WO2024113385A1 - 基于代理的感知方法、装置、设备及存储介质 - Google Patents

基于代理的感知方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024113385A1
WO2024113385A1 PCT/CN2022/136379 CN2022136379W WO2024113385A1 WO 2024113385 A1 WO2024113385 A1 WO 2024113385A1 CN 2022136379 W CN2022136379 W CN 2022136379W WO 2024113385 A1 WO2024113385 A1 WO 2024113385A1
Authority
WO
WIPO (PCT)
Prior art keywords
perception
proxy
field
subfield
dmg
Prior art date
Application number
PCT/CN2022/136379
Other languages
English (en)
French (fr)
Inventor
何世文
高宁
罗朝明
蔡康利
黄世悦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/136379 priority Critical patent/WO2024113385A1/zh
Publication of WO2024113385A1 publication Critical patent/WO2024113385A1/zh

Links

Images

Definitions

  • the embodiments of the present application relate to the field of wireless local area network perception, and in particular to an agent-based perception method, apparatus, device and storage medium.
  • Wireless Local Area Network (WLAN) perception refers to the method and application of sensing people or objects in the environment by measuring the changes in WLAN signals scattered and/or reflected by people or objects.
  • WLAN perception measures and senses the surrounding environment through wireless signals, and can complete functions such as detection of indoor intrusion/movement/fall, posture recognition, and spatial three-dimensional image creation.
  • the embodiment of the present application provides a proxy-based perception method, device, equipment and storage medium.
  • the technical solution is as follows:
  • a proxy-based perception method is provided, the method being performed by a proxy initiating device supporting a first frequency band, the method comprising:
  • the proxy request frame is used to request the proxy response device to perform a sensing measurement of a second frequency band on behalf of the proxy response device, and to indicate a first sensing type and/or a first sensing range to the proxy response device;
  • the proxy response device is a device that supports both the first frequency band and the second frequency band.
  • a proxy-based perception method is provided, the method being performed by a proxy response device supporting a first frequency band and a second frequency band, the method comprising:
  • proxy request frame sent by a proxy initiating device, wherein the proxy request frame is used to request the proxy responding device to perform perception measurement of a second frequency band on behalf of the proxy;
  • a proxy response frame is sent to the proxy initiating device, where the proxy response frame carries third information, and the third information carries information for assisting in parsing the perception report.
  • a proxy-based perception method is provided, the method being performed by a proxy response device supporting a first frequency band and a second frequency band, the method comprising:
  • proxy request frame sent by a proxy initiating device, wherein the proxy request frame is used to request the proxy responding device to perform a first sensing type of a second frequency band and/or a sensing measurement of a first sensing range on behalf of the proxy;
  • the proxy initiating device is a device that supports the first frequency band but does not support the second frequency band.
  • an agent-based perception device comprising:
  • a first sending module is configured to send a proxy request frame to a proxy response device, wherein the proxy request frame is used to request the proxy response device to perform perception measurement of a second frequency band on behalf of the proxy response device, and to indicate a first perception type and/or a first perception range to the proxy response device;
  • a first receiving module configured to receive a proxy response frame sent by the proxy response device
  • the proxy response device is a device that supports both the first frequency band and the second frequency band.
  • an agent-based perception device comprising:
  • a second receiving module is used to receive a proxy request frame sent by the proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform perception measurement of the second frequency band on behalf of the proxy;
  • the second sending module is used to send a proxy response frame to the proxy initiating device, where the proxy response frame carries third information, and the third information carries information used to assist in parsing the perception report.
  • an agent-based perception device comprising:
  • the second receiving module is used to receive a proxy request frame sent by the proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform the first perception type of the second frequency band and/or the perception measurement of the first perception range;
  • the second sending module is used to send a proxy response frame to the proxy initiating device
  • the proxy initiating device is a device that supports the first frequency band but does not support the second frequency band.
  • a communication device comprising: a processor; a transceiver connected to the processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to load the executable instructions so that the communication device implements the agent-based perception method as described above.
  • a chip comprising a programmable logic circuit or a program, and the chip is used to enable the communication device to implement the above-mentioned agent-based perception method based on the programmable logic circuit or the program.
  • a computer program product which includes computer instructions, the computer instructions are stored in a computer-readable storage medium, a processor of a communication device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the communication device performs the agent-based perception method as described above.
  • the proxy initiating device based on the proxy response device that supports both the first frequency band and the second frequency band, it is possible to implement the proxy initiating device that supports the first frequency band to request the proxy response device to perform the perception measurement of the second frequency band, and at the same time, the proxy initiating device can also indicate the first perception type and/or the first perception range to the proxy response device.
  • the method of the embodiment of the present application can realize the cross-band perception proxy, expand the application scope of the perception proxy, and improve the setting of the perception type and perception range in the cross-band perception proxy.
  • FIG1 is a schematic diagram of a process of establishing a proxy perception measurement provided in the related art
  • FIG2 is a schematic diagram of a process of establishing a proxy for millimeter wave sensing measurement provided in the related art
  • FIG3 is a schematic diagram of a process of establishing a proxy for perceptual measurement of the Sub-7 frequency band provided in the related art
  • FIG4 is a schematic diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • FIG5 is a flow chart of an agent-based perception method provided by an exemplary embodiment of the present application.
  • FIG6 is a flow chart of an agent-based perception method provided by an exemplary embodiment of the present application.
  • FIG7 is a flow chart of an agent-based perception method provided by an exemplary embodiment of the present application.
  • FIG8 is a scene diagram of a low-frequency band device requesting to perform a first perception type perception measurement of a high-frequency band, provided by an exemplary embodiment of the present application;
  • FIG9 is a flowchart of a low-frequency band device requesting a first perception type perception measurement of a high-frequency band provided by an exemplary embodiment of the present application;
  • FIG10 is a schematic diagram of a field structure of a DMG-aware proxy parameter element provided by an exemplary embodiment of the present application.
  • FIG11 is a schematic diagram of a field structure of a DMG-aware proxy parameter element provided by an exemplary embodiment of the present application.
  • FIG12 is a schematic diagram of a field structure of a DMG-aware proxy parameter control field provided by an exemplary embodiment of the present application.
  • FIG13 is a scene diagram of a low-frequency band device requesting to perform a first perception range perception measurement of a high-frequency band, provided by an exemplary embodiment of the present application;
  • FIG14 is a flow chart of a low frequency band device requesting to perform a first perception range perception measurement of a high frequency band according to an exemplary embodiment of the present application
  • FIG15 is a schematic diagram of a field structure of a DMG-aware proxy parameter element provided by an exemplary embodiment of the present application.
  • FIG16 is a schematic diagram of a field structure of a DMG-aware proxy parameter control field provided by an exemplary embodiment of the present application.
  • FIG17 is a schematic diagram of a field structure of a target direction field provided by an exemplary embodiment of the present application.
  • FIG18 is a schematic diagram of a scenario for calculating a first perception range provided by an exemplary embodiment of the present application.
  • FIG19 is a scene diagram of a low-frequency band device requesting a high-frequency band perception measurement and parsing a perception report provided by an exemplary embodiment of the present application;
  • FIG20 is a flowchart of a low-frequency band device requesting a high-frequency band perception measurement and parsing a perception report provided by an exemplary embodiment of the present application;
  • FIG21 is a schematic diagram of a frame structure of a proxy response frame provided by an exemplary embodiment of the present application.
  • FIG22 is a diagram of a scenario in which a low-frequency band device parses a high-frequency band perception report provided by an exemplary embodiment of the present application;
  • FIG23 is a schematic diagram of a frame structure of an agent report frame provided by an exemplary embodiment of the present application.
  • FIG24 shows a structural block diagram of an agent-based perception device provided by an exemplary embodiment of the present application.
  • FIG25 shows a structural block diagram of an agent-based perception device provided by an exemplary embodiment of the present application.
  • FIG. 26 shows a schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • WLAN Sensing It senses people or objects in the environment by measuring the changes in WLAN signals scattered and/or reflected by people or objects. In other words, WLAN sensing measures and senses the surrounding environment through wireless signals, so as to complete many functions such as detection of indoor intrusion/movement/fall, posture recognition, and spatial three-dimensional image creation.
  • Sensing by Proxy The process of initiating sensing measurements by requesting other devices and obtaining sensing results. In other words, sensing measurements are performed by other devices to obtain sensing results.
  • WLAN devices participating in WLAN awareness may have the following roles:
  • Sensing Responder A device that participates in sensing measurements without being a proxy initiator.
  • Sensing Initiator It can also be called a sensing session initiator, sensing initiator device, or sensing initiator device.
  • a sensing initiator is a device that initiates a sensing measurement and wants to obtain the sensing result.
  • Sensing by Proxy Initiator Also known as a proxy requesting device or a sensing proxy requesting device, it is a device that requests other devices to initiate sensing measurements and wants to know the sensing results.
  • Sensing by Proxy Responder Also known as Sensing Proxy STA or Sensing Proxy Responder, it is a device that responds to requests from a proxy initiator and initiates sensing measurements.
  • the sensing participating device may include a proxy initiating device participating in the sensing measurement; or it may only include devices that are not proxy initiating devices participating in the sensing measurement. That is, in this case, the sensing participating device has the same meaning as the sensing responding device.
  • a WLAN terminal may have one or more roles in a perception measurement.
  • a proxy initiating device may be only a proxy initiating device, or may be a proxy responding device, or may be both a proxy initiating device and a proxy responding device.
  • FIG1 shows a schematic diagram of a process for establishing a perception measurement of an agent provided in the related art.
  • Figure 1 involves a proxy initiating device, a proxy responding device, a perception initiating device and a perception responding device.
  • the proxy responding device is used to respond to the proxy request of the proxy initiating device and also acts as a perception initiating device to initiate perception.
  • the process of establishing the agent's perception measurement includes the perception agent startup phase, the perception agent reporting phase, and the perception agent stop phase.
  • the process of establishing the agent's perception measurement is briefly described as follows:
  • the perception initiating device broadcasts a beacon frame (Beacon frame), and the perception responding device (non-AP STA) actively sends a probe request frame (Probe Request frame), an association request frame (Association Request frame) or a reassociation request frame (Reassociation Request frame) to the perception initiating device, and receives the probe request frame, association request frame or reassociation request frame returned by the perception initiating device to exchange the capability information of the perception initiating device and the perception responding device.
  • the proxy initiating device sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to request the proxy responding device to establish proxy perception measurements (such as WLAN perception).
  • SBP request frame proxy request frame
  • AP proxy responding device
  • the proxy request frame carries at least one of a sensing proxy parameter element (SBP Parameters element) and a sensing measurement parameter element (Sensing Measurement Parameters element).
  • SBP Parameters element a sensing proxy parameter element
  • Sensing Measurement Parameters element a sensing measurement parameter element
  • the sensing proxy parameter element is used to indicate the operating parameters of the sensing by Proxy (SBP); the sensing measurement parameter element is used to indicate the operating parameters of the sensing measurement process.
  • the proxy response device sends a Sensing Measurement Setup Request frame to the sensing response device to negotiate the operating parameters during the sensing measurement process.
  • the sensing response device sends a sensing measurement setup response frame (Sensing Measurement Setup Response frame) to the proxy response device to indicate confirmation of establishing the sensing measurement.
  • a sensing measurement setup response frame Sensing Measurement Setup Response frame
  • the proxy response device sends at least one of the measurement announcement frame (NDP Announcement, NDPA), measurement frame (Null Data PPDU, NDP), and perception report trigger frame (Sensing Report Trigger) to the perception response device to trigger the perception measurement process.
  • NDP Announcement NDPA
  • measurement frame Null Data PPDU, NDP
  • perception report trigger frame Sensing Report Trigger
  • the sensing response device sends a sensing report measurement frame (Sensing Measurement Report frame) to the proxy response device to accept the sensing measurement process and accept and send the sensing measurement report.
  • a sensing report measurement frame Sensing Measurement Report frame
  • the proxy responding device sends a proxy response frame (SBP Response frame) to the proxy initiating device to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • the proxy response frame carries at least one of a perception proxy parameter element and a perception measurement parameter element.
  • the above steps 0-6 belong to the perception agent startup phase.
  • the perception response device completes the perception measurement and reports the perception measurement result to the proxy response device.
  • the proxy response device sends a proxy report frame (SBP Response frame) to the proxy initiator device to inform the perception measurement result.
  • SBP Response frame proxy report frame
  • the proxy report frame carries a sensing measurement report container (Sensing Measurement Report Container).
  • the sensing measurement report container is used to carry a sensing measurement report.
  • the above step 7 belongs to the perception agent reporting stage.
  • the proxy initiating device sends a proxy termination frame (SBP Termination frame) to the proxy responding device to indicate the end of the perception measurement process.
  • SBP Termination frame a proxy termination frame
  • the proxy end frame carries a Measurement Setup ID field.
  • the Measurement Setup ID field is used to indicate a perception measurement process established by the proxy responding device.
  • the agent responds to the device stopping the associated sensing.
  • the above steps 8-9 belong to the perception agent stopping stage.
  • FIG2 shows a schematic diagram of a process for establishing a proxy for millimeter-wave (directional multi-gigabit (DMG)) sensing measurement provided in the related art.
  • DMG directional multi-gigabit
  • Figure 2 involves a DMG proxy initiating device, a DMG proxy responding device, a DMG perception initiating device and a DMG perception responding device.
  • the DMG proxy responding device is used to respond to the proxy request of the DMG proxy initiating device and also acts as a DMG perception initiating device to initiate perception.
  • the process of establishing the agent's millimeter wave perception measurement includes the perception agent startup phase, the perception agent report phase, and the perception agent stop phase.
  • the process of establishing the agent's DMG perception measurement is briefly described as follows:
  • the DMG perception initiator broadcasts a beacon frame (Beacon frame), and the DMG perception responder (non-AP STA) actively sends a probe request frame (Probe Request frame), an association request frame (Association Request frame) or a reassociation request frame (Reassociation Request frame) to the DMG perception initiator, and receives the probe request frame, association request frame or reassociation request frame returned by the DMG perception initiator to exchange the capability information of the DMG perception initiator and the DMG perception responder.
  • Beacon frame beacon frame
  • the DMG perception responder non-AP STA
  • the DMG proxy initiator sends a DMG proxy request frame (DMG SBP request frame) to the DMG proxy responder (AP) to request the DMG proxy responder to establish the proxy's DMG perception measurement (such as DMG perception).
  • DMG SBP request frame DMG proxy request frame
  • AP DMG proxy responder
  • the DMG proxy request frame carries at least one of a DMG SBP Parameters element and a DMG Sensing Measurement Setup element.
  • the DMG SBP Parameters element is used to indicate operating parameters of a sensing proxy process;
  • the DMG Sensing Measurement Setup element is used to indicate operating parameters of a sensing measurement process.
  • the DMG proxy response device sends a DMG sensing measurement setup request frame (DMG Sensing Measurement Setup Request frame) to the DMG sensing response device to negotiate the operating parameters during the DMG sensing measurement process.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • the DMG sensing response device sends a DMG sensing measurement setup response frame (DMG Sensing Measurement Setup Response frame) to the DMG proxy response device to indicate confirmation of establishing the DMG sensing measurement.
  • DMG sensing measurement setup response frame DMG Sensing Measurement Setup Response frame
  • the DMG agent responding device sends a DMG agent response frame (DMG SBP Response frame) to the DMG agent initiating device to indicate that it has accepted the perception agent task.
  • DMG SBP Response frame DMG agent response frame
  • the DMG agent response frame carries at least one of a DMG perception agent parameter element and a DMG perception measurement setting element.
  • the DMG perception response device completes the perception measurement, and the DMG proxy response device sends a poll frame (Poll Frame) to the DMG perception response device to trigger the DMG perception response device to report the DMG perception measurement results.
  • a poll frame Policy Frame
  • the DMG sensing response device sends a DMG sensing report frame (DMG Sensing Report frame) to the DMG proxy response device to report the DMG sensing measurement results.
  • DMG Sensing Report frame DMG Sensing Report frame
  • the DMG agent responding device sends a DMG agent report frame (DMG SBP Report frame) to the DMG agent initiating device to inform the DMG of the perception measurement results.
  • DMG SBP Report frame a DMG agent report frame
  • the DMG agent report frame carries at least one of a DMG sensing report control element and a DMG sensing report element.
  • the DMG sensing report control element and the DMG sensing report element are used to indicate the DMG sensing measurement result.
  • the above steps 5-7 belong to the perception agent reporting stage.
  • the DMG agent initiator sends a DMG agent termination frame (DMG SBP Termination frame) to the DMG agent responder to indicate the end of the DMG perception measurement process.
  • DMG SBP Termination frame DMG SBP Termination frame
  • the DMG agent termination frame carries the DMG measurement setup ID and DMG perception agent termination control fields.
  • the DMG measurement setup ID field is used to indicate a DMG perception measurement process established by the DMG agent response device.
  • the DMG perception agent termination control field is used to control the termination of the DMG perception measurement process.
  • the DMG agent responds to the device stopping the related DMG perception.
  • the above steps 8-9 belong to the perception agent stopping stage.
  • FIG3 shows a schematic diagram of a process for establishing a proxy perception measurement of the Sub-7 frequency band provided in the related art.
  • Figure 3 involves a proxy initiating device, a proxy responding device, a perception initiating device and a perception responding device.
  • the proxy responding device is used to respond to the proxy request of the proxy initiating device, and also acts as a perception initiating device to initiate perception.
  • the process of establishing the perception measurement of the Sub-7 frequency band of the proxy includes the perception proxy startup phase, the perception proxy report phase, and the perception proxy stop phase.
  • the process of establishing the perception measurement of the Sub-7 frequency band of the proxy is briefly described as follows:
  • the perception initiating device broadcasts a beacon frame (Beacon frame), and the perception responding device (non-AP STA) actively sends a probe request frame (Probe Request frame), an association request frame (Association Request frame) or a reassociation request frame (Reassociation Request frame) to the perception initiating device, and receives the probe request frame, association request frame or reassociation request frame returned by the perception initiating device to exchange the capability information of the perception initiating device and the perception responding device.
  • the proxy initiating device sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to request the proxy responding device to establish the proxy's Sub-7 frequency band perception measurement.
  • SBP request frame proxy request frame
  • the proxy request frame carries at least one of a sensing proxy parameter element (SBP Parameters element) and a sensing measurement setup element (Sensing Measurement Setup element).
  • SBP Parameters element a sensing proxy parameter element
  • sensing measurement setup element a sensing measurement setup element
  • the proxy response device sends a Sensing Measurement Setup Request frame to the sensing response device to negotiate the operating parameters during the sensing measurement process.
  • the sensing response device sends a sensing measurement setup response frame (Sensing Measurement Setup Response frame) to the proxy response device to indicate confirmation of establishing the sensing measurement.
  • a sensing measurement setup response frame Sensing Measurement Setup Response frame
  • the proxy responding device sends a proxy response frame (SBP Response frame) to the proxy initiating device to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • the proxy response frame carries at least one of a perception proxy parameter element and a perception measurement setting element.
  • the proxy response device and the perception response device complete the perception measurement through the trigger frame based measurement (Trigger Based, TF) process (TF Sounding).
  • the sensing response device sends a measurement report frame (Sensing Measurement Report frame) to the proxy response device to report the sensing measurement results.
  • a measurement report frame Sensing Measurement Report frame
  • the proxy responding device sends a proxy report frame (SBP Report frame) to the proxy initiating device to inform the perception measurement results.
  • SBP Report frame a proxy report frame
  • the proxy report frame carries a Sensing Measurement Report Container.
  • the above steps 5-7 belong to the perception agent reporting stage.
  • the proxy initiating device sends a proxy termination frame (SBP Termination frame) to the proxy responding device to indicate the end of the perception measurement process, and the proxy responding device stops the relevant perception.
  • SBP Termination frame a proxy termination frame
  • the Proxy End frame carries a Measurement Setup ID field.
  • the above step 8 belongs to the perception agent stopping stage.
  • Fig. 4 shows a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include: an access point (AP) and a station (STA).
  • AP access point
  • STA station
  • AP can be called AP STA, that is, in a sense, AP is also a STA. In some scenarios, STA is called non-AP STA.
  • STA may include AP STA and non-AP STA.
  • the communication in the communication system may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA.
  • Peer STA may refer to a device that communicates with the STA peer.
  • peer STA may be an AP or a non-AP STA.
  • AP is equivalent to a bridge connecting wired network and wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to Ethernet.
  • AP devices can be terminal devices (such as mobile phones) or network devices (such as routers) with wireless fidelity (WIFI) chips.
  • WIFI wireless fidelity
  • the role of STA in the communication system is not absolute.
  • the mobile phone when a mobile phone is connected to a router, the mobile phone is a non-AP STA.
  • the mobile phone plays the role of an AP.
  • APs and non-AP STAs can be devices used in Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras, smart remote controls, smart water and electricity meters in smart homes, and sensors in smart cities.
  • IoT Internet of Things
  • non-AP STA can support 802.11be.
  • Non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other current and future 802.11 family wireless LAN standards.
  • the AP may be a device supporting the 802.11be standard.
  • the AP may also be a device supporting various current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • STA can be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (VR) device, augmented reality (AR) device, wireless device in industrial control (industrial control), set-top box, wireless device in self-driving, vehicle-mounted communication equipment, wireless device in remote medical, wireless device in smart grid (smart grid), wireless device in transportation safety (transportation safety), wireless device in smart city (smart city) or wireless device in smart home (smart home), wireless communication chip, ASIC (Application Specific Integrated Circuit), SOC (System on Chip), etc. that supports WLAN/WIFI technology.
  • the frequency bands supported by WLAN technology may include but are not limited to: low frequency bands (2.4 GHz, 5 GHz, 6 GHz) and high frequency bands (45 GHz, 60 GHz).
  • the station and the access point support multi-band communication. For example, communicating on the 2.4 GHz, 5 GHz, 6 GHz, 45 GHz, and 60 GHz bands at the same time, or communicating on different channels of the same band (or different bands) at the same time, improves the communication throughput and/or reliability between devices.
  • a device is generally called a multi-band device, or a multi-link device (Multi-Link Device, MLD), sometimes also referred to as a multi-link entity or a multi-band entity.
  • MLD multi-link device
  • a multi-link device can be an access point device or a station device. If the multi-link device is an access point device, the multi-link device contains one or more APs; if the multi-link device is a station device, the multi-link device contains one or more non-AP STAs.
  • a multi-link device including one or more APs can be called an AP, and a multi-link device including one or more non-AP STAs can be called a Non-AP.
  • an AP may include multiple APs
  • a Non-AP may include multiple STAs
  • multiple links may be formed between the APs in the AP and the STAs in the Non-AP
  • data communication may be performed between the APs in the AP and the corresponding STAs in the Non-AP through corresponding links.
  • the AP is a device deployed in a wireless local area network to provide wireless communication functions for STA.
  • the site may include: User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent or user device.
  • the site can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, and the embodiments of the present application are not limited to this.
  • the perception agent process in the DMG band and the Sub-7 band is supported, and the two processes are similar.
  • Sub-7 band perception can provide an indication of relatively large movement and contains rich multipath information.
  • the millimeter wave directional transmission in the DMG band can facilitate direction estimation, and its large bandwidth provides higher distance resolution, thereby enabling more fine-grained perception. Therefore, for data-driven algorithms, the fusion of perception measurements of the two frequency bands is expected to enhance the robustness and generalization of the model.
  • a design scheme for cross-band perception agents is proposed. For example, a Sub-7 device requests a DMG device to perform higher-precision perception, or a DMG device requests a Sub-7 device to perform a wider range of perception.
  • DMG sensing types include dual-base sensing, multi-base sensing, collaborative dual-base sensing and collaborative single-base sensing, and there is a lack of indication of the single-base sensing type.
  • the Sub-7 device and the DMG device cannot parse some of the data from the perception measurement report of the DMG device.
  • the embodiments of the present application propose a design scheme for the wireless communication protocol and the cross-band perception proxy process in the related technology, and improve the setting of the perception type and perception range in the cross-band perception proxy.
  • the cross-band request for perception proxy in the embodiment of the present application includes the following scenarios:
  • the low-band device requests to be a high-band sensing agent and indicates the type of sensing it wants;
  • the low-frequency device requests to be a high-frequency sensing agent and indicates the desired sensing range
  • the low-frequency band device requests the high-frequency band perception agent and obtains some relevant parameters to assist in parsing the perception report.
  • FIG5 shows a flowchart of a proxy-based perception method provided by an exemplary embodiment of the present application.
  • the method is described by taking the method being executed by a proxy initiating device supporting the first frequency band as an example, and the proxy initiating device may be a STA or an AP as shown in FIG4.
  • the method includes at least some of the following steps:
  • Step 220 the proxy initiating device sends a proxy request frame to the proxy responding device, where the proxy request frame is used to request the proxy responding device to perform sensing measurement of the second frequency band on behalf of the proxy responding device and to indicate the first sensing type and/or the first sensing range to the proxy responding device.
  • Step 240 The proxy initiating device receives a proxy response frame sent by the proxy responding device.
  • FIG6 shows a flow chart of an agent-based perception method provided by an exemplary embodiment of the present application.
  • the method is described by taking the example of an agent response device that supports both the first frequency band and the second frequency band, and the agent response device may be the AP or ATA shown in FIG4.
  • the method includes at least some of the following steps:
  • Step 320 The proxy responding device receives a proxy request frame sent by the proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform perception measurement of the second frequency band on its behalf.
  • Step 340 The proxy response device sends a proxy response frame to the proxy initiating device.
  • the proxy response frame carries third information.
  • the third information carries information for assisting in parsing the perception report.
  • FIG7 shows a flow chart of an agent-based perception method provided by an exemplary embodiment of the present application.
  • the method is described by taking the example of an agent response device that supports both the first frequency band and the second frequency band, and the agent response device may be the AP or ATA shown in FIG4.
  • the method includes at least some of the following steps:
  • Step 420 The proxy responding device receives a proxy request frame sent by the proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform a first sensing type of the second frequency band and/or a sensing measurement of the first sensing range.
  • Step 440 The proxy responding device sends a proxy response frame to the proxy initiating device.
  • the first sensing type is a designated sensing type indicated by the proxy initiating device through a proxy request frame.
  • the first sensing range is a designated sensing range indicated by the proxy initiating device through a proxy request frame.
  • the first frequency band may be a low frequency band such as a Sub-7 frequency band
  • the proxy initiating device supporting the first frequency band is a proxy initiating device supporting the Sub-7 frequency band, or referred to as a Sub-7 device or a low frequency band device.
  • the first frequency band can be a high frequency band such as a DMG band, a millimeter wave band, a terahertz band, or a visible light band.
  • This embodiment takes the DMG band as an example.
  • the proxy initiating device that supports the first frequency band is an agent initiating device that supports the DMG band, or is called a DMG device or a high frequency band device.
  • the agent request frame is used to request the agent responding device to perform the sensing measurement of the second frequency band on behalf of the agent.
  • the proxy request frame is used to request the proxy responding device to perform WLAN sensing of the first frequency band and the second frequency band on its behalf.
  • the proxy request frame further indicates the first sensing type and/or the first sensing range to the proxy response device.
  • the proxy request frame needs to indicate to the proxy response device the first sensing type it wants. Based on FIG. 5 , FIG. 6 and FIG. 7 , the proxy request frame needs to carry information about the sensing type.
  • the information about the perception type can be explicitly indicated by adding a value to the existing information field in the proxy request frame; it can also be explicitly indicated by adding a new information field in the proxy request frame; it can also be indicated by coordinating the existing information field and the new information field in the proxy request frame.
  • the "information field" in this article is at least one of a field, an element, and a container.
  • the information about the perception type may be the first information, and the first information may indicate one perception type from all perception types, or may indicate only one required perception type.
  • the proxy request frame carries first information, where the first information is used to indicate a first perception type.
  • the first perception type is one of multiple perception types, and the multiple perception types include single-base perception.
  • the first information includes at least one of the following fields or elements:
  • At least one subfield in the Awareness Proxy Parameters element At least one subfield in the Awareness Proxy Parameters element.
  • the first information includes a perception type field.
  • the value of the perception type field indicates the first perception type desired by the proxy initiating device. Different values of the perception type field correspond to different perception types.
  • the first perception type is Coordinated Monostatic
  • the first perception type is coordinated bistatic perception
  • the first perception type is bistatic perception
  • the first perception type is multistatic perception
  • the first perception type is monostatic.
  • the first value is set to 0, the second value is set to 1, the third value is set to 2, the fourth value is set to 3, and the fifth value is set to 4. That is, when the first frequency band is a Sub-7 frequency band, there are the following situations:
  • the first sensing type is cooperative single-base sensing
  • the first sensing type is cooperative dual-base sensing
  • the first perception type is dual-base perception
  • the first perception type is multi-base perception
  • the first perception type is monostatic perception.
  • the first value, the second value, the third value, the fourth value and the fifth value in the above embodiment are only used as examples, and the specific values may be adjusted or other values may be set according to actual technical requirements.
  • the perception type field is carried in a perception measurement setting element corresponding to the second frequency band; the perception measurement setting element is used to indicate operating parameters of the perception measurement process.
  • the perception type field is carried in a perception measurement setup control (Measurement Setup Control) field in a perception measurement setup element corresponding to the second frequency band.
  • a perception measurement setup control Measurement Setup Control
  • the sensing measurement setup element corresponding to the second frequency band is a DMG sensing measurement setup element (DMG Sensing Measurement Setup element).
  • the first information includes a monostatic sensing field.
  • the value of the single-base sensing field indicates whether the first sensing type desired by the proxy initiating device is single-base sensing.
  • the first perception type is not single-base perception
  • the first perception type is single-base perception.
  • the first value is set to 0 and the second value is set to 1. That is, when the first frequency band is a Sub-7 frequency band, there are the following situations:
  • the first perception type is not single-base perception
  • the first sensing type is single-base sensing.
  • the first value and the second value in the above embodiment are only used as examples, and the specific values may be adjusted or other values may be set according to actual technical requirements.
  • the proxy initiating device when the single-base perception field is the first value, if the first perception type is not single-base perception, the proxy initiating device needs to continue to indicate which specific perception type it is. Based on this, the first information also includes a perception type field, which is used to indicate the first perception type desired by the proxy initiating device through the perception type field.
  • the first perception type is the perception type indicated by the value of the perception type field. Further, the first perception type is indicated by the value of the perception type field.
  • the monostatic sensing type field is carried in a sensing proxy parameter element corresponding to the second frequency band; the sensing proxy parameter element is used to indicate an operating parameter of a sensing measurement process.
  • the monostatic sensing type field is carried in a sensing proxy parameter control field in a sensing proxy parameter element corresponding to the second frequency band.
  • the perception proxy parameter element corresponding to the second frequency band is a DMG perception proxy parameter element (DMG SBP Parameters element)
  • the perception proxy parameter control field is a DMG perception proxy parameter control (DMG SBP Parameters Control) field.
  • the first information includes an awareness type field and at least one subfield in an awareness agent parameter element.
  • the Perception Agent Parameters element is used to indicate operating parameters of the Perception Agent process.
  • the first perception type desired by the proxy initiating device is indicated by the value of the perception type field and the value of at least one subfield in the perception proxy parameter element.
  • the first perception type field is a first value and at least one subfield in the perception proxy parameter element is a preset value corresponding to the subfield, the first perception type is single-base perception;
  • the first perception type field is a first value and at least one subfield in the perception proxy parameter element is not a preset value corresponding to the subfield, the first perception type is collaborative single-base perception;
  • the first sensing type is cooperative dual-base sensing
  • the first perception type is dual-base perception
  • the first perception type is multi-base perception.
  • the first value is set to 0, the second value is set to 1, the third value is set to 2, the fourth value is set to 3, and the fifth value is set to 4. That is, when the first frequency band is a Sub-7 frequency band, there are the following situations:
  • the first perception type is single-base perception
  • the first perception type is cooperative single-base perception
  • the first sensing type is cooperative dual-base sensing
  • the first perception type is dual-base perception
  • the first perception type is multibase perception.
  • the first value, the second value, the third value and the fourth value in the above embodiment are only used as examples, and the specific values may be adjusted or other values may be set according to actual technical requirements.
  • At least one subfield in the perceptual proxy parameter element is carried in the perceptual proxy parameter element corresponding to the second frequency band.
  • the perception proxy parameter element corresponding to the second frequency band is a DMG perception proxy parameter element
  • the subfield in the DMG perception proxy parameter element includes at least one of the following:
  • the preset value corresponding to the DMG perception proxy request subfield is 1; the preset value corresponding to the DMG proxy response device subfield is 1; the preset value corresponding to the DMG proxy response device quantity subfield is 4; the preset value corresponding to the DMG forced response device quantity subfield is 1; the preset value corresponding to the DMG priority response device quantity subfield is 4; the preset value corresponding to the DMG priority response device list subfield is 1; the preset value corresponding to the DMG forced priority response device subfield is 1; the preset value corresponding to the DMG proxy response device address subfield is n*6; the preset value corresponding to the DMG proxy response identification subfield is n.
  • the preset values in the above embodiment are provided as examples, and the specific values may be adjusted or other values may be set according to actual technical requirements.
  • the proxy request frame needs to indicate to the proxy response device its desired first sensing range. Based on FIG. 5 , FIG. 6 and FIG. 7 , the proxy request frame needs to carry information about the sensing range.
  • the information about the sensing range can be explicitly indicated by adding a value to the existing information field in the proxy request frame; it can also be explicitly indicated by adding a new information field in the proxy request frame; it can also be indicated by coordinating the existing information field and the new information field in the proxy request frame.
  • the "information field" in this article is at least one of a field, an element, and a container.
  • the information about the perception range may be second information, and the second information is used to indicate the first perception range.
  • the proxy request frame carries second information, where the second information is used to indicate the first sensing range.
  • the second information includes at least one of the following fields:
  • TargetOrientation TargetOrientation
  • LCI Location Information field
  • the target direction field is used to indicate the location information of the target relative to the proxy initiating device.
  • the location information field is used to indicate location information of the proxy initiating device.
  • the companion direction field is used to indicate location information of the proxy responding device measured by the proxy initiating device.
  • the second field also includes at least one of the following additional fields:
  • LCI Present Location information present field
  • Target Direction Exists field is used to indicate whether the Target Direction field exists.
  • the location information exists field is used to indicate whether the location information field exists.
  • the Companion Direction Present field is used to indicate whether the Companion Direction field exists.
  • the value of the target direction existence field indicates whether the target direction field exists.
  • whether the location information field exists is indicated by the value of the location information field.
  • the existence of the companion direction field is indicated by the value of the companion direction existence field.
  • the target direction field When the target direction field is the first value, the target direction field does not exist;
  • the location information field When the location information field is the first value, the location information field does not exist;
  • the location information field is the second value, the location information field exists
  • the first value is set to 0, and the second value is set to 1.
  • the first value and the second value in the above embodiment are taken as an example, and the specific numerical value may be adjusted or other values may be set according to actual technical requirements.
  • the target direction field includes at least one of the following subfields:
  • the target azimuth field is used to represent the azimuth of the target relative to the proxy initiating device.
  • the azimuth span subfield is used to characterize the span size of the azimuth.
  • Target Altitude Angle subfield is used to represent the altitude angle of the target relative to the proxy initiating device.
  • the Altitude Angle Span subfield is used to characterize the span size of the altitude angle.
  • Target Distance subfield is used to characterize the distance of the target relative to the proxy initiating device.
  • the distance span subfield is used to indicate the span size of the distance.
  • the Companion Direction field includes at least one of the following subfields:
  • the azimuth subfield is used to represent the azimuth direction of the proxy responding device measured by the proxy initiating device.
  • the altitude angle subfield is used to represent the altitude angle direction of the proxy responding device measured by the proxy initiating device.
  • the distance subfield is used to represent the distance of the proxy responding device measured by the proxy initiating device.
  • the above-mentioned additional fields are carried in the perception agent parameter control field.
  • the perception proxy parameters control field is a DMG perception proxy parameters control (DMG SBP Parameters Control) field.
  • the second information is carried in a perception proxy parameter element corresponding to the second frequency band.
  • the perception proxy parameter element corresponding to the second frequency band is a DMG perception proxy parameter element (DMG SBP Parameters element).
  • the proxy response device is a device that supports both the first frequency band and the second frequency band, so that the proxy response device can perform perception measurements of the second frequency band on behalf of the device.
  • the proxy responding device after the proxy responding device negotiates the sensing parameters with other devices, it responds with a proxy response frame to the proxy initiating device.
  • the proxy initiating device receives the proxy response frame sent by the proxy responding device.
  • the agent responding device sends an agent report frame to the agent initiating device, and the agent initiating device receives the agent report frame sent by the agent responding device.
  • the proxy responding device may send information about assisting in parsing the awareness report to the proxy initiating device via a proxy response frame.
  • the proxy response device may also send the information about the assisted resolution awareness report to the proxy initiating device through a proxy report frame.
  • the information about the auxiliary resolution perception report can be explicitly indicated by adding a value to the existing information field in the proxy response frame and/or the proxy report frame; it can also be explicitly indicated by adding a new information field in the proxy response frame and/or the proxy report frame; it can also be indicated collaboratively by using the existing information field and the new information field in the proxy response frame and/or the proxy report frame.
  • the "information field" in this article is at least one of a field, an element, and a container.
  • the information about the assisted parsing perception report may be the third information.
  • the third information may include at least one of information about the beam and information about operating parameters in the perception measurement process.
  • the information about the beam may include at least one of information about the transmitted beam and information about the received beam.
  • the third information is used to indicate at least one of the following information:
  • the N agents respond to the operating parameters of the devices during the sensing measurement process.
  • the sensing beam descriptor element is a DMG sensing beam descriptor element (DMG SensingBeamDescriptorelement).
  • the transmit beam lists or receive beam lists of the N proxy response devices are carried in N perceptual beam description elements, and each perceptual beam description element carries a receive beam list of a proxy response device.
  • the N perception beam descriptor elements are DMG perception beam descriptor element 1 (DMGSensingBeamDescriptorelement1) to DMG perception beam descriptor element N (DMGSensingBeamDescriptorelement N).
  • DMG perception beam description element 1 carries the transmit beam list or receive beam list of the first proxy response device
  • DMG perception beam description element 2 carries the transmit beam list or receive beam list of the second proxy response device
  • DMG perception beam description element N carries the transmit beam list or receive beam list of the Nth proxy response device.
  • operating parameters of the N proxy response devices during the perception measurement process are carried in N perception measurement setting elements, and each perception measurement setting element carries an operating parameter of a proxy response device during the perception measurement process.
  • the N sensing measurement setup elements are DMG sensing measurement setup element 1 (DMG Sensing Measurement Setup element 1) to DMG sensing measurement setup element N (DMG Sensing Measurement Setup element N).
  • DMG perception measurement setting element 1 carries the operating parameters of the first proxy response device during the perception measurement process
  • DMG perception measurement setting element 2 carries the operating parameters of the second proxy response device during the perception measurement process
  • DMG perception measurement setting element N carries the operating parameters of the Nth proxy response device during the perception measurement process.
  • N is set based on the number of proxy response devices participating in the perception measurement.
  • N refers to the number of proxy response devices actually participating in the perception measurement.
  • the proxy responding device may also send additional information about the assisted resolution awareness report to the proxy initiating device via a proxy report frame.
  • the additional information of the auxiliary resolution perception report can be explicitly indicated by adding a value to the existing information field in the proxy report frame; it can also be explicitly indicated by adding a new information field in the proxy report frame; it can also be indicated by coordinating the existing information field and the new information field in the proxy report frame.
  • the "information field" in this article is at least one of a field, an element, and a container.
  • the additional information related to the auxiliary resolution perception report may be the fourth information.
  • the fourth information may include information related to distance, Doppler, and beam direction.
  • the proxy report frame carries fourth information, and the fourth information carries information used to assist in parsing the perception report.
  • the fourth information includes at least one of the following subfields:
  • Doppler subfield Doppler
  • the fourth information is carried in a perception report element of the second frequency band.
  • the fourth information is carried in a perception distance report data element in a perception report element of the second frequency band.
  • the perception report element of the second frequency band is a DMG perception report element (DMG Sensing Report element)
  • the perception distance report data element is a DMG perception distance report data element (DMG Sensing Image Report Data element).
  • the proxy initiating device based on the proxy response device that supports both the first frequency band and the second frequency band, it is possible to implement the proxy initiating device that supports the first frequency band to request the proxy response device to perform perception measurement of the second frequency band.
  • the proxy initiating device can also indicate the first perception type and/or the first perception range to the proxy response device.
  • the method of the embodiment of the present application can realize cross-frequency band perception proxy, expand the application scope of the perception proxy, and improve the setting of the perception type and perception range in the cross-frequency band perception proxy, speed up the perception efficiency, and achieve higher-precision perception of the target.
  • the perception proxy service can be obtained by performing single-base perception through the proxy response device.
  • it can also assist the proxy initiating device to better parse the perception report, ensure the flexibility of the perception proxy, and enable the proxy initiating device to make full use of the perception measurement results of various devices in the environment.
  • the following takes the low-frequency band device as an example to perform high-frequency band perception proxy to describe in detail several perception processes involved in the embodiments of the present application:
  • the low-frequency device requests the first perception type perception measurement of the high-frequency band
  • Figure 8 shows a scenario diagram of a low-frequency band device requesting to perform a first perception type perception measurement of a high frequency band provided by an exemplary embodiment of the present application
  • Figure 9 shows a flowchart of a low-frequency band device requesting to perform a first perception type perception measurement of a high frequency band provided by an exemplary embodiment of the present application.
  • Figures 8 and 9 involve a proxy initiating device (STA1, Sub-7 device) and a proxy responding device (AP, a device with both DMG and Sub-7 perception capabilities), wherein the proxy responding device is used to respond to the proxy request of the proxy initiating device.
  • STA1, Sub-7 device a proxy initiating device
  • AP proxy responding device
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries at least one of a DMG sensing proxy parameters element (DMG SBP Parameters element) and a DMG sensing measurement setup element (DMG Sensing Measurement Setup element).
  • DMG SBP Parameters element DMG sensing proxy parameters element
  • DMG Sensing Measurement Setup element DMG Sensing Measurement Setup element
  • the proxy initiating device indicates, through a proxy request frame, that the first perception type is single-base perception.
  • Step 2 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries at least one of a DMG-aware proxy parameter element and a DMG-aware measurement setting element.
  • Step 3 The proxy response device (AP) completes the DMG perception measurement process according to the settings in the proxy request frame.
  • the proxy response device (AP) completes the monostatic perception by sending a monostatic perception measurement frame (monostatic PPDU).
  • Step 4 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries at least one of a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • Step 5 The proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries at least one of the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • the DMG sensing measurement setup element represents the relevant parameters of the DMG sensing measurement setup. Among them, the sensing type field in the measurement setup control field (Measurement Setup Control) in the DMG sensing measurement setup can be used to indicate the sensing type.
  • the sensing type field in the measurement setup control field (Measurement Setup Control) in the DMG sensing measurement setup can be used to indicate the sensing type.
  • different values of the sensing type field correspond to different sensing types, and the sensing type includes one of cooperative single-base sensing, cooperative dual-base sensing, dual-base sensing, multi-base sensing, and single-base sensing.
  • the first perception type is cooperative single-base perception
  • the first sensing type is cooperative dual-base sensing
  • the first perception type is dual-base perception
  • the first perception type is multi-base perception
  • the first perception type is single-base perception.
  • the first value is set to 0, the second value is set to 1, the third value is set to 2, the fourth value is set to 3, and the fifth value is set to 4.
  • Table 1 The corresponding relationship between the value of the perception type field and the perception type is shown in Table 1 below.
  • Sensing Type field When the value of the Sensing Type field is 0, it indicates collaborative single-base sensing.
  • Sensing Type field When the value of the Sensing Type field is 1, it indicates collaborative dual-base sensing.
  • Sensing Type field When the value of the Sensing Type field is 2, it indicates dual-base sensing.
  • the Sensing Type field When the value of the Sensing Type field is 3, it indicates multi-base sensing.
  • the values 5 to 7 of the perception type field are reserved.
  • the DMG Sensing Proxy Parameters element represents the operational parameters associated with the requested sensing proxy process.
  • the DMG SBP Parameters Control field defines the format of the DMG Sensing Proxy Parameters element, so a new Monostatic Sensing field can be added to indicate monostatic sensing.
  • the field structure of the DMG sensing proxy parameter element is shown in Figure 10, including the following arranged in sequence: DMG SBP Request field, DMG Sensing Responder field, DMG Number of Sensing Responders field, DMG Mandatory Number of Responders field, DMG Number of Preferred Responders field, DMG Preferred Responder List field, DMG Mandatory Preferred Responder field, Monostatic Sensing field, and Reserved field.
  • the DMG agent request field occupies bit position B0, a total of 1 bit
  • the DMG agent response device field occupies bit position B1
  • the DMG agent response device quantity field occupies bit positions B2-B5, a total of 4 bits.
  • the DMG mandatory response device quantity field occupies bit position B6, a total of 1 bit, the DMG priority response device quantity field occupies bit positions B7-B10, a total of 4 bits, the DMG priority response device list field occupies bit position B11, a total of 1 bit, the DMG mandatory priority response device field occupies bit position B12, a total of 1 bit, the single base perception field occupies bit position B13, a total of 1 bit, and the reserved field occupies bit positions B14-B15, a total of 2 bits.
  • the value of the DMG perception proxy request field when the value of the DMG perception proxy request field is the first value, it indicates that the DMG perception proxy parameter element is sent by the proxy request frame.
  • the value of the single-base perception field is the second value, it indicates that the proxy initiating device requests a single-base perception type.
  • the perception type field in the measurement setting control field in the DMG perception measurement setting element in the proxy request frame is set to a reserved value or an invalid value.
  • the value of the single-base perception field is the first value, it indicates that the perception type is indicated by the perception type field.
  • the DMG Perception Proxy Request field when the value of the DMG Perception Proxy Request field is 1, it indicates that the DMG Perception Proxy Parameters element is sent by the Proxy Request frame.
  • the value of the Single Base Perception field when the value of the Single Base Perception field is 1, it indicates that the proxy initiating device requests a single base perception type.
  • the Perception Type field in the Measurement Setting Control field in the DMG Perception Measurement Setting element in the Proxy Request frame is set to a reserved value or an invalid value.
  • the value of the Single Base Perception field when the value of the Single Base Perception field is 0, it indicates that the perception type is indicated by the Perception Type field.
  • the DMG-aware proxy request field when the value of the DMG-aware proxy request field is the second value, it indicates that the DMG-aware proxy parameter element is sent by the proxy response frame. At this time, the single-base perception field is retained.
  • the single-base perception field is retained.
  • the indicated perception type when the perception type field in the measurement setting to field in the DMG perception measurement setting element in the proxy request frame (or proxy response frame) is a first value, the indicated perception type is collaborative monostatic perception.
  • the value of at least one subfield in the DMG perception proxy parameter element is a preset value corresponding to the subfield, the first perception type indicated by the proxy request frame is monostatic type.
  • the field structure of the DMG sensing proxy parameter element is shown in Figure 11, including the following arranged in sequence: element identification (Element ID) field, length (Length) field, element identification extension (Element ID Extension) field, DMG sensing proxy parameter control (DMG SBP Parameters Control) field, DMG proxy response device address (DMG Sensing Responder Addresses) field, and DMG proxy response device identification (DMG Sensing Responder IDs) field.
  • element ID element identification
  • Length element identification extension
  • DMG SBP Parameters Control DMG sensing proxy parameter control
  • DMG SBP Parameters Control DMG proxy response device address
  • DMG Sensing Responder Addresses DMG Sensing Responder Addresses
  • DMG proxy response device identification DMG Sensing Responder IDs
  • the element identification field occupies 1 byte
  • the length field occupies 1 byte
  • the element identification extension occupies 1 byte
  • the DMG perception agent parameter control field occupies 2 bytes
  • the DMG agent response device address field occupies n*6 bytes
  • the DMG agent response device identification field occupies n bytes.
  • the field structure of the DMG sensing proxy parameters control (DMG SBP Parameters Control) field is shown in Figure 12, including the following arranged in sequence: DMG proxy request (DMG SBP Request) field, DMG proxy responding device (DMG Sensing Responder) field, DMG proxy responding device number (DMG Number of Sensing Responders) field, DMG mandatory responding device number (DMG Mandatory Number of Responders) field, DMG priority responding device number (DMG Number of Preferred Responders) field, DMG priority responding device list (DMG Preferred Responder List) field, DMG mandatory priority responding device (DMG Mandatory Preferred Responder) field, and Reserved field.
  • DMG proxy request DMG SBP Request
  • DMG Sensing Responder DMG proxy responding device
  • DMG proxy responding device number DMG Number of Sensing Responders
  • DMG mandatory responding device number DMG Mandatory Number of Responders
  • DMG priority responding device number DMG Number of Preferred Responders
  • DMG priority responding device list DMG Preferred Responder List
  • the DMG proxy request field occupies bit position B0, a total of 1 bit
  • the DMG proxy response device field occupies bit position B1 a total of 1 bit
  • the DMG proxy response device quantity field occupies bit positions B2-B5, a total of 4 bits.
  • the DMG mandatory response device quantity field occupies bit position B6, a total of 1 bit
  • the DMG priority response device quantity field occupies bit positions B7-B10, a total of 4 bits
  • the DMG priority response device list field occupies bit position B11, a total of 1 bit
  • the DMG mandatory priority response device field occupies bit position B12, a total of 1 bit
  • the reserved field occupies bit positions B13-B15, a total of 3 bits.
  • the DMG Proxy Request field has a first value, indicating that the DMG Aware Proxy Parameters element is sent by a Proxy Request frame.
  • the DMG Proxy Request field has a second value, indicating that the DMG Aware Proxy Parameters element is sent by a Proxy Response frame.
  • the first value is set to 1 and the second value is set to 0.
  • the value of the DMG Agent Response Device field should be set to a first value, indicating that the DMG Agent Initiator does not request to participate in the DMG Perception Process as a Perception Responder.
  • the first value is set to 0.
  • the DMG Proxy Response Device Number field and the DMG Mandatory Response Device Number field are reserved.
  • the value of the DMG Priority Responder Number subfield should be set to a first value, indicating that the DMG Agent Responder Device Address field contains a DMG Aware Responder with a known MAC address.
  • the first value is set to 1.
  • the value of the DMG priority response device list field should be set to a first value, indicating that the DMG agent initiating device provides a DMG agent response device address field.
  • the first value is set to 1.
  • the value of the DMG mandatory priority response device field should be set to the first value, indicating that only the response device contained in the DMG agent response device address field can be selected as the sensing responder.
  • the first value is set to 1.
  • the value of the DMG proxy response device address field should be set to the MAC address of the DMG proxy response device (DMG SBP Responder, AP), indicating that only the DMG proxy response device can be selected as the DMG sensing response device (DMG Sensing Responder), that is, the DMG proxy response device is both a DMG sensing initiator (DMG Sensing Initiator) and a DMG sensing response device, implicitly indicating that the perception type is monostatic type.
  • the DMG Agent Response Device Identification field should be set to the Association Identifier (AID) of the DMG Agent Response Device.
  • the detailed steps of the low-frequency band device requesting perception measurement of single-base perception in the high-frequency band are as follows:
  • Step 0 The proxy initiating device (STA1, Sub-7 device) completes device discovery and interaction of multiple sensing capabilities by exchanging several management frames with the proxy responding device (AP).
  • STA1, Sub-7 device The proxy initiating device
  • the management frame includes at least one of a beacon frame, a probe request frame, an association request frame, or a reassociation request frame.
  • the management frame carries a DMG sensing beam descriptor element (DMG Sensing Beam Descriptor element) for exposing the sensing transmit beam and sensing receive beam that it can support.
  • DMG Sensing Beam Descriptor element DMG Sensing Beam Descriptor element
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries a DMG SBP Parameters element and a DMG Sensing Measurement Setup element.
  • the perception type field in the measurement setting control field in the DMG perception measurement setting element is 4, that is, a single-base perception type.
  • Step 2 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries a DMG sensing proxy parameter element and a DMG sensing measurement setup element.
  • the proxy response frame also carries a DMG sensing image range axis lookup table element (DMG Sensing Image Range Axis LUT element), a DMG sensing image Doppler axis lookup table element (DMG Sensing Image Doppler Axis LUT element), a beam description (Beam Descriptor) field and a DMG sensing measurement setup identifier (DMG Measurement Setup ID) field, which are used to assist the proxy initiator device to parse the DMG measurement report.
  • DMG Sensing Image Range Axis LUT element DMG Sensing Image Range Axis LUT element
  • DMG Sensing Image Doppler Axis LUT element DMG Sensing Image Doppler Axis LUT element
  • Beam Descriptor Beam Descriptor
  • DMG Measurement Setup ID DMG Measurement Setup ID
  • Step 3 The proxy response device (AP) completes the DMG perception measurement process according to the settings in the proxy request frame.
  • the proxy response device (AP) completes the monostatic perception by sending a monostatic perception measurement frame (monostatic PPDU).
  • Step 4 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • Step 5 The proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • the low-frequency device requests the first perception range perception measurement of the high-frequency band
  • Figure 13 shows a scenario diagram of a low-frequency band device requesting to perform a first perception range perception measurement of a high frequency band provided by an exemplary embodiment of the present application
  • Figure 14 shows a flowchart of a low-frequency band device requesting to perform a first perception range perception measurement of a high frequency band provided by an exemplary embodiment of the present application.
  • Figures 13 and 14 involve a proxy initiating device (STA1, Sub-7 device) and a proxy responding device (AP, a device with both DMG and Sub-7 perception capabilities), a perception initiating device (AP) and a DMG perception responding device (STA2, DMG device).
  • the proxy responding device is used to respond to the proxy request of the proxy initiating device, and also acts as a perception initiating device to initiate perception.
  • Step 1 the perception initiating device broadcasts a beacon frame, the DMG perception responding device actively sends a detection request frame, an association request frame or a reassociation request frame to the perception initiating device, and receives the detection request frame, the association request frame or the reassociation request frame returned by the perception initiating device to exchange the perception capability information between the perception initiating device and the DMG perception responding device.
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries at least one of a DMG sensing proxy parameters element (DMG SBP Parameters element) and a DMG sensing measurement setup element (DMG Sensing Measurement Setup element).
  • DMG SBP Parameters element DMG sensing proxy parameters element
  • DMG Sensing Measurement Setup element DMG Sensing Measurement Setup element
  • the proxy response device sends a DMG sensing measurement setup request frame (DMG Sensing Measurement Setup Request frame) to the DMG sensing response device (STA2, DMG device) to negotiate the operating parameters during the DMG sensing measurement process.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • Step 3 The DMG sensing response device (STA2, DMG device) sends a DMG sensing measurement setup response frame (DMG Sensing Measurement Setup Response frame) to the proxy response device (AP) to indicate confirmation of establishing the DMG sensing measurement.
  • STA2 DMG sensing response device
  • AP proxy response device
  • Step 4 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries at least one of a DMG perception proxy parameter element, a DMG perception measurement setup element and a DMG measurement setup identifier (DMG Measurement Setup ID).
  • Step 5 The proxy response device (AP) and the DMG perception response device (STA2, DMG device) complete the DMG perception measurement process according to the settings in the proxy request frame.
  • Step 6 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries at least one of a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • step 7 the proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries at least one of the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • the first sensing range is indicated by a DMG SBP Parameters element carried by the proxy request frame.
  • the field structure of the DMG SBP Parameters element is shown in FIG15 , including: an element ID field, a length field, an element ID extension field, a DMG SBP Parameters Control field, a DMG Sensing Responder Addresses field, a DMG Sensing Responder IDs field, a target orientation field, a location information (LCI) field, and a peer orientation field.
  • the element identification field occupies 1 byte
  • the length field occupies 1 byte
  • the element identification extension occupies 1 byte
  • the DMG perception agent parameter control field occupies 2 bytes
  • the DMG agent response device address field occupies n*6 bytes
  • the DMG agent response device identification field occupies n bytes
  • the target direction field occupies 5 bytes
  • the location information field occupies 1 byte
  • the companion direction occupies 2 bytes.
  • the field structure of the DMG sensing proxy parameter control field is shown in Figure 16, including the following arranged in sequence: DMG proxy request/response (DMG SBP Request/Response) field, DMG proxy response device (DMG Sensing Responder) field, DMG proxy response device number (DMG Number of Sensing Responders) field, DMG mandatory response device number (DMG Mandatory Number of Responders) field, DMG priority response device number (DMG Number of Preferred Responders) field, DMG priority response device list (DMG Preferred Responder List) field, DMG mandatory priority response device (DMG Mandatory Preferred Responder) field, target direction presence (Target Orientation Present) field, location information presence (LCI Present) field, companion direction presence (Orientation Present) field, and reserved (Reserved) field.
  • DMG SBP Request/Response DMG proxy request/response
  • DMG SBP Request/Response DMG SBP Request/Response
  • the DMG proxy request/response field occupies bit position B0, a total of 1 bit
  • the DMG proxy response device field occupies bit position B1 a total of 1 bit
  • the DMG proxy response device quantity field occupies bit positions B2-B5, a total of 4 bits.
  • the DMG mandatory response device quantity field occupies bit position B6, a total of 1 bit, the DMG priority response device quantity field occupies bit positions B7-B10, a total of 4 bits, the DMG priority response device list field occupies bit position B11, a total of 1 bit, the DMG mandatory priority response device field occupies bit position B12, a total of 1 bit, the target direction exists field occupies bit position B13, a total of 1 bit, the location information exists field occupies bit position B14, a total of 1 bit, the companion direction exists field occupies bit position B15, a total of 1 bit, and the reserved field occupies bit position B16, a total of 1 bit.
  • the target direction exists field indicates whether the target direction field exists.
  • the target direction exists field is a first value, it indicates that the DMG perception proxy parameter element includes the target direction field.
  • the target direction exists field is a second value, it indicates that the DMG perception proxy parameter element does not include the target direction field.
  • the first value is set to 1 and the second value is set to 0.
  • the location information exists field indicates whether the location information field exists.
  • the location information exists field is a first value
  • the DMG perception proxy parameter element includes location information.
  • the location information exists field is a second value
  • the DMG perception proxy parameter element does not include location information.
  • the first value is set to 1 and the second value is set to 0.
  • the companion direction exists field indicates whether the companion direction field exists.
  • the companion direction exists field is a first value, it indicates that the DMG perception proxy parameter element includes the companion direction field.
  • the companion direction exists field is a second value, it indicates that the DMG perception proxy parameter element does not include the companion direction field.
  • the first value is set to 1 and the second value is set to 0.
  • the target direction field contains the specific location that the proxy initiating device wants to measure in detail, that is, the azimuth, altitude, and distance of the target.
  • the field structure of the target direction field is shown in Figure 17, including the following arranged in sequence: target azimuth (Target Azimuth) subfield, azimuth span (Azimuth Span) subfield, target elevation (Target Elevation) subfield, elevation span (Elevation Span) subfield, target range (Target Range) subfield, and range span (Range Span) subfield.
  • the target azimuth subfield occupies 11 bits
  • the azimuth span subfield occupies 5 bits
  • the target altitude subfield occupies 11 bits
  • the altitude span subfield occupies 5 bits
  • the target distance subfield occupies 16 bits
  • the distance span subfield occupies 6 bits.
  • the target azimuth field is used to represent the azimuth of the target relative to the proxy initiating device, in units of (360/2048)°.
  • the azimuth span subfield is used to represent the span size of the azimuth angle, which is calculated by the following formula:
  • Azimuth Span min(max(round(3 ⁇ log2(u ⁇ 2048/360)),0),31)
  • u is the azimuthal spread in units of (360/2048)°.
  • the target altitude angle subfield is used to represent the altitude angle of the target relative to the proxy initiating device, in units of (360/2048)°.
  • the Altitude Angle Span subfield is used to represent the span of the altitude angle, which is calculated by the following formula:
  • Elevation Span min(max(round(3 ⁇ log2(u ⁇ 2048/360)),0),31)
  • u is the angular spread of the altitude in units of (360/2048)°.
  • the target distance subfield is used to represent the distance of the target relative to the proxy initiating device, in millimeters.
  • the distance span subfield indicates the span size of the distance, which is calculated by the following formula:
  • Range Span min(round(4 ⁇ log2(u)),63)
  • the location information field carries the location information of the proxy initiating device itself.
  • the companion direction field includes the azimuth, altitude, and distance of the proxy responding device measured by the proxy initiating device.
  • the azimuth subfield represents the azimuth direction of the proxy responding device measured by the proxy initiating device, with the unit of (360/4096)° and the value ranging from 0 to 4095.
  • the altitude angle subfield contains the altitude angle direction of the proxy responding device measured by the proxy initiating device, in units of (180/4096)°, and ranging from -2048 to 2047.
  • the distance subfield is used to represent the distance of the proxy responding device measured by the proxy initiating device, in millimeters.
  • Step 1 the perception initiating device broadcasts a beacon frame, the DMG perception responding device actively sends a detection request frame, an association request frame or a reassociation request frame to the perception initiating device, and receives the detection request frame, the association request frame or the reassociation request frame returned by the perception initiating device to exchange the perception capability information between the perception initiating device and the DMG perception responding device.
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries a DMG SBP Parameters element and a DMG Sensing Measurement Setup element.
  • the value of the perception type field in the measurement setting control field in the DMG perception measurement setting element is 2, that is, the dual-base perception type.
  • the proxy request frame including the DMG perception proxy parameter element in Figure 16 as an example, the location information existence field, the location information existence field, and the companion direction existence field are set to the first value, that is, the DMG perception proxy parameter element carries the location information of the proxy initiating device, and the measured direction and distance of the proxy responding device and the target.
  • the proxy response device sends a DMG sensing measurement setup request frame (DMG Sensing Measurement Setup Request frame) to the DMG sensing response device (STA2, DMG device) to negotiate the operating parameters during the DMG sensing measurement process.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • Step 3 The DMG sensing response device (STA2, DMG device) sends a DMG sensing measurement setup response frame (DMG Sensing Measurement Setup Response frame) to the proxy response device (AP) to indicate confirmation of establishing the DMG sensing measurement.
  • STA2 DMG sensing response device
  • AP proxy response device
  • Step 4 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries a DMG sensing proxy parameter element, a DMG sensing measurement setup element, and a DMG measurement setup ID field.
  • the proxy response frame also carries a DMG sensing image range axis lookup table element (DMG Sensing Image Range Axis LUT element), a DMG sensing image Doppler axis lookup table element (DMG Sensing Image Doppler Axis LUT element), a beam description (Beam Descriptor) field, and a DMG sensing measurement setup ID field, which are used to assist the proxy initiator device in parsing the DMG measurement report.
  • Step 5 The proxy response device (AP) and the DMG perception response device (STA2, DMG device) complete the DMG perception measurement process according to the settings in the proxy request frame.
  • Step 6 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • step 7 the proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries at least one of the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • FIG18 shows a schematic diagram of a scenario for calculating the first perception range provided by an exemplary embodiment of the present application.
  • FIG18 involves a proxy initiating device (STA1, a Sub-7 device), a proxy responding device (AP, a device with both DMG and Sub-7 perception capabilities), and a DMG perception responding device (STA2, a DMG device).
  • STA1 a proxy initiating device
  • AP proxy responding device
  • STA2 DMG perception responding device
  • the xyz coordinates of the AP are (0, 0, 0), the xyz coordinates of STA1 are (-3, -1, 1), and the xyz coordinates of STA2 are (-1, 2, 2).
  • the vector between the target and the AP can be calculated as:
  • the vector between the target and STA2 is:
  • the azimuth angle of the target to AP is 2.677945044588987
  • the altitude angle is 0.930274014115472.
  • the azimuth angle of the target to STA2 is -2.356194490192345
  • the altitude angle is 0.615479708670387.
  • Figure 19 shows a scenario diagram of a low-frequency band device requesting to perform high-frequency band perception measurement and parsing perception reports provided by an exemplary embodiment of the present application
  • Figure 20 shows a flowchart of a low-frequency band device requesting to perform high-frequency band perception measurement and parsing perception reports provided by an exemplary embodiment of the present application.
  • Figures 19 and 20 involve a proxy initiating device (STA1, Sub-7 device) and a proxy responding device (AP, a device with both DMG and Sub-7 perception capabilities), a perception initiating device (AP) and a DMG perception responding device (STA2, DMG device).
  • the proxy responding device is used to respond to the proxy request of the proxy initiating device, and also acts as a perception initiating device to initiate perception.
  • Step 1 the perception initiating device broadcasts a beacon frame, the DMG perception responding device actively sends a detection request frame, an association request frame or a reassociation request frame to the perception initiating device, and receives the detection request frame, the association request frame or the reassociation request frame returned by the perception initiating device to exchange the perception capability information between the perception initiating device and the DMG perception responding device.
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries at least one of a DMG sensing proxy parameters element (DMG SBP Parameters element) and a DMG sensing measurement setup element (DMG Sensing Measurement Setup element).
  • DMG SBP Parameters element DMG sensing proxy parameters element
  • DMG Sensing Measurement Setup element DMG Sensing Measurement Setup element
  • the proxy response device sends a DMG sensing measurement setup request frame (DMG Sensing Measurement Setup Request frame) to the DMG sensing response device (STA2, DMG device) to negotiate the operating parameters during the DMG sensing measurement process.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • Step 3 The DMG sensing response device (STA2, DMG device) sends a DMG sensing measurement setup response frame (DMG Sensing Measurement Setup Response frame) to the proxy response device (AP) to indicate confirmation of establishing the DMG sensing measurement.
  • STA2 DMG sensing response device
  • AP proxy response device
  • Step 4 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries at least one of a DMG perception proxy parameter element, a DMG perception measurement setup element and a DMG measurement setup identifier (DMG Measurement Setup ID).
  • Step 5 The proxy response device (AP) and the DMG perception response device (STA2, DMG device) complete the DMG perception measurement process according to the settings in the proxy request frame.
  • Step 6 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries at least one of a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • step 7 the proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries at least one of the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • the proxy response frame carries information to assist in parsing the awareness report.
  • the frame structure of the proxy response frame is shown in Figure 21, including the following arranged in sequence: a Category field, a public communication mechanism (Public Action) field, a session identifier (Dialog Token) field, a status code (Status Code) field, a measurement setup identifier (Measurement Setup ID) field, a sensing proxy parameter element (SBP Parameters element), a sensing measurement parameter element (Sensing Measurement Parameters element), a response site availability window element (RSTA Availability Window element), a DMG sensing image range axis lookup table element (DMG Sensing Image Range Axis LUT element), and a DMG sensing image Doppler axis lookup table element (DMG Sensing Image Doppler Axis LUT element).
  • DMG Sensing Beam Descriptor element 1 DMG Sensing Beam Descriptor element 2), ... DMG Sensing Beam Descriptor element N, DMG Measurement Set ID field, DMG SBP Parameters element, DMG Sensing Measurement Set element 1), ... DMG Sensing Measurement Set element N.
  • the category field occupies 1 byte
  • the public communication mechanism field occupies 1 byte
  • the session identification field occupies 1 byte
  • the status code (Status Code) field occupies 1 byte
  • the measurement setting identification field occupies 1 byte
  • the perception agent parameter element occupies 0 bytes or a variable number of bytes
  • the perception measurement parameter element occupies 0 bytes or a variable number of bytes
  • the response site availability window element occupies 0 bytes or a variable number of bytes
  • the DMG perception image distance coordinate axis query table element occupies 0 bytes or a variable number of bytes
  • the DMG perception image Doppler coordinate axis query table element occupies 0 bytes or a variable number of bytes
  • the DMG perception beam description element 1 occupies 0 bytes or a variable number of bytes
  • the DMG perception beam description element 2 occupies 0 bytes or a variable number of bytes
  • the DMG perception beam description element N occupies 0 bytes or a variable number
  • the DMG sensing beam description element contains information about the beam of each proxy responding device.
  • the number N represents the number of proxy responding devices actually participating in the DMG sensing proxy process, and is set to the value of the DMG Number of Sensing Responders field in the DMG Sensing Proxy Parameter Control field in the DMG Sensing Proxy Parameter element.
  • the beam information contained in the DMG sensing beam description element can be used as a description of a transmitting beam or a description of a receiving beam.
  • the DMG sensing measurement setting element indicates the relevant parameters of the DMG sensing measurement setting.
  • the number N indicates the number of proxy responding devices actually participating in the DMG sensing proxy process, which is set to the value of the DMG Number of Sensing Responders field in the DMG Sensing Proxy Parameter Control field in the DMG Sensing Proxy Parameter element in the proxy response frame.
  • the order of the DMG sensing beam description element and the DMG sensing measurement setting element should be the same as the order in the AID/USID list of the DMG proxy responding devices participating in the DMG sensing proxy process defined by the DMG Sensing Responder IDs field in the DMG sensing proxy parameter element.
  • the DMG Proxy Response Identifier field shows existence, that is, the DMG Preferred Responder List subfield is set to the first value.
  • the first value is set to 1.
  • Step 1 the perception initiating device broadcasts a beacon frame, the DMG perception responding device actively sends a detection request frame, an association request frame or a reassociation request frame to the perception initiating device, and receives the detection request frame, the association request frame or the reassociation request frame returned by the perception initiating device to exchange the perception capability information of the perception initiating device and the DMG perception responding device.
  • At least one of the beacon frame, the probe request frame, the association request frame or the reassociation request frame carries a DMG sensing beam descriptor element (DMG Sensing Beam Descriptor element) to expose the sensing transmit beam and the sensing receive beam that it can support.
  • DMG Sensing Beam Descriptor element DMG Sensing Beam Descriptor element
  • Step 1 The proxy initiating device (STA1, Sub-7 device) sends a proxy request frame (SBP request frame) to the proxy responding device (AP) to initiate the DMG perception proxy process.
  • SBP request frame a proxy request frame
  • AP proxy responding device
  • the proxy request frame carries a DMG SBP Parameters element and a DMG Sensing Measurement Setup element.
  • the value of the Sensing Type field in the Measurement Setup Control field in the DMG sensing measurement setup element is 0, indicating that the sensing type is a collaborative single-base sensing type.
  • the proxy response device sends a DMG sensing measurement setup request frame (DMG Sensing Measurement Setup Request frame) to the DMG sensing response device (STA2, DMG device) to negotiate the operating parameters during the DMG sensing measurement process.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • Step 3 The DMG sensing response device (STA2, DMG device) sends a DMG sensing measurement setup response frame (DMG Sensing Measurement Setup Response frame) to the proxy response device (AP) to indicate confirmation of establishing the DMG sensing measurement.
  • STA2 DMG sensing response device
  • AP proxy response device
  • Step 4 The proxy responding device (AP) sends a proxy response frame (SBP Response frame) to the proxy initiating device (STA1, Sub-7 device) to indicate that it has accepted the perception proxy task.
  • SBP Response frame a proxy response frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy response frame carries a DMG sensing proxy parameter element, a DMG sensing measurement setting element and a DMG measurement setting identifier (DMG Measurement Setup ID) field.
  • the proxy response frame also carries a DMG sensing image range axis lookup table element (DMG Sensing Image Range Axis LUT element), a DMG sensing image Doppler axis lookup table element (DMG Sensing Image Doppler Axis LUT element), a beam description (Beam Descriptor) field and a DMG sensing measurement setting identifier (DMG Measurement Setup ID) field, which are used to assist the proxy initiator device to parse the DMG measurement report.
  • DMG Sensing Image Range Axis LUT element DMG Sensing Image Range Axis LUT element
  • DMG Sensing Image Doppler Axis LUT element DMG Sensing Image Doppler Axis LUT element
  • Beam Descriptor Beam Descriptor
  • Step 5 The proxy response device (AP) and the DMG perception response device (STA2, DMG device) complete the DMG perception measurement process according to the settings in the proxy request frame.
  • Step 6 The proxy responding device (AP) sends a proxy report frame (SBP Report frame) to the proxy initiating device (STA1, Sub-7 device) to inform the DMG of the perception measurement results.
  • SBP Report frame a proxy report frame
  • STA1, Sub-7 device the proxy initiating device
  • the proxy report frame carries a DMG sensing report control element (DMG Sensing Report control element) and a DMG sensing report element (DMG Sensing Report element).
  • DMG Sensing Report control element DMG Sensing Report control element
  • DMG Sensing Report element DMG Sensing Report element
  • step 7 the proxy initiating device (STA1, Sub-7 device) sends a proxy termination frame (SBP Termination frame) to the proxy responding device (AP) to indicate the termination of the related DMG perception.
  • SBP Termination frame a proxy termination frame
  • the proxy termination frame carries the DMG measurement setup ID (DMG Measurement Setup ID) and DMG perception proxy termination control (DMG SBP Termination control) fields.
  • DMG measurement setup ID DMG Measurement Setup ID
  • DMG perception proxy termination control DMG SBP Termination control
  • Figure 22 shows a scenario diagram of a perception report of a low-frequency band device parsing a high-frequency band provided by an exemplary embodiment of the present application.
  • Figure 22 involves a proxy initiating device (STA1, a Sub-7 device), a proxy responding device (AP, a device with both DMG and Sub-7 perception capabilities), and a DMG perception responding device (STA2, a DMG device).
  • STA1 a proxy initiating device
  • AP a proxy responding device with both DMG and Sub-7 perception capabilities
  • STA2 DMG perception responding device
  • the DMG Sensing Report Type field in the DMG Sensing Report element is set to 0, and the Range Axis Present field, Doppler Axis Present field, Receiver Beam Index Present field, and Transmitter Beam Index Present field in the Axis Present field in the DMG Sensing Image Report Data element are set to 1.
  • the location information exists field and the companion direction exists field in the DMG perception proxy parameter control field in the DMG perception proxy parameter element are set to 1, and the DMG perception proxy parameter element carries the location information of STA1, as well as the measured direction and distance of the AP and the target.
  • the location information exists field and the companion direction exists field in the perception measurement setting control field in the DMG perception measurement setting element are set to 1, and the DMG perception measurement setting element carries the location information of the device and the measured companion direction.
  • the low-band device When the low-band device receives the proxy report frame from the high-band device, it uses the AID/UID carried to find the TX/RX Beam List in the DMG Sensing Beam Descriptorelement and DMG Sensing Measurement Setup element of the sensing transmitter and the sensing receiver, thereby obtaining the azimuth corresponding to the Transmitter Beam Index and Receiver Beam Index in the sensing report. And the altitude angle ⁇ .
  • the Doppler value ⁇ and the distance value d corresponding to the Doppler axis (Doppler Axis) and the range axis (Range Axis) in the perception report are obtained through the DMG Sensing Image Range Axis LUT element and the DMG Sensing Image Doppler Axis LUT element in the proxy response frame.
  • the xyz coordinates of the AP are (0, 0, 0), the xyz coordinates of STA1 are (-3, -1, 1), and the xyz coordinates of STA2 are (-1, 2, 2).
  • the vector between the target and STA1 can be calculated as:
  • the azimuth and altitude angles of the target relative to STA1 are 1.107148717794090 and 0.729727656226966, and the distance is 3.
  • the DMG perception measurement setting element and the DMG perception beam description element in the proxy response frame in 3.2.1 may be added to the proxy report frame to replace or supplement the proxy response frame in 3.2.1.
  • the high frequency band device may also directly send the range, Doppler, beam receiving direction and beam transmitting direction in the reflection parameter sub-field (Reflection subelements) in the DMG sensing image report data element (DMG Sensing Report element) in the DMG sensing report element (DMG Sensing Report element) in the proxy report frame, which is used to replace the range axis (Range Axis), Doppler axis (Doppler Axis), receiver beam index (Receiver Beam Index) and transmitter beam index (Transmitter Beam Index) in the proxy response frame.
  • Range Axis Range Axis
  • Doppler axis Doppler Axis
  • receiver beam index Receiveiver Beam Index
  • Transmitter Beam Index Transmitter Beam Index
  • the frame structure of the proxy report frame is shown in Figure 23, including: a range subfield, a Doppler subfield, a transmitter beam descriptor subfield, a receiver beam descriptor subfield, and a reflection power subfield arranged in sequence.
  • the distance subfield occupies 16 bits
  • the Doppler subfield occupies 16 bits
  • the transmit beam description subfield occupies 48 bits
  • the receive beam description subfield occupies 48 bits
  • the reflected power subfield occupies 12 bits.
  • the distance subfield indicates the distance in millimeters.
  • the Doppler subfield indicates the Doppler in millimeters per second.
  • the transmit beam description subfield indicates the information of the transmit beam used.
  • the receive beam description subfield indicates the information of the receive beam used.
  • the reflected power subfield indicates the reflected received power in dBm.
  • the DMG Sensing Beam Descriptor element, the DMG Sensing Image Range Axis LUT element, and the DMG Sensing Image Doppler Axis LUT element in the proxy response frame can be omitted.
  • FIG. 24 shows a structural block diagram of an agent-based perception device provided by an exemplary embodiment of the present application, wherein the device includes:
  • a first sending module 11 is used to send a proxy request frame to a proxy response device, wherein the proxy request frame is used to request the proxy response device to perform a sensing measurement of a second frequency band on behalf of the proxy response device, and to indicate a first sensing type and/or a first sensing range to the proxy response device;
  • a first receiving module 12 configured to receive a proxy response frame sent by the proxy response device
  • the proxy response device is a device that supports both the first frequency band and the second frequency band.
  • the proxy request frame carries first information, and the first information is used to indicate the first perception type
  • the first perception type is one of multiple perception types, and the multiple perception types include single-base perception.
  • the first information includes at least one of the following fields or elements:
  • At least one subfield in the Awareness Proxy Parameters element At least one subfield in the Awareness Proxy Parameters element.
  • the first information includes the perception type field, and different values of the perception type field correspond to different perception types.
  • the first perception type is the collaborative single-base perception
  • the first perception type is the collaborative dual-base perception
  • the first perception type is the dual-base perception
  • the first perception type is the multi-base perception
  • the first perception type is the single-base perception.
  • the first information includes the single-base perception field
  • the first perception type is not the single-base perception
  • the first perception type is the single-base perception.
  • the first information further includes the perception type field
  • the first perception type is the perception type indicated by the value of the perception type field.
  • the first information includes the perception type field and at least one subfield of the perception agent parameter element
  • the first perception type field is the first value
  • at least one subfield in the perception proxy parameter element is a preset value corresponding to the subfield
  • the first perception type is the single-base perception
  • the first perception type is the collaborative single-base perception
  • the first perception type is the collaborative dual-base perception
  • the first perception type is the dual-base perception
  • the first perception type is the multi-base perception.
  • the perception type field is carried in a perception measurement setting element corresponding to the second frequency band; the perception measurement setting element is used to indicate an operating parameter of a perception measurement process;
  • the single-base sensing type field is carried in a sensing proxy parameter element corresponding to the second frequency band; the sensing proxy parameter element is used to indicate an operating parameter of a sensing measurement process;
  • the at least one subfield in the perception proxy parameter element is carried in the perception proxy parameter element corresponding to the second frequency band.
  • the perception type field is carried in a perception measurement setting control field in the perception measurement setting element corresponding to the second frequency band;
  • the single-base perception type field is carried in a perception proxy parameter control field in the perception proxy parameter element corresponding to the second frequency band;
  • the at least one subfield in the cognitive proxy parameter element is carried in the cognitive proxy parameter control field in the cognitive proxy parameter element corresponding to the second frequency band.
  • the proxy request frame carries second information, where the second information is used to indicate the first sensing range.
  • the second information includes at least one of the following fields:
  • a target direction field used to indicate the location information of the target relative to the proxy initiating device
  • a location information field used to indicate the location information of the proxy initiating device
  • the companion direction field is used to indicate the location information of the proxy responding device measured by the proxy initiating device.
  • the second information further includes at least one of the following additional fields:
  • Target direction exists field the target direction exists field is used to indicate whether the target direction field exists
  • a location information existence field is used to indicate whether the location information field exists
  • Companion direction exists field the companion direction exists field is used to indicate whether the companion direction field exists.
  • the target direction field when the target direction exists field is a first value, the target direction field does not exist;
  • the target direction field exists
  • the location information field When the location information field has a first value, the location information field does not exist;
  • the location information field When the location information field has a second value, the location information field exists;
  • the companion direction field When the companion direction field is a first value, the companion direction field does not exist;
  • the companion direction field When the companion direction field has a second value, the companion direction field exists.
  • the target direction field includes at least one of the following subfields:
  • Target azimuth subfield the target azimuth field is used to represent the azimuth of the target relative to the proxy initiating device
  • Azimuth span subfield the azimuth span subfield is used to characterize the span size of the azimuth;
  • Target altitude angle subfield The target altitude angle subfield is used to represent the altitude angle of the target relative to the proxy initiating device;
  • Altitude angle span subfield the altitude angle span subfield is used to characterize the span size of the altitude angle
  • Target distance subfield The target distance subfield is used to represent the distance of the target relative to the proxy initiating device
  • Distance span subfield the distance span subfield is used to represent the span size of the distance
  • the companion direction field includes at least one of the following subfields:
  • Azimuth subfield is used to represent the azimuth direction of the proxy responding device measured by the proxy initiating device;
  • Altitude angle subfield the altitude angle subfield is used to represent the altitude angle direction of the proxy responding device measured by the proxy initiating device;
  • the distance subfield is used to represent the distance of the proxy responding device measured by the proxy initiating device.
  • the additional field is carried in an awareness agent parameter control field.
  • the second information is carried in a perception proxy parameter element corresponding to the second frequency band.
  • the proxy response frame carries third information
  • the third information carries information for assisting in parsing the perception report.
  • the first receiving module 12 is further configured to: receive a proxy report frame sent by the proxy response device.
  • the proxy report frame carries third information, and the third information carries information for assisting in parsing the perception report.
  • the third information is used to indicate at least one of the following information:
  • the N agents respond to the operating parameters of the devices during the sensing measurement process.
  • the transmit beam lists or receive beam lists of the N proxy response devices are carried in N perceptual beam description elements, and each of the perceptual beam description elements carries the transmit beam list or the receive beam list of one proxy response device.
  • the operating parameters of the N proxy response devices during the perception measurement process are carried in N perception measurement setting elements, and each of the perception measurement setting elements carries an operating parameter of the proxy response device during the perception measurement process.
  • said N is set based on the number of said proxy response devices participating in said perception measurement.
  • the proxy report frame carries fourth information, and the fourth information carries information for assisting in parsing the perception report.
  • the fourth information includes at least one of the following subfields:
  • the fourth information is carried in a perception report element of the second frequency band.
  • the first sending module 11 may be implemented based on a transmitter in a communication device
  • the first receiving module 12 may be implemented based on a receiver in the communication device
  • each frame may be generated, processed, and parsed based on a processor in the communication device.
  • FIG25 shows a structural block diagram of an agent-based perception device provided by an exemplary embodiment of the present application.
  • the device includes:
  • a second receiving module 21 is used to receive a proxy request frame sent by a proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform perception measurement of a second frequency band on behalf of the proxy;
  • the second sending module 22 is used to send a proxy response frame to the proxy initiating device, where the proxy response frame carries third information, and the third information carries information used to assist in parsing the perception report.
  • the second sending module 22 is used to send a proxy report frame to the proxy initiating device; the proxy report frame carries the third information, and the third information carries information for assisting in parsing the perception report.
  • the third information is used to indicate at least one of the following information:
  • the N agents respond to the operating parameters of the devices during the sensing measurement process.
  • the transmit beam lists or the receive beam lists of the N proxy response devices are carried in N perceptual beam description elements, and each of the perceptual beam description elements carries the transmit beam list or the receive beam list of one proxy response device.
  • the operating parameters of the N proxy response devices during the perception measurement process are carried in N perception measurement setting elements, and each of the perception measurement setting elements carries an operating parameter of the proxy response device during the perception measurement process.
  • said N is set based on the number of said proxy response devices participating in said perception measurement.
  • the proxy report frame carries fourth information, and the fourth information carries information for assisting in parsing the perception report.
  • the fourth information includes at least one of the following subfields:
  • the fourth information is carried in a perception report element of the second frequency band.
  • the device includes:
  • the second receiving module is used to receive a proxy request frame sent by the proxy initiating device, where the proxy request frame is used to request the proxy responding device to perform the first perception type of the second frequency band and/or the perception measurement of the first perception range;
  • the second sending module is used to send a proxy response frame to the proxy initiating device
  • the proxy initiating device is a device that supports the first frequency band but does not support the second frequency band.
  • the proxy request frame carries first information, and the first information is used to indicate the first perception type
  • the first perception type is one of multiple perception types, and the multiple perception types include single-base perception.
  • the first information includes at least one of the following fields or elements:
  • At least one subfield in the Awareness Proxy Parameters element At least one subfield in the Awareness Proxy Parameters element.
  • the first information includes the perception type field, and different values of the perception type field correspond to different perception types.
  • the first perception type is the collaborative single-base perception
  • the first perception type is the collaborative dual-base perception
  • the first perception type is the dual-base perception
  • the first perception type is the multi-base perception
  • the first perception type is the single-base perception.
  • the first information includes the single-base perception field
  • the first perception type is not the single-base perception
  • the first perception type is the single-base perception.
  • the first information further includes the perception type field
  • the first perception type is the perception type indicated by the value of the perception type field.
  • the first information includes the perception type field and at least one subfield of the perception agent parameter element
  • the first perception type field is the first value
  • at least one subfield in the perception proxy parameter element is a preset value corresponding to the subfield
  • the first perception type is the single-base perception
  • the first perception type is the collaborative single-base perception
  • the first perception type is the collaborative dual-base perception
  • the first perception type is the dual-base perception
  • the first perception type is the multi-base perception.
  • the perception type field is carried in a perception measurement setting element corresponding to the second frequency band; the perception measurement setting element is used to indicate an operating parameter of a perception measurement process;
  • the single-base sensing type field is carried in a sensing proxy parameter element corresponding to the second frequency band; the sensing proxy parameter element is used to indicate an operating parameter of a sensing measurement process;
  • the at least one subfield in the perception proxy parameter element is carried in the perception proxy parameter element corresponding to the second frequency band.
  • the perception type field is carried in a perception measurement setting control field in the perception measurement setting element corresponding to the second frequency band;
  • the single-base perception type field is carried in a perception proxy parameter control field in the perception proxy parameter element corresponding to the second frequency band;
  • the at least one subfield in the cognitive proxy parameter element is carried in the cognitive proxy parameter control field in the cognitive proxy parameter element corresponding to the second frequency band.
  • the proxy request frame carries second information, where the second information is used to indicate the first sensing range.
  • the second information includes at least one of the following fields:
  • a target direction field used to indicate the location information of the target relative to the proxy initiating device
  • a location information field used to indicate the location information of the proxy initiating device
  • the companion direction field is used to indicate the location information of the proxy responding device measured by the proxy initiating device.
  • the second information further includes at least one of the following additional fields:
  • Target direction exists field the target direction exists field is used to indicate whether the target direction field exists
  • a location information existence field is used to indicate whether the location information field exists
  • Companion direction exists field the companion direction exists field is used to indicate whether the companion direction field exists.
  • the target direction field when the target direction exists field is a first value, the target direction field does not exist;
  • the target direction field exists
  • the location information field When the location information field has a first value, the location information field does not exist;
  • the location information field When the location information field has a second value, the location information field exists;
  • the companion direction field When the companion direction field is a first value, the companion direction field does not exist;
  • the companion direction field When the companion direction field has a second value, the companion direction field exists.
  • the target direction field includes at least one of the following subfields:
  • Target azimuth subfield the target azimuth field is used to represent the azimuth of the target relative to the proxy initiating device
  • Azimuth span subfield the azimuth span subfield is used to characterize the span size of the azimuth;
  • Target altitude angle subfield The target altitude angle subfield is used to represent the altitude angle of the target relative to the proxy initiating device;
  • Altitude angle span subfield the altitude angle span subfield is used to characterize the span size of the altitude angle
  • Target distance subfield The target distance subfield is used to represent the distance of the target relative to the proxy initiating device
  • Distance span subfield the distance span subfield is used to represent the span size of the distance
  • the companion direction field includes at least one of the following subfields:
  • Azimuth subfield is used to represent the azimuth direction of the proxy responding device measured by the proxy initiating device;
  • Altitude angle subfield the altitude angle subfield is used to represent the altitude angle direction of the proxy responding device measured by the proxy initiating device;
  • the distance subfield is used to represent the distance of the proxy responding device measured by the proxy initiating device.
  • the additional field is carried in an awareness agent parameter control field.
  • the second information is carried in a perception proxy parameter element corresponding to the second frequency band.
  • the second sending module 22 may be implemented based on a transmitter in a communication device
  • the second receiving module 21 may be implemented based on a receiver in the communication device
  • each frame may be generated, processed, and parsed based on a processor in the communication device.
  • Figure 26 shows a schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • the communication device may be at least one of an AP, a STA, a proxy initiating device, a proxy responding device, a perception initiating device, a perception responding device, a DMG proxy initiating device, a DMG proxy responding device, a DMG perception initiating device, and a DMG perception responding device.
  • the communication device 800 includes: a processor 801 , a receiver 802 , a transmitter 803 , a memory 804 and a bus 805 .
  • the processor 801 includes one or more processing cores.
  • the processor 801 executes various functional applications and information processing by running software programs and modules.
  • the processor 801 can implement various steps of the agent-based perception method in the above embodiment, such as generating an agent request frame, an agent response frame, an agent report frame, etc.
  • the receiver 802 and the transmitter 803 may be implemented as a communication component, which may be a communication chip.
  • the receiver 802 can implement each sending step in the agent-based perception method in the above embodiment, and the transmitter 803 can implement each receiving step in the agent-based perception method in the above embodiment.
  • the memory 804 is connected to the processor 801 via a bus 805.
  • the memory 804 may be used to store at least one executable instruction, and the processor 801 may be used to execute the at least one executable instruction to implement each step in the above method embodiment.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: a magnetic disk or an optical disk, an Electrically Erasable Programmable Read Only Memory (EEPROM), an Erasable Programmable Read-Only Memory (EPROM), a Static Random-Access Memory (SRAM), a Read-Only Memory (ROM), a magnetic storage device, a flash memory, and a Programmable Read-Only Memory (PROM).
  • FIG. 26 does not limit the communication device 800 and may include more or fewer components than shown in the figure, or combine certain components, or adopt a different component arrangement.
  • the embodiments of the present application provide a computer-readable storage medium in which executable instructions are stored, and the executable instructions are loaded and executed by a processor to enable a communication device to implement the above-mentioned agent-based perception method.
  • the embodiments of the present application provide a chip, wherein the chip includes a programmable logic circuit or a program, and the chip is used to enable a communication device to implement the above-mentioned agent-based perception method based on the programmable logic circuit or the program.
  • the embodiments of the present application provide a computer program product.
  • the computer program product includes computer instructions, the computer instructions are stored in a computer-readable storage medium, a processor of a communication device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the communication device performs the above-described agent-based perception method.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种基于代理的感知方法、装置、设备及存储介质。所述方法由支持第一频段的代理发起设备执行,所述方法包括:向代理响应设备发送代理请求帧,代理请求帧用于请求代理响应设备代理执行第二频段的感知测量,以及向代理响应设备指示第一感知类型和/或第一感知范围;接收代理响应设备发送的代理响应帧;其中,代理响应设备是同时支持第一频段和第二频段的设备。采用本申请实施例的方法,能够实现跨频段的感知代理,扩大了感知代理的应用范围,同时完善了跨频段的感知代理中的感知类型和感知范围的设置。

Description

基于代理的感知方法、装置、设备及存储介质 技术领域
本申请实施例涉及无线局域网感知领域,特别涉及一种基于代理的感知方法、装置、设备及存储介质。
背景技术
无线局域网(Wireless Local Area Network,WLAN)感知是指通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物的方法和应用。也即,WLAN感知通过无线信号来对周围环境进行测量和感知,可以完成室内是否有人入侵/移动/跌倒等的检测、姿势识别以及空间三维图像建立等功能。
发明内容
本申请实施例提供了一种基于代理的感知方法、装置、设备及存储介质。所述技术方案如下:
根据本申请的一个方面,提供了一种基于代理的感知方法,所述方法由支持第一频段的代理发起设备执行,所述方法包括:
向代理响应设备发送代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量,以及向所述代理响应设备指示第一感知类型和/或第一感知范围;
接收所述代理响应设备发送的代理响应帧;
其中,所述代理响应设备是同时支持所述第一频段和所述第二频段的设备。
根据本申请的另一方面,提供了一种基于代理的感知方法,所述方法由支持第一频段和第二频段的代理响应设备执行,所述方法包括:
接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量;
向所述代理发起设备发送代理响应帧,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
根据本申请的另一方面,提供了一种基于代理的感知方法,所述方法由支持第一频段和第二频段的代理响应设备执行,所述方法包括:
接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量;
向所述代理发起设备发送代理响应帧;
其中,所述代理发起设备是支持所述第一频段且不支持所述第二频段的设备。
根据本申请的另一方面,提供了一种基于代理的感知装置,所述装置包括:
第一发送模块,用于向代理响应设备发送代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量,以及向所述代理响应设备指示第一感知类型和/或第一感知范围;
第一接收模块,用于接收所述代理响应设备发送的代理响应帧;
其中,所述代理响应设备是同时支持所述第一频段和所述第二频段的设备。
根据本申请的另一方面,提供了一种基于代理的感知装置,所述装置包括:
第二接收模块,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量;
第二发送模块,用于向所述代理发起设备发送代理响应帧,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
根据本申请的另一方面,提供了一种基于代理的感知装置,所述装置包括:
所述第二接收模块,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量;
所述第二发送模块,用于向所述代理发起设备发送代理响应帧;
其中,所述代理发起设备是支持所述第一频段且不支持所述第二频段的设备。
根据本申请的另一方面,提供了一种通信设备,所述通信设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载所述可执行指令以使得所述通信设备实现如上所述的基于代理的感知方法。
根据本申请的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路或程序,所述芯片用于基于所述可编程逻辑电路或程序,使得所述通信设备实现如上所述的基于代理的感知方法。
根据本申请的另一方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,通信设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述通信设备执行如上所述的基于代理的感知方法。
本申请实施例提供的技术方案至少包括如下有益效果:
本申请实施例中通过基于同时支持所述第一频段和所述第二频段的代理响应设备,能够实现支持第一频段的代理发起设备请求所述代理响应设备代理执行第二频段的感知测量,同时,代理发起设备还可以向所述代理响应设备指示第一感知类型和/或第一感知范围。采用本申请实施例的方法,能够实现跨频段的感知代理,扩大了感知代理的应用范围,同时完善了跨频段的感知代理中的感知类型和感知范围的设置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中提供的建立代理的感知测量的过程示意图;
图2是相关技术中提供的建立代理的毫米波感知测量的过程示意图;
图3是相关技术中提供的建立代理的Sub-7频段的感知测量的过程示意图;
图4是本申请一个示例性实施例提供的无线通信系统的示意图;
图5是本申请一个示例性实施例提供的基于代理的感知方法的流程图;
图6是本申请一个示例性实施例提供的基于代理的感知方法的流程图;
图7是本申请一个示例性实施例提供的基于代理的感知方法的流程图;
图8是本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知类型感知测量的场景图;
图9是本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知类型感知测量的流程图;
图10是本申请一个示例性实施例提供的DMG感知代理参数元素的字段结构的示意图;
图11是本申请一个示例性实施例提供的DMG感知代理参数元素的字段结构的示意图;
图12是本申请一个示例性实施例提供的DMG感知代理参数控制字段的字段结构的示意图;
图13是本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知范围感知测量的场景图;
图14是本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知范围感知测量的流程图;
图15是本申请一个示例性实施例提供的DMG感知代理参数元素的字段结构的示意图;
图16是本申请一个示例性实施例提供的DMG感知代理参数控制字段的字段结构的示意图;
图17是本申请一个示例性实施例提供的目标方向字段的字段结构的示意图;
图18是本申请一个示例性实施例提供的计算第一感知范围的场景示意图;
图19是本申请一个示例性实施例提供的低频段设备请求进行高频段的感知测量并解析感知报告的场景图;
图20是本申请一个示例性实施例提供的低频段设备请求进行高频段的感知测量并解析感知报告的流程图;
图21是本申请一个示例性实施例提供的代理响应帧的帧结构的示意图;
图22是本申请一个示例性实施例提供的低频段设备解析高频段的感知报告场景图;
图23是本申请一个示例性实施例提供的代理报告帧的帧结构的示意图;
图24示出了本申请一个示例性实施例提供的基于代理的感知装置的结构框图;
图25示出了本申请一个示例性实施例提供的基于代理的感知装置的结构框图;
图26示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息 也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请实施例涉及的名词介绍如下:
WLAN感知(WLAN Sensing):通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN感知通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵/移动/跌倒等的检测、姿势识别以及空间三维图像建立等诸多功能。
感知代理(Sensing by Proxy,SBP):通过请求其他设备发起感知测量,并获得感知结果的过程。也即,通过其他设备代理进行感知测量,从而获得感知结果。
参与WLAN感知的WLAN设备可能包括如下角色(role):
感知响应设备(Sensing Responder):参与感知测量的非代理发起设备的设备。
感知发起设备(Sensing Initiator):也可称为感知会话发起者、感知发起设备、感知发起装置。感知发起者是发起感知测量(Sensing Measurement)并想要获知感知结果的设备。
代理发起设备(Sensing by Proxy Initiator):也可称为代理请求设备或感知代理请求设备,是请求其他设备发起感知测量(sensing measurement)并想要获知感知结果的设备。
代理响应设备(Sensing by Proxy Responder):也可称为感知代理设备(Sensing Proxy STA)或感知代理响应设备,是响应代理发起设备的请求并发起感知测量的设备。
感知参与设备(Sensing Participant):在本申请实施例中,感知参与设备可以包括参与感知测量的代理发起设备;也可以仅包括参与感知测量的非代理发起设备的设备,也即,这种情况下,感知参与设备与感知响应设备的含义相同。
WLAN终端在一个感知测量中可能有一个或多个角色,例如代理发起设备可以仅仅是代理发起设备,也可以成为代理响应设备,还可以同时是代理发起设备和代理响应设备。
SBP过程
在一些实施例中,图1示出了相关技术中提供的建立代理的感知测量的过程示意图。
图1中涉及代理发起设备、代理响应设备、感知发起设备与感知响应设备。其中,代理响应设备用于响应代理发起设备的代理请求,同时也作为感知发起设备发起感知。
建立代理的感知测量包括感知代理启动阶段、感知代理报告阶段、感知代理停止阶段。建立代理的感知测量的过程简述如下:
0.感知发起设备(AP)广播信标帧(Beacon frame),感知响应设备(非AP STA)主动发送探测请求帧(Probe Request frame)、关联请求帧(Association Request frame)或重关联请求帧(Reassociation Request frame)至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感知发起设备和感知响应设备的能力信息。
1.代理发起设备(非AP STA)向代理响应设备(AP)发送代理请求帧(SBP request frame)来请求代理响应设备建立代理的感知测量(如WLAN感知)。
可选地,代理请求帧携带有感知代理参数元素(SBP Parameters element)、感知测量参数元素(Sensing Measurement Parameters element)中的至少之一。感知代理参数元素用于指示感知代理过程(Sensing by Proxy,SBP)的操作参数;感知测量参数元素用于指示感知测量过程的操作参数。
2.代理响应设备向感知响应设备发送感知测量设置请求帧(Sensing Measurement Setup Request frame)来协商感知测量过程中的操作参数。
3.感知响应设备向代理响应设备发送感知测量设置响应帧(Sensing Measurement Setup Response frame)来指示确认建立感知测量。
4.代理响应设备向感知响应设备发送测量宣告帧(NDP Announcement,NDPA)、测量帧(Null Data PPDU,NDP)、感知报告触发帧(Sensing Report Trigger)中的至少之一以触发感知测量过程。
5.感知响应设备向代理响应设备发送感知报告测量帧(Sensing Measurement Report frame)以接受感知测量过程和接受发送感知测量报告。
6.代理响应设备向代理发起设备发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有感知代理参数元素、感知测量参数元素中的至少之一。
上述步骤0-6属于感知代理启动阶段。
7.由感知响应设备完成感知测量,将感知测量结果上报给代理响应设备。代理响应设备向代理发起设备发送代理报告帧(SBP Response frame)以告知感知测量结果。
可选地,代理报告帧携带有感知测量报告容器(Sensing Measurement Report Container)。感知测量报告容器用于携带感知测量报告。
上述步骤7属于感知代理报告阶段。
8.代理发起设备向代理响应设备发送代理结束帧(SBP Termination frame)以指示结束感知测量过程。
可选地,代理结束帧携带有测量设置标识(Measurement Setup ID)字段。测量设置标识字段用于指示代理响应设备建立的一个感知测量过程。
9.代理响应设备停止相关的感知。
上述步骤8-9属于感知代理停止阶段。
高频段的SBP过程
在一些实施例中,图2示出了相关技术中提供的建立代理的毫米波(方向性多吉比特(Directional Multi-Gigabit,DMG)感知测量的过程示意图。
图2中涉及DMG代理发起设备、DMG代理响应设备、DMG感知发起设备与DMG感知响应设备。其中,DMG代理响应设备用于响应DMG代理发起设备的代理请求,同时也作为DMG感知发起设备发起感知。
建立代理的毫米波感知测量包括感知代理启动阶段、感知代理报告阶段、感知代理停止阶段。建立代理的DMG感知测量的过程简述如下:
0.DMG感知发起设备(AP)广播信标帧(Beacon frame),DMG感知响应设备(非AP STA)主动发送探测请求帧(Probe Request frame)、关联请求帧(Association Request frame)或重关联请求帧(Reassociation Request frame)至DMG感知发起设备,并接收DMG感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换DMG感知发起设备和DMG感知响应设备的能力信息。
1.DMG代理发起设备(非AP STA)向DMG代理响应设备(AP)发送DMG代理请求帧(DMG SBP request frame)来请求DMG代理响应设备建立代理的DMG感知测量(如DMG感知)。
可选地,DMG代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)、DMG感知测量设置元素(DMG Sensing Measurement Setup element)中的至少之一。DMG感知代理参数元素用于指示感知代理过程的操作参数;DMG感知测量设置元素用于指示感知测量过程的操作参数。
2.DMG代理响应设备向DMG感知响应设备发送DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame)来协商DMG感知测量过程中的操作参数。
3.DMG感知响应设备向DMG代理响应设备发送DMG感知测量设置响应帧(DMG Sensing Measurement Setup Response frame)来指示确认建立DMG感知测量。
4.DMG代理响应设备向DMG代理发起设备发送DMG代理响应帧(DMG SBP Response frame)以指示接受了感知代理任务。
可选地,DMG代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素中的至少之一。
上述步骤0-4属于感知代理启动阶段。
5.由DMG感知响应设备完成感知测量,DMG代理响应设备向DMG感知响应设备发送轮询帧(Poll Frame),以触发DMG感知响应设备上报DMG感知测量结果。
6.DMG感知响应设备向DMG代理响应设备发送DMG感知报告帧(DMG Sensing Report frame)以上报DMG感知测量结果。
7.DMG代理响应设备向DMG代理发起设备发送DMG代理报告帧(DMG SBP Report frame)以告知DMG感知测量结果。
可选地,DMG代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)中的至少之一。DMG感知报告控制元素和DMG感知报告元素用于指示DMG感知测量结果。
上述步骤5-7属于感知代理报告阶段。
8.DMG代理发起设备向DMG代理响应设备发送DMG代理结束帧(DMG SBP Termination frame)以指示结束DMG感知测量过程。
可选地,DMG代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段。DMG测量设置标识字段用于指示DMG代理响应设备建立的一个DMG感知测量过程。DMG感知代理结束控制字段用于控制结束DMG感知测量过程。
9.DMG代理响应设备停止相关的DMG感知。
上述步骤8-9属于感知代理停止阶段。
低频段的SBP过程
在一些实施例中,图3示出了相关技术中提供的建立代理的Sub-7频段的感知测量的过程示意图。
图3中涉及代理发起设备、代理响应设备、感知发起设备与感知响应设备。其中,代理响应设备用于响应代理发起设备的代理请求,同时也作为感知发起设备发起感知。
建立代理的Sub-7频段的感知测量包括感知代理启动阶段、感知代理报告阶段、感知代理停止阶段。 建立代理的Sub-7频段的感知测量的过程简述如下:
0.感知发起设备(AP)广播信标帧(Beacon frame),感知响应设备(非AP STA)主动发送探测请求帧(Probe Request frame)、关联请求帧(Association Request frame)或重关联请求帧(Reassociation Request frame)至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感知发起设备和感知响应设备的能力信息。
1.代理发起设备(非AP STA)向代理响应设备(AP)发送代理请求帧(SBP request frame)来请求代理响应设备建立代理的Sub-7频段的感知测量。
可选地,代理请求帧携带有感知代理参数元素(SBP Parameters element)、感知测量设置元素(Sensing Measurement Setup element)中的至少之一。感知代理参数元素用于指示感知代理过程的操作参数;感知测量设置元素用于指示感知测量过程的操作参数。
2.代理响应设备向感知响应设备发送感知测量设置请求帧(Sensing Measurement Setup Request frame)来协商感知测量过程中的操作参数。
3.感知响应设备向代理响应设备发送感知测量设置响应帧(Sensing Measurement Setup Response frame)来指示确认建立感知测量。
4.代理响应设备向代理发起设备发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有感知代理参数元素、感知测量设置元素中的至少之一。
上述步骤0-4属于感知代理启动阶段。
5.代理响应设备和感知响应设备通过基于触发帧的测量(Trigger Based,TF)过程(TF Sounding)完成感知测量。
6.感知响应设备向代理响应设备发送测量报告帧(Sensing Measurement Report frame),用于上报感知测量结果。
7.代理响应设备向代理发起设备发送代理报告帧(SBP Report frame)以告知感知测量结果。
可选地,代理报告帧携带有感知测量报告容器(Sensing Measurement Report Container)。
上述步骤5-7属于感知代理报告阶段。
8.代理发起设备向代理响应设备发送代理结束帧(SBP Termination frame)以指示结束感知测量过程,代理响应设备停止相关的感知。
可选地,代理结束帧携带有测量设置标识(Measurement Setup ID)字段。
上述步骤8属于感知代理停止阶段。
图4示出了本申请一个实施例提供的无线通信系统的示意图。如图4所示,该无线通信系统可以包括:接入点(Access Point,AP)和站点(Station,STA)。
在一些场景中,AP可以或称AP STA,即在某种意义上来说,AP也是一种STA。在一些场景中,STA或称非AP STA(non-AP STA)。
在一些实施例中,STA可以包括AP STA和non-AP STA。通信系统中的通信可以是AP与non-AP STA之间通信,也可以是non-AP STA与non-AP STA之间通信,或者STA与peer STA之间通信。其中,peer STA可以指与STA对端通信的设备。例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有无线保真(Wireless-Fidelity,WIFI)芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
需要说明的是,上述各个协议仅为举例,AP和STA所支持的协议不限定于上述协议。
在本申请实施例中,STA可以是支持WLAN/WIFI技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片、 ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,系统级芯片)等。
WLAN技术可支持频段可以包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(45GHz、60GHz)。
站点和接入点之间存在一个或多个链路。在一些实施例中,站点和接入点支持多频段通信。例如,同时在2.4GHz,5GHz,6GHz,45GHz以及60GHz频段上进行通信,或者同时在同一频段(或不同频段)的不同信道上通信,提高设备之间的通信吞吐量和/或可靠性。这种设备通常称为多频段设备,或称为多链路设备(Multi-Link Device,MLD),有时也称为多链路实体或多频段实体。多链路设备可以是接入点设备,也可以是站点设备。如果多链路设备是接入点设备,则多链路设备中包含一个或多个AP;如果多链路设备是站点设备,则多链路设备中包含一个或多个non-AP STA。
包括一个或多个AP的多链路设备可称为AP,包括一个或多个non-AP STA的多链路设备可称为Non-AP。
在本申请实施例中,AP可以包括多个AP,Non-AP包括多个STA,AP中的AP和Non-AP中的STA之间可以形成多条链路,AP中的AP和Non-AP中的对应STA之间可以通过对应的链路进行数据通信。
AP是一种部署在无线局域网中用以为STA提供无线通信功能的设备。站点可以包括:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,站点还可以是蜂窝电话、无绳电话、测量启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,本申请实施例对此并不限定。
在相关技术的无线通信协议版本中,支持DMG频段与Sub-7两种频段下的感知代理过程,二者流程相似。一方面,Sub-7频段感知能够提供相对较大的运动的指示,并且包含丰富的多径信息。另一方面,DMG频段的毫米波定向传输,能够促进方向的估计,而且其大带宽提供了更高的距离分辨率,从而能实现更细粒度的感知。因此对于数据驱动型算法而言,融合两个频段的感知测量,有望增强模型的鲁棒性和泛化性。基于此,提出了跨频段的感知代理的设计方案。例如,Sub-7设备请求DMG设备执行更高精度的感知,或DMG设备请求Sub-7设备执行更大范围的感知。但是,跨频段的感知代理还存在以下几个问题:
1.对于DMG频段,DMG感知类型包括双基感知、多基感知、协作双基感知和协作单基感知,缺乏对单基感知这种感知类型的指示。
2.在感知代理过程中的感知代理启动阶段或DMG感知代理启动阶段中,缺乏指定感知范围的参数。
3.在感知代理报告阶段,Sub-7设备与DMG设备无法解析部分来自DMG设备的感知测量报告的数据。
基于此,本申请实施例对相关技术中的无线通信协议和跨频段的感知代理过程提出设计方案,完善了跨频段的感知代理中的感知类型和感知范围的设置。
在一些实施例中,本申请实施例的跨频段请求进行感知代理包括以下几种场景:
1.低频段设备请求进行高频段的感知代理,并指示其想要的感知类型;
2.低频段设备请求进行高频段的感知代理,并指示其想要的感知范围;
3.低频段设备请求进行高频段的感知代理,并获取一些辅助解析感知报告的相关参数。
接下来,对本申请实施例中的代理发起设备侧和代理响应设备侧的感知的流程进行说明:
代理发起设备侧
图5示出了本申请一个示例性实施例提供的基于代理的感知方法的流程图。以该方法由支持第一频段的代理发起设备执行为例进行说明,该代理发起设备可以是图4所示的STA或AP。该方法包括以下步骤中的至少一部分步骤:
步骤220,代理发起设备向代理响应设备发送代理请求帧,代理请求帧用于请求代理响应设备代理执行第二频段的感知测量,以及向代理响应设备指示第一感知类型和/或第一感知范围。
步骤240,代理发起设备接收代理响应设备发送的代理响应帧。
代理响应设备侧
图6示出了本申请一个示例性实施例提供的基于代理的感知方法的流程图。以该方法由同时支持第一频段和第二频段的代理响应设备执行为例进行说明,该代理响应设备可以是图4所示的AP或ATA。该方法包括以下步骤中的至少一部分步骤:
步骤320,代理响应设备接收代理发起设备发送的代理请求帧,代理请求帧用于请求代理响应设备代理执行第二频段的感知测量。
步骤340,代理响应设备向代理发起设备发送代理响应帧,代理响应帧携带有第三信息,第三信息携带有用于辅助解析感知报告的信息。
图7示出了本申请一个示例性实施例提供的基于代理的感知方法的流程图。以该方法由同时支持第一 频段和第二频段的代理响应设备执行为例进行说明,该代理响应设备可以是图4所示的AP或ATA。该方法包括以下步骤中的至少一部分步骤:
步骤420,代理响应设备接收代理发起设备发送的代理请求帧,代理请求帧用于请求代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量。
步骤440,代理响应设备向代理发起设备发送代理响应帧。
第一感知类型是代理发起设备通过代理请求帧指示的指定的感知类型。第一感知范围是代理发起设备通过代理请求帧指示的指定的感知范围。
在一些实施例中,第一频段可以是低频段如Sub-7频段,支持第一频段的代理发起设备即支持Sub-7频段的代理发起设备,或称Sub-7设备、低频段设备。
在一些实施例中,第一频段可以是高频段如DMG频段、毫米波频段、太赫兹频段、可见光频段,本实施例以DMG频段为例,支持第一频段的代理发起设备即支持DMG频段的代理发起设备,或称DMG设备、高频段设备。
在一些实施例中,代理请求帧用于请求代理响应设备代理执行第二频段的感知测量。
在一些实施例中,代理请求帧用于请求代理响应设备代理执行第一频段和第二频段的WLAN感知。
在一些实施例中,代理请求帧还向代理响应设备指示第一感知类型和/或第一感知范围。
1.代理请求帧的帧格式设计
1.1指示第一感知类型
在一些实施例中,代理请求帧需要向代理响应设备指示其想要的第一感知类型,在图5、图6和图7的基础上,代理请求帧需要携带有关感知类型的信息。
有关感知类型的信息,可以采用对代理请求帧中的已有信息域增加取值的方式来显式指示;也可以采用代理请求帧中的新增信息域的方式来显式指示;还可以采用代理请求帧中的已有信息域和新增信息域协同指示。本文中的“信息域”为字段、元素、容器中的至少一种。
示例性的,有关感知类型的信息可以是第一信息,第一信息可以是从全部的感知类型中指示一种感知类型,还可以是仅指示需要的一种感知类型。
在一些实施例中,代理请求帧携带有第一信息,第一信息用于指示第一感知类型。
其中,第一感知类型是多种感知类型中的一种,多种感知类型包括单基感知。
在一些实施例中,第一信息包括如下字段或元素中的至少一种:
感知类型字段(Sensing Type);
单基感知字段(Monostatic Sensing);
感知代理参数元素中的至少一个子字段。
1.1.1第一感知类型的指示方式1
在一些实施例中,第一信息包括感知类型字段。
在一些实施例中,通过感知类型字段的取值,指示代理发起设备想要的第一感知类型。感知类型字段的不同取值对应不同的感知类型。
·在感知类型字段是第一取值时,第一感知类型是协作单基感知(Coordinated Monostatic);
·在感知类型字段是第二取值时,第一感知类型是协作双基感知(Coordinated Bistatic);
·在感知类型字段是第三取值时,第一感知类型是双基感知(Bistatic);
·在感知类型字段是第四取值时,第一感知类型是多基感知(Multistatic);
·在感知类型字段是第五取值时,第一感知类型是单基感知(Monostatic)。
可选地,在第一频段是Sub-7频段的情况下,第一取值设置为0,第二取值设置为1,第三取值设置为2,第四取值设置为3,第五取值设置为4。即在第一频段是Sub-7频段的情况下,存在以下几种情况:
·在感知类型字段是0时,第一感知类型是协作单基感知;
·在感知类型字段是1时,第一感知类型是协作双基感知;
·在感知类型字段是2时,第一感知类型是双基感知;
·在感知类型字段是3时,第一感知类型是多基感知;
·在感知类型字段是4时,第一感知类型是单基感知。
上述实施例中的第一取值、第二取值、第三取值、第四取值和第五取值仅作为一种示例,根据实际技术需要还可以调整具体的数值或设置其他的取值。
在一些实施例中,感知类型字段携带在第二频段对应的感知测量设置元素中;感知测量设置元素用于指示感知测量过程的操作参数。
在一些实施例中,感知类型字段携带在第二频段对应的感知测量设置元素中的感知测量设置控制(Measurement Setup Control)字段中。
在一些实施例中,在第一频段是Sub-7频段的情况下,第二频段对应的感知测量设置元素是DMG感知测量设置元素(DMG Sensing Measurement Setup element)。
1.1.2第一感知类型的指示方式2
在一些实施例中,第一信息包括单基感知字段。
在一些实施例中,通过单基感知字段的取值,指示代理发起设备想要的第一感知类型是否为单基感知。
·在单基感知字段为第一取值时,第一感知类型不是单基感知;
·在单基感知字段是第二取值时,第一感知类型是单基感知。
可选地,在第一频段是Sub-7频段的情况下,第一取值设置为0,第二取值设置为1。即在第一频段是Sub-7频段的情况下,存在以下几种情况:
在单基感知字段为0时,第一感知类型不是单基感知;
在单基感知字段为1时,第一感知类型是单基感知。
上述实施例中的第一取值和第二取值仅作为一种示例,根据实际技术需要还可以调整具体的数值或设置其他的取值。
在一些实施例中,在单基感知字段为第一取值时,第一感知类型不是单基感知的情况下,代理发起设备需要继续指示具体是哪一种感知类型。基于此,第一信息还包括感知类型字段,用于通过感知类型字段,指示代理发起设备想要的第一感知类型。
在一些实施例中,在单基感知字段是第一取值时,第一感知类型为感知类型字段的取值指示的感知类型。进一步地,通过感知类型字段的取值,指示第一感知类型。
在一些实施例中,单基感知类型字段携带在第二频段对应的感知代理参数元素中;感知代理参数元素用于指示感知测量过程的操作参数。
在一些实施例中,单基感知类型字段携带在第二频段对应的感知代理参数元素中的感知代理参数控制字段中。
在一些实施例中,在第一频段是Sub-7频段的情况下,第二频段对应的感知代理参数元素是DMG感知代理参数元素(DMG SBP Parameters element),感知代理参数控制字段是DMG感知代理参数控制(DMG SBP Parameters Control)字段。
1.1.3第一感知类型的指示方式3
在一些实施例中,第一信息包括感知类型字段和感知代理参数元素中的至少一个子字段。
可选地,感知代理参数元素用于指示感知代理过程的操作参数。
在一些实施例中,通过感知类型字段的取值,以及感知代理参数元素中的至少一个子字段的取值,指示代理发起设备想要的第一感知类型。
·在感知类型字段是第一取值,且感知代理参数元素中的至少一个子字段为子字段对应的预设取值时,第一感知类型是单基感知;
·在感知类型字段是第一取值,且感知代理参数元素中的至少一个子字段不是子字段对应的预设取值时,第一感知类型是协作单基感知;
·在感知类型字段是第二取值时,第一感知类型是协作双基感知;
·在感知类型字段是第三取值时,第一感知类型是双基感知;
·在感知类型字段是第四取值时,第一感知类型是多基感知。
可选地,在第一频段是Sub-7频段的情况下,第一取值设置为0,第二取值设置为1,第三取值设置为2,第四取值设置为3,第五取值设置为4。即在第一频段是Sub-7频段的情况下,存在以下几种情况:
·在感知类型字段是0,且感知代理参数元素中的至少一个子字段为子字段对应的预设取值时,第一感知类型是单基感知;
·在感知类型字段是1,且感知代理参数元素中的至少一个子字段不是子字段对应的预设取值时,第一感知类型是协作单基感知;
·在感知类型字段是2时,第一感知类型是协作双基感知;
·在感知类型字段是3时,第一感知类型是双基感知;
·在感知类型字段是4时,第一感知类型是多基感知。
上述实施例中的第一取值、第二取值、第三取值和第四取值仅作为一种示例,根据实际技术需要还可以调整具体的数值或设置其他的取值。
在一些实施例中,感知代理参数元素中的至少一个子字段携带在第二频段对应的感知代理参数元素中。
在一些实施例中,在第一频段是Sub-7频段的情况下,第二频段对应的感知代理参数元素是DMG感知代理参数元素,则该DMG感知代理参数元素中的子字段包括以下至少之一:
DMG感知代理请求(DMG SBP Request);
DMG代理响应设备(DMG Sensing Responder);
DMG代理响应设备数量(DMG Number of Sensing Responders);
DMG强制响应设备数量(DMG Mandatory Number of Responders);
DMG优先响应设备数量(DMG Number of Preferred Responders);
DMG优先响应设备列表(DMG Preferred Responder List);
DMG强制优先响应设备(DMG Mandatory Preferred Responder);
DMG代理响应设备地址(DMG Sensing Responder Addresses);
DMG代理响应标识(DMG Sensing Responder IDs)。
示例性的,DMG感知代理请求子字段对应的预设取值是1;DMG代理响应设备子字段对应的预设取值是1;DMG代理响应设备数量子字段对应的预设取值是4;DMG强制响应设备数量子字段对应的预设取值是1;DMG优先响应设备数量子字段对应的预设取值是4;DMG优先响应设备列表子字段对应的预设取值是1;DMG强制优先响应设备子字段对应的预设取值是1;DMG代理响应设备地址子字段对应的预设取值是n*6;DMG代理响应标识子字段对应的预设取值是n。
上述实施例中的预设取值作为一种示例,根据实际技术需要还可以调整具体的数值或设置其他的取值。
1.2指示第一感知范围
在一些实施例中,代理请求帧需要向代理响应设备指示其想要的第一感知范围,在图5、图6和图7的基础上,代理请求帧需要携带有关感知范围的信息。
有关感知范围的信息,可以采用对代理请求帧中的已有信息域增加取值的方式来显式指示;也可以采用代理请求帧中的新增信息域的方式来显式指示;还可以采用代理请求帧中的已有信息域和新增信息域协同指示。本文中的“信息域”为字段、元素、容器中的至少一种。
示例性的,有关感知范围的信息可以是第二信息,第二信息用于指示第一感知范围。
在一些实施例中,代理请求帧携带有第二信息,第二信息用于指示第一感知范围。
在一些实施例中,第二信息包括如下字段中的至少一种:
目标方向字段(TargetOrientation);
位置信息字段(Location Configuration Information,LCI);
同伴方向字段(Peer Orientation)。
可选地,目标方向字段用于指示目标相对于代理发起设备的位置信息。
可选地,位置信息字段用于指示代理发起设备的位置信息。
可选地,同伴方向字段用于指示代理发起设备测量得到的代理响应设备的位置信息。
在一些实施例中,第二字段还包括以下附加字段中的至少一种:
目标方向存在字段(Target Orientation Present);
位置信息存在字段(LCI Present);
同伴方向存在字段(Orientation Present)。
可选地,目标方向存在字段用于指示目标方向字段是否存在。
可选地,位置信息存在字段用于指示位置信息字段是否存在。
可选地,同伴方向存在字段用于指示同伴方向字段是否存在。
在一些实施例中,通过目标方向存在字段的取值,指示目标方向字段是否存在。
在一些实施例中,通过位置信息存在字段的取值,指示位置信息字段是否存在。
在一些实施例中,通过同伴方向存在字段的取值,指示同伴方向字段是否存在。
·在目标方向存在字段为第一取值时,目标方向字段不存在;
·在目标方向存在字段为第二取值时,目标方向字段存在;
·在位置信息存在字段为第一取值时,位置信息字段不存在;
·在位置信息存在字段为第二取值时,位置信息字段存在;
·在同伴方向存在字段为第一取值时,同伴方向字段不存在;
·在同伴方向存在字段为第二取值时,同伴方向字段存在。
可选地,上述的第一取值设置为0,第二取值设置为1。
上述实施例中的第一取值和第二取值作为一种示例,根据实际技术需要还可以调整具体的数值或设置其他的取值。
在一些实施例中,目标方向字段包括如下子字段中的至少一种:
目标方位角子字段(Target Azimuth);
方位角跨度子字段(Azimuth Span);
目标海拔角子字段(Target Elevation);
海拔角跨度子字段(Elevation Span);
目标距离子字段(Target Range);
距离跨度子字段(Range Span)。
可选地,目标方位角字段用于表征目标相对于代理发起设备的方位角。
可选地,方位角跨度子字段用于表征方位角的跨度大小。
可选地,目标海拔角子字段用于表征目标相对于代理发起设备的海拔角。
可选地,海拔角跨度子字段用于表征海拔角的跨度大小。
可选地,目标距离子字段用于表征目标相对于代理发起设备的距离。
可选地,距离跨度子字段用于表征距离的跨度大小。
在一些实施例中,同伴方向字段包括如下子字段中的至少一种:
方位角子字段(Azimuth);
海拔角子字段(Elevation);
距离子字段(Range)。
可选地,方位角子字段用于表征由代理发起设备测量得到的代理响应设备的方位角方向。
可选地,海拔角子字段用于表征由代理发起设备测量得到的代理响应设备的海拔角方向。
可选地,距离子字段用于表征由代理发起设备测量得到的代理响应设备的距离。
在一些实施例中,上述的附加字段携带在感知代理参数控制字段中。
在一些实施例中,在第一频段是Sub-7频段的情况下,感知代理参数控制字段是DMG感知代理参数控制(DMG SBP Parameters Control)字段。
在一些实施例中,第二信息携带在第二频段对应的感知代理参数元素中。
在一些实施例中,在第一频段是Sub-7频段的情况下,第二频段对应的感知代理参数元素是DMG感知代理参数元素(DMG SBP Parameters element)。
在一些实施例中,代理响应设备是同时支持第一频段和第二频段的设备。从而,该代理响应设备能够代理执行第二频段的感知测量。
在一些实施例中,代理响应设备与其他设备协商感知参数后,向代理发起设备响应代理响应帧。代理发起设备接收代理响应设备发送的代理响应帧。
在一些实施例中,代理响应设备向代理发起设备发送代理报告帧。代理发起设备接收代理响应设备发送的代理报告帧。
2.代理响应帧和/或代理报告帧的帧格式设计
在一些实施例中,为了使代理发起设备更好地解析感知报告,代理响应设备可以通过代理响应帧向代理发起设备发送有关辅助解析感知报告的信息。
在另一些实施例中,在代理响应帧不携带或部分携带有关辅助解析感知报告的信息的情况下,代理响应设备还可以通过代理报告帧向代理发起设备发送有关辅助解析感知报告的信息。
有关辅助解析感知报告的信息,可以采用对代理响应帧和/或代理报告帧中的已有信息域增加取值的方式来显式指示;也可以采用代理响应帧和/或代理报告帧中的新增信息域的方式来显式指示;还可以采用代理响应帧和/或代理报告帧中的已有信息域和新增信息域协同指示。本文中的“信息域”为字段、元素、容器中的至少一种。
示例性的,有关辅助解析感知报告的信息可以是第三信息。第三信息可以包括有关波束的信息、有关感知测量过程中的操作参数的信息中的至少之一。有关波束的信息可以包括有关发送波束的信息和有关接收波束的信息中的至少之一。
在一些实施例中,第三信息用于指示如下信息中的至少一种:
N个代理响应设备的发送波束列表或接收波束列表;
N个代理响应设备在感知测量过程中的操作参数。
在一些实施例中,在第一频段是Sub-7频段的情况下,感知波束描述元素是DMG感知波束描述元素(DMGSensingBeamDescriptorelement)。
在一些实施例中,N个代理响应设备的发送波束列表或接收波束列表携带在N个感知波束描述元素中,每个感知波束描述元素携带一个代理响应设备的接收波束列表。
在一些实施例中,在第一频段是Sub-7频段的情况下,N个感知波束描述元素是DMG感知波束描述元素1(DMGSensingBeamDescriptorelement1)至DMG感知波束描述元素N(DMGSensingBeamDescriptorelement N)。
示例性的,DMG感知波束描述元素1携带第1个代理响应设备的发送波束列表或接收波束列表,DMG感知波束描述元素2携带第2个代理响应设备的发送波束列表或接收波束列表,DMG感知波束描述元素 N携带第N个代理响应设备的发送波束列表或接收波束列表。
在一些实施例中,N个代理响应设备在感知测量过程中的操作参数携带在N个感知测量设置元素中,每个感知测量设置元素携带一个代理响应设备在感知测量过程中的操作参数。
在一些实施例中,在第一频段是Sub-7频段的情况下,N个感知测量设置元素是DMG感知测量设置元素1(DMG Sensing Measurement Setup element 1)至DMG感知测量设置元素N(DMG Sensing Measurement Setup element N)。
示例性的,DMG感知测量设置元素1携带第1个代理响应设备在感知测量过程中的操作参数,DMG感知测量设置元素2携带第2个代理响应设备在感知测量过程中的操作参数,DMG感知测量设置元素N携带第N个代理响应设备在感知测量过程中的操作参数。
在一些实施例中,N基于参与感知测量的代理响应设备的数量设置。
示例性的,N是指实际参与感知测量的代理响应设备的数量。
3.代理报告帧的帧格式可选设计
在另一些实施例中,代理响应设备还可以通过代理报告帧向代理发起设备发送有关辅助解析感知报告的附加信息。
有关辅助解析感知报告的附加信息,可以采用对代理报告帧中的已有信息域增加取值的方式来显式指示;也可以采用代理报告帧中的新增信息域的方式来显式指示;还可以采用代理报告帧中的已有信息域和新增信息域协同指示。本文中的“信息域”为字段、元素、容器中的至少一种。
示例性的,有关辅助解析感知报告的附加信息可以是第四信息。第四信息可以包括有关距离、多普勒、有关波束方向的信息。
在一些实施例中,代理报告帧携带有第四信息,第四信息携带有用于辅助解析感知报告的信息。
在一些实施例中,第四信息包括如下子字段中的至少一种:
距离子字段(Range);
多普勒子字段(Doppler);
发送波束方向子字段;
接收波束方向子字段。
在一些实施例中,第四信息携带在第二频段的感知报告元素中。
在一些实施例中,第四信息携带在第二频段的感知报告元素中的感知距离报告数据元素中。
在一些实施例中,在第一频段是Sub-7频段的情况下,第二频段的感知报告元素是DMG感知报告元素(DMG Sensing Report element),感知距离报告数据元素是DMG感知距离报告数据元素(DMG Sensing Image Report Data element)。
需要说明的是,上述各实施例中的各个帧及其帧格式可以根据实际技术需要设计或调整,还可以将上述各实施例进行任意的组合,本申请实施例对此不作限制。
综上,本申请实施例中通过基于同时支持第一频段和第二频段的代理响应设备,能够实现支持第一频段的代理发起设备请求代理响应设备代理执行第二频段的感知测量,同时,代理发起设备还可以向代理响应设备指示第一感知类型和/或第一感知范围。采用本申请实施例的方法,能够实现跨频段的感知代理,扩大了感知代理的应用范围,同时完善了跨频段的感知代理中的感知类型和感知范围的设置,加快感知的效率,实现对目标的更高精度的感知。当周围不存在其它高频段设备时,可通过代理响应设备执行单基感知来获得感知代理服务。进一步地,还可以辅助代理发起设备更好地解析感知报告,保证了感知代理的灵活性,使得代理发起设备能够充分利用环境中的各种设备的感知测量结果。
作为示例,以下以低频段设备进行高频段的感知代理为例,对本申请实施例涉及的几种感知过程进行详细说明:
1.低频段设备请求进行高频段的第一感知类型感知测量
1.1低频段设备请求进行高频段的第一感知类型感知测量的过程
图8示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知类型感知测量的场景图,图9示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知类型感知测量的流程图。
以第一感知类型是单基感知为例,图8和图9中涉及代理发起设备(STA1,Sub-7设备)和代理响应设备(AP,兼具DMG与Sub-7感知能力的设备)其中,代理响应设备用于响应代理发起设备的代理请求。
请参阅图8和图9。低频段设备请求进行高频段的第一感知类型感知测量的过程简述如下:
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame),以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测 量设置元素(DMG Sensing Measurement Setup element)中的至少之一。
可选地,代理发起设备通过代理请求帧指示第一感知类型为单基感知。
步骤2,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素中的至少之一。
步骤3,由代理响应设备(AP)按照代理请求帧中的设置完成DMG感知测量过程,代理响应设备(AP)通过发送单基感知测量帧(monostatic PPDU)完成单基感知。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)中的至少之一。
步骤5,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段中的至少之一。
1.2.低频段设备的帧格式
1.2.1基于代理请求帧携带的DMG感知测量设置元素指示第一感知类型
DMG感知测量设置元素表示DMG感知测量设置的相关参数。其中,DMG感知测量设置中的测量设置控制字段(Measurement Setup Control)中的感知类型(Sensing Type)字段,可以用于指示感知类型。
在一些实施例中,感知类型字段的不同取值对应不同的感知类型。感知类型包括协作单基感知、协作双基感知、双基感知、多基感知和单基感知的其中之一。
·在感知类型字段是第一取值时,第一感知类型是协作单基感知;
·在感知类型字段是第二取值时,第一感知类型是协作双基感知;
·在感知类型字段是第三取值时,第一感知类型是双基感知;
·在感知类型字段是第四取值时,第一感知类型是多基感知;
·在感知类型字段是第五取值时,第一感知类型是单基感知。
示例性的,第一取值设置为0,第二取值设置为1,第三取值设置为2,第四取值设置为3,第五取值设置为4。感知类型字段的取值与感知类型的对应关系如下表1所示。
表1感知类型字段的取值与感知类型的对应关系
取值 描述
0 协作单基感知
1 协作双基感知
2 双基感知
3 多基感知
4 单基感知
5-7 保留
·感知类型字段的取值为0时,表示进行协作单基感知。
·感知类型字段的取值为1时,表示进行协作双基感知。
·感知类型字段的取值为2时,表示进行双基感知。
·感知类型字段的取值为3时,表示进行多基感知。
·感知类型字段的取值为4时,表示进行单基感知。
·感知类型字段的取值5到7为保留字段。
1.2.2基于代理请求帧携带的DMG感知代理参数元素指示第一感知类型
DMG感知代理参数元素表示与请求的感知代理过程相关的操作参数。其中,DMG感知测量设置控制字段(DMG SBP Parameters Control field)定义了DMG感知代理参数元素的格式,因此,可以在其中新增单基感知字段(Monostatic Sensing),用于指示单基感知。
在一些实施例中,DMG感知代理参数元素的字段结构如图10所示,包括依次排列的:DMG代理请求(DMG SBP Request)字段、DMG代理响应设备(DMG Sensing Responder)字段、DMG代理响应设备数量(DMG Number of Sensing Responders)字段、DMG强制响应设备数量(DMG Mandatory Number of Responders)字段、DMG优先响应设备数量(DMG Number of Preferred Responders)字段、DMG优先响应设备列表(DMG Preferred Responder List)字段、DMG强制优先响应设备(DMG Mandatory Preferred Responder)字段、单基感知(Monostatic Sensing)字段、保留(Reserved)字段。
其中,DMG代理请求字段占用比特位置B0,共1个比特,DMG代理响应设备字段占用比特位置B1,共1个比特,DMG代理响应设备数量字段占用比特位置B2-B5,共4个比特。DMG强制响应设备数量字段占用比特位置B6,共1个比特,DMG优先响应设备数量字段占用比特位置B7-B10,共4个比特,DMG优先响应设备列表字段占用比特位置B11,共1个比特,DMG强制优先响应设备字段占用比特位置B12,共1个比特,单基感知字段占用比特位置B13,共1个比特,保留字段占用比特位置B14-B15,共2个比特。
在一些实施例中,DMG感知代理请求字段的取值为第一取值时,表示DMG感知代理参数元素由代理请求帧发送。单基感知字段的取值为第二取值时,表示代理发起设备请求的是单基感知类型。同时,代理请求帧中的DMG感知测量设置元素中的测量设置控制字段中的感知类型字段设置为保留值或取值无效。单基感知字段的取值为第一取值时,表示感知类型由感知类型字段指示。
示例性的,DMG感知代理请求字段的取值为1时,表示DMG感知代理参数元素由代理请求帧发送。单基感知字段的取值为1时,表示代理发起设备请求的是单基感知类型。同时,代理请求帧中的DMG感知测量设置元素中的测量设置控制字段中的感知类型字段设置为保留值或取值无效。单基感知字段的取值为0时,表示感知类型由感知类型字段指示。
在一些实施例中,DMG感知代理请求字段的取值为第二取值时,表示DMG感知代理参数元素由代理响应帧发送,此时,单基感知字段保留。
示例性的,DMG感知代理请求字段的取值为0时,表示DMG感知代理参数元素由代理响应帧发送,此时,单基感知字段保留。
1.2.3联合代理请求帧携带的DMG感知代理参数元素和DMG感知测量设置元素指示第一感知类型
在一些实施例中,在代理请求帧(或代理响应帧)中的DMG感知测量设置元素中的测量设置至字段中的感知类型字段是第一取值时,指示的感知类型为协作单基感知,在此情况下,当DMG感知代理参数元素中的至少一个子字段的取值为子字段对应的预设取值时,指示代理请求帧指示的第一感知类型为单基感知(Monostatic Type)。
在一些实施例中,DMG感知代理参数元素的字段结构如图11所示,包括依次排列的:元素标识(Element ID)字段、长度(Length)字段、元素标识扩展(Element ID Extension)字段、DMG感知代理参数控制(DMG SBP Parameters Control)字段、DMG代理响应设备地址(DMG Sensing Responder Addresses)字段、DMG代理响应设备标识(DMG Sensing Responder IDs)字段。
其中,元素标识字段占用1个字节、长度字段占用1个字节,元素标识扩展占用1个字节,DMG感知代理参数控制字段占用2个字节,DMG代理响应设备地址字段占用n*6个字节,DMG代理响应设备标识字段占用n个字节。
在一些实施例中,DMG感知代理参数控制(DMG SBP Parameters Control)字段的字段结构如图12所示,包括依次排列的:DMG代理请求(DMG SBP Request)字段、DMG代理响应设备(DMG Sensing Responder)字段、DMG代理响应设备数量(DMG Number of Sensing Responders)字段、DMG强制响应设备数量(DMG Mandatory Number of Responders)字段、DMG优先响应设备数量(DMG Number of Preferred Responders)字段、DMG优先响应设备列表(DMG Preferred Responder List)字段、DMG强制优先响应设备(DMG Mandatory Preferred Responder)字段、保留(Reserved)字段。
其中,DMG代理请求字段占用比特位置B0,共1个比特,DMG代理响应设备字段占用比特位置B1,共1个比特,DMG代理响应设备数量字段占用比特位置B2-B5,共4个比特。DMG强制响应设备数量字段占用比特位置B6,共1个比特,DMG优先响应设备数量字段占用比特位置B7-B10,共4个比特,DMG优先响应设备列表字段占用比特位置B11,共1个比特,DMG强制优先响应设备字段占用比特位置B12,共1个比特,保留字段占用比特位置B13-B15,共3个比特。
在一些实施例中,DMG代理请求字段为第一取值,表示DMG感知代理参数元素由代理请求帧发送。DMG代理请求字段为第二取值,表示DMG感知代理参数元素由代理响应帧发送。
示例性的,第一取值设置为1,第二取值设置为0。
在一些实施例中,DMG代理响应设备字段的取值应设置为第一取值,表示DMG代理发起设备不请求作为感知响应器参与DMG感知过程。示例性的,第一取值设置为0。
在一些实施例中,DMG代理响应设备数量字段和DMG强制响应设备数量字段保留。
在一些实施例中,DMG优先响应设备数量子字段的取值应设置为第一取值,表示DMG代理响应设备地址字段中含有1个已知MAC地址的DMG感知响应器。示例性的,第一取值设置为1。
在一些实施例中,DMG优先响应设备列表字段的取值应设置为第一取值,表示DMG代理发起设备提供了DMG代理响应设备地址字段。示例性的,第一取值设置为1。
在一些实施例中,DMG强制优先响应设备字段的取值应设置为第一取值,表示仅能选择DMG代理 响应设备地址字段中含有的响应设备作为感知响应设备(Sensing Responder)。
示例性的,第一取值设置为1。
在一些实施例中,DMG代理响应设备地址字段的取值应设置为DMG代理响应设备(DMG SBP Responder,AP)的MAC地址,表示仅能选择DMG代理响应设备作为DMG感知响应设备(DMG Sensing Responder),即表示DMG代理响应设备既是DMG感知发起设备(DMG Sensing Initiator)也是DMG感知响应设备,隐含指示感知类型为单基感知(Monostatic Type)。
在一些实施例中,DMG代理响应设备标识字段应设置为DMG代理响应设备的关联标识符(Association Identifier,AID)。
1.3低频段设备请求进行高频段的单基感知的感知测量的步骤
以第一感知类型是单基感知为例,请参阅图8和图9,低频段设备请求进行高频段的单基感知的感知测量的详细步骤如下:
步骤0,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)通过交互若干管理帧完成设备发现和多种感知能力的交互。
可选地,管理帧包括信标帧、探测请求帧、关联请求帧或重关联请求帧中的至少之一。管理帧携带有DMG感知波束描述元素(DMG Sensing Beam Descriptor element)用于暴露自身所能支持的感知发送波束和感知接收波束。
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame),以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)。
可选地,以基于代理请求帧中的DMG感知测量设置元素指示第一感知类型为例,DMG感知测量设置元素中的测量设置控制字段中的感知类型字段为4,即单基感知类型。
步骤2,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素。代理响应帧还携带有DMG感知图像距离坐标轴查询表元素(DMG Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)、波束描述(Beam Descriptor)字段与DMG感知测量设置标识(DMG Measurement Setup ID)字段,用于辅助代理发起设备解析DMG测量报告。
步骤3,由代理响应设备(AP)按照代理请求帧中的设置完成DMG感知测量过程,代理响应设备(AP)通过发送单基感知测量帧(monostatic PPDU)完成单基感知。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)。
步骤5,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段。
2.低频段设备请求进行高频段的第一感知范围感知测量
2.1低频段设备请求进行高频段的第一感知范围感知测量的过程
图13示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知范围感知测量的场景图,图14示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的第一感知范围感知测量的流程图。
图13和图14中涉及代理发起设备(STA1,Sub-7设备)和代理响应设备(AP,兼具DMG与Sub-7感知能力的设备)、感知发起设备(AP)和DMG感知响应设备(STA2,DMG设备)。其中,代理响应设备用于响应代理发起设备的代理请求,同时也作为感知发起设备发起感知。
请参阅图13和图14。低频段设备请求进行高频段的第一感知范围感知测量的过程简述如下:
步骤0,感知发起设备广播信标帧,DMG感知响应设备主动发送探测请求帧、关联请求帧或重关联请求帧至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感知发起设备和DMG感知响应设备的感知能力信息。
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame), 以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)中的至少之一。
步骤2,代理响应设备(AP)向DMG感知响应设备(STA2,DMG设备)发送DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame)来协商DMG感知测量过程中的操作参数。
步骤3,DMG感知响应设备(STA2,DMG设备)向代理响应设备(AP)发送DMG感知测量设置响应帧(DMG Sensing Measurement Setup Response frame)来指示确认建立DMG感知测量。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素与DMG测量设置标识(DMG Measurement Setup ID)中的至少之一。
步骤5,由代理响应设备(AP)与DMG感知响应设备(STA2,DMG设备)按照代理请求帧中的设置完成DMG感知测量过程。
步骤6,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)中的至少之一。
步骤7,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段中的至少之一。
2.2低频段设备的帧格式
2.2.1基于代理请求帧携带的DMG感知代理参数元素指示第一感知范围
在一些实施例中,通过代理请求帧携带的DMG感知代理参数元素(DMG SBP Parameters element)指示第一感知范围。DMG感知代理参数元素的字段结构如图15所示,包括依次排列的:元素标识(Element ID)字段、长度(Length)字段、元素标识扩展(Element ID Extension)字段、DMG感知代理参数控制(DMG SBP Parameters Control)字段、DMG代理响应设备地址(DMG Sensing Responder Addresses)字段、DMG代理响应设备标识(DMG Sensing Responder IDs)字段、目标方向(Target Orientation)字段、位置信息(LCI)字段、同伴方向(Peer Orientation)字段。
其中,元素标识字段占用1个字节、长度字段占用1个字节,元素标识扩展占用1个字节,DMG感知代理参数控制字段占用2个字节,DMG代理响应设备地址字段占用n*6个字节,DMG代理响应设备标识字段占用n个字节,目标方向字段占用5个字节,位置信息字段占用1个字节,同伴方向占用2个字节。
在一些实施例中,DMG感知代理参数控制字段的字段结构如图16所示,包括依次排列的:DMG代理请求/响应(DMG SBP Request/Response)字段、DMG代理响应设备(DMG Sensing Responder)字段、DMG代理响应设备数量(DMG Number of Sensing Responders)字段、DMG强制响应设备数量(DMG Mandatory Number of Responders)字段、DMG优先响应设备数量(DMG Number of Preferred Responders)字段、DMG优先响应设备列表(DMG Preferred Responder List)字段、DMG强制优先响应设备(DMG Mandatory Preferred Responder)字段、目标方向存在(Target Orientation Present)字段、位置信息存在(LCI Present)字段、同伴方向存在(Orientation Present)字段、保留(Reserved)字段。
其中,DMG代理请求/响应字段占用比特位置B0,共1个比特,DMG代理响应设备字段占用比特位置B1,共1个比特,DMG代理响应设备数量字段占用比特位置B2-B5,共4个比特。DMG强制响应设备数量字段占用比特位置B6,共1个比特,DMG优先响应设备数量字段占用比特位置B7-B10,共4个比特,DMG优先响应设备列表字段占用比特位置B11,共1个比特,DMG强制优先响应设备字段占用比特位置B12,共1个比特,目标方向存在字段占用比特位置B13,共1个比特,位置信息存在字段占用比特位置B14,共1个比特,同伴方向存在字段占用比特位置B15,共1个比特,保留字段占用比特位置B16,共1个比特。
在一些实施例中,目标方向存在字段指示目标方向字段是否存在。当目标方向存在字段为第一取值时,表示DMG感知代理参数元素包含目标方向字段。当目标方向存在字段为第二取值时,表示DMG感知代理参数元素不包含目标方向字段。示例性的,第一取值设置为1,第二取值设置为0。
在一些实施例中,位置信息存在字段指示位置信息字段是否存在。当位置信息存在字段为第一取值时,DMG感知代理参数元素包含位置信息。当位置信息存在字段为第二取值时,DMG感知代理参数元素不包含位置信息。示例性的,第一取值设置为1,第二取值设置为0。
在一些实施例中,同伴方向存在字段指示同伴方向字段是否存在。当同伴方向存在字段为第一取值时,表示DMG感知代理参数元素包含同伴方向字段。当同伴方向存在字段为第二取值时,表示DMG感知代理参数元素不包含同伴方向字段。示例性的,第一取值设置为1,第二取值设置为0。
在一些实施例中,目标方向字段包含了代理发起设备想要精细测量的具体位置,即目标所在的方位角、海拔角和距离。
在一些实施例中,目标方向字段的字段结构如图17所示,包括依次排列的:目标方位角(Target Azimuth)子字段、方位角跨度(Azimuth Span)子字段、目标海拔角(Target Elevation)子字段、海拔角跨度(Elevation Span)子字段、目标距离(Target Range)子字段、距离跨度(Range Span)子字段。
其中,目标方位角子字段占用11个比特,方位角跨度子字段占用5个比特,目标海拔角子字段占用11个比特,海拔角跨度子字段占用5个比特,目标距离子字段占用16个比特,距离跨度子字段占用6个比特。
在一些实施例中,目标方位角字段用于表征目标相对于代理发起设备的方位角,单位为(360/2048)°。
在一些实施例中,方位角跨度子字段用于表征方位角的跨度大小,通过下列公式计算:
Azimuth Span=min(max(round(3·log2(u·2048/360)),0),31)
其中,u是方位角扩展,单位为(360/2048)°。
在一些实施例中,目标海拔角子字段用于表征目标相对于代理发起设备的海拔角,单位为(360/2048)°。
在一些实施例中,海拔角跨度子字段用于表征海拔角的跨度大小,通过下列公式计算:
Elevation Span=min(max(round(3·log2(u·2048/360)),0),31)
其中,u是海拔角扩展,单位为(360/2048)°。
在一些实施例中,目标距离子字段用于表征目标相对于代理发起设备的距离,单位为毫米。
在一些实施例中,距离跨度子字段表示距离的跨度大小,通过下列公式计算:
Range Span=min(round(4·log2(u)),63)
其中,u是距离扩展,单位为毫米。
在一些实施例中,位置信息字段携带该代理发起设备自身的位置信息。
在一些实施例中,同伴方向字段包含了该代理发起设备测量得到的代理响应设备所在的方位角、海拔角和距离。
在一些实施例中,方位角子字段表征由代理发起设备测量得到的代理响应设备的方位角方向,单位为(360/4096)°,取值为0到4095。
在一些实施例中,海拔角子字段包含表征由代理发起设备测量得到的代理响应设备的海拔角方向,单位为(180/4096)°,取值为-2048到2047。
在一些实施例中,距离子字段用于表征由代理发起设备测量得到的代理响应设备的距离,单位为毫米。
2.3低频段设备请求进行高频段的第一感知范围感知测量的步骤
请参阅图13和图14。低频段设备请求进行高频段的第一感知范围感知测量的详细步骤如下:
步骤0,感知发起设备广播信标帧,DMG感知响应设备主动发送探测请求帧、关联请求帧或重关联请求帧至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感知发起设备和DMG感知响应设备的感知能力信息。
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame),以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)。
可选地,以DMG感知测量设置元素中的测量设置控制字段中的感知类型字段取值为2,即双基感知类型为例。以代理请求帧包括图16中DMG感知代理参数元素为例,位置信息存在字段、位置信息存在字段、同伴方向存在字段设置为第一取值,即DMG感知代理参数元素携带代理发起设备的位置信息,以及测量的代理响应设备和目标所在的方向和距离。
步骤2,代理响应设备(AP)向DMG感知响应设备(STA2,DMG设备)发送DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame)来协商DMG感知测量过程中的操作参数。
步骤3,DMG感知响应设备(STA2,DMG设备)向代理响应设备(AP)发送DMG感知测量设置响应帧(DMG Sensing Measurement Setup Response frame)来指示确认建立DMG感知测量。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素与DMG测量设置标识(DMG Measurement Setup ID)字段。代理响应帧还携带有DMG感知图像距离坐标轴查询表元素(DMG  Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)、波束描述(Beam Descriptor)字段与DMG感知测量设置标识(DMG Measurement Setup ID)字段,用于辅助代理发起设备解析DMG测量报告。
步骤5,由代理响应设备(AP)与DMG感知响应设备(STA2,DMG设备)按照代理请求帧中的设置完成DMG感知测量过程。
步骤6,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)。
步骤7,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段中的至少之一。
2.4第一感知范围的计算示例
图18示出了本申请一个示例性实施例提供的计算第一感知范围的场景示意图。图18涉及代理发起设备(STA1,Sub-7设备)和代理响应设备(AP,兼具DMG与Sub-7感知能力的设备)和DMG感知响应设备(STA2,DMG设备)。计算过程如下:
未知参数:目标的xyz坐标。
已知参数:
AP的xyz坐标为(0,0,0),STA1的xyz坐标为(-3,-1,1),STA2的xyz坐标为(-1,2,2)。
目标方向:
方位角
Figure PCTCN2022136379-appb-000001
海拔角θ 1=0.729727656226966;距离d 1=3。
STA1和AP之间的同伴方向:
方位角
Figure PCTCN2022136379-appb-000002
海拔角θ 2=-0.306277369169669;距离d 2=3.316624790355400。
AP和STA2之间的同伴方向:
方位角
Figure PCTCN2022136379-appb-000003
海拔角θ 3=0.729727656226966,距离d 3=3。
根据几何关系,可以计算得到目标与AP之间的向量为:
Figure PCTCN2022136379-appb-000004
目标与STA2之间的向量为:
Figure PCTCN2022136379-appb-000005
由此可得,目标对于AP的方位角为2.677945044588987、海拔角为0.930274014115472,相对于STA2的方位角为-2.356194490192345、海拔角为0.615479708670387。
3.低频段设备请求进行高频段的感知测量并解析感知报告
3.1低频段设备请求进行高频段的感知测量并解析感知报告的过程
图19示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的感知测量并解析感知报告的场景图,图20示出了本申请一个示例性实施例提供的低频段设备请求进行高频段的感知测量并解析感知报告的流程图。
图19和图20中涉及代理发起设备(STA1,Sub-7设备)和代理响应设备(AP,兼具DMG与Sub-7感知能力的设备)、感知发起设备(AP)和DMG感知响应设备(STA2,DMG设备)。其中,代理响应设备用于响应代理发起设备的代理请求,同时也作为感知发起设备发起感知。
请参阅图19和图20。低频段设备请求进行高频段的感知测量并解析感知报告的过程简述如下:
步骤0,感知发起设备广播信标帧,DMG感知响应设备主动发送探测请求帧、关联请求帧或重关联请求帧至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感知发起设备和DMG感知响应设备的感知能力信息。
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame),以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)中的至少之一。
步骤2,代理响应设备(AP)向DMG感知响应设备(STA2,DMG设备)发送DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame)来协商DMG感知测量过程中的操作参数。
步骤3,DMG感知响应设备(STA2,DMG设备)向代理响应设备(AP)发送DMG感知测量设置响 应帧(DMG Sensing Measurement Setup Response frame)来指示确认建立DMG感知测量。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素与DMG测量设置标识(DMG Measurement Setup ID)中的至少之一。
步骤5,由代理响应设备(AP)与DMG感知响应设备(STA2,DMG设备)按照代理请求帧中的设置完成DMG感知测量过程。
步骤6,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)中的至少之一。
步骤7,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段中的至少之一。
3.2低频段设备的帧格式
3.2.1代理响应帧
在一些实施例中,代理响应帧携带有用于辅助解析感知报告的信息。
在一些实施例中,代理响应帧的帧结构如图21所示,包括依次排列的:类别(Category)字段、公共通信机制(Public Action)字段、会话标识(Dialog Token)字段、状态码(Status Code)字段、测量设置标识(Measurement Setup ID)字段、感知代理参数元素(SBP Parameters element)、感知测量参数元素(Sensing Measurement Parameters element)、响应站点可用性窗口元素(RSTA Availability Window element)、DMG感知图像距离坐标轴查询表元素(DMG Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)、DMG感知波束描述元素1(DMG Sensing Beam Descriptor element 1)、DMG感知波束描述元素2(DMG Sensing Beam Descriptor element 2)……DMG感知波束描述元素N(DMG Sensing Beam Descriptor element N)、DMG测量设置标识(DMG Measurement Setup ID)字段、DMG感知代理参数元素(DMG SBP Parameters element)、DMG感知测量设置元素1(DMG Sensing Measurement Setup element 1)……DMG感知测量设置元素N(DMG Sensing Measurement Setup element N)。
其中,类别字段占用1个字节,公共通信机制字段占用1个字节,会话标识字段占用1个字节,状态码(Status Code)字段占用1个字节,测量设置标识字段占用1个字节,感知代理参数元素占用0个字节或字节数可变,感知测量参数元素占占用0个字节或字节数可变,响应站点可用性窗口元素占用0个字节或字节数可变,DMG感知图像距离坐标轴查询表元素占用0个字节或字节数可变,DMG感知图像多普勒坐标轴查询表元素占用0个字节或字节数可变,DMG感知波束描述元素1占用0个字节或字节数可变,DMG感知波束描述元素2占用0个字节或字节数可变……DMG感知波束描述元素N占用0个字节或字节数可变,DMG测量设置标识字段占用1个字节,DMG感知代理参数元素占用字节数可变,DMG感知测量设置元素1占用字节数可变……DMG感知测量设置元素N占用字节数可变。
在一些实施例中,DMG感知波束描述元素包含了每个代理响应设备的波束的相关信息。数量N表示实际参与DMG感知代理过程的代理响应设备的数量,设置为DMG感知代理参数元素中的DMG感知代理参数控制字段中的DMG代理响应设备数量(DMG Number of Sensing Responders)字段的取值。其中,DMG感知波束描述元素包含的波束信息即可以作为发送波束的描述,也可以作为接收波束的描述。
在一些实施例中,DMG感知测量设置元素表示DMG感知测量设置的相关参数。数量N表示实际参与DMG感知代理过程的代理响应设备的数量,设置为代理响应帧中DMG感知代理参数元素中的DMG感知代理参数控制字段中的DMG代理响应设备数量(DMG Number of Sensing Responders)字段的取值。
在一些实施例中,DMG感知波束描述元素和DMG感知测量设置元素的顺序应和DMG感知代理参数元素中的DMG代理响应标识(DMG Sensing Responder IDs)字段定义的参与DMG感知代理过程的DMG代理响应设备的AID/USID列表中的顺序相同。此时,DMG代理响应标识字段显示存在,即DMG优先响应设备列表(DMG Preferred Responder List)子字段设置为第一取值。示例性的,第一取值设置为1。
3.3低频段设备请求进行高频段的感知测量并解析感知报告的步骤
请参阅图19和图20。低频段设备请求进行高频段的感知测量并解析感知报告的详细步骤如下:
步骤0,感知发起设备广播信标帧,DMG感知响应设备主动发送探测请求帧、关联请求帧或重关联请求帧至感知发起设备,并接收感知发起设备返回的探测请求帧、关联请求帧或重关联请求帧,用于交换感 知发起设备和DMG感知响应设备的感知能力信息。
可选地,信标帧、探测请求帧、关联请求帧或重关联请求帧中的至少之一携带有DMG感知波束描述元素(DMG Sensing Beam Descriptor element)用于暴露自身所能支持的感知发送波束和感知接收波束。
步骤1,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理请求帧(SBP request frame),以发起DMG感知代理过程。
可选地,代理请求帧携带有DMG感知代理参数元素(DMG SBP Parameters element)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)。
可选地,DMG感知测量设置元素中的测量设置控制(Measurement Setup Control)字段中的感知类型(Sensing Type)字段的取值为0,指示感知类型为协作单基感知类型。
步骤2,代理响应设备(AP)向DMG感知响应设备(STA2,DMG设备)发送DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame)来协商DMG感知测量过程中的操作参数。
步骤3,DMG感知响应设备(STA2,DMG设备)向代理响应设备(AP)发送DMG感知测量设置响应帧(DMG Sensing Measurement Setup Response frame)来指示确认建立DMG感知测量。
步骤4,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理响应帧(SBP Response frame)以指示接受了感知代理任务。
可选地,以图21中的代理响应帧为例,代理响应帧携带有DMG感知代理参数元素、DMG感知测量设置元素与DMG测量设置标识(DMG Measurement Setup ID)字段。代理响应帧还携带有DMG感知图像距离坐标轴查询表元素(DMG Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)、波束描述(Beam Descriptor)字段与DMG感知测量设置标识(DMG Measurement Setup ID)字段,用于辅助代理发起设备解析DMG测量报告。
步骤5,由代理响应设备(AP)与DMG感知响应设备(STA2,DMG设备)按照代理请求帧中的设置完成DMG感知测量过程。
步骤6,代理响应设备(AP)向代理发起设备(STA1,Sub-7设备)发送代理报告帧(SBP Report frame)以告知DMG感知测量结果。
可选地,代理报告帧携带有DMG感知报告控制元素(DMG Sensing Report control element)、DMG感知报告元素(DMG Sensing Report element)。
步骤7,代理发起设备(STA1,Sub-7设备)向代理响应设备(AP)发送代理结束帧(SBP Termination frame)以指示结束相关的DMG感知。
可选地,代理结束帧携带有DMG测量设置标识(DMG Measurement Setup ID)、DMG感知代理结束控制(DMG SBP Termination control)字段。
3.4低频段设备解析高频段的感知报告的场景示例
图22示出了本申请一个示例性实施例提供的低频段设备解析高频段的感知报告场景图。图22中涉及代理发起设备(STA1,Sub-7设备)和代理响应设备(AP,兼具DMG与Sub-7感知能力的设备)和DMG感知响应设备(STA2,DMG设备)。
参数设置如下:
DMG感知报告元素(DMG Sensing Report element)中DMG感知报告类型(DMGSensing Report Type)字段设置为0,且DMG感知距离报告数据元素(DMG Sensing Image Report Data element)中的坐标轴存在(AxisPresent)字段中的距离坐标轴存在(Range Axis Present)字段、多普勒坐标轴存在(Doppler Axis Present)字段,接收波束索引存在(Receiver Beam Index Present)字段,发送波束索引存在(Transmitter Beam Index Present)字段设置为1。
以图15-16中的代理请求帧为例,DMG感知代理参数元素中的DMG感知代理参数控制字段中的位置信息存在字段和同伴方向存在字段设置为1,DMG感知代理参数元素中携带STA1的位置信息,以及测量的AP和目标所在的方向和距离。DMG感知测量设置元素中的感知测量设置控制字段中的位置信息存在字段和同伴方向存在字段设置为1,DMG感知测量设置元素中携带设备的位置信息和测量的同伴方向。
当低频段设备收到高频段设备的代理报告帧时,会通过携带的AID/UID,找到感知发射器和感知接收器的DMG感知波束描述元素(DMGSensingBeam Descriptorelement)和DMG感知测量设置元素(DMG Sensing Measurement Setup element)中的发送/接收波束列表(TX/RX Beam List),从而得到感知报告中的发送波束索引(Transmitter Beam Index)和接收波束索引(Receiver Beam Index)对应的方位角
Figure PCTCN2022136379-appb-000006
和海拔角θ。然后,通过代理响应帧中的DMG感知图像距离坐标轴查询表元素(DMG Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)得到感知报告中多普勒坐标轴(Doppler Axis)和距离坐标轴(Range Axis)对应的多普勒值γ和距离值d。
基于此,图22中的未知参数和已知参数可以表示如下:
未知参数:目标的xyz坐标
已知参数:
AP的xyz坐标为(0,0,0),STA1的xyz坐标为(-3,-1,1),STA2的xyz坐标为(-1,2,2)。
STA2测量的目标的角度和距离:方位角
Figure PCTCN2022136379-appb-000007
海拔角θ 1=0.615479708670387,距离d 1=1.732050807568877。
STA1和AP之间的同伴方向:方位角
Figure PCTCN2022136379-appb-000008
海拔角θ 2=-0.306277369169669,距离d 2=3.316624790355400。
AP和STA2之间的同伴方向:方位角
Figure PCTCN2022136379-appb-000009
海拔角θ 3=0.729727656226966,距离d 3=3。
根据几何关系,可以计算得到目标与STA1之间的向量为:
Figure PCTCN2022136379-appb-000010
由此可得,目标相对于STA1的方位角和海拔角为1.107148717794090,0.729727656226966,距离为3。
3.5低频段设备的帧格式的可选设计
3.5.1代理报告帧
在另一些实施例中,针对低频段设备解析高频段的感知报告的场景,还可以在代理报告帧中新增3.2.1代理响应帧中的DMG感知测量设置元素和DMG感知波束描述元素,用于对3.2.1中的代理响应帧进行替换或补充。
在另一些实施例中,高频段设备也可直接在代理报告帧中的DMG感知报告元素(DMG Sensing Report element)中的DMG感知距离报告数据元素(DMG Sensing Image Report Data element)中的反射参数子字段(Reflection subelements)中发送距离(Range)、多普勒(Doppler)、波束接收方向和波束发射方向,用于替代代理响应帧中的距离坐标轴(Range Axis)、多普勒坐标轴(Doppler Axis)、接收波束索引(Receiver Beam Index)和发送波束索引(Transmitter Beam Index)。
在一些实施例中,代理报告帧的帧结构如图23所示,包括依次排列的:距离(Range)子字段、多普勒(Doppler)子字段、发射波束描述(Transmitter Beam Descriptor)子字段、接收波束描述(Receiver Beam Descriptor)子字段和反射功率(Reflection Power)子字段。
其中,距离子字段占用16个比特,多普勒子字段占用16个比特,发射波束描述子字段占用48个比特,接收波束描述子字段占用48个比特,反射功率子字段占用12个比特。
在一些实施例中,距离子字段表示距离,单位为毫米。多普勒子字段表示多普勒,单位为毫米/秒。发射波束描述子字段表示使用的发射波束的信息。接收波束描述子字段表示使用的接收波束的信息。反射功率子字段表示反射的接收功率,单位为dBm。在此情况下,代理响应帧中的DMG感知波束描述元素(DMG Sensing Beam Descriptor element)、DMG感知图像距离坐标轴查询表元素(DMG Sensing Image Range Axis LUT element)、DMG感知图像多普勒坐标轴查询表元素(DMG Sensing Image Doppler Axis LUT element)可以省略。
图24示出了本申请一个示例性实施例提供的基于代理的感知装置的结构框图,所述装置包括:
第一发送模块11,用于向代理响应设备发送代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量,以及向所述代理响应设备指示第一感知类型和/或第一感知范围;
第一接收模块12,用于接收所述代理响应设备发送的代理响应帧;
其中,所述代理响应设备是同时支持所述第一频段和所述第二频段的设备。
在一些实施例中,所述代理请求帧携带有第一信息,所述第一信息用于指示所述第一感知类型;
其中,所述第一感知类型是多种感知类型中的一种,所述多种感知类型包括单基感知。
在一些实施例中,所述第一信息包括如下字段或元素中的至少一种:
感知类型字段;
单基感知字段;
感知代理参数元素中的至少一个子字段。
在一些实施例中,所述第一信息包括所述感知类型字段,所述感知类型字段的不同取值对应不同的感知类型。
在一些实施例中,在所述感知类型字段是第一取值时,所述第一感知类型是所述协作单基感知;
在所述感知类型字段是第二取值时,所述第一感知类型是所述协作双基感知;
在所述感知类型字段是第三取值时,所述第一感知类型是所述双基感知;
在所述感知类型字段是第四取值时,所述第一感知类型是所述多基感知;
在所述感知类型字段是第五取值时,所述第一感知类型是所述单基感知。
在一些实施例中,所述第一信息包括所述单基感知字段;
在所述单基感知字段为第一取值时,所述第一感知类型不是所述单基感知;
在所述单基感知字段是第二取值时,所述第一感知类型是所述单基感知。
在一些实施例中,所述第一信息还包括所述感知类型字段;
在所述单基感知字段是所述第一取值时,所述第一感知类型为所述感知类型字段的取值指示的感知类型。
在一些实施例中,所述第一信息包括所述感知类型字段和所述感知代理参数元素中的至少一个子字段;
在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段为所述子字段对应的预设取值时,所述第一感知类型是所述单基感知;
在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段不是所述子字段对应的所述预设取值时,所述第一感知类型是所述协作单基感知;
在所述感知类型字段是所述第二取值时,所述第一感知类型是所述协作双基感知;
在所述感知类型字段是所述第三取值时,所述第一感知类型是所述双基感知;
在所述感知类型字段是所述第四取值时,所述第一感知类型是所述多基感知。
在一些实施例中,所述感知类型字段携带在所述第二频段对应的感知测量设置元素中;所述感知测量设置元素用于指示感知测量过程的操作参数;
所述单基感知类型字段携带在所述第二频段对应的感知代理参数元素中;所述感知代理参数元素用于指示感知测量过程的操作参数;
所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中。
在一些实施例中,所述感知类型字段携带在所述第二频段对应的所述感知测量设置元素中的感知测量设置控制字段中;
所述单基感知类型字段携带在所述第二频段对应的所述感知代理参数元素中的感知代理参数控制字段中;
所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中的所述感知代理参数控制字段中。
在一些实施例中,所述代理请求帧携带有第二信息,所述第二信息用于指示所述第一感知范围。
在一些实施例中,所述第二信息包括如下字段中的至少一种:
目标方向字段,用于指示目标相对于所述代理发起设备的位置信息;
位置信息字段,用于指示所述代理发起设备的位置信息;
同伴方向字段,用于指示所述代理发起设备测量得到的所述代理响应设备的位置信息。
在一些实施例中,所述第二信息还包括以下附加字段中的至少一种:
目标方向存在字段;所述目标方向存在字段用于指示所述目标方向字段是否存在;
位置信息存在字段;所述位置信息存在字段用于指示所述位置信息字段是否存在;
同伴方向存在字段;所述同伴方向存在字段用于指示所述同伴方向字段是否存在。
在一些实施例中,在所述目标方向存在字段为第一取值时,所述目标方向字段不存在;
在所述目标方向存在字段为第二取值时,所述目标方向字段存在;
在所述位置信息存在字段为第一取值时,所述位置信息字段不存在;
在所述位置信息存在字段为第二取值时,所述位置信息字段存在;
在所述同伴方向存在字段为第一取值时,所述同伴方向字段不存在;
在所述同伴方向存在字段为第二取值时,所述同伴方向字段存在。
在一些实施例中,所述目标方向字段包括如下子字段中的至少一种:
目标方位角子字段;所述目标方位角字段用于表征目标相对于所述代理发起设备的方位角;
方位角跨度子字段;所述方位角跨度子字段用于表征所述方位角的跨度大小;
目标海拔角子字段;所述目标海拔角子字段用于表征所述目标相对于所述代理发起设备的海拔角;
海拔角跨度子字段;所述海拔角跨度子字段用于表征所述海拔角的跨度大小;
目标距离子字段;所述目标距离子字段用于表征所述目标相对于所述代理发起设备的距离;
距离跨度子字段;所述距离跨度子字段用于表征所述距离的跨度大小;
在一些实施例中,所述同伴方向字段包括如下子字段中的至少一种:
方位角子字段;所述方位角子字段用于表征由所述代理发起设备测量得到的代理响应设备的方位角方向;
海拔角子字段;所述海拔角子字段用于表征由所述代理发起设备测量得到的代理响应设备的海拔角方向;
距离子字段;所述距离子字段用于表征由所述代理发起设备测量得到的代理响应设备的距离。
在一些实施例中,所述附加字段携带在感知代理参数控制字段中。
在一些实施例中,所述第二信息携带在所述第二频段对应的感知代理参数元素中。
在一些实施例中,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第一接收模块12还用于:接收所述代理响应设备发送的代理报告帧。所述代理报告帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第三信息用于指示如下信息中的至少一种:
N个代理响应设备的发送波束列表或接收波束列表;
N个代理响应设备在感知测量过程中的操作参数。
在一些实施例中,所述N个代理响应设备的发送波束列表或接收波束列表携带在N个感知波束描述元素中,每个所述感知波束描述元素携带一个所述代理响应设备的所述发送波束列表或所述接收波束列表。
在一些实施例中,所述N个代理响应设备在感知测量过程中的操作参数携带在N个感知测量设置元素中,每个所述感知测量设置元素携带一个所述代理响应设备在感知测量过程中的操作参数。
在一些实施例中,所述N基于参与所述感知测量的所述代理响应设备的数量设置。
在一些实施例中,所述代理报告帧携带有第四信息,所述第四信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第四信息包括如下子字段中的至少一种:
距离子字段;
多普勒子字段;
发送波束方向子字段;
接收波束方向子字段。
在一些实施例中,所述第四信息携带在所述第二频段的感知报告元素中。
在一些实施例中,第一发送模块11可以基于通信设备中的发射器实现,第一接收模块12可以基于通信设备中的接收器实现,各个帧可以基于通信设备中的处理器生成、处理以及解析。
图25示出了本申请一个示例性实施例提供的基于代理的感知装置的结构框图。所述装置包括:
第二接收模块21,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量;
第二发送模块22,用于向所述代理发起设备发送代理响应帧,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第二发送模块22,用于向所述代理发起设备发送代理报告帧;所述代理报告帧携带有所述第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第三信息用于指示如下信息中的至少一种:
N个代理响应设备的发送波束列表或接收波束列表;
N个代理响应设备在感知测量过程中的操作参数。
在一些实施例中,所述N个代理响应设备的所述发送波束列表或所述接收波束列表携带在N个感知波束描述元素中,每个所述感知波束描述元素携带一个所述代理响应设备的所述发送波束列表或所述接收波束列表。
在一些实施例中,所述N个代理响应设备在感知测量过程中的操作参数携带在N个感知测量设置元素中,每个所述感知测量设置元素携带一个所述代理响应设备在感知测量过程中的操作参数。
在一些实施例中,所述N基于参与所述感知测量的所述代理响应设备的数量设置。
在一些实施例中,所述代理报告帧携带有第四信息,所述第四信息携带有用于辅助解析感知报告的信息。
在一些实施例中,所述第四信息包括如下子字段中的至少一种:
距离子字段;
多普勒子字段;
发送波束方向子字段;
接收波束方向子字段。
在一些实施例中,所述第四信息携带在所述第二频段的感知报告元素中。
请继续参阅图25所示的基于代理的感知装置的结构框图,所述装置包括:
所述第二接收模块,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量;
所述第二发送模块,用于向所述代理发起设备发送代理响应帧;
其中,所述代理发起设备是支持所述第一频段且不支持所述第二频段的设备。
在一些实施例中,所述代理请求帧携带有第一信息,所述第一信息用于指示所述第一感知类型;
其中,所述第一感知类型是多种感知类型中的一种,所述多种感知类型包括单基感知。
在一些实施例中,所述第一信息包括如下字段或元素中的至少一种:
感知类型字段;
单基感知字段;
感知代理参数元素中的至少一个子字段。
在一些实施例中,所述第一信息包括所述感知类型字段,所述感知类型字段的不同取值对应不同的感知类型。
在一些实施例中,在所述感知类型字段是第一取值时,所述第一感知类型是所述协作单基感知;
在所述感知类型字段是第二取值时,所述第一感知类型是所述协作双基感知;
在所述感知类型字段是第三取值时,所述第一感知类型是所述双基感知;
在所述感知类型字段是第四取值时,所述第一感知类型是所述多基感知;
在所述感知类型字段是第五取值时,所述第一感知类型是所述单基感知。
在一些实施例中,所述第一信息包括所述单基感知字段;
在所述单基感知字段为第一取值时,所述第一感知类型不是所述单基感知;
在所述单基感知字段是第二取值时,所述第一感知类型是所述单基感知。
在一些实施例中,所述第一信息还包括所述感知类型字段;
在所述单基感知字段是所述第一取值时,所述第一感知类型为所述感知类型字段的取值指示的感知类型。
在一些实施例中,所述第一信息包括所述感知类型字段和所述感知代理参数元素中的至少一个子字段;
在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段为所述子字段对应的预设取值时,所述第一感知类型是所述单基感知;
在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段不是所述子字段对应的所述预设取值时,所述第一感知类型是所述协作单基感知;
在所述感知类型字段是所述第二取值时,所述第一感知类型是所述协作双基感知;
在所述感知类型字段是所述第三取值时,所述第一感知类型是所述双基感知;
在所述感知类型字段是所述第四取值时,所述第一感知类型是所述多基感知。
在一些实施例中,所述感知类型字段携带在所述第二频段对应的感知测量设置元素中;所述感知测量设置元素用于指示感知测量过程的操作参数;
所述单基感知类型字段携带在所述第二频段对应的感知代理参数元素中;所述感知代理参数元素用于指示感知测量过程的操作参数;
所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中。
在一些实施例中,所述感知类型字段携带在所述第二频段对应的所述感知测量设置元素中的感知测量设置控制字段中;
所述单基感知类型字段携带在所述第二频段对应的所述感知代理参数元素中的感知代理参数控制字段中;
所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中的所述感知代理参数控制字段中。
在一些实施例中,所述代理请求帧携带有第二信息,所述第二信息用于指示所述第一感知范围。
在一些实施例中,所述第二信息包括如下字段中的至少一种:
目标方向字段,用于指示目标相对于所述代理发起设备的位置信息;
位置信息字段,用于指示所述代理发起设备的位置信息;
同伴方向字段,用于指示所述代理发起设备测量得到的所述代理响应设备的位置信息。
在一些实施例中,所述第二信息还包括以下附加字段中的至少一种:
目标方向存在字段;所述目标方向存在字段用于指示所述目标方向字段是否存在;
位置信息存在字段;所述位置信息存在字段用于指示所述位置信息字段是否存在;
同伴方向存在字段;所述同伴方向存在字段用于指示所述同伴方向字段是否存在。
在一些实施例中,在所述目标方向存在字段为第一取值时,所述目标方向字段不存在;
在所述目标方向存在字段为第二取值时,所述目标方向字段存在;
在所述位置信息存在字段为第一取值时,所述位置信息字段不存在;
在所述位置信息存在字段为第二取值时,所述位置信息字段存在;
在所述同伴方向存在字段为第一取值时,所述同伴方向字段不存在;
在所述同伴方向存在字段为第二取值时,所述同伴方向字段存在。
在一些实施例中,所述目标方向字段包括如下子字段中的至少一种:
目标方位角子字段;所述目标方位角字段用于表征目标相对于所述代理发起设备的方位角;
方位角跨度子字段;所述方位角跨度子字段用于表征所述方位角的跨度大小;
目标海拔角子字段;所述目标海拔角子字段用于表征所述目标相对于所述代理发起设备的海拔角;
海拔角跨度子字段;所述海拔角跨度子字段用于表征所述海拔角的跨度大小;
目标距离子字段;所述目标距离子字段用于表征所述目标相对于所述代理发起设备的距离;
距离跨度子字段;所述距离跨度子字段用于表征所述距离的跨度大小;
在一些实施例中,所述同伴方向字段包括如下子字段中的至少一种:
方位角子字段;所述方位角子字段用于表征由所述代理发起设备测量得到的代理响应设备的方位角方向;
海拔角子字段;所述海拔角子字段用于表征由所述代理发起设备测量得到的代理响应设备的海拔角方向;
距离子字段;所述距离子字段用于表征由所述代理发起设备测量得到的代理响应设备的距离。
在一些实施例中,所述附加字段携带在感知代理参数控制字段中。
在一些实施例中,所述第二信息携带在所述第二频段对应的感知代理参数元素中。
在一些实施例中,第二发送模块22可以基于通信设备中的发射器实现,第二接收模块21可以基于通信设备中的接收器实现,各个帧可以基于通信设备中的处理器生成、处理以及解析。
图26示出了本申请一个示例性实施例提供的通信设备的结构示意图。通信设备可以是AP、STA、代理发起设备、代理响应设备、感知发起设备、感知响应设备、DMG代理发起设备、DMG代理响应设备、DMG感知发起设备、DMG感知响应设备的至少之一。
示例性的,通信设备800包括:处理器801、接收器802、发射器803、存储器804和总线805。
处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
其中,通过处理器801可以实现上述实施例中的基于代理的感知方法的各步骤,比如生成代理请求帧、代理响应帧、代理报告帧等。
接收器802和发射器803可以实现为一个通信组件,该通信组件可以是一块通信芯片。
其中,接收器802可以实现上述实施例中的基于代理的感知方法中的各个发送步骤,发射器803可以实现上述实施例中的基于代理的感知方法中的各个接收步骤。
存储器804通过总线805与处理器801相连。存储器804可用于存储至少一个可执行指令,处理器801用于执行该至少一个可执行指令,以实现上述方法实施例中的各个步骤。
此外,存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本领域技术人员可以理解,图26中示出的结构并不构成对通信设备800的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
在一些实施例中,本申请实施例提供了一种计算机可读存储介质。所述计算机可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行,以使得通信设备实现如上所述的基于代理的感知方法。
在一些实施例中,本申请实施例提供了一种芯片。所述芯片包括可编程逻辑电路或程序,所述芯片用于基于所述可编程逻辑电路或程序,以使得通信设备实现如上所述的基于代理的感知方法。
在一些实施例中,本申请实施例提供了一种计算机程序产品。所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,通信设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述通信设备执行如上所述的基于代理的感知方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (61)

  1. 一种基于代理的感知方法,其特征在于,所述方法由支持第一频段的代理发起设备执行,所述方法包括:
    向代理响应设备发送代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量,以及向所述代理响应设备指示第一感知类型和/或第一感知范围;
    接收所述代理响应设备发送的代理响应帧;
    其中,所述代理响应设备是同时支持所述第一频段和所述第二频段的设备。
  2. 根据权利要求1所述的方法,其特征在于,所述代理请求帧携带有第一信息,所述第一信息用于指示所述第一感知类型;
    其中,所述第一感知类型是多种感知类型中的一种,所述多种感知类型包括单基感知。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括如下字段或元素中的至少一种:
    感知类型字段;
    单基感知字段;
    感知代理参数元素中的至少一个子字段。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述感知类型字段,所述感知类型字段的不同取值对应不同的感知类型。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述感知类型字段是第一取值时,所述第一感知类型是所述协作单基感知;
    在所述感知类型字段是第二取值时,所述第一感知类型是所述协作双基感知;
    在所述感知类型字段是第三取值时,所述第一感知类型是所述双基感知;
    在所述感知类型字段是第四取值时,所述第一感知类型是所述多基感知;
    在所述感知类型字段是第五取值时,所述第一感知类型是所述单基感知。
  6. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述单基感知字段;
    在所述单基感知字段为第一取值时,所述第一感知类型不是所述单基感知;
    在所述单基感知字段是第二取值时,所述第一感知类型是所述单基感知。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信息还包括所述感知类型字段;
    在所述单基感知字段是所述第一取值时,所述第一感知类型为所述感知类型字段的取值指示的感知类型。
  8. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述感知类型字段和所述感知代理参数元素中的至少一个子字段;
    在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段为所述子字段对应的预设取值时,所述第一感知类型是所述单基感知;
    在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段不是所述子字段对应的所述预设取值时,所述第一感知类型是所述协作单基感知;
    在所述感知类型字段是所述第二取值时,所述第一感知类型是所述协作双基感知;
    在所述感知类型字段是所述第三取值时,所述第一感知类型是所述双基感知;
    在所述感知类型字段是所述第四取值时,所述第一感知类型是所述多基感知。
  9. 根据权利要求2至8任一所述的方法,其特征在于,
    所述感知类型字段携带在所述第二频段对应的感知测量设置元素中;所述感知测量设置元素用于指示感知测量过程的操作参数;
    所述单基感知类型字段携带在所述第二频段对应的感知代理参数元素中;所述感知代理参数元素用于指示感知测量过程的操作参数;
    所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中。
  10. 根据权利要求9所述的方法,其特征在于,
    所述感知类型字段携带在所述第二频段对应的所述感知测量设置元素中的感知测量设置控制字段中;
    所述单基感知类型字段携带在所述第二频段对应的所述感知代理参数元素中的感知代理参数控制字段中;
    所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素 中的所述感知代理参数控制字段中。
  11. 根据权利要求1所述的方法,其特征在于,所述代理请求帧携带有第二信息,所述第二信息用于指示所述第一感知范围。
  12. 根据权利要求11所述的方法,其特征在于,所述第二信息包括如下字段中的至少一种:
    目标方向字段,用于指示目标相对于所述代理发起设备的位置信息;
    位置信息字段,用于指示所述代理发起设备的位置信息;
    同伴方向字段,用于指示所述代理发起设备测量得到的所述代理响应设备的位置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二信息还包括以下附加字段中的至少一种:
    目标方向存在字段;所述目标方向存在字段用于指示所述目标方向字段是否存在;
    位置信息存在字段;所述位置信息存在字段用于指示所述位置信息字段是否存在;
    同伴方向存在字段;所述同伴方向存在字段用于指示所述同伴方向字段是否存在。
  14. 根据权利要求13所述的方法,其特征在于,
    在所述目标方向存在字段为第一取值时,所述目标方向字段不存在;
    在所述目标方向存在字段为第二取值时,所述目标方向字段存在;
    在所述位置信息存在字段为第一取值时,所述位置信息字段不存在;
    在所述位置信息存在字段为第二取值时,所述位置信息字段存在;
    在所述同伴方向存在字段为第一取值时,所述同伴方向字段不存在;
    在所述同伴方向存在字段为第二取值时,所述同伴方向字段存在。
  15. 根据权利要求12至14任一所述的方法,其特征在于,所述目标方向字段包括如下子字段中的至少一种:
    目标方位角子字段;所述目标方位角字段用于表征目标相对于所述代理发起设备的方位角;
    方位角跨度子字段;所述方位角跨度子字段用于表征所述方位角的跨度大小;
    目标海拔角子字段;所述目标海拔角子字段用于表征所述目标相对于所述代理发起设备的海拔角;
    海拔角跨度子字段;所述海拔角跨度子字段用于表征所述海拔角的跨度大小;
    目标距离子字段;所述目标距离子字段用于表征所述目标相对于所述代理发起设备的距离;
    距离跨度子字段;所述距离跨度子字段用于表征所述距离的跨度大小。
  16. 根据权利要求12至14任一所述的方法,其特征在于,所述同伴方向字段包括如下子字段中的至少一种:
    方位角子字段;所述方位角子字段用于表征由所述代理发起设备测量得到的代理响应设备的方位角方向;
    海拔角子字段;所述海拔角子字段用于表征由所述代理发起设备测量得到的代理响应设备的海拔角方向;
    距离子字段;所述距离子字段用于表征由所述代理发起设备测量得到的代理响应设备的距离。
  17. 根据权利要求13所述的方法,其特征在于,所述附加字段携带在感知代理参数控制字段中。
  18. 根据权利要求11至17任一所述的方法,其特征在于,所述第二信息携带在所述第二频段对应的感知代理参数元素中。
  19. 根据权利要求1所述的方法,其特征在于,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
  20. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述代理响应设备发送的代理报告帧;所述代理报告帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第三信息用于指示如下信息中的至少一种:
    N个代理响应设备的发送波束列表或接收波束列表;
    N个代理响应设备在感知测量过程中的操作参数。
  22. 根据权利要求21所述的方法,其特征在于,所述N个代理响应设备的所述发送波束列表或所述接收波束列表携带在N个感知波束描述元素中,每个所述感知波束描述元素携带一个所述代理响应设备的所述发送波束列表或所述接收波束列表。
  23. 根据权利要求21所述的方法,其特征在于,所述N个代理响应设备在感知测量过程中的操作参数携带在N个感知测量设置元素中,每个所述感知测量设置元素携带一个所述代理响应设备在感知测量过程中的操作参数。
  24. 根据权利要求21至23任一所述的方法,其特征在于,所述N基于参与所述感知测量的所述代理响应设备的数量设置。
  25. 根据权利要求20所述的方法,其特征在于,所述代理报告帧携带有第四信息,所述第四信息携带有用于辅助解析感知报告的信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第四信息包括如下子字段中的至少一种:
    距离子字段;
    多普勒子字段;
    发送波束方向子字段;
    接收波束方向子字段。
  27. 根据权利要求25或26所述的方法,其特征在于,所述第四信息携带在所述第二频段的感知报告元素中。
  28. 一种基于代理的感知方法,其特征在于,所述方法由支持第一频段和第二频段的代理响应设备执行,所述方法包括:
    接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量;
    向所述代理发起设备发送代理响应帧,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    向所述代理发起设备发送代理报告帧;所述代理报告帧携带有所述第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第三信息用于指示如下信息中的至少一种:
    N个代理响应设备的发送波束列表或接收波束列表;
    N个代理响应设备在感知测量过程中的操作参数。
  31. 根据权利要求30所述的方法,其特征在于,所述N个代理响应设备的所述发送波束列表或所述接收波束列表携带在N个感知波束描述元素中,每个所述感知波束描述元素携带一个所述代理响应设备的所述发送波束列表或所述接收波束列表。
  32. 根据权利要求30所述的方法,其特征在于,所述N个代理响应设备在感知测量过程中的操作参数携带在N个感知测量设置元素中,每个所述感知测量设置元素携带一个所述代理响应设备在感知测量过程中的操作参数。
  33. 根据权利要求30至32任一所述的方法,其特征在于,所述N基于参与所述感知测量的所述代理响应设备的数量设置。
  34. 根据权利要求29所述的方法,其特征在于,所述代理报告帧携带有第四信息,所述第四信息携带有用于辅助解析感知报告的信息。
  35. 根据权利要求34所述的方法,其特征在于,所述第四信息包括如下子字段中的至少一种:
    距离子字段;
    多普勒子字段;
    发送波束方向子字段;
    接收波束方向子字段。
  36. 根据权利要求34或35所述的方法,其特征在于,所述第四信息携带在所述第二频段的感知报告元素中。
  37. 一种基于代理的感知方法,其特征在于,所述方法由支持第一频段和第二频段的代理响应设备执行,所述方法包括:
    接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量;
    向所述代理发起设备发送代理响应帧;
    其中,所述代理发起设备是支持所述第一频段且不支持所述第二频段的设备。
  38. 根据权利要求37所述的方法,其特征在于,所述代理请求帧携带有第一信息,所述第一信息用于指示所述第一感知类型;
    其中,所述第一感知类型是多种感知类型中的一种,所述多种感知类型包括单基感知。
  39. 根据权利要求38所述的方法,其特征在于,所述第一信息包括如下字段或元素中的至少一种:
    感知类型字段;
    单基感知字段;
    感知代理参数元素中的至少一个子字段。
  40. 根据权利要求39所述的方法,其特征在于,所述第一信息包括所述感知类型字段,所述感知类型 字段的不同取值对应不同的感知类型。
  41. 根据权利要求40所述的方法,其特征在于,
    在所述感知类型字段是第一取值时,所述第一感知类型是所述协作单基感知;
    在所述感知类型字段是第二取值时,所述第一感知类型是所述协作双基感知;
    在所述感知类型字段是第三取值时,所述第一感知类型是所述双基感知;
    在所述感知类型字段是第四取值时,所述第一感知类型是所述多基感知;
    在所述感知类型字段是第五取值时,所述第一感知类型是所述单基感知。
  42. 根据权利要求39所述的方法,其特征在于,所述第一信息包括所述单基感知字段;
    在所述单基感知字段为第一取值时,所述第一感知类型不是所述单基感知;
    在所述单基感知字段是第二取值时,所述第一感知类型是所述单基感知。
  43. 根据权利要求42所述的方法,其特征在于,所述第一信息还包括所述感知类型字段;
    在所述单基感知字段是所述第一取值时,所述第一感知类型为所述感知类型字段的取值指示的感知类型。
  44. 根据权利要求39所述的方法,其特征在于,所述第一信息包括所述感知类型字段和所述感知代理参数元素中的至少一个子字段;
    在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段为所述子字段对应的预设取值时,所述第一感知类型是所述单基感知;
    在所述感知类型字段是所述第一取值,且所述感知代理参数元素中的至少一个子字段不是所述子字段对应的所述预设取值时,所述第一感知类型是所述协作单基感知;
    在所述感知类型字段是所述第二取值时,所述第一感知类型是所述协作双基感知;
    在所述感知类型字段是所述第三取值时,所述第一感知类型是所述双基感知;
    在所述感知类型字段是所述第四取值时,所述第一感知类型是所述多基感知。
  45. 根据权利要求38至44任一所述的方法,其特征在于,
    所述感知类型字段携带在所述第二频段对应的感知测量设置元素中;所述感知测量设置元素用于指示感知测量过程的操作参数;
    所述单基感知类型字段携带在所述第二频段对应的感知代理参数元素中;所述感知代理参数元素用于指示感知测量过程的操作参数;
    所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中。
  46. 根据权利要求45所述的方法,其特征在于,
    所述感知类型字段携带在所述第二频段对应的所述感知测量设置元素中的感知测量设置控制字段中;
    所述单基感知类型字段携带在所述第二频段对应的所述感知代理参数元素中的感知代理参数控制字段中;
    所述感知代理参数元素中的所述至少一个子字段携带在所述第二频段对应的所述感知代理参数元素中的所述感知代理参数控制字段中。
  47. 根据权利要求37所述的方法,其特征在于,所述代理请求帧携带有第二信息,所述第二信息用于指示所述第一感知范围。
  48. 根据权利要求47所述的方法,其特征在于,所述第二信息包括如下字段中的至少一种:
    目标方向字段,用于指示目标相对于所述代理发起设备的位置信息;
    位置信息字段,用于指示所述代理发起设备的位置信息;
    同伴方向字段,用于指示所述代理发起设备测量得到的所述代理响应设备的位置信息。
  49. 根据权利要求48所述的方法,其特征在于,所述第二信息还包括以下附加字段中的至少一种:
    目标方向存在字段;所述目标方向存在字段用于指示所述目标方向字段是否存在;
    位置信息存在字段;所述位置信息存在字段用于指示所述位置信息字段是否存在;
    同伴方向存在字段;所述同伴方向存在字段用于指示所述同伴方向字段是否存在。
  50. 根据权利要求49所述的方法,其特征在于,
    在所述目标方向存在字段为第一取值时,所述目标方向字段不存在;
    在所述目标方向存在字段为第二取值时,所述目标方向字段存在;
    在所述位置信息存在字段为第一取值时,所述位置信息字段不存在;
    在所述位置信息存在字段为第二取值时,所述位置信息字段存在;
    在所述同伴方向存在字段为第一取值时,所述同伴方向字段不存在;
    在所述同伴方向存在字段为第二取值时,所述同伴方向字段存在。
  51. 根据权利要求48至50任一所述的方法,其特征在于,所述目标方向字段包括如下子字段中的至少一种:
    目标方位角子字段;所述目标方位角字段用于表征目标相对于所述代理发起设备的方位角;
    方位角跨度子字段;所述方位角跨度子字段用于表征所述方位角的跨度大小;
    目标海拔角子字段;所述目标海拔角子字段用于表征所述目标相对于所述代理发起设备的海拔角;
    海拔角跨度子字段;所述海拔角跨度子字段用于表征所述海拔角的跨度大小;
    目标距离子字段;所述目标距离子字段用于表征所述目标相对于所述代理发起设备的距离;
    距离跨度子字段;所述距离跨度子字段用于表征所述距离的跨度大小。
  52. 根据权利要求48至50任一所述的方法,其特征在于,所述同伴方向字段包括如下子字段中的至少一种:
    方位角子字段;所述方位角子字段用于表征由所述代理发起设备测量得到的代理响应设备的方位角方向;
    海拔角子字段;所述海拔角子字段用于表征由所述代理发起设备测量得到的代理响应设备的海拔角方向;
    距离子字段;所述距离子字段用于表征由所述代理发起设备测量得到的代理响应设备的距离。
  53. 根据权利要求49所述的方法,其特征在于,所述附加字段携带在感知代理参数控制字段中。
  54. 根据权利要求47至53任一所述的方法,其特征在于,所述第二信息携带在所述第二频段对应的感知代理参数元素中。
  55. 一种基于代理的感知装置,其特征在于,所述装置包括:
    第一发送模块,用于向代理响应设备发送代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量,以及向所述代理响应设备指示第一感知类型和/或第一感知范围;
    第一接收模块,用于接收所述代理响应设备发送的代理响应帧;
    其中,所述代理响应设备是同时支持所述第一频段和所述第二频段的设备。
  56. 一种基于代理的感知装置,其特征在于,所述装置包括:
    第二接收模块,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的感知测量;
    第二发送模块,用于向所述代理发起设备发送代理响应帧,所述代理响应帧携带有第三信息,所述第三信息携带有用于辅助解析感知报告的信息。
  57. 一种基于代理的感知装置,其特征在于,所述装置包括:
    第二接收模块,用于接收代理发起设备发送的代理请求帧,所述代理请求帧用于请求所述代理响应设备代理执行第二频段的第一感知类型,和/或,第一感知范围的感知测量;
    第二发送模块,用于向所述代理发起设备发送代理响应帧;
    其中,所述代理发起设备是支持所述第一频段且不支持所述第二频段的设备。
  58. 一种通信设备,其特征在于,所述通信设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述通信设备实现如权利要求1至36任一所述的基于代理的感知方法,或,实现如权利要求37至54任一所述的基于代理的感知方法。
  59. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以使得通信设备实现如权利要求1至36任一所述的基于代理的感知方法,或,实现如权利要求37至54任一所述的基于代理的感知方法。
  60. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于基于所述可编程逻辑电路或程序,使得通信设备实现如权利要求1至36任一所述的基于代理的感知方法,或,实现如权利要求37至54任一所述的基于代理的感知方法。
  61. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,通信设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述通信设备执行如权利要求1至36任一所述的基于代理的感知方法,或,实现如权利要求37至54任一所述的基于代理的感知方法。
PCT/CN2022/136379 2022-12-02 2022-12-02 基于代理的感知方法、装置、设备及存储介质 WO2024113385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136379 WO2024113385A1 (zh) 2022-12-02 2022-12-02 基于代理的感知方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136379 WO2024113385A1 (zh) 2022-12-02 2022-12-02 基于代理的感知方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024113385A1 true WO2024113385A1 (zh) 2024-06-06

Family

ID=91322840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136379 WO2024113385A1 (zh) 2022-12-02 2022-12-02 基于代理的感知方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024113385A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200359248A1 (en) * 2019-06-21 2020-11-12 Bahareh Sadeghi Wlan sensing frame exchange protocol
CN113747461A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种感知目标物体的方法及装置
CN114501346A (zh) * 2020-11-11 2022-05-13 华为技术有限公司 感知信号传输方法和装置
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
CN114760640A (zh) * 2021-01-08 2022-07-15 华为技术有限公司 无线局域网感知方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200359248A1 (en) * 2019-06-21 2020-11-12 Bahareh Sadeghi Wlan sensing frame exchange protocol
CN113747461A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种感知目标物体的方法及装置
CN114501346A (zh) * 2020-11-11 2022-05-13 华为技术有限公司 感知信号传输方法和装置
CN114760640A (zh) * 2021-01-08 2022-07-15 华为技术有限公司 无线局域网感知方法及装置
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置

Similar Documents

Publication Publication Date Title
US20210212150A1 (en) Method and apparatus for multi-link operations
WO2022033144A1 (zh) 多链路连接建立的方法、终端、网络接入设备及存储介质
US20230388778A1 (en) Wireless communication method and device
WO2022002265A1 (zh) 探测mld的请求和响应方法及站点,接入点
US9609579B2 (en) Systems and methods for sharing scanning information
WO2024113385A1 (zh) 基于代理的感知方法、装置、设备及存储介质
WO2023206110A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024113386A1 (zh) 基于代理的感知方法、装置、设备及存储介质
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2023245664A1 (zh) 无线通信的方法和设备
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024040612A1 (zh) 无线通信的方法和设备
WO2024036643A1 (zh) 自定义标识符的获取和使用方法、装置、设备及存储介质
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
US9894635B2 (en) Location configuration information
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备
WO2023039798A1 (zh) 无线通信的方法和设备
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023130384A1 (zh) 感知上报方法和设备
WO2023093747A1 (zh) 一种通信方法及装置
WO2023231707A1 (zh) 一种用于感知的方法和装置
WO2023185342A1 (zh) 测量方法及测量装置
WO2023130571A1 (zh) 无线通信的方法及设备