WO2024040612A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2024040612A1
WO2024040612A1 PCT/CN2022/115278 CN2022115278W WO2024040612A1 WO 2024040612 A1 WO2024040612 A1 WO 2024040612A1 CN 2022115278 W CN2022115278 W CN 2022115278W WO 2024040612 A1 WO2024040612 A1 WO 2024040612A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
dmg
information
peer
measurement
Prior art date
Application number
PCT/CN2022/115278
Other languages
English (en)
French (fr)
Inventor
周培
高宁
黄磊
罗朝明
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/115278 priority Critical patent/WO2024040612A1/zh
Publication of WO2024040612A1 publication Critical patent/WO2024040612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a wireless communication method and device.
  • DMG Directional Multi-Gigabit
  • P2P peer to peer
  • This application provides a wireless communication method and device, which can realize P2P sensing in cooperative dual-base or dual-base mode.
  • a wireless communication method including: a sensing response device acquiring role information of the sensing response device in directional multi-gigabit DMG sensing measurement and/or information of a peer device of the sensing response device.
  • a wireless communication method including: a sensing initiating device sending role information of the sensing response device in directional multi-gigabit DMG sensing measurement and/or the opposite end of the sensing response device to a sensing response device. Device information.
  • a third aspect provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a fourth aspect provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, and execute the method in the above second aspect or its respective implementations.
  • a seventh aspect provides a chip for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or implementations thereof. method.
  • An eighth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the sensing initiating device realizes DMG cooperative dual-base or dual-base sensing mode by indicating to the sensing response device the role information of the sensing response device in DMG sensing measurement and/or the information of the peer device of the sensing response device.
  • P2P sensing and increases the flexibility of P2P sensing. For example, it can not only realize P2P sensing between sensing responding devices and sensing initiating devices, but also realize P2P sensing between sensing responding devices.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic interaction diagram of a wireless communication method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of an application scenario suitable for the embodiment of the present application.
  • Figure 4 is a schematic diagram of the format of the action field of a DMG sensing measurement setting request frame provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the format of a DMG sensing measurement setting element provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the format of a measurement setting control field carrying first indication information according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of another format of a measurement setting control field carrying first indication information according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of a format for carrying identification information of a peer device through an optional sub-element field according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a format for carrying second indication information through an optional sub-element field provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the format of a peer device information field provided by an embodiment of the present application.
  • Figure 11 is a schematic interaction diagram for setting DMG sensing measurement through the DMG sensing measurement setting request frame provided by the embodiment of the present application.
  • Figure 12 is a schematic frame format diagram of a DMG sensing request frame provided by an embodiment of the present application.
  • Figure 13 is a schematic frame format diagram of another DMG sensing request frame provided by an embodiment of the present application.
  • Figure 14 is a schematic frame format diagram of yet another DMG sensing request frame provided by an embodiment of the present application.
  • Figure 15 is a schematic frame format diagram of yet another DMG sensing request frame provided by an embodiment of the present application.
  • 16 to 30 are schematic interaction diagrams of DMG measurement setting example stages according to embodiments of the present application.
  • Figure 31 is a schematic block diagram of a sensing response device provided according to an embodiment of the present application.
  • Figure 32 is a schematic block diagram of a perception initiating device provided according to an embodiment of the present application.
  • Figure 33 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 34 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 35 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • other communication systems such as: Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in Figure 1 .
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 that accesses the network through the access point 110.
  • Access Point Access Point
  • STA station
  • AP is also called AP STA, that is, in a certain sense, AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • Communication in the communication system 100 may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA It can refer to the device that communicates peer-to-peer with the STA.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device with a WiFi chip (such as a mobile phone) or a network device (such as a router).
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes. and sensors in smart cities, etc.
  • IoT Internet of Things
  • non-AP STAs may support the 802.11be standard.
  • Non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other current and future 802.11 family wireless LAN (wireless local area networks, WLAN) standards.
  • the AP may be a device supporting the 802.11be standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device that supports WLAN or WiFi technology, Wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, and wireless equipment in smart grid , wireless equipment in transportation safety, wireless equipment in smart city (smart city) or wireless equipment in smart home (smart home), wireless communication chips/ASIC/SOC/, etc.
  • the frequency bands that WLAN technology can support may include, but are not limited to: low frequency bands (such as 2.4GHz, 5GHz, 6GHz) and high frequency bands (such as 60GHz).
  • Figure 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This is not the case in the embodiment of the present application. Make limitations.
  • the communication device may include an access point 110 and a station 120 with communication functions.
  • the access point 110 and the station 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including access points and sites).
  • This application is specific to its The implementation method is not limited.
  • predefined can refer to what is defined in the protocol.
  • AID Association Identifier
  • Media Access Control (Medium Access Control, MAC). That is the abbreviation of media access control address.
  • Burst generally refers to a short period of time in which one or more signals are sent.
  • Burst Group refers to a combination of one or more burst signals. Burst signals in the same burst signal group generally have some common characteristics.
  • Sensing measurement is to perceive people or objects in the environment by measuring changes in signals scattered and/or reflected by people or objects. That is to say, Sensing measurement is to measure and perceive the surrounding environment through wireless signals.
  • Devices participating in perceptual measurement may include the following roles:
  • Sensing Initiator a device that initiates sensing measurement setup and wants to know the sensing results, or is called sensing initiating device, initiator;
  • Sensing Responder a device that participates in sensing measurement setup and is not a Sensing Initiator, or is called a sensing response device, Responder (Responder);
  • Sensing Transmitter a device that sends sensing signals, or sensing signal transmitting device, or sensing transmitting device, Transmitter;
  • Sensing Receiver a device that receives sensing signals, or is called a sensing receiving device, receiver (Receiver).
  • a device may have one or more roles in a sensing measurement.
  • a sensing initiating device can be a sensing initiating device, a sensing sending device, a sensing receiving device, or a sensing sending device and a sensing receiving device at the same time. .
  • WLAN sensing includes one or more of the following stages: session establishment, sensing measurement setting establishment, sensing measurement (measurement instance, sensing measurement instance), sensing result (or sensing measurement result, measurement result) reporting.
  • Session establishment phase Establish a perception session and exchange the perception capabilities of both parties.
  • Sensory measurement setup establishment phase Determine the sensing response devices and their roles.
  • Perception measurement stage Implement perception measurement, and the perception sending device sends sensing signals to the sensing receiving device.
  • Perception reporting stage reporting measurement results.
  • the perception measurement phase and the perception reporting phase may be independent phases, or the perception measurement phase may include a perception reporting phase, that is, reporting of perception measurement results may be considered to belong to the perception measurement phase.
  • DMG Directional Multi-Gigabit
  • P2P peer to peer
  • Figure 2 is a schematic flow chart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 can be executed by the terminal device in the communication system shown in Figure 1.
  • the method 200 includes the following content :
  • the sensing response device obtains the role information of the sensing response device in the directional multi-gigabit DMG sensing measurement and/or the information of the peer device of the sensing response device.
  • the role information of the sensing response device in the DMG sensing measurement and/or the information of the peer device of the sensing response device is obtained from the sensing initiating device.
  • the peer device of the sensing response device may be a sensing initiating device, or may be another sensing response device.
  • the sensing response device may be a site device and the sensing initiating device may be an access point device.
  • P2P sensing scenarios such as DMG cooperative dual-base sensing scenarios, DMG dual-base sensing scenarios, or can also be applied to DMG multi-base sensing scenarios, which this application does not limit.
  • FIG. 3 is a schematic diagram of a scenario applicable to the embodiment of the present application.
  • the AP is the sensing initiating device, and the sensing response devices include STA A, STA B and STA C.
  • the AP can form a DMG Sensing pair (DMG Sensing pair) with STA A.
  • DMG Sensing pair AP is the sensing sending device
  • STA A is the sensing receiving device
  • STA B and STA C form another DMG sensing pair
  • the perception sending device can send a perception signal, such as a perception physical layer protocol data unit (PPDU), to the perception receiving device.
  • PPDU perception physical layer protocol data unit
  • the DMG sensing pair when the sensing type is the cooperative dual-base type, the DMG sensing pair is also called the cooperative dual-base DMG sensing pair.
  • the sensing type when the sensing type is the dual-base type, the DMG sensing pair is also called the dual-base DMG sensing pair. Accordingly, The analogy will not be repeated here.
  • a sensing response device in a DMG sensing measurement instance, can only perform DMG sensing measurement with one peer device, and the sensing response device and the peer device form a DMG sensing pair.
  • DMG sensing centering the roles of the sensing response device and the peer device are fixed. For example, if the sensing response device serves as the sensing sending device and the peer device serves as the sensing receiving device, then a DMG sensing pair in which the sensing responding device serves as the sensing receiving device and the peer device serves as the sensing sending device is not allowed to exist.
  • the sensing response device in a DMG sensing measurement instance, can perform DMG sensing measurement with one or more peer devices, then the sensing response device can form a DMG sensing pair with each peer device, In each DMG sensing pair, the sensing response device can serve as a sensing sending device, or it can also serve as a sensing receiving device. The role of the sensing response device in each DMG sensing pair can be the same, or it can also be different.
  • perception initiating device and perception response device 1 form DMG perception pair 1
  • perception response device 1 and perception response device 2 form DMG perception pair 2, where the role of perception response device 1 in DMG perception pair 1 and perception response device 1
  • the characters in DMG perception pair 2 can be the same, or they can be different.
  • sensing response device 1 serves as a sensing receiving device in DMG sensing pair 1
  • sensing response device 1 serves as a sensing sending device in DMG sensing pair 2.
  • the role information of the sensing response device in DMG sensing measurement and the information of the peer device of the sensing response device may be obtained at the same stage, or may be obtained at different stages.
  • the role information of the sensing response device in the DMG sensing measurement and the information of the peer device of the sensing response device may be obtained from the same frame, or may be obtained from different frames.
  • the role information of the sensing response device in DMG sensing measurement may be obtained in the DMG sensing measurement setup (DMG Sensing Measurement Setup) phase and/or the DMG sensing measurement instance (DMG sensing instance) phase.
  • the perception response device shall determine the role information of the perception response device according to the role indicated in the DMG perception measurement instance phase. Determine the role of this sensing response device in DMG sensing measurements.
  • the perception response device determines that the perception response device is in the DMG based on the role indicated in the DMG perception measurement setting phase. Role in perceptual measurement.
  • the perception response device determines that the perception response device is in the DMG based on the role indicated in the DMG perception measurement instance phase. Role in perceptual measurement.
  • the information of the peer device of the sensing response device is obtained in the DMG sensing measurement setting phase and/or the DMG sensing measurement instance phase.
  • the perception response device can determine the peer device information according to the peer device indicated in the DMG perception measurement instance phase.
  • the device information determines the peer device of the sensing response device in the DMG sensing measurement.
  • the sensing response device can determine the sensing response based on the information of the peer device indicated in the DMG sensing measurement setup phase.
  • the peer device of the device in DMG sensing measurement can determine the sensing response based on the information of the peer device indicated in the DMG sensing measurement setup phase.
  • the sensing response device can determine the sensing response based on the information of the peer device indicated in the DMG sensing measurement instance phase.
  • the peer device of the device in DMG sensing measurement can determine the sensing response based on the information of the peer device indicated in the DMG sensing measurement instance phase.
  • the role information of the sensing response device in DMG sensing measurement may refer to:
  • the role information of the sensing response device in the DMG sensing measurement instance (for example, the cooperative dual-base DMG sensing measurement instance, the dual-base DMG sensing measurement instance, etc.), or the role of the sensing response device in the DMG sensing pair formed with the peer device information.
  • the role information of the perception response device in DMG perception measurement may be a perception sending device or a perception receiving device, or, in other words, whether the perception response device serves as a perception sending device or as a perception receiving device in DMG perception measurement. equipment.
  • the perception initiating device may instruct the perception response device to support only one role, such as a perception sending device or a perception receiving device, during the DMG perception measurement setting phase.
  • the role information of the perception response device in DMG perception measurement may include a perception sending device and/or a perception receiving device.
  • the perception initiating device may instruct the perception response device to support one or more roles, such as a perception sending device and/or a perception receiving device, during the DMG perception measurement setting phase.
  • the role information of the sensing response device in the DMG sensing pair formed with each peer device is indicated in a bitmap manner.
  • each bit corresponds to a peer device (or, in other words, a DMG sensing pair), and the value of each bit is used to indicate the sensing Whether the responding device acts as a sensing sending device or a sensing receiving device in the corresponding DMG sensing pair.
  • the information about a peer device of the sensing response device may include information about one peer device of the sensing response device, or may also include information about multiple peer devices of the sensing response device.
  • the information of each peer device may include identification information of the peer device, or may also include identification information and role information of the peer device.
  • the identification information of the peer device may be the AID or Unassociated ID (UID) of the peer device, or it may be the MAC address of the peer device, or a private ID set by an upper-layer application, etc. Information that uniquely identifies the peer device, this application does not limit this.
  • UID Unassociated ID
  • the information about the peer device of the sensing response device includes identification information of one or more peer devices of the sensing response device.
  • the information of the peer device of the sensing response device may include at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the role information of the peer device of the sensing response device in DMG sensing measurement may refer to:
  • the role information of the peer device of the sensing response device in the DMG sensing measurement instance (for example, the cooperative dual-base DMG sensing measurement instance, the dual-base DMG sensing measurement instance, etc.), or the peer device of the sensing response device is in the same relationship with the sensing response device.
  • the composed DMG senses the character information in the pair.
  • the S210 may include:
  • the sensing response device receives a first request frame, where the first request frame includes first indication information and/or second indication information, the first request frame is used to request the establishment of DMG measurement settings, and the first indication information is used to Information indicating the role of the sensing response device in DMG sensing measurement, and the second indication information is used to indicate information about the peer device of the sensing response device.
  • the role information of the sensing response device in DMG sensing measurement and/or the information of the peer device of the sensing response device can be obtained in the DMG Sensing Measurement Setup stage.
  • the first request frame is also called a DMG Sensing Measurement Setup Request frame (DMG Sensing Measurement Setup Request frame), or other names may be used, which is not limited in this application.
  • DMG Sensing Measurement Setup Request frame DMG Sensing Measurement Setup Request frame
  • the role information of the sensing response device in the DMG sensing measurement may be obtained in the DMG sensing measurement instance stage.
  • the information about the peer device of the sensing response device may be obtained from the DMG sensing measurement instance phase.
  • this application does not limit the specific manner in which the first indication information is carried in the first request frame.
  • existing fields in the first request frame can be used.
  • the existing fields can be redefined to carry the first request frame.
  • indication information, or a new field may be added in the first request frame to carry the first indication information, etc.
  • this application does not limit the specific manner in which the second indication information is carried in the first request frame.
  • existing fields in the first request frame can be used.
  • the existing fields can be redefined to carry the second indication information.
  • indication information, or a new field may be added in the first request frame to carry the second indication information, etc.
  • the specific indication method of the first indication information is described below in combination with method 1-1 and method 1-2.
  • Method 1-1 The first indication information is used to instruct the sensing response device to serve as a sensing sending device or a sensing receiving device in DMG sensing measurement. That is, the sensing initiating device instructs the sensing responding device to support only one role when performing DMG Sensing Measurement Setup.
  • the sensing initiating device limits the role of the sensing response device when performing DMG Sensing Measurement Setup. Subsequently, the sensing response device can only use DMG Sensing Measurement Setup fixedly in the DMG sensing instance under the DMG Sensing Measurement Setup. role assigned at the time. If you want to update the role, the sensing initiating device needs to conduct DMG Sensing Measurement Setup with the sensing responding device again and assign a new role.
  • the first indication information may be 1 bit, and the value of the 1 bit is used to indicate that the sensing response device serves as a sensing sending device or as a sensing receiving device in DMG sensing measurement.
  • a value of 1 for this 1 bit indicates that the perception response device serves as a perception receiving device in DMG perception measurement
  • a value of 0 indicates that the perception response device serves as a perception sending device in DMG perception measurement
  • a value of 0 for this 1 bit indicates that the perception response device serves as a perception receiving device in DMG perception measurement
  • a value of 1 indicates that the perception response device serves as a perception sending device in DMG perception measurement.
  • the first request frame includes a first indication field, and the first indication field is used to indicate whether the sensing response device serves as a sensing sending device or a sensing receiving device in the DMG sensing measurement, or in other words, whether it serves as a sensing receiving device, whether as a sensing sending device.
  • the first indication field is carried in the Measurement Setup Control field (Measurement Setup Control field) in the DMG Sensing Measurement Setup element (DMG Sensing Measurement Setup element) of the first request frame.
  • the existing fields in the DMG sensing measurement setting request frame can be used to indicate the role information of the sensing response device, or the reserved fields or optional fields in the DMG sensing measurement setting request frame can also be used.
  • the sub-element indicates the role information of the sensing response device, which is not limited in this application.
  • the following describes the frame format of the DMG sensing measurement setting request frame (ie, the first request frame) provided by the embodiment of the present application with reference to FIGS. 4 to 10 . It should be understood that the positions, lengths, etc. of each field in the frame format illustrated below are only examples, which can be adjusted adaptively according to actual needs or the size of the information carried, and are not limited in this application.
  • Figure 4 is a schematic diagram of the action field (Action field) format of the DMG sensing measurement setting request frame.
  • order 1 represents Category
  • order 2 represents Unprotected DMG Action
  • order 3 represents Session Token (Dialog Token)
  • order 4 represents Measurement Setup ID.
  • order 5 represents the DMG Sensing Measurement Setup element.
  • Figure 5 is a schematic diagram of the format of DMG perception measurement setting elements. Can include at least one of the following fields:
  • Element ID Element ID
  • length Length
  • extended element ID Element ID Extension
  • measurement setup control Measurement Setup Control
  • report type Report Type
  • location configuration information Location configuration information
  • peer-to-peer Positioning Peer Orientation
  • Optional Subelements Optional Subelements
  • the first indication information may be carried in the measurement setting control field.
  • Figure 6 is a schematic diagram of the format of a measurement setting control field carrying first indication information according to an embodiment of the present application.
  • the measurement setting control field may include a receiving responder field (Rx Responder, corresponding to the first indication field in the previous paragraph), which is used to indicate whether the sensing response device is a sensing sending device or a sensing sending device in the DMG sensing measurement instance.
  • Rx Responder corresponding to the first indication field in the previous paragraph
  • a perception receiving device or in other words, whether it is a perception receiving device or whether it is a perception sending device.
  • a sensing receiving device or in other words, whether it is a perception receiving device or whether it is a perception sending device.
  • whether to serve as a sensing receiving device in a cooperative dual base DMG sensing measurement instance in a cooperative dual base mode or whether to serve as a sensing receiving device in a dual base DMG sensing measurement instance in a dual base mode.
  • the receiving responder field is 1 bit.
  • the value of this 1 bit is 1, indicating that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing receiving device in the DMG sensing measurement.
  • the value of this 1 bit is 1.
  • a value of 0 indicates that the perception response device that receives the DMG perception measurement setting request frame serves as the perception sending device in the DMG perception measurement.
  • the receiving responder field is 1 bit.
  • the value of this 1 bit is 0, indicating that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing receiving device in the DMG sensing measurement.
  • the value of this 1 bit is 0.
  • a value of 1 indicates that the perception response device that receives the DMG perception measurement setting request frame serves as the perception sending device in the DMG perception measurement.
  • the naming of the receiving responder field is only an example, and can also be replaced with other naming, such as the sending responder field, the role indication field, the role information field, the responder receiving (Responder Rx) field, etc., this application does not Not limited.
  • the measurement setting control field may also include at least one of the following fields:
  • Sensing Type field used to indicate the DMG sensing type.
  • LCI presence (LCI Present) field is used to indicate whether the LCI field is included in the DMG sensing measurement setting element
  • Orientation Present (or whether peer positioning exists) field is used to indicate whether the DMG perception measurement setting element includes a peer positioning field
  • the sensing type field when the value of the sensing type field is 0, it means that the sensing type is a cooperative single-base type. When the value of the sensing type field is 1, it means that the sensing type is a cooperative dual-base type. When the value of the sensing type field is When it is 2, it means that the sensing type is a dual-base type. When the sensing type field value is 3, it means that the sensing type is a multi-base type.
  • the sensing type field values 4-7 are reserved values.
  • the receiving responder field is used to indicate that the sensing response device performs DMG sensing measurement
  • the role information in when the perception type field indicates other perception types, the receiving responder field is a reserved field.
  • Method 1-2 The first indication information is used to instruct the perception response device to serve as a perception sending device and/or a perception receiving device in DMG perception measurement. That is, the sensing initiating device instructs the sensing responding device to support one or more roles when performing DMG Sensing Measurement Setup.
  • the sensing initiating device can set the roles of the sensing sending device and sensing receiving device of the Sensing Responder respectively during DMG Sensing Measurement Setup.
  • Subsequent sensing response devices can be configured according to the DMG in the DMG sensing instance under the DMG Sensing Measurement Setup. Works in the role set during Sensing Measurement Setup.
  • the first indication information uses a bitmap to indicate that the sensing response device serves as the sensing sending device and/or the sensing receiving device in the DMG sensing measurement.
  • the role information of the sensing response device in the DMG sensing measurement may be directly indicated through different values of the first indication information.
  • the first indication information may be 2 bits, of which 1 bit is used to indicate whether the sensing response device serves as a sensing sending device in the DMG sensing measurement, and the other 1 bit is used to indicate whether the sensing response device serves as a sensing receiving device in the DMG sensing measurement. equipment.
  • the first indication information may be 2 bits, and different values of the 2 bits are used to indicate different roles of the sensing response device in DMG sensing measurement. For example, a value of 00 indicates that the sensing response device serves as a sensing sending device in the DMG sensing measurement, a value of 01 represents that the sensing responding device serves as a sensing receiving device in the DMG sensing measurement, and a value of 10 represents that the sensing responding device serves as a sensing receiving device in the DMG sensing measurement. As a sensing sending device and sensing receiving device, the value 11 is a reserved value.
  • a sensing sending device and sensing receiving device the value 11 is a reserved value.
  • this application does not limit the specific manner in which the first indication information is carried in the first request frame.
  • existing fields in the first request frame can be used.
  • the existing fields can be redefined to carry the first request frame.
  • indication information, or a new field may be added in the first request frame to carry the first indication information, etc.
  • the first request frame includes a sending indication field and a receiving indication field.
  • the sending indication field is used to indicate whether the sensing response device serves as a sensing sending device in the DMG sensing measurement.
  • the receiving indication field is used to indicate that the sensing response device is used as a sensing sending device in the DMG. Whether to serve as a sensing receiving device in sensing measurements.
  • the sending indication field and the receiving indication field are carried in a measurement setting control field in the DMG aware measurement setting element of the first request frame.
  • Figure 7 is a schematic diagram of another format of a measurement setting control field carrying first indication information according to an embodiment of the present application.
  • the measurement setting control field may include:
  • the Receive Responder field (Rx Responder, corresponding to the above-mentioned reception indication field) or the Responder Receive (Responder Rx) field.
  • the Receive Responder field is used to indicate whether the sensing response device serves as a sensing receiving device in the DMG sensing measurement instance.
  • the Tx Responder field (Tx Responder, corresponding to the above-mentioned sending indication field) is also called the Responder Tx field.
  • the Tx Responder field is used to indicate whether the sensing response device is used as a sensing sending device in the DMG sensing measurement instance.
  • the receiving responder field is used to indicate whether to serve as a sensing receiving device in a cooperative dual-base DMG sensing measurement instance in a cooperative dual-base mode, or whether to serve as a sensing device in a dual-base DMG sensing measurement instance in a dual-base mode. receiving equipment.
  • the sending responder field is used to indicate whether to serve as a sensing transmitting device in a cooperative dual-base DMG sensing measurement instance in a cooperative dual-base mode, or whether to serve as a sensing sending device in a dual-base DMG sensing measurement instance in a dual-base mode. sending device.
  • the receiving responder field is 1 bit.
  • the value of this 1 bit is 1, which indicates that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing receiving device in the DMG sensing measurement instance.
  • the value of this 1 bit is 1.
  • a value of 0 indicates that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing sending device in the DMG sensing measurement instance.
  • the receiving responder field is 1 bit, and a value of 0 indicates that the sensing response device that receives the DMG sensing measurement setting request frame is a sensing receiving device in the DMG sensing measurement instance.
  • the 1 bit is 0.
  • a value of 1 indicates that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing sending device in the DMG sensing measurement instance.
  • the sending responder field is 1 bit.
  • the value of this 1 bit is 1, indicating that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing sending device in the DMG sensing measurement instance.
  • the value of this 1 bit is 1.
  • a value of 0 indicates that the perception response device that receives the DMG perception measurement setting request frame is not a perception sending device in the DMG perception measurement instance.
  • the sending responder field is 1 bit.
  • the value of this 1 bit is 1, indicating that the sensing response device that receives the DMG sensing measurement setting request frame is not a sensing sending device in the DMG sensing measurement instance.
  • the 1 bit A value of 0 indicates that the sensing response device that receives the DMG sensing measurement setting request frame serves as the sensing sending device in the DMG sensing measurement instance.
  • the receiving responder field is used to indicate that the sensing response device is in sensing measurement. Whether it plays the role of a sensing receiving device, the sending responder field is used to indicate whether the sensing responding device plays the role of a sensing sending device in sensing measurement.
  • the sensing type field indicates other sensing types, the receiving responder field and the sending responder field The fields are reserved.
  • Figure 7 only takes the receiving responder field occupying bit 3 (ie B3) and the sending responder field occupying bit 7 (ie B6) as an example.
  • the sending responder field may also occupy bit B7, or the receiving responder field may occupy bit B7.
  • the responder field and the sending responder field may occupy B5 and B6, and the LCI existence field and positioning existence field may occupy B3 and B4 respectively. This application does not limit the specific positions of each field.
  • the second indication information is used to indicate the identification information of one or more peer devices of the sensing response device.
  • this method 2-1 can be implemented alone, or can also be implemented in combination with the aforementioned method 1-1 or method 1-2, which is not limited in this application.
  • the second indication information is used to indicate identification information of a peer device of the sensing response device.
  • the sensing response device can only be assigned the role of sensing sending device or sensing receiving device in DMG Sensing Measurement Setup, and in a DMG sensing measurement instance, the sensing response device can only be followed by one
  • the second indication information may indicate identification information of a peer device.
  • the role of the peer device can be determined based on the role of the sensing response device. For example, if the role of the sensing response device is a sensing sending device, then the role of the peer device is a sensing receiving device, or if the sensing response device's role is If the role is a sensing receiving device, then the role of the peer device is a sensing sending device.
  • a sensing response device in a DMG sensing measurement instance, can perform DMG sensing measurements with multiple peer devices, and the second indication information can be used to indicate the identification information of multiple peer devices.
  • the first indication information indicates that the role of the sensing response device is a sensing sending device
  • the roles of the multiple peer devices are all sensing receiving devices
  • the first indication information indicates that the role of the sensing response device is a sensing sending device.
  • the roles of the multiple peer devices are sensing sending devices.
  • the role information of the multiple peer devices may be determined in the DMG sensing measurement instance phase.
  • the first request frame includes at least one peer device identification (Peer STA ID) field, and the peer device identification field is used to indicate identification information of the peer device of the sensing response device.
  • Peer STA ID peer device identification
  • the at least one peer device identification field is carried in an optional subelement (Optional Subelement) field in the DMG sensing measurement setting element of the first request frame.
  • the optional subelement is also called the Peer STA ID Subelement.
  • the peer device identification field can be 1 byte, 2 bytes or 6 words. Festival etc.
  • Figure 8 is a schematic diagram of a format for carrying identification information of a peer device through an optional sub-element field according to an embodiment of the present application.
  • the optional sub-element field ie, peer device identification sub-element
  • the sensing type indicated by the sensing type field is a cooperative dual-base type or a dual-base type (that is, the sensing type field has a value of 1 or 2)
  • the peer device identification sub-element exists.
  • Method 2-2 The second indication information is used to indicate the identification information and/or role information of one or more peer devices of the sensing response device.
  • this method 2-2 can be implemented alone, or can also be implemented in combination with the aforementioned method 1-1 or method 1-2, which is not limited in this application.
  • the sensing initiating device can separately indicate the roles of the sensing sending device and the sensing receiving device of the sensing response device during DMG Sensing Measurement Setup, and, in a DMG sensing instance, the sensing response device A sensing response device may perform sensing measurements with one or more peer devices.
  • AP assigns and sets two DMG sensing pairs to STA A: DMG sensing pair 1 (AP serves as the sensing sending device, STA A serves as the sensing receiving device) and DMG sensing pair 2 (STA A serves as the sensing receiving device) Sending device, STA B serves as sensing receiving device).
  • the sensing initiating device may indicate the identification information and role information of one or more peer devices to the sensing responding device.
  • the second indication information is used to indicate at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the second indication information may be used to indicate whether the peer device of the sensing response device serves as the sensing sending device or as the sensing receiving device in the DMG sensing measurement instance.
  • the second indication information may be used to indicate that the peer device of the sensing response device serves as the sensing sending device and/or the sensing receiving device in the DMG sensing measurement instance.
  • the first request frame includes at least one of the following fields:
  • the number of peer devices field is used to indicate the number of peer devices of the sensing response device
  • At least one peer device information (Peer STA Information) field is used to indicate the information of the peer device of the sensing response device.
  • the peer device information field includes at least one of the following fields:
  • the peer device identification (Peer STA ID) field is used to indicate the identification information of the peer device of the sensing response device;
  • the role information field is used to indicate the role information of the peer device of the sensing response device.
  • the peer device quantity field and the at least one peer device information field are carried in optional sub-element fields in the DMG awareness measurement setting element of the first request frame.
  • the optional subelement is also called the Peer STA Info subelement.
  • the peer device number field (or peer device information number field) can be determined based on the maximum number of peer devices supported by a sensing response device.
  • the peer device number field can be 1 bit or 2 bits. , 3 bits, 8 bits, etc.
  • the number of peer devices field can be set to 3 bits, then the peer device information sub-element can carry up to 8 peer device information.
  • the number of peer devices field can be set to 8 bits, then the peer device information sub-element can carry up to 256 peer device information.
  • the peer device identification field can be 1 byte, 2 bytes or 6 words. Festival etc.
  • the role information field may be 1 bit, or other number of bits, which is not limited in this application.
  • the role information field is 1 bit, and different values of the 1 bit are used to indicate that the peer device indicated by the peer device identification field serves as a sensing sending device or a sensing receiving device.
  • Figure 9 is a schematic diagram of a format for carrying second indication information through an optional sub-element field according to an embodiment of the present application.
  • the optional sub-element field may include at least one of the following fields:
  • the Number of Peer STA Information field is used to indicate the number of peer device information fields carried in this optional sub-element field;
  • At least one peer device information (Peer STA Information) field is used to indicate the information of the peer device of the sensing response device that receives the DMG sensing measurement setting request frame.
  • the 1st Peer STA Information field is used to carry information about the first peer device
  • the nth Peer STA Information field is used to carry information about the nth peer device.
  • the sensing type indicated by the sensing type field is a cooperative dual-base type or a dual-base type (that is, the sensing type field has a value of 1 or 2)
  • the peer device information sub-element exists.
  • the peer device information field may include at least one of the following fields:
  • the peer device identification field is used to indicate the identification information of the peer device of the sensing response device
  • the sending or receiving field is used to indicate the role information of the peer device of the sensing response device in the DMG sensing pair formed with the sensing response device.
  • the send or receive field is 1 bit.
  • the value of this 1 bit is 1, indicating that the role of the peer device is a sensing sending device, otherwise it is a sensing receiving device.
  • the send or receive field is 1 bit, and the value of this 1 bit is 0, indicating that the role of the peer device is a sensing sending device, otherwise it is a sensing receiving device.
  • sending or receiving fields is only an example, and can also be replaced by other names, such as sending responder field, receiving responder field, role indication field, role information field, etc. This application does not limit this.
  • the perception initiating device only sets one role for the perception response device through the DMG perception measurement setting request frame, such as a perception receiving device or a perception sending device.
  • the DMG perception measurement setting request frame such as a perception receiving device or a perception sending device.
  • the sensing initiating device carries identification information of a peer device through the DMG sensing side setting request frame, corresponding to the aforementioned method 2-1.
  • the sensing initiating device can send a DMG sensing measurement setting request frame to sensing response device 1 (ie STA A), sensing response device 2 (ie STA B) and sensing response device 3 (ie STA C), Among them, the Sensing Type subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup Setup element in the DMG sensing measurement setup request frame is set to 1, which represents the sensing initiating device requesting sensing response device 1, sensing response device 2 and sensing response device 3. Perform Coordinated bistatic DMG sensing.
  • the sensing initiating device as a sensing transmitter, sets the RX Responder subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup element to 1 in the DMG Sensing Measurement Setup request frame sent to the sensing response device 1, and sets the RX Responder subfield in the DMG Sensing Measurement Setup element to 1.
  • the Peer STA ID subelement carried by the Optional Subelements in element is used to indicate the identification information of the sensing initiating device.
  • the sensing initiating device sets the RX Responder subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup element to 0 in the DMG sensing measurement setup request frame sent to the sensing response device 2, and sets the Optional Subelements in the DMG Sensing Measurement Setup element.
  • the Peer STA ID subelement carried is used to indicate the identification information of the sensing response device 3; the sensing initiating device changes the Measurement Setup Control field in the DMG Sensing Measurement Setup element in the DMG sensing measurement setup request frame sent to the sensing response device 3.
  • the RX Responder subfield is set to 1, and the Peer STA ID subelement carried by the Optional Subelements in the DMG Sensing Measurement Setup element is used to indicate the identification information of the sensing response device 2.
  • the sensing response device 2 serves as a sensing transmitter and the sensing response device 3 serves as a sensing receiver to form a bistatic DMG sensing pair (2).
  • the sensing initiating device can also set other DMG sensing pairs during the DMG sensing measurement setting stage.
  • the bistatic DMG sensing pairs that the sensing initiating device can set are: The following 6 types: (AP, STA A), (AP, STA B), (AP, STA C), (STA A, STA B), (STA A, STA C), (STA B, STA C).
  • one party can be used as a sensing sending device and the other party can be used as a sensing receiving device.
  • the perception initiating device sets one or two roles, such as a perception receiving device and/or a perception sending device, to the perception response device through the DMG perception measurement setting request frame.
  • one or two roles such as a perception receiving device and/or a perception sending device, to the perception response device through the DMG perception measurement setting request frame.
  • the sensing initiating device carries the identification information and role information of one or more peer devices through the DMG sensing side setting request frame, corresponding to the aforementioned method 2-2.
  • the sensing initiating device can send a DMG sensing measurement setting request frame to sensing response device 1 (ie STA A), sensing response device 2 (ie STA B) and sensing response device 3 (ie STA C), Among them, the Sensing Type subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup Setup element in the DMG sensing measurement setup request frame is set to 1, which represents the sensing initiating device requesting sensing response device 1, sensing response device 2 and sensing response device 3. Perform Coordinated bistatic DMG sensing.
  • the sensing initiating device sets both the RX Responder subfield and the TX Responder subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup element to 1 (indicating sensing response) in the DMG sensing measurement setup request frame sent to the sensing response device 1.
  • Device 1 supports two roles), and the Optional Subelements in the DMG Sensing Measurement Setup element carry the identification information of the Peer STA Information subelement indicating sensing initiator and sensing responder 2 as well as the corresponding role information.
  • the role corresponding to the sensing initiating device is sensing
  • the role corresponding to the sending device and sensing response device 2 is the sensing receiving device.
  • the sensing initiating device serves as a sensing transmitter and the sensing response device 1 as a sensing receiver forms a bistatic DMG sensing pair (1), that is (AP Tx, STA A Rx); the sensing response device 1 serves as a sensing transmitter and the sensing response device 1 serves as a sensing receiver Sensing response device 2 consists of bistatic DMG sensing pair (2), namely (STA A Tx, STA B Rx);
  • the sensing initiating device sets both the RX Responder subfield and the TX Responder subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup element to 1 in the DMG sensing measurement setup request frame sent to sensing response device 2 (indicating that sensing response device 1 supports Two roles), and the Optional Subelements in the DMG Sensing Measurement Setup element carry the Peer STA ID subelement used to indicate the identification information of the sensing response device 1 and the sensing response device 3.
  • the sensing initiating device sets the RX Responder subfield in the Measurement Setup Control field in the DMG Sensing Measurement Setup element to 1 and the TX Responder subfield to 0 in the DMG Sensing Measurement Setup Request frame sent to the sensing response device 3, and sets the RX Responder subfield to 0 in the DMG Sensing Measurement Setup element.
  • the Optional Subelements in the Measurement Setup element carry the Peer STA ID subelement indicating the identification information of sensing responder 2 and the corresponding role information (taking Tx as an example).
  • the sensing response device 2 acts as a sensing transmitter and the sensing response device 3 as a sensing receiver forms a bistatic DMG sensing pair (3), that is, (STA B Tx, STA C Rx).
  • the sensing initiating device can also set other DMG sensing pairs during the DMG measurement setup phase.
  • the bistatic DMG sensing pairs that the sensing initiating device can set are as follows 6 types: (AP,STA A), (AP,STA B), (AP,STA C), (STA A,STA B), (STA A,STA C), (STA B, STA C).
  • one party can be used as a sensing sending device and the other party can be used as a sensing receiving device.
  • the S210 may include:
  • the sensing response device receives a second request frame, wherein the second request frame includes third indication information and/or fourth indication information, the second request frame is used to request DMG sensing measurement, and the third The indication information is used to indicate the role information of the perception response device in the DMG perception measurement, and the fourth indication information is used to indicate the information of the peer device of the perception response device.
  • the role information of the sensing response device in the DMG sensing measurement and/or the information of the peer device may also be obtained in the DMG sensing measurement instance stage.
  • the role information of the sensing response device in the DMG sensing measurement may be obtained from the first request frame.
  • the information of the peer device may be obtained from the first request frame.
  • the second request frame is also called a DMG Sensing Request frame (DMG Sensing Request frame), or other names may be used, which is not limited in this application.
  • DMG Sensing Request frame DMG Sensing Request frame
  • the third indication information is used to indicate that the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the third indication information may be 1 bit, and the value of the 1 bit is used to indicate that the sensing response device serves as a sensing sending device or as a sensing receiving device in DMG sensing measurement.
  • a value of 1 for this 1 bit indicates that the perception response device serves as a perception receiving device in DMG perception measurement
  • a value of 0 indicates that the perception response device serves as a perception sending device in DMG perception measurement
  • a value of 0 for this 1 bit indicates that the perception response device serves as a perception receiving device in DMG perception measurement
  • a value of 1 indicates that the perception response device serves as a perception sending device in DMG perception measurement.
  • the third indication information indicates in a bitmap manner when the sensing response device performs DMG sensing measurement with each peer device. Perception and response device role information.
  • the third indication information may include multiple bits, each bit corresponding to a peer device (or, in other words, a DMG sensing pair), and the value of each bit is used to indicate that the sensing response device is executing with the corresponding peer device.
  • the role information of the sensing response device during DMG sensing measurement may include multiple bits, each bit corresponding to a peer device (or, in other words, a DMG sensing pair), and the value of each bit is used to indicate that the sensing response device is executing with the corresponding peer device.
  • the fourth indication information is used to indicate identification information of a peer device of the sensing device.
  • the fourth indication information may be used to indicate the AID, UID, MAC address of the peer device, or the private ID set by the upper-layer application, etc. This application does not limit this.
  • this application does not limit the specific manner in which the third indication information is carried in the second request frame.
  • existing fields in the second request frame can be used.
  • the existing fields can be redefined to carry the third indication information.
  • indication information, or a new field may be added in the second request frame to carry the third indication information, etc.
  • this application does not limit the specific manner in which the fourth indication information is carried in the second request frame.
  • existing fields in the second request frame can be used.
  • the existing fields can be redefined to carry the fourth indication information.
  • indication information, or a new field may be added in the second request frame to carry the fourth indication information, etc.
  • FIG 12 is a schematic frame format diagram of a DMG sensing request frame provided by an embodiment of the present application.
  • the DMG sensing request frame may include a peer device identification (Peer STA ID) field, which is used to indicate the identification information of the peer device of the sensing response device.
  • peer STA ID peer device identification
  • the peer device identification field is carried in the Time Division Duplex TDD Beamforming Control field of the DMG sensing request frame.
  • the peer device identification field is reserved; when the sensing type indicated by the Sensing Type field is a cooperative dual-base type or dual-base type type, the peer device identification field is used to indicate the identity information of the peer device of the sensing response device in a DMG cooperative dual-base or dual-base sensing instance.
  • including the peer device identification field in the DMG awareness requester is optional, as shown in Figure 13.
  • the second request frame may not carry the peer device identification field.
  • the peer device of the sensing response device can be determined based on the peer device identification field, or the DMG sensing request frame does not include the peer device identification field.
  • the peer device of the sensing response device can be determined based on the peer device identification field in the DMG sensing measurement setting request frame.
  • the DMG sensing request frame can be a control frame, including a MAC header and a MAC frame body.
  • the MAC frame body includes the TDD Beamforming Control field and TDD beamforming information. (TDD Beamforming Information) field.
  • the TDD beamforming control field includes a TDD beamforming frame type (TDD Beamforming Frame Type) field, which is used to indicate the type of TDD beamforming frame.
  • TDD Beamforming Frame Type TDD Beamforming Frame Type
  • the value of this field is 3, which indicates the DMG sensing type, and the value is 0-2, which indicates that the TDD beamforming frame is a type related to beam training.
  • the TDD Group Beamforming (TDD Group Beamforming) field and the TDD Beam Measurement (TDD Beam Measurement) field jointly indicate the location of a TDD beamforming frame in DMG perception. use.
  • TDD Group Beamforming TDD Group Beamforming
  • TDD Beam Measurement TDD Beam Measurement
  • the TDD group beamforming value is 0 and the TDD beam measurement value is 0, indicating that the TDD beamforming frame is a DMG Sensing Request frame.
  • the TDD group beamforming value is 0 and the TDD beam measurement value is 1, indicating that the TDD beamforming frame is a DMG Sensing Response (DMG Sensing Response) frame.
  • DMG Sensing Response DMG Sensing Response
  • the TDD group beamforming value is 1 and the TDD beam measurement value is 0, indicating that the TDD beamforming frame is a DMG Sensing Poll frame.
  • the TDD beamforming information field may include the following fields:
  • Measurement Setup ID An identifier used to indicate the sensing measurement settings associated with this frame.
  • Measurement Burst ID An identifier used to indicate the sensing measurement burst associated with this frame.
  • Measurement Instance Serial Number used to indicate the sequence number of a sensing measurement instance in a measurement burst.
  • Sensing type Indicates the sensing type requested by this frame. Among them, the specific values and meanings are shown in Table 2.
  • STA ID Indicates the order in which a STA participates in measurement in a sensing measurement instance.
  • First Beam Index Indicates the index of the first transmit beam used in a sensing measurement instance.
  • Number of STAs in Instance Indicates the number of STAs participating in the measurement in a sensing measurement instance.
  • Number of PPDUs in Instance Indicates the number of PPDUs that appear in a sensing measurement instance.
  • EDMG TRN Length Indicates the number of training units (TRN-Unit) included in a PPDU.
  • RX TRN-Units per TX TRN-Unit (RX TRN-Units per Each TX TRN-Unit): Indicates the number of TRN-Units sent continuously in the same direction.
  • EDMG TRN-Unit P Indicates the number of TRN-Units indicated by the TRN subfield (TRN subfield) in which the beam direction is aligned with the peer device in a TRN-Unit.
  • EDMG TRN-Unit M Indicates the number of TRN-Units indicated by the TRN subfield (TRN subfield) with variable beam direction in a TRN-Unit.
  • EDMG TRN-Unit N Indicates the number of TRN subfields sent continuously using the same beam direction in TRN-Unit-M TRN subfields.
  • TRN Subfield Sequence Length Indicates the length of the Gray sequence used for each TRN subfield.
  • Bandwidth Indicates the bandwidth used to send the TRN field.
  • FIG 14 is a schematic frame format diagram of yet another DMG sensing request frame provided by an embodiment of the present application.
  • the DMG awareness request frame may include:
  • the peer device identification (Peer STA ID) field is used to indicate the identification information of the peer device of the sensing response device.
  • the role indication field is used to indicate the role information of the sensing response device in the DMG sensing pair formed with the peer device indicated by the peer device identification field, for example, as a sensing sending device or as a sensing receiving device.
  • the role indication field may be 1 bit.
  • a value of 1 for this 1 bit indicates that the sensing response device serves as a sensing receiving device in the DMG sensing measurement.
  • a value of 0 indicates that the sensing responding device serves as a sensing receiving device in the DMG sensing measurement.
  • Sensing sending device Alternatively, a value of 0 for this 1 bit indicates that the perception response device serves as a perception receiving device in DMG perception measurement, and a value of 1 indicates that the perception response device serves as a perception sending device in DMG perception measurement.
  • the peer device identification field and the role indication field are carried in the TDD beamforming information field of the second request frame.
  • the peer device identification field and the role indication field are reserved; when the sensing type indicated by the Sensing Type field is a cooperative dual-base type type or dual-base type, the peer device identification field is used to indicate the identity information of the peer device of the sensing response device in a DMG cooperative dual-base or dual-base sensing instance, and the role indication field is used to indicate the sensing response device Role information in DMG collaborative bi-base or bi-base awareness instances.
  • the role indication field is also called the coordinated bistatic role (Coordinated Bistatic Roll) field, the coordinated bistatic transmission (Coordinated Bistatic TX) field, and the coordinated bistatic TX field. Coordinated Bistatic RX field, or other names, this application does not limit this.
  • the role indication field is also called a bistatic role (Bistatic Roll) field, a bistatic transmit (Bistatic TX) field, and a bistatic receive (Bistatic RX) field. Fields, or other names, are not limited in this application.
  • the second request frame includes a role list field, which is used to indicate role information of the sensing response device when performing DMG sensing measurement with each peer device.
  • the value of the role indication field must comply with the settings of the RX Responder and TX Responder fields in the Measurement Setup Control field in the DMG sensing measurement request frame.
  • the value of the role indication field can only indicate that the sensing responding device serves as a sensing receiving device in a DMG Sensing Instance.
  • the value of the role indication field can only indicate that the sensing response device serves as a sensing sending device in a DMG Sensing Instance.
  • the value of the role indication field can indicate that the sensing response device serves as a sensing receiving device or a sensing sending device in a DMG Sensing Instance. Sensing sending device.
  • Figure 15 is a schematic frame format diagram of yet another DMG sensing request frame provided by an embodiment of the present application.
  • the DMG awareness request frame may include:
  • the role list field includes multiple role indication fields. Each role indication field corresponds to a peer device. The value of each role indication field is used to indicate the role of the sensing response device when performing DMG sensing measurements with the corresponding peer device. information.
  • multiple role indication fields correspond to multiple peer device identification fields in a one-to-one correspondence.
  • Each role indication field is used to indicate the role information of the sensing response device when performing DMG sensing measurement with the peer device indicated by the corresponding peer device identification field.
  • the plurality of peer device identification fields are carried in the DMG sensing measurement setting request frame.
  • the role list field when the sensing type indicated by the Sensing Type field is not a cooperative dual-base or dual-base type, the role list field is reserved; when the sensing type indicated by the Sensing Type field is a cooperative dual-base or dual-base type, the role list field The role list field is used to indicate the role information of the sensing response device when performing DMG sensing measurements with each peer device.
  • the role list field may include the Peer 1TX field to the Peer 8TX field, which respectively correspond to the eight peer devices from left to right in Figure 9.
  • the meaning of the subfield Peer i TX (N ⁇ i ⁇ 8) in the role list field is reserved. .
  • the value of the Peer x TX field indicates the role of the sensing response device in the DMG sensing pair formed with the corresponding peer device. For example, a value of 1 indicates that the perception response device serves as a perception sending device, and a value of 0 indicates that the perception response device serves as a perception receiving device.
  • the value of the Peer x TX field must conform to the settings of the RX Responder and TX Responder fields in the Measurement Setup Control field in the DMG Sensing Measurement Setup Request frame.
  • the value of the Peer x TX field can only indicate that the sensing responding device can be used as a sensing receiving device in a DMG Sensing Instance.
  • the value of the Peer x TX field can only indicate that the sensing response device can be used as a sensing sending device in a DMG Sensing Instance. .
  • the value of the Peer x TX field can indicate that the sensing response device serves as a sensing receiving device in a DMG Sensing Instance. Or sensing the sending device.
  • the peer device of the sensing response device when the peer device of the sensing response device is the sensing initiating device, the sensing response device is a sensing sending device, and the sensing initiating device is a sensing receiving device, the The method 200 also includes:
  • the sensing response device receives a Beam Refinement Protocol (BRP) frame sent by the sensing initiating device.
  • BRP frame includes transmission request information (recorded as TX-RQ), which is used to request the sensing response device to send BRP frames carrying training TRN information;
  • the sensing response device sends a BRP frame carrying training TRN information (or, in other words, TRN field) to the sensing initiating device.
  • the perception initiating device can perform perception measurement based on the BRP frame carrying TRN information, and obtain the perception measurement result.
  • the peer device of the sensing response device when the peer device of the sensing response device is the sensing initiating device, the sensing response device is a sensing receiving device, and the sensing initiating device is a sensing sending device,
  • the method 200 also includes:
  • the sensing response device receives a BRP frame carrying TRN information (or, TRN field) sent by the sensing initiating device;
  • the sensing response device sends a BRP frame carrying report information (recorded as Report) to the sensing initiating device, and the BRP frame carrying report information is used to report sensing measurement results.
  • a BRP frame carrying report information (recorded as Report)
  • the peer device of the sensing response device is another sensing response device
  • the sensing response device is a sensing sending device
  • the other sensing response device is a sensing receiving device.
  • the method also includes:
  • the sensing response device receives a DMG sensing measurement polling frame sent by the sensing initiating device, and the DMG sensing measurement polling frame is used to trigger the sensing response device to start DMG sensing measurement with the another sensing response device;
  • the sensing response device sends a BRP frame carrying TRN information (or, in other words, TRN field) to the other sensing response device;
  • the sensing response device receives a BRP frame carrying report information (recorded as Report) sent by the other sensing response device, and the BRP frame carrying report information is used to report sensing measurement results;
  • the perception response device sends a DMG perception measurement reporting frame to the perception initiating device, and the DMG perception measurement reporting frame is used to report the perception measurement result.
  • the peer device of the sensing response device is another sensing response device
  • the sensing response device is a sensing receiving device
  • the other sensing response device is a sensing sending device.
  • the method 200 further includes:
  • the sensing initiating device receives and sends a BRP frame to another sensing response device, where the BRP frame includes transmission request information (denoted as TX-RQ), used to request another sensing response device to send a BRP frame carrying training TRN information;
  • TX-RQ transmission request information
  • the sensing response device receives a BRP frame carrying TRN information sent by the other sensing response device;
  • the sensing response device sends a BRP frame carrying report information to the other sensing response device, and the BRP frame carrying reporting information is used to report sensing measurement results.
  • Another sensing response device sends a BRP frame carrying report information to the sensing initiating device.
  • the DMG sensing request frame includes the Peer STA ID field, and the sensing initiating device uses the Peer STA ID field to send identification information of its peer device to the sensing response device that receives the DMG sensing request frame.
  • Example 1 the Initiator forms a DMG sensing pair with STA A, STA B, STA C and STA D respectively.
  • STA A, STA B, STA C and STA D are all sensing sending devices, that is, the Initiator is in each DMG sensing pair. All are sensing receiving devices. As shown in Figure 16, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 2 After the short interframe space (SIFS) time, STA A replies the DMG Sensing Response frame (recorded as BSP) to the Initiator;
  • SIFS short interframe space
  • BSP DMG Sensing Response frame
  • Step 3 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA B, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA A to request STA A to reply with a BRP frame carrying TRN;
  • Step 10 After the BRPIFS time, STA A replies with a BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 11 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA B to request STA B to reply with a BRP frame carrying TRN;
  • Step 12 After the BRPIFS time, STA B replies a BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 13 After the SIFS time, the Initiator sends the BRP frame carrying TX-RQ to STA C to request STA C to reply to the BRP frame carrying the TRN field;
  • Step 14 After the BRPIFS time, STA C replies the BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 15 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA D to request STA D to reply with a BRP frame carrying TRN;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Example 2 the Initiator is paired with STA A, STA B, STA C and STA D respectively.
  • STA A, STA B, STA C and STA D are all sensing receiving devices, that is, the Initiator is a sensing device in each DMG sensing pair. sending device. As shown in Figure 17, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA A for STA A to sense the environment;
  • Step 10 After the BRPIFS time, STA A replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 11 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 12 After the BRPIFS time, STA B replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA C for STA C to sense the environment;
  • Step 14 After the BRPIFS time, STA C replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 15 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA D for STA D to sense the environment;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results.
  • the Initiator forms a DMG sensing pair with STA A, STA B, STA C and STA D respectively.
  • STA A and STA C are sensing sending devices
  • STA B and STA D are sensing receiving devices.
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA A to request STA A to reply with a BRP frame carrying TRN;
  • Step 10 After the BRPIFS time, STA A replies with a BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 11 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 12 After the BRPIFS time, STA B replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA C to request STA C to reply with a BRP frame carrying TRN;
  • Step 14 After the BRPIFS time, STA C replies the BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 15 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA D for STA D to sense the environment;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results.
  • Example 4 STA A and STA B form a DMG sensing pair, and the Initiator forms a DMG sensing pair with STA C and STA D respectively.
  • STA A is the sensing sending device, and STA B, STA C, and STA D are sensing receiving devices. As shown in Figure 19, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 2;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 0;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, which is used to trigger STA A to start performing cooperative dual-base sensing measurements with STA B;
  • Step 10 After the SIFS time, STA A sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 11 After the BRPIFS time, STA B sends a BRP frame carrying Report to STA A to feedback the sensing measurement results;
  • Step 12 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator replies with an ACK frame to STA A (optional step);
  • Step 14 After the SIFS time, the Initiator sends the BRP frame carrying TX-RQ to STA C and requests STA C to reply with the BRP frame carrying TRN;
  • Step 15 After the BRPIFS time, STA C replies the BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 16 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA D for STA D to sense the environment;
  • Step 17 After the BRPIFS time, STA D sends a BRP frame carrying Report to the Initiator to report the sensing measurement results.
  • Example 5 STA A and STA B form a DMG sensing pair, STA C and STA D are paired, STA A and STA C are sensing sending devices, and STA B and STA D are sensing receiving devices. As shown in Figure 20, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 2;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 4;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 3;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, which is used to trigger STA A to start cooperative dual-base sensing measurement with STA B;
  • Step 10 After the SIFS time, STA A sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 11 After the BRPIFS time, STA B sends a BRP frame carrying Report to STA A to feedback the sensing measurement results;
  • Step 12 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator replies with an ACK frame to STA A; (optional step)
  • Step 14 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA C, which is used to trigger STA C to start cooperative dual-base sensing measurements with STA D;
  • Step 15 After the SIFS time, STA C sends a BRP frame carrying TRN to STA C for STA C to sense the environment;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying Report to STA C to feed back the sensing measurement results;
  • Step 17 After the SIFS time, STA C sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 18 After the SIFS time, the Initiator replies with an ACK frame to STA C; (optional step).
  • Example 6 STA A and STA D form a DMG sensing pair, STA B and STA C form a DMG sensing pair, STA A and STA C are sensing sending devices, and STA B and STA D are sensing receiving devices. As shown in Figure 21, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 4;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 2;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" field in the DMG Sensing Request frame is set to 1;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, which is used to trigger STA A to start cooperative dual-base sensing measurement with STA D;
  • Step 10 After the SIFS time, STA A sends a BRP frame carrying TRN to STA D for STA D to sense the environment;
  • Step 11 After the BRPIFS time, STA D replies with a BRP frame carrying Report to STA A to feed back the sensing measurement results;
  • Step 12 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator replies with an ACK frame to STA A; (optional step)
  • Step 14 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA C, triggering STA C to start cooperative dual-base sensing measurement with STA B;
  • Step 15 After the SIFS time, STA C sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 16 After the BRPIFS time, STA B replies the BRP frame carrying Report to STA C to feed back the sensing measurement results;
  • Step 17 After the SIFS time, STA C sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 18 After the SIFS time, the Initiator replies with an ACK frame to the STA (optional step).
  • the DMG sensing request frame may include the Peer STA ID field, or may not include the Peer STA ID field.
  • the DMG sensing request The frame may not include the Peer STA ID field, or may include the Peer STA ID field.
  • Example 7 the Initiator sets the Initiator through the DMG Sensing Measurement Setup Request frame to form a DMG sensing pair with STA A, STA B, STA C and STA D respectively, and STA A and STA C are sensing sending devices, and STA B and STA D are Sensing receiving equipment.
  • FIG 22 it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 0 or does not carry the "Peer STA ID” field;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 3 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA B, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 0 or does not carry the "Peer STA ID” field;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 0 or does not carry the "Peer STA ID” field;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 0 or does not carry the "Peer STA ID” field;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA A to request STA A to reply with a BRP frame carrying TRN;
  • Step 10 After the BRPIFS time, STA A replies with a BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 11 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA B for STA B to sense the environment;
  • Step 12 After the BRPIFS time, STA B replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA C to request STA C to reply with a BRP frame carrying TRN;
  • Step 14 After the BRPIFS time, STA C replies the BRP frame carrying the TRN field to the Initiator for the Initiator to sense the environment;
  • Step 15 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA D for STA D to sense the environment;
  • STA D After the BRPIFS time, STA D replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results.
  • Example 8 the Initiator sets STA A and STA B to form a DMG sensing pair, STA C and STA D to form a DMG sensing pair through the DMG Sensing Measurement Setup Request frame, and STA A and STA C are sensing sending devices, STA B and STA D For sensing receiving equipment. As shown in Figure 23, it specifically includes the following steps:
  • Step 1 The Initiator sends a DMG Sensing Request frame to STA A, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 2 or does not carry the "Peer STA ID” field;
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 3 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA B, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 1 or does not carry the "Peer STA ID” field;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 5 The Initiator sends a DMG Sensing Request frame to STA C, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 4 or does not carry the "Peer STA ID” field;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Request frame to STA D, in which the "Peer STA ID" in the DMG Sensing Request frame is set to 3 or does not carry the "Peer STA ID” field;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, triggering STA A to start cooperative dual-base sensing measurement with STA B;
  • Step 10 After the SIFS time, STA A sends a BRP frame carrying TRN to STA B to realize environment awareness;
  • Step 11 After the BRPIFS time, STA B sends a BRP frame carrying Report to STA A to feedback the sensing measurement results;
  • Step 12 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator replies with an ACK frame to STA A; (optional step)
  • Step 14 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA C, triggering STA C to start cooperative dual-base sensing measurement with STA D;
  • Step 15 After the SIFS time, STA C sends a BRP frame carrying TRN to STA C to realize environment awareness;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying Report to STA C to feed back the sensing measurement results;
  • Step 17 After the SIFS time, STA C sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 18 After the SIFS time, the Initiator replies with an ACK frame to the STA (optional step).
  • the DMG sensing request frame includes the Peer STA ID field and the role indication field (such as the Coordinated Bistatic TX field), which are respectively used to indicate the identification information of the peer device of the sensing response device and the location of the sensing response device.
  • Role information in the DMG sensing pair formed with the peer device is set to 1 to represent the sensing sending device and to 0 to represent the sensing receiving device.
  • Example 9 the Initiator sets STA A, STA B, STA C, and STA D through the DMG Sensing Measurement Setup Request frame to serve as sensing receivers or sensing senders.
  • the Initiator can further indicate specific role information through the DMG sensing request frame. As shown in Figure 24, it specifically includes the following steps:
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a BRP frame carrying TX-RQ to STA A and requests STA A to reply with a BRP frame carrying TRN;
  • Step 10 After the BRPIFS time, STA A replies with a BRP frame carrying the TRN field to the Initiator to sense the environment;
  • Step 11 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA B to realize environment awareness;
  • Step 12 After the BRPIFS time, STA B replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator sends the BRP frame carrying TX-RQ to STA C and requests STA C to reply with the BRP frame carrying TRN;
  • Step 14 After the BRPIFS time, STA C replies the BRP frame carrying the TRN field to the Initiator to sense the environment;
  • Step 15 After the SIFS time, the Initiator sends a BRP frame carrying TRN to STA D to realize environment awareness;
  • Step 16 After the BRPIFS time, STA D replies with a BRP frame carrying Report to the Initiator to report the sensing measurement results.
  • Example 10 the Initiator sets STA A, STA B, STA C and STA D through the DMG Sensing Measurement Setup Request frame, which can serve as sensing receivers or sensing senders.
  • the Initiator can further Specific role information is indicated through the DMG awareness request frame. As shown in Figure 25, it specifically includes the following steps:
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 8 After the SIFS time, STA D replies the DMG Sensing Response frame to the Initiator;
  • Step 9 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, triggering STA A to start cooperative dual-base sensing measurement with STA B;
  • Step 10 After the SIFS time, STA A sends a BRP frame with TRN to STA B to realize environment awareness;
  • Step 11 After the BRPIFS time, STA B sends a BRP frame with Report to STA A to feedback the sensing measurement results;
  • Step 12 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 13 After the SIFS time, the Initiator replies with an ACK frame to STA A; (optional step)
  • Step 14 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA C, triggering STA C to start cooperative dual-base sensing measurement with STA D;
  • Step 15 After the SIFS time, STA C sends a BRP frame with TRN to STA C to realize environment awareness;
  • Step 16 After the BRPIFS time, STA D replies a BRP frame with Report to STA C to feed back the sensing measurement results;
  • Step 17 After the SIFS time, STA C sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 18 After the SIFS time, the Initiator replies with an ACK frame to STA C (optional step).
  • the Initiator sets STA A, STA B and STA C through the DMG Sensing Measurement Setup Request frame, which can serve as sensing receivers or sensing senders, and sets STA A and STA B to form a DMG. Perception pair, STA B and STA C form a DMG perception pair.
  • the DMG Sensing Request frame sent by the Initiator to STA A, STA B, and STA C can indicate the specific role of the responder in the measurement instance phase. As shown in Figure 29, it specifically includes the following steps:
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • the DMG perception pair formed with STA C serves as the perception sender;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA A, which is used to trigger STA A to start cooperative dual-base sensing measurement with STA B;
  • Step 8 After the SIFS time, STA A sends a BRP frame with TRN to STA B to realize environment awareness;
  • Step 9 After the BRPIFS time, STA B sends a BRP frame with Report to STA A to feedback the sensing measurement results;
  • Step 10 After the SIFS time, STA A sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 11 After the SIFS time, the Initiator replies with an ACK frame to STA A; (optional step)
  • Step 12 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA B, triggering STA B to start cooperative dual-base sensing measurement with STA C;
  • Step 13 After the SIFS time, STA B sends a BRP frame with TRN to STA C to realize environment awareness;
  • Step 14 After the BRPIFS time, STA C replies a BRP frame with Report to STA B to feed back the sensing measurement results;
  • Step 15 After the SIFS time, STA B sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 16 After the SIFS time, the Initiator replies with an ACK frame to STA B (optional step).
  • Example 12 The DMG perception pairs in Example 12 and Example 11 are the same, the difference lies in the role of the DMG perception pair. As shown in Figure 30, the following steps may be included:
  • Step 2 After the SIFS time, STA A replies the DMG Sensing Response frame to the Initiator;
  • Step 4 After the SIFS time, STA B replies the DMG Sensing Response frame to the Initiator;
  • Step 6 After the SIFS time, STA C replies the DMG Sensing Response frame to the Initiator;
  • Step 7 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA B, triggering STA B to start cooperative dual-base sensing measurement with STA A;
  • Step 8 After the SIFS time, STA B sends a BRP frame with TRN to STA A to realize environment awareness;
  • Step 9 After the BRPIFS time, STA A sends a BRP frame with Report to STA B to feedback the sensing measurement results;
  • Step 10 After the SIFS time, STA B sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 11 After the SIFS time, the Initiator replies with an ACK frame to STA B (optional step);
  • Step 12 After the SIFS time, the Initiator sends a DMG Sensing Measurement Poll frame to STA C, triggering STA C to start cooperative dual-base sensing measurement with STA B;
  • Step 13 After the SIFS time, STA C sends a BRP frame with TRN to STA B to realize environment awareness;
  • Step 14 After the BRPIFS time, STA B replies a BRP frame with Report to STA C to feedback the sensing measurement results;
  • Step 15 After the SIFS time, STA C sends a DMG Sensing Measurement Report frame to the Initiator to report the sensing measurement results;
  • Step 16 After the SIFS time, the Initiator replies with an ACK frame to STA C (optional step).
  • the embodiments of this application design a P2P sensing method in DMG cooperative dual-base or dual-base sensing mode, so that DMG sensing can support more sensing scenarios and increase the flexibility of DMG sensing, for example, sensing response devices Not only can P2P sensing be carried out with the sensing initiating device, but also P2P sensing can be carried out between sensing responding devices, realizing true P2P sensing.
  • the sensing initiating device can more conveniently assign a Tx/Rx role to the sensing response device.
  • each sensing response device can learn the information of its counterpart device, so that DMG sensing
  • the sensing sending device in the pair knows which device it should send sensing signals to, such as sensing PPDU.
  • FIG 31 shows a schematic block diagram of a sensing response device 400 according to an embodiment of the present application.
  • the sensing response device 400 includes:
  • the communication unit 410 is configured to obtain the role information of the sensing response device in the directional multi-gigabit DMG sensing measurement and/or the information of the peer device of the sensing response device.
  • the role information of the perception response device in DMG perception measurement is a perception sending device or a perception receiving device.
  • the role information of the perception response device in DMG perception measurement includes a perception sending device and/or a perception receiving device.
  • the role information of the sensing response device when the sensing response device performs DMG sensing measurement with each counterpart device is Indicated by bitmap.
  • the information about the counterpart device of the sensing response device includes identification information of the counterpart device of the sensing response device.
  • the information about the peer device of the sensing response device includes at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the role information of the sensing response device in the directional multi-gigabit DMG sensing measurement is obtained in the DMG sensing measurement setting phase and/or the DMG sensing measurement instance phase.
  • the information of the peer device of the sensing response device is obtained in the DMG sensing measurement setting phase and/or the DMG sensing measurement instance phase.
  • the communication unit 410 is also used to:
  • the first request frame includes first indication information and/or second indication information
  • the first request frame is used to request the establishment of DMG measurement settings
  • the first indication information is used to indicate The role information of the sensing response device in DMG sensing measurement
  • the second indication information is used to indicate the information of the peer device of the sensing response device.
  • the first indication information is used to indicate that the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement; or
  • the first indication information is used to indicate that the perception response device serves as a perception sending device and/or a perception receiving device in DMG perception measurement.
  • the second indication information is used to indicate identification information of a peer device of the sensing response device.
  • the second indication information is used to indicate at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the first request frame includes a first indication field, and the first indication field is used to indicate whether the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the first indication field is carried in a measurement setting control field in the DMG aware measurement setting element of the first request frame.
  • the first request frame includes a sending indication field and a receiving indication field.
  • the sending indication field is used to indicate whether the sensing response device serves as a sensing sending device in the DMG sensing measurement.
  • the receiving indication field Used to indicate whether the perception response device serves as a perception receiving device in DMG perception measurement.
  • the sending indication field and the receiving indication field are carried in a measurement setting control field in the DMG aware measurement setting element of the first request frame.
  • the first request frame includes at least one peer device identification field, and the peer device identification field is used to indicate identification information of the peer device of the sensing response device.
  • the at least one peer device identification field is carried in an optional sub-element field in the DMG awareness measurement setting element of the first request frame.
  • the first request frame includes at least one of the following fields:
  • the number of peer devices field is used to indicate the number of peer devices of the sensing response device
  • At least one peer device information field is used to indicate information about the peer device of the sensing response device.
  • the peer device information field includes at least one of the following fields:
  • the peer device identification field is used to indicate the identification information of the peer device of the sensing response device
  • the role information field is used to indicate the role information of the peer device of the sensing response device.
  • the peer device quantity field and the at least one peer device information field are carried in optional sub-element fields in the DMG awareness measurement setting element of the first request frame.
  • the communication unit 410 is also used to:
  • the second request frame includes third indication information and/or fourth indication information
  • the second request frame is used to request DMG sensing measurement
  • the third indication information is used to indicate The role information of the sensing response device in DMG sensing measurement
  • the fourth indication information is used to indicate the information of the peer device of the sensing response device.
  • the third indication information is used to indicate that the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the third indication information indicates in a bitmap manner when the sensing response device performs DMG sensing measurement with each peer device. Role information of the sensing response device.
  • the fourth indication information is used to indicate identification information of a peer device of the sensing device.
  • the second request frame includes a peer device identification field, and the peer device identification field is used to indicate identification information of a peer device of the sensing response device.
  • the peer device identification field is carried in the time division duplex TDD beamforming information field of the second request frame.
  • the peer device indicated in the first request frame is used as the peer of the perception response device in the DMG perception measurement instance.
  • the first request frame is used to request the establishment of DMG measurement settings.
  • the second request frame includes a peer device identification field and a role indication field.
  • the peer device identification field is used to indicate the identity information of the peer device of the sensing response device.
  • the role indication field The field is used to indicate the role information of the sensing response device in DMG sensing measurement.
  • the peer device identification field and the role indication field are carried in the TDD beamforming information field of the second request frame.
  • the second request frame includes a role list field, and the role list field is used to indicate role information of the sensing response device in a DMG sensing pair formed with each peer device.
  • the role list field includes multiple role indication fields, each role indication field corresponds to a peer device, and the value of each role indication field is used to indicate that the sensing response device is in contact with the corresponding peer device. Character information when performing DMG perception measurements.
  • the multiple role indication fields and the multiple peer device identification fields are in one-to-one correspondence, and the multiple peer device identification fields are carried in the first request frame, and the first request frame is used to Requests the establishment of DMG measurement settings.
  • the sensing response device performs DMG sensing measurement with a peer device, wherein the sensing response device serves as a sensing transmitting device and the peer device serves as a sensing receiving device. device, or the sensing response device serves as a sensing receiving device, and the one peer device serves as a sensing sending device.
  • the sensing response device performs DMG sensing measurement with multiple peer devices, wherein the sensing response device and the multiple peer devices are composed of multiple peer devices.
  • the roles of the sensing and responding devices are the same or different.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • sensing response device 400 may correspond to the sensing response device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the sensing response device 400 are respectively intended to implement the figures. 2 to the corresponding process of the sensing and responding device in method 200 shown in Figure 30. For the sake of simplicity, details will not be described here.
  • FIG 32 is a schematic block diagram of a perception initiating device according to an embodiment of the present application.
  • the perception initiating device 500 of Figure 32 includes:
  • the communication unit 510 is configured to send the perception response device's role information in the directional multi-gigabit DMG perception measurement and/or the information of the peer device of the perception response device to the perception response device.
  • the role information of the perception response device in DMG perception measurement is a perception sending device or a perception receiving device.
  • the role information of the perception response device in DMG perception measurement includes a perception sending device and/or a perception receiving device.
  • the role information of the sensing response device when the sensing response device performs DMG sensing measurement with each counterpart device is Indicated by bitmap.
  • the information about the counterpart device of the sensing response device includes identification information of the counterpart device of the sensing response device.
  • the information about the peer device of the sensing response device includes at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the role information of the sensing response device in the directional multi-gigabit DMG sensing measurement is obtained in the DMG sensing measurement setting phase and/or the DMG sensing measurement instance phase.
  • the information of the peer device of the sensing response device is obtained in the DMG sensing measurement setting phase and/or the DMG sensing measurement instance phase.
  • the communication unit 510 is also used to:
  • Send a first request frame to the sensing response device where the first request frame includes first indication information and/or second indication information, the first request frame is used to request the establishment of DMG measurement settings, and the third request frame One indication information is used to indicate the role information of the sensing response device in the DMG sensing measurement, and the second indication information is used to indicate the information of the peer device of the sensing response device.
  • the first indication information is used to indicate that the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the first indication information is used to indicate that the perception response device serves as a perception sending device and/or a perception receiving device in DMG perception measurement.
  • the second indication information is used to indicate identification information of a peer device of the sensing response device.
  • the second indication information is used to indicate at least one of the following:
  • the identification information of the peer device of the sensing response device is the identification information of the peer device of the sensing response device
  • the first request frame includes a first indication field, and the first indication field is used to indicate whether the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the first indication field is carried in a measurement setting control field in the DMG aware measurement setting element of the first request frame.
  • the first request frame includes a sending indication field and a receiving indication field.
  • the sending indication field is used to indicate whether the sensing response device serves as a sensing sending device in the DMG sensing measurement.
  • the receiving indication field Used to indicate whether the perception response device serves as a perception receiving device in DMG perception measurement.
  • the sending indication field and the receiving indication field are carried in a measurement setting control field in the DMG aware measurement setting element of the first request frame.
  • the first request frame includes at least one peer device identification field, and the peer device identification field is used to indicate identification information of the peer device of the sensing response device.
  • the at least one peer device identification field is carried in an optional sub-element field in the DMG awareness measurement setting element of the first request frame.
  • the first request frame includes at least one of the following fields:
  • the number of peer devices field is used to indicate the number of peer devices of the sensing response device
  • At least one peer device information field is used to indicate information about the peer device of the sensing response device.
  • the peer device information field includes at least one of the following fields:
  • the peer device identification field is used to indicate the identification information of the peer device of the sensing response device
  • the role information field is used to indicate the role information of the peer device of the sensing response device.
  • the peer device quantity field and the at least one peer device information field are carried in optional sub-element fields in the DMG awareness measurement setting element of the first request frame.
  • the communication unit 510 is also used to:
  • the second request frame includes third indication information and/or fourth indication information
  • the second request frame is used to request DMG sensing measurement
  • the third request frame The third indication information is used to indicate the role information of the sensing response device in DMG sensing measurement
  • the fourth indication information is used to indicate information about the peer device of the sensing response device.
  • the third indication information is used to indicate that the perception response device serves as a perception sending device or a perception receiving device in DMG perception measurement.
  • the third indication information indicates in a bitmap manner when the sensing response device performs DMG sensing measurement with each peer device. Role information of the sensing response device.
  • the fourth indication information is used to indicate identification information of a peer device of the sensing device.
  • the second request frame includes a peer device identification field, and the peer device identification field is used to indicate identification information of a peer device of the sensing response device.
  • the peer device identification field is carried in the time division duplex TDD beamforming information field of the second request frame.
  • the peer device indicated in the first request frame is used as the peer of the perception response device in the DMG perception measurement instance.
  • the first request frame is used to request the establishment of DMG measurement settings.
  • the second request frame includes a peer device identification field and a role indication field.
  • the peer device identification field is used to indicate the identity information of the peer device of the sensing response device.
  • the role indication field The field is used to indicate the role information of the sensing response device in DMG sensing measurement.
  • the peer device identification field and the role indication field are carried in the TDD beamforming information field of the second request frame.
  • the second request frame includes a role list field, and the role list field is used to indicate role information of the sensing response device in a DMG sensing pair formed with each peer device.
  • the role list field includes multiple role indication fields, each role indication field corresponds to a peer device, and the value of each role indication field is used to indicate that the sensing response device is in contact with the corresponding peer device. Character information when performing DMG perception measurements.
  • the multiple role indication fields and the multiple peer device identification fields are in one-to-one correspondence, and the multiple peer device identification fields are carried in the first request frame, and the first request frame is used to Requests the establishment of DMG measurement settings.
  • the sensing response device performs DMG sensing measurement with a peer device, wherein the sensing response device serves as a sensing transmitting device and the peer device serves as a sensing receiving device. device, or the sensing response device serves as a sensing receiving device, and the one peer device serves as a sensing sending device.
  • the sensing response device performs DMG sensing measurement with multiple peer devices, wherein the sensing response device and the multiple peer devices are composed of multiple peer devices.
  • the roles of the sensing and responding devices are the same or different.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • sensing initiating device 500 may correspond to the sensing initiating device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the sensing initiating device 500 are respectively to implement Figure 2 As for the corresponding process of sensing the initiating device in method 200 shown in Figure 30, for the sake of brevity, details will not be described again.
  • Figure 33 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 33 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, the communication device 600 may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the sensing response device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the sensing response device in the various methods of the embodiment of the present application. For the sake of brevity, they are not mentioned here. Again.
  • the communication device 600 can specifically be the perception initiating device in the embodiment of the present application, and the communication device 600 can implement the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application. For the sake of brevity, they are not mentioned here. Again.
  • Figure 34 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 34 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 35 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in Figure 35, the communication system 900 includes a perception initiating device 910 and a perception response device 920.
  • the perception initiating device 910 can be used to implement the corresponding functions implemented by the perception initiating device in the above method
  • the perception response device 920 can be used to implement the corresponding functions implemented by the perception response device in the above method. For simplicity, in This will not be described again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the perception initiating device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the perception initiating device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the perception initiating device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the perception initiating device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the perception initiating device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception initiating device in each method of the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception initiating device in each method of the embodiment of the present application.
  • the computer program can be applied to the perception initiating device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the perception initiating device in the various methods of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:感知响应设备获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在一些感知场景中,考虑支持定向多千兆比特(Directional Multi-Gigabit,DMG)协作双基感知(Coordinated Bistatic Sensing)模式,此情况下,设备如何进行点到点(peer to peer,P2P)的感知是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,能够实现协作双基或双基模式下的P2P感知。
第一方面,提供了一种无线通信的方法,包括:感知响应设备获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
第二方面,提供了一种无线通信的方法,包括:感知发起设备向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,感知发起设备通过向感知响应设备指示感知响应设备在DMG感知测量中的角色信息和/或感知响应设备的对端设备的信息,实现了DMG协作双基或双基感知模式下的P2P感知,并且增加了P2P感知的灵活性,例如,不止可以实现感知响应设备与感知发起设备之间的P2P感知,还可以实现感知响应设备之间的P2P感知。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种无线通信方法的示意性交互图。
图3是适用于本申请实施例的一种应用场景的示意性图。
图4是本申请实施例提供的一种DMG感知测量设置请求帧的动作域的格式示意图。
图5是本申请实施例提供的一种DMG感知测量设置元素的格式示意图。
图6是根据本申请实施例的携带第一指示信息的测量设置控制字段的格式示意图。
图7是根据本申请实施例的携带第一指示信息的测量设置控制字段的另一种格式示意图。
图8是本申请实施例提供的一种通过可选子元素字段携带对端设备的标识信息的格式示意图。
图9是本申请实施例提供的一种通过可选子元素字段携带第二指示信息的格式示意图。
图10是本申请实施例提供的一种对端设备信息字段的格式示意图。
图11是本申请实施例提供的通过DMG感知测量设置请求帧进行DMG感知测量设置的示意性交互图。
图12是本申请实施例提供的一种DMG感知请求帧的示意性帧格式图。
图13是本申请实施例提供的另一种DMG感知请求帧的示意性帧格式图。
图14是本申请实施例提供的又一种DMG感知请求帧的示意性帧格式图。
图15是本申请实施例提供的再一种DMG感知请求帧的示意性帧格式图。
图16至图30是根据本申请实施例的DMG测量设置实例阶段的示意性交互图。
图31是根据本申请实施例提供的感知响应设备的示意性框图。
图32是根据本申请实施例提供的感知发起设备的示意性框图。
图33是根据本申请实施例提供的一种通信设备的示意性框图。
图34是根据本申请实施例提供的一种芯片的示意性框图。
图35是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对等通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN或WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信系统100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的接入点110和站点120,接入点110和站点120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在 A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括接入点和站点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
为便于理解本申请实施例的技术方案,以下对本申请相关术语进行说明。
关联标识符(Association Identifier,AID),用于标识跟接入点建立关联后的终端。
媒体访问控制(Medium Access Control,MAC)。即媒体访问控制地址的简称。
突发信号(Burst),一般指一小段时间,在该时间段内发送一个或多个信号。
突发信号组(Burst Group),指一个或多个突发信号的组合。同一个突发信号组中的突发信号一般具有一些共同的特征。
感知(Sensing)测量是通过测量信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,Sensing测量是通过无线信号来对周围环境进行测量和感知。
参与感知测量的设备可能包括如下角色(role):
感知发起者(Sensing Initiator),发起感知测量设置(sensing measurement setup)并想要获知感知结果的设备,或称感知发起设备,发起者(Initiator);
感知响应者(Sensing Responder),参与sensing measurement setup非Sensing Initiator的设备,或称感知响应设备,响应者(Responder);
感知发送者(Sensing Transmitter),发送感知信号的设备,或称感知信号发送设备,或称,感知发送设备,发送者(Transmitter);
感知接收者(Sensing Receiver),接收感知信号的设备,或称感知接收设备,接收者(Receiver)。
设备在一个感知测量中可能有一个或多个角色,例如感知发起设备可以仅仅是感知发起设备,也可以成为感知发送设备,也可以成为感知接收设备,还可以同时是感知发送设备和感知接收设备。
WLAN感知包括以下一个或多个阶段:会话建立、感知测量设置建立、感知测量(测量实例,感知测量实例)、感知结果(或者说,感知测量结果,测量结果)上报。
会话建立阶段:建立感知会话,交换双方的感知能力。
感知测量设置建立阶段:确定感知响应设备及其角色。
感知测量阶段:实施感知测量,感知发送设备发送感知信号给感知接收设备。
感知上报阶段:上报测量结果。
在一些实施例中,感知测量阶段和感知上报阶段可以为独立的阶段,或者,也可以是感知测量阶段包括感知上报阶段,即可以认为上报感知测量结果属于感知测量阶段。
在一些感知场景中,考虑支持定向多千兆比特(Directional Multi-Gigabit,DMG)协作双基感知(Coordinated Bistatic Sensing)模式,但是在该模式下,设备如何进行点到点(peer to peer,P2P)的感知尚未进行设计。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图2是根据本申请实施例的无线通信的方法200的示意性流程图,该方法200可以由图1所示的通信系统中的终端设备执行,如图2所示,该方法200包括如下内容:
S210,感知响应设备(Sensing Responder)获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端(peer)设备的信息。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息是从感知发起设备获取的。
在一些实施例中,感知响应设备的对端设备可以是感知发起设备,或者,也可以是其他感知响应设备。
在一些实施例中,感知响应设备可以是站点设备,感知发起设备可以是接入点设备。
应理解,本申请实施例可以适用于P2P的感知场景,例如DMG协作双基感知场景,DMG双基感知场景,或者,也可以适用于DMG多基感知场景,本申请对此不作限定。
图3是适用于本申请实施例的一种场景的示意性图。在该场景中,AP是感知发起设备,感知响应设备包括STA A,STA B和STA C,其中,AP可以与STA A组成一个DMG感知对(DMG Sensing pair),其中,在该DMG感知对中,AP是感知发送设备,STA A是感知接收设备,STA B和STA C组成另一个DMG感知对,其中,在该DMG感知对中,STA B是感知发送设备,STA C是感知接收设备。在一个感知测量实例中,感知发送设备可以向感知接收设备发送感知信号,例如感知物理层协议数据单元(Physical Protocol Data Unit,PPDU)。
在一些实施例中,当感知类型为协作双基类型时,DMG感知对或称协作双基DMG感知对,当感知类型为双基类型时,DMG感知对或称双基DMG感知对,以此类推,这里不再赘述。
在一些实施例中,在一个DMG感知测量实例(instance)中,一个感知响应设备只能与一个对端设备进行DMG感知测量,该感知响应设备和该对端设备组成一个DMG感知对,在该DMG感知对中,感知响应设备和对端设备的角色是固定的。例如,若感知响应设备作为感知发送设备,对端设备作为感知接收设备,则不允许存在感知响应设备作为感知接收设备,对端设备作为感知发送设备的DMG感知对。
在另一些实施例中,在一个DMG感知测量实例中,感知响应设备可以与一个或多个对端设备进行DMG感知测量,则该感知响应设备可以和每个对端设备组成一个DMG感知对,在每个DMG感知对中,感知响应设备可以作为感知发送设备,或者,也可以作为感知接收设备。感知响应设备在每个DMG感知对中的角色可以相同,或者,也可以不同。
例如,感知发起设备和感知响应设备1组成DMG感知对1,感知响应设备1和感知响应设备2组成DMG感知对2,其中,感知响应设备1在DMG感知对1中的角色和感知响应设备1在DMG感知对2中的角色可以相同,或者,也可以不同。比如,感知响应设备1在DMG感知对1中作为感知接收设备,感知响应设备1在DMG感知对2中作为感知发送设备。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息和感知响应设备的对端设备的信息可以是在同一个阶段获取的,或者,也可以是在不同的阶段获取的。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息和感知响应设备的对端设备的信息可以是从同一帧获取的,或者,也可以是从不同的帧获取的。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息可以是在DMG感知测量设置(DMG Sensing Measurement Setup)阶段和/或和DMG感知测量实例(DMG sensing instance)阶段获取的。
可选地,若感知发起设备在DMG感知测量设置阶段和DMG感知测量实例阶段中均指示了感知响应设备在DMG感知测量中的角色信息,则感知响应设备根据DMG感知测量实例阶段所指示的角色确定该感知响应设备在DMG感知测量中的角色。
可选地,若感知发起设备仅在DMG感知测量设置阶段指示了感知响应设备在DMG感知测量中的角色信息,则感知响应设备根据DMG感知测量设置阶段所指示的角色确定该感知响应设备在DMG感知测量中的角色。
可选地,若感知发起设备仅在DMG感知测量实例阶段指示了感知响应设备在DMG感知测量中的角色信息,则感知响应设备根据DMG感知测量实例阶段所指示的角色确定该感知响应设备在DMG感知测量中的角色。
在一些实施例中,感知响应设备的对端设备的信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
可选地,若感知发起设备在DMG感知测量设置阶段和DMG感知测量实例阶段中均指示了感知响应设备的对端设备的信息,则感知响应设备可以根据DMG感知测量实例阶段所指示的对端设备的信息确定该感知响应设备在DMG感知测量中的对端设备。
可选地,若感知发起设备仅在DMG感知测量设置阶段指示了感知响应设备的对端设备的信息,则感知响应设备可以根据DMG感知测量设置阶段所指示的对端设备的信息确定该感知响应设备在DMG感知测量中的对端设备。
可选地,若感知发起设备仅在DMG感知测量实例阶段指示了感知响应设备的对端设备的信息,则感知响应设备可以根据DMG感知测量实例阶段所指示的对端设备的信息确定该感知响应设备在DMG感知测量中的对端设备。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息可以指:
感知响应设备在DMG感知测量实例(例如,协作双基DMG感知测量实例,双基DMG感知测 量实例等)中的角色信息,或者,感知响应设备在与对端设备组成的DMG感知对中的角色信息。
在一些实施例中,感知响应设备在DMG感知测量中的角色信息可以为感知发送设备或感知接收设备,或者说,感知响应设备在DMG感知测量中是否作为感知发送设备,或者,是否作为感知接收设备。例如,感知发起设备可以在DMG感知测量设置阶段,指示感知响应设备仅支持一种角色,例如感知发送设备或感知接收设备。
在另一些实施例中,感知响应设备在DMG感知测量中的角色信息可以包括感知发送设备和/或感知接收设备。例如,感知发起设备可以在DMG感知测量设置阶段,指示感知响应设备支持一种或多种角色,例如感知发送设备和/或感知接收设备。
可选地,在感知响应设备的对端设备的数量为多个的情况下,感知响应设备在与每个对端设备组成的DMG感知对中的角色信息是通过位图方式指示的。
例如,感知响应设备的对端设备有N个,则可以通过N比特指示,其中,每个比特对应一个对端设备(或者说,一个DMG感知对),每个比特的取值用于指示感知响应设备在对应的DMG感知对中是作为感知发送设备还是作为感知接收设备。
在一些实施例中,感知响应设备的对端设备的信息可以包括感知响应设备的一个对端设备的信息,或者,也可以包括感知响应设备的多个对端设备的信息。
可选地,每个对端设备的信息可以包括对端设备的标识信息,或者,也可以包括对端设备的标识信息和角色信息。
在一些实施例中,对端设备的标识信息可以是对端设备的AID或非关联标识(Unassociated ID,UID),或者也可以为对端设备的MAC地址,或者上层应用设置的私有ID等能够唯一标识该对端设备的信息,本申请对此不作限定。
在一个具体实施例中,感知响应设备的对端设备的信息包括感知响应设备的一个或多个对端设备的标识信息。
在另一具体实施例中,感知响应设备的对端设备的信息可以包括以下中的至少一项:
感知响应设备的对端设备的数量信息;
感知响应设备的对端设备的标识信息;
感知响应设备的对端设备在DMG感知测量中的角色信息。
在一些实施例中,感知响应设备的对端设备在DMG感知测量中的角色信息可以指:
感知响应设备的对端设备在DMG感知测量实例(例如,协作双基DMG感知测量实例,双基DMG感知测量实例等)中的角色信息,或者,感知响应设备的对端设备在与感知响应设备组成的DMG感知对中的角色信息。
在本申请一些实施例中,所述S210可以包括:
感知响应设备接收第一请求帧,其中,第一请求帧包括第一指示信息和/或第二指示信息,所述第一请求帧用于请求建立DMG测量设置,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第二指示信息用于指示所述感知响应设备的对端设备的信息。
也就是说,感知响应设备在DMG感知测量中的角色信息和/或感知响应设备的对端设备的信息可以是在DMG感知测量设置(DMG Sensing Measurement Setup)阶段获取的。
在一些实施例中,第一请求帧或称DMG感知测量设置请求帧(DMG Sensing Measurement Setup Request frame),或者,也可以采用其他命名,本申请对此不作限定。
可选地,在第一请求帧不包括第一指示信息时,感知响应设备在DMG感知测量中的角色信息可以是在DMG感知测量实例阶段获取的。
可选地,在第一请求帧不包括第二指示信息时,感知响应设备的对端设备的信息可以是从DMG感知测量实例阶段获取的。
应理解,本申请并不限定第一指示信息在第一请求帧中的具体承载方式,例如可以利用第一请求帧中的已有字段,比如可以对已有字段进行重定义来承载该第一指示信息,或者,也可以在第一请求帧中新增字段用于承载该第一指示信息等。
应理解,本申请并不限定第二指示信息在第一请求帧中的具体承载方式,例如可以利用第一请求帧中的已有字段,比如可以对已有字段进行重定义来承载该第二指示信息,或者,也可以在第一请求帧中新增字段用于承载该第二指示信息等。
以下结合方式1-1和方式1-2,说明第一指示信息的具体指示方式。
方式1-1:第一指示信息用于指示感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。即,感知发起设备在进行DMG Sensing Measurement Setup时指示感知响应设备仅支持一种角色。
在该方式中,感知发起设备在进行DMG Sensing Measurement Setup时对感知响应设备的角色进行了限制,后续该感知响应设备在该DMG Sensing Measurement Setup下的DMG sensing instance中只能固定使用DMG Sensing Measurement Setup时所分配的角色。如果要更新角色,则感知发起设备需要重新与该感知响应设备进行DMG Sensing Measurement Setup并分配新的角色。
在一些实施例中,第一指示信息可以为1比特,该1比特的取值用于指示该感知响应设备在DMG感知测量中作为感知发送设备或者作为感知接收设备。
作为示例,该1比特取值为1表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为0表示该感知响应设备在DMG感知测量中作为感知发送设备。
作为另一示例,该1比特取值为0表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为1表示该感知响应设备在DMG感知测量中作为感知发送设备。
在一些实施例中,第一请求帧包括第一指示字段,第一指示字段用于指示感知响应设备在DMG感知测量中作为感知发送设备还是感知接收设备,或者说,是否作为感知接收设备,是否作为感知发送设备。
在一些实施例中,第一指示字段携带于第一请求帧的DMG感知测量设置元素(DMG Sensing Measurement Setup element)中的测量设置控制字段(Measurement Setup Control field)中。
应理解,在本申请实施例中,可以利用DMG感知测量设置请求帧中的已有字段指示感知响应设备的角色信息,或者,也可以利用DMG感知测量设置请求帧中的预留字段或可选子元素指示感知响应设备的角色信息,本申请对此不作限定。
以下结合图4至图10,说明本申请实施例提供的DMG感知测量设置请求帧(即第一请求帧)的帧格式。应理解,以下所示例的帧格式中的各个字段的位置、长度等仅为示例,其可以根据实际需求或承载的信息大小适应性调整,本申请对此不作限定。
图4是DMG感知测量设置请求帧的动作域(Action field)格式示意图。其中,次序(order)1,表示类别(Category),order 2表示不受保护的DMG行动(Unprotected DMG Action),order 3表示会话令牌(Dialog Token),order 4表示测量设置ID(Measurement Setup ID),order 5表示DMG感知测量设置元素(DMG Sensing Measurement Setup element)。
图5是DMG感知测量设置元素的格式示意图。可以包括如下至少一个字段:
元素ID(Element ID)、长度(Length)、扩展元素ID(Element ID Extension)、测量设置控制(Measurement Setup Control)、上报类型(Report Type)、定位配置信息(Location configuration information,LCI)、对等定位(Peer Orientation)、可选子元素(Optional Subelements)。
在本申请一些实施例中,第一指示信息可以携带在测量设置控制字段中。
图6是根据本申请实施例的携带第一指示信息的测量设置控制字段的格式示意图。
如图6所示,该测量设置控制字段可以包括接收响应者字段(Rx Responder,对应于前文中的第一指示字段),用于指示该感知响应设备在DMG感知测量实例中作为感知发送设备还是作为感知接收设备,或者说,是否作为感知接收设备,是否作为感知发送设备。例如,在协作双基模式下的协作双基DMG感知测量实例中是否作为感知接收设备,或者,在双基模式下的双基DMG感知测量实例中是否作为感知接收设备。
作为一个示例,该接收响应者字段为1比特,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量中作为感知接收设备,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量中作为感知发送设备。
作为另一示例,该接收响应者字段为1比特,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量中作为感知接收设备,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量中作为感知发送设备。
应理解,该接收响应者字段的命名仅为示例,也可以替换为其他命名,例如,发送响应者字段,角色指示字段,角色信息字段,响应者接收(Responder Rx)字段等,本申请对此不作限定。
在一些实施例中,如图6所示,该测量设置控制字段还可以包括如下至少一个字段:
感知类型(Sensing Type)字段,用于指示DMG感知类型。
LCI是否存在(LCI Present)字段,用于指示DMG感知测量设置元素中是否包括LCI字段;
定位是否存在(Orientation Present)(或对等定位是否存在)字段,用于指示DMG感知测量设置元素是否包括对等定位字段;
预留(Reserved)字段。
在一些实施例中,在感知类型字段取值为0时,表示感知类型为协作单基类型,在感知类型字段取值为1时,表示感知类型为协作双基类型,在感知类型字段取值为2时,表示感知类型为双基类型, 在感知类型字段取值为3时,表示感知类型为多基类型,感知类型字段取值为4-7为预留值。
可选地,在感知类型字段指示的感知类型为协作双基类型或双基类型(即感知类型字段取值为1或2)时,该接收响应者字段用于指示感知响应设备在DMG感知测量中的角色信息,在感知类型字段指示其他感知类型时,该接收响应者字段为预留字段。
方式1-2:第一指示信息用于指示感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备。即,感知发起设备在进行DMG Sensing Measurement Setup时指示感知响应设备支持一种或多种角色。
可选地,感知发起设备可以在DMG Sensing Measurement Setup时对Sensing Responder的感知发送设备和感知接收设备的角色分别进行设置,后续感知响应设备在该DMG Sensing Measurement Setup下的DMG sensing instance中可以根据DMG Sensing Measurement Setup时所设置的角色进行工作。
可选地,第一指示信息是采用比特位图(bitmap)方式指示感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备的。或者,可以直接通过第一指示信息的不同取值指示感知响应设备在DMG感知测量中的角色信息。
例如,第一指示信息可以为2比特,其中1比特用于指示感知响应设备在DMG感知测量中是否作为感知发送设备,另外1比特用于指示该感知响应设备在DMG感知测量中是否作为感知接收设备。
又例如,第一指示信息可以为2比特,该2比特的不同取值用于指示感知响应设备在DMG感知测量中不同角色。比如,取值为00表示感知响应设备在DMG感知测量中作为感知发送设备,取值为01表示感知响应设备在DMG感知测量中作为感知接收设备,取值10表示感知响应设备在DMG感知测量中作为感知发送设备和感知接收设备,取值11为预留值。以上取值和角色的对应关系仅为示例,只要保证不同角色对应不同的取值即可,本申请对此不作限定。
应理解,本申请并不限定第一指示信息在第一请求帧中的具体承载方式,例如可以利用第一请求帧中的已有字段,比如可以对已有字段进行重定义来承载该第一指示信息,或者,也可以在第一请求帧中新增字段用于承载该第一指示信息等。
在一些实施例中,第一请求帧包括发送指示字段和接收指示字段,发送指示字段用于指示感知响应设备在DMG感知测量中是否作为感知发送设备,接收指示字段用于指示感知响应设备在DMG感知测量中是否作为感知接收设备。
在一些实施例中,所述发送指示字段和所述接收指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
图7是根据本申请实施例的携带第一指示信息的测量设置控制字段的另一种格式示意图。
如图7所示,该测量设置控制字段可以包括:
接收响应者字段(Rx Responder,对应于上述接收指示字段)或称响应者接收(Responder Rx)字段,接收响应者字段用于指示该感知响应设备在DMG感知测量实例中是否作为感知接收设备,
发送响应者字段(Tx Responder,对应于上述发送指示字段)或称响应者发送(Responder Tx)字段,发送响应者字段用于指示该感知响应设备在DMG感知测量实例中是否作为感知发送设备。
可选地,接收响应者字段用于指示在协作双基模式下的协作双基DMG感知测量实例中是否作为感知接收设备,或者,在双基模式下的双基DMG感知测量实例中是否作为感知接收设备。
可选地,发送响应者字段用于指示在协作双基模式下的协作双基DMG感知测量实例中是否作为感知发送设备,或者,在双基模式下的双基DMG感知测量实例中是否作为感知发送设备。
作为一个示例,该接收响应者字段为1比特,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知接收设备,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知发送设备。
作为另一示例,该接收响应者字段为1比特,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知接收设备,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知发送设备。
作为一个示例,该发送响应者字段为1比特,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知发送设备,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中不作为感知发送设备。
作为另一示例,该发送响应者字段为1比特,该1比特的取值为1表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中不作为感知发送设备,该1比特的取值为0表示接收该DMG感知测量设置请求帧的感知响应设备在DMG感知测量实例中作为感知发送设备。
可选地,在感知类型字段指示的感知类型为协作双基类型或双基类型(即感知类型字段取值为1或2)时,该接收响应者字段用于指示感知响应设备在感知测量中是否作为感知接收设备的角色,该 发送响应者字段用于指示感知响应设备在感知测量中是否作为感知发送设备的角色,在感知类型字段指示其他感知类型时,该接收响应者字段和发送响应者字段为预留字段。
应理解,图7仅以接收响应者字段占比特3(即B3),发送响应者字段占比特7(即B6)作为示例,在其他实施例中,发送响应者也可以占B7,或者,接收响应者字段和发送响应者字段可以占B5和B6,LCI是否存在字段和定位是否存在字段分别占B3和B4,本申请对于各个字段的具体位置不作限定。
以下,结合方式2-1和方式2-2,说明第二指示信息的具体指示方式。
方式2-1:
在该方式2-1中,第二指示信息用于指示感知响应设备的一个或多个对端设备的标识信息。
应理解,该方式2-1可以单独实施,或者,也可以和前述方式1-1或方式1-2结合实施,本申请对此不做限定。
在一个具体示例中,第二指示信息用于指示感知响应设备的一个对端设备的标识信息。
例如,在方式1-1的基础上,感知响应设备在DMG Sensing Measurement Setup中只能被分配感知发送设备或感知接收设备的角色,并且,在一个DMG感知测量实例中感知响应设备只能跟一个对端设备进行sensing measurement,则第二指示信息可以指示一个对端设备的标识信息。
此情况下,对端设备的角色可以根据感知响应设备的角色确定,例如,若感知响应设备的角色为感知发送设备,则该对端设备的角色为感知接收设备,或者,若感知响应设备的角色为感知接收设备,则该对端设备的角色为感知发送设备。
在另一些场景中,在一个DMG感知测量实例中,一个感知响应设备可以与多个对端设备进行DMG感知测量,则第二指示信息可以用于指示多个对端设备的标识信息。此情况下,若第一指示信息指示感知响应设备的角色为感知发送设备,则该多个对端设备的角色均为感知接收设备,或者,若第一指示信息指示感知响应设备的角色为感知接收设备,则该多个对端设备的角色均为感知发送设备。或者,若第一请求帧未指示感知响应设备的角色信息,则可以在DMG感知测量实例阶段确定该多个对端设备的角色信息。
在一些实施例中,所述第一请求帧包括至少一个对端设备标识(Peer STA ID)字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
可选地,所述至少一个对端设备标识字段携带于第一请求帧的DMG感知测量设置元素中的可选子元素(Optional Subelement)字段中。此情况下,该可选子元素或称对端设备标识子元素(Peer STA ID Subelement)。
应理解,本申请对于对端设备标识字段的具体大小不作限定,其可以根据携带的设备标识的大小决定,例如该对端设备标识字段可以为1个字节,2个字节或6个字节等。
图8是本申请实施例提供的一种通过可选子元素字段携带对端设备的标识信息的格式示意图。如图8所示,该可选子元素字段(即对端设备标识子元素)可以包括对端设备标识(Peer STA ID)字段,用于指示接收该DMG感知测量设置请求帧的感知响应设备的对端设备的标识信息。
可选地,在感知类型字段指示的感知类型为协作双基类型或双基类型(即感知类型字段取值为1或2)时,该对端设备标识子元素存在。
方式2-2:第二指示信息用于指示感知响应设备的一个或多个对端设备的标识信息和/或角色信息。
应理解,该方式2-2可以单独实施,或者,也可以和前述方式1-1或方式1-2结合实施,本申请对此不做限定。
例如,基于前述方式1-2,感知发起设备可以在DMG Sensing Measurement Setup时可以对感知响应设备的感知发送设备和感知接收设备的角色进行分别指示,并且,在一个DMG sensing instance中,感知响应设备感知响应设备可能会跟一个或多个对端设备进行感知测量。例如,在DMG感知测量设置阶段,AP给STA A分配设置了两个DMG感知对:DMG感知对1(AP作为感知发送设备,STA A作为感知接收设备)和DMG感知对2(STA A作为感知发送设备,STA B作为感知接收设备)。此情况下,感知发起设备可以向感知响应设备指示一个或多个对端设备的标识信息和角色信息。
在一些实施例中,第二指示信息用于指示以下中的至少一项:
感知响应设备的对端设备的数量信息;
感知响应设备的对端设备的标识信息;
感知响应设备的对端设备在DMG感知测量中的角色信息。
例如,第二指示信息可以用于指示感知响应设备的对端设备在DMG感知测量实例中作为感知发送设备还是作为感知接收设备。
又例如,第二指示信息可以用于指示感知响应设备的对端设备在DMG感知测量实例中作为感知 发送设备和/或感知接收设备。
在一些实施例中,所述第一请求帧包括以下至少一个字段:
对端设备数量字段,用于指示所述感知响应设备的对端设备的数量;
至少一个对端设备信息(Peer STA Information)字段,用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述对端设备信息字段包括以下至少一个字段:
对端设备标识(Peer STA ID)字段,用于指示所述感知响应设备的对端设备的标识信息;
角色信息字段,用于指示所述感知响应设备的对端设备的角色信息。
在一些实施例中,所述对端设备数量字段和所述至少一个对端设备信息字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。此情况下,该可选子元素或称对端设备信息子元素(Peer STA Info subelement)。
可选地,对端设备数量字段(或者说,对端设备信息数字段)可以根据一个感知响应设备支持的对端设备的最大数量确定,例如该对端设备数量字段可以为1比特,2比特,3比特,8比特等。
可选地,对端设备数量字段可以设置为3bit,则该对端设备信息子元素最多可以携带8个对端设备的信息。
可选地,对端设备数量字段可以设置为8bit,则该对端设备信息子元素最多可以携带256个对端设备的信息。
应理解,本申请对于对端设备标识字段的具体大小不作限定,其可以根据携带的设备标识的大小决定,例如该对端设备标识字段可以为1个字节,2个字节或6个字节等。
可选地,该角色信息字段可以是1比特,或者其他比特数,本申请对此不做限定。
例如,该角色信息字段为1比特,该1比特的不同取值用于指示对端设备标识字段所指示的对端设备作为感知发送设备或者感知接收设备。
图9是根据本申请实施例提供的一种通过可选子元素字段携带第二指示信息的格式示意图。如图8所示,该可选子元素字段可以包括如下至少一个字段:
对端设备信息数(Number of Peer STA Information)字段,用于指示该可选子元素字段中携带的对端设备信息字段的数量;
至少一个对端设备信息(Peer STA Information)字段,用于指示接收该DMG感知测量设置请求帧的感知响应设备的对端设备的信息。
例如,1st Peer STA Information字段用于携带第1个对端设备的信息,n th Peer STA Information用于携带第n个对端设备的信息。
可选地,在感知类型字段指示的感知类型为协作双基类型或双基类型(即感知类型字段取值为1或2)时,该对端设备信息子元素存在。
进一步地,如图10所示,该对端设备信息字段可以包括如下至少一个字段:
对端设备标识字段,用于指示感知响应设备的对端设备的标识信息;
发送或接收字段,用于指示感知响应设备的对端设备在与感知响应设备组成的DMG感知对中的角色信息。
例如,发送或接收字段为1比特,该1比特取值为1表示该对端设备的角色为感知发送设备,否则为感知接收设备。
又例如,发送或接收字段为1比特,该1比特取值为0表示该对端设备的角色为感知发送设备,否则为感知接收设备。
应理解,该发送或接收字段的命名仅为示例,也可以替换为其他命名,例如,发送响应者字段,接收响应者字段,角色指示字段,角色信息字段等,本申请对此不作限定。
以下,结合图11以双基感知场景为例,说明通过DMG感知测量设置请求帧进行DMG感知测量设置的具体实现。
实施例一:
在该实施例一中,感知发起设备通过DMG感知测量设置请求帧只对感知响应设备设置一种角色,例如感知接收设备或感知发送设备。对应于前述方式1-1。
可选地,在该实施例一中,感知发起设备通过DMG感知侧设置请求帧携带一个对端设备的标识信息,对应于前述方式2-1。
例如,如图11所示,感知发起设备可以向感知响应设备1(即STA A),感知响应设备2(即STA B)和感知响应设备3(即STA C)发送DMG感知测量设置请求帧,其中,该DMG感知测量设置请求帧中的DMG Sensing Measurement Setup element中的Measurement Setup Control field中的 Sensing Type subfield置为1,代表感知发起设备请求感知响应设备1,感知响应设备2和感知响应设备3进行Coordinated bistatic DMG sensing。
并且,感知发起设备作为sensing transmitter在发给感知响应设备1的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield置为1,并且在DMG Sensing Measurement Setup element中的Optional Subelements所携带的Peer STA ID subelement用于指示感知发起设备的标识信息。通过以上设置,感知发起设备作为sensing transmitter与作为sensing receiver的感知响应设备1组成bistatic DMG sensing pair(1)。
感知发起设备在发给感知响应设备2的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield置为0,并且在DMG Sensing Measurement Setup element中的Optional Subelements所携带的Peer STA ID subelement用于指示感知响应设备3的标识信息;感知发起设备在发给感知响应设备3的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield置为1,并且在DMG Sensing Measurement Setup element中的Optional Subelements所携带的Peer STA ID subelement用于指示感知响应设备2的标识信息。通过以上设置,感知响应设备2作为sensing transmitter与作为sensing receiver的感知响应设备3组成bistatic DMG sensing pair(2)。
需要说明的是,感知发起设备在DMG感知测量设置阶段也可以设置其他的DMG感知对,本申请对此不作限定,例如,在图11的示例中,感知发起设备可以设置的bistatic DMG sensing pair有如下6种:(AP,STA A),(AP,STA B),(AP,STA C),(STA A,STA B),(STA A,STA C),(STA B,STA C)。以上6种bistatic DMG sensing pair中,其中一方可以作为感知发送设备,另一方作为感知接收设备。
实施例二:
在该实施例二中,感知发起设备通过DMG感知测量设置请求帧对感知响应设备设置一种或两种角色,例如感知接收设备和/或感知发送设备。对应于前述方式1-2。
可选地,在该实施例二中,感知发起设备通过DMG感知侧设置请求帧携带一个或多个对端设备的标识信息和角色信息,对应于前述方式2-2。
例如,如图11所示,感知发起设备可以向感知响应设备1(即STA A),感知响应设备2(即STA B)和感知响应设备3(即STA C)发送DMG感知测量设置请求帧,其中,该DMG感知测量设置请求帧中的DMG Sensing Measurement Setup element中的Measurement Setup Control field中的Sensing Type subfield置为1,代表感知发起设备请求感知响应设备1,感知响应设备2和感知响应设备3进行Coordinated bistatic DMG sensing。
感知发起设备作为sensing transmitter在发给感知响应设备1的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield和TX Responder subfield均置为1(表示感知响应设备1支持两种角色),并且在DMG Sensing Measurement Setup element中的Optional Subelements携带Peer STA Information subelement指示sensing initiator和sensing responder 2的标识信息以及对应的角色信息,例如,感知发起设备对应的角色为感知发送设备,感知响应设备2对应的角色为感知接收设备。通过以上设置,感知发起设备作为sensing transmitter与作为sensing receiver的感知响应设备1组成bistatic DMG sensing pair(1),即(AP Tx,STA A Rx);感知响应设备1作为sensing transmitter与作为sensing receiver的感知响应设备2组成bistatic DMG sensing pair(2),即(STA A Tx,STA B Rx);
感知发起设备在发送给感知响应设备2的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield和TX Responder subfield均置为1(表示感知响应设备1支持两种角色),并且在DMG Sensing Measurement Setup element中的Optional Subelements携带Peer STA ID subelement用于指示感知响应设备1和感知响应设备3的标识信息。感知发起设备在发给感知响应设备3的DMG感知测量设置请求帧中将DMG Sensing Measurement Setup element中的Measurement Setup Control field中的RX Responder subfield置为1,TX Responder subfield置为0,并且在DMG Sensing Measurement Setup element中的Optional Subelements携带Peer STA ID subelement指示sensing responder 2的标识信息以及对应的角色信息(以Tx为例)。通过以上设置,感知响应设备2作为sensing transmitter与作为sensing receiver的感知响应设备3组成bistatic DMG sensing pair(3),即(STA B Tx,STA C Rx)。
需要说明的是,感知发起设备在DMG measurement setup阶段也可以设置其他的DMG感知对,本申请对此不作限定,例如,在图11的示例中,感知发起设备可以设置的bistatic DMG sensing pair 有如下6种:(AP,STA A),(AP,STA B),(AP,STA C),(STA A,STA B),(STA A,STA C),(STA B,STA C)。以上6种bistatic DMG sensing pair中,其中一方可以作为感知发送设备,另一方作为感知接收设备。
在本申请另一些实施例中,所述S210可以包括:
所述感知响应设备接收第二请求帧,其中,所述第二请求帧包括第三指示信息和/或第四指示信息,所述第二请求帧用于请求进行DMG感知测量,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第四指示信息用于指示所述感知响应设备的对端设备的信息。
即,感知响应设备在DMG感知测量中的角色信息和/或对端设备的信息也可以是在DMG感知测量实例阶段获得的。
例如,在第二请求帧不包括第三指示信息的情况下,可以从第一请求帧中获取感知响应设备在DMG感知测量中的角色信息。
又例如,在第二请求帧不包括第四指示信息的情况下,可以从第一请求帧中获取对端设备的信息。
在一些实施例中,第二请求帧或称DMG感知请求帧(DMG Sensing Request frame),或者,也可以采用其他命名,本申请对此不作限定。
在一些实施例中,第三指示信息用于指示感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
例如,第三指示信息可以为1比特,该1比特的取值用于指示该感知响应设备在DMG感知测量中作为感知发送设备或者作为感知接收设备。作为示例,该1比特取值为1表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为0表示该感知响应设备在DMG感知测量中作为感知发送设备。作为另一示例,该1比特取值为0表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为1表示该感知响应设备在DMG感知测量中作为感知发送设备。
在一些实施例中,在所述感知响应设备的对端设备有多个的情况下,所述第三指示信息通过位图方式指示所述感知响应设备与每个对端设备执行DMG感知测量时感知响应设备的角色信息。
例如,第三指示信息可以包括多个比特,每个比特对应一个对端设备(或者说,一个DMG感知对),每个比特的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时所述感知响应设备的角色信息。
在一些实施例中,所述第四指示信息用于指示感知设备的对端设备的标识信息。
例如,第四指示信息可以用于指示对端设备的AID,UID,对端设备的MAC地址,或者上层应用设置的私有ID等,本申请对此不作限定。
应理解,本申请并不限定第三指示信息在第二请求帧中的具体承载方式,例如可以利用第二请求帧中的已有字段,比如可以对已有字段进行重定义来承载该第三指示信息,或者,也可以在第二请求帧中新增字段用于承载该第三指示信息等。
应理解,本申请并不限定第四指示信息在第二请求帧中的具体承载方式,例如可以利用第二请求帧中的已有字段,比如可以对已有字段进行重定义来承载该第四指示信息,或者,也可以在第二请求帧中新增字段用于承载该第四指示信息等。
以下,结合图12至图15,说明第二请求帧的帧格式设计。应理解,以下所示例的帧格式中的各个字段的位置、长度等仅为示例,其可以根据实际需求或承载的信息大小适应性调整,本申请对此不作限定。
图12是本申请实施例提供的一种DMG感知请求帧的示意性帧格式图。如图12所示,该DMG感知请求帧可以包括对端设备标识(Peer STA ID)字段,用于指示感知响应设备的对端设备的标识信息。
在一些实施例中,对端设备标识字段携带于DMG感知请求帧的时分双工(Time Division Duplex)TDD波束赋形信息(TDD Beamforming Control)字段中。
在一些实施例中,当Sensing Type字段指示的感知类型不为协作双基类型或双基类型时,该对端设备标识字段保留;当Sensing Type字段指示的感知类型为协作双基类型或双基类型时,该对端设备标识字段用于指示一个DMG协作双基或双基感知实例中该感知响应设备的对端设备的标识信息。
在一些实施例中,DMG感知请求帧中包括对端设备标识字段是必选的,如图12所示。
在另一些实施例中,DMG感知请求者中包括对端设备标识字段是可选的,如图13所示。
例如,在第一请求帧中指示对端设备的标识信息的情况下,第二请求帧可以不携带对端设备标识字段。
可选地,在DMG感知请求帧中包括对端设备标识字段时,可以根据该对端设备标识字段确定感知响应设备的对端设备,或者,在DMG感知请求帧中不包括对端设备标识字段时,可以根据DMG 感知测量设置请求帧中的对端设备标识字段确定感知响应设备的对端设备。
如图12和13所示,DMG感知请求帧可以为一种控制帧,包括MAC头和MAC帧体,其中,MAC帧体包括TDD波束赋形控制(TDD Beamforming Control)字段和TDD波束赋形信息(TDD Beamforming Information)字段。
其中,TDD波束赋形控制字段包括TDD波束赋形帧类型(TDD Beamforming Frame Type)字段,用于指示TDD波束赋形帧的类型。例如该字段取值为3,表示DMG感知类型,取值为0-2,表示TDD波束赋形帧为波束训练相关的类型。
当TDD波束赋形帧类型字段的取值为3时,TDD群组波束赋形(TDD Group Beamforming)字段和TDD波束测量(TDD Beam Measurement)字段共同指示一个TDD波束赋形帧在DMG感知中的用途。具体取值及其含义如表1所示。
表1 TDD波束赋形帧的用途
Figure PCTCN2022115278-appb-000001
也即,TDD群组波束赋形取值为0且TDD波束测量取值为0,指示TDD波束赋形帧为DMG Sensing Request帧。
TDD群组波束赋形取值为0且TDD波束测量取值为1,指示TDD波束赋形帧为DMG感知响应(DMG Sensing Response)帧。
TDD群组波束赋形取值为1且TDD波束测量取值为0,指示TDD波束赋形帧为DMG感知轮询(DMG Sensing Poll)帧。
如图12和13所示,TDD波束赋形信息字段可以包括如下字段:
测量设置ID(Measurement Setup ID):用于指示与该帧相关的感知测量设置的标识符。
测量突发ID(Measurement Burst ID):用于指示与该帧相关的感知测量突发的标识符。
测量实例序号(Measurement Instance SN):用于指示一个感知测量实例在一个测量突发中的序号。
感知类型(Sensing type):指示该帧所请求的感知类型。其中,具体取值和含义如表2所示。
表2感知类型字段的含义
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 多基(Multistatic)
3 保留(Reserved)
STA ID:指示某个STA在一个感知测量实例中参与测量的顺序。
第一波束索引(First Beam Index):指示在一个感知测量实例中第一个使用的发送波束的索引。
实例中STA数量(Num of STAs in Instance):指示一个感知测量实例中参与测量的STA的个数。
实例中PPDU数量(Num of PPDUs in Instance):指示一个感知测量实例中出现的PPDU的个数。
EDMG TRN长度(EDMG TRN Length):指示一个PPDU中包含的训练单元(TRN-Unit)的个数。
每个TX TRN-Unit的RX TRN-Unit的数量(RX TRN-Units per Each TX TRN-Unit):指示连续向相同方向发送的TRN-Unit的数量。
EDMG TRN-Unit P:指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段(TRN subfield)所指示的TRN-Unit的个数。
EDMG TRN-Unit M:指示在一个TRN-Unit中波束方向可变的TRN子字段(TRN subfield)所指示的TRN-Unit的个数。
EDMG TRN-Unit N:指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数。
TRN子字段序列长度(TRN Subfield Sequence Length):指示每个TRN子字段所使用的格雷序列的长度。
带宽(Bandwidth):指示发送TRN字段所使用的带宽。
图14是本申请实施例提供的又一种DMG感知请求帧的示意性帧格式图。如图14所示,该DMG感知请求帧可以包括:
对端设备标识(Peer STA ID)字段,用于指示所述感知响应设备的对端设备的标识信息。
角色指示字段,用于指示感知响应设备在与对端设备标识字段所指示的对端设备组成的DMG感知对中的角色信息,例如作为感知发送设备还是作为感知接收设备。
可选地,该角色指示字段可以为1比特,该1比特取值为1表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为0表示该感知响应设备在DMG感知测量中作为感知发送设备。或者,该1比特取值为0表示该感知响应设备在DMG感知测量中作为感知接收设备,取值为1表示该感知响应设备在DMG感知测量中作为感知发送设备。
在一些实施例中,对端设备标识字段和所述角色指示字段携带于所述第二请求帧的TDD波束赋形信息字段中。
其中,该第二请求帧中的其他字段的含义参考图12和图13中的对应字段的说明,为了简洁,这里不再赘述。
在一些实施例中,当Sensing Type字段指示的感知类型不为协作双基类型或双基类型时,该对端设备标识字段和角色指示字段保留;当Sensing Type字段指示的感知类型为协作双基类型或双基类型时,该对端设备标识字段用于指示一个DMG协作双基或双基感知实例中该感知响应设备的对端设备的标识信息,该角色指示字段用于指示该感知响应设备在DMG协作双基或双基感知实例中的角色信息。
在一些实施例中,当Sensing Type字段指示的感知类型为协作双基类型时,角色指示字段或称协作双基角色(Coordinated Bistatic Roll)字段,协作双基发送(Coordinated Bistatic TX)字段,协作双基接收(Coordinated Bistatic RX)字段,或者,其他命名,本申请对此不作限定。
在一些实施例中,当Sensing Type字段指示的感知类型为双基类型时,角色指示字段或称双基角色(Bistatic Roll)字段,双基发送(Bistatic TX)字段,双基接收(Bistatic RX)字段,或者,其他命名,本申请对此不作限定。
在一些实施例中,第二请求帧包括角色列表字段,所述角色列表字段用于指示所述感知响应设备在与每个对端设备执行DMG感知测量时的角色信息。
应理解,在本申请实施例中,该角色指示字段的取值必须符合DMG感知测量请求帧中Measurement Setup Control字段中RX Responder和TX Responder字段的设置。
例如,当RX Responder和TX Responder字段指示感知响应设备可以作为感知接收设备不可以作为感知发送设备时,角色指示字段的取值只能指示感知响应设备在一个DMG Sensing Instance中作为感知接收设备。
又例如,当RX Responder和TX Responder字段指示感知响应设备可以作为感知发送设备不可以作为感知接收设备时,角色指示字段的取值只能指示感知响应设备在一个DMG Sensing Instance中作为感知发送设备。
再例如,当RX Responder和TX Responder字段指示感知响应设备既可以作为感知接收设备也可以作为感知发送设备时,角色指示字段的取值可以指示感知响应设备在一个DMG Sensing Instance中作为感知接收设备或者感知发送设备。
图15是本申请实施例提供的又一种DMG感知请求帧的示意性帧格式图。
如图15所示,该DMG感知请求帧可以包括:
角色列表字段,包括多个角色指示字段,每个角色指示字段对应一个对端设备,每个角色指示字段的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时的角色信息。
在一些实施例中,多个角色指示字段和多个对端设备标识字段一一对应。每个角色指示字段用于指示感知响应设备在与对应的对端设备标识字段所指示的对端设备执行DMG感知测量时的角色信息。可选地,该多个对端设备标识字段承载在DMG感知测量设置请求帧中。
在一些实施例中,当Sensing Type字段指示的感知类型不为协作双基或双基类型时,该角色列表字段保留;当Sensing Type字段指示的感知类型为协作双基或双基类型时,该角色列表字段用于指示感知响应设备在与每个对端设备执行DMG感知测量时的角色信息。
例如,如图15所示,角色列表字段可以包括Peer 1TX字段~Peer 8TX字段,分别对应图9中的从左到右的8个对端设备。可选地,当Peer STA Info subelement中的Peer STA Info的数量为N个时(1<N<8),角色列表字段中的子字段Peer i TX(N<i≤8)字段的含义为保留。
其中,Peer x TX字段的取值表示感知响应设备在与对应的对端设备组成的DMG感知对中的角 色。示例性的,取值1表示该感知响应设备作为感知发送设备,取值0表示感知响应设备作为感知接收设备。
在一些实施例中,该Peer x TX字段的取值必须符合DMG Sensing Measurement Setup Request帧中Measurement Setup Control字段中RX Responder和TX Responder字段的设置。
例如,当RX Responder和TX Responder字段指示感知响应设备可以作为感知接收设备不可以作为感知发送设备时,Peer x TX字段的取值只能指示感知响应设备在一个DMG Sensing Instance中作为感知接收设备。
又例如,当RX Responder和TX Responder字段指示感知响应设备可以作为感知发送设备不可以作为感知接收设备时,Peer x TX字段的取值只能指示感知响应设备在一个DMG Sensing Instance中作为感知发送设备。
再例如,当RX Responder和TX Responder字段指示感知响应设备既可以作为感知接收设备也可以作为感知发送设备时,Peer x TX字段的取值可以指示感知响应设备在一个DMG Sensing Instance中作为感知接收设备或者感知发送设备。
在本申请一些实施例中,在所述感知响应设备的对端设备为所述感知发起设备,并且所述感知响应设备为感知发送设备,所述感知发起设备为感知接收设备的情况下,所述方法200还包括:
所述感知响应设备接收所述感知发起设备发送的波束精炼协议(Beam Refinement Protocol,BRP)帧,所述BRP帧包括发送请求信息(记为TX-RQ),用于请求所述感知响应设备发送携带训练TRN信息的BRP帧;
所述感知响应设备向所述感知发起设备发送携带训练TRN信息(或者说,TRN字段)的BRP帧。
进一步地,感知发起设备可以基于携带TRN信息的BRP帧进行感知测量,得到感知测量结果。
在本申请另一些实施例中,在所述感知响应设备的对端设备为所述感知发起设备,并且所述感知响应设备为感知接收设备,所述感知发起设备为感知发送设备的情况下,所述方法200还包括:
所述感知响应设备接收所述感知发起设备发送的携带TRN信息(或者说,TRN字段)的BRP帧;
所述感知响应设备向所述感知发起设备发送携带报告信息(记为Report)的BRP帧,所述携带报告信息的BRP帧用于上报感知测量结果。
在本申请又一些实施例中,在所述感知响应设备的对端设备为另一感知响应设备,并且所述感知响应设备为感知发送设备,所述另一感知响应设备为感知接收设备的情况下,所述方法还包括:
所述感知响应设备接收所述感知发起设备发送的DMG感知测量轮询帧,所述DMG感知测量轮询帧用于触发所述感知响应设备开始与所述另一感知响应设备进行DMG感知测量;
所述感知响应设备向所述另一感知响应设备发送携带TRN信息(或者说,TRN字段)的BRP帧;
所述感知响应设备接收所述另一感知响应设备发送的携带报告信息(记为Report)的BRP帧,所述携带报告信息的BRP帧用于上报感知测量结果;
所述感知响应设备向所述感知发起设备发送DMG感知测量上报帧,所述DMG感知测量上报帧用于上报所述感知测量结果。
在本申请再一些实施例中,在所述感知响应设备的对端设备为另一感知响应设备,并且所述感知响应设备为感知接收设备,所述另一感知响应设备为感知发送设备的情况下,所述方法200还包括:
所述感知发起设备向另一感知响应设备接收发送BRP帧,所述BRP帧包括发送请求信息(记为TX-RQ),用于请求另一感知响应设备发送携带训练TRN信息的BRP帧;
所述感知响应设备接收所述另一感知响应设备发送携带TRN信息的BRP帧;
所述感知响应设备向所述另一感知响应设备发送携带报告信息的BRP帧,所述携带报告信息的BRP帧用于上报感知测量结果。
进一步地,另一感知响应设备向感知发起设备发送携带报告信息的BRP帧。
以下,结合图16至图30,以双基感知场景为例,说明DMG感知测量实例阶段的执行过程。
应理解,以下实施例仅以一个Initiator(STA ID=0)和四个Responder为例进行说明,在实际应用中还可以包括更多个Responder,或者,更少个Responder,本申请对此不作限定。其中,该四个Responder分别为STA A(STA ID=1),STA B(STA ID=2),STA C(STA ID=3),STA D(STA ID=4)。
其中,在示例一至示例六中,DMG感知请求帧中包括Peer STA ID字段,感知发起设备通过Peer STA ID字段向接收该DMG感知请求帧的感知响应设备其对端设备的标识信息。
示例一:
在示例一中,Initiator分别与STA A、STA B、STA C和STA D组成DMG感知对,STA A、STA B、STA C和STA D均为感知发送设备,即Initiator在每个DMG感知对中均为感知接收设备。如图 16所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤2:短帧间间隔(Short interframe space,SIFS)时间后,STA A回复DMG Sensing Response帧(记为BSP)至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA A,用于请求STA A回复携带TRN的BRP帧;
步骤10:BRPIFS时间后,STA A回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤11:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA B,用于请求STA B回复携带TRN的BRP帧;
步骤12:BRPIFS时间后,STA B回复1个携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤13:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA C,用于请求STA C回复携带TRN字段的BRP帧;
步骤14:BRPIFS时间后,STA C回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤15:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA D,用于请求STA D回复携带TRN的BRP帧;
步骤16:BRPIFS时间后,STA D回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
示例二:
在示例二中,Initiator分别与STA A、STA B、STA C和STA D配对,STA A、STA B、STA C和STA D均为感知接收设备,即Initiator在每个DMG感知对中均为感知发送设备。如图17所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=0;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送携带TRN的BRP帧至STA A,用于STA A感知环境;
步骤10:BRPIFS时间后,STA A回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤11:SIFS时间后,Initiator发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤12:BRPIFS时间后,STA B回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤13:SIFS时间后,Initiator发送携带TRN的BRP帧至STA C,用于STA C感知环境;
步骤14:BRPIFS时间后,STA C回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤15:SIFS时间后,Initiator发送携带TRN的BRP帧至STA D,用于STA D感知环境;
步骤16:BRPIFS时间后,STA D回复携带Report的BRP帧至Initiator上报感知测量的结果。
示例三:
在实施例三中,Initiator分别与STA A、STA B、STA C和STA D组成DMG感知对,STA A和STA C为感知发送设备、STA B和STA D为感知接收设备。如图18所示,具体包括以下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=0;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA A,用于请求STA A回复携带TRN的BRP帧;
步骤10:BRPIFS时间后,STA A回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤11:SIFS时间后,Initiator发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤12:BRPIFS时间后,STA B回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤13:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA C,用于请求STA C回复携带TRN的BRP帧;
步骤14:BRPIFS时间后,STA C回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤15:SIFS时间后,Initiator发送携带TRN的BRP帧至STA D,用于STA D感知环境;
步骤16:BRPIFS时间后,STA D回复携带Report的BRP帧至Initiator上报感知测量的结果。
示例四:
在示例四中,STA A与STA B组成DMG感知对,Initiator分别与STA C和STA D组成DMG感知对,STA A为感知发送设备,STA B、STA C和STA D为感知接收设备。如图19所示,具体包括以下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为2;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=1;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为0;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,用于触发STA A开始进行与STA B执行协作双基感知测量;
步骤10:SIFS时间后,STA A发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤11:BRPIFS时间后,STA B发送1个携带Report的BRP帧至STA A反馈感知测量的结果;
步骤12:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤13:SIFS时间后,Initiator回复ACK帧至STA A(可选步骤);
步骤14:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA C,请求STA C回复携带TRN的BRP帧;
步骤15:BRPIFS时间后,STA C回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤16:SIFS时间后,Initiator发送携带TRN的BRP帧至STA D,用于STA D感知环境;
步骤17:BRPIFS时间后,STA D发送1个携带Report的BRP帧至Initiator上报感知测量的结果。
示例五:
在示例五中,STA A与STA B组成DMG感知对,STA C和STA D配对,STA A和STA C为感知发送设备、STA B和STA D为感知接收设备。如图20所示,具体包括以下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为2;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=1;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为4;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为3;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,用于触发STA A开始进行与STA B的协作双基感知测量;
步骤10:SIFS时间后,STA A发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤11:BRPIFS时间后,STA B发送1个携带Report的BRP帧至STA A反馈感知测量的结果;
步骤12:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤13:SIFS时间后,Initiator回复ACK帧至STA A;(可选步骤)
步骤14:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA C,用于触发STA C开始进行与STA D的协作双基感知测量;
步骤15:SIFS时间后,STA C发送携带TRN的BRP帧至STA C,用于STA C感知环境;
步骤16:BRPIFS时间后,STA D回复携带Report的BRP帧至STA C反馈感知测量的结果;
步骤17:SIFS时间后,STA C发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤18:SIFS时间后,Initiator回复ACK帧至STA C;(可选步骤)。
示例六:
在示例六中,STA A与STA D组成DMG感知对,STA B和STA C组成DMG感知对,STA A和STA C为感知发送设备、STA B和STA D为感知接收设备。如图21所示,具体包括以下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为4;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=3;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为2;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”字段设置为1;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,用于触发STA A 开始进行与STA D的协作双基感知测量;
步骤10:SIFS时间后,STA A发送携带TRN的BRP帧至STA D,用于STA D感知环境;
步骤11:BRPIFS时间后,STA D回复携带Report的BRP帧至STA A反馈感知测量的结果;
步骤12:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤13:SIFS时间后,Initiator回复ACK帧至STA A;(可选步骤)
步骤14:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA C,触发STA C开始进行与STA B的协作双基感知测量;
步骤15:SIFS时间后,STA C发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤16:BRPIFS时间后,STA B回复携带Report的BRP帧至STA C反馈感知测量的结果;
步骤17:SIFS时间后,STA C发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤18:SIFS时间后,Initiator回复ACK帧至STA(可选步骤)。
在以下示例七和示例八中,DMG感知请求帧中可以包括Peer STA ID字段,也可以不包括Peer STA ID字段,例如,当DMG感知测量设置请求帧中包括Peer STA ID字段时,DMG感知请求帧中可以不包括Peer STA ID字段,也可以包括Peer STA ID字段。
示例七:
在示例七中,Initiator通过DMG Sensing Measurement Setup Request帧设置Initiator分别与STA A、STA B、STA C和STA D组成DMG感知对,且STA A和STA C为感知发送设备,STA B和STA D为感知接收设备。如图22所示,具体包括以下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”设置为0或不携带“Peer STA ID”字段;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中DMG Sensing Request帧中的“Peer STA ID”设置为0或不携带“Peer STA ID”字段;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”设置为0或不携带“Peer STA ID”字段;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”设置为0或不携带“Peer STA ID”字段;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA A,用于请求STA A回复携带TRN的BRP帧;
步骤10:BRPIFS时间后,STA A回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤11:SIFS时间后,Initiator发送携带TRN的BRP帧至STA B,用于STA B感知环境;
步骤12:BRPIFS时间后,STA B回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤13:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA C,用于请求STA C回复携带TRN的BRP帧;
步骤14:BRPIFS时间后,STA C回复携带TRN字段的BRP帧至Initiator,用于Initiator感知环境;
步骤15:SIFS时间后,Initiator发送携带TRN的BRP帧至STA D,用于STA D感知环境;
BRPIFS时间后,STA D回复携带Report的BRP帧至Initiator上报感知测量的结果。
示例八:
在示例八中,Initiator通过DMG Sensing Measurement Setup Request帧设置STA A与STA B组成DMG感知对、STA C和STA D组成DMG感知对,且STA A和STA C为感知发送设备、STA B和STA D为感知接收设备。如图23所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中DMG Sensing Request帧中的“Peer STA ID”设置为2或不携带“Peer STA ID”字段;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中DMG Sensing Request 帧中的“Peer STA ID”设置为1或不携带“Peer STA ID”字段;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中DMG Sensing Request帧中的“Peer STA ID”设置为4或不携带“Peer STA ID”字段;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中DMG Sensing Request帧中的“Peer STA ID”设置为3或不携带“Peer STA ID”字段;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,触发STA A开始进行与STA B的协作双基感知测量;
步骤10:SIFS时间后,STA A发送携带TRN的BRP帧至STA B,实现对环境的感知;
步骤11:BRPIFS时间后,STA B发送1个携带Report的BRP帧至STA A反馈感知测量的结果;
步骤12:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤13:SIFS时间后,Initiator回复ACK帧至STA A;(可选步骤)
步骤14:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA C,触发STA C开始进行与STA D的协作双基感知测量;
步骤15:SIFS时间后,STA C发送携带TRN的BRP帧至STA C,实现对环境的感知;
步骤16:BRPIFS时间后,STA D回复携带Report的BRP帧至STA C反馈感知测量的结果;
步骤17:SIFS时间后,STA C发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤18:SIFS时间后,Initiator回复ACK帧至STA(可选步骤)。
在以下示例九和示例十中,DMG感知请求帧中包括Peer STA ID字段和角色指示字段(例如Coordinated Bistatic TX字段),分别用于指示感知响应设备的对端设备的标识信息以及感知响应设备在与对端设备组成的DMG感知对中的角色信息,例如Coordinated Bistatic TX字段设置为1表示作为感知发送设备,设置为0表示作为感知接收设备。
示例九:
在示例九中,Initiator通过DMG Sensing Measurement Setup Request帧设置STA A、STA B、STA C和STA D即可以作为感知接收者也可以作为感知发送者。则在DMG测量实例阶段,则Initiator该进一步可以通过DMG感知请求帧指示具体的角色信息。如图24所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中设置“Peer STA ID”=0,“Coordinated Bistatic TX=1”;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=0,“Coordinated Bistatic TX=0”;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中设置“Peer STA ID”=0,“Coordinated Bistatic TX=1”;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中设置“Peer STA ID”=0,“Coordinated Bistatic TX=0”;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA A,请求STA A回复携带TRN的BRP帧;
步骤10:BRPIFS时间后,STA A回复携带TRN字段的BRP帧至Initiator从而感知环境;
步骤11:SIFS时间后,Initiator发送携带TRN的BRP帧至STA B,实现对环境的感知;
步骤12:BRPIFS时间后,STA B回复携带Report的BRP帧至Initiator上报感知测量的结果;
步骤13:SIFS时间后,Initiator发送携带TX-RQ的BRP帧至STA C,请求STA C回复携带TRN的BRP帧;
步骤14:BRPIFS时间后,STA C回复携带TRN字段的BRP帧至Initiator从而感知环境;
步骤15:SIFS时间后,Initiator发送携带TRN的BRP帧至STA D,实现对环境的感知;
步骤16:BRPIFS时间后,STA D回复携带Report的BRP帧至Initiator上报感知测量的结果。
示例十:
在示例十中,Initiator通过DMG Sensing Measurement Setup Request帧设置STA A、STA B、STA C和STA D即可以作为感知接收者也可以作为感知发送者,则在DMG测量实例阶段,则Initiator该进一步可以通过DMG感知请求帧指示具体的角色信息。如图25所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中设置“Peer STA ID”=2,“Coordinated Bistatic TX=1”;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer STA ID”=1,“Coordinated Bistatic TX=0”;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中设置“Peer STA ID”=4,“Coordinated Bistatic TX=1”;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Request帧至STA D,其中设置“Peer STA ID”=3,“Coordinated Bistatic TX=0”;
步骤8:SIFS时间后,STA D回复DMG Sensing Response帧至Initiator;
步骤9:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,触发STA A开始进行与STA B的协作双基感知测量;
步骤10:SIFS时间后,STA A发送带有TRN的BRP帧至STA B,实现对环境的感知;
步骤11:BRPIFS时间后,STA B发送1个带有Report的BRP帧至STA A反馈感知测量的结果;
步骤12:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤13:SIFS时间后,Initiator回复ACK帧至STA A;(可选步骤)
步骤14:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA C,触发STA C开始进行与STA D的协作双基感知测量;
步骤15:SIFS时间后,STA C发送带有TRN的BRP帧至STA C,实现对环境的感知;
步骤16:BRPIFS时间后,STA D回复1个带有Report的BRP帧至STA C反馈感知测量的结果;
步骤17:SIFS时间后,STA C发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤18:SIFS时间后,Initiator回复ACK帧至STA C(可选步骤)。
在以下示例十一和示例十二中,Initiator通过DMG Sensing Measurement Setup Request帧设置STA A、STA B和STA C即可以作为感知接收者也可以作为感知发送者,并且设置STA A与STA B组成DMG感知对,STA B和STA C组成DMG感知对。例如,如图26所示,Initiator发送给STA A的DMG Sensing Measurement Setup Request帧中的可选子元素中设置Peer STA ID=2,表示STA A的对端设备为STA B,如图27所示,Initiator发送给STA B的DMG Sensing Measurement Setup Request帧中的可选子元素中设置Peer STA ID=1以及Peer STA ID=3,表示STA B的对端设备包括STA A和STA C,如图28所示,Initiator发送给STA C的DMG Sensing Measurement Setup Request帧中的可选子元素中设置Peer STA ID=2,表示STA C的对端设备包括STA B。
示例十一:
在DMG感知测量实例阶段,Initiator发送给STA A、STA B和STA C的DMG Sensing Request帧可以指示responder在测量实例阶段中的具体角色。如图29所示,具体包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中设置“Peer 1TX=1”,指示STA A在与STA B组成的DMG感知对中作为感知发送设备,其中,Peer n TX对应Peer STA ID=n。
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer 1TX=0,Peer 2TX=1”,指示STA B在与STA A组成的DMG感知对中作为感知接收者,在与STA C组成的DMG感知对中作为感知发送者;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中设置“Peer 1TX=0”,指示STA C在与STA B组成的DMG感知对中作为感知接收设备;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA A,用于触发STA A 开始进行与STA B的协作双基感知测量;
步骤8:SIFS时间后,STA A发送带有TRN的BRP帧至STA B,实现对环境的感知;
步骤9:BRPIFS时间后,STA B发送1个带有Report的BRP帧至STA A反馈感知测量的结果;
步骤10:SIFS时间后,STA A发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤11:SIFS时间后,Initiator回复ACK帧至STA A;(可选步骤)
步骤12:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA B,触发STA B开始进行与STA C的协作双基感知测量;
步骤13:SIFS时间后,STA B发送带有TRN的BRP帧至STA C,实现对环境的感知;
步骤14:BRPIFS时间后,STA C回复1个带有Report的BRP帧至STA B反馈感知测量的结果;
步骤15:SIFS时间后,STA B发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤16:SIFS时间后,Initiator回复ACK帧至STA B(可选步骤)。
示例十二:
在该示例十二和示例十一的DMG感知对相同,区别在于DMG感知对中的角色。如图30所示,可以包括如下步骤:
步骤1:Initiator发送DMG Sensing Request帧至STA A,其中设置“Peer 1TX=0”,指示STA A在与STA B组成的DMG感知对中作为感知接收设备;
步骤2:SIFS时间后,STA A回复DMG Sensing Response帧至Initiator;
步骤3:SIFS时间后,Initiator发送DMG Sensing Request帧至STA B,其中设置“Peer 1TX=1,Peer 2TX=0”,指示STA B在与STA A配对时作为感知发送者,在与STA C配对时作为感知接收者;
步骤4:SIFS时间后,STA B回复DMG Sensing Response帧至Initiator;
步骤5:Initiator发送DMG Sensing Request帧至STA C,其中设置“Peer 1TX=1”,指示STA C在与STA B组成的DMG感知对中作为感知发送者;
步骤6:SIFS时间后,STA C回复DMG Sensing Response帧至Initiator;
步骤7:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA B,触发STA B开始进行与STA A的协作双基感知测量;
步骤8:SIFS时间后,STA B发送带有TRN的BRP帧至STA A,实现对环境的感知;
步骤9:BRPIFS时间后,STA A发送1个带有Report的BRP帧至STA B反馈感知测量的结果;
步骤10:SIFS时间后,STA B发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤11:SIFS时间后,Initiator回复ACK帧至STA B(可选步骤);
步骤12:SIFS时间后,Initiator发送DMG Sensing Measurement Poll帧至STA C,触发STA C开始进行与STA B的协作双基感知测量;
步骤13:SIFS时间后,STA C发送带有TRN的BRP帧至STA B,实现对环境的感知;
步骤14:BRPIFS时间后,STA B回复1个带有Report的BRP帧至STA C反馈感知测量的结果;
步骤15:SIFS时间后,STA C发送DMG Sensing Measurement Report帧至Initiator,上报感知测量结果;
步骤16:SIFS时间后,Initiator回复ACK帧至STA C(可选步骤)。
综上,本申请实施例设计了DMG协作双基或双基感知模式下的P2P感知方法,从而使得DMG感知能够支持更多的感知场景,同时增加了DMG感知的灵活性,例如,感知响应设备不止可以与感知发起设备进行P2P感知,还可以是感知响应设备之间进行P2P感知,实现了真正意义上的P2P感知。
并且,通过修改感知响应设备的角色指示位(例如前述第一指示字段),使得感知发起设备能够更方便地为感知响应设备分配Tx/Rx角色。
并且,通过增加感知响应设备的对端设备信息的指示,能够实现在感知发起设备指示两个感知响应设备进行DMG感知测量时,每个感知响应设备能够获知其对端设备的信息,从而DMG感知对中的感知发送设备知道应该向那个设备发送感知信号,例如sensing PPDU。
上文结合图2至图30,详细描述了本申请的方法实施例,下文结合图31至图35,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图31示出了根据本申请实施例的感知响应设备400的示意性框图。如图31所示,该感知响应设 备400包括:
通信单元410,用于获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
在一些实施例中,所述感知响应设备在DMG感知测量中的角色信息为感知发送设备或感知接收设备。
在一些实施例中,所述感知响应设备在DMG感知测量中的角色信息包括感知发送设备和/或感知接收设备。
在一些实施例中,在所述感知响应设备的对端设备的数量为多个的情况下,所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息是通过位图方式指示的。
在一些实施例中,所述感知响应设备的对端设备的信息包括所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述感知响应设备的对端设备的信息包括以下中的至少一项:
所述感知响应设备的对端设备的数量信息;
所述感知响应设备的对端设备的标识信息;
所述感知响应设备的对端设备在DMG感知测量中的角色信息。
在一些实施例中,所述感知响应设备在定向多吉比特DMG感知测量中的角色信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
在一些实施例中,所述感知响应设备的对端设备的信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
在一些实施例中,所述通信单元410还用于:
接收第一请求帧,其中,所述第一请求帧包括第一指示信息和/或第二指示信息,所述第一请求帧用于请求建立DMG测量设置,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第二指示信息用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备;或者
所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备。
在一些实施例中,所述第二指示信息用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述第二指示信息用于指示以下中的至少一项:
所述感知响应设备的对端设备的数量信息;
所述感知响应设备的对端设备的标识信息;
所述感知响应设备的对端设备在DMG感知测量中的角色信息。
在一些实施例中,所述第一请求帧包括第一指示字段,所述第一指示字段用于指示所述感知响应设备在DMG感知测量中作为感知发送设备还是感知接收设备。
在一些实施例中,所述第一指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
在一些实施例中,所述第一请求帧包括发送指示字段和接收指示字段,所述发送指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知发送设备,所述接收指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知接收设备。
在一些实施例中,所述发送指示字段和所述接收指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
在一些实施例中,所述第一请求帧包括至少一个对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述至少一个对端设备标识字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
在一些实施例中,所述第一请求帧包括以下至少一个字段:
对端设备数量字段,用于指示所述感知响应设备的对端设备的数量;
至少一个对端设备信息字段,用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述对端设备信息字段包括以下至少一个字段:
对端设备标识字段,用于指示所述感知响应设备的对端设备的标识信息;
角色信息字段,用于指示所述感知响应设备的对端设备的角色信息。
在一些实施例中,所述对端设备数量字段和所述至少一个对端设备信息字段携带于所述第一请求 帧的DMG感知测量设置元素中的可选子元素字段中。
在一些实施例中,所述通信单元410还用于:
接收第二请求帧,其中,所述第二请求帧包括第三指示信息和/或第四指示信息,所述第二请求帧用于请求进行DMG感知测量,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第四指示信息用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
在一些实施例中,在所述感知响应设备的对端设备有多个的情况下,所述第三指示信息通过位图方式指示所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息。
在一些实施例中,所述第四指示信息用于指示感知设备的对端设备的标识信息。
在一些实施例中,所述第二请求帧包括对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述对端设备标识字段携带于所述第二请求帧的时分双工TDD波束赋形信息字段中。
在一些实施例中,在所述第二请求帧不包括对端设备标识字段的情况下,将第一请求帧中所指示的对端设备作为DMG感知测量实例中所述感知响应设备的对端设备,所述第一请求帧用于请求建立DMG测量设置。
在一些实施例中,所述第二请求帧包括对端设备标识字段和角色指示字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息,所述角色指示字段用于指示所述感知响应设备在DMG感知测量中的角色信息。
在一些实施例中,所述对端设备标识字段和所述角色指示字段携带于所述第二请求帧的TDD波束赋形信息字段中。
在一些实施例中,所述第二请求帧包括角色列表字段,所述角色列表字段用于指示所述感知响应设备在与每个对端设备组成的DMG感知对中的角色信息。
在一些实施例中,所述角色列表字段包括多个角色指示字段,每个角色指示字段对应一个对端设备,每个角色指示字段的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时的角色信息。
在一些实施例中,所述多个角色指示字段和多个对端设备标识字段一一对应,所述多个对端设备标识字段携带在第一请求帧中,所述第一请求帧用于请求建立DMG测量设置。
在一些实施例中,在一个DMG感知测量实例中,所述感知响应设备与一个对端设备进行DMG感知测量,其中,所述感知响应设备作为感知发送设备,所述一个对端设备作为感知接收设备,或者,所述感知响应设备作为感知接收设备,所述一个对端设备作为感知发送设备。
在一些实施例中,在一个DMG感知测量实例中,所述感知响应设备与多个对端设备进行DMG感知测量,其中,在所述感知响应设备与所述多个对端设备组成的多个DMG感知对中,所述感知响应设备的角色相同或不同。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的感知响应设备备400可对应于本申请方法实施例中的感知响应设备,并且感知响应设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2至图30所示方法200中感知响应设备的相应流程,为了简洁,在此不再赘述。
图32是根据本申请实施例的感知发起设备的示意性框图。图32的感知发起设备500包括:
通信单元510,用于向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
在一些实施例中,所述感知响应设备在DMG感知测量中的角色信息为感知发送设备或感知接收设备。
在一些实施例中,所述感知响应设备在DMG感知测量中的角色信息包括感知发送设备和/或感知接收设备。
在一些实施例中,在所述感知响应设备的对端设备的数量为多个的情况下,所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息是通过位图方式指示的。
在一些实施例中,所述感知响应设备的对端设备的信息包括所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述感知响应设备的对端设备的信息包括以下中的至少一项:
所述感知响应设备的对端设备的数量信息;
所述感知响应设备的对端设备的标识信息;
所述感知响应设备的对端设备在DMG感知测量中的角色信息。
在一些实施例中,所述感知响应设备在定向多吉比特DMG感知测量中的角色信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
在一些实施例中,所述感知响应设备的对端设备的信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
在一些实施例中,所述通信单元510还用于:
向所述感知响应设备发送第一请求帧,其中,所述第一请求帧包括第一指示信息和/或第二指示信息,所述第一请求帧用于请求建立DMG测量设置,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第二指示信息用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
在一些实施例中,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备。
在一些实施例中,所述第二指示信息用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述第二指示信息用于指示以下中的至少一项:
所述感知响应设备的对端设备的数量信息;
所述感知响应设备的对端设备的标识信息;
所述感知响应设备的对端设备在DMG感知测量中的角色信息。
在一些实施例中,所述第一请求帧包括第一指示字段,所述第一指示字段用于指示所述感知响应设备在DMG感知测量中作为感知发送设备还是感知接收设备。
在一些实施例中,所述第一指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
在一些实施例中,所述第一请求帧包括发送指示字段和接收指示字段,所述发送指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知发送设备,所述接收指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知接收设备。
在一些实施例中,所述发送指示字段和所述接收指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
在一些实施例中,所述第一请求帧包括至少一个对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,所述至少一个对端设备标识字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
在一些实施例中,所述第一请求帧包括以下至少一个字段:
对端设备数量字段,用于指示所述感知响应设备的对端设备的数量;
至少一个对端设备信息字段,用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述对端设备信息字段包括以下至少一个字段:
对端设备标识字段,用于指示所述感知响应设备的对端设备的标识信息;
角色信息字段,用于指示所述感知响应设备的对端设备的角色信息。
在一些实施例中,所述对端设备数量字段和所述至少一个对端设备信息字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
在一些实施例中,所述通信单元510还用于:
向所述感知响应设备发送第二请求帧,其中,所述第二请求帧包括第三指示信息和/或第四指示信息,所述第二请求帧用于请求进行DMG感知测量,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第四指示信息用于指示所述感知响应设备的对端设备的信息。
在一些实施例中,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
在一些实施例中,在所述感知响应设备的对端设备有多个的情况下,所述第三指示信息通过位图方式指示所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息。
在一些实施例中,所述第四指示信息用于指示感知设备的对端设备的标识信息。
在一些实施例中,所述第二请求帧包括对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
在一些实施例中,述对端设备标识字段携带于所述第二请求帧的时分双工TDD波束赋形信息字段中。
在一些实施例中,在所述第二请求帧不包括对端设备标识字段的情况下,将第一请求帧中所指示的对端设备作为DMG感知测量实例中所述感知响应设备的对端设备,所述第一请求帧用于请求建立DMG测量设置。
在一些实施例中,所述第二请求帧包括对端设备标识字段和角色指示字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息,所述角色指示字段用于指示所述感知响应设备在DMG感知测量中的角色信息。
在一些实施例中,所述对端设备标识字段和所述角色指示字段携带于所述第二请求帧的TDD波束赋形信息字段中。
在一些实施例中,所述第二请求帧包括角色列表字段,所述角色列表字段用于指示所述感知响应设备在与每个对端设备组成的DMG感知对中的角色信息。
在一些实施例中,所述角色列表字段包括多个角色指示字段,每个角色指示字段对应一个对端设备,每个角色指示字段的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时的角色信息。
在一些实施例中,所述多个角色指示字段和多个对端设备标识字段一一对应,所述多个对端设备标识字段携带在第一请求帧中,所述第一请求帧用于请求建立DMG测量设置。
在一些实施例中,在一个DMG感知测量实例中,所述感知响应设备与一个对端设备进行DMG感知测量,其中,所述感知响应设备作为感知发送设备,所述一个对端设备作为感知接收设备,或者,所述感知响应设备作为感知接收设备,所述一个对端设备作为感知发送设备。
在一些实施例中,在一个DMG感知测量实例中,所述感知响应设备与多个对端设备进行DMG感知测量,其中,在所述感知响应设备与所述多个对端设备组成的多个DMG感知对中,所述感知响应设备的角色相同或不同。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的感知发起设备500可对应于本申请方法实施例中的感知发起设备,并且感知发起设备500中的各个单元的上述和其它操作和/或功能分别为了实现图2至图30所示方法200中感知发起设备的相应流程,为了简洁,在此不再赘述。
图33是本申请实施例提供的一种通信设备600示意性结构图。图33所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图33所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图33所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的感知响应设备,并且该通信设备600可以实现本申请实施例的各个方法中由感知响应设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的感知发起设备,并且该通信设备600可以实现本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
图34是本申请实施例的芯片的示意性结构图。图34所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图34所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图35是本申请实施例提供的一种通信系统900的示意性框图。如图35所示,该通信系统900包括感知发起设备910和感知响应设备920。
其中,该感知发起设备910可以用于实现上述方法中由感知发起设备实现的相应的功能,以及该感知响应设备920可以用于实现上述方法中由感知响应设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的感知发起设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的感知发起设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的感知发起设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的感知发起设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的感知发起设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的感知发起设备,当该计算机程序在计算机上运 行时,使得计算机执行本申请实施例的各个方法中由感知发起设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (76)

  1. 一种无线通信的方法,其特征在于,包括:
    感知响应设备获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述感知响应设备在DMG感知测量中的角色信息为感知发送设备或感知接收设备;或者
    所述感知响应设备在DMG感知测量中的角色信息包括感知发送设备和/或感知接收设备。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述感知响应设备的对端设备的数量为多个的情况下,所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息是通过位图方式指示的。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述感知响应设备的对端设备的信息包括所述感知响应设备的对端设备的标识信息。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述感知响应设备的对端设备的信息包括以下中的至少一项:
    所述感知响应设备的对端设备的数量信息;
    所述感知响应设备的对端设备的标识信息;
    所述感知响应设备的对端设备在DMG感知测量中的角色信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,
    所述感知响应设备在定向多吉比特DMG感知测量中的角色信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,
    所述感知响应设备的对端设备的信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述感知响应设备获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息,包括:
    所述感知响应设备接收第一请求帧,其中,所述第一请求帧包括第一指示信息和/或第二指示信息,所述第一请求帧用于请求建立DMG测量设置,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第二指示信息用于指示所述感知响应设备的对端设备的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备;或者
    所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二指示信息用于指示所述感知响应设备的对端设备的标识信息。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第二指示信息用于指示以下中的至少一项:
    所述感知响应设备的对端设备的数量信息;
    所述感知响应设备的对端设备的标识信息;
    所述感知响应设备的对端设备在DMG感知测量中的角色信息。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述第一请求帧包括第一指示字段,所述第一指示字段用于指示所述感知响应设备在DMG感知测量中作为感知发送设备还是感知接收设备。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
  14. 根据权利要求8-11中任一项所述的方法,其特征在于,所述第一请求帧包括发送指示字段和接收指示字段,所述发送指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知发送设备,所述接收指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知接收设备。
  15. 根据权利要求14所述的方法,其特征在于,所述发送指示字段和所述接收指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
  16. 根据权利要求8-15中任一项所述的方法,其特征在于,所述第一请求帧包括至少一个对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个对端设备标识字段携带于所述第 一请求帧的DMG感知测量设置元素中的可选子元素字段中。
  18. 根据权利要求8-15中任一项所述的方法,其特征在于,所述第一请求帧包括以下至少一个字段:
    对端设备数量字段,用于指示所述感知响应设备的对端设备的数量;
    至少一个对端设备信息字段,用于指示所述感知响应设备的对端设备的信息。
  19. 根据权利要求18所述的方法,其特征在于,所述对端设备信息字段包括以下至少一个字段:
    对端设备标识字段,用于指示所述感知响应设备的对端设备的标识信息;
    角色信息字段,用于指示所述感知响应设备的对端设备的角色信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述对端设备数量字段和所述至少一个对端设备信息字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述感知响应设备获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息,包括:
    所述感知响应设备接收第二请求帧,其中,所述第二请求帧包括第三指示信息和/或第四指示信息,所述第二请求帧用于请求进行DMG感知测量,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第四指示信息用于指示所述感知响应设备的对端设备的信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
  23. 根据权利要求21或22所述的方法,其特征在于,在所述感知响应设备的对端设备有多个的情况下,所述第三指示信息通过位图方式指示所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述第四指示信息用于指示感知设备的对端设备的标识信息。
  25. 根据权利要求21-24中任一项所述的方法,其特征在于,所述第二请求帧包括对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
  26. 根据权利要求25所述的方法,其特征在于,所述对端设备标识字段携带于所述第二请求帧的时分双工TDD波束赋形信息字段中。
  27. 根据权利要求21-24中任一项所述的方法,其特征在于,在所述第二请求帧不包括对端设备标识字段的情况下,将第一请求帧中所指示的对端设备作为DMG感知测量实例中所述感知响应设备的对端设备,所述第一请求帧用于请求建立DMG测量设置。
  28. 根据权利要求21-24中任一项所述的方法,其特征在于,所述第二请求帧包括对端设备标识字段和角色指示字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息,所述角色指示字段用于指示所述感知响应设备在DMG感知测量中的角色信息。
  29. 根据权利要求28所述的方法,其特征在于,所述对端设备标识字段和所述角色指示字段携带于所述第二请求帧的TDD波束赋形信息字段中。
  30. 根据权利要求21-24中任一项所述的方法,其特征在于,所述第二请求帧包括角色列表字段,所述角色列表字段用于指示所述感知响应设备在与每个对端设备组成的DMG感知对中的角色信息。
  31. 根据权利要求30所述的方法,其特征在于,所述角色列表字段包括多个角色指示字段,每个角色指示字段对应一个对端设备,每个角色指示字段的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时的角色信息。
  32. 根据权利要求31所述的方法,其特征在于,所述多个角色指示字段和多个对端设备标识字段一一对应,所述多个对端设备标识字段携带在第一请求帧中,所述第一请求帧用于请求建立DMG测量设置。
  33. 根据权利要求1-32中任一项所述的方法,其特征在于,在一个DMG感知测量实例中,所述感知响应设备与一个对端设备进行DMG感知测量,其中,所述感知响应设备作为感知发送设备,所述一个对端设备作为感知接收设备,或者,所述感知响应设备作为感知接收设备,所述一个对端设备作为感知发送设备。
  34. 根据权利要求1-32中任一项所述的方法,其特征在于,在一个DMG感知测量实例中,所述感知响应设备与多个对端设备进行DMG感知测量,其中,在所述感知响应设备与所述多个对端设备组成的多个DMG感知对中,所述感知响应设备的角色相同或不同。
  35. 一种无线通信的方法,其特征在于,包括:
    感知发起设备向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信 息和/或所述感知响应设备的对端设备的信息。
  36. 根据权利要求35所述的方法,其特征在于,
    所述感知响应设备在DMG感知测量中的角色信息为感知发送设备或感知接收设备;或者
    所述感知响应设备在DMG感知测量中的角色信息包括感知发送设备和/或感知接收设备。
  37. 根据权利要求35或36所述的方法,其特征在于,在所述感知响应设备的对端设备的数量为多个的情况下,所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息是通过位图方式指示的。
  38. 根据权利要求35-37中任一项所述的方法,其特征在于,所述感知响应设备的对端设备的信息包括所述感知响应设备的对端设备的标识信息。
  39. 根据权利要求35-37中任一项所述的方法,其特征在于,所述感知响应设备的对端设备的信息包括以下中的至少一项:
    所述感知响应设备的对端设备的数量信息;
    所述感知响应设备的对端设备的标识信息;
    所述感知响应设备的对端设备在DMG感知测量中的角色信息。
  40. 根据权利要求35-39中任一项所述的方法,其特征在于,
    所述感知响应设备在定向多吉比特DMG感知测量中的角色信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
  41. 根据权利要求35-40中任一项所述的方法,其特征在于,
    所述感知响应设备的对端设备的信息是在DMG感知测量设置阶段和/或和DMG感知测量实例阶段获取的。
  42. 根据权利要求35-41中任一项所述的方法,其特征在于,所述感知发起设备向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息,包括:
    所述感知发起设备向所述感知响应设备发送第一请求帧,其中,所述第一请求帧包括第一指示信息和/或第二指示信息,所述第一请求帧用于请求建立DMG测量设置,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第二指示信息用于指示所述感知响应设备的对端设备的信息。
  43. 根据权利要求42所述的方法,其特征在于,所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备;或者
    所述第一指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备和/或感知接收设备。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第二指示信息用于指示所述感知响应设备的对端设备的标识信息。
  45. 根据权利要求42或43所述的方法,其特征在于,所述第二指示信息用于指示以下中的至少一项:
    所述感知响应设备的对端设备的数量信息;
    所述感知响应设备的对端设备的标识信息;
    所述感知响应设备的对端设备在DMG感知测量中的角色信息。
  46. 根据权利要求42-45中任一项所述的方法,其特征在于,所述第一请求帧包括第一指示字段,所述第一指示字段用于指示所述感知响应设备在DMG感知测量中作为感知发送设备还是感知接收设备。
  47. 根据权利要求46所述的方法,其特征在于,所述第一指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
  48. 根据权利要求42-45中任一项所述的方法,其特征在于,所述第一请求帧包括发送指示字段和接收指示字段,所述发送指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知发送设备,所述接收指示字段用于指示所述感知响应设备在DMG感知测量中是否作为感知接收设备。
  49. 根据权利要求48所述的方法,其特征在于,所述发送指示字段和所述接收指示字段携带于所述第一请求帧的DMG感知测量设置元素中的测量设置控制字段中。
  50. 根据权利要求42-49中任一项所述的方法,其特征在于,所述第一请求帧包括至少一个对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
  51. 根据权利要求50所述的方法,其特征在于,所述至少一个对端设备标识字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
  52. 根据权利要求42-49中任一项所述的方法,其特征在于,所述第一请求帧包括以下至少一个字段:
    对端设备数量字段,用于指示所述感知响应设备的对端设备的数量;
    至少一个对端设备信息字段,用于指示所述感知响应设备的对端设备的信息。
  53. 根据权利要求52所述的方法,其特征在于,所述对端设备信息字段包括以下至少一个字段:
    对端设备标识字段,用于指示所述感知响应设备的对端设备的标识信息;
    角色信息字段,用于指示所述感知响应设备的对端设备的角色信息。
  54. 根据权利要求52或53所述的方法,其特征在于,所述对端设备数量字段和所述至少一个对端设备信息字段携带于所述第一请求帧的DMG感知测量设置元素中的可选子元素字段中。
  55. 根据权利要求35-54中任一项所述的方法,其特征在于,所述感知发起设备向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息,包括:
    所述感知发起设备向所述感知响应设备发送第二请求帧,其中,所述第二请求帧包括第三指示信息和/或第四指示信息,所述第二请求帧用于请求进行DMG感知测量,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中的角色信息,所述第四指示信息用于指示所述感知响应设备的对端设备的信息。
  56. 根据权利要求55所述的方法,其特征在于,所述第三指示信息用于指示所述感知响应设备在DMG感知测量中作为感知发送设备或感知接收设备。
  57. 根据权利要求55或56所述的方法,其特征在于,在所述感知响应设备的对端设备有多个的情况下,所述第三指示信息通过位图方式指示所述感知响应设备与每个对端设备执行DMG感知测量时所述感知响应设备的角色信息。
  58. 根据权利要求55-57中任一项所述的方法,其特征在于,所述第四指示信息用于指示感知设备的对端设备的标识信息。
  59. 根据权利要求55-58中任一项所述的方法,其特征在于,所述第二请求帧包括对端设备标识字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息。
  60. 根据权利要求59所述的方法,其特征在于,所述对端设备标识字段携带于所述第二请求帧的时分双工TDD波束赋形信息字段中。
  61. 根据权利要求55-58中任一项所述的方法,其特征在于,在所述第二请求帧不包括对端设备标识字段的情况下,将第一请求帧中所指示的对端设备作为DMG感知测量实例中所述感知响应设备的对端设备,所述第一请求帧用于请求建立DMG测量设置。
  62. 根据权利要求55-58中任一项所述的方法,其特征在于,所述第二请求帧包括对端设备标识字段和角色指示字段,所述对端设备标识字段用于指示所述感知响应设备的对端设备的标识信息,所述角色指示字段用于指示所述感知响应设备在DMG感知测量中的角色信息。
  63. 根据权利要求62所述的方法,其特征在于,所述对端设备标识字段和所述角色指示字段携带于所述第二请求帧的TDD波束赋形信息字段中。
  64. 根据权利要求55-58中任一项所述的方法,其特征在于,所述第二请求帧包括角色列表字段,所述角色列表字段用于指示所述感知响应设备在与每个对端设备组成的DMG感知对中的角色信息。
  65. 根据权利要求64所述的方法,其特征在于,所述角色列表字段包括多个角色指示字段,每个角色指示字段对应一个对端设备,每个角色指示字段的取值用于指示感知响应设备在与对应的对端设备执行DMG感知测量时的角色信息。
  66. 根据权利要求65所述的方法,其特征在于,所述多个角色指示字段和多个对端设备标识字段一一对应,所述多个对端设备标识字段携带在第一请求帧中,所述第一请求帧用于请求建立DMG测量设置。
  67. 根据权利要求35-66中任一项所述的方法,其特征在于,在一个DMG感知测量实例中,所述感知响应设备与一个对端设备进行DMG感知测量,其中,所述感知响应设备作为感知发送设备,所述一个对端设备作为感知接收设备,或者,所述感知响应设备作为感知接收设备,所述一个对端设备作为感知发送设备。
  68. 根据权利要求35-66中任一项所述的方法,其特征在于,在一个DMG感知测量实例中,所述感知响应设备与多个对端设备进行DMG感知测量,其中,在所述感知响应设备与所述多个对端设备组成的多个DMG感知对中,所述感知响应设备的角色相同或不同。
  69. 一种感知响应设备,其特征在于,包括:
    通信单元,用于获取所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感 知响应设备的对端设备的信息。
  70. 一种感知发起设备,其特征在于,包括:
    通信单元,用于向感知响应设备发送所述感知响应设备在定向多吉比特DMG感知测量中的角色信息和/或所述感知响应设备的对端设备的信息。
  71. 一种感知响应设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至34中任一项所述的方法。
  72. 一种感知发起设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求35至68中任一项所述的方法。
  73. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至34中任一项所述的方法,或如权利要求35至68中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法,或如权利要求35至68中任一项所述的方法。
  75. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至34中任一项所述的方法,或如权利要求35至68中任一项所述的方法。
  76. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法,或如权利要求35至68中任一项所述的方法。
PCT/CN2022/115278 2022-08-26 2022-08-26 无线通信的方法和设备 WO2024040612A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115278 WO2024040612A1 (zh) 2022-08-26 2022-08-26 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115278 WO2024040612A1 (zh) 2022-08-26 2022-08-26 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2024040612A1 true WO2024040612A1 (zh) 2024-02-29

Family

ID=90012240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115278 WO2024040612A1 (zh) 2022-08-26 2022-08-26 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2024040612A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200359248A1 (en) * 2019-06-21 2020-11-12 Bahareh Sadeghi Wlan sensing frame exchange protocol
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
US20220150962A1 (en) * 2020-11-12 2022-05-12 Cheng Chen Mechanisms to enable peer-to-peer (p2p) sensing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200359248A1 (en) * 2019-06-21 2020-11-12 Bahareh Sadeghi Wlan sensing frame exchange protocol
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
US20220150962A1 (en) * 2020-11-12 2022-05-12 Cheng Chen Mechanisms to enable peer-to-peer (p2p) sensing

Similar Documents

Publication Publication Date Title
WO2022193304A1 (zh) 无线通信的方法和设备
WO2024040612A1 (zh) 无线通信的方法和设备
WO2023016441A1 (zh) 通信方法以及装置
WO2023071250A1 (zh) 无线感知方法、装置、设备及存储介质
WO2024016365A1 (zh) 协作感知测量方法、装置、设备及存储介质
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023130384A1 (zh) 感知上报方法和设备
WO2023039798A1 (zh) 无线通信的方法和设备
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024036643A1 (zh) 自定义标识符的获取和使用方法、装置、设备及存储介质
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023123000A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2023245664A1 (zh) 无线通信的方法和设备
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2023240781A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023155148A1 (zh) 无线通信的方法和设备
WO2023130383A1 (zh) 感知方法和设备
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2023130388A1 (zh) 无线通信的方法及设备
WO2023272455A1 (zh) 无线通信的方法及设备
WO2023092487A1 (zh) 无线通信的方法和设备
WO2023108371A1 (zh) 感知方法和设备
WO2023141996A1 (zh) 通信方法和设备
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956157

Country of ref document: EP

Kind code of ref document: A1