WO2023093747A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023093747A1
WO2023093747A1 PCT/CN2022/133631 CN2022133631W WO2023093747A1 WO 2023093747 A1 WO2023093747 A1 WO 2023093747A1 CN 2022133631 W CN2022133631 W CN 2022133631W WO 2023093747 A1 WO2023093747 A1 WO 2023093747A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
information
ppdu
ppdus
channel
Prior art date
Application number
PCT/CN2022/133631
Other languages
English (en)
French (fr)
Inventor
狐梦实
李逸飞
龙彦
何蓉
方旭明
李云波
韩霄
杜瑞
吕艺
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093747A1 publication Critical patent/WO2023093747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present application relates to the technical field of wireless local area networks (WLAN), and in particular to a communication method and device.
  • WLAN wireless local area networks
  • WLAN communication due to the widespread deployment of WLAN devices and the increase in sensing (Sensing) requirements, it is currently a research hotspot to use wireless signals transmitted by widely available WLAN devices for sensing.
  • the signals sent by WLAN devices are usually received after being reflected, diffracted, and scattered by various obstacles. This phenomenon makes the actually received signals often superimposed by multiple signals, which brings interference to communication. But from another point of view, this also brings convenience to the perception of the physical environment it passes through through wireless signals. By analyzing the wireless signal affected by various obstacles, the environment around the WLAN device can be inferred or sensed.
  • the present application provides a communication method and device, which are used to realize a channel sensing process between different devices while meeting communication requirements, thereby improving communication efficiency of a WLAN system and saving overhead.
  • the first aspect of the present application provides a communication method, which is applied to a WLAN system, and the method is executed by a WLAN device, or, the method is executed by some components in the WLAN device.
  • the WLAN device may include a station (station, STA) or an access point (access point, AP), and some components in the WLAN device may include a processor, a chip, or a chip system.
  • description is made by taking the first device as an example of a WLAN device executing the method.
  • the first device sends a first frame to the second device, and the first frame is used to request channel awareness; the first device receives a second frame from the second device, and the second frame includes the first
  • the channel sensing information between the device and the second device the channel sensing information is determined based on some or all of the PPDUs in n (physical protocol data unit, PPDU), and the n PPDUs are PPDUs sent by the first device , n is greater than or equal to 1.
  • the channel perception information between the first device and the second device may also be expressed as the (surrounding/physical) environment perception information between the first device and the second device, It may also be expressed as the perception information between the first device and the second device, or it may be expressed as the perception measurement information between the first device and the second device, or it may be expressed as the first device and the second device Sensory feedback information between two devices.
  • the n PPDUs are PPDUs sent by the first device, including: the n PPDUs are PPDUs sent by the first device to other devices.
  • the other device may include the second device and/or a device different from the second device (such as the third device mentioned later), which is not limited here.
  • the second device may perform channel sensing based on the n PPDUs sent by the first device, so as to determine that some or all of the n PPDUs are Channel sensing information transmitted between the first device and the second device. Thereafter, the first device receives the second frame including the channel sensing information from the second device, so as to realize the process of channel sensing. Therefore, based on the n PPDUs sent by the first device, while meeting the communication requirements of the first device, the channel sensing process between different devices can also be implemented, which improves the communication efficiency of the WLAN system and saves overhead.
  • the second aspect of the present application provides a communication method, which is applied to a WLAN system, and the method is executed by a WLAN device, or, the method is executed by some components in the WLAN device.
  • the WLAN device may include an STA or an AP, and some components in the WLAN device may include a processor, a chip, or a chip system, and the like.
  • description is made by taking the second device as an example of a WLAN device executing the method.
  • the second device receives a first frame from the first device, and the first frame is used to request channel awareness; the second device sends a second frame to the first device, and the second frame includes the first Channel sensing information between the device and the second device, the channel sensing information is determined based on part or all of n PPDUs, the n PPDUs are PPDUs sent by the first device, n is greater than or equal to 1.
  • the second device may perform channel sensing based on the n PPDUs sent by the first device, so as to determine that some or all of the n PPDUs are Channel sensing information transmitted between the first device and the second device. Thereafter, the second device sends the second frame including the channel sensing information to the first device, so as to realize the process of channel sensing. Therefore, based on the n PPDUs sent by the first device, while meeting the communication requirements of the first device, the channel sensing process between different devices can also be implemented, which improves the communication efficiency of the WLAN system and saves overhead.
  • At least one PPDU among the n PPDUs is used for communication between the first device and the third device.
  • At least one PPDU of the n PPDUs used for communication between the first device and the third device includes: at least one PPDU of the n PPDUs is used for data between the first device and the third device At least one communication process such as interaction, signaling transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • perception for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination.
  • the channel sensing information between the first device and the second device is determined based on part or all of the n PPDUs. Since the second device is different from the third device and at least one PPDU among the n PPDUs is used for communication between the first device and the third device, during the determination of the channel awareness information between the first device and the second device, PPDUs for communication with other devices are multiplexed. Therefore, while satisfying the communication requirements of the first device and the third device, the channel sensing process between the first device and the second device can also be implemented, thereby improving the communication efficiency of the WLAN system and saving overhead.
  • the channel awareness information includes at least one of the following: channel state information (channel state information, CSI), CSI multiple input multiple output (multiple input multiple output, MIMO) parameters, the identifier of the PPDU corresponding to the CSI, and the address information of this part or all of the PPDU.
  • channel state information channel state information, CSI
  • CSI multiple input multiple output multiple input multiple output, MIMO
  • the channel awareness information between the first device and the second device contained in the second frame sent by the second device may specifically include at least one item of information above, so as to indicate the channel awareness information to the first device.
  • One or more types of information corresponding to the information may be specifically included in the second frame sent by the second device.
  • the CSI included in the channel awareness information may indicate a channel state of a channel between the first device and the second device, so that the first device can know the channel state.
  • the MIMO parameter of the CSI contained in the channel sensing information may indicate the MIMO parameter of the signal transmitted between the first device and the second device, so that the first device can determine the MIMO parameter corresponding to the signal.
  • the identifier of the PPDU corresponding to the CSI contained in the channel sensing information may indicate the PPDU corresponding to the CSI contained in the channel sensing information, so that the first device can specify the PPDU corresponding to the CSI.
  • the address information of some or all of the PPDUs contained in the channel awareness information may indicate that the channel awareness information is determined based on the PPDU corresponding to the address information, so that the first device clearly determines that the channel awareness information is determined based on the PPDU corresponding to the address information .
  • the number of PPDUs included in the part or all of the PPDUs is m, m is greater than or equal to 1, and m is less than or equal to n;
  • the m PPDUs contained in the part or all of the PPDUs are respectively located in the m PPDU sets in the n PPDUs, and the m PPDU sets include the adjacent first PPDU set and the second PPDU set, and the first PPDU
  • the change information between the CSI corresponding to the PPDUs in the set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the channel sensing information included in the second frame is determined based on m PPDUs, in other words, the second frame includes channel sensing information corresponding to the m PPDUs.
  • the m PPDUs are respectively located in the m PPDU sets in the n PPDU sets, and for the adjacent first PPDU set and the second PPDU set in the m PPDU sets, the CSI corresponding to the PPDU in the first PPDU set
  • the change information among the CSIs corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the channel sensing information included in the second frame corresponds to the PPDUs in the set of adjacent PPDUs with large CSI changes, so that the receiver of the second frame can clarify the difference between different channel sensing information included in the second frame.
  • the second device when m is less than n, the second device does not need to feed back channel sensing information corresponding to all PPDUs in the n PPDUs, so as to save overhead.
  • the m PPDUs contained in the part or all of the PPDUs are respectively included in the m PPDU sets in the n PPDUs, and the m PPDUs contained in the part or all of the PPDUs are respectively m in the n PPDUs The first PPDU of a PPDU set.
  • the m PPDUs contained in the part or all of the PPDUs are respectively included in the m PPDU sets in the n PPDUs, and the m PPDUs contained in the part or all of the PPDUs are respectively m in the n PPDUs The last PPDU of a PPDU set.
  • the change information between the CSI corresponding to the PPDUs in the first PPDU set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold, include:
  • the change information between the CSI corresponding to any PPDU in the first PPDU set and the CSI corresponding to any PPDU in the second PPDU set is greater than the first threshold
  • the change information between the CSI corresponding to one of the PPDUs in the first PPDU set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold.
  • the change information of CSI corresponding to at least two PPDUs included in the first PPDU set is smaller than the second threshold.
  • the channel sensing information included in the second frame is determined based on m PPDUs, in other words, the second frame includes channel sensing information corresponding to the m PPDUs.
  • the m PPDUs are respectively located in the m PPDU sets in the n PPDUs, and for any PPDU set (for example, the first PPDU set) in the m PPDU sets, the PPDU set contains at least two PPDUs , the change information of the CSI corresponding to the at least two PPDUs is smaller than the second threshold.
  • the channel sensing information contained in the second frame corresponds to a certain PPDU in the set of adjacent PPDUs whose CSI changes greatly.
  • the second device does not need to feed back channel awareness information corresponding to all PPDUs included in each of the m PPDU sets, so as to save overhead.
  • the relationship between the first threshold and the second threshold is not limited.
  • the first threshold may be equal to the second threshold, and the first threshold may be greater than the second threshold.
  • the CSI change information corresponding to two adjacent PPDUs is smaller than the second threshold.
  • the CSI change information corresponding to at least two PPDUs included in the second PPDU set is smaller than a second threshold.
  • the CSI change information corresponding to two adjacent PPDUs is smaller than the second threshold.
  • the CSI change information corresponding to at least two PPDUs contained in any PPDU set in the m PPDU sets is smaller than the second threshold.
  • the change information of CSI corresponding to two adjacent PPDUs is smaller than the second threshold.
  • the n PPDUs satisfy at least one of the following:
  • the receiving address (receiver address, RA) field of at least one PPDU in the n PPDUs is used to indicate the third device; or,
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device; or,
  • At least one PPDU in the n PPDUs is a PPDU sent by broadcast.
  • the receiving address field of at least one PPDU among the n PPDUs is used to indicate the third device, which may indicate that at least one PPDU among the n PPDUs is used for communication between the first device and the third device.
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate that the third device includes: at least one PPDU in the n PPDUs is used for data exchange and signaling between the first device and the third device At least one communication process such as transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device, which may indicate that at least one PPDU in the n PPDUs is used for communication between the first device and the second device.
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate that the second device includes: at least one PPDU in the n PPDUs is used for data exchange and signaling between the first device and the second device At least one communication process such as transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • At least one PPDU among the n PPDUs is a PPDU sent by broadcast, which may indicate that at least one PPDU among the n PPDUs is used for communication between the first device and at least two devices.
  • at least one PPDU of the n PPDUs is a PPDU sent by broadcast, including: at least one PPDU of the n PPDUs is used for data interaction, signaling transmission, and perception ( For example, at least one communication process such as perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • the channel sensing information between the first device and the second device is determined based on part or all of the n PPDUs. Since the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device, that is, it is used for communication between the first device and the third device (or the receiving address field of at least one PPDU in the n PPDUs is used for Indicate the second device, that is, for the first device to communicate with the second device; or at least one PPDU in the n PPDUs is a PPDU sent by broadcast, that is, for the broadcast communication of the first device), so that the first device In the process of determining the channel sensing information with the second device, the PPDU used for communication is multiplexed. Therefore, while meeting the communication requirements of the first device, a channel sensing process between the first device and the second device can also be implemented, thereby improving the communication efficiency of the WLAN system and saving overhead.
  • the first frame includes at least one of the following: information about the start time of channel sensing, information about the duration of channel sensing, and information about frequency bands for channel sensing, for Indicates whether to feed back the indication information of the CSI change, and the address information of the channel-aware PPDU.
  • the first frame sent by the first device for requesting channel sensing may include at least one item of information above, so as to indicate to the first device one or more information.
  • the information about the start time of channel sensing included in the first frame is used to indicate the start time of channel sensing, so that the second device can specify when to start performing channel sensing.
  • the duration information of channel sensing included in the first frame is used to indicate the duration of channel sensing, so that the second device can explicitly perform the duration of channel sensing.
  • the frequency band information of channel awareness contained in the first frame is used to indicate the frequency band of channel awareness, so that the second device can specify the frequency band of the PPDU used for channel awareness.
  • the indication information included in the first frame and used to indicate whether to feed back the change of the CSI is used to enable the second device to explicitly perform channel sensing duration.
  • the address information of the channel-aware PPDU included in the first frame is used to indicate the address information of the channel-aware PPDU, so that the second device specifies the address information of the channel-aware PPDU to avoid confusion.
  • the first device may also be configured to execute the processes involved in one or more of the following implementation manners.
  • the method before the first device receives the second frame from the second device, the method further includes: the first device receives the first frame from the second device A response frame of the first frame; wherein, the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or, the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • the second device may send a response frame of the first frame to the first device based on the first frame, so that the first device The response frame based on the first frame determines whether the first device agrees to channel sensing (or determines whether the first device receives the first frame).
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the method further includes: the first device receives a third frame from the second device, and the first The three frames include channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs.
  • the first device after the first device sends to the second device the first frame indicating the request for channel sensing, the first device receives from the second device a message containing information between the first device and the second device The third frame of the channel change information of the first device makes the first device clear the channel change between the first device and the second device.
  • the first device may determine an environmental change between the first device and the second device based on the channel change information contained in the third frame, for example, the movement of an object between the first device and the second device , gesture actions performed by the user between the first device and the second device, and the like.
  • the channel change information contained in the third frame indicates that there is no change in the channel between the first device and the second device (or when the change is less than a third threshold), and the first device does not need to receive the second frame, in other words, The second device does not need to send the second frame.
  • channel change information and channel sensing information may be carried in the same frame, for example, both channel change information and channel sensing information are carried in the second frame, or both channel change information and channel sensing information are carried in the third frame .
  • the method before the first device receives the third frame from the second device, the method further includes: the first device sends a first trigger frame to the second device,
  • the first trigger frame includes resource unit (resource unit, RU) information bearing channel change information; wherein, the RU information bearing channel change information indicates the RU corresponding to the second device; or, the RU information bearing channel change information Indicates RUs used for random access.
  • resource unit resource unit, RU
  • the third frame is carried by an RU based on contention-based channel access.
  • the first device can determine the RU carrying the third frame based on various methods, for example, the first device (and/or the second device) can determine based on the indication of the first trigger frame The RU carrying the third frame, so that the first device and the second device send and receive the third frame on the specified RU; as another example, the first device (and/or the second device) may use the The RU serves as the RU that carries the third frame, so that the second device can decide when to send the third frame (for example, only when the change indicated by the channel change information) while saving overhead without an instruction from the first device The third frame is sent only when it is larger), which further saves overhead.
  • the third frame further includes at least one of the following: location change information of the second device; or address information of some or all of the n PPDUs.
  • the third frame containing the channel change information between the first device and the second device may also include at least one item of information above, so that the first device based on the channel change information sent by the second device
  • the three frames specify the relevant information of the channel change.
  • the position change information of the second device contained in the third frame is used to indicate that the second device location change, so that the first device can determine the location change of the second device, and based on the location change, further clarify whether the channel between the first device and the second device has changed and the reason for the channel change.
  • the address information of some or all of the PPDUs in the n PPDUs included in the third frame indicates the address information of the PPDUs corresponding to the channel change information, so that the second device can clarify the address information of the PPDUs corresponding to the channel change information, to avoid confusion.
  • the method before the first device receives the second frame from the second device, the method further includes: the first device sends a second trigger frame to the second device,
  • the second trigger frame includes RU information bearing channel awareness information; wherein, the RU information bearing channel awareness information indicates the RU corresponding to the second device; or, the RU information bearing channel awareness information indicates the RU information used for contention access Ru.
  • the second frame is carried by an RU based on contention-based channel access.
  • the first device can determine the RU carrying the second frame based on various methods, for example, the first device (and/or the second device) can determine based on the indication of the second trigger frame The RU carrying the second frame, so that the first device and the second device send and receive the second frame on the specified RU; as another example, the first device (and/or the second device) may use the random access
  • the RU serves as the RU that carries the second frame. Therefore, while saving overhead without an instruction from the first device, the second device can also determine when to send the second frame (for example, only when the data corresponding to the channel sensing information The second frame is sent only when the amount reaches the threshold), which further saves overhead.
  • the method before the first device receives the second frame from the second device, the method further includes: the first device sends a fourth frame to the second device, the The fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the change of the transmission parameter of the first device may also cause the channel between the first device and the second device to change
  • the information contained in the fourth frame is used to indicate the parameter change, so that the second device
  • the device determines the parameter change of the first device, and further determines whether the channel between the first device and the second device changes and the reason for the channel change based on the parameter change.
  • the method further includes: the first device sends a fourth frame to the second device, the fourth frame including the transmission of the first device parameter change information.
  • the change information of the transmission parameter of the first device includes at least one of the above-mentioned first field, second field, third field, and fourth field.
  • the first device does not change the transmission parameters during the process of sending n PPDUs.
  • the second device may also be configured to execute the processes involved in one or more of the following implementation manners.
  • the method before the second device sends the second frame to the first device, the method further includes: the second device sends a response of the first frame to the first device frame; wherein, the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or, the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • the second device may send a response frame of the first frame to the first device based on the first frame, so that the first The device determines whether the first device agrees to channel sensing (or determines whether the first device receives the first frame) based on the response frame of the first frame.
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the method further includes: the second device sends a third frame to the second device, the The third frame includes channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs.
  • the second device after the second device receives the first frame from the first device indicating the request for channel sensing, the second device sends to the first device a message containing the information between the first device and the second device.
  • the third frame of channel change information enables the first device to clarify the channel change between the first device and the second device.
  • the channel change information included in the third frame indicates that there is no change in the channel between the first device and the second device (or when the change is less than a third threshold), and the first device may not need to receive the second frame, in other words , the second device may not need to send the second frame.
  • channel change information and channel sensing information may be carried in the same frame, for example, both channel change information and channel sensing information are carried in the second frame, or both channel change information and channel sensing information are carried in the third frame .
  • the method before the second device sends the third frame to the second device, the method further includes: the second device receives a first trigger frame from the first device,
  • the first trigger frame includes resource unit RU information bearing channel change information; wherein, the RU information bearing channel change information indicates the RU corresponding to the second device; or, the RU information bearing channel change information indicates the RU information used for random access Incoming RUs.
  • the third frame is carried by the RU based on contention-based channel access.
  • the first device can determine the RU carrying the third frame based on various methods, for example, the first device (and/or the second device) can determine based on the indication of the first trigger frame The RU carrying the third frame, so that the first device and the second device send and receive the third frame on the specified RU; as another example, the first device (and/or the second device) may use the The RU serves as the RU that carries the third frame, so that the second device can decide when to send the third frame (for example, only when the change indicated by the channel change information) while saving overhead without an instruction from the first device The third frame is sent only when it is larger), which further saves overhead.
  • the third frame further includes at least one of the following: location change information of the second device; or address information of some or all of the n PPDUs.
  • the third frame containing the channel change information between the first device and the second device may also include at least one item of information above, so that the first device based on the channel change information sent by the second device
  • the three frames specify the relevant information of the channel change.
  • the position change information of the second device contained in the third frame is used to indicate that the second device location change, so that the first device can determine the location change of the second device, and based on the location change, further clarify whether the channel between the first device and the second device has changed and the reason for the channel change.
  • the address information of some or all of the PPDUs in the n PPDUs included in the third frame indicates the address information of the PPDUs corresponding to the channel change information, so that the second device can clarify the address information of the PPDUs corresponding to the channel change information, to avoid confusion.
  • the method before the second device sends the second frame to the first device, the method further includes: the second device receives a second trigger frame from the first device, The second trigger frame includes RU information bearing channel awareness information; wherein, the RU information bearing channel awareness information indicates the RU corresponding to the second device; or, the RU information bearing channel awareness information indicates the RU information used for contention access Ru.
  • the second frame is carried by an RU based on contention-based channel access.
  • the first device can determine the RU carrying the second frame based on various methods, for example, the first device (and/or the second device) can determine based on the indication of the second trigger frame
  • the RU carrying the second frame so that the first device and the second device transmit and receive the second frame on the specified RU; as another example, the first device (and/or the second device) may use the random access
  • the RU serves as the RU that carries the second frame, so that the second device can decide when to send the second frame (for example, only when the data corresponding to the channel sensing information
  • the second frame is sent only when the amount reaches the threshold), which further saves overhead.
  • the method before the second device sends the second frame to the first device, the method further includes: the second device receives a fourth frame from the first device, the The fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the change of the transmission parameter of the first device may also cause the channel between the first device and the second device to change
  • the information contained in the fourth frame is used to indicate the parameter change, so that the second device
  • the device determines the parameter change of the first device, and further determines whether the channel between the first device and the second device changes and the reason for the channel change based on the parameter change.
  • the method further includes: the first device sends a fourth frame to the second device, the fourth frame including the transmission of the first device parameter change information.
  • the change information of the transmission parameter of the first device includes at least one of the above-mentioned first field, second field, third field, and fourth field.
  • the first device does not change the transmission parameters during the process of sending n PPDUs.
  • a third aspect of the present application provides an apparatus, which is applied to a WLAN system.
  • the apparatus may be a WLAN device, or the apparatus may be some components of the WLAN device.
  • the WLAN device may include an STA or an AP, and some components in the WLAN device may include a processor, a chip, or a chip system, and the like.
  • description is made by taking the first apparatus as a WLAN device as an example.
  • a sending unit and a receiving unit are included;
  • the sending unit is configured to send a first frame to the second device, where the first frame is used to request channel sensing;
  • the receiving unit is configured to receive a second frame from the second device, where the second frame includes channel sensing information between the first device and the second device, and the channel sensing information is based on part or part of n PPDUs Determined by all PPDUs, the n PPDUs are PPDUs sent by the first device, and n is greater than or equal to 1.
  • a fourth aspect of the present application provides an apparatus, which is applied to a WLAN system.
  • the apparatus may be a WLAN device, or the apparatus may be some components of the WLAN device.
  • the WLAN device may include an STA or an AP, and some components in the WLAN device may include a processor, a chip, or a chip system, and the like.
  • description is made by taking the second device as a WLAN device as an example.
  • a sending unit and a receiving unit are included;
  • the receiving unit is configured to receive a first frame from a first device, where the first frame is used to request channel sensing;
  • the sending unit is configured to send a second frame to the first device, where the second frame includes channel sensing information between the first device and the second device, and the channel sensing information is based on part or all of the n PPDUs As determined by the PPDU, the n PPDUs are PPDUs sent by the first device, and n is greater than or equal to 1.
  • At least one PPDU among the n PPDUs is used for communication between the first device and the third device.
  • the channel awareness information includes at least one of the following:
  • Channel state information CSI multiple-input multiple-output MIMO parameters of CSI, identification of PPDU corresponding to CSI, address information of this part or all of PPDU.
  • the number of PPDUs included in the part or all of the PPDUs is m, m is greater than or equal to 1, and m is less than or equal to n;
  • the m PPDUs contained in the part or all of the PPDUs are respectively located in the m PPDU sets in the n PPDUs, and the m PPDU sets include the adjacent first PPDU set and the second PPDU set, and the first PPDU
  • the change information between the CSI corresponding to the PPDUs in the set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the change information between the CSI corresponding to the PPDUs in the first PPDU set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold, include:
  • the change information between the CSI corresponding to any PPDU in the first PPDU set and the CSI corresponding to any PPDU in the second PPDU set is greater than the first threshold
  • the change information between the CSI corresponding to one of the PPDUs in the first PPDU set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold.
  • the CSI change information corresponding to at least two PPDUs included in the first PPDU set is smaller than the second threshold.
  • the n PPDUs satisfy at least one of the following:
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device; or,
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device; or,
  • At least one PPDU in the n PPDUs is a PPDU sent by broadcast.
  • the first frame includes at least one of the following:
  • the starting time information of channel sensing the duration information of channel sensing, the frequency band information of channel sensing, the indication information for indicating whether to feed back the change of CSI, and the address information of PPDU of channel sensing.
  • the first device may also be configured to perform the communication process involved in one or more of the following implementation manners.
  • the receiving unit is further configured to receive a response frame of the first frame from the second device; wherein,
  • the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or,
  • the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the receiving unit is further configured to receive a third frame from the second device, where the third frame includes channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs .
  • the sending unit is further configured to send a first trigger frame to the second device, where the first trigger frame includes resource unit RU information bearing channel change information; wherein,
  • the RU information bearing channel change information indicates the RU corresponding to the second device.
  • the RU information bearing channel change information indicates the RU used for random access.
  • the third frame is borne by the RU based on contention-based channel access.
  • the third frame further includes at least one of the following:
  • the sending unit is further used for the second device to send a second trigger frame, where the second trigger frame includes RU information bearing channel awareness information;
  • the RU information bearing the channel sensing information indicates the RU corresponding to the second device; or,
  • the RU information bearing the channel awareness information indicates the RU used for competing for access.
  • the second frame is carried by an RU that accesses a contention-based channel.
  • the sending unit is further configured to send a fourth frame to the second device, where the fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the second device may also be configured to perform the communication process involved in one or more of the following implementation manners.
  • the sending unit is further configured to send a response frame of the first frame to the first device;
  • the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or,
  • the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the sending unit is further configured to send a third frame to the second device, where the third frame includes channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs.
  • the receiving unit is further configured to receive a first trigger frame from the first device, where the first trigger frame includes resource unit RU information bearing channel change information; wherein,
  • the RU information bearing channel change information indicates the RU corresponding to the second device.
  • the RU information bearing channel change information indicates the RU used for random access.
  • the third frame is carried by the RU based on contention-based channel access.
  • the third frame further includes at least one of the following:
  • the receiving unit is further configured to receive a second trigger frame from the first device, where the second trigger frame includes RU information carrying channel awareness information; wherein,
  • the RU information bearing the channel sensing information indicates the RU corresponding to the second device; or,
  • the RU information bearing the channel awareness information indicates the RU used for competing for access.
  • the second frame is carried by an RU based on contention-based channel access.
  • the receiving unit is further configured to receive a fourth frame from the first device, where the fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the fifth aspect of the embodiment of the present application provides an apparatus, including at least one processor, the at least one processor is coupled to a memory; the memory is used to store programs or instructions; the at least one processor is used to execute the programs or instructions, to Make the device implement the method described in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the sixth aspect of the embodiment of the present application provides a device, including at least one processor, the at least one processor is coupled with a memory; the memory is used to store programs or instructions; the at least one processor is used to execute the programs or instructions, to Make the device implement the method described in the foregoing second aspect or any possible implementation manner of the second aspect.
  • the seventh aspect of the embodiment of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes any one of the above-mentioned first aspect or the first aspect.
  • the processor executes the method described in the second aspect or any possible implementation manner of the second aspect.
  • the eighth aspect of the embodiment of the present application provides a computer program product (or computer program) storing one or more computers.
  • the processor executes the above-mentioned first aspect or the first The method in any possible implementation manner of the second aspect, or, the processor executes the method described in the second aspect or any possible implementation manner of the second aspect.
  • the ninth aspect of the embodiment of the present application provides a system-on-a-chip, where the system-on-a-chip includes at least one processor, configured to support the device in realizing the functions involved in the above-mentioned first aspect or any possible implementation manner of the first aspect; or , used to support the device to implement the functions involved in the second aspect or any possible implementation manner of the second aspect.
  • system-on-a-chip may further include a memory for storing necessary program instructions and data of the device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the tenth aspect of the embodiment of the present application provides a communication system, the communication system includes the device of the third aspect and the device of the fourth aspect, and/or, the communication system includes the device of the fifth aspect and the device of the sixth aspect device.
  • the technical effect brought about by any one of the design methods in the fifth aspect to the tenth aspect can refer to the technical effect brought about by the different implementation methods in the above-mentioned first aspect or the second aspect, and details are not repeated here.
  • the second device can perform channel sensing based on the n PPDUs sent by the first device to determine a part or part of the n PPDUs. Channel awareness information of all PPDUs transmitted between the first device and the second device. Thereafter, the first device receives the second frame including the channel sensing information from the second device, so as to realize the process of channel sensing. Therefore, based on the n PPDUs sent by the first device, while meeting the communication requirements of the first device, the channel sensing process between different devices can also be implemented, which improves the communication efficiency of the WLAN system and saves overhead.
  • Fig. 1 is a schematic diagram of the communication system applied in the present application
  • Figure 2a is a schematic diagram of the AP provided by the present application.
  • FIG. 2b is a schematic diagram of the STA provided by the present application.
  • Fig. 3a is a schematic diagram of the communication method involved in the present application.
  • Fig. 3b is another schematic diagram of the communication method involved in the present application.
  • Fig. 4a is a schematic diagram of the communication method involved in the present application.
  • Fig. 4b is another schematic diagram of the communication method involved in the present application.
  • Fig. 5a is a schematic diagram of the communication method involved in the present application.
  • Fig. 5b is another schematic diagram of the communication method involved in the present application.
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 7b is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 9a is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 9b is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 10a is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 10b is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • Fig. 11a is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 11b is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 12 is another schematic diagram of a wireless frame provided by an embodiment of the present application.
  • Fig. 13 is another schematic diagram of the communication system applied in the present application.
  • FIG. 14 is another schematic diagram of the communication method provided by the embodiment of the present application.
  • FIG. 15 is another schematic diagram of the communication method provided by the embodiment of the present application.
  • FIG. 16 is another schematic diagram of the communication method provided by the embodiment of the present application.
  • FIG. 17 is another schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 18 is a schematic diagram of the device provided by the embodiment of the present application.
  • FIG. 19 is another schematic diagram of the device provided by the embodiment of the present application.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • words such as “first” and “second” do not limit the number and order of execution, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or description. Any embodiment or design described in this application as “exemplary”, “for example” or “such as” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “for example,” or “such as” is intended to present related concepts in a specific manner.
  • system architecture of the method provided in the embodiment of the present application will be described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in this application can be applied to various communication systems, for example, systems using the 802.11 standard.
  • the 802.11 standard includes but is not limited to: the 802.11be standard or the next-generation 802.11 standard.
  • the applicable scenario of the technical solution of the present application includes communication between an AP and one or more STAs, or communication between APs, or communication between STAs.
  • the term “communication” may also be described as "data transmission", "information transmission” or "transmission”.
  • WLAN has gone through multiple generations so far, such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, and 802.11be, which is currently being discussed.
  • the 802.11n standard can be called high throughput (high throughput, HT)
  • the 802.11ac standard can be called very high throughput (very high throughput, VHT)
  • the 802.11ax (Wi-Fi 6) can be called high efficient (high efficient).
  • HE high throughput
  • Wi-Fi 7 can be called extremely high throughput (EHT)
  • Non-HT extremely high throughput
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include one or more APs (such as AP100 in FIG. 1 ) and one or more STAs (such as STA200 and STA300 in FIG. 1 ).
  • AP and STA support WLAN communication protocol, which may include 802.11be (or called Wi-Fi 7, extremely high throughput (EHT) protocol), and may also include 802.11ax, 802.11ac, 802.11 bf and other agreements.
  • the communication protocol may also include the next-generation protocol of 802.11be and the like.
  • the device implementing the method of the present application may be an AP or STA in the WLAN, or a chip or a processing system installed in the AP or STA.
  • the access point involved in this application is a device with a wireless communication function, supports communication using a wireless local area network (wireless local area networks, WLAN) protocol, and has the ability to communicate with other devices in the WLAN network.
  • a device (such as a station or other access point) has the capability to communicate and, of course, may also have the capability to communicate with other devices.
  • an access point In a WLAN system, an access point may be called an access point station (access point station, AP STA).
  • the device with wireless communication function can be a complete device, or it can be a chip or a processing system installed in the complete device, and the device with these chips or processing systems can be implemented under the control of the chip or processing system.
  • the AP in this embodiment of the present application is a device that provides services for STAs and can support 802.11 series protocols.
  • APs can be communication entities such as communication servers, routers, switches, and bridges; APs can include various forms of macro base stations, micro base stations, relay stations, etc.
  • APs can also be chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • the station involved in this application is a device with a wireless communication function, supports communication using the WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network .
  • a station may be called a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows users to communicate with AP and then communicate with WLAN.
  • the device with wireless communication function can be a complete device, or a chip or processing system installed in the complete device, etc. Devices equipped with these chips or processing systems can implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA can be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an ultra-mobile personal computer (Ultra-mobile personal computer, UMPC), a handheld computer, a netbook, a personal digital assistant (personal digital assistant, PDA), a mobile phone, etc.
  • User equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or vehicle-mounted devices in the Internet of Vehicles, or entertainment equipment, game equipment or systems, global positioning system equipment, etc., STA can also provide chips and processing devices in these terminals system.
  • the WLAN system can provide high-speed and low-latency transmission. With the continuous evolution of WLAN application scenarios, the WLAN system will be applied to more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry or the Banking industry, used in corporate offices, stadium pavilions, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • scenarios or industries such as the Internet of Things industry, the Internet of Vehicles industry or the Banking industry, used in corporate offices, stadium pavilions, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices supporting WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) instrument, display screen, TV, stereo, refrigerator, washing machine, etc.), nodes in the Internet of Things, entertainment terminals (such as augmented reality (augmented reality, AR), virtual reality (virtual reality, VR) and other wearable devices), Smart devices in smart office (such as printers, projectors, loudspeakers, audio, etc.), Internet of Vehicles devices in Internet of Vehicles, infrastructure in daily life scenes (such as vending machines, self-service navigation consoles in supermarkets, Self-service cashier equipment, self-service ordering machines, etc.), and equipment for large sports and music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiment of the present application, and are only illustrative descriptions here.
  • the 802.11 standard focuses on the physical (physical layer, PHY) layer and the medium access control (medium access control, MAC) layer part.
  • FIG. 2a is a schematic structural diagram of an access point provided in an embodiment of the present application.
  • the AP can be multi-antenna/multi-radio, or single-antenna/single-radio.
  • the antenna or the radio frequency part of the AP may be separated from the main part of the AP to form a remote layout structure.
  • the AP may include a physical layer processing circuit and a medium access control processing circuit, the physical layer processing circuit may be used for processing physical layer signals, and the MAC layer processing circuit may be used for processing MAC layer signals.
  • FIG. 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • Figure 2b shows a schematic diagram of the STA structure of a single antenna/radio frequency.
  • the STA can also have multiple antennas/multi-radio frequencies, and can be a device with more than two antennas.
  • the antenna/radio frequency is used to send/receive data packets. .
  • the antenna or radio frequency part of the STA may be separated from the main part of the STA, and form a remote layout structure.
  • the STA may include a PHY processing circuit and a MAC processing circuit
  • the physical layer processing circuit may be used to process physical layer signals
  • the MAC layer processing circuit may be used to process MAC layer signals.
  • the channel detection process in 802.11ac/802.11ax collects corresponding CSI information by sending a null data physical layer protocol data unit (NDP) frame, and then collects the corresponding CSI information from the CSI information Extract parameters related to environmental changes for perception.
  • NDP null data physical layer protocol data unit
  • 802.11ac/802.11ax only explicit channel detection is reserved, that is, the beamforming initiator initiates channel detection, sends NDP, and the beamforming responder receives NDP and performs channel estimation.
  • NDP that is, empty data PPDU
  • SIFS short interframe space
  • the feedback for a single Beamformee and multiple Beamformees will be different, and the VHT communication scenario will be used as an example below to illustrate with reference to Fig. 3a and Fig. 3b.
  • the implementation process may be as shown in Figure 3a.
  • the Beamformer sends the VHT NDP Announcement and SIFS.
  • the Beamformer sends the NDP.
  • a single Beamformee feeds back a very high throughput compressed beamforming (VHT Compressed Beamforming) matrix to the Beamformer.
  • VHT Compressed Beamforming very high throughput compressed beamforming
  • the implementation process may be as shown in FIG. 3b.
  • Fig. 3b it is taken that multiple users include three users as an example.
  • the first user (denoted as Beamformee 1) feeds back a very high throughput compressed beamforming (VHT Compressed Beamforming) matrix after SIFS, but the feedback of other Beamformees requires Beamformer to send beamforming polling (Beamforming Poll) frames for polling , it can be sent.
  • VHT Compressed Beamforming very high throughput compressed beamforming
  • Beamforming Poll beamforming polling
  • 802.11ax introduces uplink multiple user (uplink multiple user, UL MU) uplink multi-user transmission. If polling is used for feedback as in 802.11ac, the delay will be large, and the compression matrix of the feedback Timeliness is very low. Therefore, for multi-user MIMO in 802.11ax, a feedback method based on beam failure recovery response trigger (BFRP Trigger) beam-forming report polling trigger frame is proposed.
  • BFRP Trigger beam failure recovery response trigger
  • the feedback for a single Beamformee and multiple Beamformees will be different, and the HE communication scenario will be used as an example below to illustrate with reference to FIG. 4a and FIG. 4b.
  • the implementation process may be as shown in Figure 4a.
  • the Beamformer sends the HE NDP Announcement and SIFS.
  • the Beamformer sends the HE sounding NDP.
  • a single Beamformee feeds back an efficient compressed beamforming (HE Compressed Beamforming) matrix or a channel quality indicator (CQI) to the Beamformer.
  • HE Compressed Beamforming HE Compressed Beamforming
  • CQI channel quality indicator
  • the implementation process may be as shown in FIG. 4b.
  • multiple users include n (n is greater than 2) users as an example.
  • the Beamformer sends the HE sounding NDP.
  • Multiple users including HE Beamformee 1, HE Beamformee 2...HE Beamformee n
  • BFRP Trigger BFRP Trigger
  • feedback measurement results on one or more sequences including HE Compressed Beamforming/CQI 1, HE Compressed Beamforming/CQI 2...HE Compressed Beamforming/CQI n).
  • the function of NDP is: the receiver of the wireless signal can perform channel measurement based on the EHT-LTF field, so as to further perform perception according to the measurement information.
  • WLAN communication technology due to the widespread deployment of WLAN devices and the increase in sensing (Sensing) requirements, it is currently a research hotspot to use wireless signals transmitted by widely available WLAN devices for sensing.
  • the signals sent by WLAN devices are usually received after being reflected, diffracted, and scattered by various obstacles. This phenomenon makes the actually received signals often superimposed by multiple signals, which brings interference to communication. But from another point of view, this also brings convenience to the perception of the physical environment it passes through through wireless signals.
  • By analyzing the wireless signal affected by various obstacles it is possible to infer or perceive the environment around the WLAN device, thus deriving the WLAN Sensing technology.
  • Sensing initiator a station that initiates a sensing process (Sensing initiator: a STA that initiates a WLAN sensing procedure);
  • Sensing responder a station participating in a sensing process initiated by a sensing initiator (Sensing responder: a STA that participates in a WLAN sensing procedure initiated by a sensing initiator);
  • Sensing transmitter a station that sends PPDUs for sensing measurements in the sensing process
  • Sensing transmitter a STA that transmits PPDUs used for sensing measurements in a sensing procedure
  • Sensing receiver a station that receives PPDUs sent by the sensing transmitter and performs sensing measurements during the sensing process (Sensing receiver: a STA that receives PPDUs sent by a sensing transmitter and performs sensing measurements in a sensing procedure).
  • the perception process is mainly divided into five categories:
  • Sensing session setup Indicates the establishment of a sensing session between sites. Some related parameters can be interacted here (specifically to be determined).
  • a perception session is an agreement between two sites reached by a perception initiator and a perception responder.
  • a sensing initiator can maintain sensing sessions with multiple sensing responders (but they still need to be established one by one, such as through OFDMA, MU-MIMO, etc.).
  • Measurement setup It is used to exchange and unify some parameters and attributes that need to be used in the sensing process, such as the roles of the sensing initiator and the responding end (such as sensing sending end, sensing receiving end) terminal), measurement feedback type and other parameters.
  • Measurement instance Perception measurement occurs in the perception measurement entity, and multiple perception response terminals are allowed to join in one perception measurement entity.
  • Measurement setup termination (Measurement setup termination): The measurement setup termination is used to finally correspond to the Measurement setup process corresponding to a certain sensing responder, and the responder is no longer bound to the corresponding measurement setup, but may still be in the sensing session.
  • Sensing session termination Indicates the termination of the sensing session, and the station no longer participates in processes such as sensing measurement.
  • FIG. 5a a schematic diagram of 16 links in the perception process is given, and these 16 links can clearly indicate the flow of the existing perception process.
  • the specific process is as follows:
  • Aware session that is, the process of establishing a session.
  • Link 2 that is, the measurement setup of the aforementioned link B, is used to configure relevant parameters for the site, that is, the perception measurement setup.
  • Link 3 that is, the aforementioned link C measurement entity (Measurement instance), measurement (Measurement) and feedback (reporting).
  • links 1, 2, and 3 are to add the site to the perception session and start measurement and feedback.
  • Link 4 namely measurement entity (Measurement instance), measurement (Measurement) and feedback (reporting).
  • Links 5 and 6 are similar to the previous links 2 and 3.
  • the function is to configure Measurement setup 2 for the site and perform measurement and feedback.
  • AID unassociated association identification
  • the four types of links shown in Figure 5b belong to one-to-one establishment links.
  • a perception session establishment link corresponds to a perception session establishment.
  • Initiator and a perception responder the sensing initiator can also establish this process with multiple stations at the same time, such as using OFDMA or MU-MIMO, etc., but this belongs to the establishment of multiple sensing sessions at the same time, and cannot be counted as one sensing session.
  • one-to-many situations can occur in a measurement entity, such as one-to-many declaration and triggering.
  • the measurement entity may include a trigger-based sensing measurement entity (TB sensing measurement instance) and a non-trigger-based sensing measurement entity (Non-TB sensing measurement instance).
  • the trigger-based perception measurement entity includes the following phases: polling phase, NDP statement detection phase (NDPA sounding), trigger frame detection phase (TF sounding), report phase, etc.
  • the function of the inquiry phase is to confirm that the inquired site can participate in the measurement and feedback in this measurement entity.
  • the sensing initiator can use NDPA (NDP Announcement) to inform the corresponding station that it will send an NDP immediately after it, where NDPA is used to inform the station that needs to listen to the NDP and other Configuration information, the corresponding station can measure the NDP sent later to obtain channel information.
  • NDPA NDP Announcement
  • the sensing initiator may trigger the peer end to transmit NDP through the trigger frame, and measure the transmitted NDP to perform sensing.
  • the above sensing measurement process needs to establish a special sensing session for sensing, and does not provide a way of using non-sensing PPDUs for sensing.
  • the present application provides a communication method and device, which are used to implement a channel sensing process between different devices while meeting communication requirements, thereby improving communication efficiency of a WLAN system and saving overhead.
  • the communication method provided by this application will be further introduced below with reference to the accompanying drawings.
  • FIG. 6 is a schematic diagram of the communication method provided by this application, and the method includes the following steps.
  • the first device sends a first frame to the second device.
  • the first device sends the first frame in step S100, and correspondingly, the second device receives the first frame in step S100.
  • the first frame is used to request channel sensing.
  • the first device and/or the second device may be a WLAN device, or the first device and/or the second device may be some components of the WLAN device.
  • the WLAN device may include an STA or an AP, and some components in the WLAN device may include a processor, a chip, or a chip system, and the like.
  • the first device may be an AP (that is, an AP STA), and the second device may be an STA (that is, a non-AP STA).
  • AP that is, an AP STA
  • STA that is, a non-AP STA
  • the first device may be an AP (that is, an AP STA), and the second device may be an AP (that is, an AP STA).
  • the first device may be an STA (ie, non-AP STA), and the second device may be an AP (ie, AP STA).
  • STA ie, non-AP STA
  • AP ie, AP STA
  • the first device may be an STA (ie, non-AP STA)
  • the second device may be an STA (ie, non-AP STA).
  • the first device may serve as at least one of a sensing initiator, a sensing response end, a sensing sending end, and a sensing receiving end in the sensing process.
  • the second device may serve as at least one of a sensing initiator, a sensing response end, a sensing sending end, and a sensing receiving end in the sensing process.
  • the first device may serve as a sensing initiator and a sensing sender
  • the second device may serve as a sensing responder and a sensing receiver.
  • the first device is the sensing responder and the sensing sender
  • the second device may serve as the sensing responder and the sensing receiver
  • the sensing initiator is another device, such as the fourth device.
  • the STA sends a communication PPDU, and at the same time facilitates the AP's perception.
  • the STA is the sensing initiator, and the AP is the sensing receiver.
  • the second device sends a second frame to the first device.
  • the second device sends the second frame in step S200, and correspondingly, the first device receives the second frame in step S200.
  • the second frame includes channel sensing information between the first device and the second device, and the channel sensing information is determined based on some or all of the n (physical protocol data unit, PPDU) PPDUs, the n
  • PPDU physical protocol data unit
  • the PPDU involved in this application may include a single user-physical layer protocol data unit (single user physical protocol data unit, SU-PPDU), a multi-user-physical layer protocol data unit (multiple user physical protocol data unit, MU-PPDU), trigger based physical layer protocol data unit (trigger based physical layer protocol data unit, TB PPDU) or at least one of other PPDUs.
  • the channel perception information between the first device and the second device may also be expressed as, the (surrounding/physical) environment perception information between the first device and the second device may also be expressed as,
  • the perception information between the first device and the second device may also be expressed as the perception measurement information between the first device and the second device, or may be expressed as the information between the first device and the second device. sensory feedback.
  • the n PPDUs are PPDUs sent by the first device, including: the n PPDUs are PPDUs sent by the first device to other devices.
  • the other device may include the second device and/or a device different from the second device (such as the third device mentioned later), which is not limited here.
  • the number of PPDUs included in the part or all of the PPDUs is m, where m is greater than or equal to 1, and m is less than or equal to n.
  • the m PPDUs contained in the part or all of the PPDUs are respectively located in the m PPDU sets in the n PPDUs, and the m PPDU sets include the adjacent first PPDU set and the second PPDU set, and the first PPDU
  • the change information between the CSI corresponding to the PPDUs in the set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the change information between the CSI corresponding to the PPDUs in the first PPDU set and the CSI corresponding to the PPDUs in the second PPDU set is greater than or equal to a first threshold.
  • the channel sensing information included in the second frame is determined based on m PPDUs, in other words, the second frame includes channel sensing information corresponding to the m PPDUs.
  • the m PPDUs are respectively located in the m PPDU sets in the n PPDU sets, and for the adjacent first PPDU set and the second PPDU set in the m PPDU sets, the CSI corresponding to the PPDU in the first PPDU set
  • the change information among the CSIs corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the channel sensing information included in the second frame corresponds to the PPDUs in the set of adjacent PPDUs with large CSI changes, so that the receiver of the second frame can clarify the difference between different channel sensing information included in the second frame.
  • the second device when m is less than n, the second device does not need to feed back channel sensing information corresponding to all PPDUs in the n PPDUs, so as to save overhead.
  • the value of "m” is less than or equal to "k”.
  • the maximum number of PPDUs (denoted as "k") corresponding to the channel awareness information included in the second frame can be limited, where the value of "k” can be preconfigured or preconfigured stored in the second device.
  • the value of "k” represents the maximum number of PPDUs corresponding to the channel sensing information contained in the second frame (allowed to be sent by the second device). In other words, the number of PPDUs corresponding to the channel sensing information contained in the second frame sent by the second device in step S200 is less than or equal to k.
  • the second device determines that among the n PPDUs, the number of PPDU sets satisfying that the change of the CSI corresponding to the PPDUs included in the adjacent PPDU sets is greater than the first threshold is recorded as "x".
  • the second frame sent by the second device in step S200 includes the channel perception information corresponding to the x PPDUs; when x is greater than k, the second frame sent by the second device in step S200 The second frame includes channel perception information corresponding to k PPDUs in the x PPDUs.
  • the channel sensing information corresponding to the k PPDUs in the x PPDUs includes: the channel sensing information corresponding to the first k PPDUs in the x PPDUs, or the channel sensing information corresponding to the last k PPDUs in the x PPDUs Channel awareness information, or channel awareness information corresponding to any k PPDUs in the x PPDUs.
  • n is 9 as an example for illustration, that is, the first device sends 9 PPDUs, which are respectively recorded as PPDU1, PPDU2, PPDU3, PPDU4, PPDU5, PPDU6, PPDU7, PPDU8, and PPDU9.
  • the different PPDUs involved in the embodiment of the present application can be distinguished by numbers, sequence numbers, sequence numbers (Sequence Number) or other methods.
  • the implementation manner of adding a number after the PPDU that is, PPDU x, where the value of x includes any value from 1 to 9) is used as an example for illustration.
  • the second frame sent by the second device in step S200 may include channel awareness information corresponding to part or all of the 9 PPDUs, which will be described in detail below with reference to some implementation examples.
  • the change information of CSI between any two adjacent PPDUs of these 9 PPDUs is greater than the first threshold, that is, PPDU1 and PPDU2 (and PPDU2 and PPDU3, PPDU3 and PPDU4, PPDU4 and PPDU5 , PPDU5 and PPDU6, PPDU6 and PPDU7, PPDU7 and PPDU8, PPDU8 and PPDU9)
  • the CSI change information between PPDU5 and PPDU6, PPDU6 and PPDU7, PPDU7 and PPDU8, PPDU8 and PPDU9 is greater than the first threshold
  • the second frame fed back by the second device in step S200 includes the channel of these 9 PPDUs perception information.
  • m is equal to 9.
  • the second device determines that among the 9 PPDUs, the change of the CSI corresponding to the PPDU contained in the adjacent PPDU set is greater than the first threshold.
  • the value of the quantity x is 9, however, the second frame fed back by the second device in step S200 includes channel sensing information of 3 PPDUs instead of 9 PPDUs.
  • 3 PPDUs can be the first three PPDUs in “9 PPDUs”, or "3 PPDUs” can be the last three PPDUs in “9 PPDUs”, or "3 PPDUs” can be It is any three PPDUs in the "9 PPDUs", which is not limited here.
  • the change information of CSI between any two adjacent PPDUs among the nine PPDUs is greater than the first threshold, for example, only PPDU1 and PPDU2 (and PPDU3 and PPDU4, PPDU6 and The change information of CSI between PPDU7) is greater than the first threshold, and the change information of CSI between PPDU2 and PPDU3 (and PPDU4 and PPDU5, PPDU5 and PPDU6, PPDU7 and PPDU8, PPDU8 and PPDU9) is less than the first threshold, then the first The second frame fed back by the second device in step S200 includes channel sensing information corresponding to m PPDU sets whose change is greater than the first threshold among the 9 PPDUs.
  • m is equal to 4
  • the set of m PPDUs can be expressed as:
  • the first PPDU set including PPDU1;
  • the second PPDU set including PPDU2 and PPDU3;
  • the third PPDU set including PPDU4, PPDU5 and PPDU6;
  • the fourth PPDU set includes PPDU7, PPDU8 and PPDU9.
  • the second frame fed back by the second device in step S200 includes the channel awareness information of the above four PPDU sets, so that the second device does not need to feed back the channel awareness information corresponding to all PPDUs in the 9 PPDUs, but feeds back the above four PPDUs
  • the channel perception information of a certain PPDU (that is, four PPDUs) contained in each PPDU set in the set is used to save overhead.
  • the second device determines that among the 9 PPDUs, the change of the CSI corresponding to the PPDU contained in the adjacent PPDU set is greater than the first threshold.
  • the value of the quantity x is 4, however, the second frame fed back by the second device in step S200 includes channel sensing information of 3 PPDUs instead of 4 PPDUs.
  • 3 PPDUs can be the first three PPDUs in “4 PPDUs”, or "3 PPDUs” can be the last three PPDUs in “4 PPDUs”, or "3 PPDUs” can be It is any three PPDUs in the "4 PPDUs", which is not limited here.
  • the m PPDUs contained in the part or all of the PPDUs are respectively included in the m PPDU sets in the n PPDUs, and the m PPDUs contained in the part or all of the PPDUs are respectively m in the n PPDUs
  • the first PPDU of a PPDU set is included in the example where the second frame fed back by the second device in step S200 includes the channel awareness information of the four PPDU sets, the second frame fed back by the second device includes the channels of PPDU1, PPDU2, PPDU4 and PPDU7 perception information.
  • the m PPDUs contained in the part or all of the PPDUs are respectively included in the m PPDU sets in the n PPDUs, and the m PPDUs contained in the part or all of the PPDUs are respectively m in the n PPDUs
  • the last PPDU of a PPDU set in the example where the second frame fed back by the second device in step S200 includes the channel awareness information of the four PPDU sets, the second frame fed back by the second device includes the channels of PPDU1, PPDU3, PPDU6 and PPDU9 perception information.
  • the change information between the CSI corresponding to the PPDUs in the first PPDU set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold, including: in the first PPDU set The change information between the CSI corresponding to any PPDU in the PPDU and the CSI corresponding to any PPDU in the second PPDU set is greater than the first threshold.
  • the second frame fed back by the second device in step S200 includes the channel perception information of the four PPDU sets, between the CSI corresponding to any PPDU of adjacent sets in the four PPDU sets The change information is greater than the first threshold.
  • the change information between the CSI corresponding to any PPDU in the first PPDU set and the CSI corresponding to any PPDU in the second PPDU set are greater than the first threshold, satisfying:
  • the change information between the CSI corresponding to PPDU1 and the CSI corresponding to PPDU2 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU1 and the CSI corresponding to PPDU3 is greater than the first threshold.
  • the change between the CSI corresponding to any PPDU in the second PPDU set and the CSI corresponding to any PPDU in the third PPDU set is greater than the first threshold, satisfying:
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU4 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU5 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU6 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU4 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU5 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU6 is greater than the first threshold.
  • the change information between the CSI corresponding to the PPDUs in the first PPDU set and the CSI corresponding to the PPDUs in the second PPDU set is greater than a first threshold, including: the first PPDU set
  • the change information between the CSI corresponding to one of the PPDUs in the set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold.
  • the second frame fed back by the second device in step S200 includes the channel perception information of the four PPDU sets, between the CSIs corresponding to one of the PPDUs in adjacent sets of the four PPDU sets
  • the change information is greater than the first threshold.
  • the change information between the CSI corresponding to one of the PPDUs in the first PPDU set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold and satisfies:
  • the change information between the CSI corresponding to PPDU1 and the CSI corresponding to PPDU2 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU1 and the CSI corresponding to PPDU3 is greater than the first threshold.
  • the change between the CSI corresponding to one of the PPDUs in the second PPDU set and the CSI corresponding to one of the PPDUs in the third PPDU set is greater than the first threshold and satisfies:
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU4 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU5 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU6 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU4 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU5 is greater than the first threshold
  • the change information between the CSI corresponding to PPDU3 and the CSI corresponding to PPDU6 is greater than the first threshold.
  • the change information of CSI corresponding to at least two PPDUs included in the first PPDU set (or any PPDU set in the m PPDU sets) is smaller than the second threshold.
  • the channel sensing information included in the second frame is determined based on m PPDUs, in other words, the second frame includes channel sensing information corresponding to the m PPDUs.
  • the m PPDUs are respectively located in the m PPDU sets in the n PPDUs, and for any PPDU set (for example, the first PPDU set) in the m PPDU sets, the PPDU set contains at least two PPDUs , the change information of the CSI corresponding to the at least two PPDUs is smaller than the second threshold.
  • the channel sensing information contained in the second frame corresponds to a certain PPDU in the set of adjacent PPDUs whose CSI changes greatly.
  • the second device does not need to feed back channel awareness information corresponding to all PPDUs included in each of the m PPDU sets, so as to save overhead.
  • the second frame fed back by the second device in step S200 includes the channel awareness information of the four PPDU sets
  • the information between at least two CSIs corresponding to any one of the four PPDU sets The change information is less than the second threshold. satisfy:
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU3 included in the second PPDU set is less than the second threshold;
  • the change information between the CSI corresponding to PPDU4, the CSI corresponding to PPDU5 and the CSI corresponding to PPDU6 contained in the third PPDU set is less than the second threshold;
  • the change information among the CSI corresponding to PPDU7, the CSI corresponding to PPDU8 and the CSI corresponding to PPDU9 included in the fourth PPDU set is smaller than the second threshold.
  • the change information of CSI corresponding to two adjacent PPDUs is smaller than the second threshold.
  • the second frame fed back by the second device in step S200 includes the channel awareness information of the four PPDU sets
  • two adjacent PPDUs correspond to The change information between at least two CSIs is smaller than the second threshold.
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU3 included in the second PPDU set is less than the second threshold;
  • the change information between the CSI corresponding to PPDU4 and the CSI corresponding to PPDU5 included in the third PPDU set is less than the second threshold;
  • the change information between the CSI corresponding to PPDU5 and the CSI corresponding to PPDU6 included in the third PPDU set is less than the second threshold;
  • the change information between the CSI corresponding to PPDU7 and the CSI corresponding to PPDU8 included in the fourth PPDU set is less than the second threshold;
  • the change information between the CSI corresponding to PPDU8 and the CSI corresponding to PPDU9 included in the fourth PPDU set is smaller than the second threshold.
  • the relationship between the first threshold and the second threshold is not limited.
  • the first threshold may be equal to the second threshold, and the first threshold may be greater than the second threshold.
  • the change information of CSI corresponding to two adjacent PPDUs is less than the first
  • two thresholds can also be expressed as:
  • the second frame fed back by the second device in step S200 includes the channel awareness information of the four PPDU sets
  • two adjacent PPDUs correspond to The change information between at least two CSIs is smaller than the first threshold.
  • the change information between the CSI corresponding to the last PPDU (ie PPDU1) included in the first PPDU set and the CSI corresponding to the first PPDU (ie PPDU2) included in the second PPDU set is greater than the first threshold;
  • the change information between the CSI corresponding to PPDU2 and the CSI corresponding to PPDU3 included in the second PPDU set is less than the first threshold
  • the change information between the CSI corresponding to the last PPDU (ie PPDU3) included in the second PPDU set and the CSI corresponding to the first PPDU (ie PPDU4) included in the third PPDU set is greater than the first threshold;
  • the change information between the CSI corresponding to PPDU4 and the CSI corresponding to PPDU5 contained in the third PPDU set is less than the first threshold
  • the change information between the CSI corresponding to PPDU5 and the CSI corresponding to PPDU6 contained in the third PPDU set is less than the first threshold
  • the change information between the CSI corresponding to the last PPDU (ie PPDU6) included in the third PPDU set and the CSI corresponding to the first PPDU (ie PPDU7) included in the fourth PPDU set is greater than the first threshold;
  • the change information between the CSI corresponding to PPDU7 and the CSI corresponding to PPDU8 contained in the fourth PPDU set is less than the first threshold
  • the change information between the CSI corresponding to PPDU8 and the CSI corresponding to PPDU9 included in the fourth PPDU set is smaller than the first threshold.
  • the first device receives the first frame from the second device in step S100
  • the first device receives n PPDUs from the second device
  • the channel sensing information corresponding to some PPDUs in the n PPDUs is sent to the second device; when m is equal to n, the first device sends the channel sensing information corresponding to all the PPDUs in the n PPDUs to the second device in step S200 .
  • the channel awareness information contained in the second frame includes at least one of the following: channel state information (channel state information, CSI), CSI multiple input multiple output (multiple input multiple output, MIMO) parameters , the identifier of the PPDU corresponding to the CSI, and the address information of this part or all of the PPDU.
  • channel state information channel state information, CSI
  • CSI multiple input multiple output multiple input multiple output, MIMO
  • the channel awareness information between the first device and the second device contained in the second frame sent by the second device may specifically include at least one item of information above, so as to indicate to the first device the corresponding one or more information.
  • the CSI included in the channel awareness information may indicate a channel state of a channel between the first device and the second device, so that the first device can know the channel state.
  • the MIMO parameter of the CSI contained in the channel sensing information may indicate the MIMO parameter of the signal transmitted between the first device and the second device, so that the first device can determine the MIMO parameter corresponding to the signal.
  • the identifier of the PPDU corresponding to the CSI contained in the channel sensing information may indicate the PPDU corresponding to the CSI contained in the channel sensing information, so that the first device can specify the PPDU corresponding to the CSI.
  • the address information of some or all of the PPDUs contained in the channel awareness information may indicate that the channel awareness information is determined based on the PPDU corresponding to the address information, so that the first device clearly determines that the channel awareness information is determined based on the PPDU corresponding to the address information .
  • the second frame may also be named a sensing feedback (Sensing Feedback) frame.
  • Sensing Feedback Sensing Feedback
  • this naming is only an example, and the second frame can also be named by other names, which is not limited in this application.
  • the second frame may be a management frame, a data frame or a control frame, which is not limited here.
  • the second frame may also be designed based on the original frame, for example, relevant information of the second frame is carried in the beacon frame or other frames.
  • the value of the reserved (Reserved) bits may be any one from 34 to 255.
  • the value of the reserved (Reserved) bit is 36, and the second frame is named Sensing Feedback frame as an example for illustration.
  • the frame format of the second frame may be implemented in the manner shown in FIG. 7a or FIG. 7b.
  • the second frame includes the following fields:
  • Frame Control Duration, Address 1, Address 2, Address 3, Sequence Control, Category, Public Action
  • one or more channel sensing information denoted as CSI Info 1, CSI Info 2
  • frame check sequence frame check sequence, FCS
  • CSI Info 1 is taken as an example in Fig. 7a for illustration.
  • CSI Info 1 includes the following fields:
  • Element ID Element ID
  • Length Length
  • MIMO Control MIMO Control
  • CSI report CSI report
  • PPDU receiving address RA of PPDU
  • CSI number Number of CSI.
  • the "CSI report” field is used to carry the aforementioned channel state information (channel state information, CSI)
  • the "MIMO control” field is used to carry the multiple input multiple output (multiple input multiple output, MIMO) parameters of the aforementioned CSI
  • the “CSI's The “Number” field is used to carry the identifier of the PPDU corresponding to the CSI
  • the "PPDU receiving address” field is used to carry the address information of this part or all of the PPDU.
  • CSIs corresponding to different PPDUs involved in the embodiments of the present application can be distinguished by numbers, sequence numbers, sequence numbers (Sequence Number) or other methods. In this embodiment, only "CSI number" is used as an example for description.
  • CSI Info 1 Take this as an example. As shown in Figure 7b, CSI Info 1 does not include the "PPDU receiving address" field.
  • the present application does not limit the value of the number of bytes (or bits) of different fields and the order between different fields in the frame format shown in Figure 7a or Figure 7b, the frame shown in Figure 7a or Figure 7b
  • the value of the number of bytes (or number of bits) of different fields in the format and the order of different fields are only an example of implementation.
  • the value of the number of bytes (or the number of bits) of the different fields in the frame format shown in Figure 7a or Figure 7b can also be other values
  • the order can also be other field orders, which is not limited here.
  • different fields in the frame format shown in Fig. 7a or Fig. 7b can be implemented independently.
  • At least one PPDU among the n PPDUs sent by the first device is used for communication between the first device and the third device.
  • At least one PPDU of the n PPDUs used for communication between the first device and the third device includes: at least one PPDU of the n PPDUs is used for data between the first device and the third device At least one communication process such as interaction, signaling transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • perception for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination.
  • the channel sensing information between the first device and the second device is determined based on part or all of the n PPDUs. Since the second device is different from the third device and at least one PPDU among the n PPDUs is used for communication between the first device and the third device, during the determination of the channel awareness information between the first device and the second device, PPDUs for communication with other devices are multiplexed. Therefore, while satisfying the communication requirements of the first device and the third device, the channel sensing process between the first device and the second device can also be implemented, thereby improving the communication efficiency of the WLAN system and saving overhead.
  • n PPDUs satisfy at least one of the following:
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device; or,
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device; or,
  • At least one PPDU in the n PPDUs is a PPDU sent by broadcast.
  • receiving address field is used to indicate the third device (or the second device). It should be noted that in the embodiment of this application, other information can also be used to indicate the third device (or the second device), such as AID, site - An identification (STA-ID) or other information indicates the third device (or the second device), which is not limited here.
  • the receiving address field of at least one PPDU among the n PPDUs is used to indicate the third device, which may indicate that at least one PPDU among the n PPDUs is used for communication between the first device and the third device.
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate that the third device includes: at least one PPDU in the n PPDUs is used for data exchange and signaling between the first device and the third device At least one communication process such as transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device, which may indicate that at least one PPDU in the n PPDUs is used for communication between the first device and the second device.
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate that the second device includes: at least one PPDU in the n PPDUs is used for data exchange and signaling between the first device and the second device At least one communication process such as transmission, perception (for example, perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • At least one PPDU among the n PPDUs is a PPDU sent by broadcast, which may indicate that at least one PPDU among the n PPDUs is used for communication between the first device and at least two devices.
  • at least one PPDU of the n PPDUs is a PPDU sent by broadcast, including: at least one PPDU of the n PPDUs is used for data interaction, signaling transmission, and perception ( For example, at least one communication process such as perception session establishment, measurement establishment, measurement entity, measurement establishment termination, perception session termination).
  • the channel sensing information between the first device and the second device is determined based on part or all of the n PPDUs. Since the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device, that is, it is used for communication between the first device and the third device (or the receiving address field of at least one PPDU in the n PPDUs is used for Indicate the second device, that is, for the first device to communicate with the second device; or at least one PPDU in the n PPDUs is a PPDU sent by broadcast, that is, for the broadcast communication of the first device), so that the first device In the process of determining the channel sensing information with the second device, the PPDU used for communication is multiplexed. Therefore, while meeting the communication requirements of the first device, a channel sensing process between the first device and the second device can also be implemented, thereby improving the communication efficiency of the WLAN system and saving overhead.
  • the second device can perform channel sensing based on the n PPDUs sent by the first device to determine the n PPDUs Channel awareness information for transmission of part or all of the PPDUs between the first device and the second device. Thereafter, the first device receives the second frame including the channel sensing information from the second device in step S200, so as to realize the process of channel sensing. Therefore, based on the n PPDUs sent by the first device, while meeting the communication requirements of the first device, the channel sensing process between different devices can also be implemented, which improves the communication efficiency of the WLAN system and saves overhead.
  • FIG. 8 is another schematic diagram of the communication method provided by the present application. Compared with the implementation process shown in FIG. 6, in the implementation process shown in FIG. 8, after the second device receives the first frame in step S100, the second device Other implementations may also be performed.
  • the method before the first device receives the second frame from the second device in step S200, the method further includes:
  • the first device receives a response frame of the first frame from the second device.
  • the second device sends the response frame of the first frame in step S300, and correspondingly, the first device receives the response frame of the first frame in step S300.
  • the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or, the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • the second device may send a response frame of the first frame to the first device based on the first frame, so that the first device may send a response frame of the first frame based on the first frame, so that the first device may The response frame of the first frame specifies whether the first device agrees to channel sensing (or specifies whether the first device receives the first frame).
  • the first frame sent and received in step S100 includes at least one of the following: information about the start time of channel sensing, information about the duration of channel sensing, information about the frequency band of channel sensing, used to indicate whether to feedback CSI change indication information, channel-aware PPDU address information.
  • the first frame sent by the first device for requesting channel sensing may include at least one item of information above, so as to indicate to the first device one or more types of information corresponding to the requested channel sensing.
  • the information about the start time of channel sensing included in the first frame is used to indicate the start time of channel sensing, so that the second device can specify when to start performing channel sensing.
  • the duration information of channel sensing included in the first frame is used to indicate the duration of channel sensing, so that the second device can explicitly perform the duration of channel sensing.
  • the frequency band information of channel awareness contained in the first frame is used to indicate the frequency band of channel awareness, so that the second device can specify the frequency band of the PPDU used for channel awareness.
  • the indication information included in the first frame and used to indicate whether to feed back the change of the CSI is used to enable the second device to explicitly perform channel sensing duration.
  • the address information of the channel-aware PPDU included in the first frame is used to indicate the address information of the channel-aware PPDU, so that the second device specifies the address information of the channel-aware PPDU to avoid confusion.
  • the first frame may be a management frame, a data frame or a control frame, which is not limited here.
  • the response frame of the first frame may also be a management frame, a data frame or a control frame, which is not limited here.
  • the first frame and the response frame of the first frame adopt the new frame implementation method
  • the first frame and the response frame of the first frame can also be designed based on the original frame, such as in beacon
  • the related information of the first frame and the response frame of the first frame is carried in the frame or other frames.
  • the first frame sent and received in step S100 and the response frame of the first frame sent and received in step S300 are both management frames, wherein the frame control field in the first frame The value of the subtype field is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or, the value of the subtype field in the frame control field in the first frame is 1111, the value of the The value of the subtype field in the response frame of the first frame is 0111.
  • the first frame since the first frame is mainly used to request channel perception, the first frame may also be named a Sensing Request frame, and correspondingly, the response frame of the first frame may be named a Sensing Response frame.
  • the first frame and the response frame of the first frame may also be named other names, which are not limited in this application.
  • the first frame will be named the Sensing Request frame
  • the response frame of the first frame will be named the Sensing Response frame for illustration.
  • Sensing Request frame and Sensing Response frame are designed. For example, add Sensing Request and Sensing Response frames in the Reserved bit of the Subtype field of the Frame control field. Use the Sensing Request frame to initiate a sensing session, and request the second device to listen to the PPDU sent by the first device to the specified device for sensing measurement. After hearing the Sensing Request frame, the second device replies with a Sensing Response frame to indicate whether to join the sensing session.
  • Table 3 will be used as an example below for illustration.
  • the value of the subtype field in the frame control field in the first frame is 0111
  • the subtype in the response frame of the first frame The value of the field is 1111.
  • Subtype values Subtype values (Subtype values) Subtype description 0000 Association Request 0001 Association Response 0010 Reassociation Request 0011 Reassociation Response 0100 Probe Request 0101 Probe Response 0110 Timing Advertisement 0111 Sensing request 1000 Beacon 1001 Advertisement traffic indicator frame (ATIM) 1010 Disassociation 1011 Authentication 1100 Deauthentication 1101 Function frame (Action) 1110 Function frame without confirmation (Action No Ack) 1111 Sensing Response
  • the first frame when the first frame is a management frame, the first frame may be implemented in the manner shown in FIG. 9a.
  • the first frame includes the following fields:
  • Frame Control Duration, Address 1, Address 2, Address 3, Sequence Control, HT Control, Sensing Information (Sensing Info), frame check sequence (frame check sequence, FCS).
  • the frame control (Frame Control) field includes the following fields:
  • Protocol Version Protocol Version, Type, Subtype, To DS, From DS, More Fragment, Retry ), Power Management, More Data, Protected Frame, +HTC/order.
  • the sensing information (Sensing Info) field includes the following fields:
  • Element ID Element ID
  • length Length
  • sensing start time Sensing start time
  • sensing duration Sensing Duration
  • bandwidth information BW Info
  • CSI change request CSI Change Request
  • sensing receiving address RA for sensing.
  • the "sensing start time” field is used to carry the start time information of the aforementioned channel sensing
  • the "sensing duration” field is used to carry the duration information of the aforementioned channel sensing
  • the “bandwidth information” field is used to carry the frequency band of the aforementioned channel sensing information
  • the "CSI change request” field is used to carry the aforementioned indication information for indicating whether to feed back the CSI change
  • the "perceived receiving address” field is used to carry the address information of the channel-aware PPDU.
  • the frame format of the first frame may be implemented in the manner shown in FIG. 9b.
  • the response frame of the first frame includes the following fields:
  • Frame Control Duration, Address 1, Address 2, Address 3, Sequence Control, HT Control, Perceptual Response (Sensing Response), frame check sequence (frame check sequence, FCS).
  • the Sensing Response field includes the following fields:
  • the "sensing response indication" field is used to carry the aforementioned indication information indicating whether the second device agrees to channel sensing; or, the "sensing response indication” field is used to carry the aforementioned indication information indicating whether the second device has received the Instructions for the first frame.
  • the present application does not limit the values of the number of bytes (or bits) of different fields and the order between different fields in the frame format shown in Figure 9a or Figure 9b.
  • the frame shown in Figure 9a or Figure 9b The value of the number of bytes (or number of bits) of different fields in the format and the order of different fields are only an example of implementation.
  • the value of the number of bytes (or the number of bits) of the different fields in the frame format shown in Figure 9a or Figure 9b can also be other values, between the different fields in the frame format shown in Figure 9a or Figure 9b
  • the order can also be other field orders, which is not limited here.
  • different fields in the frame format shown in Fig. 9a or Fig. 9b can be implemented independently.
  • the first frame sent and received in step S100 and the response frame of the first frame sent and received in step S300 are function frames, wherein the public function field in the first frame takes the value is any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • Sensing Request frame and Sensing Response frame are designed, and Sensing Request and Sensing Response frames are added in the reserved (Reserved) bit of the Public Action field.
  • Sensing Request frame Use the Sensing Request frame to initiate a sensing session, and request the second device to listen to the PPDU sent by the first device to the specified device for sensing measurement. After hearing the Sensing Request frame, the second device replies with a Sensing Response frame to indicate whether to join the sensing session.
  • Table 4 will be used as an example below for illustration.
  • the value of the public function field in the first frame is 34 from 34 to 255, and the public function field in the response frame of the first frame The value is 35 from 34 to 255.
  • the first frame and the response frame of the first frame may be implemented in the manners shown in FIG. 10a and FIG. 10b respectively.
  • the first frame includes the following fields:
  • Frame Control Duration, Address 1, Address 2, Address 3, Sequence Control, Category, Public Action , sensing information (Sensing Info), frame check sequence (frame check sequence, FCS).
  • Sensing Info includes the following fields:
  • Element ID Element ID
  • length Length
  • sensing start time Sensing start time
  • sensing duration Sensing Duration
  • bandwidth information BW Info
  • CSI change request CSI Change Request
  • sensing receiving address RA for sensing.
  • the "sensing start time” field is used to carry the start time information of the aforementioned channel sensing
  • the "sensing duration” field is used to carry the duration information of the aforementioned channel sensing
  • the “bandwidth information” field is used to carry the frequency band of the aforementioned channel sensing information
  • the "CSI change request” field is used to carry the aforementioned indication information for indicating whether to feed back the CSI change
  • the "perceived receiving address” field is used to carry the address information of the channel-aware PPDU.
  • the response frame of the first frame includes the following fields:
  • the Sensing Response includes the following fields:
  • the "sensing response indication" field is used to carry the aforementioned indication information indicating whether the second device agrees to channel sensing; or, the "sensing response indication” field is used to carry the aforementioned indication information indicating whether the second device has received the Instructions for the first frame.
  • the present application does not limit the values of the number of bytes (or bits) of different fields and the order between different fields.
  • the frame shown in FIG. 10 or FIG. 10b The value of the number of bytes (or number of bits) of different fields in the format and the order of different fields are only an example of implementation.
  • the value of the number of bytes (or the number of bits) of the different fields in the frame format shown in Figure 10a or Figure 10b can also be other values, between the different fields in the frame format shown in Figure 10a or Figure 10b
  • the order can also be other field orders, which is not limited here.
  • different fields in the frame format shown in Fig. 10a or Fig. 10b can be implemented independently.
  • the method further includes:
  • the first device receives a third frame from the second device.
  • the second device sends the third frame in step S500, and correspondingly, the first device receives the third frame in step S500.
  • the third frame includes channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs.
  • the first device receives a message from the second device containing the channel information between the first device and the second device.
  • a third frame of change information enables the first device to clarify a channel change between the first device and the second device.
  • the first device may determine an environmental change between the first device and the second device based on the channel change information contained in the third frame, for example, the movement of an object between the first device and the second device , gesture actions performed by the user between the first device and the second device, and the like.
  • the channel change information contained in the third frame indicates that there is no change in the channel between the first device and the second device (or when the change is less than a third threshold), and the first device does not need to receive the second frame, in other words, The second device does not need to send the second frame.
  • channel change information and channel sensing information may be carried in the same frame, for example, both channel change information and channel sensing information are carried in the second frame, or both channel change information and channel sensing information are carried in the third frame .
  • the method before the first device receives the third frame from the second device at step S500, the method further includes:
  • the first device sends a first trigger frame to the second device.
  • the first device sends a first trigger frame in step S400, and correspondingly, the second device receives the first trigger frame in step S400.
  • the first trigger frame includes resource unit (resource unit, RU) information bearing channel change information; in addition, the RU information bearing channel change information indicates the RU corresponding to the second device; or, the bearing channel change information RU information
  • the RU information indicates RUs used for random access.
  • step S400 is an optional step, for example, when the step S400 is not performed, the third frame is borne by the RU based on contention channel access.
  • the first device may determine the RU carrying the third frame based on various methods, for example, the first device (and/or the second device) may determine the RU carrying the third frame based on the indication of the first trigger frame. RUs of three frames, so that the first device and the second device can send and receive the third frame on the specified RU; for another example, the first device (and/or the second device) can use the RU used for random access as The RU that bears the third frame, thus, while saving the overhead without the instruction of the first device, the second device can also make the timing of sending the third frame at its own discretion (for example, only when the change indicated by the channel change information is large Only when the third frame is sent), further saving overhead.
  • step S500 The third frame sent and received in step S500 will be further introduced below.
  • the third frame may be a management frame, a data frame or a control frame, which is not limited here.
  • the third frame transmitted and received in step S500 further includes at least one of the following: location change information of the second device; or address information of some or all of the n PPDUs.
  • the third frame containing the channel change information between the first device and the second device may also include at least one item of the above information, so that the first device based on the third frame sent by the second device Specify the relevant information of the channel change.
  • the position change information of the second device contained in the third frame is used to indicate that the second device location change, so that the first device can determine the location change of the second device, and based on the location change, further clarify whether the channel between the first device and the second device has changed and the reason for the channel change.
  • the address information of some or all of the PPDUs in the n PPDUs included in the third frame indicates the address information of the PPDUs corresponding to the channel change information, so that the second device can clarify the address information of the PPDUs corresponding to the channel change information, to avoid confusion.
  • the channel change information included in the third frame may also be named as a CSI change response element (CSI change response element).
  • CSI change response element CSI change response element
  • this naming is only an example, and the third frame can also be named by other names, which is not limited in this application.
  • the channel change information included in the third frame will be named as CSI change response element for description below.
  • a new field CSI change response element is designed to indicate whether the CSI information measured by perception changes.
  • the second device may move during the sensing process. If the second device moves during the sensing process, the CSI information will also change, but this change is not caused by environmental changes. Therefore, an STA location change field is added to indicate the location of the second device. whether to change. If it changes, the second device may notify the first device that the change of the CSI information is caused by the location change of the second device in this way.
  • the frame format of the CSI change response element included in the third frame can be implemented in the manner shown in Figure 11a.
  • the third frame includes the following fields:
  • the "CSI change” field is used to carry the aforementioned channel change information
  • the "perceived receiving address” field is used to carry the address information of some or all of the n PPDUs
  • the "site location change” field is used to carry the For the location change information of the device
  • the "PPDU receiving address” field is used to carry the address information of this part or all of the PPDU.
  • the frame format of the CSI change response element included in the third frame can be implemented in the manner shown in Figure 11b. As shown in Fig. 11b, compared with Fig. 11a, the frame format shown in Fig. 11b does not include the "PPDU receiving address" field.
  • the value of the number of bytes (or bits) of different fields and the order between different fields are not limited by the present application.
  • the frame shown in FIG. 11a or FIG. 11b The value of the number of bytes (or number of bits) of different fields in the format and the order of different fields are only an example of implementation.
  • the value of the number of bytes (or the number of bits) of the different fields in the frame format shown in Figure 11a or Figure 11b can also be other values, between the different fields in the frame format shown in Figure 11a or Figure 11b
  • the order can also be other field orders, which is not limited here.
  • different fields in the frame format shown in Fig. 11a or Fig. 11b can be implemented independently.
  • the method before the first device receives the second frame from the second device in step S200, the method further includes:
  • the first device sends a fourth frame to the second device.
  • the first device sends the fourth frame in step S600, and correspondingly, the second device receives the fourth frame in step S600.
  • the fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the fourth frame may be a management frame, a data frame or a control frame, which is not limited here.
  • the information contained in the fourth frame is used to indicate the parameter change, so that the second device can clearly The parameter of the first device changes, and based on the parameter change, it is further clarified whether the channel between the first device and the second device changes and the reason for the channel change.
  • the above step S600 may also be expressed as: the first device sends a fourth frame to the second device, and the fourth frame includes the first Information about changes in transmit parameters of the device.
  • the change information of the transmission parameter of the first device includes at least one of the above-mentioned first field, second field, third field and fourth field.
  • the first device does not change the transmission parameters during the process of sending n PPDUs.
  • the fourth frame mainly includes the change information of the transmission parameters, therefore, the change information of the transmission parameters contained in the fourth frame can be named as a transmission setting change element (transmission setting change element).
  • transmission setting change element transmission setting change element
  • a new field transmission setting change element is designed to indicate whether the transmission setting of the PPDU sent by the first device has changed.
  • the frame format of the change information of the transmission parameters included in the fourth frame may be implemented in the manner shown in FIG. 12 .
  • the fourth frame includes the following fields:
  • Element ID Element ID
  • length Length
  • transmission address information Transmission RA
  • setting change Setting change
  • the "transmitted address information” field is used to carry the address information of the PPDU whose transmission parameters are changed
  • the "setting change” field is used to carry at least one of the above-mentioned first field, second field, third field and fourth field field.
  • the present application does not limit the value of the number of bytes (or bits) of different fields and the order between different fields in the frame format shown in Figure 12.
  • the number of different fields in the frame format shown in Figure 12 The value of the number of bytes (or number of bits) and the order of different fields are just an example of implementation.
  • the value of the number of bytes (or the number of bits) of the different fields in the frame format shown in Figure 12 can also be other values, and the order between the different fields in the frame format shown in Figure 12 can also be other The order of the fields is not limited here.
  • different fields in the frame format shown in FIG. 12 can be implemented independently.
  • the method before the first device receives the second frame from the second device in step S200, the method further includes:
  • the first device sends a second trigger frame to the second device.
  • the first device sends a first trigger frame in step S700, and correspondingly, the second device receives the first trigger frame in step S700.
  • the second trigger frame includes RU information bearing channel awareness information; in addition, the RU information bearing channel awareness information indicates the RU corresponding to the second device; or, the RU information bearing channel awareness information indicates the RU information used for contention access Incoming RUs.
  • step S700 is an optional step, for example, when the step S700 is not performed, the second frame is borne by the RU based on contention channel access.
  • the first device may determine the RU carrying the second frame based on various methods, for example, the first device (and/or the second device) may determine the RU carrying the second frame based on the indication of the second trigger frame. RUs of two frames, so that the first device and the second device transmit and receive the second frame on the specified RU; for another example, the first device (and/or the second device) may use the RU used for random access as The RU that bears the second frame, so that the second device can decide when to send the second frame (for example, only when the amount of data corresponding to the channel sensing information reaches The second frame is sent only when the threshold is reached), which further saves overhead.
  • the first device is an AP
  • the second device includes STA3 and STA4
  • the third device includes STA1 and STA2 as an example for illustration.
  • the sensing session is initiated between the sensing initiator AP and the sensing responding end STA, requiring the second device to listen to the PPDU sent by the first device to other devices for sensing measurement, and feedback the measurement result to the sensing initiator AP to complete the sensing measurement process .
  • the second device in the process of transmitting a PPDU between the first device and the third device for communication (Communication), the second device (including STA3 and STA4) performs sensing (Sensing) based on the PPDU as an example. illustrate.
  • the process shown in FIG. 13 is described by taking the sensing initiator as the AP and the sensing responder as the STA as an example, it is not limited to the above scenario.
  • the sensing initiator can be an STA, and the sensing responder can also be an AP; or, the sensing initiator can be an STA, and the sensing responder can also be an STA; or, the sensing initiator can be an AP, and the sensing responding end can also be an AP.
  • the first frame will be named Sensing Request frame
  • the response frame of the first frame will be named Sensing Response frame
  • the second frame will be named Sensing Feedback frame
  • the information contained in the third frame is used for
  • the cell carrying channel change information is named CSI change response element
  • the cell used to carry the change information of transmission parameters in the fourth frame is named Transmission Setting Change Element as an example for illustration.
  • this naming is only an example, and the relevant frames may also be named other names, which are not limited in this application.
  • the sensing responder STA only listens to the PPDU sent by the AP to the designated communication STA during the sensing measurement phase.
  • the subsequent measurement and feedback stages may not record and report RA information.
  • the sensing initiator AP initiates a sensing session with the designated sensing responder STA through the Sensing Request frame, and requests the sensing responder STA to listen to the PPDU sent by the AP to the designated communication STA for sensing Measurement.
  • the implementation process of the perception establishment phase may refer to the implementation process of the aforementioned first frame and/or the response frame of the first frame.
  • the Sensing Request frame information related to the sensing session needs to be specified, including: the sending frequency band of the subsequent PPDU, the sensing start time and duration, indicating whether the CSI information needs to be fed back by the STA, and specifying a unique sensing session for the sensing responder STA.
  • Listen to the RA for the PPDU After hearing the Sensing Request frame, the designated STA replies with a Sensing Response frame to indicate whether to join the sensing session, and performs sensing measurement after joining the session.
  • the communication method used in this embodiment is perceived through CSI information, but changes in CSI information may be caused by environmental changes, or may be caused by changes in parameter settings when the transmitter transmits, so it is necessary to The influence of emission parameter changes on the perception results is excluded.
  • the present application provides three solutions, and one of them can be used in each embodiment.
  • Method 1 It is stipulated that during the measurement period, the transmitter AP does not change the settings of transmission parameters such as power and precoding of the target communication site. This method fundamentally eliminates the possibility of changes in emission settings and will not affect subsequent perception results.
  • Method 2 During the measurement phase, the transmitter AP can change the transmission parameter settings such as power and precoding of the target communication site, but relevant information needs to be used before the change.
  • the AP can notify the perception responder STA through relevant information such as Transmission Setting Change Element, beamformed, etc.
  • Method 3 During the measurement phase, the transmitter AP can change the transmission parameter settings of the target communication site such as power and precoding without notification.
  • the AP judges whether the change of the CSI information is caused by the change of its own transmission settings.
  • the STA at the perception responder always listens to the PPDU sent by the AP to the specified STA, and obtains the CSI information of the link from the AP to the STA at the perception responder through the HE-LTF part of the physical header.
  • the perception responder STA stores the obtained CSI information, records the Sequence Number (sequence number) of the corresponding communication PPDU, and compares and processes the obtained two CSI information before and after.
  • This application provides two processing methods for the obtained CSI information, and one of them can be used in each embodiment.
  • Method 1 After comparing the obtained two CSI information before and after the STA at the sensing response end, if the change is less than the threshold, only the CSI information with the smallest sequence number will be retained, and if the change is large, it will be fed back.
  • the sensing responder STA feeds back the CSI matrix and the corresponding sequence number twice before and after the change in the Sensing Feedback frame, and records the sequence number that has been fed back to avoid repeating the feedback matrix.
  • Method 2 After comparing the obtained two CSI information before and after the STA at the sensing response end, if the change is less than the threshold, only the CSI information with the largest sequence number will be retained, and if the change is large, it will be fed back.
  • the sensing responder STA feeds back the CSI matrix and the corresponding sequence number twice before and after the change in the Sensing Feedback frame, and records the sequence number that has been fed back to avoid repeating the feedback matrix.
  • the present application provides three feedback methods for CSI information feedback methods, and one of them can be used according to the actual situation in each embodiment.
  • the AP sends a Trigger frame to start the feedback process, as shown in the dotted box in Figure 16, the AP allocates RUs to each perception responder STA in the Trigger frame, and the perception responder STA needs to feedback CSI change response element to report the perceived CSI Whether the information has changed.
  • the AP sends a Trigger frame to the perception responder STA to allocate appropriate RU resources to feed back the CSI matrix twice before and after.
  • the Sensing Feedback frame also needs to indicate the serial number corresponding to the CSI matrix, and the STA at the sensing response end also needs to record the serial number of the CSI matrix that has been fed back to avoid repeated transmission.
  • Method 2 The AP sends a Trigger frame to start the feedback process, as shown in the dotted box in Figure 17, the AP allocates some random access RUs in the Trigger frame, and the STAs at the sensing responders whose CSI information changes after measurement need to participate in the competition and feed back CSI information to the AP change.
  • the AP sends a Trigger frame to the perception responder STA to allocate appropriate RU resources to feed back the CSI matrix twice before and after.
  • the Sensing Feedback frame also needs to indicate the serial number corresponding to the CSI matrix, and the STA at the sensing response end also needs to record the serial number of the CSI matrix that has been fed back to avoid repeated transmission.
  • Method 3 In the feedback phase, there is no need for AP triggering, and the STA at the sensing responder competes for channel access to actively report channel sensing information.
  • the implementation process of the perception measurement phase and the perception feedback phase may refer to the implementation process of the second frame, the first trigger frame, the third frame, the fourth frame and/or the second trigger frame.
  • the channel sensing information including the CSI matrix is taken as an example for description here.
  • the sensor responder STA measures the change of CSI information
  • the sensor responder STA that needs to feed back the CSI matrix participates in the competition channel. After competing for the channel, it feeds back the CSI matrix twice before and after, and the AP performs sensory analysis after receiving it.
  • the Sensing Feedback frame also needs to indicate the serial number corresponding to the CSI matrix, and the sensing responding STA also needs to record the serial number of the CSI matrix that has been fed back to avoid repeated transmission.
  • the perception measurement is completed by intercepting the communication PPDU, instead of being limited to sending NDPA and NDP specifically to perform the perception measurement.
  • This method not only meets the communication requirements but also completes the perception measurement, improves efficiency, saves expenses, and makes the perception methods more flexible and diverse.
  • the sensing responder STA can intercept the PPDU sent by the AP during the sensing measurement phase.
  • RA information needs to be recorded and reported during subsequent measurement and feedback phases to avoid confusion.
  • the sensing initiator AP initiates a sensing session with the designated sensing responder STA through the Sensing Request frame, and requests the sensing responder STA to listen to the PPDU sent by the AP to all communicating STAs for sensing measurement.
  • the difference from Embodiment 1 is that in the Sensing Request frame, no unique RA for listening to the PPDU is specified for the sensing responder STA, and the sensing responding STA can listen to the PPDU sent by the AP to all communication STAs.
  • the implementation process of the perception establishment phase may refer to the implementation process of the aforementioned first frame and/or the response frame of the first frame.
  • the sensing responder STA can listen to the PPDU sent by the AP to all communicating STAs to obtain CSI information.
  • the perception responder STA stores the obtained CSI information, and records the corresponding RA (receiving address) and serial number. Compare the two CSI information before and after the same RA link, if the change is smaller than the threshold, it is regarded as no change; if the change is large, the CSI information change and the corresponding RA information are fed back in the feedback stage.
  • the processing manner of the CSI information is the same as that in Embodiment 1, and will not be repeated here.
  • Embodiment 2 the difference from Embodiment 1 is that when the sensing responder STA feeds back whether the CSI information changes or feeds back the CSI matrix to the AP, it must carry the changed CSI information or the RA corresponding to the CSI matrix. information to avoid confusion.
  • the implementation process of the perception measurement phase and the perception feedback phase may refer to the implementation process of the second frame, the first trigger frame, the third frame, the fourth frame and/or the second trigger frame.
  • the process of completing the increase of perception needs based on interception communication PPDU and the corresponding frame design are discussed.
  • the method of intercepting the communication STA is not specified for the perception responder STA, so that the perception responder STA can obtain more CSI information and improve the accuracy of perception.
  • the present application breaks through the traditional limitation of specially sending sensing signals for sensing measurement, and completes sensing measurement by listening to communication PPDUs.
  • This method completes the perception measurement while completing the originally required communication task, which can save the overhead required for special perception measurement, and at the same time improve the communication and perception efficiency of the device.
  • the present application designs a complete and feasible sensing process and performs corresponding frame design for the scenario of performing sensing measurement based on intercepting communication PPDUs. It not only meets the needs of communication but also completes the perception measurement, improves the efficiency and saves the cost, and also makes the perception measurement method more flexible and diverse and no longer limited to the measurement method that specifically sends the perception signal. It should be noted that, the implementation process involved in FIG. 13 to FIG. 17 can also refer to the description of the foregoing embodiments, and achieve corresponding technical effects, which will not be repeated here.
  • the Sensing Request frame (or Sensing Response frame, Sensing Feedback frame, etc.) uses the method of creating a new frame, it can also be designed based on the original frame, such as in beacon
  • the related information is indicated in the frame or other frames.
  • the third device may The device (or STA1) will reply an acknowledgment frame to the first device (or AP) after receiving the PPDU, which is omitted here for brevity.
  • the first frame and the response frame of the first frame may be used to implement a certain process in the sensing process.
  • Sensing Request frame and Sensing Response frame may be used to implement "A. Sensing session setup" in the 5 types of links of the aforementioned sensing process; Measurement setup)".
  • the second frame may be used to implement a certain process in the sensing process. For example, it can be used to implement the reporting phase involved in "C. Measurement instance" in the 5 types of links of the aforementioned perception process.
  • the process of receiving the PPDU by the second device may correspond to the sounding process in the sensing process.
  • FIG. 18 is a schematic diagram of an apparatus 1800 according to an embodiment of the present application, where the apparatus 1800 includes a sending unit 1801 and a receiving unit 1802 .
  • the apparatus 1800 may be specifically applied to a WLAN system, and the apparatus may be a WLAN device, or the apparatus may be some components of the WLAN device.
  • the WLAN device may include an STA or an AP, and some components in the WLAN device may include a processor, a chip, or a chip system, and the like.
  • the sending unit 1801 and receiving unit 1802 are used to perform the following process:
  • the sending unit 1801 is configured to send a first frame to a second device, where the first frame is used to request channel sensing;
  • the receiving unit 1802 is configured to receive a second frame from the second device, the second frame includes channel sensing information between the first device and the second device, and the channel sensing information is based on a part of n PPDUs or all PPDUs, the n PPDUs are PPDUs sent by the first device, and n is greater than or equal to 1.
  • At least one PPDU in the n PPDUs is used for communication between the first device and the third device.
  • the channel awareness information includes at least one of the following:
  • Channel state information CSI multiple-input multiple-output MIMO parameters of CSI, identification of PPDU corresponding to CSI, address information of this part or all of PPDU.
  • the number of PPDUs included in the part or all of the PPDUs is m, m is greater than or equal to 1, and m is less than or equal to n;
  • the m PPDUs contained in the part or all of the PPDUs are respectively located in the m PPDU sets in the n PPDUs, and the m PPDU sets include the adjacent first PPDU set and the second PPDU set, and the first PPDU
  • the change information between the CSI corresponding to the PPDUs in the set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the change information between the CSI corresponding to the PPDU in the first PPDU set and the CSI corresponding to the PPDU in the second PPDU set is greater than a first threshold, including:
  • the change information between the CSI corresponding to any PPDU in the first PPDU set and the CSI corresponding to any PPDU in the second PPDU set is greater than the first threshold
  • the change information between the CSI corresponding to one of the PPDUs in the first PPDU set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold.
  • the CSI change information corresponding to at least two PPDUs included in the first PPDU set is smaller than the second threshold.
  • the n PPDUs satisfy at least one of the following:
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device; or,
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device; or,
  • At least one PPDU in the n PPDUs is a PPDU sent by broadcast.
  • the first frame includes at least one of the following:
  • the starting time information of channel sensing the duration information of channel sensing, the frequency band information of channel sensing, the indication information for indicating whether to feed back the change of CSI, and the address information of PPDU of channel sensing.
  • the receiving unit 1802 is further configured to receive a response frame of the first frame from the second device; wherein,
  • the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or,
  • the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the receiving unit 1802 is further configured to receive a third frame from the second device, where the third frame includes channel change information between the first device and the second device, and the channel change information is based on the n PPDUs Sure.
  • the sending unit 1801 is further configured to send a first trigger frame to the second device, where the first trigger frame includes resource unit RU information bearing channel change information; wherein,
  • the RU information bearing channel change information indicates the RU corresponding to the second device.
  • the RU information bearing channel change information indicates the RU used for random access.
  • the third frame is borne by the RU based on contention channel access.
  • the third frame further includes at least one of the following:
  • the sending unit 1801 is further configured for the second device to send a second trigger frame, where the second trigger frame includes RU information bearing channel awareness information; wherein,
  • the RU information bearing the channel sensing information indicates the RU corresponding to the second device; or,
  • the RU information bearing the channel awareness information indicates the RU used for competing for access.
  • the second frame is carried by an RU that is accessed based on a contention channel.
  • the sending unit 1801 is further configured to send a fourth frame to the second device, where the fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the sending unit 1801 and receiving unit 1802 are used to perform the following process:
  • the receiving unit 1802 is configured to receive a first frame from a first device, where the first frame is used to request channel sensing;
  • the sending unit 1801 is configured to send a second frame to the first device, where the second frame includes channel sensing information between the first device and the second device, and the channel sensing information is based on a part or part of n PPDUs Determined by all PPDUs, the n PPDUs are PPDUs sent by the first device, and n is greater than or equal to 1.
  • At least one PPDU in the n PPDUs is used for communication between the first device and the third device.
  • the channel awareness information includes at least one of the following:
  • Channel state information CSI multiple-input multiple-output MIMO parameters of CSI, identification of PPDU corresponding to CSI, address information of this part or all of PPDU.
  • the number of PPDUs included in the part or all of the PPDUs is m, m is greater than or equal to 1, and m is less than or equal to n;
  • the m PPDUs contained in the part or all of the PPDUs are respectively located in the m PPDU sets in the n PPDUs, and the m PPDU sets include the adjacent first PPDU set and the second PPDU set, and the first PPDU
  • the change information between the CSI corresponding to the PPDUs in the set and the CSI corresponding to the PPDUs in the second PPDU set is greater than the first threshold.
  • the change information between the CSI corresponding to the PPDU in the first PPDU set and the CSI corresponding to the PPDU in the second PPDU set is greater than a first threshold, including:
  • the change information between the CSI corresponding to any PPDU in the first PPDU set and the CSI corresponding to any PPDU in the second PPDU set is greater than the first threshold
  • the change information between the CSI corresponding to one of the PPDUs in the first PPDU set and the CSI corresponding to one of the PPDUs in the second PPDU set is greater than the first threshold.
  • the CSI change information corresponding to at least two PPDUs included in the first PPDU set is smaller than the second threshold.
  • the n PPDUs satisfy at least one of the following:
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the third device; or,
  • the receiving address field of at least one PPDU in the n PPDUs is used to indicate the second device; or,
  • At least one PPDU in the n PPDUs is a PPDU sent by broadcast.
  • the first frame includes at least one of the following:
  • the starting time information of channel sensing the duration information of channel sensing, the frequency band information of channel sensing, the indication information for indicating whether to feed back the change of CSI, and the address information of PPDU of channel sensing.
  • the sending unit 1801 is further configured to send a response frame of the first frame to the first device; wherein,
  • the response frame of the first frame is used to indicate whether the second device agrees to channel sensing; or,
  • the response frame of the first frame is used to indicate whether the second device receives the first frame.
  • Both the first frame and the response frame of the first frame are management frames, wherein,
  • the value of the subtype field in the frame control field in the first frame is 0111, and the value of the subtype field in the response frame of the first frame is 1111; or,
  • the value of the subtype field in the frame control field in the first frame is 1111, and the value of the subtype field in the response frame of the first frame is 0111.
  • Both the first frame and the response frame of the first frame are functional frames, wherein,
  • the public function field in the first frame takes any value from 34 to 255, and the public function field in the response frame of the first frame takes any value from 34 to 255.
  • the sending unit 1801 is further configured to send a third frame to the second device, where the third frame includes channel change information between the first device and the second device, and the channel change information is determined based on the n PPDUs .
  • the receiving unit 1802 is further configured to receive a first trigger frame from the first device, where the first trigger frame includes resource unit RU information bearing channel change information; wherein,
  • the RU information bearing channel change information indicates the RU corresponding to the second device.
  • the RU information bearing channel change information indicates the RU used for random access.
  • the third frame is borne by the RU based on contention channel access.
  • the third frame further includes at least one of the following:
  • the receiving unit 1802 is further configured to receive a second trigger frame from the first device, where the second trigger frame includes RU information carrying channel awareness information; wherein,
  • the RU information bearing the channel sensing information indicates the RU corresponding to the second device; or,
  • the RU information bearing the channel awareness information indicates the RU used for competing for access.
  • the second frame is carried by an RU that is accessed based on a contention channel.
  • the receiving unit 1802 is further configured to receive a fourth frame from the first device, where the fourth frame includes at least one of the following fields:
  • a first field to indicate whether there is beamforming or precoding
  • a second field to indicate whether to change the transmit power or,
  • a third field used to indicate whether to change beamforming-precoding.
  • a fourth field for indicating the beamforming matrix-precoding matrix is indicating the beamforming matrix-precoding matrix
  • the sixth field is used to indicate the transmit power value.
  • the apparatus 1800 can also be used to execute other aforementioned embodiments and achieve corresponding beneficial effects.
  • FIG. 19 is a schematic structural diagram of an apparatus 1900 provided by an embodiment of the present application.
  • the apparatus 1900 includes a processor 1901 and a transceiver 1902 .
  • the device 1900 may be a wireless frame sending device or a wireless frame receiving device, or a chip therein.
  • FIG. 19 shows only the main components of the device 1900 .
  • the device may further include a memory 1903 and an input and output device (not shown in the figure).
  • the processor 1901 is mainly used to process communication protocols and communication data, control the entire device, execute software programs, and process data of the software programs.
  • the memory 1903 is mainly used to store software programs and data.
  • the transceiver 1902 may include a radio frequency circuit and an antenna, and the radio frequency circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1901, the transceiver 1902, and the memory 1903 may be connected through a communication bus.
  • the processor 1901 can read the software program in the memory 1903, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1901 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1901, and the processor 1901 converts the baseband signal into data and processes the data .
  • the processor 1901 may include a communication interface for implementing receiving and sending functions.
  • the communication interface may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1901 may store instructions, the instructions may be computer programs, and the computer programs run on the processor 1901 to enable the device 1900 to execute the method described in any of the above embodiments.
  • the computer program may be fixed in the processor 1901, and in this case, the processor 1901 may be implemented by hardware.
  • the apparatus 1900 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in any of the foregoing embodiments.
  • the processor and communication interface described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency integrated circuit, RFIC), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and communication interface can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the radio frequency circuit and antenna may be set independently of the processor performing baseband processing.
  • the radio frequency circuit and antenna may be independent from the device and arranged remotely.
  • a device may be a stand-alone device or may be part of a larger device.
  • the device could be:
  • a set of one or more ICs may also include storage components for storing data and instructions;
  • ASIC such as modem (Modem);
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the processor 1901 may be used to perform, for example but not limited to, baseband related processing
  • the transceiver 1902 may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices can be arranged on independent chips, or at least partly or all of them can be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (system on chip). Whether each device is independently arranged on different chips or integrated and arranged on one or more chips often depends on the specific needs of product design.
  • the embodiments of the present application do not limit the specific implementation forms of the foregoing devices.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored, and when the above-mentioned processor executes the computer program code, the electronic device executes the method in any one of the above-mentioned embodiments.
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the preceding embodiments.
  • the embodiment of the present application also provides a device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device performs any of the aforementioned A method in one embodiment.
  • An embodiment of the present application further provides a WLAN communication system, including the first device and the second device in any one of the foregoing embodiments.
  • the WLAN communication system further includes other devices, for example, a third device.
  • the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,用于满足通信需求的同时,实现不同装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。在该方法中,第一装置向第二装置发送第一帧,该第一帧用于请求信道感知;该第一装置接收来自该第二装置的第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。

Description

一种通信方法及装置
本申请要求于2021年11月25日提交中国国家知识产权局,申请号为202111417500.1,发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线局域网(wireless local arer networks,WLAN)技术领域,尤其涉及一种通信方法及装置。
背景技术
在WLAN通信中,由于WLAN设备的广泛部署以及感知(Sensing)需求的增加,利用普遍易获得的WLAN设备所传输的无线信号进行感知,是目前研究的热点。
其中,WLAN设备发出的信号通常会经由各种障碍物的反射、衍射和散射后才被接收,这种现象使得实际接收到的信号往往是多路信号叠加得到的,为通信带来了干扰。但从另一个角度而言,这也为通过无线信号感知其所经过的物理环境带来了便利。通过分析被各种障碍物影响后的无线信号,可以推断或感知WLAN设备周围的环境。
然而,在WLAN通信中,如何基于传输的信号进行感知,是一个亟待解决的技术问题。
发明内容
本申请提供了一种通信方法及装置,用于满足通信需求的同时,实现不同装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。
本申请第一方面提供了一种通信方法,应用于WLAN系统,该方法由WLAN设备执行,或者,该方法由WLAN设备中的部分组件执行。其中,WLAN设备可以包括站点(station,STA)或接入点(access point,AP),WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。在第一方面及其可能的实现方式中,以第一装置作为执行该方法的WLAN设备为例进行描述。在该方法中,第一装置向第二装置发送第一帧,该第一帧用于请求信道感知;该第一装置接收来自该第二装置的第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个(physical protocol data unit,PPDU)中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
需要说明的是,本申请实施例中,第一装置与第二装置之间的信道感知信息,也可以表述为,第一装置与该第二装置之间的(周围/物理)环境感知信息,也可以表述为,第一装置与该第二装置之间的感知信息,也可以表述为,第一装置与该第二装置之间的感知测量信息,也可以表述为,第一装置与该第二装置之间的感知反馈信息。
此外,本申请实施例中,n个PPDU为该第一装置所发送的PPDU包括:n个PPDU为第一装置向其它装置发送的PPDU。其中,其它装置可以包括第二装置和/或不同于该第二装置的装置(例如后文提及的第三装置),此处不做限定。
基于上述技术方案,第一装置发送用于请求信道感知的第二装置之后,第二装置可以 基于第一装置所发送的n个PPDU进行信道感知,以确定n个PPDU中的部分或全部PPDU在第一装置与第二装置之间进行传输的信道感知信息。此后,第一装置接收来自第二装置的包含有该信道感知信息的第二帧,以实现信道感知的过程。从而,基于第一装置所发送的n个PPDU,在满足第一装置的通信需求的同时,也可以实现不同装置之间的信道感知过程,提升了WLAN系统的通信效率并节省开销。
本申请第二方面提供了一种通信方法,应用于WLAN系统,该方法由WLAN设备执行,或者,该方法由WLAN设备中的部分组件执行。其中,WLAN设备可以包括STA或AP,WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。在第二方面及其可能的实现方式中,以第二装置作为执行该方法的WLAN设备为例进行描述。在该方法中,第二装置接收来自第一装置的第一帧,该第一帧用于请求信道感知;该第二装置向该第一装置发送第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
基于上述技术方案,第二装置接收用于请求信道感知的第二装置之后,第二装置可以基于第一装置所发送的n个PPDU进行信道感知,以确定n个PPDU中的部分或全部PPDU在第一装置与第二装置之间进行传输的信道感知信息。此后,第二装置向第一装置发送包含有该信道感知信息的第二帧,以实现信道感知的过程。从而,基于第一装置所发送的n个PPDU,在满足第一装置的通信需求的同时,也可以实现不同装置之间的信道感知过程,提升了WLAN系统的通信效率并节省开销。
在第一方面或第二方面的一种可能的实现方式中,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。
需要说明的是,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信包括:该n个PPDU中的至少一个PPDU用于该第一装置和第三装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
基于上述技术方案,第一装置与该第二装置之间的信道感知信息基于n个PPDU中的部分或全部PPDU所确定。由于第二装置不同于第三装置且该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信,使得第一装置和第二装置之间的信道感知信息的确定过程中,复用了用于其他装置进行通信的PPDU。从而,在满足第一装置与第三装置的通信需求的同时,也可以实现第一装置与第二装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。
在第一方面或第二方面的一种可能的实现方式中,该信道感知信息包括以下至少一项:信道状态信息(channel state information,CSI),CSI的多输入多输出(multiple input multiple output,MIMO)参数,CSI对应的PPDU的标识,该部分或全部PPDU的地址信息。
基于上述技术方案,第二装置发送的第二帧所包含的第一装置与第二装置之间的信道感知信息中,具体可以包括上述至少一项信息,以实现向第一装置指示该信道感知信息所对应的一种或多种信息。
示例性的,信道感知信息所包含的CSI可以指示第一装置与第二装置之间的信道的信道状态,以使得第一装置明确该信道状态。信道感知信息所包含的CSI的MIMO参数可以指示在第一装置与第二装置之间传输的信号的MIMO参数,以使得第一装置明确该信号对应的MIMO参数。信道感知信息所包含的CSI对应的PPDU的标识可以指示信道感知信息所包含的CSI对应的PPDU,以使得第一装置明确该CSI对应的PPDU。信道感知信息所包含的部分或全部PPDU的地址信息可以指示信道感知信息为基于该地址信息所对应的PPDU所确定,以使得第一装置明确信道感知信息为基于该地址信息所对应的PPDU所确定。
在第一方面或第二方面的一种可能的实现方式中,该部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n;
其中,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中,该m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
基于上述技术方案,该第二帧所包含的信道感知信息为基于m个PPDU所确定,换言之,第二帧包括该m个PPDU对应的信道感知信息。其中,m个PPDU分别位于该n个PPDU中的m个PPDU集合中,对于该m个PPDU集合中相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。换言之,在n个PPDU中的m个PPDU集合中,相邻的PPDU集合所包含的PPDU对应的CSI的变化较大。从而,第二帧所包含的信道感知信息对应于CSI变化较大的相邻PPDU集合中的PPDU,使得第二帧的接收方可以明确第二帧所包含的不同信道感知信息之间的差异。
此外,在m小于n的情况下,使得第二装置无需反馈n个PPDU中所有PPDU对应的信道感知信息,以节省开销。
可选的,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中包括,该部分或全部PPDU所包含的m个PPDU分别为该n个PPDU中的m个PPDU集合的第一个PPDU。
可选的,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中包括,该部分或全部PPDU所包含的m个PPDU分别为该n个PPDU中的m个PPDU集合的最后一个PPDU。
在第一方面或第二方面的一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:
该第一PPDU集合中的任一PPDU对应的CSI与该第二PPDU集合中的任一PPDU对应的CSI之间的变化信息大于该第一阈值;
或,
该第一PPDU集合中的其中一个PPDU对应的CSI与该第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
在第一方面或第二方面的一种可能的实现方式中,该第一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
基于上述技术方案,该第二帧所包含的信道感知信息为基于m个PPDU所确定,换言之,第二帧包括该m个PPDU对应的信道感知信息。其中,m个PPDU分别位于该n个PPDU中的m个PPDU集合中,对于该m个PPDU集合中的任意一个PPDU集合(例如第一PPDU集合),在该PPDU集合内包含有至少两个PPDU时,该至少两个PPDU对应的CSI的变化信息小于第二阈值。换言之,第二帧所包含的信道感知信息对应于CSI变化较大的相邻PPDU集合中的某一个PPDU。使得第二装置无需反馈m个PPDU集合中每一个PPDU集合所包含的所有PPDU对应的信道感知信息,以节省开销。
需要说明的是,本申请实施例中,第一阈值和第二阈值之间的关联关系不做限定,例如,第一阈值可以等于第二阈值,第一阈值可以大于第二阈值。
可选的,该第一PPDU集合所包含的至少两个PPDU中,相邻的两个PPDU对应的CSI的变化信息小于第二阈值。
可选的,该第二PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
可选的,该第二PPDU集合所包含的至少两个PPDU中,相邻的两个PPDU对应的CSI的变化信息小于第二阈值。
可选的,该m个PPDU集合中的任一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
可选的,该m个PPDU集合中的任一PPDU集合所包含的至少两个PPDU中,相邻的两个PPDU对应的CSI的变化信息小于第二阈值。
在第一方面或第二方面的一种可能的实现方式中,该n个PPDU满足以下至少一项:
该n个PPDU中的至少一个PPDU的接收地址(receiver address,RA)字段用于指示第三装置;或,
该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置;或,
该n个PPDU中的至少一个PPDU为广播发送的PPDU。
可选的,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。换言之,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置包括:该n个PPDU中的至少一个PPDU用于该第一装置和第三装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
可选的,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第二装置,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和第二装置通信。换言之,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第二装置包括:该n个PPDU中的至少一个PPDU用于该第一装置和第二装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
可选的,该n个PPDU中的至少一个PPDU为广播发送的PPDU,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和至少两个装置通信。换言之,该n个PPDU中的至少一个PPDU为广播发送的PPDU包括:该n个PPDU中的至少一个PPDU用于该第一装置和至 少两个装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
基于上述技术方案,第一装置与该第二装置之间的信道感知信息基于n个PPDU中的部分或全部PPDU所确定。由于该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置,即用于该第一装置和第三装置通信(或该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置,即用于该第一装置和第二装置通信;或该n个PPDU中的至少一个PPDU为广播发送的PPDU,即用于第一装置的广播通信),使得第一装置和第二装置之间的信道感知信息的确定过程中,复用了用于通信的PPDU。从而,在满足第一装置的通信需求的同时,也可以实现第一装置与第二装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。
在第一方面或第二方面的一种可能的实现方式中,该第一帧包括以下至少一项:信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。
基于上述技术方案,第一装置所发送的用于请求信道感知的第一帧中,可以包括上述至少一项信息,以实现向第一装置指示所请求的信道感知所对应的一种或多种信息。
示例性的,第一帧所包含的信道感知的起始时刻信息用于指示信道感知的起始时刻,以使得第二装置明确何时开始执行信道感知。第一帧所包含的信道感知的持续时长信息用于指示信道感知的持续时长,以使得第二装置明确执行信道感知的持续时长。第一帧所包含的信道感知的频段信息用于指示信道感知的频段,以使得第二装置明确用于信道感知的PPDU所在的频段。第一帧所包含的用于指示是否反馈CSI的变化的指示信息,用于使得第二装置明确执行信道感知的持续时长。第一帧所包含的信道感知的PPDU的地址信息用于指示用于信道感知的PPDU的地址信息,以使得第二装置明确用于信道感知的PPDU的地址信息,以避免混淆。
上述第一方面所涉及的通信方法中,第一装置还可以用于执行以下实现方式中的一种或多种所涉及的过程。
在第一方面的一种可能的实现方式中,在该第一装置接收来自该第二装置的第二帧之前,该方法还包括:该第一装置接收来自该第二装置的该第一帧的响应帧;其中,该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
基于上述技术方案,第一装置向第二装置发送用于请求信道感知的第一帧之后,第二装置可以基于该第一帧向第一装置发送第一帧的响应帧,以使得第一装置基于该第一帧的响应帧明确该第一装置是否同意信道感知(或明确该第一装置是否接收到该第一帧)。
在第一方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在第一方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在第一方面的一种可能的实现方式中,在该第一装置向第二装置发送第一帧之后,该方法还包括:该第一装置接收来自该第二装置的第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
基于上述技术方案,在该第一装置向第二装置发送用于指示请求信道感知的第一帧之后,第一装置接收来自该第二装置的包含有该第一装置和该第二装置之间的信道变化信息的第三帧,使得第一装置明确该第一装置和该第二装置之间的信道变化。
可选的,第一装置可以基于该第三帧所包含的信道变化信息确定该第一装置和该第二装置之间的环境变化,例如该第一装置和该第二装置之间的物体移动,用户在该第一装置和该第二装置之间的手势动作等。
可选的,第三帧所包含的信道变化信息指示该第一装置和该第二装置之间的信道无变化(或变化小于第三阈值时),第一装置无需接收第二帧,换言之,第二装置无需发送第二帧。
可选的,信道变化信息与信道感知信息可以承载于同一帧中,例如,信道变化信息与信道感知信息均承载于第二帧,或,信道变化信息与信道感知信息均承载于第三帧中。
在第一方面的一种可能的实现方式中,在该第一装置接收来自该第二装置的第三帧之前,该方法还包括:该第一装置向该第二装置发送第一触发帧,该第一触发帧包括承载信道变化信息的资源单元(resource unit,RU)信息;其中,该承载信道变化信息的RU信息指示该第二装置对应的RU;或,该承载信道变化信息的RU信息指示用于随机接入的RU。
在第一方面的一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
基于上述技术方案,第一装置(和/或第二装置)可以基于多种方式确定承载第三帧的RU,例如第一装置(和/或第二装置)可以基于第一触发帧的指示确定承载第三帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第三帧;又如,第一装置(和/或第二装置)可以将用于随机接入的RU作为承载第三帧的RU,从而,无需第一装置的指示以节省开销的同时,也可以使得第二装置在自行决定发送第三帧的时机(例如,仅在该信道变化信息指示的变化较大时才发送第三帧),进一步节省开销。
在第一方面的一种可能的实现方式中,该第三帧还包括以下至少一项:该第二装置的位置变化信息;或,该n个PPDU中的部分或全部PPDU的地址信息。
基于上述技术方案,包含有该第一装置和该第二装置之间的信道变化信息的第三帧中,还可以包括上述至少一项信息,以使得第一装置基于第二装置所发送的第三帧明确该信道变化的相关信息。
示例性的,由于第二装置的位置变化也有可能会导致第一装置和第二装置之间的信道 产生变化,第三帧所包含的该第二装置的位置变化信息用于指示该第二装置的位置变化,以使得第一装置明确第二装置的位置变化,并基于该位置变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。第三帧所包含的该n个PPDU中的部分或全部PPDU的地址信息指示该信道变化信息所对应的PPDU的地址信息,以使得第二装置明确该信道变化信息所对应的PPDU的地址信息,以避免混淆。
在第一方面的一种可能的实现方式中,在该第一装置接收来自该第二装置的第二帧之前,该方法还包括:该第一装置向该第二装置发送第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,该承载信道感知信息的RU信息指示该第二装置对应的RU;或,该承载信道感知信息的RU信息指示用于竞争接入的RU。
在第一方面的一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
基于上述技术方案,第一装置(和/或第二装置)可以基于多种方式确定承载第二帧的RU,例如第一装置(和/或第二装置)可以基于第二触发帧的指示确定承载第二帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第二帧;又如,第一装置(和/或第二装置)可以将用于随机接入的RU作为承载第二帧的RU,从而,无需第一装置的指示以节省开销的同时,也可以使得第二装置在自行决定发送第二帧的时机(例如,仅在该信道感知信息对应的数据量达到阈值时才发送第二帧),进一步节省开销。
在第一方面的一种可能的实现方式中,在该第一装置接收来自该第二装置的第二帧之前,该方法还包括:该第一装置向该第二装置发送第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
基于上述技术方案,由于第一装置的发射参数的变化也有可能会导致第一装置和第二装置之间的信道产生变化,第四帧所包含的信息用于指示该参数变化,以使得第二装置明确第以装置的参数变化,并基于该参数变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。
可选的,在该第一装置接收来自该第二装置的第二帧之前,该方法还包括:该第一装置向该第二装置发送第四帧,该第四帧包括第一装置的发射参数的变化信息。
可选的,第一装置的发射参数的变化信息包括上述第一字段、第二字段、第三字段和第四字段中的至少一个字段。
可选的,第一装置在发送n个PPDU的过程中,不改变发射参数。
上述第二方面所涉及的通信方法中,第二装置还可以用于执行以下实现方式中的一种或多种所涉及的过程。
在第二方面的一种可能的实现方式中,在该第二装置向该第一装置发送第二帧之前,该方法还包括:该第二装置向该第一装置发送该第一帧的响应帧;其中,该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
基于上述技术方案,第二装置接收来自第一装置的用于请求信道感知的第一帧之后,第二装置可以基于该第一帧向第一装置发送第一帧的响应帧,以使得第一装置基于该第一帧的响应帧明确该第一装置是否同意信道感知(或明确该第一装置是否接收到该第一帧)。
在第二方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在第二方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在第二方面的一种可能的实现方式中,在该第二装置接收来自该第二装置的第一帧之后,该方法还包括:该第二装置向该第二装置发送第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
基于上述技术方案,在该第二装置接收来自第一装置的用于指示请求信道感知的第一帧之后,第二装置向第一装置发送包含有该第一装置和该第二装置之间的信道变化信息的第三帧,使得第一装置明确该第一装置和该第二装置之间的信道变化。
可选的,第三帧所包含的信道变化信息指示该第一装置和该第二装置之间的信道无变化(或变化小于第三阈值时),第一装置可以无需接收第二帧,换言之,第二装置可以无需发送第二帧。
可选的,信道变化信息与信道感知信息可以承载于同一帧中,例如,信道变化信息与信道感知信息均承载于第二帧,或,信道变化信息与信道感知信息均承载于第三帧中。
在第二方面的一种可能的实现方式中,在该第二装置向该第二装置发送第三帧之前,该方法还包括:该第二装置接收来自该第一装置的第一触发帧,该第一触发帧包括承载信道变化信息的资源单元RU信息;其中,该承载信道变化信息的RU信息指示该第二装置对应的RU;或,该承载信道变化信息的RU信息指示用于随机接入的RU。
在第二方面的一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
基于上述技术方案,第一装置(和/或第二装置)可以基于多种方式确定承载第三帧的RU,例如第一装置(和/或第二装置)可以基于第一触发帧的指示确定承载第三帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第三帧;又如,第一装置(和/或第二装置)可以将用于随机接入的RU作为承载第三帧的RU,从而,无需第一装置的指示以节 省开销的同时,也可以使得第二装置在自行决定发送第三帧的时机(例如,仅在该信道变化信息指示的变化较大时才发送第三帧),进一步节省开销。
在第二方面的一种可能的实现方式中,该第三帧还包括以下至少一项:该第二装置的位置变化信息;或,该n个PPDU中的部分或全部PPDU的地址信息。
基于上述技术方案,包含有该第一装置和该第二装置之间的信道变化信息的第三帧中,还可以包括上述至少一项信息,以使得第一装置基于第二装置所发送的第三帧明确该信道变化的相关信息。
示例性的,由于第二装置的位置变化也有可能会导致第一装置和第二装置之间的信道产生变化,第三帧所包含的该第二装置的位置变化信息用于指示该第二装置的位置变化,以使得第一装置明确第二装置的位置变化,并基于该位置变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。第三帧所包含的该n个PPDU中的部分或全部PPDU的地址信息指示该信道变化信息所对应的PPDU的地址信息,以使得第二装置明确该信道变化信息所对应的PPDU的地址信息,以避免混淆。
在第二方面的一种可能的实现方式中,在该第二装置向该第一装置发送第二帧之前,该方法还包括:该第二装置接收来自该第一装置的第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,该承载信道感知信息的RU信息指示该第二装置对应的RU;或,该承载信道感知信息的RU信息指示用于竞争接入的RU。
在第二方面的一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
基于上述技术方案,第一装置(和/或第二装置)可以基于多种方式确定承载第二帧的RU,例如第一装置(和/或第二装置)可以基于第二触发帧的指示确定承载第二帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第二帧;又如,第一装置(和/或第二装置)可以将用于随机接入的RU作为承载第二帧的RU,从而,无需第一装置的指示以节省开销的同时,也可以使得第二装置在自行决定发送第二帧的时机(例如,仅在该信道感知信息对应的数据量达到阈值时才发送第二帧),进一步节省开销。
在第二方面的一种可能的实现方式中,在该第二装置向该第一装置发送第二帧之前,该方法还包括:该第二装置接收来自该第一装置的第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
基于上述技术方案,由于第一装置的发射参数的变化也有可能会导致第一装置和第二装置之间的信道产生变化,第四帧所包含的信息用于指示该参数变化,以使得第二装置明确第以装置的参数变化,并基于该参数变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。
可选的,在该第一装置接收来自该第二装置的第二帧之前,该方法还包括:该第一装置向该第二装置发送第四帧,该第四帧包括第一装置的发射参数的变化信息。
可选的,第一装置的发射参数的变化信息包括上述第一字段、第二字段、第三字段和第四字段中的至少一个字段。
可选的,第一装置在发送n个PPDU的过程中,不改变发射参数。
本申请第三方面提供了一种装置,应用于WLAN系统,该装置可以为WLAN设备,或者,该装置可以为WLAN设备中的部分组件。其中,WLAN设备可以包括STA或AP,WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。在第三方面及其可能的实现方式中,以第一装置作为WLAN设备为例进行描述。
在该装置中,包括发送单元和接收单元;
该发送单元,用于向第二装置发送第一帧,该第一帧用于请求信道感知;
该接收单元,用于接收来自该第二装置的第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
本申请第四方面提供了一种装置,应用于WLAN系统,该装置可以为WLAN设备,或者,该装置可以为WLAN设备中的部分组件。其中,WLAN设备可以包括STA或AP,WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。在第四方面及其可能的实现方式中,以第二装置作为WLAN设备为例进行描述。
在该装置中,包括发送单元和接收单元;
该接收单元,用于接收来自第一装置的第一帧,该第一帧用于请求信道感知;
该发送单元,用于向该第一装置发送第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
在第三方面或第四方面的一种可能的实现方式中,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。
在第三方面或第四方面的一种可能的实现方式中,该信道感知信息包括以下至少一项:
信道状态信息CSI,CSI的多输入多输出MIMO参数,CSI对应的PPDU的标识,该部分或全部PPDU的地址信息。
在第三方面或第四方面的一种可能的实现方式中,
该部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n;
其中,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中,该m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
在第三方面或第四方面的一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:
该第一PPDU集合中的任一PPDU对应的CSI与该第二PPDU集合中的任一PPDU对应的 CSI之间的变化信息大于该第一阈值;
或,
该第一PPDU集合中的其中一个PPDU对应的CSI与该第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
在第三方面或第四方面的一种可能的实现方式中,
该第一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
在第三方面或第四方面的一种可能的实现方式中,该n个PPDU满足以下至少一项:
该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置;或,
该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置;或,
该n个PPDU中的至少一个PPDU为广播发送的PPDU。
在第三方面或第四方面的一种可能的实现方式中,该第一帧包括以下至少一项:
信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。
上述第三方面所涉及的通信过程中,第一装置还可以用于执行以下实现方式中的一种或多种所涉及的通信过程。
在第三方面的一种可能的实现方式中,
该接收单元,还用于接收来自该第二装置的该第一帧的响应帧;其中,
该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,
该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
在第三方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在第三方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在第三方面的一种可能的实现方式中,
该接收单元,还用于接收来自该第二装置的第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
在第三方面的一种可能的实现方式中,
该发送单元,还用于向该第二装置发送第一触发帧,该第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
该承载信道变化信息的RU信息指示该第二装置对应的RU;或,
该承载信道变化信息的RU信息指示用于随机接入的RU。
在第三方面的一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
在第三方面的一种可能的实现方式中,该第三帧还包括以下至少一项:
该第二装置的位置变化信息;或,
该n个PPDU中的部分或全部PPDU的地址信息。
在第三方面的一种可能的实现方式中,
该发送单元,还用于该第二装置发送第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,
该承载信道感知信息的RU信息指示该第二装置对应的RU;或,
该承载信道感知信息的RU信息指示用于竞争接入的RU。
在第三方面的一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
在第三方面的一种可能的实现方式中,
该发送单元,还用于向该第二装置发送第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
上述第四方面所涉及的通信过程中,第二装置还可以用于执行以下实现方式中的一种或多种所涉及的通信过程。
在第四方面的一种可能的实现方式中,
该发送单元,还用于向该第一装置发送该第一帧的响应帧;其中,
该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,
该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
在第四方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在第四方面的一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在第四方面的一种可能的实现方式中,
该发送单元,还用于向该第二装置发送第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
在第四方面的一种可能的实现方式中,
该接收单元,还用于接收来自该第一装置的第一触发帧,该第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
该承载信道变化信息的RU信息指示该第二装置对应的RU;或,
该承载信道变化信息的RU信息指示用于随机接入的RU。
在第四方面的一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
在第四方面的一种可能的实现方式中,该第三帧还包括以下至少一项:
该第二装置的位置变化信息;或,
该n个PPDU中的部分或全部PPDU的地址信息。
在第四方面的一种可能的实现方式中,
该接收单元,还用于接收来自该第一装置的第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,
该承载信道感知信息的RU信息指示该第二装置对应的RU;或,
该承载信道感知信息的RU信息指示用于竞争接入的RU。
在第四方面的一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
在第四方面的一种可能的实现方式中,
该接收单元,还用于接收来自该第一装置的第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
本申请实施例第五方面提供了一种装置,包括至少一个处理器,该至少一个处理器与存储器耦合;该存储器用于存储程序或指令;该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请实施例第六方面提供了一种装置,包括至少一个处理器,该至少一个处理器与存储器耦合;该存储器用于存储程序或指令;该至少一个处理器用于执行该程序或指令,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第七方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第八方面提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能实现方式的方法,或者,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第九方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能;或者,用于支持装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功。
在一种可能的设计中,该芯片系统还可以包括存储器,用于保存该装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,该芯片系统还包括接口电路,该接口电路为该至少一个处理器提供程序指令和/或数据。
本申请实施例第十方面提供了一种通信系统,该通信系统包括上述第三方面的装置和第四方面的装置,和/或,该通信系统包括上述第五方面的装置和第六方面的装置。
其中,第五方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同实现方式所带来的技术效果,在此不再赘述。
从以上技术方案可以看出,第一装置发送用于请求信道感知的第二装置之后,第二装置可以基于第一装置所发送的n个PPDU进行信道感知,以确定n个PPDU中的部分或全部PPDU在第一装置与第二装置之间进行传输的信道感知信息。此后,第一装置接收来自第二装置的包含有该信道感知信息的第二帧,以实现信道感知的过程。从而,基于第一装置所发送的n个PPDU,在满足第一装置的通信需求的同时,也可以实现不同装置之间的信道感知过程,提升了WLAN系统的通信效率并节省开销。
附图说明
图1为本申请所应用的通信系统的一个示意图;
图2a为本申请提供的AP的一个示意图;
图2b为本申请提供的STA的一个示意图;
图3a为本申请所涉及的通信方法的一个示意图;
图3b为本申请所涉及的通信方法的另一个示意图;
图4a为本申请所涉及的通信方法的一个示意图;
图4b为本申请所涉及的通信方法的另一个示意图;
图5a为本申请所涉及的通信方法的一个示意图;
图5b为本申请所涉及的通信方法的另一个示意图;
图6为本申请实施例提供的通信方法的一个示意图;
图7a为本申请实施例提供的无线帧的一个示意图;
图7b为本申请实施例提供的无线帧的另一个示意图;
图8为本申请实施例提供的通信方法的另一个示意图;
图9a为本申请实施例提供的无线帧的另一个示意图;
图9b为本申请实施例提供的无线帧的另一个示意图;
图10a为本申请实施例提供的无线帧的另一个示意图;
图10b为本申请实施例提供的无线帧的另一个示意图;
图11a为本申请实施例提供的无线帧的另一个示意图;
图11b为本申请实施例提供的无线帧的另一个示意图;
图12为本申请实施例提供的无线帧的另一个示意图;
图13为本申请所应用的通信系统的另一个示意图;
图14为本申请实施例提供的通信方法的另一个示意图;
图15为本申请实施例提供的通信方法的另一个示意图;
图16为本申请实施例提供的通信方法的另一个示意图;
图17为本申请实施例提供的通信方法的另一个示意图;
图18为本申请实施例提供的装置的一个示意图;
图19为本申请实施例提供的装置的另一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
在本申请的描述中,“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为便于理解本申请实施例提供的方法,下面将对本申请实施例提供的方法的系统架构进行说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请提供的技术方案可以应用于各种通信系统,例如采用802.11标准的系统。示例性的,802.11标准包括但不限于:802.11be标准或者更下一代的802.11标准。本申请的技术方案适用的场景包括AP与一个或多个STA之间的通信,或AP与AP之间的通信,或STA与STA之间的通信。在本申请实施例中,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
WLAN到目前为止已历经多代,如802.11a/b/g、802.11n、802.11ac、802.11ax和如今正在讨论的802.11be等。其中802.11n标准可以称为高吞吐率(high throughput,HT),802.11ac标准可以称为非常高吞吐率(very high throughput,VHT),802.11ax(Wi-Fi 6)可以称为高效(high efficient,HE),802.11be(Wi-Fi 7)可以称为极高吞吐率(extremely high throughput,EHT),而对于HT之前的标准,如802.11a/b/g等可以统称为非高吞吐率(Non-HT)。
参见图1,图1是本申请实施例提供的无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括一个或多个AP(如图1中的AP100)和一个或多个STA(如图1中的STA200、STA300)。其中,AP和STA支持WLAN通信协议,该通信协议可以包括802.11be(或称为Wi-Fi 7,极高吞吐率(extremely high throughput,EHT)协议),还可以包括802.11ax,802.11ac,802.11bf等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括802.11be的下一代协议等。以WLAN为例,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理系统。
可选的,本申请涉及的接入点(如图1的AP100)是一种具有无线通信功能的装置,支持采用无线局域网(wireless local area networks,WLAN)协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(access point station,AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
可选的,本申请涉及的站点(如图1的STA200或STA300)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功 能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载装置,或娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片和处理系统。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
应理解,802.11标准关注物理(physical layer,PHY)层和介质接入控制(medium access control,MAC)层部分。一个示例中,参见图2a,图2a是本申请实施例提供的接入点的结构示意图。其中,AP可以是多天线/多射频的,也可以是单天线/单射频的,该天线/射频用于发送/接收数据分组(本文中数据分组也可称为物理层协议数据单元,即PPDU)。一种实现中,AP的天线或射频部分可以与AP的主体部分分离,呈拉远布局的结构。图2a中,AP可以包括物理层处理电路和介质接入控制处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。另一个示例中,参见图2b,图2b是本申请实施例提供的站点的结构示意图。图2b示出了单个天线/射频的STA结构示意图,实际场景中,STA也可以是多天线/多射频的,并且可以是两个以上天线的设备,该天线/射频用于发送/接收数据分组。一种实现中,STA的天线或射频部分可以与STA的主体部分分离,呈拉远布局的结构。图2b中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
需要说明的是,本申请实施例涉及WLAN通信,应理解,上述内容仅仅为本申请应用场景的一些示例。
上述内容简要阐述了本申请实施例的系统架构,为更好地理解本申请实施例的技术方案,下面将介绍与本申请实施例相关的信道探测流程。
在一种实现方式中,802.11ac/802.11ax中的信道探测流程通过发送空数据物理层协议数据单元(null data physical layer protocol data unit,NDP)帧来收集相应的CSI信息,然后从CSI信息中提取与环境变化相关的参数来进行感知。802.11ac/802.11ax中只 保留了显式信道探测的方式,即波束赋形发起端发起信道探测,发送NDP,波束赋形响应端接收NDP并进行信道的估计。
802.11ac标准中只定义了一种信道探测反馈方案,其只支持显式反馈机制来传输压缩加权矩阵。采用NDP(即空数据PPDU)帧探测方式减少了系统开销,提高了系统效率。总体流程是波速成形发送端(Beamformer)先发送空数据物理层协议数据单元公告(null data physical layer protocol data unit announcement,NDPA),间隔短帧间间隔(short interframe space,SIFS)之后再发送NDP,此时波速成形接收端(Beamformee)对NDP进行测量,然后将测量的结果反馈给Beamformer。
可选的,针对单个Beamformee和多个Beamformee的反馈会有区别,下面将以VHT通信场景作为示例,结合图3a和图3b进行说明。
例如,在单用户探测时,实现过程可以如图3a所示。在图3a中,Beamformer在发送非常高吞吐率空数据物理层协议数据单元公告(VHT NDP Announcement)以及SIFS之后,该Beamformer发送NDP。此后,单个Beamformee向Beamformer反馈非常高吞吐率压缩波束成形(VHT Compressed Beamforming)矩阵。
又如,在多用户探测时,实现过程可以如图3b所示。在图3b中,以多用户包括三个用户为例。其中,Beamformer在发送非常高吞吐率空数据物理层协议数据单元公告(VHT NDP Announcement)以及SIFS之后,该Beamformer发送NDP。第一个用户(记为Beamformee 1)在SIFS后反馈非常高吞吐率压缩波束成形(VHT Compressed Beamforming)矩阵,但是其他的Beamformee的反馈需要Beamformer发送波束成形轮询(Beamforming Poll)帧进行轮询之后,才可以发送。
此外,在802.11ax中引入了上行多用户(uplink multiple user,UL MU)上链路多用户传输,如果同802.11ac中一样使用轮询的方式进行反馈的话时延较大,反馈的压缩矩阵的时效性很低。因此,在802.11ax中针对多用户MIMO提出了基于波束故障恢复响应触发(beam failure recovery response trigger,BFRP Trigger)波速赋形报告轮询触发器帧的反馈方式。
可选的,针对单个Beamformee和多个Beamformee的反馈会有区别,下面将以HE通信场景作为示例,结合图4a和图4b进行说明。
例如,在单用户探测时,实现过程可以如图4a所示。在图4a中,Beamformer在发送高效空数据物理层协议数据单元公告(HE NDP Announcement)以及SIFS之后,该Beamformer发送高效探测空数据物理层协议数据单元公告(HE sounding NDP)。此后,单个Beamformee向Beamformer反馈高效压缩波束成形(HE Compressed Beamforming)矩阵或信道质量指示(channel quality indicator,CQI)。
又如,在多用户探测时,实现过程可以如图4b所示。在图4b中,以多用户包括n(n大于2)个用户为例。其中,Beamformer在发送高效空数据物理层协议数据单元公告(HE NDP Announcement)以及SIFS之后,该Beamformer发送高效探测空数据物理层协议数据单元公告(HE sounding NDP)。多个用户(包括HE Beamformee 1、HE Beamformee 2...HE Beamformee n)基于BFRP Trigger的触发,在一个或多个序列(one or more sequences)上反馈测量 结果(包括HE Compressed Beamforming/CQI 1、HE Compressed Beamforming/CQI 2...HE Compressed Beamforming/CQI n)。
可选的,在802.11be(EHT)中,NDP的格式如下表1所示。
表1
Figure PCTCN2022133631-appb-000001
可选的,上述实现过程中,NDP的作用在于:无线信号的接收方可以基于EHT-LTF字段进行信道的测量,从而进一步根据测量信息进行感知。
随着WLAN通信技术的发展,由于WLAN设备的广泛部署以及感知(Sensing)需求的增加,利用普遍易获得的WLAN设备所传输的无线信号进行感知,是目前研究的热点。其中,WLAN设备发出的信号通常会经由各种障碍物的反射、衍射和散射后才被接收,这种现象使得实际接收到的信号往往是多路信号叠加得到的,为通信带来了干扰。但从另一个角度而言,这也为通过无线信号感知其所经过的物理环境带来了便利。通过分析被各种障碍物影响后的无线信号,可以推断或感知WLAN设备周围的环境,由此衍生出WLAN Sensing技术。
在WLAN Sensing技术中,有四个角色需要明确,包括:
感知发起端:发起一个感知过程的站点(Sensing initiator:a STA that initiates a WLAN sensing procedure);
感知响应端:参与一个由感知发起端发起的感知过程的站点(Sensing responder:a STA that participates in a WLAN sensing procedure initiated by a sensing initiator);
感知发送端:在感知过程内发送用于感知测量的PPDU的站点(Sensing transmitter:a STA that transmits PPDUs used for sensing measurements in a sensing procedure);
感知接收端:在感知过程内接收感知发送端发送的PPDU且进行感知测量的站点(Sensing receiver:a STA that receives PPDUs sent by a sensing transmitter and performs sensing measurements in a sensing procedure)。
在一种感知过程的设计示意示例中,感知流程主要分为5类环节:
A.感知会话建立(Sensing session setup):表示站点间建立一个感知会话。相关的一些参数可以在这里交互(具体待定)。
可选的:感知会话是一个感知发起端和一个感知响应端达成的两站点间的协议。一个感知发起端可以与多个感知响应端保持感知会话(但仍然需要一个个建立,如通过OFDMA方式、MU-MIMO方式等)。
B.测量建立(Measurement setup):用于感知发起端与响应端交换和统一某些在感知过程中需要使用的参数、属性等,如感知发起端、响应端的角色(如感知发送端、感知接收端)、测量反馈类型等参数。
C.测量实体(Measurement instance):感知测量在感知测量实体中发生,一个感知测量实体中允许多个感知响应端的加入。
D.测量建立终止(Measurement setup termination):测量建立终止用于终于某个感知响应端对应的Measurement setup对应过程,及该响应端不在与对应的measurement setup绑定,但可以仍在感知会话中。
E.感知会话终止(Sensing session termination):表示感知会话的终止,站点不再参与感知测量等过程。
为了更清晰的表明上述过程如何运作,下面将结合图5a介绍给感知过程的示意图。如图5a所示,给了感知过程中16个环节的示意,这16个环节能够清楚地表明现有的感知过程的流程。具体过程如下所述:
环节1,即前述环节A会话建立(session setup),表示将MAC地址为A(记为MAC AD DR=A)、关联标识(association identification,AID)为1(记为AID=1)的站点加入感知会话,即感知会话建立过程。
环节2,即前述环节B测量建立(Measurement setup),作用是为该站点配置相关参数,即感知测量建立。
可选的,为了清晰识别,该环节可以采用给感知测量建立标号的方式(记为Measurement setup ID=1)。
环节3,即前述环节C测量实体(Measurement instance)、测量(Measurement)和反馈(reporting)。
可选的,该环节为测量实体,一个测量实体与一个感知测量建立标识绑定,因此该测量实体中可以对AID=1的站点进行测量,每个测量实体也有对应的标号(记为Measurement instance ID=1,Measurement setup ID=1,AID=1)。
综上,环节1、2、3的作用是将站点加入感知会话并开始测量与反馈。
环节4,即测量实体(Measurement instance)、测量(Measurement)和反馈(reporting)。
标识又有一个测量实体发生,为与前面的测量实体区别,这里测量实体的标识+1,即变成了Measurement setup 1下的Measurement instance 2(记为Measurement instance ID=2,Measurement setup ID=1,AID=1)。
环节5、6与前面环节2、3类似,功能是对站点配置Measurement setup 2并进行测量与反馈。
环节7、8、9的作用于1、2、3类似,是将未关联标识(unassociated association identification,AID)2(记为UID=2)的站点将入感知会话并赋予Measurement setup ID=2,并在其后发生测量实体。
环节10,即前述环节D测量建立终止(Measurement setup termination),表示将AID1与Measurement setup ID=2解绑。
环节11、12与环节2、3类似,表示将UID=2的站点配置Measurement setup ID=1。
环节13,即前述环节E感知会话终止(Sensing session termination),表示AID=1的站点退出感知会话。
环节14、15、16类似1、2、3,表示将AID=3的站点加入感知会话且绑定Measurement setup ID=2,因此在环节16中可以看到测量实体中AID=3与UID=2的相应站点可以同时参与感知测量与反馈。
可选的,如图5b所示的四类环节(即环节A、环节B和环节D以及环节E)属于一对一的建立环节,以感知会话建立环节为例,一个感知会话建立对应一个感知发起端与一个感知响应端。当然,感知发起端也可以同时与多个站点建立该过程,如采用OFDMA或MU-MIMO等形式,但这属于同时建立了多个感知会话,并不能算作一个感知会话。
可选的,对于测量实体环节,则与上述四个环节不一样,一个测量实体中可以有一对多的情况发生,如一对多的声明与触发等。
在一种可能的实现方式中,测量实体可以包括基于触发的感知测量实体(TB sensing measurement instance)与基于非触发的感知测量实体(Non-TB sensing measurement instance)。其中,基于触发的感知测量实体包括如下阶段:询问阶段(Polling phase)、NDP声明探测阶段(NDPA sounding)、触发帧探测阶段(TF sounding),报告阶段等。
可选的,询问阶段的作用是确认被询问的站点可以参与本次测量实体中的测量与反馈。
可选的,在NDP声明探测阶段中,感知发起端可以通过NDPA(NDP Announcement)来告知对应站点紧随其后自己将会发送一个NDP,其中,NDPA用于告知需要侦听NDP的站点以及其他配置信息,对应站点可以测量后面发送的NDP来获知信道信息。
可选的,在触发帧探测阶段中,感知发起端可以通过触发帧来触发对端进行NDP的传输,并对传输的NDP进行测量从而进行感知。
然而,上述感知测量流程需要通过建立专门的感知会话来进行感知,并未提供利用非感知的PPDU进行感知的方式。
此外,上述感知测量流程以及前述信道探测过程中,均需要发送NDPA帧并发送专门的NDP来进行信道测量。换言之,需要收发专门用于信道探测的NDPA以及NDP,才可以实现信道探测或信道感知,导致开销较大,使得WLAN系统的通信效率较低。
为此,本申请提供了一种通信方法及装置,用于满足通信需求的同时,实现不同装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。下面将结合附图对本申请提供的通信方法进一步介绍。
请参阅图6,为本申请提供的通信方法的一个示意图,该方法包括如下步骤。
S100.第一装置向第二装置发送第一帧。
本实施例中,第一装置在步骤S100中发送第一帧,相应的,第二装置在步骤S100中接收该第一帧。其中,第一帧用于请求信道感知。
需要说明的是,第一装置和/或第二装置可以为WLAN设备,或者,第一装置和/或第二装置可以为WLAN设备中的部分组件。其中,WLAN设备可以包括STA或AP,WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。
例如,第一装置可以为AP(即AP STA),第二装置可以为STA(即non-AP STA)。
又如,第一装置可以为AP(即AP STA),第二装置可以为AP(即AP STA)。
又如,第一装置可以为STA(即non-AP STA),第二装置可以为AP(即AP STA)。
又如,第一装置可以为STA(即non-AP STA),第二装置可以为STA(即non-AP STA)。
可选的,在本申请实施例中,第一装置可以作为感知过程中感知发起端、感知响应端、感知发送端、感知接收端中的至少一项。类似的,第二装置可以作为感知过程中感知发起端、感知响应端、感知发送端、感知接收端中的至少一项。
例如,第一装置可以作为感知发起端以及感知发送端,第二装置可以作为感知响应端以及感知接收端。
又如,第一装置是感知响应端以及感知发送端,第二装置可以作为感知响应端以及感知接收端,感知发起端是另一个装置,比如第四装置。
又如,以第一装置为AP,第二装置为STA为例,STA发送通信PPDU,同时便于AP感知,此时,STA是感知发起端,AP是感知接收端。
S200.第二装置向第一装置发送第二帧。
本实施例中,第二装置在步骤S200中发送第二帧,相应的,第一装置在步骤S200中接收该第二帧。其中,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个(physical protocol data unit,PPDU)中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
需要说明的是,本申请所涉及的PPDU可以包括单用户-物理层协议数据单元(single user physical protocol data unit,SU-PPDU),多用户-物理层协议数据单元(multiple user physical protocol data unit,MU-PPDU),基于触发的物理层协议数据单元(trigger based physical layer protocol data unit,TB PPDU)或者其它PPDU中的至少一项。
本申请实施例中,第一装置与第二装置之间的信道感知信息,也可以表述为,第一装置与该第二装置之间的(周围/物理)环境感知信息,也可以表述为,第一装置与该第二装置之间的感知信息,也可以表述为,第一装置与该第二装置之间的感知测量信息,也可以表述为,第一装置与该第二装置之间的感知反馈信息。
此外,本申请实施例中,n个PPDU为该第一装置所发送的PPDU包括:n个PPDU为第一装置向其它装置发送的PPDU。其中,其它装置可以包括第二装置和/或不同于该第二装置的装置(例如后文提及的第三装置),此处不做限定。
在一种可能的实现方式中,该部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n。其中,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个 PPDU集合中,该m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
可选的,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于或等于第一阈值。
具体的,该第二帧所包含的信道感知信息为基于m个PPDU所确定,换言之,第二帧包括该m个PPDU对应的信道感知信息。其中,m个PPDU分别位于该n个PPDU中的m个PPDU集合中,对于该m个PPDU集合中相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。换言之,在n个PPDU中的m个PPDU集合中,相邻的PPDU集合所包含的PPDU对应的CSI的变化较大。从而,第二帧所包含的信道感知信息对应于CSI变化较大的相邻PPDU集合中的PPDU,使得第二帧的接收方可以明确第二帧所包含的不同信道感知信息之间的差异。
此外,在m小于n的情况下,使得第二装置无需反馈n个PPDU中所有PPDU对应的信道感知信息,以节省开销。
可选的,“m”的取值小于或等于“k”。例如,考虑到存储空间或传输资源等限制,可以限制第二帧所包含的信道感知信息对应的PPDU的最大数量(记为“k”),其中,“k”的取值可以预配置或预存储于该第二装置中。“k”的取值表示(允许该第二装置所发送的)第二帧所包含的信道感知信息对应的PPDU的最大数量。换言之,第二装置在步骤S200所发送的第二帧所包含的信道感知信息对应的PPDU的数量小于或等于k。
在一些实现方式中,第二装置确定在n个PPDU中,满足相邻的PPDU集合所包含的PPDU对应的CSI的变化大于第一阈值的PPDU集合的数量记为“x”。其中,在x小于等于k时,则第二装置在步骤S200所发送的第二帧中包括该x个PPDU对应的信道感知信息;在x大于k时,则第二装置在步骤S200所发送的第二帧中包括该x个PPDU中的k个PPDU对应的信道感知信息。
可选的,该x个PPDU中的k个PPDU对应的信道感知信息包括:该x个PPDU中的前k个PPDU对应的信道感知信息,或,该x个PPDU中的后k个PPDU对应的信道感知信息,或,该x个PPDU中的任意k个PPDU对应的信道感知信息。
示例性的,此处以n等于9为例进行说明,即第一装置发送9个PPDU,分别记为PPDU1、PPDU2、PPDU3、PPDU4、PPDU5、PPDU6、PPDU7、PPDU8、PPDU9。需要说明的是,本申请实施例所涉及的不同PPDU可以通过编号、序号、序列号(Sequence Number)或者是其它方式实现区分。在本实施例及后续实施例中,仅以通过在PPDU后面加上一个编号(即PPDU x,x取值包括1-9任一值)的实现方式作为示例进行说明。
其中,第二装置在步骤S200所发送的第二帧中可以包括这9个PPDU中的部分或全部PPDU对应的信道感知信息,下面将结合一些实现示例详细描述。
一种可能的实现中,当这9个PPDU相邻的任意两个PPDU之间的CSI的变化信息大于均第一阈值时,即PPDU1和PPDU2(以及PPDU2和PPDU3、PPDU3和PPDU4、PPDU4和PPDU5、PPDU5和PPDU6、PPDU6和PPDU7、PPDU7和PPDU8、PPDU8和PPDU9)之间的CSI的变化信息大于第一阈值,则第二装置在步骤S200中所反馈的第二帧包括这9个PPDU的信道感知信息。在该示例中,m等于9。
可选的,若“k”的取值可以预配置或预存储于该第二装置中,以“k”的取值为3为例。由于“k”的取值的限制,在该可能的实现中,第二装置确定在9个PPDU中,满足相邻的PPDU集合所包含的PPDU对应的CSI的变化大于第一阈值的PPDU集合的数量x取值为9,但是,第二装置在步骤S200中所反馈的第二帧包括3个PPDU的信道感知信息,而非9个PPDU的信道感知信息。其中,“3个PPDU”可以为“9个PPDU”中的前三个PPDU,或,“3个PPDU”可以为“9个PPDU”中的后三个PPDU,或,“3个PPDU”可以为“9个PPDU”中的任意三个PPDU,此处不做限定。
一种可能的实现中,当这9个PPDU中,并非相邻的任意两个PPDU之间的CSI的变化信息均大于第一阈值时,例如仅有PPDU1和PPDU2(以及PPDU3和PPDU4、PPDU6和PPDU7)之间的CSI的变化信息大于第一阈值,而PPDU2和PPDU3(以及PPDU4和PPDU5、PPDU5和PPDU6、PPDU7和PPDU8、PPDU8和PPDU9)之间的CSI的变化信息小于第一阈值,则第二装置在步骤S200中所反馈的第二帧包括这9个PPDU中变化大于第一阈值的m个PPDU集合对应的信道感知信息。在该示例中,m等于4,m个PPDU集合可以表示为:
第一个PPDU集合,包括PPDU1;
第二个PPDU集合,包括PPDU2和PPDU3;
第三个PPDU集合,包括PPDU4、PPDU5和PPDU6;
第四个PPDU集合,包括PPDU7、PPDU8和PPDU9。
换言之,第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息,使得第二装置无需反馈9个PPDU中所有PPDU对应的信道感知信息,而反馈上述四个PPDU集合中每一个PPDU集合所包含的某一个PPDU(即四个PPDU)的信道感知信息,以节省开销。
可选的,若“k”的取值可以预配置或预存储于该第二装置中,以“k”的取值为3为例。由于“k”的取值的限制,在该可能的实现中,第二装置确定在9个PPDU中,满足相邻的PPDU集合所包含的PPDU对应的CSI的变化大于第一阈值的PPDU集合的数量x取值为4,但是,第二装置在步骤S200中所反馈的第二帧包括3个PPDU的信道感知信息,而非4个PPDU的信道感知信息。其中,“3个PPDU”可以为“4个PPDU”中的前三个PPDU,或,“3个PPDU”可以为“4个PPDU”中的后三个PPDU,或,“3个PPDU”可以为“4个PPDU”中的任意三个PPDU,此处不做限定。
可选的,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中包括,该部分或全部PPDU所包含的m个PPDU分别为该n个PPDU中的m个PPDU集合的第一个PPDU。其中,在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,第二装置所反馈的第二帧包括PPDU1、PPDU2、PPDU4和PPDU7的信道感知信息。
可选的,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中包括,该部分或全部PPDU所包含的m个PPDU分别为该n个PPDU中的m个PPDU集合的最后一个PPDU。其中,在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,第二装置所反馈的第二帧包括PPDU1、PPDU3、PPDU6和PPDU9的信道感知信息。
在一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:该第一PPDU集合中的任一PPDU对应的CSI与该第二PPDU集合中的任一PPDU对应的CSI之间的变化信息大于该第一阈值。
其中,在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,在该四个PPDU集合中相邻集合的任一PPDU对应的CSI之间的变化信息大于该第一阈值。
例如,对于相邻的第一个PPDU集合和第二个PPDU集合,第一个PPDU集合中的任一PPDU对应的CSI与第二个PPDU集合中的任一个PPDU对应的CSI之间的变化信息均大于第一阈值,满足:
PPDU1对应的CSI和PPDU2对应的CSI之间的变化信息大于第一阈值;
PPDU1对应的CSI和PPDU3对应的CSI之间的变化信息大于第一阈值。
又如,对于相邻的第二个PPDU集合和第三个PPDU集合,第二个PPDU集合中的任一PPDU对应的CSI与第三个PPDU集合中的任一个PPDU对应的CSI之间的变化信息均大于第一阈值,满足:
PPDU2对应的CSI和PPDU4对应的CSI之间的变化信息大于第一阈值;
PPDU2对应的CSI和PPDU5对应的CSI之间的变化信息大于第一阈值;
PPDU2对应的CSI和PPDU6对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU4对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU5对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU6对应的CSI之间的变化信息大于第一阈值。
在另一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:该第一PPDU集合中的其中一个PPDU对应的CSI与该第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
其中,在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,在该四个PPDU集合中相邻集合的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
例如,对于相邻的第一个PPDU集合和第二个PPDU集合,第一个PPDU集合中的其中一个PPDU对应的CSI与第二个PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于第一阈值,满足:
PPDU1对应的CSI和PPDU2对应的CSI之间的变化信息大于第一阈值;
PPDU1对应的CSI和PPDU3对应的CSI之间的变化信息大于第一阈值。
又如,对于相邻的第二个PPDU集合和第三个PPDU集合,第二个PPDU集合中的其中一个PPDU对应的CSI与第三个PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于第一阈值,满足:
PPDU2对应的CSI和PPDU4对应的CSI之间的变化信息大于第一阈值;
PPDU2对应的CSI和PPDU5对应的CSI之间的变化信息大于第一阈值;
PPDU2对应的CSI和PPDU6对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU4对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU5对应的CSI之间的变化信息大于第一阈值;
PPDU3对应的CSI和PPDU6对应的CSI之间的变化信息大于第一阈值。
在一种可能的实现方式中,该第一PPDU集合(或m个PPDU集合中的任意一个PPDU集合)所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。具体的,该第二帧所包含的信道感知信息为基于m个PPDU所确定,换言之,第二帧包括该m个PPDU对应的信道感知信息。其中,m个PPDU分别位于该n个PPDU中的m个PPDU集合中,对于该m个PPDU集合中的任意一个PPDU集合(例如第一PPDU集合),在该PPDU集合内包含有至少两个PPDU时,该至少两个PPDU对应的CSI的变化信息小于第二阈值。
换言之,第二帧所包含的信道感知信息对应于CSI变化较大的相邻PPDU集合中的某一个PPDU。使得第二装置无需反馈m个PPDU集合中每一个PPDU集合所包含的所有PPDU对应的信道感知信息,以节省开销。
在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,在该四个PPDU集合中的任一个PPDU集合对应的至少两个CSI之间的变化信息小于该第二阈值。满足:
第二个PPDU集合所包含的PPDU2对应的CSI和PPDU3对应的CSI之间的变化信息小于该第二阈值;
第三个PPDU集合所包含的PPDU4对应的CSI、PPDU5对应的CSI和PPDU6对应的CSI之间的变化信息小于该第二阈值;
第四个PPDU集合所包含的PPDU7对应的CSI、PPDU8对应的CSI和PPDU9对应的CSI之间的变化信息小于该第二阈值。
可选的,该m个PPDU集合中的任一PPDU集合所包含的至少两个PPDU中,相邻的两个PPDU对应的CSI的变化信息小于第二阈值。
在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,在该四个PPDU集合中的任一个PPDU集合中,相邻的两个PPDU对应的至少两个CSI之间的变化信息小于该第二阈值。满足:
第二个PPDU集合所包含的PPDU2对应的CSI和PPDU3对应的CSI之间的变化信息小于该第二阈值;
第三个PPDU集合所包含的PPDU4对应的CSI和PPDU5对应的CSI之间的变化信息小于该第二阈值;
第三个PPDU集合所包含的PPDU5对应的CSI和PPDU6对应的CSI之间的变化信息小于该第二阈值;
第四个PPDU集合所包含的PPDU7对应的CSI和PPDU8对应的CSI之间的变化信息小于该第二阈值;
第四个PPDU集合所包含的PPDU8对应的CSI和PPDU9对应的CSI之间的变化信息小于该第二阈值。
需要说明的是,本申请实施例中,第一阈值和第二阈值之间的关联关系不做限定,例如,第一阈值可以等于第二阈值,第一阈值可以大于第二阈值。
可选的,在第一阈值等于第二阈值时,上述“该m个PPDU集合中的任一PPDU集合所包含的至少两个PPDU中,相邻的两个PPDU对应的CSI的变化信息小于第二阈值”的实现示例还可以表述为:
在上述第二装置在步骤S200中所反馈的第二帧包括上述四个PPDU集合的信道感知信息的示例中,在该四个PPDU集合中的任一个PPDU集合中,相邻的两个PPDU对应的至少两个CSI之间的变化信息小于该第一阈值。满足:
第一个PPDU集合所包含的最后一个PPDU(即PPDU1)对应的CSI与第二个PPDU集合所包含的第一个PPDU(即PPDU2)对应的CSI之间的变化信息大于该第一阈值;
第二个PPDU集合所包含的PPDU2对应的CSI和PPDU3对应的CSI之间的变化信息小于该第一阈值;
第二个PPDU集合所包含的最后一个PPDU(即PPDU3)对应的CSI与第三个PPDU集合所包含的第一个PPDU(即PPDU4)对应的CSI之间的变化信息大于该第一阈值;
第三个PPDU集合所包含的PPDU4对应的CSI和PPDU5对应的CSI之间的变化信息小于该第一阈值;
第三个PPDU集合所包含的PPDU5对应的CSI和PPDU6对应的CSI之间的变化信息小于该第一阈值;
第三个PPDU集合所包含的最后一个PPDU(即PPDU6)对应的CSI与第四个PPDU集合所包含的第一个PPDU(即PPDU7)对应的CSI之间的变化信息大于该第一阈值;
第四个PPDU集合所包含的PPDU7对应的CSI和PPDU8对应的CSI之间的变化信息小于该第一阈值;
第四个PPDU集合所包含的PPDU8对应的CSI和PPDU9对应的CSI之间的变化信息小于该第一阈值。
由上述内容可知,第一装置在步骤S100接收来自第二装置的第一帧之后,该第一装置接收来自该第二装置的n个PPDU之后;在m小于n时,该第一装置在步骤S200中向第二装置发送n个PPDU中的部分PPDU对应的信道感知信息;在m等于n时,第一装置在步骤S200中向第二装置发送n个PPDU中的全部PPDU对应的信道感知信息。
在一种可能的实现方式中,第二帧所包含的信道感知信息包括以下至少一项:信道状态信息(channel state information,CSI),CSI的多输入多输出(multiple input multiple output,MIMO)参数,CSI对应的PPDU的标识,该部分或全部PPDU的地址信息。具体的,第二装置发送的第二帧所包含的第一装置与第二装置之间的信道感知信息中,具体可以包括上述至少一项信息,以实现向第一装置指示该信道感知信息所对应的一种或多种信息。
示例性的,信道感知信息所包含的CSI可以指示第一装置与第二装置之间的信道的信道状态,以使得第一装置明确该信道状态。信道感知信息所包含的CSI的MIMO参数可以指示在第一装置与第二装置之间传输的信号的MIMO参数,以使得第一装置明确该信号对应的MIMO参数。信道感知信息所包含的CSI对应的PPDU的标识可以指示信道感知信息所包含的 CSI对应的PPDU,以使得第一装置明确该CSI对应的PPDU。信道感知信息所包含的部分或全部PPDU的地址信息可以指示信道感知信息为基于该地址信息所对应的PPDU所确定,以使得第一装置明确信道感知信息为基于该地址信息所对应的PPDU所确定。
可选的,由于第二帧主要包括信道感知信息,因此,第二帧也可以命名为感知反馈(Sensing Feedback)帧。显然,该命名仅仅为示例,还可以将第二帧命名为其他名称,本申请不做限定。
可选的,第二帧可以为管理帧、数据帧或控制帧,此处不做限定。
下面将以第二帧为功能(Action)帧作为实现示例进行说明。在该功能帧的公共功能(Public Action)字段保留(Reserved)位中添加第二帧的指示。
可选的,在下述示例中,尽管第二帧采用了新建帧的实现方式,但第二帧也可以基于原有帧设计,如在beacon帧或者其它帧中携带有第二帧的相关信息。
可选的,该保留(Reserved)位的取值可以为34至255的任一项。
下面将在表2中,以该保留(Reserved)位的取值为36,且第二帧命名为Sensing Feedback帧作为示例进行说明。
表2
Figure PCTCN2022133631-appb-000002
可选的,第二帧的帧格式可以通过图7a或图7b所示方式实现。
如图7a所示,第二帧包括如下字段:
帧控制(Frame Control)、时长(Duration)、地址1(Address 1)、地址2(Address 2)、地址3(Address 3)、序列控制(Sequence Control)、类别(Category)、公共功能(Public Action)、一个或多个信道感知信息(记为CSI Info 1、CSI Info 2...)、帧校验序列(frame check sequence,FCS)。
可选的,一个或多个信道感知信息(记为CSI Info 1、CSI Info 2...)中的每一个信道感知信息中,图7a中以CSI Info 1为例进行说明。如图7a所示,CSI Info 1包括如下字段:
元素标识(Element ID)、长度(Length)、MIMO控制(MIMO Control)、CSI报告(CSI report)、PPDU的接收地址(RA of PPDU)、CSI的编号(Number of CSI)。其中, “CSI报告”字段用于承载前述信道状态信息(channel state information,CSI),“MIMO控制”字段用于承载前述CSI的多输入多输出(multiple input multiple output,MIMO)参数,“CSI的编号”字段用于承载CSI对应的PPDU的标识,“PPDU的接收地址”字段用于承载该部分或全部PPDU的地址信息。
需要说明的是,本申请实施例所涉及的不同PPDU对应的CSI可以通过编号、序号、序列号(Sequence Number)或者是其它方式实现区分。在本实施例中,仅以“CSI的编号”作为示例进行说明。
如图7b所示,与图7a相比,在一个或多个信道感知信息(记为CSI Info 1、CSI Info 2...)中的每一个信道感知信息中,图7b中以CSI Info 1为例进行说明。如图7b所示,CSI Info 1不包括“PPDU的接收地址”字段。
应理解,本申请对图7a或图7b所示帧格式中,不同字段的字节数(或比特数)的取值以及不同字段之间的顺序不做限定,图7a或图7b所示帧格式中的不同字段的字节数(或比特数)的取值以及不同字段之间的顺序仅仅为一个实现示例。其中,图7a或图7b所示帧格式中的不同字段的字节数(或比特数)的取值还可以为其他取值,图7a或图7b所示帧格式中的不同字段之间的顺序还可以为其他的字段顺序,此处不做限定。此外,图7a或图7b所示帧格式中的不同字段均可以独立实现。
在一种可能的实现方式中,该第一装置所发送的n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。
需要说明的是,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信包括:该n个PPDU中的至少一个PPDU用于该第一装置和第三装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
具体的,第一装置与该第二装置之间的信道感知信息基于n个PPDU中的部分或全部PPDU所确定。由于第二装置不同于第三装置且该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信,使得第一装置和第二装置之间的信道感知信息的确定过程中,复用了用于其他装置进行通信的PPDU。从而,在满足第一装置与第三装置的通信需求的同时,也可以实现第一装置与第二装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。
在另一种可能的实现方式中,该n个PPDU满足以下至少一项:
该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置;或,
该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置;或,
该n个PPDU中的至少一个PPDU为广播发送的PPDU。
上述“接收地址字段”用于指示第三装置(或第二装置),需要说明的是,本申请实施例中,还可以通过其它信息指示第三装置(或第二装置),例如AID,站点-标识(STA-ID)或者其它的信息指示该第三装置(或第二装置),此处不做限定。
可选的,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。换言之,该n个PPDU中的至 少一个PPDU的接收地址字段用于指示第三装置包括:该n个PPDU中的至少一个PPDU用于该第一装置和第三装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
可选的,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第二装置,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和第二装置通信。换言之,该n个PPDU中的至少一个PPDU的接收地址字段用于指示第二装置包括:该n个PPDU中的至少一个PPDU用于该第一装置和第二装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
可选的,该n个PPDU中的至少一个PPDU为广播发送的PPDU,可以表示该n个PPDU中的至少一个PPDU用于该第一装置和至少两个装置通信。换言之,该n个PPDU中的至少一个PPDU为广播发送的PPDU包括:该n个PPDU中的至少一个PPDU用于该第一装置和至少两个装置之间进行数据交互、信令传输、感知(例如感知会话建立、测量建立、测量实体、测量建立终止、感知会话终止)等至少一项通信过程。
具体的,第一装置与该第二装置之间的信道感知信息基于n个PPDU中的部分或全部PPDU所确定。由于该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置,即用于该第一装置和第三装置通信(或该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置,即用于该第一装置和第二装置通信;或该n个PPDU中的至少一个PPDU为广播发送的PPDU,即用于第一装置的广播通信),使得第一装置和第二装置之间的信道感知信息的确定过程中,复用了用于通信的PPDU。从而,在满足第一装置的通信需求的同时,也可以实现第一装置与第二装置之间的信道感知过程,从而提升WLAN系统的通信效率并节省开销。
基于图6所示方案,第一装置在步骤S100发送用于请求信道感知的第二装置之后,第二装置可以基于第一装置所发送的n个PPDU进行信道感知,以确定n个PPDU中的部分或全部PPDU在第一装置与第二装置之间进行传输的信道感知信息。此后,第一装置在步骤S200接收来自第二装置的包含有该信道感知信息的第二帧,以实现信道感知的过程。从而,基于第一装置所发送的n个PPDU,在满足第一装置的通信需求的同时,也可以实现不同装置之间的信道感知过程,提升了WLAN系统的通信效率并节省开销。
请参阅图8,为本申请提供的通信方法的另一个示意图,相比于图6所示实现过程,图8所示实现过程中,第二装置在步骤S100接收第一帧之后,第二装置还可以执行其他实现过程。
在一种可能的实现方式中,如图8所示,第一装置在步骤S200接收来自第二装置的第二帧之前,该方法还包括:
S300.该第一装置接收来自该第二装置的该第一帧的响应帧。
本实施例中,第二装置在步骤S300中发送第一帧的响应帧,相应的,第一装置在步骤S300中接收第一帧的响应帧。其中,该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
具体的,第一装置向第二装置发送用于请求信道感知的第一帧之后,第二装置可以基于该第一帧向第一装置发送第一帧的响应帧,以使得第一装置基于该第一帧的响应帧明确该第一装置是否同意信道感知(或明确该第一装置是否接收到该第一帧)。
在一种可能的实现方式中,在步骤S100所收发的第一帧包括以下至少一项:信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。具体的,第一装置所发送的用于请求信道感知的第一帧中,可以包括上述至少一项信息,以实现向第一装置指示所请求的信道感知所对应的一种或多种信息。
示例性的,第一帧所包含的信道感知的起始时刻信息用于指示信道感知的起始时刻,以使得第二装置明确何时开始执行信道感知。第一帧所包含的信道感知的持续时长信息用于指示信道感知的持续时长,以使得第二装置明确执行信道感知的持续时长。第一帧所包含的信道感知的频段信息用于指示信道感知的频段,以使得第二装置明确用于信道感知的PPDU所在的频段。第一帧所包含的用于指示是否反馈CSI的变化的指示信息,用于使得第二装置明确执行信道感知的持续时长。第一帧所包含的信道感知的PPDU的地址信息用于指示用于信道感知的PPDU的地址信息,以使得第二装置明确用于信道感知的PPDU的地址信息,以避免混淆。
可选的,第一帧可以为管理帧、数据帧或控制帧,此处不做限定。类似的,第一帧的响应帧也可以为管理帧、数据帧或控制帧,此处不做限定。
可选的,在下述示例中,尽管第一帧和第一帧的响应帧采用了新建帧的实现方式,但第一帧和第一帧的响应帧也可以基于原有帧设计,如在beacon帧或者其它帧中携带有第一帧和第一帧的响应帧的相关信息。
在一种可能的实现方式中,在步骤S100所收发的该第一帧和在步骤S300所收发的第一帧的响应帧均为管理帧,其中,该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
可选的,由于第一帧主要用于请求信道感知,因此,第一帧也可以命名为感知请求(Sensing Request)帧,相应的,第一帧的响应帧可以命名为感知响应(Sensing Response)帧。显然,该命名仅仅为示例,还可以将第一帧及第一帧的响应帧命名为其他名称,本申请不做限定。
为了便于描述,下面将以第一帧为命名为Sensing Request帧,第一帧的响应帧命名为Sensing Response帧进行说明。
示例性的,设计两种新的管理帧Sensing Request帧和Sensing Response帧。如在Frame control field的Subtype字段保留(Reserved)位中添加Sensing Request、Sensing Response帧。使用Sensing Request帧来发起感知会话,请求第二装置侦听第一装置发给指定装置的PPDU进行感知测量。第二装置听到Sensing Request帧后回复Sensing Response帧来表示是否加入感知会话。
可选的,下面将以表3作为示例进行说明,在表3中,该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111。
表3
子类型取值(Subtype values) 子类型描述(Subtype description)
0000 关联请求(Association Request)
0001 关联响应(Association Response)
0010 重关联请求(Reassociation Request)
0011 重关联响应(Reassociation Response)
0100 探测请求(Probe Request)
0101 探测响应(Probe Response)
0110 定时广播(Timing Advertisement)
0111 感知请求(Sensing request)
1000 信标(Beacon)
1001 通告通信量指标帧(ATIM)
1010 去关联(Disassociation)
1011 认证(Authentication)
1100 去认证(Deauthentication)
1101 功能帧(Action)
1110 无需确认的功能帧(Action No Ack)
1111 感知响应(Sensing Response)
可选的,在第一帧为管理帧时,第一帧可以通过图9a所示方式实现。
如图9a所示,第一帧包括如下字段:
帧控制(Frame Control)、时长(Duration)、地址1(Address 1)、地址2(Address 2)、地址3(Address 3)、序列控制(Sequence Control)、高吞吐率(HT Control)、感知信息(Sensing Info)、帧校验序列(frame check sequence,FCS)。
可选的,如图9a所示,帧控制(Frame Control)字段包括如下字段:
协议版本(Protocol Version)、类型(Type)、子类型(Subtype)、去往分布式系统(To DS)、来自分布式系统(From DS)、更多分片(More Fragment)、重试(Retry)、 功率控制(Power Management)、更多数据(More Data)、受保护帧(Protected Frame)、+HTC/排序(+HTC/order)。
可选的,如图9a所示,感知信息(Sensing Info)字段包括如下字段:
元素标识(Element ID)、长度(Length)、感知起始时间(Sensing start time)、感知时长(Sensing Duration)、带宽信息(BW Info)、CSI改变请求(CSI Change Request)、感知的接收地址(RA for sensing)。其中,“感知起始时间”字段用于承载前述信道感知的起始时刻信息,“感知时长”字段用于承载前述信道感知的持续时长信息,“带宽信息”字段用于承载前述信道感知的频段信息,“CSI改变请求”字段用于承载前述用于指示是否反馈CSI的变化的指示信息,“感知的接收地址”字段用于承载信道感知的PPDU的地址信息。
可选的,在第一帧的响应帧为管理帧时,第一帧的帧格式可以通过图9b所示方式实现。
如图9b所示,第一帧的响应帧包括如下字段:
帧控制(Frame Control)、时长(Duration)、地址1(Address 1)、地址2(Address 2)、地址3(Address 3)、序列控制(Sequence Control)、高吞吐率(HT Control)、感知响应(Sensing Response)、帧校验序列(frame check sequence,FCS)。
可选的,如图9b所示,感知响应(Sensing Response)字段包括如下字段:
元素标识(Element ID)、长度(Length)、感知响应指示(Sensing Response Indication)、保留(Reserved)。其中,“感知响应指示”字段用于承载前述用于指示该第二装置是否同意信道感知的指示信息;或,“感知响应指示”字段用于承载前述用于指示该第二装置是否接收到该第一帧的指示信息。
应理解,本申请对图9a或图9b所示帧格式中,不同字段的字节数(或比特数)的取值以及不同字段之间的顺序不做限定,图9a或图9b所示帧格式中的不同字段的字节数(或比特数)的取值以及不同字段之间的顺序仅仅为一个实现示例。其中,图9a或图9b所示帧格式中的不同字段的字节数(或比特数)的取值还可以为其他取值,图9a或图9b所示帧格式中的不同字段之间的顺序还可以为其他的字段顺序,此处不做限定。此外,图9a或图9b所示帧格式中的不同字段均可以独立实现。
在一种可能的实现方式中,在步骤S100所收发的该第一帧和在步骤S300所收发的第一帧的响应帧均为功能帧,其中,该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
示例性的,设计两种新的功能帧Sensing Request帧和Sensing Response帧,在Public Action字段保留(Reserved)位中添加Sensing Request和Sensing Response帧。使用Sensing Request帧来发起感知会话,请求第二装置侦听第一装置发给指定装置的PPDU进行感知测量。第二装置听到Sensing Request帧后回复Sensing Response帧来表示是否加入感知会话。
可选的,下面将以表4作为示例进行说明,在表4中,该第一帧中的公共功能字段取值为34至255中的34,该第一帧的响应帧中的公共功能字段取值为34至255中的35。
表4
Figure PCTCN2022133631-appb-000003
可选的,在第一帧和第一帧的响应帧均为功能帧时,第一帧和第一帧的响应帧可以分别通过图10a和图10b所示方式实现。
如图10a所示,第一帧包括如下字段:
帧控制(Frame Control)、时长(Duration)、地址1(Address 1)、地址2(Address2)、地址3(Address 3)、序列控制(Sequence Control)、类别(Category)、公共功能(Public Action)、感知信息(Sensing Info)、帧校验序列(frame check sequence,FCS)。
可选的,感知信息(Sensing Info)包括如下字段:
元素标识(Element ID)、长度(Length)、感知起始时间(Sensing start time)、感知时长(Sensing Duration)、带宽信息(BW Info)、CSI改变请求(CSI Change Request)、感知的接收地址(RA for sensing)。其中,“感知起始时间”字段用于承载前述信道感知的起始时刻信息,“感知时长”字段用于承载前述信道感知的持续时长信息,“带宽信息”字段用于承载前述信道感知的频段信息,“CSI改变请求”字段用于承载前述用于指示是否反馈CSI的变化的指示信息,“感知的接收地址”字段用于承载信道感知的PPDU的地址信息。
如图10b所示,第一帧的响应帧包括如下字段:
帧控制(Frame Control)、时长(Duration)、地址1(Address 1)、地址2(Address 2)、地址3(Address 3)、序列控制(Sequence Control)、类别(Category)、公共功能(Public Action)、感知响应(Sensing Response)、帧校验序列(frame check sequence,FCS)。
可选的,感知响应(Sensing Response)包括如下字段:
元素标识(Element ID)、长度(Length)、感知响应指示(Sensing Response Indication)、保留(Reserved)。其中,“感知响应指示”字段用于承载前述用于指示该第二装置是否 同意信道感知的指示信息;或,“感知响应指示”字段用于承载前述用于指示该第二装置是否接收到该第一帧的指示信息。
应理解,本申请对图10a或图10b所示帧格式中,不同字段的字节数(或比特数)的取值以及不同字段之间的顺序不做限定,图10或图10b所示帧格式中的不同字段的字节数(或比特数)的取值以及不同字段之间的顺序仅仅为一个实现示例。其中,图10a或图10b所示帧格式中的不同字段的字节数(或比特数)的取值还可以为其他取值,图10a或图10b所示帧格式中的不同字段之间的顺序还可以为其他的字段顺序,此处不做限定。此外,图10a或图10b所示帧格式中的不同字段均可以独立实现。
在一种可能的实现方式中,如图8所示,第一装置在步骤S100中向第二装置发送第一帧之后,该方法还包括:
S500.该第一装置接收来自该第二装置的第三帧。
本实施例中,第二装置在步骤S500中发送第三帧,相应的,第一装置在步骤S500中接收该第三帧。其中,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
具体的,在该第一装置向第二装置发送用于指示请求信道感知的第一帧之后,第一装置接收来自该第二装置的包含有该第一装置和该第二装置之间的信道变化信息的第三帧,使得第一装置明确该第一装置和该第二装置之间的信道变化。
可选的,第一装置可以基于该第三帧所包含的信道变化信息确定该第一装置和该第二装置之间的环境变化,例如该第一装置和该第二装置之间的物体移动,用户在该第一装置和该第二装置之间的手势动作等。
可选的,第三帧所包含的信道变化信息指示该第一装置和该第二装置之间的信道无变化(或变化小于第三阈值时),第一装置无需接收第二帧,换言之,第二装置无需发送第二帧。
可选的,信道变化信息与信道感知信息可以承载于同一帧中,例如,信道变化信息与信道感知信息均承载于第二帧,或,信道变化信息与信道感知信息均承载于第三帧中。
在一种可能的实现方式中,第一装置在步骤S500接收来自该第二装置的第三帧之前,该方法还包括:
S400.第一装置向该第二装置发送第一触发帧。
本实施例中,第一装置在步骤S400中发送第一触发帧,相应的,第二装置在步骤S400中接收该第一触发帧。其中,该第一触发帧包括承载信道变化信息的资源单元(resource unit,RU)信息;此外,该承载信道变化信息的RU信息指示该第二装置对应的RU;或,该承载信道变化信息的RU信息指示用于随机接入的RU。
在一种可能的实现方式中,上述步骤S400为可选步骤,例如当步骤S400不执行的情况下,该第三帧承载于基于竞争信道接入的RU。
具体的,第一装置(和/或第二装置)可以基于多种方式确定承载第三帧的RU,例如第一装置(和/或第二装置)可以基于第一触发帧的指示确定承载第三帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第三帧;又如,第一装置(和/或第二装置)可以将 用于随机接入的RU作为承载第三帧的RU,从而,无需第一装置的指示以节省开销的同时,也可以使得第二装置在自行决定发送第三帧的时机(例如,仅在该信道变化信息指示的变化较大时才发送第三帧),进一步节省开销。
下面将对步骤S500所收发的第三帧进一步介绍。
可选的,第三帧可以为管理帧、数据帧或控制帧,此处不做限定。
在一种可能的实现方式中,步骤S500所收发的第三帧还包括以下至少一项:该第二装置的位置变化信息;或,该n个PPDU中的部分或全部PPDU的地址信息。
具体的,包含有该第一装置和该第二装置之间的信道变化信息的第三帧中,还可以包括上述至少一项信息,以使得第一装置基于第二装置所发送的第三帧明确该信道变化的相关信息。
示例性的,由于第二装置的位置变化也有可能会导致第一装置和第二装置之间的信道产生变化,第三帧所包含的该第二装置的位置变化信息用于指示该第二装置的位置变化,以使得第一装置明确第二装置的位置变化,并基于该位置变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。第三帧所包含的该n个PPDU中的部分或全部PPDU的地址信息指示该信道变化信息所对应的PPDU的地址信息,以使得第二装置明确该信道变化信息所对应的PPDU的地址信息,以避免混淆。
可选的,第三帧所包含的信道变化信息也可以命名为CSI变化响应元素(CSI change response element)。显然,该命名仅仅为示例,还可以将第三帧命名为其他名称,本申请不做限定。为了便于描述,下面将以第三帧所包含的信道变化信息命名为CSI change response element进行说明。
示例性的,设计一个新的字段CSI change response element指示感知测量到的CSI信息是否发生变化。同时考虑第二装置在感知过程中可能移动的问题,若第二装置在感知过程移动CSI信息也会发生变化但此变化非环境变化造成,故增加一个STA location change字段来指示第二装置的位置是否改变。若改变,则第二装置可通过此方式来告知第一装置此次CSI信息的变化是由于第二装置的位置变化引起的。
可选的,第三帧所包含的CSI change response element的帧格式可以通过图11a所示方式实现。
如图11a所示,第三帧包括如下字段:
元素标识(Element ID)、长度(Length)、CSI变化(CSI change)、感知的接收地址(RA for sensing)、站点位置变化(STA location change)、PPDU的接收地址(RA of PPDU)。其中,“CSI变化”字段用于承载前述信道变化信息,“感知的接收地址”字段用于承载该n个PPDU中的部分或全部PPDU的地址信息,“站点位置变化”字段用于承载该第二装置的位置变化信息,“PPDU的接收地址”字段用于承载该部分或全部PPDU的地址信息。
可选的,第三帧所包含的CSI change response element的帧格式可以通过图11b所示方式实现。如图11b所示,与图11a相比,图11b所示帧格式中不包括“PPDU的接收地址”字段。
应理解,本申请对图11a或图11b所示帧格式中,不同字段的字节数(或比特数)的取值以及不同字段之间的顺序不做限定,图11a或图11b所示帧格式中的不同字段的字节数(或比特数)的取值以及不同字段之间的顺序仅仅为一个实现示例。其中,图11a或图11b所示帧格式中的不同字段的字节数(或比特数)的取值还可以为其他取值,图11a或图11b所示帧格式中的不同字段之间的顺序还可以为其他的字段顺序,此处不做限定。此外,图11a或图11b所示帧格式中的不同字段均可以独立实现。
在一种可能的实现方式中,第一装置在步骤S200接收来自该第二装置的第二帧之前,该方法还包括:
S600.该第一装置向该第二装置发送第四帧。
本实施例中,第一装置在步骤S600中发送第四帧,相应的,第二装置在步骤S600中接收该第四帧。其中,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
可选的,第四帧可以为管理帧、数据帧或控制帧,此处不做限定。
具体的,由于第一装置的发射参数的变化也有可能会导致第一装置和第二装置之间的信道产生变化,第四帧所包含的信息用于指示该参数变化,以使得第二装置明确第以装置的参数变化,并基于该参数变化进一步明确第一装置和第二装置之间的信道是否产生变化以及信道变化的原因。
可选的,在该第一装置接收来自该第二装置的第二帧之前,上述步骤S600还可以表述为:该第一装置向该第二装置发送第四帧,该第四帧包括第一装置的发射参数的变化信息。其中,第一装置的发射参数的变化信息包括上述第一字段、第二字段、第三字段和第四字段中的至少一个字段。
可选的,第一装置在发送n个PPDU的过程中,不改变发射参数。
可选的,第四帧主要包括发射参数的变化信息,因此,可以将第四帧所包含的发射参数的变化信息命名为传输设置变化元素(transmission setting change element)。显然,该命名仅仅为示例,还可以将第三帧命名为其他名称,本申请不做限定。为了便于描述,下面将以第四帧所包含的发射参数的变化信息命名为transmission setting change element进行说明。
示例性的,设计一个新的字段transmission setting change element指示第一装置发送PPDU的发射设置是否有变化。
可选的,第四帧所包含的发射参数的变化信息的帧格式可以通过图12所示方式实现。
如图12所示,第四帧包括如下字段:
元素标识(Element ID)、长度(Length)、传输的地址信息(Transmission RA)、设置变化(Setting change)。其中,“传输的地址信息”字段用于承载发射参数发生改变的PPDU的地址信息,“设置变化”字段用于承载上述第一字段、第二字段、第三字段和第四字段中的至少一个字段。
应理解,本申请对图12所示帧格式中,不同字段的字节数(或比特数)的取值以及不同字段之间的顺序不做限定,图12所示帧格式中的不同字段的字节数(或比特数)的取值以及不同字段之间的顺序仅仅为一个实现示例。其中,图12所示帧格式中的不同字段的字节数(或比特数)的取值还可以为其他取值,图12所示帧格式中的不同字段之间的顺序还可以为其他的字段顺序,此处不做限定。此外,图12所示帧格式中的不同字段均可以独立实现。
在一种可能的实现方式中,如图8所示,第一装置在步骤S200接收来自该第二装置的第二帧之前,该方法还包括:
S700.第一装置向该第二装置发送第二触发帧。
本实施例中,第一装置在步骤S700中发送第一触发帧,相应的,第二装置在步骤S700中接收该第一触发帧。其中,该第二触发帧包括承载信道感知信息的RU信息;此外,该承载信道感知信息的RU信息指示该第二装置对应的RU;或,该承载信道感知信息的RU信息指示用于竞争接入的RU。
在一种可能的实现方式中,上述步骤S700为可选步骤,例如当步骤S700不执行的情况下,该第二帧承载于基于竞争信道接入的RU。
具体的,第一装置(和/或第二装置)可以基于多种方式确定承载第二帧的RU,例如第一装置(和/或第二装置)可以基于第二触发帧的指示确定承载第二帧的RU,以使得第一装置和第二装置在所指定的RU上收发该第二帧;又如,第一装置(和/或第二装置)可以将用于随机接入的RU作为承载第二帧的RU,从而,无需第一装置的指示以节省开销的同时,也可以使得第二装置在自行决定发送第二帧的时机(例如,仅在该信道感知信息对应的数据量达到阈值时才发送第二帧),进一步节省开销。
下面将结合图13所示场景作为实现示例,对本申请进一步描述。
如图13所示,以第一装置为AP,第二装置包括STA3和STA4,第三装置包括STA1和STA2为例进行说明。其中,感知发起端AP与感知响应端STA之间发起感知会话,要求第二装置侦听第一装置发送给其他装置的PPDU进行感知测量,并将测量结果反馈给感知发起端AP完成感知测量过程。
可选的,在该示例中,以第一装置与第三装置之间传输PPDU进行通信(Communication)的过程中,第二装置(包括STA3和STA4)基于该PPDU进行感知(Sensing)为例进行说明。
需要说明的是,尽管图13所示过程以感知发起端为AP,感知响应端为STA为例进行表述,但不限于上述场景。如感知发起端可以是STA,感知响应端也可以是AP;或,感知发起端可以是STA,感知响应端也可以是STA;或,感知发起端可以是AP,感知响应端也可以是AP。
此外,为了便于描述,下文实施例中将以第一帧命名为Sensing Request帧,第一帧的响应帧命名为Sensing Response帧,第二帧命名为Sensing Feedback帧,第三帧所包含的用于承载信道变化信息的信元命名为CSI change response element来,第四帧中用于承载发射参数的变化信息的信元命名为Transmission Setting Change Element为例进行说明。如前文所示,该命名仅仅为示例,还可以将相关帧命名为其他名称,本申请不做限定。
实施例一
在实施例一中,考虑在Sensing Request帧中指定唯一侦听RA的情况,即感知响应端STA在感知测量阶段只侦听AP发给指定的通信STA的PPDU。
可选的,在实施例一中,为了节省开销,后续的测量和反馈阶段可以均不记录和报告RA信息。
如图14的虚线框所示的感知建立阶段中,感知发起端AP通过Sensing Request帧与指定的感知响应端STA发起感知会话,请求感知响应端STA侦听AP发给指定通信STA的PPDU进行感知测量。
可选的,该感知建立阶段的实现过程可以参考前述第一帧和/或第一帧的响应帧的实现过程。
可选的,在Sensing Request帧中需指明感知会话相关信息,包括:后续PPDU的发送频段,感知开始时间及持续时间,指明需要STA反馈CSI信息是否发生变化,为感知响应端STA指定唯一的侦听PPDU的RA。指定的STA听到Sensing Request帧后回复Sensing Response帧来表示是否加入感知会话,加入会话后进行感知测量。
可选的,因本实施例使用的通信方法是通过CSI信息来进行感知,但CSI信息的变化有可能是环境变化造成的,也可能是由发射机发射时的参数设置变化造成的,故需排除发射参数变化对感知结果的影响。针对此问题本申请给出三种解决方法,在各个实施例中可以取其一使用即可。
方法一:规定在测量阶段内,发射机AP不改变对目标通信站点的功率及预编码等发射参数的设置。此种方法从根本上排除了发射设置变化的可能,不会对后续感知结果造成影响。
方法二:在测量阶段内,发射机AP可以改变对目标通信站点的功率及预编码等发射参数设置,但需在改变前使用相关信息。
可选的,AP可以通过如Transmission Setting Change Element、beamformed等相关信息向感知响应端STA进行告知。
方法三:在测量阶段内,发射机AP可以改变对目标通信站点的功率及预编码等发射参数设置,且无需告知。
可选的,在AP接收到感知响应端STA反馈的CSI信息变化的报告后,由AP自行判断CSI信息变化是否是由自身发射设置变化导致的。
如图15的虚线框所示的感知测量阶段中,感知响应端STA一直侦听AP发送给指定STA的PPDU,通过物理头的HE-LTF部分获取AP到感知响应端STA链路的CSI信息,如图15所示。感知响应端STA存储获取到的CSI信息,记录下对应通信PPDU的Sequence Number(序列号),并对 获得的前后两次CSI信息进行对比和处理。针对获得的CSI信息本申请给出两种处理方法,在各个实施例中取其一使用即可。
方法一:感知响应端STA对获得的前后两次CSI信息进行对比后,若变化小于阈值则只留存序列号最小的CSI信息,若变化较大则反馈。
可选的,在反馈过程中,感知响应端STA在Sensing Feedback帧中反馈变化前后两次的CSI矩阵及对应序列号,并记录已反馈过的序列号,避免重复反馈矩阵。
方法二:感知响应端STA对获得的前后两次CSI信息进行对比后,若变化小于阈值则只留存序列号最大的CSI信息,若变化较大则反馈。
可选的,在反馈过程中,感知响应端STA在Sensing Feedback帧中反馈变化前后两次的CSI矩阵及对应序列号,并记录已反馈过的序号,避免重复反馈矩阵。
如图16的虚线框所示的感知反馈阶段中,针对CSI信息的反馈方式本申请给出三种反馈方法,在各个实施例中根据实际情况取其一使用即可。
方法一:
示例性的,AP发送Trigger帧开启反馈过程,如图16的虚线框,AP在Trigger帧中为每一个感知响应端STA分配RU,需要感知响应端STA反馈CSI change response element来报告感知到的CSI信息是否发生变化。
可选的,AP接收到CSI信息变化的报告后,再向感知响应端STA发送Trigger帧分配合适的RU资源来反馈前后两次的CSI矩阵。反馈CSI矩阵时Sensing Feedback帧中还需指明CSI矩阵对应的序列号,感知响应端STA也需记录已反馈过的CSI矩阵序列号,避免重复发送。
方法二:AP发送Trigger帧开启反馈过程,如图17的虚线框,AP在Trigger帧中分配一些随机接入RU,测量得到CSI信息发生变化的感知响应端STA需要参与竞争,向AP反馈CSI信息发生变化。
可选的,AP接收到CSI信息变化的报告后,再向感知响应端STA发送Trigger帧分配合适的RU资源来反馈前后两次的CSI矩阵。反馈CSI矩阵时Sensing Feedback帧中还需指明CSI矩阵对应的序列号,感知响应端STA也需记录已反馈过的CSI矩阵序列号,避免重复发送。
方法三:在反馈阶段无需AP触发,由感知响应端STA竞争信道接入来主动上报信道感知信息。
可选的,该感知测量阶段和感知反馈阶段的实现过程可以参考前述第二帧、第一触发帧、第三帧、第四帧和/或第二触发帧的实现过程。
可选的,此处以信道感知信息包括CSI矩阵为例进行说明。感知响应端STA测量到CSI信息发生变化后,需要反馈CSI矩阵的感知响应端STA参与竞争信道,竞争到信道后反馈前后两次的CSI矩阵,AP接收后进行感知分析。
可选的,感知响应端STA在反馈CSI矩阵时,Sensing Feedback帧中还需指明CSI矩阵对应的序列号,感知响应端STA也需记录已反馈过的CSI矩阵序列号,避免重复发送。
从而,在实施例一中,针对基于侦听通信PPDU进行感知测量的场景,分别讨论了感知的不同阶段:建立阶段、测量阶段、反馈阶段,设计了一套完整可行的的感知流程并进行 了相应的帧设计。为感知响应端STA指定侦听通信STA的方式,减少了后续反馈的复杂度,不易混淆。
此外,在实施例一中,通过侦听通信PPDU来完成感知测量,而非局限于专门发送NDPA、NDP来进行感知测量。这种方式既满足了通信的需求又完成了感知测量,提高效率,节省开销,使感知方式更加灵活多样。
实施例二
在实施例二中,考虑在Sensing Request帧中不指定侦听PPDU RA的情况,即感知响应端STA在感知测量阶段可以侦听AP所发送的PPDU。在此种情况下,后续的测量和反馈阶段需要记录和报告RA信息,以防混淆。
在实施例二的感知建立阶段中,感知发起端AP通过Sensing Request帧与指定的感知响应端STA发起感知会话,请求感知响应端STA侦听AP发给所有通信STA的PPDU进行感知测量。与实施例一中不同的是,在Sensing Request帧中不再为感知响应端STA指定唯一的侦听PPDU的RA,感知响应端STA可以侦听AP向所有通信STA发送的PPDU。
可选的,该感知建立阶段的实现过程可以参考前述第一帧和/或第一帧的响应帧的实现过程。
在实施例二的感知测量阶段中,感知响应端STA可以侦听AP发送给所有通信STA的PPDU获取CSI信息。感知响应端STA存储获取到的CSI信息,并记录下对应的RA(接收地址)及序列号。对于RA相同链路的前后两次CSI信息进行对比,若变化较小低于阈值,则视为无变化;若变化较大,则在反馈阶段反馈CSI信息发生变化及对应的RA信息。CSI信息的处理方式与实施例一中相同,不再重复。
在实施例二的感知反馈阶段中,与实施例一的区别是,感知响应端STA在向AP反馈CSI信息是否发生变化或反馈CSI矩阵时,必须携带发生变化的CSI信息或CSI矩阵对应的RA信息来避免混淆。
可选的,该感知测量阶段和感知反馈阶段的实现过程可以参考前述第二帧、第一触发帧、第三帧、第四帧和/或第二触发帧的实现过程。
从而,在实施例二中,针对未指定侦听RA的情况,讨论了基于侦听通信PPDU完成感知需要增加的流程和相应的帧设计。不为感知响应端STA指定侦听通信STA的方式,使感知响应端STA能够获得更多的CSI信息,提高感知准确度。
此外,在实施例二中,本申请突破传统专门发送感知信号进行感知测量的限制,使用侦听通信PPDU的方式完成感知测量。此种方式在完成原本所需的通信任务的同时完成感知测量,可以节省专门进行感知测量所需的开销,同时提高了设备的通信和感知效率。
基于图13至图17所示实施例,本申请针对基于侦听通信PPDU进行感知测量的场景,设计了一套完整可行的的感知流程并进行了相应的帧设计。既满足了通信的需求又完成了感知测量,提高效率,节省开销,同时也使感知测量的方式更加灵活多样不再局限于专门发送感知信号的测量方式。需要说明的是,图13至图17所涉及的实现过程还可以参考前述实施例的描述,并实现相应的技术效果,此处不做赘述。
在上述图6至图17所示的任一实施例中,Sensing Request帧(或Sensing Response帧、Sensing Feedback帧等)尽管用了新建帧的方法,但也可以基于原有帧设计,如在beacon帧或者其它帧中指示相关信息。
在上述图6至图17所示的任一实施例中,所涉及的PPDU的传输过程中,如第一装置发给第三装置的PPDU(或AP发给STA1的PPDU),有可能第三装置(或STA1)会在收到PPDU之后向第一装置(或AP)回复确认帧,为表述简洁在此省略。
在上述图6至图17所示的任一实施例中,第一帧和第一帧的响应帧(或称Sensing Request帧和Sensing Response帧)可以用于实现感知流程中的某个过程。例如,可以用于实现前述感知流程的5类环节中的“A.感知会话建立(Sensing session setup)”;又如,可以用于实现前述感知流程的5类环节中的“B.测量建立(Measurement setup)”。
在上述图6至图17所示的任一实施例中,第二帧(或称Sensing Feedback帧)可以用于实现感知流程中的某个过程。例如,可以用于实现前述感知流程的5类环节中的“C.测量实体(Measurement instance)”中所涉及的报告阶段(reporting phase)。
在上述图6至图17所示的任一实施例中,第二装置(或STA3、STA4)接收PPDU的过程可以对应于感知流程中的探测(sounding)流程。
上面从方法的角度对本申请进行描述,下面将通过装置的角度对本申请进一步介绍。
请参阅图18,为本申请实施例提供的一种装置1800的一个示意图,其中,该装置1800包括发送单元1801和接收单元1802。
该装置1800具体可以应用于WLAN系统,该装置可以为WLAN设备,或者,该装置可以为WLAN设备中的部分组件。其中,WLAN设备可以包括STA或AP,WLAN设备中的部分组件可以包括处理器、芯片或芯片系统等。
一种实现方式中,用于实现前述任一实施例中第一装置对应的通信方法。相应的,该发送单元1801和接收单元1802用于执行如下过程:
该发送单元1801,用于向第二装置发送第一帧,该第一帧用于请求信道感知;
该接收单元1802,用于接收来自该第二装置的第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
在一种可能的实现方式中,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。
在一种可能的实现方式中,该信道感知信息包括以下至少一项:
信道状态信息CSI,CSI的多输入多输出MIMO参数,CSI对应的PPDU的标识,该部分或全部PPDU的地址信息。
在一种可能的实现方式中,
该部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n;
其中,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中,该m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
在一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:
该第一PPDU集合中的任一PPDU对应的CSI与该第二PPDU集合中的任一PPDU对应的CSI之间的变化信息大于该第一阈值;
或,
该第一PPDU集合中的其中一个PPDU对应的CSI与该第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
在一种可能的实现方式中,
该第一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
在一种可能的实现方式中,该n个PPDU满足以下至少一项:
该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置;或,
该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置;或,
该n个PPDU中的至少一个PPDU为广播发送的PPDU。
在一种可能的实现方式中,该第一帧包括以下至少一项:
信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。
在一种可能的实现方式中,
该接收单元1802,还用于接收来自该第二装置的该第一帧的响应帧;其中,
该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,
该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
在一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在一种可能的实现方式中,
该接收单元1802,还用于接收来自该第二装置的第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
在一种可能的实现方式中,
该发送单元1801,还用于向该第二装置发送第一触发帧,该第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
该承载信道变化信息的RU信息指示该第二装置对应的RU;或,
该承载信道变化信息的RU信息指示用于随机接入的RU。
在一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
在一种可能的实现方式中,该第三帧还包括以下至少一项:
该第二装置的位置变化信息;或,
该n个PPDU中的部分或全部PPDU的地址信息。
在一种可能的实现方式中,
该发送单元1801,还用于该第二装置发送第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,
该承载信道感知信息的RU信息指示该第二装置对应的RU;或,
该承载信道感知信息的RU信息指示用于竞争接入的RU。
在一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
在一种可能的实现方式中,
该发送单元1801,还用于向该第二装置发送第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
一种实现方式中,用于实现前述任一实施例中第二装置对应的通信方法。相应的,该发送单元1801和接收单元1802用于执行如下过程:
该接收单元1802,用于接收来自第一装置的第一帧,该第一帧用于请求信道感知;
该发送单元1801,用于向该第一装置发送第二帧,该第二帧包括该第一装置与该第二装置之间的信道感知信息,该信道感知信息基于n个PPDU中的部分或全部PPDU所确定,该n个PPDU为该第一装置所发送的PPDU,n大于或等于1。
在一种可能的实现方式中,该n个PPDU中的至少一个PPDU用于该第一装置和第三装置通信。
在一种可能的实现方式中,该信道感知信息包括以下至少一项:
信道状态信息CSI,CSI的多输入多输出MIMO参数,CSI对应的PPDU的标识,该部分或全部PPDU的地址信息。
在一种可能的实现方式中,
该部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n;
其中,该部分或全部PPDU所包含的m个PPDU分别位于该n个PPDU中的m个PPDU集合中,该m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
在一种可能的实现方式中,该第一PPDU集合中的PPDU对应的CSI与该第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:
该第一PPDU集合中的任一PPDU对应的CSI与该第二PPDU集合中的任一PPDU对应的CSI之间的变化信息大于该第一阈值;
或,
该第一PPDU集合中的其中一个PPDU对应的CSI与该第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于该第一阈值。
在一种可能的实现方式中,
该第一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
在一种可能的实现方式中,该n个PPDU满足以下至少一项:
该n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置;或,
该n个PPDU中的至少一个PPDU的接收地址字段用于指示该第二装置;或,
该n个PPDU中的至少一个PPDU为广播发送的PPDU。
在一种可能的实现方式中,该第一帧包括以下至少一项:
信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。
在一种可能的实现方式中,
该发送单元1801,还用于向该第一装置发送该第一帧的响应帧;其中,
该第一帧的响应帧用于指示该第二装置是否同意信道感知;或,
该第一帧的响应帧用于指示该第二装置是否接收到该第一帧。
在一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为管理帧,其中,
该第一帧中的帧控制字段中的子类型字段的取值为0111,该第一帧的响应帧中的子类型字段的取值为1111;或,
该第一帧中的帧控制字段中的子类型字段的取值为1111,该第一帧的响应帧中的子类型字段的取值为0111。
在一种可能的实现方式中,
该第一帧和该第一帧的响应帧均为功能帧,其中,
该第一帧中的公共功能字段取值为34至255中的任一值,该第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
在一种可能的实现方式中,
该发送单元1801,还用于向该第二装置发送第三帧,该第三帧包括该第一装置和该第二装置之间的信道变化信息,该信道变化信息基于该n个PPDU所确定。
在一种可能的实现方式中,
该接收单元1802,还用于接收来自该第一装置的第一触发帧,该第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
该承载信道变化信息的RU信息指示该第二装置对应的RU;或,
该承载信道变化信息的RU信息指示用于随机接入的RU。
在一种可能的实现方式中,该第三帧承载于基于竞争信道接入的RU。
在第四方面的一种可能的实现方式中,该第三帧还包括以下至少一项:
该第二装置的位置变化信息;或,
该n个PPDU中的部分或全部PPDU的地址信息。
在一种可能的实现方式中,
该接收单元1802,还用于接收来自该第一装置的第二触发帧,该第二触发帧包括承载信道感知信息的RU信息;其中,
该承载信道感知信息的RU信息指示该第二装置对应的RU;或,
该承载信道感知信息的RU信息指示用于竞争接入的RU。
在一种可能的实现方式中,该第二帧承载于基于竞争信道接入的RU。
在一种可能的实现方式中,
该接收单元1802,还用于接收来自该第一装置的第四帧,该第四帧包括以下至少一个字段:
第一字段,用于指示是否有波束赋形或预编码;或,
第二字段,用于指示是否改变发射功率;或,
第三字段,用于指示是否改变波束赋形-预编码;或,
第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
第五字段,用于指示发射功率是否变化;或,
第六字段,用于指示发射功率值。
需要说明的是,该装置1800还可以用于执行前述其它实施例,并实现相应的有益效果,具体可以参考前述实施例中的描述,此处不再赘述。
参见图19,图19是本申请实施例提供的装置1900的结构示意图,该装置1900包括处理器1901和收发器1902。
该装置1900可以为无线帧发送装置或无线帧接收装置,或其中的芯片。
图19仅示出了装置1900的主要部件。除处理器1901和收发器1902之外,该装置还可以进一步包括存储器1903、以及输入输出装置(图未示意)。
其中,处理器1901主要用于对通信协议以及通信数据进行处理,以及对整个装置进行控制,执行软件程序,处理软件程序的数据。存储器1903主要用于存储软件程序和数据。收发器1902可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
其中,处理器1901、收发器1902、以及存储器1903可以通过通信总线连接。
当装置开机后,处理器1901可以读取存储器1903中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1901对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1901,处理器1901将基带信号转换为数据并对该数据进行处理。
在上述任一种设计中,处理器1901中可以包括用于实现接收和发送功能的通信接口。例如该通信接口可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1901可以存有指令,该指令可为计算机程序,计算机程序在处理器1901上运行,可使得装置1900执行上述任一实施例中描述的方法。计算机程序可能固化在处理器1901中,该种情况下,处理器1901可能由硬件实现。
在一种实现方式中,装置1900可以包括电路,该电路可以实现前述任一实施例中发送或接收或者通信的功能。本申请中描述的处理器和通信接口可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和通信接口也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
在另一种实现中,该的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于装置,呈拉远式的布置。
装置可以是独立的设备或者可以是较大设备的一部分。例如该装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
此外,处理器1901可用于进行,例如但不限于,基带相关处理,收发器1902可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少 部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种WLAN通信系统,包括前述任一实施例中的第一装置和第二装置。
可选的,该WLAN通信系统还包括其他装置,例如,第三装置。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看该附图、公开内容、以及所附权利要求书,可理解并实现该公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要 求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上该的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上该仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    第一装置向第二装置发送第一帧,所述第一帧用于请求信道感知;
    所述第一装置接收来自所述第二装置的第二帧,所述第二帧包括所述第一装置与所述第二装置之间的信道感知信息,所述信道感知信息基于n个物理层协议数据单元PPDU中的部分或全部PPDU所确定,所述n个PPDU为所述第一装置所发送的PPDU,所述n大于或等于1。
  2. 一种通信方法,其特征在于,包括:
    第二装置接收来自第一装置的第一帧,所述第一帧用于请求信道感知;
    所述第二装置向所述第一装置发送第二帧,所述第二帧包括所述第一装置与所述第二装置之间的信道感知信息,所述信道感知信息基于n个PPDU中的部分或全部PPDU所确定,所述n个PPDU为所述第一装置所发送的PPDU,所述n大于或等于1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述n个PPDU中的至少一个PPDU用于所述第一装置和第三装置通信。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述信道感知信息包括以下至少一项:
    信道状态信息CSI,CSI的多输入多输出MIMO参数,CSI对应的PPDU的标识,所述部分或全部PPDU的地址信息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述部分或全部PPDU所包含的PPDU数量为m个,m大于或等于1,m小于或等于n;
    其中,所述部分或全部PPDU所包含的m个PPDU分别位于所述n个PPDU中的m个PPDU集合中,所述m个PPDU集合包括相邻的第一PPDU集合和第二PPDU集合,所述第一PPDU集合中的PPDU对应的CSI与所述第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述第一PPDU集合中的PPDU对应的CSI与所述第二PPDU集合中的PPDU对应的CSI之间的变化信息大于第一阈值,包括:
    所述第一PPDU集合中的任一PPDU对应的CSI与所述第二PPDU集合中的任一PPDU对应的CSI之间的变化信息大于所述第一阈值;
    或,
    所述第一PPDU集合中的其中一个PPDU对应的CSI与所述第二PPDU集合中的其中一个PPDU对应的CSI之间的变化信息大于所述第一阈值。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述第一PPDU集合所包含的至少两个PPDU对应的CSI的变化信息小于第二阈值。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述n个PPDU满足以下至少一项:
    所述n个PPDU中的至少一个PPDU的接收地址字段用于指示第三装置;或,
    所述n个PPDU中的至少一个PPDU的接收地址字段用于指示所述第二装置;或,
    所述n个PPDU中的至少一个PPDU为广播发送的PPDU。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一帧包括以下至少一项:
    信道感知的起始时刻信息,信道感知的持续时长信息,信道感知的频段信息,用于指示是否反馈CSI的变化的指示信息,信道感知的PPDU的地址信息。
  10. 根据权利要求1,3至9任一项所述的方法,其特征在于,在所述第一装置接收来自所述第二装置的第二帧之前,所述方法还包括:
    所述第一装置接收来自所述第二装置的所述第一帧的响应帧;其中,
    所述第一帧的响应帧用于指示所述第二装置是否同意信道感知;或,
    所述第一帧的响应帧用于指示所述第二装置是否接收到所述第一帧。
  11. 根据权利要求2至9任一项所述的方法,其特征在于,在所述第二装置向所述第一装置发送第二帧之前,所述方法还包括:
    所述第二装置向所述第一装置发送所述第一帧的响应帧;其中,
    所述第一帧的响应帧用于指示所述第二装置是否同意信道感知;或,
    所述第一帧的响应帧用于指示所述第二装置是否接收到所述第一帧。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第一帧和所述第一帧的响应帧均为管理帧,其中,
    所述第一帧中的帧控制字段中的子类型字段的取值为0111,所述第一帧的响应帧中的子类型字段的取值为1111;或,
    所述第一帧中的帧控制字段中的子类型字段的取值为1111,所述第一帧的响应帧中的子类型字段的取值为0111。
  13. 根据权利要求10或11所述的方法,其特征在于,
    所述第一帧和所述第一帧的响应帧均为功能帧,其中,
    所述第一帧中的公共功能字段取值为34至255中的任一值,所述第一帧的响应帧中的公共功能字段取值为34至255中的任一值。
  14. 根据权利要求1,3至10,12至13中任一项所述的方法,其特征在于,在所述第一装置向第二装置发送第一帧之后,所述方法还包括:
    所述第一装置接收来自所述第二装置的第三帧,所述第三帧包括所述第一装置和所述第二装置之间的信道变化信息,所述信道变化信息基于所述n个PPDU所确定。
  15. 根据权利要求14所述的方法,其特征在于,在所述第一装置接收来自所述第二装置的第三帧之前,所述方法还包括:
    所述第一装置向所述第二装置发送第一触发帧,所述第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
    所述承载信道变化信息的RU信息指示所述第二装置对应的RU;或,
    所述承载信道变化信息的RU信息指示用于随机接入的RU。
  16. 根据权利要求2至9,11至13中任一项所述的方法,其特征在于,在所述第二装置接收来自所述第二装置的第一帧之后,所述方法还包括:
    所述第二装置向所述第二装置发送第三帧,所述第三帧包括所述第一装置和所述第二装置之间的信道变化信息,所述信道变化信息基于所述n个PPDU所确定。
  17. 根据权利要求16所述的方法,其特征在于,在所述第二装置向所述第二装置发送第三帧之前,所述方法还包括:
    所述第二装置接收来自所述第一装置的第一触发帧,所述第一触发帧包括承载信道变化信息的资源单元RU信息;其中,
    所述承载信道变化信息的RU信息指示所述第二装置对应的RU;或,
    所述承载信道变化信息的RU信息指示用于随机接入的RU。
  18. 根据权利要求14至17任一项所述的方法,其特征在于,所述第三帧承载于基于竞争信道接入的RU。
  19. 根据权利要求14至18任一项所述的方法,其特征在于,所述第三帧还包括以下至少一项:
    所述第二装置的位置变化信息;或,
    所述n个PPDU中的部分或全部PPDU的地址信息。
  20. 根据权利要求1,3至10,12至15,18至19中任一项所述的方法,其特征在于,在所述第一装置接收来自所述第二装置的第二帧之前,所述方法还包括:
    所述第一装置向所述第二装置发送第二触发帧,所述第二触发帧包括承载信道感知信息的RU信息;其中,
    所述承载信道感知信息的RU信息指示所述第二装置对应的RU;或,
    所述承载信道感知信息的RU信息指示用于竞争接入的RU。
  21. 根据权利要求2至9,11至13,16至19中任一项所述的方法,其特征在于,在所述第二装置向所述第一装置发送第二帧之前,所述方法还包括:
    所述第二装置接收来自所述第一装置的第二触发帧,所述第二触发帧包括承载信道感知信息的RU信息;其中,
    所述承载信道感知信息的RU信息指示所述第二装置对应的RU;或,
    所述承载信道感知信息的RU信息指示用于竞争接入的RU。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第二帧承载于基于竞争信道接入的RU。
  23. 根据权利要求1,3至10,12至15,18至19,20和22中任一项所述的方法,其特征在于,在所述第一装置接收来自所述第二装置的第二帧之前,所述方法还包括:
    所述第一装置向所述第二装置发送第四帧,所述第四帧包括以下至少一个字段:
    第一字段,用于指示是否有波束赋形或预编码;或,
    第二字段,用于指示是否改变发射功率;或,
    第三字段,用于指示是否改变波束赋形-预编码;或,
    第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
    第五字段,用于指示发射功率是否变化;或,
    第六字段,用于指示发射功率值。
  24. 根据权利要求2至9,11至13,16至19,21至22中任一项所述的方法,其特征在于,在所述第二装置向所述第一装置发送第二帧之前,所述方法还包括:
    所述第二装置接收来自所述第一装置的第四帧,所述第四帧包括以下至少一个字段:
    第一字段,用于指示是否有波束赋形或预编码;或,
    第二字段,用于指示是否改变发射功率;或,
    第三字段,用于指示是否改变波束赋形-预编码;或,
    第四字段,用于指示波束赋形矩阵-预编码矩阵;或,
    第五字段,用于指示发射功率是否变化;或,
    第六字段,用于指示发射功率值。
  25. 一种装置,其特征在于,包括处理器,所述处理器用于执行如权利要求1,3至10,12至15,18至19,20,22至23中任一项所述方法。
  26. 一种装置,其特征在于,包括处理器,所述处理器用于执行如权利要求2至9,11 至13,16至19,21至22,24中任一项所述方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-24中任一项所述的方法。
  28. 一种包含程序指令的计算机程序产品,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-24中任一项所述的方法。
  29. 一种通信系统,其特征在于,包括:
    如权利要求25所述的装置,和/或,
    如权利要求26所述的装置。
PCT/CN2022/133631 2021-11-25 2022-11-23 一种通信方法及装置 WO2023093747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111417500.1 2021-11-25
CN202111417500.1A CN116170821A (zh) 2021-11-25 2021-11-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023093747A1 true WO2023093747A1 (zh) 2023-06-01

Family

ID=86411948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133631 WO2023093747A1 (zh) 2021-11-25 2022-11-23 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116170821A (zh)
WO (1) WO2023093747A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029127A (zh) * 2015-09-10 2018-05-11 高通股份有限公司 对上行链路多用户帧的接入点控制的响应
WO2020226382A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 무선랜 시스템에서 트리거 프레임 기반으로 ul 전송을 수행하는 방법 및 장치
CN113346937A (zh) * 2020-03-02 2021-09-03 华为技术有限公司 信道探测方法和装置
CN113692775A (zh) * 2019-01-28 2021-11-23 现代自动车株式会社 分布式无线lan中的多用户通信方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029127A (zh) * 2015-09-10 2018-05-11 高通股份有限公司 对上行链路多用户帧的接入点控制的响应
CN113692775A (zh) * 2019-01-28 2021-11-23 现代自动车株式会社 分布式无线lan中的多用户通信方法及设备
WO2020226382A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 무선랜 시스템에서 트리거 프레임 기반으로 ul 전송을 수행하는 방법 및 장치
CN113346937A (zh) * 2020-03-02 2021-09-03 华为技术有限公司 信道探测方法和装置

Also Published As

Publication number Publication date
CN116170821A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US9450726B2 (en) Method of performing link adaptation procedure
JP6599333B2 (ja) マルチユーザ多入力多出力(mu−mimo)フィードバックプロトコル
WO2022143863A1 (zh) 副链路sl上的定位方法、终端及网络侧设备
WO2021244239A1 (zh) 多 ap 协作传输的信道探测方法及相关装置
WO2021175124A1 (zh) 信道探测方法和装置
WO2017107726A1 (zh) 一种信道资源的调度方法及装置
US20160088669A1 (en) System and Method for Direct Multi-User Transmission
JP2023538286A (ja) 無線ローカルエリアネットワークセンシングのための通信装置および通信方法
WO2018120102A1 (zh) 波束选择方法、装置及系统
CN113037400A (zh) 信道探测方法及装置
CN111512685A (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2022166644A1 (zh) 基于mimo波束赋形的感知方法及相关装置
TWI792824B (zh) 時間資源分配和接收方法及相關裝置
WO2023093747A1 (zh) 一种通信方法及装置
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2022190677A1 (ja) 端末、アクセスポイント、及び、通信方法
WO2020125635A1 (zh) 一种通信方法及装置
WO2023125051A1 (zh) 测量建立标识确定方法及相关装置
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2022063096A1 (zh) 一种循环移位延迟值csd的确定方法及通信装置
WO2023284544A1 (zh) 一种感知会话建立方法及通信装置
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023078203A1 (zh) 感知方法、装置及系统
WO2023231707A1 (zh) 一种用于感知的方法和装置
WO2023142975A1 (zh) 一种信道探测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897830

Country of ref document: EP

Kind code of ref document: A1