WO2023039798A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023039798A1
WO2023039798A1 PCT/CN2021/118811 CN2021118811W WO2023039798A1 WO 2023039798 A1 WO2023039798 A1 WO 2023039798A1 CN 2021118811 W CN2021118811 W CN 2021118811W WO 2023039798 A1 WO2023039798 A1 WO 2023039798A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
measurement
frame
measurement setting
action
Prior art date
Application number
PCT/CN2021/118811
Other languages
English (en)
French (fr)
Inventor
黄磊
罗朝明
高宁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/118811 priority Critical patent/WO2023039798A1/zh
Priority to CN202180098581.5A priority patent/CN117397264A/zh
Publication of WO2023039798A1 publication Critical patent/WO2023039798A1/zh
Priority to US18/591,843 priority patent/US20240248167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a method and device for wireless communication.
  • Sensing measurement is a functional enhancement of the 802.11 protocol proposed by the 802.11bf standard. It measures and perceives the surrounding environment through wireless signals, so that it can complete the detection of indoor intrusion, movement, fall, etc., gesture recognition And many functions such as space three-dimensional image establishment.
  • the present application provides a wireless communication method and device, which can realize the establishment of perception measurement settings.
  • a wireless communication method including: a first device receiving at least one measurement setting identifier sent by a second device, where each measurement setting identifier corresponds to a set of operating parameters used for sensing measurement.
  • a wireless communication method including: a second device sends at least one measurement setting identifier to at least one first device, where each measurement setting identifier corresponds to a set of operating parameters used for sensing measurement.
  • a wireless communication method including: a third device sends at least one measurement setting to at least one device, wherein each measurement setting includes a measurement setting identifier and a set of operating parameters.
  • a wireless communication device configured to perform the method in any one of the above first to third aspects or in each implementation manner thereof.
  • the device includes a functional module for executing any one of the first aspect to the third aspect or the method in each implementation manner thereof.
  • a wireless communication device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute any one of the above first to third aspects or the methods in each implementation manner.
  • a wireless communication device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first to third aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to third aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute any one of the above first to third aspects or the method in each implementation manner thereof.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner.
  • the device when the measurement setting is established, the device can interact with the measurement setting identification corresponding to the measurement setting to be established, wherein the measurement setting identification corresponds to a set of operating parameters used for perception measurement, without carrying this set of operations parameters, so that the device can realize the establishment of the measurement setting based on the operating parameter corresponding to the measurement setting identification.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a Wi-Fi sensing process.
  • Fig. 3 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 4 is a schematic interaction diagram of a method for establishing a measurement setting according to an embodiment of the present application.
  • Fig. 5 is a schematic interaction diagram of a method for establishing a measurement setting according to another embodiment of the present application.
  • Fig. 6 is an exemplary format diagram of a neighbor report element carrying awareness capability information according to an embodiment of the present application.
  • FIG. 7 is an exemplary format diagram of a radio measurement enablement capability element carrying awareness capability information according to an embodiment of the present application.
  • Fig. 8 is an exemplary format diagram of a simplified neighbor report element carrying awareness capability information according to an embodiment of the present application.
  • Fig. 9 is an exemplary format diagram of an extended capability element carrying perception capability information according to an embodiment of the present application.
  • Fig. 10 is an exemplary format diagram of an extended capability element carrying perception capability information according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a frame format carrying at least one measurement setting according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the format of a perception session establishment request frame according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of the format of a measurement setting establishment request frame according to an embodiment of the present application.
  • Fig. 14 is a schematic diagram of the format of a perception session establishment response frame according to an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the format of a measurement setup establishment response frame according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of the format of a perception session establishment request frame carrying at least one measurement setting.
  • Fig. 17 is a schematic diagram of the format of a measurement setting establishment request frame carrying at least one measurement setting.
  • Fig. 18 is a schematic block diagram of a wireless communication device provided according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of another wireless communication device provided according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of another wireless communication device provided according to an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 23 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • Wireless Local Area Networks Wireless Local Area Networks, WLAN
  • Wireless Fidelity Wireless Fidelity, WiFi
  • other communication systems for example: Wireless Local Area Networks (Wireless Local Area Networks, WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 accessing a network through the access point 110.
  • Access Point Access Point
  • STA station
  • an AP is also called an AP STA, that is, in a sense, an AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • the communication in the communication system 100 may be a communication between an AP and a non-AP STA, or a communication between a non-AP STA and a non-AP STA, or a communication between an STA and a peer STA, where the peer STA It can refer to the device that communicates with the STA peer.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router) with a WiFi chip.
  • the role of the STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA, and when the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be applied to the equipment in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, etc. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the non-AP STA can support the 802.11be standard.
  • the non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • WLAN wireless local area networks
  • the AP may be a device supporting the 802.11be standard.
  • the AP may also be a device supporting multiple current and future WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device, Wireless devices in industrial control, set-top boxes, wireless devices in self driving, vehicle communication devices, wireless devices in remote medical, wireless devices in smart grid , wireless devices in transportation safety, wireless devices in smart city or wireless devices in smart home, wireless communication chips/ASIC/SOC/etc.
  • the frequency bands supported by the WLAN technology may include but not limited to: low frequency bands (eg 2.4GHz, 5GHz, 6GHz) and high frequency bands (eg 60GHz).
  • low frequency bands eg 2.4GHz, 5GHz, 6GHz
  • high frequency bands eg 60GHz
  • FIG. 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This embodiment of the present application does not include Do limited.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include an access point 110 and a station 120 with a communication function, and the access point 110 and the station 120 may be the specific equipment described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including access points and stations).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • Association Identifier (Association Identifier, AID), used to identify the terminal after establishing association with the access point.
  • Unassociated ID Used to identify a terminal that has not been associated with the access point.
  • MAC Media Access Control
  • the transmission opportunity refers to a period of time, during which a terminal with the transmission opportunity can actively initiate one or more transmissions.
  • WLAN Sensing senses people or objects in the environment by measuring changes in WLAN signals scattered and/or reflected by people or objects. That is to say, WLAN Sensing measures and perceives the surrounding environment through wireless signals, so that it can complete many functions such as detection of intrusion, movement, fall, etc. in the room, gesture recognition, and spatial three-dimensional image establishment.
  • WLAN devices participating in WLAN awareness may include the following roles:
  • Sensing Initiator or Sensing Session Initiator a device that initiates a sensing session and wants to know the sensing results
  • Sensing Responder Sensing Responder
  • Sensing Session Response Device a non-Sensing Initiator device participating in the sensing session
  • Sensing Transmitter or Sensing Signal Transmitter a device that initiates a sensing illumination signal
  • Sensing Receiver or Sensing Signal Receiver a device that receives sensing illumination signal
  • Sensing Processor a device that processes sensing measurement results
  • Sensing Participant including Sensing Initiating Device, Sensing Sending Device and Sensing Receiving Device.
  • a WLAN terminal may have one or more roles in a perception session.
  • a perception initiator device can be only a perception initiator device, a perception sending device, a perception receiving device, or both a perception sending device and a perception receiving device. equipment.
  • STA1 can be a sensing session initiator (Sensing Initiator), a sensing signal receiving device (Sensing Receiver), or a sensing processing device (Sensing processor); STA2 can be a sensing Signal sending equipment (Sensing Transmitter).
  • STA1 may be a sensing session initiator (Sensing Initiator), or a sensing signal transmitting device (Sensing Transmitter); STA2 may be a sensing signal receiving device (Sensing Receiver), or It is a sensing processor.
  • STA1 may be a sensing session initiation device (Sensing Initiator), or a sensing processing device (Sensing processor); STA2 may be a sensing signal receiving device (Sensing Receiver); STA3 may be a Sensing Transmitter.
  • STA1 may be a sensing session initiator (Sensing Initiator), may also be a sensing signal receiving device (Sensing Receiver), or may be a sensing processing device (Sensing processor); STA2 may be A sensing signal sending device (Sensing Transmitter); STA3 may be a sensing signal sending device (Sensing Transmitter).
  • STA1 may be a sensing session initiator (Sensing Initiator), may also be a sensing signal transmitting device (Sensing Transmitter), or may be a sensing processing device (Sensing processor); STA2 may be A sensing signal receiving device (Sensing Receiver); STA3 may be a sensing signal receiving device (Sensing Receiver).
  • STA1 may be a sensing session initiator (Sensing Initiator);
  • STA2 may be a sensing signal receiving device (Sensing Receiver), or a sensing processing device (Sensing processor);
  • STA3 may be A sensing signal sending device (Sensing Transmitter);
  • STA4 may be a sensing signal sending device (Sensing Transmitter).
  • STA1 may be a sensing session initiator (Sensing Initiator), may also be a sensing signal transmitting device (Sensing Transmitter), may also be a sensing signal receiving device (Sensing Receiver), or may It is a sensing processor.
  • Sensing Initiator may also be a sensing signal transmitting device (Sensing Transmitter), may also be a sensing signal receiving device (Sensing Receiver), or may It is a sensing processor.
  • STA1 may be a sensing session initiator (Sensing Initiator); STA2 may be a sensing signal transmitting device (Sensing Transmitter), or a sensing signal receiving device (Sensing Receiver), or It is a sensing processor.
  • Sensing Initiator may be a sensing session initiator (Sensing Initiator); STA2 may be a sensing signal transmitting device (Sensing Transmitter), or a sensing signal receiving device (Sensing Receiver), or It is a sensing processor.
  • STA1 may be a sensing session initiation device (Sensing Initiator), may also be a sensing signal transmitting device (Sensing Transmitter), may also be a sensing signal receiving device (Sensing Receiver), may also be It is a sensing processor (Sensing processor); STA2 can be a sensing signal transmitting device (Sensing Transmitter) or a sensing signal receiving device (Sensing Receiver).
  • STA1 may be a sensing session initiation device (Sensing Initiator), or a sensing processing device (Sensing processor); STA2 may be a sensing signal sending device (Sensing Transmitter), or a Sensing Receiver; STA3 can be a Sensing Transmitter or a Sensing Receiver.
  • there may be multiple sensing types (Sensing Type).
  • the sensing type based on channel state information (Channel State Information, CSI), that is, CSI-based Sensing, the sensing type obtains the sensing measurement result by processing the CSI of the received sensing measurement signal.
  • CSI Channel State Information
  • the sensing type based on the reflection signal that is, Radar-based Sensing. This sensing type obtains the sensing measurement result by processing the reflection signal of the received sensing measurement signal.
  • the WLAN sensing session includes one or more of the following stages: session establishment, sensing measurement, sensing reporting, and session termination.
  • Session establishment phase establish a sensing session, determine the sensing session participants and their roles (including the sensing signal sending device and sensing signal receiving device), determine the operating parameters related to the sensing session, and optionally exchange the parameters between terminals.
  • Perception measurement stage implement perception measurement, the perception signal sending device sends the perception signal to the perception signal receiving device.
  • Sensing reporting stage Reporting measurement results, depending on the application scenario, the sensing signal receiving device may need to report the measurement results to the sensing session initiating device.
  • Session termination phase the terminal stops measuring and terminates the sensing session.
  • the embodiment of the present application provides a solution for establishing the perception measurement setting, which can realize the establishment of the perception measurement setting and is also beneficial to reduce signaling overhead.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3 , the method 200 includes at least part of the following:
  • the first device receives at least one measurement setting identifier sent by the second device, where each measurement setting identifier corresponds to a set of operating parameters used for perception measurement.
  • measurement in this embodiment of the present application is also called perceptual measurement
  • measurement setup (Measurement Setup) is also called perceptual measurement setup
  • measurement setup ID (Measurement Setup ID) is also called perceptual measurement setup ID.
  • the first device is a sensory response device.
  • the method 200 further includes:
  • the second device sends the at least one measurement setting identifier to other sensing response devices.
  • the second device is a cognitive session initiation device, or the second device is a proxy device of the cognitive session initiation device. That is, the sensing session initiating device may initiate the establishment of the measurement setting by itself, or may also initiate the establishment of the measurement setting through the proxy device.
  • the sensing session initiating device may be an access point device, or a non-access point site device
  • the proxy device of the sensing session initiating device may be an access point device, or a non-access point site equipment.
  • each measurement setting identifier is used to identify a measurement setting
  • the measurement setting includes a measurement setting identifier and a set of operating parameters for perceptual measurement, that is, the measurement setting identifier can be used to identify the corresponding operating parameters of the measurement setting.
  • the at least one measurement setting identifier is used to identify at least one measurement setting, and the at least one measurement setting may be a measurement setting requested by the perception session initiating device to establish.
  • the cognitive session initiating device may send the at least one measurement setting identifier to the second device, so that the second device may, based on the at least one measurement
  • the setting identification agent establishes corresponding measurement settings for the awareness session initiating device.
  • the set of operating parameters for sensory measurement includes at least one of the following:
  • the role information of the device in sensing measurement the number of antennas used for sensing measurement, the bandwidth used for sensing measurement, the type of measurement result, the reporting type of measurement result, and the threshold setting information.
  • the perception role information of the device in the perception measurement is one of the following:
  • the device acts as a sensing receiving device in sensing measurements
  • the device acts as a perception sending device in the perception measurement.
  • a device may act as a perception sending device and/or a perception receiving device in a perception measurement.
  • the number of antennas used for sensing measurement may refer to the number of antennas used for performing sensing measurement, and may be any value from 1 to 16, for example.
  • the bandwidth used for the perception measurement may refer to the bandwidth used for performing the perception measurement, for example, it may be 20MHz, 40MHz, 80MHz, 160MHz or 320MHz.
  • the measurement result type may include at least one of the following:
  • CSI Matrix Channel State Information Matrix
  • RSSI received signal strength indication
  • RSSI beam signal-to-noise ratio
  • Beam SNR reduced channel impact Truncated Channel Impulse Response
  • TCIR Signal to Interference plus Noise Ratio
  • SINR Reference Signal Receiving Power
  • RSSQ Reference Signal Receiving Quality
  • SNR signal-to-noise ratio
  • the measurement result reported by the sensing receiving device may be the measurement data obtained by performing sensing measurement, for example, CSI data, RSSI data, etc., or may also be the sensing result obtained by processing the measurement data
  • the perception result can be whether there is a person, and for example, in the scene of person number detection, the perception result can be the number information of people, and for example, in the posture detection scene, the perception result can be gesture information.
  • the reporting types of the measurement results include:
  • the reporting types of the measurement results include:
  • the set of operating parameters for sensing measurement may further include delay time information for delaying reporting of measurement results, for example, may include a minimum delay time and/or a maximum delay time.
  • the minimum delay time may mean that the device needs to report the measurement result after the minimum delay time
  • the maximum delay time may mean that the device needs to report the measurement result before the maximum delay time.
  • the device may perform the short interframe space (short interframe space, SIFS) after the measurement is completed. report later, or, if the report type is delayed report, the device may report after a first time period, wherein the first time period is longer than SIFS.
  • SIFS short interframe space
  • the measurement threshold information includes at least one of the following:
  • Measurement threshold the type of measurement result corresponding to the measurement threshold, whether to report the measurement based on the measurement threshold, the threshold calculation method (such as time reversal resonance energy intensity, scalar difference), the maximum measurement threshold supported by the threshold calculation method, and the minimum threshold supported by the threshold calculation method Measurement Threshold.
  • the threshold calculation method such as time reversal resonance energy intensity, scalar difference
  • the maximum measurement threshold supported by the threshold calculation method the minimum threshold supported by the threshold calculation method Measurement Threshold.
  • the data volume of measurement results is usually relatively large.
  • the Channel State Information (CSI) data of a measurement may reach 4K to 40K bits.
  • the measurement threshold can be set , when the difference between the current perception measurement result and the last perception measurement result is less than the measurement threshold, the device reports the measurement result, otherwise the device does not report the measurement result.
  • one or more measurement settings are pre-stored on the device (including the first device and the second device), that is, the device can learn the correspondence between the measurement setting identifier and the operating parameters used for sensing the measurement.
  • the devices only need to interact with the measurement setting logo to know the operating parameters of the sensing measurement corresponding to the measurement settings to be established, without interacting with specific operating parameters, which helps to reduce the information required for establishing the measurement settings. Reduce overhead, while helping to speed up the process of establishing perception measurements.
  • the one or more measurement configurations are predefined, or may also be preconfigured.
  • the method 200 further includes:
  • the third device sends one or more measurement setups to at least one device, where each measurement setup includes a measurement setup identifier (Measurement Setup ID) and an operating parameter for sensing measurement.
  • each measurement setup includes a measurement setup identifier (Measurement Setup ID) and an operating parameter for sensing measurement.
  • the third device may preconfigure one or more measurement settings for at least one device.
  • the at least one device may cache the one or more measurement settings for subsequent establishment of measurement settings.
  • the third device may be an access point device, or may also be a non-access point station device, which is not limited in this application.
  • the at least one device includes at least one non-AP station device and/or at least one AP device.
  • the at least one device may include the aforementioned first device and second device.
  • the second device and the third device are the same device.
  • the first device and the third device are the same device.
  • the third device may acquire settings of typical operating parameters (such as bandwidth, number of antennas, type of measurement result, threshold, etc.), and further, the third device may notify other devices in the communication system of these typical operating parameter settings in advance. In this way, when the sensing initiating device requests each sensing participating device to participate in the measurement, these operating parameter settings can be directly applied, and specifically, different operating parameter settings can be indicated through different measurement setting identifiers.
  • typical operating parameters such as bandwidth, number of antennas, type of measurement result, threshold, etc.
  • the third device may send one or more measurement settings to the at least one device during a discovery phase.
  • the one or more measurement settings are sent in at least one of the following frames:
  • Beacon frame Beacon
  • Probe Response probe response frame
  • Association Response association response frame
  • Reassociation Response reassociation response frame
  • the second device may send the at least one measurement setting identifier to the first device during a perception establishment phase.
  • the second device may send the at least one measurement setting identifier when establishing the sensing session, or send the at least one measurement setting identifier when establishing the measurement setting.
  • Implementation manner 1 the second device sends the at least one measurement setting identifier to the first device through a first request frame, where the first request frame is used to request establishment of a perception session.
  • the second device when the second device requests to establish the sensing session, it also carries the measurement setting identifier corresponding to the measurement setting requested to be established.
  • the first request frame or session establishment request frame is a session establishment request frame.
  • the first request frame further includes identification information of the sensing session initiating device, such as AID, UID, or MAC address.
  • the first request frame further includes at least one of the following:
  • the second device may indicate one or more application types (Use Case KPI) of the awareness session, and/or, the survival time (time to live) of the awareness session.
  • application types User Case KPI
  • survival time time to live
  • the application type may include but not limited to at least one of the following:
  • People presence detection number of people detection, person position detection, posture detection, vital signs detection, sleep detection.
  • the awareness session may be terminated explicitly, e.g., by ending the awareness session with a sense session end frame, or implicitly, e.g., when the time-to-live of the awareness session is reached , end the perception session.
  • the sensing session initiating device or the proxy device of the sensing session initiating device may simultaneously carry the measurement setting identifier corresponding to the measurement setting requested to be established when establishing the sensing session, without Carrying the specific operation parameters corresponding to the measurement settings is beneficial to reducing the signaling overhead of establishing the measurement settings and speeding up the establishment process of the measurement settings.
  • Implementation manner 2 the second device sends the at least one measurement setting identifier to the first device through a second request frame, where the second request frame is used to request establishment of a measurement setting.
  • the second request frame is also called a measurement setting establishment request frame, which is a perception measurement setting establishment request frame.
  • the second request frame further includes identification information of the sensing session initiating device, such as AID, UID, or MAC address.
  • the sensing session initiating device or the proxy device of the sensing session initiating device may carry the measurement setting identifier corresponding to the measurement setting requested to be established when establishing the measurement setting, instead of carrying
  • the specific operating parameters corresponding to the measurement settings are beneficial to reduce the signaling overhead of establishing the measurement settings and speed up the establishment process of the measurement settings.
  • the second device may send at least one measurement setting identifier through the first request frame and/or the second request frame, where the measurement setting identifier sent through the first request frame and the measurement setting identifier sent through the second request frame
  • the measurement setup IDs can be the same, or they can be different.
  • the method 200 further includes:
  • the first device sends, to the second device, response information for an operating parameter corresponding to the at least one measurement setting identifier.
  • each measurement setting corresponds to a response message, that is, the first device may give feedback at a granularity of the measurement setting, or all the measurement settings may correspond to unified response information.
  • the response information is used to indicate at least one of the following:
  • the reason information that the first device does not agree with the operation parameter corresponding to the at least one measurement setting identifier may include but not limited to at least one of the following:
  • the first device does not support the measurement result type in the operation parameter, the first device does not support the role information in the operation parameter, the first device does not support the bandwidth in the operation parameter, and the first device does not support the operation
  • the number of antennas in the parameter the first device does not support the report type in the operation parameter, and the first device does not support the threshold in the operation parameter.
  • the first device sends to the second device response information for the operation parameter corresponding to the at least one measurement setting identifier through a first response frame, wherein the first response frame is the The response frame for the first request frame.
  • the first response frame or called a session establishment response frame, is a perception session establishment response frame.
  • the first device sends to the second device response information for the operation parameter corresponding to the at least one measurement setting identifier through a second response frame, wherein the second response frame is the The response frame for the second request frame.
  • the second response frame is called a measurement setup setup response frame, and the perception measurement setup setup response frame.
  • the description A method for establishing a measurement setting according to an embodiment of the present application.
  • the steps shown in FIG. 4 correspond to the aforementioned implementation mode 1
  • the steps shown in FIG. 5 correspond to the aforementioned implementation mode 2.
  • the access point device broadcasts one or more measurement settings (including measurement setting 1 and measurement setting 2) through a beacon frame.
  • the measurement setting 1 includes a measurement setting identifier 1 and corresponding operating parameters
  • the measurement setting 2 includes a measurement setting identifier 2 and corresponding operating parameters.
  • the access point device may also send one or more measurement settings through a Probe Response frame (Probe Response), an Association Response frame (Association Response) or a Reassociation Response frame (Reassociation Response).
  • Probe Response Probe Response
  • Association Response Association Response
  • Reassociation Response Reassociation Response
  • Devices such as the first station and the second station receive the beacon frame, acquire the measurement setting 1 and the measurement setting 2, and cache the measurement setting 1 and the measurement setting 2.
  • the first station as the sensing initiating device, wants to establish measurement setting 1.
  • the first station sends a session establishment request frame to the second station.
  • the session establishment request frame includes a measurement setting identifier corresponding to the measurement setting 1, that is, the measurement setting identifier 1, and may also include an identifier of the sensing initiating device.
  • the second device replies a session establishment response frame to the first device, where the session establishment request frame includes response information for measurement setting establishment, such as whether to agree to measurement setting 1 or not.
  • the access point device broadcasts one or more measurement settings (including measurement setting 1 and measurement setting 2) through a beacon frame.
  • the measurement setting 1 includes a measurement setting identifier 1 and corresponding operating parameters
  • the measurement setting 2 includes a measurement setting identifier 2 and corresponding operating parameters.
  • the access point device may also send one or more measurement settings through a Probe Response frame (Probe Response), an Association Response frame (Association Response) or a Reassociation Response frame (Reassociation Response).
  • Probe Response Probe Response
  • Association Response Association Response
  • Reassociation Response Reassociation Response
  • Devices such as the first station and the second station receive the beacon frame, acquire the measurement setting 1 and the measurement setting 2, and cache the measurement setting 1 and the measurement setting 2.
  • the first station sends a session establishment request frame to the second station, where the session establishment request frame is used to request establishment of a sensing session, where the session establishment request frame includes an identifier of the sensing initiation device.
  • the second device replies with a session establishment response frame to the first device.
  • the first site wants to establish measurement setup 1 .
  • the first station sends a measurement setting establishment request frame to the second station.
  • the measurement setting establishment request frame includes a measurement setting identifier corresponding to the measurement setting 1, that is, the measurement setting identifier 1, and may also include an identifier of the sensing initiating device.
  • the second device returns a measurement setting establishment response frame to the first device, where the measurement setting establishment request frame includes response information for measurement setting establishment, such as whether to agree to measurement setting 1 or not.
  • the present application does not limit the order in which the access point device sends measurement settings to the first station, the second station, and other devices.
  • the access point device may send one or more one or more measurement settings, or send one or more measurement settings through unicast or multicast, etc.
  • Figure 4 and Figure 5 only use the access point device to broadcast measurement settings as an example for illustration, but the application is not limited to this.
  • steps (S301, S302, S311 and S312) with the same reference numerals in FIG. 4 and FIG. 5 may be executed simultaneously, or may also be executed separately, and the application does not limit the sequence of execution.
  • devices may exchange perception capability information during a discovery phase.
  • the method 200 further includes:
  • the third device receives the perception capability information sent by at least one device.
  • Sensitivity information of the at least one device may be used to determine the at least one measurement setting.
  • the perception capability information includes at least one of the following:
  • the device supports sensing measurement (or, whether the device supports sensing), whether the device enables sensing capabilities, the role information that the device supports in sensing measurement, the type of measurement results that the device supports reporting, the maximum number of antennas supported by the device, and the maximum bandwidth supported by the device .
  • the perception capability information is carried in at least one of the following elements:
  • Neighbor Report element RM Enabled Capabilities element, Reduced Neighbor Report element, Extended Capabilities element.
  • one or more reserved (reserved) bits in the above elements are used to carry the perception capability information of the device.
  • FIG. 6 is an exemplary format diagram of a neighbor report element carrying awareness information.
  • the neighboring cell report element includes a field of whether to support sensing, which is used to indicate whether the device supports sensing, or whether to support sensing measurement.
  • a value of 1 indicates that the device supports sensing, and a value of 0 indicates that the device does not support sensing.
  • a value of 0 indicates that the device supports sensing, and a value of 1 indicates that the device does not support sensing.
  • FIG. 7 is an exemplary format diagram of a radio measurement enablement capability element carrying awareness capability information.
  • the radio measurement enabling capability element includes a field of whether the sensing capability is enabled, which is used to indicate whether the device has enabled the sensing capability, or whether the device has enabled the sensing measurement capability.
  • a value of 1 indicates that the sensing capability is enabled on the field, and a value of 0 indicates that the sensing capability is not enabled on the device.
  • a value of 0 indicates that the sensing capability is enabled on the field, and a value of 1 indicates that the sensing capability is not enabled on the device.
  • FIG. 8 is an exemplary format diagram of a compact neighbor report element carrying awareness information.
  • the simplified neighbor report element includes a field whether to support sensing, which is used to indicate whether the device supports sensing, or whether to support sensing measurement.
  • a value of 1 indicates that the device supports sensing, and a value of 0 indicates that the device does not support sensing.
  • a value of 0 indicates that the device supports sensing, and a value of 1 indicates that the device does not support sensing.
  • FIG. 9 is an exemplary format diagram of an extended capability element carrying awareness capability information.
  • the extended capability element includes a whether to support sensing field, which is used to indicate whether the device supports sensing, or whether to support sensing measurement.
  • a value of 1 indicates that the device supports sensing, and a value of 0 indicates that the device does not support sensing.
  • a value of 0 indicates that the device supports sensing, and a value of 1 indicates that the device does not support sensing.
  • FIG. 10 is an exemplary format diagram of an extended capability element carrying awareness capability information.
  • the number of bits occupied by each field in FIG. 10 may be determined according to the size of the information that actually needs to be carried, which is not limited in this application.
  • the extended capability element includes at least one of the following fields:
  • Whether to support the perception sending role field used to indicate whether the device supports the role of the perception sending device.
  • a value of 1 indicates that the device supports the role of the sensing sending device
  • a value of 0 indicates that the device does not support the role of the sensing sending device.
  • a value of 0 indicates that the device supports the role of the sensing sending device
  • a value of 1 indicates that the device does not support the role of the sensing sending device.
  • Whether to support sensing receiving role field used to indicate whether the device supports the role of sensing receiving device.
  • a value of 1 indicates that the device supports the role of a sensing receiving device
  • a value of 0 indicates that the device does not support the role of a sensing receiving device.
  • a value of 0 indicates that the device supports the role of a sensing receiving device
  • a value of 1 indicates that the device does not support the role of a sensing receiving device.
  • Whether to support CSI type field used to indicate whether the device supports reporting of CSI type measurement results.
  • a value of 1 indicates that the device supports reporting the measurement result of the CSI type
  • a value of 0 indicates that the device does not support the reporting of the measurement result of the CSI type.
  • a value of 0 indicates that the reporting of the measurement result of the CSI type is supported, and a value of 1 indicates that the reporting of the measurement result of the CSI type is not supported.
  • RSSI type field It is used to indicate whether the device supports reporting the measurement result of RSSI type.
  • a value of 1 indicates that the reporting of the measurement result of the RSSI type is supported, and a value of 0 indicates that the reporting of the measurement result of the RSSI type is not supported.
  • a value of 0 indicates that the reporting of the measurement result of the RSSI type is supported, and a value of 1 indicates that the reporting of the measurement result of the RSSI type is not supported.
  • Whether to support Beam SNR type used to indicate whether the device supports reporting Beam SNR type measurement results.
  • a value of 1 indicates that the measurement result of the Beam SNR type is supported, and a value of 0 indicates that the measurement result of the Beam SNR type is not supported.
  • a value of 0 indicates that the reporting of the Beam SNR type of measurement result is supported, and a value of 1 indicates that the reporting of the Beam SNR type of measurement result is not supported.
  • Whether to support TCIR type field indicates whether the device supports reporting of TCIR type measurement results.
  • a value of 1 indicates that the measurement result of the TCIR type is supported, and a value of 0 indicates that the measurement result of the TCIR type is not supported.
  • a value of 0 indicates that the reporting of the measurement result of the TCIR type is supported, and a value of 1 indicates that the reporting of the measurement result of the TCIR type is not supported.
  • Maximum number of antennas (Max Number of antenna) field: used to indicate the maximum number of antennas supported by the device, for example, 1 to 16 antennas.
  • Maximum bandwidth (Max Bandwidth) field used to indicate the maximum bandwidth supported by the device.
  • 1 means 20MHz
  • 2 means 40MHz
  • 3 means 80MHz
  • 4 means 160MHz
  • 5 means 320MHz.
  • the neighbor report element is included in at least one of the following frames:
  • DMG Beacon Millimeter Wave Device Beacon
  • Authentication Association Response
  • Reassociation Response Improved Time Measurement Request Frame (Fine Timing Measurement Range request)
  • BSS Transition Management Query BSS Transition Management Request
  • BSS Transition Management Response Access to the Network Query Protocol Response frame (ANQP Response).
  • the radio measurement enabling capability element is carried by at least one of the following:
  • the condensed neighbor report element is carried in at least one of the following frames:
  • Beacon frame Beacon
  • probe response frame Probe Response
  • quick start link setup frame FILS Discovery
  • the extended capability element is carried in at least one of the following frames:
  • the third device may indicate at least one measurement setting by using the frame format in FIG. 11 .
  • the frame format may be applicable to any frame among beacon frames, probe response frames, association response frames and reassociation response frames.
  • the frame may include at least one measurement setting identification field and a measurement information field corresponding to each measurement setting identification.
  • the measurement setting identification field is used to indicate the identification of the measurement setting
  • the measurement information field is used to indicate the operating parameter corresponding to the measurement setting identification, or in other words, the operating parameter corresponding to the measurement setting.
  • the measurement information field may include at least one of the following fields:
  • Whether it is a sensing receiving device (Receiver) field used to indicate whether the peer device is used as a sensing receiving device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a sensing sending device (Transmitter) field used to indicate whether the peer device is a sensing sending device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Delayed Report used to indicate whether the peer device delays reporting the measurement result.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a threshold-based measurement (Threshold Based) field: used to indicate whether it is a threshold-based measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Measurement result type indicates the data type of the measurement result.
  • a value of 0 indicates the CSI type
  • a value of 1 indicates the RSSI type
  • a value of 2 indicates the Beam SNR type
  • a value of 3 indicates the TCIR type, and so on.
  • Minimum delay time (Min Delay Time) field: used to indicate that the peer device needs to report the sensing result after the minimum delay time.
  • a value of 0 means 1 SIFS
  • a value of 1 means 2 SIFSs
  • a value of 3 means 4 SIFSs
  • a value of 4 means 8 SIFSs
  • a value of 5 means 1 time unit (Time Unit, TU, generally 1ms)
  • a value of 6 means 2 TUs, and so on.
  • Maximum delay time used to indicate that the peer device needs to report the sensing results before the maximum delay time, and does not report the measurement results exceeding the maximum delay time.
  • the device may discard measurement results exceeding the maximum delay time.
  • the value of the maximum delay time field is 0 for 1 SIFS, 1 for 2 SIFSs, 3 for 4 SIFSs, 4 for 8 SIFSs, and 5 for 1 SIFS TU, a value of 6 means 2 TUs, and so on.
  • Number of antennas field Indicates the number of antennas used for the measurement. For example: 1 to 16 antennas.
  • Bandwidth (bandwidth) field indicates the bandwidth used for measurement.
  • a value of 1 represents 20 MHz
  • a value of 2 represents 40 MHz
  • a value of 3 represents 80 MHz
  • a value of 4 represents 160 MHz
  • a value of 5 represents 320 MHz.
  • Threshold calculation method (Method of Computing) field: used to indicate the calculation method of the threshold.
  • a value of 0 indicates Time-Reversal Resonating Strength (TRRS), a value of 1 indicates Scalar Differential, and so on.
  • TRRS Time-Reversal Resonating Strength
  • Threshold field indicates threshold data.
  • the first request frame is an Action frame or an Action No Ack frame. That is, the perception session establishment request frame can be Action frame or Action No Ack frame.
  • the first response frame is Action frame or Action No Ack frame.
  • the perception session establishment response frame can be Action frame or Action No Ack frame.
  • the second request frame is an Action frame or an Action No Ack frame. That is, the measurement setting establishment request frame can be Action frame or Action No Ack frame.
  • the second response frame is Action frame or Action No Ack frame.
  • the measurement setting establishment response frame can be Action frame or Action No Ack frame.
  • the first request frame, the first response frame, the second request frame and the second response frame may be considered as sensory action frames.
  • At least one field in Action frame or Action No Ack frame can be used to indicate that the action frame or no acknowledgment action frame is a perception session establishment request frame, a perception session establishment response frame, a measurement setting establishment request frame or a measurement setting Create a response frame.
  • the Action frame or Action No Ack frame includes an action domain field
  • the action domain field includes an action category (Category) field, a public action subclass field (Public Acton Field) and a perception subclass field (SENS Subtype), which can jointly indicate that the Action frame or Action No Ack frame is a perception session establishment request frame and a perception session establishment response frame through the value of the action category field, the public action subtype field and the perception subtype field , measurement setting establishment request frame or measurement setting establishment response frame.
  • a value of 4 in the action category field indicates that the frame is a public action frame (Public Action frame), and the public action subcategory field is a reserved value (for example, any value within the range of 46 to 255, and 46 is used as an example below) Indicates that the frame is a sensing action frame, and further indicates that the sensing action frame is a sensing session establishment request frame, sensing session establishment response frame, measurement setting establishment request frame or measurement setting establishment response frame through the value of the sensing subclass.
  • Public Action frame Public Action frame
  • the public action subcategory field is a reserved value (for example, any value within the range of 46 to 255, and 46 is used as an example below) Indicates that the frame is a sensing action frame, and further indicates that the sensing action frame is a sensing session establishment request frame, sensing session establishment response frame, measurement setting establishment request frame or measurement setting establishment response frame through the value of the sensing subclass.
  • the first value of the perception subclass indicates that the perception action frame is a perception session establishment request frame
  • the second value of the perception subclass indicates that the perception action frame is a perception session establishment response frame
  • the perception subclass The value of the third value indicates that the sensing action frame is a measurement setting establishment request frame
  • the value of the sensing subclass is the fourth value indicating that the sensing action frame is a measurement setting establishment response frame, wherein the first value, the The second value, the third value, and the fourth frame are different in pairs.
  • the first value is 0, the second value is 1, the third value is 2, and the fourth value is 3.
  • Fig. 12 is a schematic frame format diagram of a perception session establishment request frame according to an embodiment of the present application.
  • a value of 4 in the action category field indicates that the frame is a public action frame (Public Action frame)
  • a value of 46 in the public action subclass field indicates that the frame is a perception action frame
  • a value of 0 in the perception subclass indicates that the frame is a public action frame.
  • frame is a request frame for the perception session establishment.
  • the perceptual session establishment request frame may further include at least one of the following fields:
  • the perception establishment command (Setup Command) field is used to indicate that the measurement setting in the perception session establishment request frame is requested to be established in a mandatory or suggested manner. As an example, a value of 0 indicates mandatory (Demand), and a value of 1 indicates suggestion (Suggest).
  • Application type field used to indicate the usage type of the awareness session.
  • the value of the application type field is 0 for person presence detection, 1 for person number detection, 2 for person position detection, 3 for posture detection, and 4 for vital sign detection.
  • a value of 5 indicates sleep detection.
  • the Time To Live (Time To Live) field is used to indicate the session survival time. When this time-to-live is reached, the session ends automatically.
  • a value of 1 means 1 minute
  • a value of 2 means 10 minutes
  • a value of 3 means 1 hour
  • a value of 4 means 12 hours, and so on.
  • the Number of Measurements field is used to indicate the number of measurement settings contained in the measurement settings list field
  • the measurement setting field includes a measurement setting identification field and a sensing initiating device identification field.
  • Measurement Setup ID field Indicates the ID of the measurement setup.
  • the sensing initiating device identification field indicates the identification of the sensing initiating device, such as AID or UID.
  • Fig. 13 is a schematic frame format diagram of a measurement setting establishment request frame according to an embodiment of the present application.
  • the value of the action category field is 4, indicating that the frame is a public action frame (Public Action frame)
  • the public action subclass field is 46, indicating that the frame is a perception action frame
  • the value of the perception subclass is 2, indicating that the frame is a public action frame.
  • frame is a measurement setup setup request frame.
  • the measurement setting setup request frame may further include at least one of the following fields:
  • the perception establishment command (Setup Command) field is used to indicate the configuration mode of the measurement setting in the perception session establishment request frame. As an example, a value of 0 indicates mandatory (Demand), and a value of 1 indicates suggestion (Suggest).
  • the measurement setting field includes a measurement setting identification field and a sensing initiating device identification field.
  • Measurement Setup ID field Indicates the ID of the measurement setup.
  • the sensing initiating device identification field indicates the identification of the sensing initiating device, such as AID or UID.
  • Fig. 14 is a schematic frame format diagram of a perception session establishment response frame according to an embodiment of the present application.
  • a value of 4 in the action category field indicates that the frame is a public action frame (Public Action frame)
  • a value of 46 in the public action subclass field indicates that the frame is a perception action frame
  • a value of 1 in the perception subclass indicates the frame.
  • Frame is a Response Frame for Aware Session Establishment.
  • the perception session establishment response frame may include at least one of the following fields:
  • Perceptual setup command (Setup Command) field, used to indicate whether to accept the measurement settings requested in the perceptual session setup request frame.
  • a value of 0 indicates acceptance (Accept), and a value of 1 indicates rejection (Reject).
  • Reason Code field Used to indicate the reason why the device did not agree to the measurement settings in the Aware Session Establishment Request frame.
  • the reason code field exists; otherwise, the reason code field does not exist.
  • a value of 0 indicates that the measurement result type corresponding to the measurement setting requested in the session establishment request is not supported; a value of 1 indicates that the role corresponding to the measurement setting requested in the session establishment request is not supported; a value of 2 indicates that The bandwidth corresponding to the measurement setting requested in the session establishment request is not supported; a value of 3 indicates that the number of antennas corresponding to the measurement setting requested in the session establishment request is not supported.
  • Fig. 15 is a schematic frame format diagram of a measurement setup establishment response frame according to an embodiment of the present application.
  • a value of 4 in the action category field indicates that the frame is a public action frame (Public Action frame)
  • a value of 46 in the public action subclass field indicates that the frame is a perception action frame
  • a value of 3 in the perception subclass indicates that the frame is a public action frame.
  • Frame establishes a response frame for the measurement setup.
  • the measurement setup establishment response frame may further include at least one of the following fields:
  • Perceptual setup command (Setup Command) field, used to indicate whether to accept the measurement setup requested in the measurement setup setup request frame.
  • a value of 0 indicates acceptance (Accept), and a value of 1 indicates rejection (Reject).
  • Reason code field used to indicate the reason why the device does not agree with the measurement settings requested in the measurement settings establishment request frame.
  • the reason code field exists; otherwise, the reason code field does not exist.
  • a value of 0 indicates that the measurement result type corresponding to the measurement setting requested in the session establishment request is not supported; a value of 1 indicates that the role corresponding to the measurement setting requested in the session establishment request is not supported; a value of 2 indicates that The bandwidth corresponding to the measurement setting requested in the session establishment request is not supported; a value of 3 indicates that the number of antennas corresponding to the measurement setting requested in the session establishment request is not supported.
  • the third device may also use the perception session establishment request frame or the measurement setting request frame to carry at least one measurement setting.
  • Fig. 16 is a schematic diagram of a frame format of a perception session establishment request frame carrying at least one measurement setting.
  • a value of 4 in the action category field indicates that the frame is a public action frame (Public Action frame)
  • a value of 46 in the public action subclass field indicates that the frame is a perception action frame
  • a value of 0 in the perception subclass indicates that the frame is a public action frame.
  • frame is a request frame for the perception session establishment.
  • the perception session establishment request frame may include at least one of the following fields:
  • the perception establishment command (Setup Command) field is used to indicate the configuration mode of the measurement setting in the perception session establishment request frame. As an example, a value of 0 indicates mandatory (Demand), and a value of 1 indicates suggestion (Suggest).
  • Application type field used to indicate the usage type of the awareness session.
  • the value of the application type field is 0 for person presence detection, 1 for person number detection, 2 for person position detection, 3 for posture detection, and 4 for vital sign detection.
  • a value of 5 indicates sleep detection.
  • the Time To Live (Time To Live) field is used to indicate the session survival time. When this time-to-live is reached, the session ends automatically.
  • a value of 1 means 1 minute
  • a value of 2 means 10 minutes
  • a value of 3 means 1 hour
  • a value of 4 means 12 hours, and so on.
  • the Number of Measurements field is used to indicate the number of measurement settings contained in the measurement settings list field
  • the measurement setting field is used to indicate the measurement setting identification and corresponding operating parameters.
  • Measurement Setup ID field Indicates the ID of the measurement setup.
  • Whether it is a sensing receiving device (Receiver) field used to indicate whether the peer device is used as a sensing receiving device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a sensing sending device (Transmitter) field used to indicate whether the peer device is a sensing sending device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Delayed Report used to indicate whether the peer device delays reporting the measurement result.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a threshold-based measurement (Threshold Based) field: used to indicate whether it is a threshold-based measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Measurement result type indicates the data type of the measurement result.
  • a value of 0 indicates CSI
  • a value of 1 indicates RSSI
  • a value of 2 indicates Beam SNR
  • a value of 3 indicates TCIR, and so on.
  • Minimum delay time (Min Delay Time) field: used to indicate that the peer device needs to report the sensing result after the minimum delay time.
  • a value of 0 means 1 SIFS
  • a value of 1 means 2 SIFSs
  • a value of 3 means 4 SIFSs
  • a value of 4 means 8 SIFSs
  • a value of 5 means 1 time unit (Time Unit, TU, generally 1ms)
  • a value of 6 means 2 TUs, and so on.
  • Maximum delay time used to indicate that the peer device needs to report the sensing result before the maximum delay time.
  • a value of 0 means 1 SIFS
  • a value of 1 means 2 SIFSs
  • a value of 3 means 4 SIFSs
  • a value of 4 means 8 SIFSs
  • a value of 5 means 1 time unit (Time Unit, TU, generally 1ms)
  • a value of 6 means 2 TUs, and so on.
  • Number of antennas field Indicates the number of antennas used for the measurement. For example: 1 to 16 antennas.
  • Bandwidth (bandwidth) field indicates the bandwidth used for measurement.
  • a value of 1 represents 20 MHz
  • a value of 2 represents 40 MHz
  • a value of 3 represents 80 MHz
  • a value of 4 represents 160 MHz
  • a value of 5 represents 320 MHz.
  • Threshold calculation method (Method of Computing) field: used to indicate the calculation method of the threshold.
  • a value of 0 indicates Time-Reversal Resonating Strength (TRRS), a value of 1 indicates Scalar Differential, and so on.
  • TRRS Time-Reversal Resonating Strength
  • Threshold field indicates threshold data.
  • the sensing initiating device identification field indicates the identification of the sensing initiating device, such as AID or UID.
  • the measurement setting establishment request frame may include at least one of the following fields:
  • the perception setup command (Setup Command) field is used to indicate the configuration mode of the measurement setup in the measurement setup setup request frame. As an example, a value of 0 indicates mandatory (Demand), and a value of 1 indicates suggestion (Suggest).
  • Application type field used to indicate the usage type of the awareness session.
  • the value of the application type field is 0 for person presence detection, 1 for person number detection, 2 for person position detection, 3 for posture detection, and 4 for vital sign detection.
  • a value of 5 indicates sleep detection.
  • the Time To Live (Time To Live) field is used to indicate the session survival time. When this time-to-live is reached, the session ends automatically.
  • a value of 1 means 1 minute
  • a value of 2 means 10 minutes
  • a value of 3 means 1 hour
  • a value of 4 means 12 hours, and so on.
  • the measurement setting field is used to indicate the measurement setting identification and corresponding operating parameters.
  • Measurement Setup ID field Indicates the ID of the measurement setup.
  • Whether it is a sensing receiving device (Receiver) field used to indicate whether the peer device is used as a sensing receiving device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a sensing sending device (Transmitter) field used to indicate whether the peer device is a sensing sending device in the measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Delayed Report used to indicate whether the peer device delays reporting the measurement result.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Whether it is a threshold-based measurement (Threshold Based) field: used to indicate whether it is a threshold-based measurement.
  • a value of 1 means yes, and a value of 0 means no; or, a value of 0 means yes, and a value of 1 means no.
  • Measurement result type indicates the data type of the measurement result.
  • a value of 0 indicates CSI
  • a value of 1 indicates RSSI
  • a value of 2 indicates Beam SNR
  • a value of 3 indicates TCIR, and so on.
  • Minimum delay time (Min Delay Time) field: used to indicate that the peer device needs to report the sensing result after the minimum delay time.
  • a value of 0 means 1 SIFS
  • a value of 1 means 2 SIFSs
  • a value of 3 means 4 SIFSs
  • a value of 4 means 8 SIFSs
  • a value of 5 means 1 time unit (Time Unit, TU, generally 1ms)
  • a value of 6 means 2 TUs, and so on.
  • Maximum delay time used to indicate that the peer device needs to report the sensing result before the maximum delay time.
  • a value of 0 means 1 SIFS
  • a value of 1 means 2 SIFSs
  • a value of 3 means 4 SIFSs
  • a value of 4 means 8 SIFSs
  • a value of 5 means 1 time unit (Time Unit, TU, generally 1ms)
  • a value of 6 means 2 TUs, and so on.
  • Number of antennas field Indicates the number of antennas used for the measurement. For example: 1 to 16 antennas.
  • Bandwidth (bandwidth) field indicates the bandwidth used for measurement.
  • a value of 1 represents 20 MHz
  • a value of 2 represents 40 MHz
  • a value of 3 represents 80 MHz
  • a value of 4 represents 160 MHz
  • a value of 5 represents 320 MHz.
  • Threshold calculation method (Method of Computing) field: used to indicate the calculation method of the threshold.
  • a value of 0 indicates Time-Reversal Resonating Strength (TRRS), a value of 1 indicates Scalar Differential, and so on.
  • TRRS Time-Reversal Resonating Strength
  • Threshold field indicates threshold data.
  • the sensing initiating device identification field indicates the identification of the sensing initiating device, such as AID or UID.
  • non-trigger based (Non-Trigger Based, non-TB) measurement procedure when only one pair of devices performs the perception measurement, optionally, a non-trigger based (Non-Trigger Based, non-TB) measurement procedure is used.
  • the sensing receiving device supporting the Dual Band Single Concurrent (DBSC) function may be temporarily unavailable due to frequency band switching, so it is necessary to check the availability of the peer device. necessity.
  • DBSC Dual Band Single Concurrent
  • the AP needs to send a sensing polling trigger frame (SENS TF Poll ) to detect whether the sensing signal receiving device is available.
  • SENS TF Poll sensing polling trigger frame
  • the non-AP STA is the sensing signal sending device and the AP is the sensing signal receiving device, it is not necessary to detect whether the sensing signal receiving device is available before sending the NDPA.
  • an explicit or implicit solicited report for the case of delayed reporting, an explicit or implicit solicited report (solicited report) may optionally be used.
  • unsolicited report can be used, that is, the sensing signal receiving device decides the timing of reporting the sensing result by itself, without being requested or triggered by the sensing signal sending device (or sensing initiating device, or access point device).
  • the sensing signal receiving device needs to report the sensing result after the aforementioned minimum delay time.
  • the sensing signal receiving device needs to report the sensing result before the aforementioned maximum delay time.
  • the sensing signal receiving device when using the requested reporting method, if the sensing signal receiving device fails to report the measurement results beyond the aforementioned maximum delay time, for example, it may be caused by an error, application termination, or device entering sleep mode, etc., the sensing The signal receiving device discards the corresponding measurement result.
  • one or more measurement settings can be pre-stored on the device.
  • the device when establishing a perception measurement setting, the device only needs to interact with the identification of the measurement setting to be established, and does not need to interact with specific operating parameters.
  • at least one measurement setting identifier is exchanged, which is beneficial to reducing signaling overhead and speeding up the process of establishing the measurement setting.
  • perception capability information may also be exchanged between devices, for example, perception capability information may be exchanged during a discovery phase, and the perception capability information may be used to determine operating parameters in a measurement setting.
  • the access point device may send a perception polling trigger frame to detect whether the perception receiving device is available, so as to improve the perception performance.
  • the sensing receiving device may report the measurement result in an unsolicited manner, for example, report the measurement result according to the delay time information in the measurement setting.
  • Fig. 18 shows a schematic block diagram of a wireless communication device 400 according to an embodiment of the present application.
  • the device 400 includes:
  • the communication unit 410 is configured to receive at least one measurement setting identifier sent by the second device, where each measurement setting identifier corresponds to a set of operating parameters used for perception measurement.
  • the set of operating parameters used for perception measurement includes at least one of the following:
  • the role information of the device in sensing measurement the number of antennas used for sensing measurement, the bandwidth used for sensing measurement, the type of measurement result, the reporting type of measurement result, and the threshold setting information.
  • the second device is a perception session initiation device, or the second device is a proxy device of the perception session initiation device.
  • the device is a sensory response device.
  • the at least one measurement setting identifier is sent by the second device through a first request frame, where the first request frame is used to request establishment of a perception session.
  • the first request frame includes at least one measurement setting field, wherein the measurement setting field includes a measurement setting identification field, and the measurement setting identification is used to indicate that the sensing session initiating device requests to establish a measurement Set the corresponding measurement setup flag.
  • the measurement setting field further includes a sensing initiating device identifier, which is used to indicate an identifier of a device requesting to establish a sensing session.
  • the at least one measurement setting identifier is sent by the second device through a second request frame, where the second request frame is used to request establishment of a measurement setting.
  • the second request frame includes at least one measurement setting field, wherein the measurement setting field includes a measurement setting identification field, and the measurement setting identification is used to indicate that the sensing session initiating device requests to establish a measurement Set the corresponding measurement setup flag.
  • the measurement setting field further includes a sensing initiating device identifier, which is used to indicate an identifier of a device requesting to establish a sensing session.
  • the communication unit 410 is also used to:
  • the response information is used to indicate at least one of the following:
  • the at least one measurement setting identifier is sent through a first request frame, and the response information is sent through a first response frame, wherein the first response frame is a response to the first request frame frames, wherein the first request frame is used to request to establish a perception session.
  • the first response frame includes a perception setup command field and/or a reason code field, wherein the perception setup command field is used to indicate whether the device agrees to the operation corresponding to the at least one measurement setting identifier parameter, the reason code field is used to indicate the reason why the device does not agree with the operation parameter corresponding to the at least one measurement setting identifier.
  • the at least one measurement setting identifier is sent through a second request frame, and the response information is sent through a second response frame, where the second response frame is a response frame of the second request frame, wherein, the second request frame is used for requesting establishment of measurement settings.
  • the second response frame includes a perception setup command field and/or a reason code field, wherein the perception setup command field is used to indicate whether the device agrees to the operation corresponding to the at least one measurement setting identifier parameter, the reason code field is used to indicate the reason why the device does not agree with the operation parameter corresponding to the at least one measurement setting identifier.
  • the first request frame is an action frame or an action frame without confirmation.
  • the first request frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the first request frame is a session establishment request frame.
  • the first response frame is an action frame or a no-confirmation action frame.
  • the first response frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the first response frame is a session establishment response frame.
  • the second request frame is an action frame or an action frame without confirmation.
  • the second request frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the second request frame is a measurement setting establishment request frame.
  • the second response frame is an action frame or a no-confirmation action frame.
  • the second response frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the second response frame is a measurement setup establishment response frame.
  • the communication unit 410 is also used to:
  • At least one measurement setting sent by the third device is received, where each measurement setting includes a measurement setting identifier and a set of operating parameters used for perception measurement.
  • the at least one measurement setting is sent through at least one of the following frames:
  • Beacon frame probe response frame, association response frame, reassociation response frame.
  • the third device is an access point device or a non-access point station device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the device 400 according to the embodiment of the present application may correspond to the first device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the device 400 are respectively in order to realize the The corresponding process of the first device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • Fig. 19 is a schematic block diagram of a device for wireless communication according to an embodiment of the present application.
  • the device 500 of Figure 19 includes:
  • the communication unit 510 is configured to send at least one measurement setting identifier to at least one first device, where each measurement setting identifier corresponds to a set of operating parameters used for perception measurement.
  • the set of operating parameters used for perception measurement includes at least one of the following:
  • the role information of the device in sensing measurement the number of antennas used for sensing measurement, the bandwidth used for sensing measurement, the type of measurement result, the reporting type of measurement result, and the threshold setting information.
  • the device is a perception session initiation device, or the device is a proxy device of the perception session initiation device.
  • the first device is a sensory response device.
  • the at least one measurement setting identifier is sent through a first request frame, where the first request frame is used to request establishment of a perception session.
  • the first request frame includes at least one measurement setting field, wherein each measurement setting field includes a measurement setting identification field, and the measurement setting identification is used to indicate that the sensing session initiating device requests to establish a measurement Set the corresponding measurement setup flag.
  • the measurement setting field further includes a sensing initiating device identifier, which is used to indicate an identifier of a device requesting to establish a sensing session.
  • the at least one measurement setting identifier is sent through a second request frame, where the second request frame is used to request establishment of a measurement setting.
  • the second request frame includes at least one measurement setting field, wherein each measurement setting field includes a measurement setting identification field, and the measurement setting identification is used to indicate that the sensing session initiating device requests to establish a measurement Set the corresponding measurement setup flag.
  • the measurement setting field further includes a sensing initiating device identifier, which is used to indicate an identifier of a device requesting to establish a sensing session.
  • the communication unit 510 is also used to:
  • the response information is used to indicate at least one of the following:
  • the at least one measurement setting identifier is sent through a first request frame, and the response information is sent through a first response frame, where the first response frame is a response frame of the first request frame, wherein, the first request frame is used for requesting establishment of a perception session.
  • the first response frame includes a perception setup command field and/or a reason code field, wherein the perception setup command field is used to indicate whether the first device agrees to the at least one measurement setting identification corresponding
  • the reason code field is used to indicate the reason why the first device disagrees with the operation parameter corresponding to the at least one measurement setting identifier.
  • the at least one measurement setting identifier is sent through a second request frame, and the response information is sent through a second response frame, where the second response frame is a response frame of the second request frame, wherein, the second request frame is used for requesting establishment of measurement settings.
  • the second response frame includes a perception establishment command field and/or a reason code field, wherein the perception establishment command field is used to indicate whether the first device agrees to the at least one measurement setting identification corresponding
  • the reason code field is used to indicate the reason why the first device disagrees with the operation parameter corresponding to the at least one measurement setting identifier.
  • the first request frame is an action frame or an action frame without confirmation.
  • the first request frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the first request frame is a session establishment request frame.
  • the first response frame is an action frame or a no-confirmation action frame.
  • the first response frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the first response frame is a session establishment response frame.
  • the second request frame is an action frame or an action frame without confirmation.
  • the second request frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the second request frame is a measurement setting establishment request frame.
  • the second response frame is an action frame or a no-confirmation action frame.
  • the second response frame includes an action domain field
  • the action domain field includes an action category field, a public action subcategory field, and a perception subcategory field, wherein, through the action category field, the The values of the public action subclass field and the perception subclass field jointly indicate that the second response frame is a measurement setup establishment response frame.
  • the communication unit 510 is also used to:
  • each measurement setup includes a measurement setup identification and a set of operating parameters for sensing measurements, wherein the at least one device includes the at least one first device.
  • the at least one measurement setting is sent through at least one of the following frames:
  • Beacon frame probe response frame, association response frame, reassociation response frame.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the device 500 according to the embodiment of the present application may correspond to the second device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the device 500 are respectively in order to realize the The corresponding process of the second device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • Fig. 20 is a schematic block diagram of a device for wireless communication according to an embodiment of the present application.
  • the device 800 of Figure 20 includes:
  • a communication unit 810 configured to send at least one measurement setting to at least one device, where each measurement setting includes a measurement setting identifier and a set of operating parameters for sensing measurement.
  • the set of operating parameters used for perception measurement includes at least one of the following:
  • the role information of the device in sensing measurement the number of antennas used for sensing measurement, the bandwidth used for sensing measurement, the type of measurement result, the reporting type of measurement result, and the threshold setting information.
  • the at least one measurement setting is sent through at least one of the following frames:
  • Beacon frame probe response frame, association response frame, reassociation response frame.
  • the device is an access point device or a non-access point station device.
  • the at least one device includes a non-AP station device and/or an AP device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the device 800 according to the embodiment of the present application may correspond to the third device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the device 800 are respectively in order to realize the The corresponding process of the third device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • FIG. 21 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 21 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device in each method of the embodiment of the present application. Let me repeat.
  • the communication device 600 may specifically be the second device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the second device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the communication device 600 may specifically be the third device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the third device in each method of the embodiment of the present application. Let me repeat.
  • FIG. 22 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 22 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the chip can be applied to the second device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiments of the present application.
  • details are not repeated here.
  • the chip can be applied to the third device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the third device in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the third device in the methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 23 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 23 , the communication system 900 includes a first device 910 , a second device 920 and a third device 930 .
  • the first device 910 can be used to realize the corresponding functions realized by the first device in the above method
  • the second device 920 can be used to realize the corresponding functions realized by the second device in the above method
  • the third The device 930 may be used to implement the corresponding functions implemented by the third device in the foregoing method, and details are not described here for brevity.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the first device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the second device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the third device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the third device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the third device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program product can be applied to the third device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the third device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the third device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to the first device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the first device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program may be applied to the second device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the second device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the third device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the third device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,能够实现测量设置的建立,该方法包括:第一设备接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
感知(Sensing)测量是由802.11bf标准提出的一种802.11协议的功能增强,其通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,手势识别以及空间三维图像建立等诸多功能。
在相关技术中,尚未讨论建立感知测量设置时的具体协商流程。
发明内容
本申请提供了一种无线通信的方法和设备,能够实现感知测量设置的建立。
第一方面,提供了一种无线通信的方法,包括:第一设备接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
第二方面,提供了一种无线通信的方法,包括:第二设备向至少一个第一设备发送至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
第三方面,提供了一种无线通信的方法,包括:第三设备向至少一个设备发送至少一个测量设置,其中,每个测量设置每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
第四方面,提供了一种无线通信的设备,用于执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
具体地,该设备包括用于执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种无线通信的设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种无线通信的设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在建立测量设置时,设备可以交互待建立的测量设置对应的测量设置标识,其中,该测量设置标识对应用于感知测量的一组操作参数,而不需要携带这一组操作参数,从而设备可以基于测量设置标识对应的操作参数实现测量设置的建立。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是一种Wi-Fi sensing过程的示意性图。
图3是本申请实施例提供的一种无线通信的方法的示意性图。
图4是根据本申请一个实施例的测量设置的建立方法的示意性交互图。
图5是根据本申请另一个实施例的测量设置的建立方法的示意性交互图。
图6是根据本申请一个实施例的携带感知能力信息的邻居报告元素的示例性格式图。
图7是根据本申请一个实施例的携带感知能力信息的无线电测量启用能力元素的示例性格式图。
图8是根据本申请一个实施例的携带感知能力信息的精简的邻居报告元素的示例性格式图。
图9是根据本申请一个实施例的携带感知能力信息的扩展的能力元素的示例性格式图。
图10是根据本申请一个实施例的携带感知能力信息的扩展的能力元素的示例性格式图。
图11是根据本申请一个实施例的携带至少一个测量设置的帧格式示意图。
图12是根据本申请一个实施例的感知会话建立请求帧的格式示意图。
图13是根据本申请一个实施例的测量设置建立请求帧的格式示意图。
图14是根据本申请一个实施例的感知会话建立响应帧的格式示意图。
图15是根据本申请一个实施例的测量设置建立响应帧的格式示意图。
图16是携带至少一个测量设置的感知会话建立请求帧的格式示意图。
图17是携带至少一个测量设置的测量设置建立请求帧的格式示意图。
图18是根据本申请实施例提供的一种无线通信的设备的示意性框图。
图19是根据本申请实施例提供的另一种无线通信的设备的示意性框图。
图20是根据本申请实施例提供的又一种无线通信的设备的示意性框图。
图21是根据本申请实施例提供的一种通信设备的示意性框图。
图22是根据本申请实施例提供的一种芯片的示意性框图。
图23是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信系统100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信 系统100为例,通信设备可包括具有通信功能的接入点110和站点120,接入点110和站点120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括接入点和站点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
为便于理解本申请实施例的技术方案,以下对本申请相关术语进行说明。
关联标识符(Association Identifier,AID),用于标识跟接入点建立关联后的终端。
非关联标识(Unassociated ID,UID),用于标识未与接入点建立关联的终端。
媒体访问控制(Medium Access Control,MAC)。即媒体访问控制MAC地址的简称。
传输机会(Transmission Opportunity,TXOP),指的是一段时间,在该时间段内,拥有该传输机会的终端可以主动发起一次或多次传输。
WLAN Sensing通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN Sensing通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,姿势识别以及空间三维图像建立等诸多功能。
参与WLAN感知的WLAN设备可能包括如下角色(role):
感知发起设备(Sensing Initiator)或称感知会话发起设备,发起感知会话(sensing session)并想要获知感知结果的设备;
感知响应设备(Sensing Responder)或称感知会话响应设备,参与sensing session的非Sensing Initiator的设备;
感知发送设备(Sensing Transmitter)或称感知信号发送设备,发起感知测量信号(sensing illumination signal)的设备;
感知接收设备(Sensing Receiver)或称感知信号接收设备,接收感知测量信号(sensing illumination signal)的设备;
感知处理设备(Sensing Processor),处理感知测量结果的设备;
感知参与设备(Sensing Participant),包括感知发起设备,感知发送设备和感知接收设备。
WLAN终端在一个感知会话中可能有一个或多个角色,例如感知发起设备可以仅仅是感知发起设备,也可以成为感知发送设备,也可以成为感知接收设备,还可以同时是感知发送设备和感知接收设备。
例如,如图2中的A所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知信号发送设备(Sensing Transmitter)。
又例如,如图2中的B所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号发送设备(Sensing Transmitter);STA2可以是感知信号接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor)。
又例如,如图2中的C所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知信号接收设备(Sensing Receiver);STA3可以是感知信号发送设备(Sensing Transmitter)。
又例如,如图2中的D所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知信号发送设备(Sensing Transmitter);STA3可以是感知信号发送设备(Sensing Transmitter)。
又例如,如图2中的E所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号发送设备(Sensing Transmitter),还可以是感知处理设备(Sensing processor);STA2可以是 感知信号接收设备(Sensing Receiver);STA3可以是感知信号接收设备(Sensing Receiver)。
又例如,如图2中的F所示,STA1可以是感知会话发起设备(Sensing Initiator);STA2可以是感知信号接收设备(Sensing Receiver),也可以是感知处理设备(Sensing processor);STA3可以是感知信号发送设备(Sensing Transmitter);STA4可以是感知信号发送设备(Sensing Transmitter)。
又例如,如图2中的G所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号发送设备(Sensing Transmitter),还可以是感知信号接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的H所示,STA1可以是感知会话发起设备(Sensing Initiator);STA2可以是感知信号发送设备(Sensing Transmitter),也可以是感知信号接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor)。
又例如,如图2中的I所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知信号发送设备(Sensing Transmitter),还可以是感知信号接收设备(Sensing Receiver),还可以是感知处理设备(Sensing processor);STA2可以是感知信号发送设备(Sensing Transmitter),也可以是感知信号接收设备(Sensing Receiver)。
又例如,如图2中的J所示,STA1可以是感知会话发起设备(Sensing Initiator),也可以是感知处理设备(Sensing processor);STA2可以是感知信号发送设备(Sensing Transmitter),也可以是感知信号接收设备(Sensing Receiver);STA3可以是感知信号发送设备(Sensing Transmitter),也可以是感知信号接收设备(Sensing Receiver)。在一些实施例中,可以具有多种感知类型(Sensing Type)。例如,基于信道状态信息(Channel State Information,CSI)的感知类型,即CSI-based Sensing,该感知类型是通过处理接收到的感知测量信号的CSI获得sensing测量结果。又例如,基于反射信号的感知类型,即Radar-based Sensing,该感知类型是通过处理接收到的感知测量信号的反射信号获得sensing测量结果。
WLAN感知会话包括以下一个或多个阶段:会话建立、感知测量、感知上报、会话终止。
会话建立阶段:建立感知会话,确定感知会话参与者及其角色(包括感知信号发送设备和感知信号接收设备),决定感知会话相关的操作参数,并且可选的在终端之间交互该参数。
感知测量阶段:实施感知测量,感知信号发送设备发送感知信号给感知信号接收设备。
感知上报阶段:上报测量结果,由应用场景决定,感知信号接收设备可能需要给感知会话发起设备上报测量结果。
会话终止阶段:终端停止测量,终止感知会话。
在相关技术中,尚未讨论建立感知测量设置的具体协商流程。
有鉴于此,本申请实施例提供了一种建立感知测量设置的方案,能够实现感知测量设置的建立,同时还有利于降低信令开销。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该方法200包括如下至少部分内容:
S210,第一设备接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
应理解,本申请实施例中的测量或称感知测量,测量设置(Measurement Setup)或称感知测量设置,测量设置标识(Measurement Setup ID)或称感知测量设置标识。
在一些实施例中,所述第一设备为感知响应设备。
在一些实施例中,若感知响应设备的数量为多个,如图3所示,所述方法200还包括:
S220,第二设备向其他感知响应设备发送所述至少一个测量设置标识。
在一些实施例中,所述第二设备为感知会话发起设备,或者,所述第二设备为感知会话发起设备的代理设备。即感知会话发起设备自身可以发起测量设置建立,或者,也可以通过代理设备发起测量设置建立。
应理解,在本申请实施例中,感知会话发起设备可以为接入点设备,或者,非接入点站点设备,感知会话发起设备的代理设备可以为接入点设备,或者,非接入点站点设备。
在一些实施例中,每个测量设置标识用于标识一个测量设置,测量设置包括测量设置标识和用于感知测量的一组操作参数,即测量设置标识可以用于标识测量设置对应的操作参数。
在本申请实施例中,所述至少一个测量设置标识用于标识至少一个测量设置,所述至少一个测量 设置可以是感知会话发起设备请求建立的测量设置。
在一些实施例中,当第二设备为感知会话发起设备的代理设备时,感知会话发起设备可以将所述至少一个测量设置标识发送给第二设备,从而第二设备可以基于所述至少一个测量设置标识代理所述感知会话发起设备建立相应的测量设置。
作为示例而非限定,所述用于感知测量的一组操作参数包括以下中的至少一项:
设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
在一些实施例中,所述设备在感知测量中的感知角色信息以下中的一种:
设备在感知测量中是否作为感知接收设备;
设备在感知测量中是否作为感知发送设备。
即,设备在感知测量中可以作为感知发送设备和/或感知接收设备。
在一些实施例中,用于感知测量的天线数量可以指执行感知测量所使用的天线数量,例如可以为1~16中的任意值。
在一些实施例中,用于感知测量的带宽可以指执行感知测量所使用的带宽,例如可以为20MHz,40MHz,80MHz,160MHz或320MHz等。
在一些实施例中,所述测量结果类型可以包括以下至少之一:
信道状态信息矩阵(Channel State Information Matrix,CSI Matrix)、接收的信号的强度指示(Received Signal Strength Indication,RSSI),波束信噪比(Beam Signal-to-Noise Ratio,Beam SNR),缩减的信道冲激响应(Truncated Channel Impulse Response,TCIR),信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR),参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Receiving Quality,RSRQ),信噪比(signal-to-noise ratio,SNR)。
应理解,在本申请实施例中,感知接收设备上报的测量结果可以是执行感知测量得到的测量数据,例如,CSI数据,RSSI数据等,或者,也可以是根据测量数据进行处理得到的感知结果,例如人物存在检测场景中,该感知结果可以为是否存在人物,又例如,人物数量检测场景中,该感知结果可以为人物的数量信息,再例如,姿态检测场景中,该感知结果可以为姿态信息。
在一些实施例中,所述测量结果的上报类型包括:
是否立即上报测量结果,或者,是否延迟上报测量结果。
在一些实施例中,所述测量结果的上报类型包括:
立即上报和延迟上报。
在一些实施例中,所述用于感知测量的一组操作参数还可以包括延迟上报测量结果的延迟时间信息,例如,可以包括最小延迟时间和/或最大延迟时间。其中,最小延迟时间可以指设备需要在该最小延迟时间之后上报测量结果,最大延迟时间可以指设备需要在该最大延迟时间之前上报测量结果。
在一些实施例中,在未配置延迟上报测量结果的延迟时间信息的情况下,若测量结果的上报类型为立即上报,则设备可以在测量完成之后的短帧间间隔(short interframe space,SIFS)后进行上报,或者,若上报类型为延迟上报,则设备可以在第一时长后再执行上报,其中,第一时长大于SIFS。
在一些实施例中,所述测量阈值信息包括以下至少之一:
测量阈值,测量阈值对应的测量结果类型,是否基于测量阈值进行测量上报、阈值计算方法(例如时间反转共振能量强度,标量差),阈值计算方法支持的最大测量阈值,阈值计算方法支持的最小测量阈值。
在实际应用中,测量结果的数据量通常比较大,例如一次测量的信道状态信息(Channel State Information,CSI)数据可能达到4K~40K比特,为了降低上报测量结果导致的网络负载,可以设置测量阈值,当本次感知测量结果与上次的感知测量结果的变化量小于该测量阈值时,设备上报测量结果,否则不上报测量结果。
在本申请实施例中,设备(包括第一设备和第二设备)上预存有一个或多个测量设置,即设备可以获知测量设置标识和用于感知测量的操作参数的对应关系,这样,在后续需要建立测量设置时,设备之间只需交互测量设置标识,即可获知待建立的测量设置对应的感知测量的操作参数,而不需交互具体的操作参数,有利于降低建立测量设置的信令开销,同时有利于加快感知测量的建立流程。
可选地,所述一个或多个测量配置是预定义的,或者也可以是预配置的。
在本申请一些实施例中,如图3所示,所述方法200还包括:
S201,第三设备向至少一个设备发送一个或多个测量设置,其中,每个测量设置包括测量设置标识(Measurement Setup ID)和用于感知测量的操作参数。
即第三设备可以给至少一个设备预配置一个或多个测量设置。
所述至少一个设备在获知该一个或多个测量设置后,可以缓存该一个或多个测量设置,以用于后续的测量设置建立。
在一些实施例中,所述第三设备可以为接入点设备,或者,也可以为非接入点站点设备,本申请对此不作限定。
应理解,本申请实施例并不限定所述至少一个设备的数量。
在一些实施例中,所述至少一个设备包括至少一个非接入点站点设备和/或至少一个接入点设备。
可选地,所述至少一个设备可以包括前述的第一设备和第二设备。
在一些实施例中,所述第二设备和所述第三设备为同一设备。
在一些实施例中,所述第一设备和所述第三设备为同一设备。
在一些实施例中,所述第三设备可以通过带外方式获取适用于不同感知应用(例如手势识别,和/或入侵识别,和/或跌倒识别)的典型的操作参数的设置(例如带宽,天线数目,测量结果类型,阈值等),进一步地,该第三设备可以预先把这些典型的操作参数设置告知通信系统中的其他设备。这样,当感知发起设备请求各个感知参与设备参与测量时,就可以直接应用这些操作参数设置,具体地可以通过不同的测量设置标识指示不同的操作参数设置。
在一些实施例中,所述第三设备可以在发现阶段向所述至少一个设备发送一个或多个测量设置。
在一些实施例中,所述一个或多个测量设置是通过以下帧中的至少一个发送的:
信标帧(Beacon)、探测响应帧(Probe Response)、关联响应帧(Association Response)、重关联响应帧(Reassociation Response)。
在一些实施例中,所述第二设备可以在感知建立阶段向所述第一设备发送所述至少一个测量设置标识。例如,第二设备可以在建立感知会话时发送该至少一个测量设置标识,或者在建立测量设置时,发送该至少一个测量设置标识。
实现方式一:所述第二设备通过第一请求帧向所述第一设备发送所述至少一个测量设置标识,其中,所述第一请求帧用于请求建立感知会话。
即第二设备在请求建立感知会话时,同时携带请求建立的测量设置所对应的测量设置标识。
在一些实施例中,所述第一请求帧或称会话建立请求帧,感知会话建立请求帧。
在一些实施例中,所述第一请求帧还包括感知会话发起设备的标识信息,例如AID,UID或MAC地址等。
在一些实施例中,所述第一请求帧还包括以下至少之一:
待建立的感知会话对应的应用类型,待建立的感知会话对应的存活时间信息。
即,在请求建立感知会话时,第二设备可以指示感知会话的一个或多个应用类型(Use Case KPI),和/或,该感知会话的存活时间(time to live)。
在一些实施例中,所述应用类型可以包括但不限于以下中的至少一种:
人物存在检测,人物数量检测,人物位置检测,姿态检测,生命体征检测,睡眠检测。
在一些实施例中,所述感知会话可以是显式结束的,例如,通过感知会话结束帧结束该感知会话,或者也可以是隐式结束的,例如,在达到感知会话的存活时间的情况下,结束该感知会话。
因此,在本申请实施例中,在需要建立测量设置时,感知会话发起设备或感知会话发起设备的代理设备可以在建立感知会话时同时携带请求建立的测量设置对应的测量设置标识,而不需要携带测量设置对应的具体操作参数,有利于降低测量设置建立的信令开销,加快测量设置的建立流程。
实现方式二:所述第二设备通过第二请求帧向所述第一设备发送所述至少一个测量设置标识,其中,所述第二请求帧用于请求建立测量设置。
在一些实施例中,所述第二请求帧或称测量设置建立请求帧,感知测量设置建立请求帧。
在一些实施例中,所述第二请求帧还包括感知会话发起设备的标识信息,例如AID,UID或MAC地址等。
因此,在本申请实施例中,在需要建立测量设置时,感知会话发起设备或感知会话发起设备的代理设备可以在建立测量设置时携带请求建立的测量设置对应的测量设置标识,而不需要携带测量设置对应的具体操作参数,有利于降低测量设置建立的信令开销,加快测量设置的建立流程。
应理解,所述第二设备可以通过第一请求帧和/或第二请求帧发送至少一个测量设置标识,其中,通过第一请求帧发送的测量设置标识和通过所述第二请求帧发送的测量设置标识可以相同,或者,也可以不同。
在本申请一些实施例中,所述方法200还包括:
所述第一设备向所述第二设备发送针对所述至少一个测量设置标识对应的操作参数的响应信息。
在一些实施例中,每个测量设置对应一个响应信息,即第一设备可以以测量设置为粒度进行反馈, 或者,也可以是所有测量设置对应统一的响应信息。
可选地,所述响应信息用于指示以下中的至少一项:
所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
作为示例,所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因信息可以包括但不限于以下中的至少一种:
所述第一设备不支持操作参数中的测量结果类型,所述第一设备不支持操作参数中的角色信息,所述第一设备不支持操作参数中的带宽,所述第一设备不支持操作参数中的天线数量,所述第一设备不支持操作参数中的上报类型,所述第一设备不支持操作参数中的阈值。
在一些实施例中,所述第一设备通过第一响应帧向所述第二设备发送针对所述至少一个测量设置标识对应的操作参数的响应信息,其中,所述第一响应帧为所述第一请求帧的响应帧。
在一些实施例中,所述第一响应帧或称会话建立响应帧,感知会话建立响应帧。
在一些实施例中,所述第一设备通过第二响应帧向所述第二设备发送针对所述至少一个测量设置标识对应的操作参数的响应信息,其中,所述第二响应帧为所述第二请求帧的响应帧。
在一些实施例中,所述第二响应帧或称测量设置建立响应帧,感知测量设置建立响应帧。
以下,结合图4和图5,以第三设备为接入点设备,感知发起设备为第一站点(对应第二设备),感知响应设备为第二站点(对应第一设备)为例,说明本申请实施例的测量设置的建立方法。其中,图4所示的步骤对应前述实现方式一,图5中所示的步骤对应前述的实现方式二。
如图4所示,可以包括如下步骤:
S301,接入点设备通过信标帧广播一个或多个测量设置(包括测量设置1和测量设置2)。
其中,测量设置1包括测量设置标识1和对应的操作参数,测量设置2包括测量设置标识2和对应的操作参数。
可替换地,接入点设备也可以通过探测响应帧(Probe Response)、关联响应帧(Association Response)或重关联响应帧(Reassociation Response)发送一个或多个测量设置。
S302,第一站点、第二站点等设备接收该信标帧,获取该测量设置1和测量设置2,并缓存该测量设置1和测量设置2。
进一步地,第一站点作为感知发起设备,想要建立测量设置1。
S303,第一站点向第二站点发送会话建立请求帧,该会话建立请求帧包括测量设置1对应的测量设置标识,即测量设置标识1,还可以包括感知发起设备的标识。
S304,第二设备向第一设备回复会话建立响应帧,该会话建立请求帧包括测量设置建立的响应信息,例如是否同意测量设置1等。
如图5所示,可以包括如下步骤:
S311,接入点设备通过信标帧广播一个或多个测量设置(包括测量设置1和测量设置2)。
其中,测量设置1包括测量设置标识1和对应的操作参数,测量设置2包括测量设置标识2和对应的操作参数。
可替换地,接入点设备也可以通过探测响应帧(Probe Response)、关联响应帧(Association Response)或重关联响应帧(Reassociation Response)发送一个或多个测量设置。
S312,第一站点、第二站点等设备接收该信标帧,获取该测量设置1和测量设置2,并缓存该测量设置1和测量设置2。
S313,第一站点向第二站点发送会话建立请求帧,该会话建立请求帧用于请求建立感知会话,其中,该会话建立请求帧包括感知发起设备的标识。
S314,第二设备向第一设备回复会话建立响应帧。
进一步地,第一站点想要建立测量设置1。
S315,第一站点向第二站点发送测量设置建立请求帧,该测量设置建立请求帧包括测量设置1对应的测量设置标识,即测量设置标识1,还可以包括感知发起设备的标识。
S316,第二设备向第一设备回复测量设置建立响应帧,该测量设置建立请求帧包括测量设置建立的响应信息,例如是否同意测量设置1等。
应理解,本申请并不限定所述接入点设备向所述第一站点、所述第二站点等设备发送测量设置的先后顺序,例如,接入点设备可以通过广播的方式发送一个或多个测量设置,或者,通过单播或多播等方式发送一个或多个测量设置,图4和图5仅以接入点设备通过广播方式发送测量设置为例进行说明,但本申请并不限于此。
还应理解,图4和图5中具有相同附图标记的步骤(S301、S302、S311和S312)可以是同时执 行的,或者也可以是分别执行的,本申请对于执行的先后顺序不作限定。
在本申请一些实施例中,设备可以在发现阶段交互感知能力信息。
在本申请一些实施例中,所述方法200还包括:
所述第三设备接收至少一个设备发送的感知能力信息。
所述至少一个设备的感知能力信息可以用于确定所述至少一个测量设置。
在一些实施例中,所述感知能力信息包括以下中的至少一项:
设备是否支持感知测量(或者,设备是否支持感知),设备是否启用感知能力,设备在感知测量中支持的角色信息,设备支持上报的测量结果类型,设备支持的最大天线数目,设备支持的最大带宽。
其中,设备在感知测量中支持的角色信息、设备支持上报的测量结果类型参考前文实施例的相关描述,为了简洁,这里不再赘述。
在一些实施例中,所述感知能力信息携带在以下至少一个元素中:
邻居报告元素(Neighbor Report element)、无线电测量启用能力元素(RM Enabled Capabilities element)、精简的邻居报告元素(Reduced Neighbor Report element)、扩展的能力元素(Extended Capabilities element)。
例如,利用上述元素中的一个或多个预留(reserved)位承载设备的感知能力信息。
图6是携带感知能力信息的邻居报告元素的示例性格式图。
如图6所示,该邻区报告元素包括是否支持感知字段,用于指示设备是否支持感知,或者,是否支持感知测量。
作为一个示例,是否支持感知字段取值为1表示设备支持感知,取值为0表示设备不支持感知。
作为又一个示例,是否支持感知字段取值为0表示设备支持感知,取值为1表示设备不支持感知。
图7是携带感知能力信息的无线电测量启用能力元素的示例性格式图。如图7所示,该无线电测量启用能力元素包括感知能力是否已启用字段,用于指示设备是否已启用感知能力,或者,设备是否已启用感知测量能力。
作为一个示例,感知能力是否已启用字段取值为1表示设备已启用感知能力,取值为0表示设备未启用感知能力。
作为又一个示例,感知能力是否已启用字段取值为0表示设备已启用感知能力,取值为1表示设备未启用感知能力。
图8是携带感知能力信息的精简的邻居报告元素的示例性格式图。如图8所示,该精简的邻居报告元素包括是否支持感知字段,用于指示设备是否支持感知,或者,是否支持感知测量。
作为一个示例,是否支持感知字段取值为1表示设备支持感知,取值为0表示设备不支持感知。
作为又一个示例,是否支持感知字段取值为0表示设备支持感知,取值为1表示设备不支持感知。
图9是携带感知能力信息的扩展的能力元素的示例性格式图。如图9所示,该扩展的能力元素包括是否支持感知字段,用于指示设备是否支持感知,或者,是否支持感知测量。
作为一个示例,是否支持感知字段取值为1标识设备支持感知,取值为0表示设备不支持感知。
作为又一个示例,是否支持感知字段取值为0表示设备支持感知,取值为1表示设备不支持感知。
图10是携带感知能力信息的扩展的能力元素的示例性格式图。
应理解,图10中的各个字段所占的比特数可以根据实际需要承载的信息大小确定,本申请对此不作限定。
还应理解,图10中的各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
如图10所示,该扩展的能力元素包括如下至少一个字段:
是否支持感知发送角色字段:用于指示设备是否支持作为感知发送设备的角色。
作为一个示例,取值为1表示设备支持作为感知发送设备的角色,取值为0表示设备不支持作为感知发送设备的角色。
作为又一示例,取值为0表示设备支持作为感知发送设备的角色,取值为1表示设备不支持作为感知发送设备的角色。
是否支持感知接收角色字段:用于指示设备是否支持作为感知接收设备的角色。
作为一个示例,取值为1表示设备支持作为感知接收设备的角色,取值为0表示设备不支持作为感知接收设备的角色。
作为又一示例,取值为0表示设备支持作为感知接收设备的角色,取值为1表示设备不支持作为感知接收设备的角色。
是否支持CSI类型字段:用于指示设备是否支持上报CSI类型的测量结果。
作为一个示例,取值为1表示设备支持上报CSI类型的测量结果,取值为0表示不支持上报CSI类型的测量结果。
作为又一示例,取值为0表示支持上报CSI类型的测量结果,取值为1表示不支持上报CSI类型的测量结果。
是否支持RSSI类型字段:用于指示设备是否支持上报RSSI类型的测量结果。
作为一个示例,取值为1表示支持上报RSSI类型的测量结果,取值为0表示不支持上报RSSI类型的测量结果。
作为又一示例,取值为0表示支持上报RSSI类型的测量结果,取值为1表示不支持上报RSSI类型的测量结果。
是否支持Beam SNR类型:用于指示设备是否支持上报Beam SNR类型的测量结果。
作为一个示例,取值为1表示支持上报Beam SNR类型的测量结果,取值为0表示不支持上报Beam SNR类型的测量结果。
作为又一示例,取值为0表示支持上报Beam SNR类型的测量结果,取值为1表示不支持上报Beam SNR类型的测量结果。
是否支持TCIR类型字段:指示设备是否支持上报TCIR类型的测量结果。
作为一个示例,取值为1表示支持上报TCIR类型的测量结果,取值为0表示不支持上报TCIR类型的测量结果。
作为又一示例,取值为0表示支持上报TCIR类型的测量结果,取值为1表示不支持上报TCIR类型的测量结果。
最大天线数目(Max Number of antenna)字段:用于指示设备支持的最大天线数目,例如1~16个天线。
最大带宽(Max Bandwidth)字段:用于指示设备支持的最大带宽。
作为示例,1表示20MHz,2表示40MHz,3表示80MHz,4表示160MHz,5表示320MHz。
在一些实施例中,所述邻居报告元素包括在以下至少一个帧中:
邻居报告响应帧(Neighbor Report Response)、毫米波设备信标帧(DMG Beacon)、认证帧(Authentication)、关联响应帧(Association Response)、重关联响应帧(Reassociation Response)、改善的时间测量请求帧(Fine Timing Measurement Range request)、基本服务集转移管理查询帧(BSS Transition Management Query)、基本服务集转移管理请求帧(BSS Transition Management Request)、基本服务集转移管理响应帧(BSS Transition Management Response)、访问网络查询协议响应帧(ANQP Response)。
在一些实施例中,所述无线电测量启用能力元素携带于以下至少之一:
邻居报告元素、信标帧(Beacon)、探测响应帧(Probe Response)、关联请求帧(Association Request)、关联响应帧(Association Response)、重关联请求帧(Reassociation Request)、重关联响应帧(Reassociation Response)、毫米波设备信标帧(DMG Beacon)。
在一些实施例中,所述精简的邻居报告元素携带于以下至少一种帧中:
信标帧(Beacon)、探测响应帧(Probe Response)、快速启动链路设置帧(FILS Discovery)。
在一些实施例中,所述扩展的能力元素携带于以下至少一种帧中:
信标帧(Beacon)、探测请求帧(Probe Request)、探测响应帧(Probe Response)、关联请求帧(Association Request)、关联响应帧(Association Response)、重关联请求帧(Reassociation Request)、重关联响应帧(Reassociation Response)。
结合图11,对携带至少一个测量设置的帧格式设计进行说明。
即第三设备可以采用图11中的帧格式指示至少一个测量设置。该帧格式可以适用于信标帧、探测响应帧、关联响应帧和重关联响应帧中的任意帧。
应理解,图11中的各个字段的结构,大小、命名仅为示例,根据本申请示例的帧格式变换得到的其他帧格式均落入本申请的保护范围,本申请并不限于此。
如图11所示,该帧可以包括至少一个测量设置标识字段和每个测量设置标识对应的测量信息字段。其中,测量设置标识字段用于指示测量设置的标识,测量信息字段用于指示测量设置标识对应的操作参数,或者说,测量设置对应的操作参数。
进一步地,该测量信息字段可以包括如下至少一个字段:
是否是感知接收设备(Receiver)字段:用于指示对端设备在测量中是否作为感知接收设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是感知发送设备(Transmitter)字段:用于指示对端设备在测量中是否为感知发送设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是延迟上报(Delayed Report)字段:用于指示对端设备是否延迟上报测量结果。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是基于阈值的测量(Threshold Based)字段:用于指示是否是基于阈值的测量。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
测量结果类型(report type)字段:指示测量结果的数据类型。
作为示例,取值为0表示CSI类型,取值为1表示RSSI类型,取值为2表示Beam SNR类型,取值为3表示TCIR类型等等。
最小延迟时间(Min Delay Time)字段:用于指示对端设备需要在该最小延迟时间之后上报感知结果。
作为示例,取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个时间单元(Time Unit,TU,一般为1ms),取值为6表示2个TU,等等。
最大延迟时间(Max Delay Time)字段:用于指示对端设备需要在该最大延迟时间之前上报感知结果,不上报超过该最大延迟时间的测量结果。可选地,设备可以对超过最大延迟时间的测量结果作丢弃处理。
作为示例,最大延迟时间字段取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个TU,取值为6表示2个TU,等等。
天线数量(number of antennas)字段:指示测量所使用的天线数量。例如:1~16根天线。
带宽(bandwidth)字段:指示测量所使用的带宽。
作为示例,取值为1表示20MHz,取值为2表示40MHz,取值为3表示80MHz,取值为4表示160MHz,取值为5表示320MHz。
阈值计算方法(Method of Computing)字段:用于指示阈值的计算方法。
作为示例,取值为0表示时间反转共振能量强度(Time-Reversal Resonating Strength,TRRS),取值为1表示标量差(Scalar Differential),等等。
阈值(Threshold)字段:指示阈值数据。
以下,结合图12-图15说明前述第一请求帧、第二请求帧、第一响应帧和第二响应帧的帧格式。
应理解,图12-图15中的各个字段的结构,大小、命名仅为示例,根据本申请示例的帧格式变换得到的其他帧格式均落入本申请的保护范围,本申请并不限于此。
在一些实施例中,所述第一请求帧为动作帧(Action frame)或无确认动作帧(Action No Ack frame)。即感知会话建立请求帧可以为Action frame或Action No Ack frame。
在一些实施例中,所述第一响应帧为Action frame或Action No Ack frame。
即感知会话建立响应帧可以为Action frame或Action No Ack frame。
在一些实施例中,所述第二请求帧为动作帧(Action frame)或无确认动作帧(Action No Ack frame)。即测量设置建立请求帧可以为Action frame或Action No Ack frame。
在一些实施例中,所述第二响应帧为Action frame或Action No Ack frame。
即测量设置建立响应帧可以为Action frame或Action No Ack frame。
在一些实施例中,所述第一请求帧、所述第一响应帧、所述第二请求帧和所述第二响应帧可以认为是感知动作帧。
在一些实施例中,可以利用Action frame或Action No Ack frame中的至少一个字段指示该动作帧或无确认动作帧为感知会话建立请求帧、感知会话建立响应帧、测量设置建立请求帧或测量设置建立响应帧。
在一些实施例中,所述Action frame或Action No Ack frame包括动作域字段,所述动作域字段包括动作类别(Category)字段、公共动作子类字段(Public Acton Field)和感知子类字段(SENS Subtype),可以通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示该Action frame或Action No Ack frame为感知会话建立请求帧、感知会话建立响应帧、测量设置建立请求帧或测量设置建立响应帧。
作为示例,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为预留值(例如46~255范围内任意数值,以下,以46为例说明)表示该帧为感知动作帧,进一步通过感知子类的取值为指示该感知动作帧为感知会话建立请求帧、感知会话建立响应帧、测量设置建立请求帧或测量设置建立响应帧。
例如,感知子类的取值为第一值表示该感知动作帧为感知会话建立请求帧,感知子类的取值为第 二值表示该感知动作帧为感知会话建立响应帧,感知子类的取值为第三值表示该感知动作帧为测量设置建立请求帧,感知子类的取值为第四值表示该感知动作帧为测量设置建立响应帧,其中,所述第一值、所述第二值、第三值和第四帧两两不同。
作为示例,所述第一值为0,所述第二值为1,所述第三值为2,所述第四值为3。
图12是根据本申请一个实施例的感知会话建立请求帧的示意性帧格式图。在该帧格式中,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为46表示该帧为感知动作帧,感知子类取值为0指示该帧为感知会话建立请求帧。
在一些实施例中,如图12所示,所述感知会话建立请求帧还可以包括以下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示采用强制或建议等方式请求建立感知会话建立请求帧中的测量设置。作为示例,取值为0表示强制(Demand),取值为1表示建议(Suggest)。
应用类型字段:用于指示感知会话的用途类型。
作为示例,应用类型字段取值为0表示人物存在检测,取值为1表示人物数量检测,取值为2表示人物位置检测,取值为3表示姿态检测,取值为4表示生命体征检测,取值为5表示睡眠检测。
存活时间(Time To Live)字段,用于指示会话存活时间。达到该存活时间时,会话自动结束。
作为示例,取值为1表示1分钟,取值为2表示10分钟,取值为3表示1小时,取值为4表示12小时,等等。
测量设置数量(Number of Measurements)字段,用于指示测量设置列表字段中包含的测量设置的数量;
测量设置字段,包括测量设置标识字段和感知发起设备标识字段。
测量设置标识(Measurement Setup ID)字段:指示测量设置的标识。
感知发起设备标识字段,指示感知发起设备的标识,例如AID或UID等。
图13是根据本申请一个实施例的测量设置建立请求帧的示意性帧格式图。在该帧格式中,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为46表示该帧为感知动作帧,感知子类取值为2指示该帧为测量设置建立请求帧。
在一些实施例中,如图13所示,所述测量设置建立请求帧还可以包括以下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示该感知会话建立请求帧中的测量设置的配置方式。作为示例,取值为0表示强制(Demand),取值为1表示建议(Suggest)。
测量设置字段,包括测量设置标识字段和感知发起设备标识字段。
测量设置标识(Measurement Setup ID)字段:指示测量设置的标识。
感知发起设备标识字段,指示感知发起设备的标识,例如AID或UID等。
由图12和图13所示的帧格式可知,在请求测量设置建立时,可以只携带请求建立的测量设置所对应的测量设置标识,而不需要携带具体的操作参数。
图14是根据本申请一个实施例的感知会话建立响应帧的示意性帧格式图。在该帧格式中,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为46表示该帧为感知动作帧,感知子类取值为1指示该帧为感知会话建立响应帧。
在一些实施例中,如图14所示,所述感知会话建立响应帧可以包括以下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示是否接受感知会话建立请求帧中请求的测量设置。
作为示例,取值为0表示接受(Accept),取值为1表示拒绝(Reject)。
原因代码字段:用于指示设备不同意感知会话建立请求帧中的测量设置的原因。
当感知建立命令的取值表示拒绝时,该原因代码字段存在,否则,该原因代码字段不存在。
作为示例,取值为0表示不支持感知会话建立请求中请求的测量设置对应的测量结果类型;取值为1表示不支持感知会话建立请求中请求的测量设置对应的角色;取值为2表示不支持感知会话建立请求中请求的测量设置对应的带宽;取值为3表示不支持感知会话建立请求中请求的测量设置对应的天线数量。
图15是根据本申请一个实施例的测量设置建立响应帧的示意性帧格式图。在该帧格式中,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为46表示该帧为 感知动作帧,感知子类取值为3指示该帧为测量设置建立响应帧。
在一些实施例中,如图15所示,所述测量设置建立响应帧还可以包括以下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示是否接受测量设置建立请求帧中请求的测量设置。
作为示例,取值为0表示接受(Accept),取值为1表示拒绝(Reject)。
原因代码字段:用于指示设备不同意该测量设置建立请求帧中请求的测量设置的原因。
当感知建立命令的取值表示拒绝时,该原因代码字段存在,否则,不存在该原因代码字段。
作为示例,取值为0表示不支持感知会话建立请求中请求的测量设置对应的测量结果类型;取值为1表示不支持感知会话建立请求中请求的测量设置对应的角色;取值为2表示不支持感知会话建立请求中请求的测量设置对应的带宽;取值为3表示不支持感知会话建立请求中请求的测量设置对应的天线数量。
在本申请一些实施例中,第三设备也可以通过感知会话建立请求帧或测量设置请求帧携带至少一个测量设置。
图16是携带至少一个测量设置的感知会话建立请求帧的帧格式示意图。在该帧格式中,动作类别字段取值为4表示该帧为公共动作帧(Public Action frame),公共动作子类字段为46表示该帧为感知动作帧,感知子类取值为0指示该帧为感知会话建立请求帧。
如图16所示,该感知会话建立请求帧可以包括如下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示该感知会话建立请求帧中的测量设置的配置方式。作为示例,取值为0表示强制(Demand),取值为1表示建议(Suggest)。
应用类型字段:用于指示感知会话的用途类型。
作为示例,应用类型字段取值为0表示人物存在检测,取值为1表示人物数量检测,取值为2表示人物位置检测,取值为3表示姿态检测,取值为4表示生命体征检测,取值为5表示睡眠检测。
存活时间(Time To Live)字段,用于指示会话存活时间。达到该存活时间时,会话自动结束。
作为示例,取值为1表示1分钟,取值为2表示10分钟,取值为3表示1小时,取值为4表示12小时,等等。
测量设置数量(Number of Measurements)字段,用于指示测量设置列表字段中包含的测量设置的数量;
测量设置字段,用于指示测量设置标识以及对应的操作参数。
测量设置标识(Measurement Setup ID)字段:指示测量设置的标识。
是否是感知接收设备(Receiver)字段:用于指示对端设备在测量中是否作为感知接收设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是感知发送设备(Transmitter)字段:用于指示对端设备在测量中是否为感知发送设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是延迟上报(Delayed Report)字段:用于指示对端设备是否延迟上报测量结果。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是基于阈值的测量(Threshold Based)字段:用于指示是否是基于阈值的测量。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
测量结果类型(report type)字段:指示测量结果的数据类型。
作为示例,取值为0表示CSI,取值为1表示RSSI,取值为2表示Beam SNR,取值为3表示TCIR等等。
最小延迟时间(Min Delay Time)字段:用于指示对端设备需要在该最小延迟时间之后上报感知结果。
作为示例,取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个时间单元(Time Unit,TU,一般为1ms),取值为6表示2个TU,等等。
最大延迟时间(Max Delay Time)字段:用于指示对端设备需要在该最大延迟时间之前上报感知结果。作为示例,取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个时间单元(Time Unit,TU,一般为1ms),取值为6表示2个TU,等等。
天线数量(number of antennas)字段:指示测量所使用的天线数量。例如:1~16根天线。
带宽(bandwidth)字段:指示测量所使用的带宽。
作为示例,取值为1表示20MHz,取值为2表示40MHz,取值为3表示80MHz,取值为4表示160MHz,取值为5表示320MHz。
阈值计算方法(Method of Computing)字段:用于指示阈值的计算方法。
作为示例,取值为0表示时间反转共振能量强度(Time-Reversal Resonating Strength,TRRS),取值为1表示标量差(Scalar Differential),等等。
阈值(Threshold)字段:指示阈值数据。
感知发起设备标识字段,指示感知发起设备的标识,例如AID或UID等。
如图17所示,该测量设置建立请求帧可以包括如下至少一个字段:
应理解,以下各个字段的含义和取值的对应关系仅为示例,只要保证每种含义对应唯一的取值即可,本申请并不限于此。
感知建立命令(Setup Command)字段,用于指示该测量设置建立请求帧中的测量设置的配置方式。作为示例,取值为0表示强制(Demand),取值为1表示建议(Suggest)。
应用类型字段:用于指示感知会话的用途类型。
作为示例,应用类型字段取值为0表示人物存在检测,取值为1表示人物数量检测,取值为2表示人物位置检测,取值为3表示姿态检测,取值为4表示生命体征检测,取值为5表示睡眠检测。
存活时间(Time To Live)字段,用于指示会话存活时间。达到该存活时间时,会话自动结束。
作为示例,取值为1表示1分钟,取值为2表示10分钟,取值为3表示1小时,取值为4表示12小时,等等。
测量设置字段,用于指示测量设置标识以及对应的操作参数。
测量设置标识(Measurement Setup ID)字段:指示测量设置的标识。
是否是感知接收设备(Receiver)字段:用于指示对端设备在测量中是否作为感知接收设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是感知发送设备(Transmitter)字段:用于指示对端设备在测量中是否为感知发送设备。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是延迟上报(Delayed Report)字段:用于指示对端设备是否延迟上报测量结果。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
是否是基于阈值的测量(Threshold Based)字段:用于指示是否是基于阈值的测量。
示例性的,取值为1表示是,取值为0表示否;或者,取值为0表示是,取值为1表示否。
测量结果类型(report type)字段:指示测量结果的数据类型。
作为示例,取值为0表示CSI,取值为1表示RSSI,取值为2表示Beam SNR,取值为3表示TCIR等等。
最小延迟时间(Min Delay Time)字段:用于指示对端设备需要在该最小延迟时间之后上报感知结果。
作为示例,取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个时间单元(Time Unit,TU,一般为1ms),取值为6表示2个TU,等等。
最大延迟时间(Max Delay Time)字段:用于指示对端设备需要在该最大延迟时间之前上报感知结果。作为示例,取值为0表示1个SIFS,取值为1表示2个SIFS,取值为3表示4个SIFS,取值为4表示8个SIFS,取值为5表示1个时间单元(Time Unit,TU,一般为1ms),取值为6表示2个TU,等等。
天线数量(number of antennas)字段:指示测量所使用的天线数量。例如:1~16根天线。
带宽(bandwidth)字段:指示测量所使用的带宽。
作为示例,取值为1表示20MHz,取值为2表示40MHz,取值为3表示80MHz,取值为4表示160MHz,取值为5表示320MHz。
阈值计算方法(Method of Computing)字段:用于指示阈值的计算方法。
作为示例,取值为0表示时间反转共振能量强度(Time-Reversal Resonating Strength,TRRS),取值为1表示标量差(Scalar Differential),等等。
阈值(Threshold)字段:指示阈值数据。
感知发起设备标识字段,指示感知发起设备的标识,例如AID或UID等。
需要说明的是,图6-图17中的位数一般指比特位的个数(bits),字节数一般指8进制字节的个 数(octets)。
在本申请一些实施例中,在感知测量阶段,只有一对设备进行感知测量时,可选地,采用基于非触发(Non-Trigger Based,non-TB)的测量流程。
在一些场景中,需要探测执行测量的设备是否可用,例如支持双频单发(Dual Band Single Concurrent,DBSC)功能的感知接收设备可能因为频带切换而临时不可用,因此有检查对端设备的可用性的必要性。
在一些实现方式中,若AP是感知信号发送设备,non-AP STA是感知信号接收设备,则在发送(Null Data PPDU Announcement,NDPA)之前,AP需要发送一个感知轮询触发帧(SENS TF Poll)来探测感知信号接收设备是否可用。
在一些实现方式中,若non-AP STA是感知信号发送设备,AP是感知信号接收设备,则在发送NDPA之前,可以不必探测感知信号接收设备是否可用。
在本申请一些实施例中,在感知上报阶段,对于延迟上报的情况,可选的,可以采用显示或隐式请求的上报(solicited report)。
可选的,可以使用非请求的上报(unsolicited report),即感知信号接收设备自己决定上报感知结果的时机,而不由感知信号发送设备(或感知发起设备,或接入点设备)请求或触发。
可选的,在使用非请求的上报方式时,感知信号接收设备需要在前述最小延迟时间之后上报感知结果。
可选的,在使用非请求的上报方式时,感知信号接收设备需要在前述最大延迟时间之前上报感知结果。
可选的,在使用请求的上报方式时,若感知信号接收设备超过前述最大延迟时间未进行测量结果的上报,例如可能是发生错误,应用程序终止,设备进入睡眠模式等原因导致的,则感知信号接收设备丢弃对应的测量结果。
综上,在本申请实施例中,设备上可以预存一个或多个测量设置,这样,在建立感知测量设置时,设备只需交互待建立的测量设置标识,而不需要交互具体的操作参数,例如,在建立感知会话时或者在建立测量设置时,交互至少一个测量设置标识,有利于降低信令开销,加快测量设置的建立流程。
可选地,设备之间还可以交互感知能力信息,例如,在发现阶段交互感知能力信息,该感知能力信息可以用于确定测量设置中的操作参数。
进一步地,在感知测量阶段,接入点设备可以通过发送感知轮询触发帧探测感知接收设备是否可用,提升感知性能。在感知上报阶段,感知接收设备可以使用非请求的方式上报测量结果,例如,根据测量设置中的延迟时间信息进行测量结果的上报。
上文结合图3至图17,详细描述了本申请的方法实施例,下文结合图18至图23,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图18示出了根据本申请实施例的无线通信的设备400的示意性框图。如图18所示,该设备400包括:
通信单元410,用于接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
在本申请一些实施例中,所述用于感知测量的一组操作参数包括以下中的至少一项:
设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
在本申请一些实施例中,所述第二设备为感知会话发起设备,或者,所述第二设备为感知会话发起设备的代理设备。
在本申请一些实施例中,所述设备为感知响应设备。
在本申请一些实施例中,所述至少一个测量设置标识是所述第二设备通过第一请求帧发送的,其中,所述第一请求帧用于请求建立感知会话。
在本申请一些实施例中,所述第一请求帧包括至少一个测量设置字段,其中,所述测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
在本申请一些实施例中,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
在本申请一些实施例中,所述至少一个测量设置标识是所述第二设备通过第二请求帧发送的,其中,所述第二请求帧用于请求建立测量设置。
在本申请一些实施例中,所述第二请求帧包括至少一个测量设置字段,其中,所述测量设置字段 包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
在本申请一些实施例中,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
在本申请一些实施例中,所述通信单元410还用于:
向所述第二设备发送针对所述至少一个测量设置标识对应的操作参数的响应信息。
在本申请一些实施例中,所述响应信息用于指示以下中的至少一项:
所述设备是否同意所述至少一个测量设置标识对应的操作参数,所述设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述至少一个测量设置标识通过第一请求帧发送,所述响应信息通过第一响应帧发送,其中,所述第一响应帧为所述第一请求帧的响应帧,其中,所述第一请求帧用于请求建立感知会话。
在本申请一些实施例中,所述第一响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述至少一个测量设置标识通过第二请求帧发送,所述响应信息通过第二响应帧发送,其中,所述第二响应帧为第二请求帧的响应帧,其中,所述第二请求帧用于请求建立测量设置。
在本申请一些实施例中,所述第二响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述第一请求帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第一请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一请求帧为会话建立请求帧。
在本申请一些实施例中,所述第一响应帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第一响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一响应帧为会话建立响应帧。
在本申请一些实施例中,所述第二请求帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第二请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二请求帧为测量设置建立请求帧。
在本申请一些实施例中,所述第二响应帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第二响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二响应帧为测量设置建立响应帧。
在本申请一些实施例中,所述通信单元410还用于:
接收第三设备发送的至少一个测量设置,其中,每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
在本申请一些实施例中,所述至少一个测量设置通过以下帧中的至少一个发送:
信标帧、探测响应帧、关联响应帧、重关联响应帧。
在本申请一些实施例中,所述第三设备为接入点设备或非接入点站点设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的设备400可对应于本申请方法实施例中的第一设备,并且设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3至图17所示方法200中第一设备的相应流程,为了简洁,在此不再赘述。
图19是根据本申请实施例的无线通信的设备的示意性框图。图19的设备500包括:
通信单元510,用于向至少一个第一设备发送至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
在本申请一些实施例中,所述用于感知测量的一组操作参数包括以下中的至少一项:
设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
在本申请一些实施例中,所述设备为感知会话发起设备,或者,所述设备为感知会话发起设备的代理设备。
在本申请一些实施例中,所述第一设备为感知响应设备。
在本申请一些实施例中,所述至少一个测量设置标识通过第一请求帧发送,其中,所述第一请求帧用于请求建立感知会话。
在本申请一些实施例中,所述第一请求帧包括至少一个测量设置字段,其中,每个测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
在本申请一些实施例中,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
在本申请一些实施例中,所述至少一个测量设置标识通过第二请求帧发送,其中,所述第二请求帧用于请求建立测量设置。
在本申请一些实施例中,所述第二请求帧包括至少一个测量设置字段,其中,每个测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
在本申请一些实施例中,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
在本申请一些实施例中,所述通信单元510还用于:
接收所述至少一个第一设备发送的针对所述至少一个测量设置标识对应的操作参数的响应信息。
在本申请一些实施例中,所述响应信息用于指示以下中的至少一项:
所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述至少一个测量设置标识通过第一请求帧发送,所述响应信息通过第一响应帧发送,其中,所述第一响应帧为第一请求帧的响应帧,其中,所述第一请求帧用于请求建立感知会话。
在本申请一些实施例中,所述第一响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述至少一个测量设置标识通过第二请求帧发送,所述响应信息通过第二响应帧发送,其中,所述第二响应帧为第二请求帧的响应帧,其中,所述第二请求帧用于请求建立测量设置。
在本申请一些实施例中,所述第二响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
在本申请一些实施例中,所述第一请求帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第一请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一请求帧为会话建立请求帧。
在本申请一些实施例中,所述第一响应帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第一响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一响应帧为会话建立响应帧。
在本申请一些实施例中,所述第二请求帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第二请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二请求帧为测量设置建立请求帧。
在本申请一些实施例中,所述第二响应帧为动作帧或无确认动作帧。
在本申请一些实施例中,所述第二响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二响应帧为测量设置建立响应帧。
在本申请一些实施例中,所述通信单元510还用于:
向至少一个设备发送至少一个测量设置,其中,每个测量设置包括测量设置标识和用于感知测量的一组操作参数,其中,所述至少一个设备包括所述至少一个第一设备。
在本申请一些实施例中,所述至少一个测量设置通过以下帧中的至少一个发送:
信标帧、探测响应帧、关联响应帧、重关联响应帧。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的设备500可对应于本申请方法实施例中的第二设备,并且设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3至图17所示方法200中第二设备的相应流程,为了简洁,在此不再赘述。
图20是根据本申请实施例的无线通信的设备的示意性框图。图20的设备800包括:
通信单元810,用于向至少一个设备发送至少一个测量设置,其中,每个测量设置每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
在本申请一些实施例中,所述用于感知测量的一组操作参数包括以下中的至少一项:
设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
在本申请一些实施例中,所述至少一个测量设置通过以下帧中的至少一个发送:
信标帧、探测响应帧、关联响应帧、重关联响应帧。
在本申请一些实施例中,所述设备为接入点设备或非接入点站点设备。
在本申请一些实施例中,所述至少一个设备包括非接入点站点设备和/或接入点设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的设备800可对应于本申请方法实施例中的第三设备,并且设备800中的各个单元的上述和其它操作和/或功能分别为了实现图3至图17所示方法200中第三设备的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例提供的一种通信设备600示意性结构图。图21所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图21所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第三设备,并且该通信设备600可以实现本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
图22是本申请实施例的芯片的示意性结构图。图22所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图22所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个 方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第三设备,并且该芯片可以实现本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图23是本申请实施例提供的一种通信系统900的示意性框图。如图23所示,该通信系统900包括第一设备910、第二设备920和第三设备930。
其中,该第一设备910可以用于实现上述方法中由第一设备实现的相应的功能,该第二设备920可以用于实现上述方法中由第二设备实现的相应的功能,以及该第三设备930可以用于实现上述方法中由第三设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第三设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序产品可应用于本申请实施例中的第三设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的第三设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (66)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
  2. 根据权利要求1所述的方法,其特征在于,所述用于感知测量的一组操作参数包括以下中的至少一项:
    设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二设备为感知会话发起设备,或者,所述第二设备为感知会话发起设备的代理设备。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备为感知响应设备。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个测量设置标识是所述第二设备通过第一请求帧发送的,其中,所述第一请求帧用于请求建立感知会话。
  6. 根据权利要求5所述的方法,其特征在于,所述第一请求帧包括至少一个测量设置字段,其中,所述测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
  7. 根据权利要求6所述的方法,其特征在于,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述至少一个测量设置标识是所述第二设备通过第二请求帧发送的,其中,所述第二请求帧用于请求建立测量设置。
  9. 根据权利要求8所述的方法,其特征在于,所述第二请求帧包括至少一个测量设置字段,其中,所述测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
  10. 根据权利要求9所述的方法,其特征在于,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送针对所述至少一个测量设置标识对应的操作参数的响应信息。
  12. 根据权利要求11所述的方法,其特征在于,所述响应信息用于指示以下中的至少一项:
    所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  13. 根据权利要求11或12所述的方法,其特征在于,所述至少一个测量设置标识通过第一请求帧发送,所述响应信息通过第一响应帧发送,其中,所述第一响应帧为所述第一请求帧的响应帧,其中,所述第一请求帧用于请求建立感知会话。
  14. 根据权利要求13所述的方法,其特征在于,所述第一响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  15. 根据权利要求11-14中任一项所述的方法,其特征在于,所述至少一个测量设置标识通过第二请求帧发送,所述响应信息通过第二响应帧发送,其中,所述第二响应帧为第二请求帧的响应帧,其中,所述第二请求帧用于请求建立测量设置。
  16. 根据权利要求15所述的方法,其特征在于,所述第二响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  17. 根据权利要求5-7中任一项所述的方法,其特征在于,所述第一请求帧为动作帧或无确认动作帧。
  18. 根据权利要求17所述的方法,其特征在于,所述第一请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一请求帧为会话建立请求帧。
  19. 根据权利要求13或14所述的方法,其特征在于,所述第一响应帧为动作帧或无确认动作帧。
  20. 根据权利要求19所述的方法,其特征在于,所述第一响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公 共动作子类字段和所述感知子类字段的取值联合指示所述第一响应帧为会话建立响应帧。
  21. 根据权利要求8或9所述的方法,其特征在于,所述第二请求帧为动作帧或无确认动作帧。
  22. 根据权利要求21所述的方法,其特征在于,所述第二请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二请求帧为测量设置建立请求帧。
  23. 根据权利要求15或16所述的方法,其特征在于,所述第二响应帧为动作帧或无确认动作帧。
  24. 根据权利要求23所述的方法,其特征在于,所述第二响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二响应帧为测量设置建立响应帧。
  25. 根据权利要求1-24中任一项所述的方法,其特征在于,在所述第一设备接收第二设备发送的至少一个测量设置标识之前,所述方法还包括:
    所述第一设备接收第三设备发送的至少一个测量设置,其中,每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个测量设置通过以下帧中的至少一个发送:
    信标帧、探测响应帧、关联响应帧、重关联响应帧。
  27. 根据权利要求25或26所述的方法,其特征在于,所述第三设备为接入点设备或非接入点站点设备。
  28. 一种无线通信的方法,其特征在于,包括:
    第二设备向至少一个第一设备发送至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
  29. 根据权利要求28所述的方法,其特征在于,所述用于感知测量的一组操作参数包括以下中的至少一项:
    设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第二设备为感知会话发起设备,或者,所述第二设备为感知会话发起设备的代理设备。
  31. 根据权利要求30所述的方法,其特征在于,所述第一设备为感知响应设备。
  32. 根据权利要求28-31中任一项所述的方法,其特征在于,所述至少一个测量设置标识通过第一请求帧发送,其中,所述第一请求帧用于请求建立感知会话。
  33. 根据权利要求32所述的方法,其特征在于,所述第一请求帧包括至少一个测量设置字段,其中,每个测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
  34. 根据权利要求33所述的方法,其特征在于,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
  35. 根据权利要求28-34中任一项所述的方法,其特征在于,所述至少一个测量设置标识通过第二请求帧发送,其中,所述第二请求帧用于请求建立测量设置。
  36. 根据权利要求35所述的方法,其特征在于,所述第二请求帧包括至少一个测量设置字段,其中,每个测量设置字段包括测量设置标识字段,所述测量设置标识用于指示感知会话发起设备请求建立的测量设置对应的测量设置标识。
  37. 根据权利要求36所述的方法,其特征在于,所述测量设置字段还包括感知发起设备标识,用于指示请求建立感知会话的设备的标识。
  38. 根据权利要求28-37中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述至少一个第一设备发送的针对所述至少一个测量设置标识对应的操作参数的响应信息。
  39. 根据权利要求38所述的方法,其特征在于,所述响应信息用于指示以下中的至少一项:
    所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  40. 根据权利要求38或39所述的方法,其特征在于,所述至少一个测量设置标识通过第一请求帧发送,所述响应信息通过第一响应帧发送,其中,所述第一响应帧为第一请求帧的响应帧,其中,所述第一请求帧用于请求建立感知会话。
  41. 根据权利要求40所述的方法,其特征在于,所述第一响应帧包括感知建立命令字段和/或原 因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  42. 根据权利要求38-41中任一项所述的方法,其特征在于,所述至少一个测量设置标识通过第二请求帧发送,所述响应信息通过第二响应帧发送,其中,所述第二响应帧为第二请求帧的响应帧,其中,所述第二请求帧用于请求建立测量设置。
  43. 根据权利要求42所述的方法,其特征在于,所述第二响应帧包括感知建立命令字段和/或原因代码字段,其中,感知建立命令字段用于指示所述第一设备是否同意所述至少一个测量设置标识对应的操作参数,所述原因代码字段用于指示所述第一设备不同意所述至少一个测量设置标识对应的操作参数的原因。
  44. 根据权利要求32-34中任一项所述的方法,其特征在于,所述第一请求帧为动作帧或无确认动作帧。
  45. 根据权利要求44所述的方法,其特征在于,所述第一请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一请求帧为会话建立请求帧。
  46. 根据权利要求40或41所述的方法,其特征在于,所述第一响应帧为动作帧或无确认动作帧。
  47. 根据权利要求46所述的方法,其特征在于,所述第一响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第一响应帧为会话建立响应帧。
  48. 根据权利要求35或36所述的方法,其特征在于,所述第二请求帧为动作帧或无确认动作帧。
  49. 根据权利要求48所述的方法,其特征在于,所述第二请求帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二请求帧为测量设置建立请求帧。
  50. 根据权利要求42或43所述的方法,其特征在于,所述第二响应帧为动作帧或无确认动作帧。
  51. 根据权利要求50所述的方法,其特征在于,所述第二响应帧包括动作域字段,所述动作域字段包括动作类别字段、公共动作子类字段和感知子类字段,其中,通过所述动作类别字段、所述公共动作子类字段和所述感知子类字段的取值联合指示所述第二响应帧为测量设置建立响应帧。
  52. 根据权利要求28-51中任一项所述的方法,其特征在于,在所述第二设备向至少一个第一设备发送至少一个测量设置标识之前,所述方法还包括:
    所述第二设备向至少一个设备发送至少一个测量设置,其中,每个测量设置包括测量设置标识和用于感知测量的一组操作参数,其中,所述至少一个设备包括所述至少一个第一设备。
  53. 根据权利要求28-52中任一项所述的方法,其特征在于,所述至少一个测量设置通过以下帧中的至少一个发送:
    信标帧、探测响应帧、关联响应帧、重关联响应帧。
  54. 一种无线通信的方法,其特征在于,包括:
    第三设备向至少一个设备发送至少一个测量设置,其中,每个测量设置每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
  55. 根据权利要求54所述的方法,其特征在于,所述用于感知测量的一组操作参数包括以下中的至少一项:
    设备在感知测量中的角色信息,用于感知测量的天线数量,用于感知测量的带宽,测量结果类型,测量结果的上报类型,阈值设置信息。
  56. 根据权利要求54或55所述的方法,其特征在于,所述至少一个测量设置通过以下帧中的至少一个发送:
    信标帧、探测响应帧、关联响应帧、重关联响应帧。
  57. 根据权利要求54-56中任一项所述的方法,其特征在于,所述第三设备为接入点设备或非接入点站点设备。
  58. 根据权利要求54-56中任一项所述的方法,其特征在于,所述至少一个设备包括非接入点站点设备和/或接入点设备。
  59. 一种无线通信的设备,其特征在于,包括:
    通信单元,用于接收第二设备发送的至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
  60. 一种无线通信的设备,其特征在于,包括:
    通信单元,用于向至少一个第一设备发送至少一个测量设置标识,其中,每个测量设置标识对应用于感知测量的一组操作参数。
  61. 一种无线通信的设备,其特征在于,包括:
    通信单元,用于向至少一个设备发送至少一个测量设置,其中,每个测量设置每个测量设置包括测量设置标识和用于感知测量的一组操作参数。
  62. 一种无线通信的设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至27中任一项所述的方法,或,如权利要求28-53中任一项所述的方法,或者如权利要求54-58中任一项所述的方法。
  63. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法,或,如权利要求28-53中任一项所述的方法,或者如权利要求54-58中任一项所述的方法。
  64. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或,如权利要求28-53中任一项所述的方法,或者如权利要求54-58中任一项所述的方法。
  65. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法,或,如权利要求28-53中任一项所述的方法,或者如权利要求54-58中任一项所述的方法。
  66. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或,如权利要求28-53中任一项所述的方法,或者如权利要求54-58中任一项所述的方法。
PCT/CN2021/118811 2021-09-16 2021-09-16 无线通信的方法和设备 WO2023039798A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/118811 WO2023039798A1 (zh) 2021-09-16 2021-09-16 无线通信的方法和设备
CN202180098581.5A CN117397264A (zh) 2021-09-16 2021-09-16 无线通信的方法和设备
US18/591,843 US20240248167A1 (en) 2021-09-16 2024-02-29 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118811 WO2023039798A1 (zh) 2021-09-16 2021-09-16 无线通信的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/591,843 Continuation US20240248167A1 (en) 2021-09-16 2024-02-29 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2023039798A1 true WO2023039798A1 (zh) 2023-03-23

Family

ID=85602298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118811 WO2023039798A1 (zh) 2021-09-16 2021-09-16 无线通信的方法和设备

Country Status (3)

Country Link
US (1) US20240248167A1 (zh)
CN (1) CN117397264A (zh)
WO (1) WO2023039798A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404767A (zh) * 2016-05-20 2017-11-28 展讯通信(上海)有限公司 基站及其调度用户设备的方法
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质
CN113115415A (zh) * 2020-01-10 2021-07-13 华为技术有限公司 通信方法及装置
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
CN113132917A (zh) * 2021-04-15 2021-07-16 成都极米科技股份有限公司 感知进程中发送和接收感知信号的方法、装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404767A (zh) * 2016-05-20 2017-11-28 展讯通信(上海)有限公司 基站及其调度用户设备的方法
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN113115415A (zh) * 2020-01-10 2021-07-13 华为技术有限公司 通信方法及装置
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
CN113132917A (zh) * 2021-04-15 2021-07-16 成都极米科技股份有限公司 感知进程中发送和接收感知信号的方法、装置及存储介质

Also Published As

Publication number Publication date
US20240248167A1 (en) 2024-07-25
CN117397264A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2022193304A1 (zh) 无线通信的方法和设备
WO2023071250A1 (zh) 无线感知方法、装置、设备及存储介质
WO2023029276A1 (zh) 无线通信的方法和设备
WO2023019716A1 (zh) 无线通信的方法和设备
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023060602A1 (zh) 感知方法和设备
WO2023130388A1 (zh) 无线通信的方法及设备
US20240365404A1 (en) Method and device for wireless communication
WO2023130384A1 (zh) 感知上报方法和设备
WO2023130383A1 (zh) 感知方法和设备
WO2023272455A1 (zh) 无线通信的方法及设备
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2023245664A1 (zh) 无线通信的方法和设备
WO2024040612A1 (zh) 无线通信的方法和设备
WO2024036643A1 (zh) 自定义标识符的获取和使用方法、装置、设备及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2024060098A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2024179466A1 (zh) 一种感知方法及装置
CN113273090A (zh) 无线网络中的协作波束成形
WO2023155149A1 (zh) 无线通信的方法和设备
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023092364A1 (zh) 无线通信方法和设备
WO2023130385A1 (zh) 感知方法、感知代理请求设备和感知代理响应设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098581.5

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024004912

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024004912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240313

122 Ep: pct application non-entry in european phase

Ref document number: 21957085

Country of ref document: EP

Kind code of ref document: A1