 Oppo广东移动通信有限公司 感知测量方法、装置、设备及存储介质
WO2024113385A1 (zh) * 2022-12-02 2024-06-06 Oppo广东移动通信有限公司 基于代理的感知方法、装置、设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184222A1 (en) * 2009-09-09 2012-07-19 Yong Ho Seok Method for Sensing Whitespace in a Wireless LAN System, and Apparatus for Performing Same
JP2013046156A (ja) * 2011-08-23 2013-03-04 Toyota Central R&D Labs Inc 知覚システム
CN104081818A (zh) * 2012-02-06 2014-10-01 日本电信电话株式会社 无线信号发送方法、以及无线装置
CN106231670A (zh) * 2016-06-20 2016-12-14 北京大学 一种无接触感知定位方法
US20170163446A1 (en) * 2015-12-08 2017-06-08 Apple Inc. Opportunistic measurement and feedback in a wireless local area network
CN107211452A (zh) * 2015-01-09 2017-09-26 交互数字专利控股公司 用于支持无线局域网(wlan)系统的多用户传输的方法、装置和系统
CN109714092A (zh) * 2017-10-26 2019-05-03 华为技术有限公司 用于传输数据的方法和装置
CN110291724A (zh) * 2017-02-15 2019-09-27 高通股份有限公司 分布式多用户(mu)无线通信
CN110875764A (zh) * 2018-08-29 2020-03-10 安华高科技股份有限公司 用于分布式mimo的帧格式
CN111133818A (zh) * 2017-08-04 2020-05-08 高通股份有限公司 通用分布式多用户(mu)传输
WO2020180050A1 (ko) * 2019-03-07 2020-09-10 엘지전자 주식회사 복수의 ap를 이용한 채널 추정

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990231B (zh) * 2009-07-31 2014-02-19 华为技术有限公司 确定空闲频段的方法和系统、中心节点和感知节点
WO2017146862A1 (en) * 2016-02-28 2017-08-31 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
WO2018081926A1 (zh) * 2016-11-01 2018-05-11 华为技术有限公司 训练波束的方法、发起设备和响应设备
WO2019120558A1 (en) * 2017-12-22 2019-06-27 Huawei Technologies Co., Ltd. Device and method for use in wireless communications
CN110138526B (zh) * 2018-02-09 2021-04-09 成都华为技术有限公司 一种配置参考信号的方法、装置和系统
US11792833B2 (en) * 2019-05-14 2023-10-17 Qualcomm Incorporated Analog phased-array repeaters with digitally-assisted frequency translation and phase adjustment
US10955543B2 (en) * 2019-12-20 2021-03-23 Intel Corporation Station detection using frequency-diverse array signals

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184222A1 (en) * 2009-09-09 2012-07-19 Yong Ho Seok Method for Sensing Whitespace in a Wireless LAN System, and Apparatus for Performing Same
JP2013046156A (ja) * 2011-08-23 2013-03-04 Toyota Central R&D Labs Inc 知覚システム
CN104081818A (zh) * 2012-02-06 2014-10-01 日本电信电话株式会社 无线信号发送方法、以及无线装置
CN107211452A (zh) * 2015-01-09 2017-09-26 交互数字专利控股公司 用于支持无线局域网(wlan)系统的多用户传输的方法、装置和系统
US20170163446A1 (en) * 2015-12-08 2017-06-08 Apple Inc. Opportunistic measurement and feedback in a wireless local area network
CN106231670A (zh) * 2016-06-20 2016-12-14 北京大学 一种无接触感知定位方法
CN110291724A (zh) * 2017-02-15 2019-09-27 高通股份有限公司 分布式多用户(mu)无线通信
CN111133818A (zh) * 2017-08-04 2020-05-08 高通股份有限公司 通用分布式多用户(mu)传输
CN109714092A (zh) * 2017-10-26 2019-05-03 华为技术有限公司 用于传输数据的方法和装置
CN110875764A (zh) * 2018-08-29 2020-03-10 安华高科技股份有限公司 用于分布式mimo的帧格式
WO2020180050A1 (ko) * 2019-03-07 2020-09-10 엘지전자 주식회사 복수의 ap를 이용한 채널 추정

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HSIN JESSE SHIH-CHIEH; ESLAMI HAMID; SINGH ABHISHEK; DZHANDZHAPANYAN NORIK; HORIE AKIHIRO; WANG ZHE; WHEELER JEFFERY; CHARARA NADI: "Multi-RAT multi-connectivity active steering antenna technology for IoT, Wi-Fi, LTE, and 5G", 2020 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), IEEE, 26 January 2020 (2020-01-26), pages 87 - 90, XP033751521, DOI: 10.1109/RWS45077.2020.9050041 *
See also references of EP4266729A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11617100B2 (en) 2021-02-15 2023-03-28 Cognitive Systems Corp. Systems and methods for Wi-Fi sensing
US11902819B2 (en) 2021-02-15 2024-02-13 Cognitive Systems Corp. Systems and methods for Wi-Fi sensing
US11835615B2 (en) 2021-05-14 2023-12-05 Cognitive Systems Corp. Systems and methods for Wi-Fi sensing using uplink orthogonal frequency division multiple access (UL-OFDMA)
US11950202B2 (en) 2021-05-26 2024-04-02 Cognitive Systems Corp. Systems and methods for accommodating flexibility in sensing transmissions
WO2024055156A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 代理感知测量方法、电子设备及存储介质
WO2024055702A1 (zh) * 2022-09-16 2024-03-21 华为技术有限公司 信道测量方法及相关装置

Also Published As

Publication number Publication date
CN114760640B (zh) 2023-09-08
EP4266729A1 (en) 2023-10-25
EP4266729A4 (en) 2024-06-19
CN114760640A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2022148461A1 (zh) 无线局域网感知方法及装置
CN113965954B (zh) 感知测量信息交互装置
RU2662450C1 (ru) Эффективное сканирование луча для высокочастотных беспроводных сетей
US10038530B2 (en) Method of transmitting and receiving CSI-RS and related apparatuses using the same
CN102132504B (zh) 通过扇区扫描进行波束成形的方法及站点
EP3491866B1 (en) Communication nodes and methods therein for positioning in a wireless communications network
CN108700641B (zh) 用于无线局域网测距和测向的单播和广播协议
EP2979410B1 (en) Channel estimation in wireless communications with beamforming
CN112350809A (zh) 感知方法和通信装置
US20190181935A1 (en) Method, system and apparatus
US9763216B2 (en) Radiator localization
CN114698019A (zh) 测量上报的方法与装置
CN110212312A (zh) 一种天线装置及相关设备
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
WO2021129581A1 (zh) 一种信号处理方法及装置
CN111130661B (zh) 一种天线校正方法及装置
EP4178294A1 (en) Method and apparatus for beam training
US20120008603A1 (en) Contention based period beamforming
WO2019171828A1 (ja) レーダ装置
Tsang et al. Successive AoA estimation: Revealing the second path for 60 GHz communication system
EP4277152A1 (en) Radiofrequency sensing method and related device
KR20220050865A (ko) 레이더 장치 및 레이더 장치에 이용되는 안테나 장치
CN111106861B (zh) 通过角速度预测毫米波信道分布来进行波束赋形的方法
CN115913301A (zh) 波束成型报告的反馈方法及装置
KR20200123747A (ko) 레이더 장치 및 레이더 장치에 이용되는 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022736622

Country of ref document: EP

Effective date: 20230720

NENP Non-entry into the national phase

Ref country code: DE