WO2017107726A1 - 一种信道资源的调度方法及装置 - Google Patents

一种信道资源的调度方法及装置 Download PDF

Info

Publication number
WO2017107726A1
WO2017107726A1 PCT/CN2016/106715 CN2016106715W WO2017107726A1 WO 2017107726 A1 WO2017107726 A1 WO 2017107726A1 CN 2016106715 W CN2016106715 W CN 2016106715W WO 2017107726 A1 WO2017107726 A1 WO 2017107726A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality measurement
information
channel quality
channel
domain
Prior art date
Application number
PCT/CN2016/106715
Other languages
English (en)
French (fr)
Inventor
赵牧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017107726A1 publication Critical patent/WO2017107726A1/zh
Priority to US16/015,311 priority Critical patent/US10834740B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of wireless technologies, and in particular, to a method and an apparatus for scheduling channel resources.
  • IEEE 802.11ad is a technical protocol for standardizing Wireless Local Area Network (WLAN) devices operating in the 60 GHz band.
  • a network that uses the 802.11ad protocol for communication is commonly referred to as a Directional Multi Gigabit (DMG) network.
  • DMG Directional Multi Gigabit
  • a DMG network it usually consists of one access point and multiple sites.
  • beamforming training BF training is performed to find a transmitting antenna mode and/or a receiving antenna mode suitable for each other, and then using the antenna mode for communication.
  • the transmit antenna mode or the receive antenna mode may be a transmit antenna direction or a receive antenna direction. Since there are multiple sectors in the antenna, there are also multiple transmit antenna directions or receive antenna directions, because there is a transmit antenna direction or receive. Antenna direction, so multiple STAs operating in the same frequency band geographically adjacent, their directional transmissions can overlap in the time domain, and data communication can be performed without interference as long as the transmitting antenna direction and/or the receiving antenna direction satisfy the condition Generally, in the field, a plurality of STAs operating in the same frequency band and geographically adjacent, whose directional transmission can overlap in the time domain is called Spatial Sharing (SPSH).
  • SPSH Spatial Sharing
  • the SPSH process is divided into two phases.
  • the first phase is the spatial sharing assessment (SPSH assessment), which is to determine whether each site can share space.
  • the second phase is spatial sharing scheduling (SPSH scheduling).
  • SPSH assessment spatial sharing assessment
  • SPSH scheduling spatial sharing scheduling
  • the 802.11ad standard stipulates that all STAs that need a space sharing assessment must complete BF training ahead of time before performing a space sharing assessment.
  • the workflow of the space sharing assessment is shown in Figure 1-a. Show:
  • the PCP/AP sequentially transmits a directional channel quality request to the selected STA A, B, C, D for spatial sharing, wherein STA A communicates with STA B, and STA C communicates with STA D.
  • STA A communicates with STA B
  • STA C communicates with STA D.
  • the STA receives the channel quality request frame sent by the PCP/AP and agrees to perform the directional channel quality measurement
  • the STA returns the response frame after receiving the short inter-frame space (SIFS) time of the channel quality request frame.
  • SIFS short inter-frame space
  • the PCP/AP After the PCP/AP receives the response frame sent by all the requested STAs, it will send a broadcast frame containing SP1 for STA A, B, C, D communication and measurement.
  • the information of SP2 such as the service period (SP) start/duration, the address of the STA that communicates in the SP, and the STA address that is measured in the SP.
  • SP1 and SP2 do not overlap in the time domain, so that one site pair can communicate while another site pair is measured. It should be noted that the STA that communicates must use the antenna mode of the previous BF training to communicate accordingly.
  • the STA performing communication or measurement transmits a directional channel quality report to the PCP/AP after the end of the last SP (SP2 in FIG. 1-a), and the directional channel quality report carries the measured by the station.
  • the other stations receive signal quality for interference with it when communicating.
  • the PCP/AP determines whether the STAs can SPSH according to the directed channel quality report sent by the STA. If SPSH is available, the scheduling information of the SPSH SP is included in the next Beacon, that is, the space sharing scheduling of the SPSH is implemented, as shown in FIG. STAs A and B, STA C and D communicate in two overlapping SPs, respectively.
  • the SPSH mechanism in the existing 11ad standard has a large overhead, which causes waste of channel resources.
  • the embodiment of the invention provides a channel resource scheduling method and device, which can carry directional channel quality measurement information in a management frame, thereby saving channel resources and improving system efficiency.
  • an embodiment of the present invention provides a method for scheduling a channel resource, including:
  • the access point sends a management frame, the management frame includes directional channel quality measurement information, and the directional channel quality measurement information includes at least two candidate stations selected by the access point for performing channel quality measurement.
  • An identifier of the pair of points, and a channel resource allocated for each of the at least two candidate site pairs for directional channel quality measurement, the channel resource time domains do not overlap;
  • the access point receives a directed channel quality measurement report returned by each of the at least two alternate site pairs, the directed channel quality measurement report carrying other candidate site pairs measured by the candidate site Corresponding signal quality when communicating with channel resources;
  • Determining, by the access point, at least two target site pairs from the at least two candidate site pairs according to a directed channel quality measurement report of each of the candidate sites, and to the at least two targets The site overlaps channel resources in time domain indicating space sharing.
  • the corresponding candidate site pair is requested to perform directional channel quality measurement, which reduces the SPSH mechanism overhead, saves channel resources, and improves system efficiency.
  • the management frame includes a beacon Beacon frame in a beacon frame transmission interval BTI or a notification frame in a broadcast frame transmission interval ATI;
  • the Beacon frame or the notification frame includes an allocation domain, and the directional channel quality measurement information is encapsulated in the allocation domain.
  • the management frame is further defined, and the directional channel quality measurement information is encapsulated in the allocation domain of the management frame, and is consistent with the allocation domain frame structure length of the existing management frame, thereby achieving compatibility with the existing 802.11ad system.
  • the allocation domain includes a control domain and an information domain
  • the control domain includes identification information, where the identifier information is used to identify an information category carried by the information domain, and the information category includes a dedicated channel resource allocation information category, a contention channel resource allocation information category, or a directional channel quality measurement information category. . Further, the identification information of the information domain is indicated by the identification information of the control domain in the domain, and the compatibility with the existing system is further realized.
  • the identifier information identifies that the information category carried by the information domain is a directional channel quality measurement information category
  • the information field includes a channel identification field, a station identification field, and a channel time domain information field;
  • the channel identification field encapsulates an operating frequency of the channel resource for directing channel quality measurement
  • the site identification field encapsulating each of the at least one alternate site pair Identifying, the identifier of the candidate site pair includes an identifier of one or two candidate sites in the pair of candidate sites;
  • the channel time domain information field encapsulates a start time and a duration of a time domain of the first channel resource of the at least two channel resources for directing channel quality measurement. Redefining a field containing directional channel quality measurement information in the allocation domain to indicate that each candidate site in the alternate site pair performs corresponding communication or measurement, reducing overhead, saving channel resources, and simultaneously implementing the existing system compatible.
  • the number of the target site pairs is less than or equal to the number of the candidate site pairs.
  • the number of selected target site pairs is less than or equal to the number of candidate site pairs, so that a plurality of optional implementation manners can be implemented to maximize space sharing among multiple target site pairs while ensuring communication quality.
  • an embodiment of the present invention provides a scheduling device for a channel resource, including:
  • a radio frequency circuit configured to send a management frame, where the management frame includes directional channel quality measurement information, where the directional channel quality measurement information includes an identifier of at least two candidate site pairs selected by the access point for performing channel quality measurement, And channel resources allocated for each of the at least two candidate site pairs for directional channel quality measurement, the channel resource time domains are not overlapping;
  • the radio frequency circuit is further configured to receive a directional channel quality measurement report returned by each of the at least two candidate site pairs, where the directional channel quality measurement report carries other alternative sites measured by the candidate site The quality of the received signal when communicating with the corresponding channel resource;
  • a processor configured to spatially share at least two target site pairs from the at least two candidate site pairs according to a directed channel quality measurement report of each of the candidate sites, and to the at least two targets
  • the site overlaps channel resources in time domain indicating space sharing.
  • the management frame includes a beacon Beacon frame in a beacon frame transmission interval BTI or a notification frame in a broadcast frame transmission interval ATI;
  • the Beacon frame or the notification frame includes an allocation domain, and the directional channel quality measurement information is encapsulated in the allocation domain. Further defining the management frame, and directional channel quality measurement information encapsulation In the allocation domain of the management frame, it is consistent with the allocation domain frame structure length of the existing management frame, thereby achieving compatibility with the existing 802.11ad system.
  • the allocation domain includes a control domain and an information domain
  • the control domain includes identification information, where the identifier information is used to identify an information category carried by the information domain, and the information category includes a dedicated channel resource allocation information category, a contention channel resource allocation information category, or a directional channel quality measurement information category. . Further, the identification information of the information domain is indicated by the identification information of the control domain in the domain, and the compatibility with the existing system is further realized.
  • the identifier information identifies that the information category carried by the information domain is a directional channel quality measurement information category
  • the information field includes a channel identification field, a station identification field, and a channel time domain information field;
  • the channel identification field encapsulates an operating frequency of the channel resource for directing channel quality measurement
  • the site identification field encapsulates an identity of each of the at least one candidate site pair, the identifier of the candidate site pair including an identity of one or two alternate sites of the candidate site pair;
  • the channel time domain information field encapsulates a start time and a duration of a time domain of the first channel resource of the at least two channel resources for directing channel quality measurement. Redefining a field containing directional channel quality measurement information in the allocation domain to indicate that each candidate site in the alternate site pair performs corresponding communication or measurement, reducing overhead, saving channel resources, and simultaneously implementing the existing system compatible.
  • the number of the target site pairs is less than or equal to the number of the candidate site pairs.
  • the number of selected target site pairs is less than or equal to the number of candidate site pairs, so that a plurality of optional implementation manners can be implemented to maximize space sharing among multiple target site pairs while ensuring communication quality.
  • the access point sends a management frame, where the management frame includes directional channel quality measurement information, and the directional channel measurement information includes at least two candidate stations selected by the access point for performing channel quality measurement.
  • the alternate site pair performs directional channel quality measurement, which reduces the SPSH mechanism overhead, saves channel resources, and improves system efficiency.
  • FIG. 1 is a schematic flowchart of a SPSH in the prior art according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram of a system for a WLAN deployment scenario according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for scheduling a channel resource according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a SPSH process according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a Beacon frame according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a frame of an allocation control domain according to an embodiment of the present disclosure
  • FIG. 6 is a table of correspondence between an allocation type and an information category according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another SPSH process according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of still another SPSH process according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a channel resource scheduling apparatus according to an embodiment of the present invention.
  • a WLAN may include a plurality of Basic Service Sets (BSSs), a network node in a basic service set is a site, and a site includes an access point class (Access Point,
  • BSSs Basic Service Sets
  • Access Point Access Point
  • the non-AP STAs are collectively referred to as STAs
  • Non-AP STAs the non-access point stations
  • Each basic service set may contain a site of one access point class and a plurality of STAs associated with the site of the access point class.
  • the site of the access point class may be a personal basic service set (BSS) control point (PCP) or an access point (AP), and the PCP coordinates other terminal sites in the PBSS.
  • BSS personal basic service set
  • PCP control point
  • AP access point
  • the AP provides access services to terminal sites in the WLAN, as well as management and coordination of terminal sites. All PCPs and APs are collectively referred to as access points in the embodiment of the present invention.
  • Figure 1-b is a system diagram of a typical WLAN deployment scenario, including an access point and four STAs.
  • the access points communicate with STA1, STA2, STA3, and STA4, respectively. Further STAs can also interact with each other. Communication.
  • the access point may be a device supporting the 802.11ax standard. Specifically, the access point is a device supporting the 802.11ad or 802.11ay standard. Further, the access point may support 802.11ac and 802.11n. , 802.11g, 802.11b and 802.11a and other WLAN systems.
  • the STA can support the 802.11ax standard.
  • the STA is a device supporting the 802.11ad or 802.11ay standard.
  • the site also supports 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a. And a variety of WLAN standards.
  • the STA that initiates the communication needs to request the channel resource to the PCP/AP.
  • STA1 needs to communicate with STA2
  • STA1 needs to go to PCP/.
  • the AP requests to allocate channel resources for communication, and the channel resources may be time-frequency resources.
  • the manner in which the access point allocates channel resources to the STA may include: 1. a channel resource SP allocated by the PCP/AP to a pair of STAs or PCP/APs and STAs; and a channel based on the contention mode allocated by the PCP/AP. Resources.
  • BF training is generally performed to find a transmit antenna mode and/or a receive antenna mode suitable for each other.
  • the antenna mode communicates on the channel resources allocated by the PCP/AP.
  • the antenna mode may include an antenna direction. Since there are multiple sectors in each antenna, the antenna direction may also include multiple, which enables multiple STAs adjacent to each other to use different antenna modes.
  • the same SP in the PCP/AP allocates transmission communication at the same time, increasing the throughput of the system and reducing the interference, that is, performing SPSH.
  • the SPSH process is divided into two phases.
  • the first phase is the space sharing evaluation, that is, the PCP/AP determines whether each site pair can perform SPSH
  • the second phase is space sharing scheduling, that is, if each site pair can perform SPSH, the Beacon frame is sent to indicate that each site is in the presence.
  • the assigned time domain overlaps in the SP for communication.
  • the 802.11ad standard stipulates that all STAs that need to perform space sharing evaluation must complete BF training before the space sharing evaluation, which can facilitate the communication/measurement of the antenna mode when performing subsequent space sharing evaluation.
  • the channel resource scheduling method in the embodiment of the present invention is an improvement of the space sharing evaluation process, and the corresponding channel is scheduled to perform channel quality measurement by determining the directed channel quality measurement information in the existing transmitted management frame to determine each Whether the site pair can perform SPSH, save channel resources and improve system efficiency.
  • FIG. 2 is a flowchart of a method for scheduling a channel resource according to an embodiment of the present invention.
  • the method may be applied to an access point, for example, an access point in FIG. 1b, where the access point can support a next-generation WLAN standard.
  • 802.11ad format For example: 802.11ad format.
  • 2 is a flowchart of a scheduling method of the channel resource, and the specific steps are as follows:
  • the access point sends a management frame, where the management frame includes directional channel quality measurement information, where the directional channel quality measurement information includes an identifier of at least two candidate site pairs selected by the access point for performing channel quality measurement. And channel resources allocated for each of the at least two candidate site pairs for directional channel quality measurement, the channel resource time domains are not overlapping;
  • each station when each station needs to perform communication, it needs to allocate channel resources to the PCP/AP request. It should be noted that before the site requests the PCP/AP to allocate channel resources, the site needs to perform corresponding communication with the corresponding site. BF Training to find transmit and/or receive antenna modes suitable for communicating with each other.
  • the notification transmission interval (ATI) or the data frame transmission interval (DTI) stage STA A, B, C, and D initiate a channel resource allocation SP request (Service Period request) to the PCP/AP.
  • the SP request carries the transmitting antenna and/or the receiving antenna mode when the STA performs beamforming training, assuming STA A Connect with STA B The letter, STA C communicates with STA D.
  • the PCP/AP After receiving the SP request, the PCP/AP processes, and performs preliminary estimation on each STA pair according to the transmit antenna mode and/or the receive antenna mode of each STA to perform SPSH.
  • the PCP/AP initially considers that STA A, B, C, and D can perform SPSH to improve system throughput, the directional channel quality measurement information can be encapsulated in the management frame sent by the next BI.
  • the directional channel quality measurement information includes an identifier of at least two candidate site pairs selected by the PCP/AP for performing channel quality measurement, and for each candidate site pair of the at least two candidate site pairs.
  • the channel resource SP for directional channel quality measurement does not overlap in the time domain between the SPs. It should be noted that the assigned SP for directional channel quality measurement is used for each alternate site pair to communicate with the alternate site pair, while each candidate site of the other candidate site pair measures the candidate. The quality of the interference signal received by the station when communicating.
  • information for performing directed channel quality measurement for each candidate site is encapsulated in an existing management frame without separately selecting each of the candidate pairs for each candidate site.
  • the station sends the directional channel quality measurement request frame, and does not need to receive the response frame of each candidate station through the channel resource, thus saving channel resources.
  • the management frame may be a beacon Beacon frame in the BTI, or the management frame may also be an Announce frame in the ATI, and each candidate site in the STA A, B, C, and D is scheduled by the management frame. Pairs communicate with each other/measurement. It should be noted that when one of the candidate sites communicates in the corresponding SP, the other candidate site pairs measure the received signal quality, which is the interference signal quality.
  • FIG. 3 a flow chart of using a beacon frame to encapsulate directional channel quality measurement information according to an embodiment of the present invention is shown in the figure.
  • STA A, B, C, and D agree to perform SPSH, then in the DTI phase.
  • An alternate site of STA A and STAB communicates with SP1, and STAC and STAD perform measurement, that is, measure the interference signal quality when STA A and STAB communicate; STAC and STAD are an alternative site to communicate with SP2.
  • STA A and STAB perform measurement, that is, measure the interference signal quality when STAC and STAD communicate.
  • the received interference signal quality may be a received signal to noise ratio.
  • STA A, B, C, D will send a directional channel quality report frame to the PCP/AP after the end of the last SP (such as SP2 in Figure 3).
  • the report contains The received signal to noise ratio measured by STA A, B, C, D.
  • the PCP/AP determines whether each candidate STA pair can perform SPSH according to the directed channel quality report sent by each STA. If SPSH can be performed, the PCP/AP will be included in the next BTI Beacon frame (or the next ATI notification frame). STA A, B, C, and D perform SP scheduling information of SPSH. STA A and B, STA C and D respectively perform communication transmission in two time-domain overlapping SPs in DTI. It should be noted that if STA A, B, If C and D cannot perform SPSH, the process is aborted.
  • the management frame may be a Beacon frame or a notification frame in the ATI.
  • the Beacon frame and the notification frame both include an allocation area, and the directional channel quality measurement information is encapsulated in the entire domain.
  • FIG. 4 it is a schematic diagram of an allocation domain provided by an embodiment of the present invention. It should be noted that the description of each field in the allocation domain is only an example, and may also be other allocation manners.
  • the allocation domain includes a control domain and an information domain
  • the distribution domain includes identification information, where the identifier information is used to identify the information category encapsulated by the information domain.
  • the information category includes a dedicated channel resource allocation information category, a contention channel resource allocation information category, or Directional channel quality measurement information category.
  • FIG. 4 it is a schematic diagram of a frame structure of an allocation domain according to an embodiment of the present invention.
  • the frame structure shown in FIG. 4 is obtained by modifying an allocation domain frame format in the original 802.11ad standard, and the control domain may be in FIG. Allocation control domain, further optional, Allocation control domain definition as shown in Figure 5, Allocation ID, measurement method, PCP active, LP SC used and existing frame structure containing the allocation domain or directional channel quality request frame Consistent.
  • the modified Allocation Type is shown in the table of FIG. 5.
  • the Allocation Type field may be identification information, and the information type carried in the information domain may be obtained through each bit value of the Allocation Type field.
  • the value of the allocation type should be set to 111 (this value can be changed as long as it is not the same as other existing values). It should be noted that, if the value of the allocation type is 000, the information type carried in the information domain is the exclusive channel resource allocation information. If the value of the allocation type is 100, the information category carried in the information domain is the contention channel resource. Assign information.
  • the information domain of the allocation domain carries the directional channel quality measurement information, and is used to identify the candidate site pair identifier for performing communication/measurement and the SP corresponding to each candidate site pair, as shown in FIG. 4, where the information domain includes the STA.
  • the working channel field encapsulates the frequency of the channel resource SP, and the AID1 and the AID2 encapsulate the identifier of the alternate site pair for communication/measurement. It should be noted that each of the fields AID1 and AID2 may encapsulate an alternate site alignment. The identity of an alternate site or the identity of two alternate sites. For example, as shown in FIG. 3, including two candidate site pairs STA A and B, STA C and D, the AID1 may be an identifier of the encapsulated STAA, or an identifier of the STAB, or an identifier of the STA A and the STAB. logo.
  • the measurement SP start time field encapsulates the start time of all the first SPs in the SP for channel quality measurement, and the first SP is the SP with the highest start time in each SP. Measure the SP duration to encapsulate the duration of an SP. It should be noted that, as long as each STA knows the start time of the first SP and the duration of one SP, the time domain resources of each SP can be obtained through the SIFS time. Optionally, the SIFS time is usually a fixed value in the WIFI system. 16us, replaceable, the start time of other SPs can also be indicated by the PCP/AP in the Beacon frame or the notification frame.
  • the length of the allocation field is 15 Octetts, which is consistent with the frame structure length of the existing domain in the existing management frame structure, that is, compatible with the existing 802.11ad system.
  • the embodiments of the present invention mainly perform encapsulated directional channel quality measurement information in the management frame by defining different encapsulation manners.
  • the access point receives a directional channel quality measurement report returned by each of the at least two candidate site pairs, where the directional channel quality measurement report carries other alternative sites measured by the candidate site.
  • the quality of the received signal when communicating with the corresponding channel resource;
  • each candidate station when all candidate station pairs complete communication/measurement at the corresponding SP, that is, after the last SP ends, each candidate station returns a directional channel quality report frame to the PCP/AP, in the report frame. Carrying the received signal quality of other alternative stations measured by the alternate site for communication in the corresponding channel resource.
  • STA A, B, C, and D will send a directional channel quality report frame to the PCP/AP after the end of the last SP (ie, SP2 in FIG. 3), and the report frame includes STA A.
  • B, C, D are the signal-to-noise ratios received in the corresponding measurement SP.
  • the STAA's report frame carries the received signal-to-noise ratio when STAC and STAD communicate.
  • the report frame of each candidate site carries the received signal to noise ratio of the other at least two candidate sites for communication, as shown in the figure.
  • STAA communicates with STAB
  • STAC communicates with STAD
  • STAE communicates with STAF.
  • DTI STAA and STAB communicate on SP1
  • STAC, D, E, and F both perform measurement
  • STAC and STAD communicate.
  • STAA, B, E, and F perform measurements
  • STAE and STAF communicate at SP3, while STAA, B, C, and D perform measurements.
  • each report frame includes corresponding measurement results of two candidate site pairs, for example, a STAA report frame includes STAC and STAD communication receiving signals.
  • the noise ratio also includes the received signal-to-noise ratio when STAE and STAF communicate.
  • the access point selects at least two target site pairs from the at least two candidate site pairs according to a directed channel quality measurement report of each of the candidate sites, and performs at least two The target site overlaps channel resources indicating time domain sharing for spatial sharing.
  • the PCP/AP determines, according to the directional channel quality measurement report sent by the STA, whether each candidate station pair can perform SPSH; specifically, according to the directional channel quality measurement report of each candidate site, at least Two candidate site pairs are selected to spatially share at least two target site pairs, and channel resources for spatial sharing are indicated to the target site.
  • the PCP/AP analyzes that the target site can perform SPSH for STAs A, B, C, and D.
  • the PCP/AP will include STA A, B in the next BTI Beacon frame (or ATI notification frame).
  • C, D perform SP scheduling information of the SPSH
  • the SP is a channel resource with overlapping time domains.
  • STA A and B, STA C and D respectively perform communication transmission in two overlapping SPs indicated in the DTI; if STA A, B, C, D cannot perform SPSH, the flow is aborted.
  • the number of the target site pairs is less than or equal to the number of the candidate site pairs.
  • the PCP/AP determines, according to the directed channel quality measurement report sent by the STA, whether each candidate STA pair can perform SPSH. It is assumed that in this embodiment, the PCP/AP analyzes that STA A, B, C, D can perform SPSH, and STAE and STAF cannot perform SPSH, then STA A and B, STA C and D respectively in DTI Communication is transmitted in the overlapping SP to implement SPSH. It should be noted that if STA A, B, C, D, E, and F cannot perform SPSH, the process is aborted.
  • the number of target site pairs selected in this embodiment is less than the number of candidate site pairs.
  • STAs A, B, C, D, E, and F can interfere with each other without performing SPSH, and STA A And B, STA C and D, and STAE and STAF perform communication transmission in three overlapping SPs in the DTI to implement SPSH.
  • the number of selected target site pairs is equal to the number of candidate site pairs.
  • the access point sends a management frame, where the management frame includes directional channel quality measurement information, where the directional channel measurement information includes identifiers of at least two candidate site pairs selected by the access point for performing channel quality measurement, and Channel resources for directional channel quality measurement allocated by each of the at least two candidate site pairs, by directional channel quality measurement information encapsulated in the management frame, thereby requesting a corresponding candidate site pair to perform directional channel Quality measurement reduces SPSH mechanism overhead, saves channel resources, and improves system efficiency.
  • the management frame includes directional channel quality measurement information
  • the directional channel measurement information includes identifiers of at least two candidate site pairs selected by the access point for performing channel quality measurement, and Channel resources for directional channel quality measurement allocated by each of the at least two candidate site pairs, by directional channel quality measurement information encapsulated in the management frame, thereby requesting a corresponding candidate site pair to perform directional channel Quality measurement reduces SPSH mechanism overhead, saves channel resources, and improves system efficiency.
  • FIG. 9 is a schematic block diagram of a channel resource scheduling apparatus according to an embodiment of the present invention.
  • the scheduling device of the channel resource is, for example, an access point, or a dedicated circuit or chip that implements related functions.
  • the access point 1000 includes a processor 1010, a memory 1020, a baseband circuit 1030, a radio frequency circuit 1040, and an antenna 1050.
  • the scheduling device for the channel resource may be the access point shown in Figure 1b.
  • the access point communicates with STA1, STA2, STA3, and STA4. Further, each STA can also communicate with each other on the channel resources allocated by the access point. For example, STA1 can communicate with STA2, and STA3 can perform with STA4. Communication, that is, communication between pairs of stations, it should be noted that if the transmission/reception antenna patterns of each station pair satisfy certain conditions, communication between the pairs of stations can simultaneously communicate in one SP, that is, SPSH, this can improve system throughput and reduce interference.
  • the processor 1010 controls the operation of the access point 1000.
  • the memory 1020 can include read only memory and random access memory and provides instructions and data to the processor 1010, which can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic. Device. A portion of memory 1020 may also include non-volatile line random access memory (NVRAM).
  • Baseband circuit 1030 is used to synthesize the baseband signal to be transmitted, or to receive The baseband signal is decoded.
  • the radio frequency circuit 1040 is for modulating a low frequency baseband signal to a high frequency carrier signal, and a high frequency carrier signal is transmitted through the antenna 1050.
  • the radio frequency circuit is also used to demodulate the high frequency signal received by the antenna 1050 into a low frequency carrier signal.
  • the various components of station 1000 are coupled together by a bus 1060, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1060 in the figure. It should be noted that the foregoing description of the access point structure can be applied to subsequent embodiments.
  • the radio frequency circuit 1040 is configured to send a management frame, where the management frame includes directional channel quality measurement information, where the directional channel quality measurement information includes an identifier of at least two candidate site pairs selected by the access point for performing channel quality measurement. And channel resources allocated for each of the at least two candidate site pairs for directional channel quality measurement, the channel resource time domains are not overlapping;
  • information for indicating that each candidate station performs directional channel quality measurement is encapsulated in an existing management frame, and the directional channel is not separately sent to each candidate site of each candidate site pair.
  • the quality measurement request frame does not need to receive the response frame of each candidate site through the channel resource, thus saving channel resources.
  • the management frame may be a beacon Beacon frame in the BTI, or the management frame may also be an Announce frame in the ATI, and each candidate site pair is scheduled to communicate/measure each other through the management frame.
  • the other candidate site pairs measure the received signal quality, which is the interference signal quality.
  • the radio frequency circuit 1040 is further configured to receive a directional channel quality measurement report returned by each of the at least two candidate site pairs, where the directional channel quality measurement report carries other alternatives measured by the candidate site The received signal quality of the station pair when communicating corresponding channel resources;
  • each candidate station when all candidate station pairs complete communication/measurement at the corresponding SP, that is, after the last SP ends, each candidate station returns a directional channel quality report frame to the PCP/AP, where the report frame carries the The received signal quality of other alternative stations measured by the alternate site when communicating with the corresponding channel resource.
  • the report frame of each candidate site carries the received signal to noise ratio of the other at least two candidate sites for communication, as shown in the figure. 7
  • STAA and STAB communicate
  • STAC and STAD communicate
  • STAE and STAF communicate.
  • DTI STAA and STAB communicate on SP1
  • STAC, D, E, F both measure, STAC and STAD communicate
  • STAA , B, E, F are measured
  • STAE and STAF communicate at SP3
  • STAA, B, C, D are measured.
  • each report frame includes corresponding measurement results of two candidate site pairs, for example, a STAA report frame includes STAC and STAD communication receiving signals.
  • the noise ratio also includes the received signal-to-noise ratio when STAE and STAF communicate.
  • the processor 1010 is configured to: according to the directional channel quality measurement report of each of the candidate sites, select at least two target site pairs from the at least two candidate site pairs for spatial sharing, and to the at least two The target site overlaps channel resources in time domain indicating spatial sharing.
  • the number of the target site pairs is less than or equal to the number of the candidate site pairs.
  • the PCP/AP determines, according to the directed channel quality measurement report sent by the STA, whether each candidate STA pair can perform SPSH. It is assumed that in this embodiment, the PCP/AP analyzes that STA A, B, C, and D can perform SPSH, and STAE and STAF cannot perform SPSH, and STA A and B, STA C and D respectively in two overlapping SPs in DTI Communication transmission is implemented to implement SPSH. It should be noted that if STA A, B, C, D, E, and F cannot perform SPSH, the process is aborted.
  • the number of target site pairs selected in this embodiment is less than the number of candidate site pairs.
  • STAs A, B, C, D, E, and F can interfere with each other without performing SPSH, and STA A And B, STA C and D, and STAE and STAF perform communication transmission in three overlapping SPs in the DTI to implement SPSH.
  • the number of selected target site pairs is equal to the number of candidate site pairs.
  • the management frame includes a beacon Beacon frame in a beacon frame transmission interval BTI or a notification frame in a broadcast frame transmission interval ATI;
  • the Beacon frame or the notification frame includes an allocation domain, and the directional channel quality measurement information is encapsulated in the allocation domain.
  • the allocation domain includes a control domain and an information domain
  • the control domain includes identification information, where the identifier information is used to identify an information category carried by the information domain, and the information category includes a dedicated channel resource allocation information category, a contention channel resource allocation information category, or a directional channel quality measurement information category. .
  • control domain may be the allocation control Allocation control domain in FIG. 4, and further optionally, the Allocation control domain definition is as shown in FIG. 5, Allocation ID, measurement method, PCP active, LP SC used and existing inclusion.
  • Allocation ID Allocation ID, measurement method, PCP active, LP SC used and existing inclusion.
  • the frame structure of the allocation field or the directional channel quality request frame is consistent.
  • the identifier information identifies that the information category carried by the information domain is a directional channel quality measurement information category
  • the information field includes a channel identification field, a station identification field, and a channel time domain information field;
  • the channel identification field encapsulates an operating frequency of the channel resource for directing channel quality measurement
  • the site identification field encapsulates an identity of each of the at least one candidate site pair, the identifier of the candidate site pair including an identity of one or two alternate sites of the candidate site pair;
  • the channel time domain information field encapsulates a start time and a duration of a time domain of the first channel resource of the at least two channel resources for directing channel quality measurement.
  • the information domain of the allocation domain carries the directional channel quality measurement information, and is used to identify the candidate site pair identifier for performing communication/measurement and the SP corresponding to each candidate site pair, as shown in FIG. 4, where the information domain includes the STA.
  • the working channel field encapsulates the frequency of the channel resource SP, and the AID1 and the AID2 encapsulate the identifier of the alternate site pair for communication/measurement. It should be noted that each of the fields AID1 and AID2 may encapsulate an alternate site alignment. The identity of an alternate site or the identity of two alternate sites. For example, as shown in FIG. 3, including two candidate site pairs STA A and B, STA C and D, the AID1 may be an identifier of the encapsulated STAA, or an identifier of the STAB, or an identifier of the STA A and the STAB. logo.
  • the number of the target site pairs is less than or equal to the number of the candidate site pairs.
  • the access point sends a management frame, where the management frame includes directional channel quality measurement information, and the directional channel measurement information includes at least two candidate stations selected by the access point for performing channel quality measurement.
  • the alternate site pair performs directional channel quality measurement, which reduces the SPSH mechanism overhead, saves channel resources, and improves system efficiency.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • modules or units in the terminal in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the components of the microcontroller and the like may be implemented by a general-purpose integrated circuit, such as a central processing unit (CPU), or an application specific integrated circuit (ASIC).
  • a general-purpose integrated circuit such as a central processing unit (CPU), or an application specific integrated circuit (ASIC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道资源的调度方法及装置,信道资源的调度方法包括:接入点发送管理帧,管理帧包括定向信道质量测量信息,定向信道质量测量信息包括接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源;接入点接收至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,接入点根据每一个备选站点的定向信道质量测量报告,选择至少两个目标站点对进行空间共享,并向至少两个目标站点对指示进行空间共享的时域重叠信道资源,通过本发明可以在管理帧中携带定向信道质量测量信息,从而节省信道资源,提高系统效率。

Description

一种信道资源的调度方法及装置
本申请要求于2015年12月24日提交中国专利局、申请号为201510982350.7、发明名称为“一种信道资源的调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线技术领域,尤其涉及一种信道资源的调度方法及装置。
背景技术
IEEE 802.11ad是规范工作在60GHz频带上的无线局域网(Wireless Local Area Network,WLAN)设备的技术协议,采用802.11ad协议进行通信的网络通常被称为千兆比特(Directional Multi Gigabit,DMG)网络,在DMG网络中通常由一个接入点和多个站点构成,与其他WLAN协议不同的是,由于60GHz频带的特性,接入点和站点之间,或两个站点之间进行通信之前,一般要先进行波束成形训练(beamforming training,BF training),找到适合彼此的发送天线模式和/或接收天线模式,再使用该天线模式进行通信。
具体可选的,发送天线模式或接收天线模式可以是发送天线方向或接收天线方向,由于天线存在多个扇区,因此,发送天线方向或接收天线方向也有多个,由于存在发送天线方向或接收天线方向,因此工作在相同频段地理位置上相邻的多个STA,它们的定向传输可以在时域上重叠,只要发送天线方向和/或接收天线方向满足条件,即可无干扰地进行数据通信,通常在该领域内,工作在相同频段,地理位置相邻的多个STA,它们的定向传输可以在时域上重叠的技术称为空间共享(Spatial sharing,SPSH)。
在802.11ad协议中,SPSH流程分为两个阶段。第一阶段是空间共享评估(spatial sharing assessment,SPSH assessment),即是确定各个站点对是否能够进行空间共享,第二阶段是空间共享调度(spatial sharing scheduling,SPSH scheduling)。802.11ad标准规定在进行空间共享评估前,需要进行空间共享评估的所有STA都必须提前完成BF training。空间共享评估的工作流程如图1-a所 示:
1)PCP/AP依次向所选择的进行空间共享的STA A,B,C,D发送定向信道质量请求帧(directional channel quality request),其中STA A与STA B通信,STA C与STA D通信。当STA接收到PCP/AP发送的信道质量请求帧并同意进行定向信道质量测量时,STA会在收到信道质量请求帧的短帧间间隔(short inter-frame space,SIFS)时间后回应答帧。
2)只有在PCP/AP收到所有请求的STA发送的应答帧后,会发送一个广播帧(announcement frame),该广播帧包含了用于STA A,B,C,D通信和测量的SP1、SP2的信息,如业务期(Service period,SP)开始/持续时间,该SP中进行通信的STA地址,该SP中进行测量的STA地址等信息。通常SP1和SP2在时域不重叠,以便于一个站点对进行通信的同时,另一个站点对进行测量。需要注意的是,进行通信的STA必须使用之前BF training时的天线模式进行相应的通信。
3)进行通信或测量的STA在最后一个SP结束后(如图1-a中的SP2)发送定向信道质量报告(directional channel quality report)给PCP/AP,该定向信道质量报告携带该站点所测量的其它站点对通信时对它的干扰接收信号质量。
4)PCP/AP根据STA发送的定向信道质量报告来判断这些STA是否能SPSH;如果能SPSH,则在下一个Beacon中包含进行SPSH SP的调度信息,即实现SPSH的空间共享调度,如图1-a中STA A和B,STA C和D分别在两个重叠的SP中进行通信。
上述可知,现有11ad标准中的SPSH机制开销很大,造成信道资源的浪费。
发明内容
本发明实施例提供一种信道资源的调度方法及装置,可以在管理帧中携带定向信道质量测量信息,从而节省信道资源,提高系统效率。
第一方面,本发明实施例提供了一种信道资源的调度方法,包括:
接入点发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站 点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
所述接入点接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
所述接入点根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。通过在管理帧中封装定向信道质量测量信息,从而请求相应的备选站点对进行定向信道质量测量,减小了SPSH机制开销,节省信道资源,提高系统效率。
基于第一方面,在第一方面的第一种可行的实施方式中,所述管理帧包括信标帧发送间隔BTI中的信标Beacon帧或者广播帧发送间隔ATI中的通知帧;
所述Beacon帧或者所述通知帧包括分配域,所述定向信道质量测量信息封装于所述分配域中。进一步对管理帧进行限定,定向信道质量测量信息封装于管理帧的分配域中,与现有的管理帧的分配域帧结构长度一致,从而实现与现有802.11ad系统兼容。
基于第一方面第一种可行的实施方式,在第一方面的第二种可行的实施方式中,所述分配域包括控制域和信息域;
所述控制域包括标识信息,所述标识信息用于标识所述信息域所携带的信息类别,所述信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。进一步通过分配域中控制域的标识信息表明信息域的封装信息类别,进一步实现与现有系统兼容。
基于第一方面第二种可行的实施方式,在第一方面第三种可行的实施方式中,若所述标识信息标识所述信息域所携带的信息类别为定向信道质量测量信息类别;
所述信息域包括信道标识字段、站点标识字段以及信道时域信息字段;
所述信道标识字段封装所述用于定向信道质量测量的信道资源的工作频率;
所述站点标识字段封装所述至少一个备选站点对中每一个备选站点对的 标识,所述备选站点对的标识包括该备选站点对中的一个或者两个备选站点的标识;
所述信道时域信息字段封装所述用于定向信道质量测量的至少两个信道资源中第一个信道资源时域的开始时间和持续时长。通过在分配域中重新定义包含定向信道质量测量信息的字段,用以指示备选站点对中各个备选站点执行相应的通信或者测量,减小开销,节省信道资源,同时实现与现有系统的兼容。
基于第一方面,或者第一方面第一种可行的实施方式,或者第一方面第二种可行的实施方式,或者第一方面第三种可行的实施方式,在第一方面第四种可行的实施方式中,所述目标站点对的个数小于或者等于所述备选站点对的个数。所选择的目标站点对的个数小于或者等于备选站点对的个数,这样可以实现多种可选的实施方式,最大限度地使得多个目标站点对进行空间共享,同时保证通信质量。
第二方面,本发明实施例提供一种信道资源的调度装置,包括:
射频电路,用于发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
所述射频电路还用于接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
处理器,用于根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。通过在管理帧中封装定向信道质量测量信息,从而请求相应的备选站点对进行定向信道质量测量,减小了SPSH机制开销,节省信道资源,提高系统效率。
基于第二方面,在第二方面的第一种可行的实施方式中,所述管理帧包括信标帧发送间隔BTI中的信标Beacon帧或者广播帧发送间隔ATI中的通知帧;
所述Beacon帧或者所述通知帧包括分配域,所述定向信道质量测量信息封装于所述分配域中。进一步对管理帧进行限定,定向信道质量测量信息封装 于管理帧的分配域中,与现有的管理帧的分配域帧结构长度一致,从而实现与现有802.11ad系统兼容。
基于第二方面第一种可行的实施方式,在第二方面的第二种可行的实施方式中,所述分配域包括控制域和信息域;
所述控制域包括标识信息,所述标识信息用于标识所述信息域所携带的信息类别,所述信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。进一步通过分配域中控制域的标识信息表明信息域的封装信息类别,进一步实现与现有系统兼容。
基于第二方面第二种可行的实施方式,在第二方面第三种可行的实施方式中,若所述标识信息标识所述信息域所携带的信息类别为定向信道质量测量信息类别;
所述信息域包括信道标识字段、站点标识字段以及信道时域信息字段;
所述信道标识字段封装所述用于定向信道质量测量的信道资源的工作频率;
所述站点标识字段封装所述至少一个备选站点对中每一个备选站点对的标识,所述备选站点对的标识包括该备选站点对中的一个或者两个备选站点的标识;
所述信道时域信息字段封装所述用于定向信道质量测量的至少两个信道资源中第一个信道资源时域的开始时间和持续时长。通过在分配域中重新定义包含定向信道质量测量信息的字段,用以指示备选站点对中各个备选站点执行相应的通信或者测量,减小开销,节省信道资源,同时实现与现有系统的兼容。
基于第二方面,或者第二方面第一种可行的实施方式,或者第二方面第二种可行的实施方式,或者第二方面第三种可行的实施方式,在第二方面第四种可行的实施方式中,所述目标站点对的个数小于或者等于所述备选站点对的个数。所选择的目标站点对的个数小于或者等于备选站点对的个数,这样可以实现多种可选的实施方式,最大限度地使得多个目标站点对进行空间共享,同时保证通信质量。
本发明实施例中,接入点发送管理帧,该管理帧包括定向信道质量测量信息,定向信道测量信息包括接入点选择的进行信道质量测量的至少两个备选站 点对的标识,以及为该至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,通过在管理帧中封装定向信道质量测量信息,从而请求相应的备选站点对进行定向信道质量测量,减小了SPSH机制开销,节省信道资源,提高系统效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-a为本发明实施例提供的现有技术中SPSH的流程示意图;
图1-b为本发明实施例提供的WLAN部署场景的系统示意图;
图2为本发明实施例提供的信道资源的调度方法流程示意图;
图3为本发明实施例提供的一种SPSH流程示意图;
图4为本发明实施例提供的一种Beacon帧结构示意图;
图5为本发明实施例提供的一种分配控制域的帧结构示意图;
图6为本发明实施例提供的一种分配类型与信息类别对应表;
图7为本发明实施例提供的另一种SPSH流程示意图;
图8为本发明实施例提供的又一种SPSH流程示意图;
图9为本发明实施例提供的一种信道资源的调度装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例可以应用于WLAN中,目前WLAN采用的标准为IEEE802.11系列。WLAN可以包括多个基本服务集(Basic Service Set,BSS),基本服务集中的网络节点为站点,站点包括接入点类的站点(Access Point, AP)和非接入点类的站点(None Access Point Station,Non-AP STA),在本发明实施例中将Non-AP STA统称为STA。
每个基本服务集可以包含一个接入点类的站点和多个关联于该接入点类的站点的STA。接入点类的站点可以为个人基本服务集(BSS)控制点(personal basic service set(PBSS)control point,PCP)或者接入点(Access Point,AP),PCP在PBSS中协调其他终端站点接入无线媒介。AP对WLAN中的终端站点提供接入服务,以及进行管理和协调终端站点等。在本发明实施例中将所有PCP和AP统称为接入点。
图1-b为一个典型的WLAN部署场景的系统示意图,包括一个接入点和4个STA,接入点分别与STA1、STA2、STA3和STA4进行通信,进一步的各个STA之间也可以进行相互通信。其中,接入点可以为支持802.11ax制式的设备,具体可选的,该接入点为支持802.11ad或者802.11ay标准的设备,进一步可选地,该接入点可以支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
站点STA可以支持802.11ax制式,具体可选的,该站点STA为支持802.11ad或者802.11ay标准的设备,进一步可选地,该站点也支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
当各个STA之间进行通信或者接入点PCP/AP与STA进行通信时,发起通信的STA需要向PCP/AP请求分配信道资源,例如,STA1需要与STA2进行通信时,则STA1需要向PCP/AP请求分配用于进行通信的信道资源,该信道资源可以为时频资源。
接入点为STA分配信道资源的方式可以包括:1、PCP/AP分配给一对STA或PCP/AP和STA独占的信道资源SP;2、由PCP/AP分配的基于竞争方式接入的信道资源。
在802.11ad标准中,PCP/AP和DMG STA之间,或两个DMG STA之间进行通信之前,一般要先进行BF training,找到适合彼此的发送天线模式和/或接收天线模式,再使用该天线模式在PCP/AP分配的信道资源上进行通信。天线模式可以包括天线方向,由于各个天线存在多个扇区,因此天线方向也可以包括多个,这就使得地理位置相邻的多个STA可以利用不同的天线模式在 PCP/AP分配的同一个SP中同时进行传输通信,增加系统的吞吐量和减小干扰,即是进行SPSH。
SPSH流程分为两个阶段。第一阶段是空间共享评估,即是PCP/AP确定各个站点对是否能够进行SPSH,第二阶段是空间共享调度,即是若各个站点对能够进行SPSH,则发送Beacon帧指示各个站点对在所分配的时域重叠的SP中进行通信。802.11ad标准中规定在进行空间共享评估前,要进行空间共享评估的所有STA都必须提前完成BF training,这样可以方便后续进行空间共享评估时可以采用该天线模式进行通信/测量。
本发明实施例中信道资源的调度方法即是对空间共享评估流程进行的改进,通过在现有发送的管理帧中封装定向信道质量测量信息,从而调度相应的站点进行信道质量测量,以确定各个站点对是否能够进行SPSH,节省信道资源,提高系统效率。
请参照图2,为本发明实施例提供的信道资源的调度方法的流程图,该方法可以应用于接入点,例如:图1b中的接入点,该接入点可以支持下一代WLAN标准,例如:802.11ad制式。图2是该信道资源的调度方法流程图,具体步骤如下:
S200,接入点发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
本发明实施例中,各个站点需要进行通信时,需要向PCP/AP请求分配信道资源,需要说明的,在站点向PCP/AP请求分配信道资源之前,该站点还需要与进行通信的对应站点进行BF Training,以找到适合彼此通信的发送天线和/或接收天线模式。
具体可选的,在信标帧间隔(Beacon interval,BI)的A-BFT,通知帧传输间隔(announcement transmission interval,ATI)或数据帧传输间隔,(data transmission interval,DTI)阶段,STA A,B,C,D向PCP/AP发起信道资源分配SP请求(Service Period request),需要说明的是,该SP请求中携带STA进行波束成形训练时的发送天线和/或接收天线模式,假设STA A与STA B通 信,STA C与STA D通信。
PCP/AP收到SP请求后进行处理,根据各个STA的发送天线模式和/或接收天线模式进行初步估算进行通信的各个STA对是否能够进行SPSH。当PCP/AP初步认为STA A,B,C,D能够进行SPSH提高系统吞吐量时,则可以在下一个BI所发送的管理帧中封装定向信道质量测量信息。
可选的,该定向信道质量测量信息包括PCP/AP所选择的进行信道质量测量的至少两个备选站点对的标识,以及为该至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源SP,各个SP之间时域均不重叠。需要说明的是,为每一个备选站点对所分配的用于定向信道质量测量的SP用于该备选站点对进行通信,同时其它备选站点对中的每一个备选站点测量该备选站点对进行通信时的干扰信号接收质量。
在本发明实施例中,通过将用于指示各个备选站点对进行定向信道质量测量的信息封装在现有的管理帧中,而不需要单独地向各个备选站点对中的每一个备选站点发送定向信道质量测量请求帧,也不需要通过信道资源接收各个备选站点的应答帧,因此节省了信道资源。
可选的,管理帧可以是BTI中的信标Beacon帧,或者该管理帧也可以是ATI中的通知帧(Announce frame),通过管理帧调度STA A,B,C,D中各个备选站点对进行相互通信/测量。需要说明的是,其中一个备选站点对在对应SP中进行通信时,其它备选站点对则进行测量所接收的信号质量,该信号质量即是干扰信号质量。
如图3所示,为本发明实施例提供的采用信标Beacon帧封装定向信道质量测量信息的流程图,如图所示,若STA A,B,C,D同意进行SPSH,则在DTI阶段,STA A和STAB这一个备选站点对在SP1进行通信,同时STAC和STAD进行测量,即是测量STA A和STAB通信时的干扰信号质量;STAC和STAD这一个备选站点对在SP2进行通信,同时,STA A和STAB进行测量,即是测量STAC和STAD通信时的干扰信号质量。可选的,接收的干扰信号质量可以是接收信噪比。
STA A,B,C,D会在最后一个SP结束后(如图3中的SP2)分别发送定向信道质量报告(directional channel quality report)帧给PCP/AP,该报告包含 了STA A,B,C,D所测量的接收信噪比。
PCP/AP根据各个STA发送的定向信道质量报告来判断各个备选STA对能否进行SPSH;如果能进行SPSH,PCP/AP会在下一个BTI的Beacon帧(或者下一个ATI的通知帧)中包含STA A,B,C,D进行SPSH的SP调度信息,STA A和B,STA C和D分别在DTI中两个时域重叠SP中进行通信传输,需要说明的是,如果STA A,B,C,D不能进行SPSH,则该流程中止。
通过比较图3和图1-a的流程图可以看出,图3中减少了很多帧结构的收发,从而节省了信道资源,同时也能够实现定向信道质量测量调度请求。
可选的,该管理帧可以是Beacon帧,也可以是ATI中的通知帧,Beacon帧和通知帧均包含分配allocation域,定向信道质量测量信息即封装于该allocation域中。如图4所示,即是本发明实施例提供的一种分配域的示意图,需要说明的是,该分配域中各个字段的示意仅为举例,也可以为其它的分配方式。
分配域包括控制域和信息域,分配域包括标识信息,该标识信息用于标识信息域所封装的信息类别,可选的,信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。
如图4所示,即是本发明实施例提供的一种分配域的帧结构示意图,图4所示帧结构是在原802.11ad标准中的allocation域帧格式修改得到,控制域可以是图4中的分配控制Allocation control域,进一步可选的,Allocation control域定义如图5所示,Allocation ID,measurement method,PCP active,LP SC used与现有的包含allocation域的帧结构或定向信道质量请求帧一致。
修改后的Allocation Type如图5的表所示,Allocation Type字段可以是标识信息,通过Allocation Type字段的各个比特值可以获知信息域所携带的信息类别。
当PCP/AP发送携带定向信道质量测量信息给对应的STA时,allocation type的值应设为111(该值可以更改,只要不与其它已有值一样即可)。需要说明的是,若allocation type的值为000时,则信息域所携带的信息类别为专属信道资源分配信息,若allocation type的值为100时,则信息域所携带的信息类别为竞争信道资源分配信息。
可选的,allocation域的信息域携带定向信道质量测量信息,用于标识进行通信/测量的备选站点对标识以及各个备选站点对所对应的SP,如图4所示,信息域包括STA工作制式operating class,工作信道channel number,STA标识AID1,AID2,测量SP开始时间measurement start time,测量SP持续时间measurement duration,测量单元时间number of time blocks,可选子单元optional subelements。
其中,工作信道字段封装信道资源SP的频率,AID1,AID2封装进行通信/测量的备选站点对的标识,需要说明的是,AID1和AID2中每个字段中可以是封装一个备选站点对中的一个备选站点的标识或者两个备选站点的标识。例如,如图3所示,包括两个备选站点对STA A和B,STA C和D,则AID1中可以是封装STAA的标识,或者STAB的标识,或者是封装STA A的标识和STAB的标识。
其中,测量SP开始时间字段封装所有用于信道质量测量的SP中第一个SP的开始时间,第一个SP即是各个SP中开始时间最前的SP。测量SP持续时间封装一个SP的持续时间长度。需要说明的是,各个STA只要知道第一个SP的开始时间和一个SP的持续时间,即可通过SIFS时间获得各个SP的时域资源,可选的,通常SIFS时间在WIFI系统中为固定值16us,可替换的,其它各个SP的开始时间也可以由PCP/AP在Beacon帧或者通知帧中进行指示。
如图4所示,该allocation域的长度为15Octects,与现有管理帧结构中的allocation域的帧结构长度一致,即是与现有802.11ad系统兼容。本发明实施例主要是通过定义不同的封装方式在该管理帧中进行封装定向信道质量测量信息。
S201,所述接入点接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
本发明实施例中,当所有备选站点对在相应的SP完成通信/测量时,即在最后一个SP结束后,各个备选站点即向PCP/AP返回定向信道质量报告帧,该报告帧中携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量。
如图3所示,STA A,B,C,D会在最后一个SP结束后(即图3中的SP2),分别发送定向信道质量报告帧给PCP/AP,该报告帧包含了STA A,B,C,D在对应测量SP中接收的信噪比,例如STAA的报告帧中携带了STAC和STAD通信时的接收信噪比。
进一步可选的,若备选站点对的个数包括三个或者三个以上,则各个备选站点的报告帧中携带了其它至少两个备选站点对通信时的接收信噪比,如图7所示,STAA和STAB通信,STAC和STAD通信,STAE和STAF通信,在DTI中,STAA和STAB在SP1进行通信,同时STAC,D,E,F均进行测量,STAC和STAD进行通信,同时STAA,B,E,F进行测量,STAE和STAF在SP3进行通信,同时STAA,B,C,D进行测量。则在STAA,B,C,D,E,F返回报告帧时,每个报告帧均包含两个备选站点对对应的测量结果,例如STAA的报告帧中包括STAC和STAD通信时的接收信噪比,还包括STAE和STAF通信时的接收信噪比。
S202,所述接入点根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。
本发明实施例中,PCP/AP根据STA发送的定向信道质量测量报告来判断各个备选站点对能否进行SPSH;具体可选的,根据每一个备选站点的定向信道质量测量报告,从至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向目标站点对指示进行空间共享的信道资源。
如图3所示,PCP/AP分析出目标站点对STA A,B,C,D能进行SPSH,PCP/AP会在下一个BTI的Beacon帧(或是ATI的通知帧)中包含STA A,B,C,D进行SPSH的SP调度信息,该SP为时域重叠的信道资源。STA A和B,STA C和D分别在DTI中所指示的两个重叠SP中进行通信传输;如果STA A,B,C,D不能进行SPSH,则该流程中止。
可选的,目标站点对的个数小于或者等于备选站点对的个数,如图7所示,PCP/AP根据STA发送的定向信道质量测量报告判断各个备选STA对能否进行SPSH;假设在该实施例中PCP/AP分析出STA A,B,C,D可以进行SPSH,而STAE和STAF不能进行SPSH,则STA A和B,STA C和D分别在DTI中两个 重叠SP中进行通信传输,实现SPSH。需要说明的是,如果STA A,B,C,D,E,F均不能进行SPSH,则该流程中止。在该实施例中所选择出的目标站点对的个数小于备选站点对的个数。
可选的,如图8所示,为本发明实施例的另一种情况,在该实施例中,STA A,B,C,D,E,F均能互不干扰进行SPSH,则STA A和B,STA C和D以及STAE和STAF在DTI中三个重叠SP中进行通信传输,实现SPSH,在该实施例中所选择出的目标站点对的个数等于备选站点对的个数。
本发明实施例中,接入点发送管理帧,该管理帧包括定向信道质量测量信息,定向信道测量信息包括接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为该至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,通过在管理帧中封装定向信道质量测量信息,从而请求相应的备选站点对进行定向信道质量测量,减小了SPSH机制开销,节省信道资源,提高系统效率。
请参照图9,为本发明实施例提供的一种信道资源的调度装置的示意性框图,该信道资源的调度装置例如为接入点,或者实现相关功能的专用电路或者芯片。该接入点1000包括处理器1010、存储器1020、基带电路1030、射频电路1040和天线1050。该信道资源的调度装置可以为图1b中示出的接入点。该接入点与STA1、STA2、STA3以及STA4进行通信,进一步的,各个STA之间也可以在接入点所分配的信道资源进行相互通信,例如STA1可以与STA2进行通信,STA3可以与STA4进行通信,即是各个站点对之间进行通信,需要说明的是,若各个站点对的发送/接收天线模式满足一定的条件,各个站点对之间的通信可以同时在一个SP中进行通信,即进行SPSH,这样可以提高系统吞吐量,减小干扰。
具体地,处理器1010控制接入点1000的操作。存储器1020可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。存储器1020的一部分还可以包括非易失行随机存取存储器(NVRAM)。基带电路1030是用来合成即将发射的基带信号,或对接收到的 基带信号进行解码。射频电路1040用于将低频的基带信号调制到高频的载波信号,高频的载波信号通过天线1050发射。射频电路也用于将天线1050接收的高频信号解调成低频的载波信号。站点1000的各个组件通过总线1060耦合在一起,其中总线系统1060除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1060。需要说明的是,上述对于接入点结构的描述,可应用于后续的实施例。
射频电路1040,用于发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
可选的,将用于指示各个备选站点对进行定向信道质量测量的信息封装在现有的管理帧中,而不需要单独地向各个备选站点对中的每一个备选站点发送定向信道质量测量请求帧,也不需要通过信道资源接收各个备选站点的应答帧,因此节省了信道资源。
可选的,管理帧可以是BTI中的信标Beacon帧,或者该管理帧也可以是ATI中的通知帧(Announce frame),通过管理帧调度各个备选站点对进行相互通信/测量。
需要说明的是,其中一个备选站点对在对应SP中进行通信时,其它备选站点对则进行测量所接收的信号质量,该信号质量即是干扰信号质量。
所述射频电路1040还用于接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
可选的,当所有备选站点对在相应的SP完成通信/测量时,即在最后一个SP结束后,各个备选站点即向PCP/AP返回定向信道质量报告帧,该报告帧中携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量。
进一步可选的,若备选站点对的个数包括三个或者三个以上,则各个备选站点的报告帧中携带了其它至少两个备选站点对通信时的接收信噪比,如图7 所示,STAA和STAB通信,STAC和STAD通信,STAE和STAF通信,在DTI中,STAA和STAB在SP1进行通信,同时STAC,D,E,F均进行测量,STAC和STAD进行通信,同时STAA,B,E,F进行测量,STAE和STAF在SP3进行通信,同时STAA,B,C,D进行测量。则在STAA,B,C,D,E,F返回报告帧时,每个报告帧均包含两个备选站点对对应的测量结果,例如STAA的报告帧中包括STAC和STAD通信时的接收信噪比,还包括STAE和STAF通信时的接收信噪比。
处理器1010,用于根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。
可选的,目标站点对的个数小于或者等于备选站点对的个数,如图7所示,PCP/AP根据STA发送的定向信道质量测量报告判断各个备选STA对能否进行SPSH;假设在该实施例中PCP/AP分析出STA A,B,C,D可以进行SPSH,而STAE和STAF不能进行SPSH,则STA A和B,STA C和D分别在DTI中两个重叠SP中进行通信传输,实现SPSH。需要说明的是,如果STA A,B,C,D,E,F均不能进行SPSH,则该流程中止。在该实施例中所选择出的目标站点对的个数小于备选站点对的个数。
可选的,如图8所示,为本发明实施例的另一种情况,在该实施例中,STA A,B,C,D,E,F均能互不干扰进行SPSH,则STA A和B,STA C和D以及STAE和STAF在DTI中三个重叠SP中进行通信传输,实现SPSH,在该实施例中所选择出的目标站点对的个数等于备选站点对的个数。
可选的,所述管理帧包括信标帧发送间隔BTI中的信标Beacon帧或者广播帧发送间隔ATI中的通知帧;
所述Beacon帧或者所述通知帧包括分配域,所述定向信道质量测量信息封装于所述分配域中。
进一步可选的,所述分配域包括控制域和信息域;
所述控制域包括标识信息,所述标识信息用于标识所述信息域所携带的信息类别,所述信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。
可选的,控制域可以是图4中的分配控制Allocation control域,进一步可选的,Allocation control域定义如图5所示,Allocation ID,measurement method,PCP active,LP SC used与现有的包含allocation域的帧结构或定向信道质量请求帧一致。
作为一种可选的实施方式,若所述标识信息标识所述信息域所携带的信息类别为定向信道质量测量信息类别;
所述信息域包括信道标识字段、站点标识字段以及信道时域信息字段;
所述信道标识字段封装所述用于定向信道质量测量的信道资源的工作频率;
所述站点标识字段封装所述至少一个备选站点对中每一个备选站点对的标识,所述备选站点对的标识包括该备选站点对中的一个或者两个备选站点的标识;
所述信道时域信息字段封装所述用于定向信道质量测量的至少两个信道资源中第一个信道资源时域的开始时间和持续时长。
可选的,allocation域的信息域携带定向信道质量测量信息,用于标识进行通信/测量的备选站点对标识以及各个备选站点对所对应的SP,如图4所示,信息域包括STA工作制式operating class,工作信道channel number,STA标识AID1,AID2,测量SP开始时间measurement start time,测量SP持续时间measurement duration,测量单元时间number of time blocks,可选子单元optional subelements。
其中,工作信道字段封装信道资源SP的频率,AID1,AID2封装进行通信/测量的备选站点对的标识,需要说明的是,AID1和AID2中每个字段中可以是封装一个备选站点对中的一个备选站点的标识或者两个备选站点的标识。例如,如图3所示,包括两个备选站点对STA A和B,STA C和D,则AID1中可以是封装STAA的标识,或者STAB的标识,或者是封装STA A的标识和STAB的标识。
可选的,所述目标站点对的个数小于或者等于所述备选站点对的个数。
本发明实施例中,接入点发送管理帧,该管理帧包括定向信道质量测量信息,定向信道测量信息包括接入点选择的进行信道质量测量的至少两个备选站 点对的标识,以及为该至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,通过在管理帧中封装定向信道质量测量信息,从而请求相应的备选站点对进行定向信道质量测量,减小了SPSH机制开销,节省信道资源,提高系统效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例终端中的模块或单元可以根据实际需要进行合并、划分和删减。
本发明实施例的微控制器等部件,可以以通用集成电路,如中央处理器(Central Processing Unit,CPU),或以专用集成电路(Application Specific Integrated Circuit,ASIC)来实现。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种信道资源的调度方法,其特征在于,包括:
    接入点发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
    所述接入点接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
    所述接入点根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。
  2. 如权利要求1所述的方法,其特征在于,所述管理帧包括信标帧发送间隔BTI中的信标Beacon帧或者广播帧发送间隔ATI中的通知帧;
    所述Beacon帧或者所述通知帧包括分配域,所述定向信道质量测量信息封装于所述分配域中。
  3. 如权利要求2所述的方法,其特征在于,所述分配域包括控制域和信息域;
    所述控制域包括标识信息,所述标识信息用于标识所述信息域所携带的信息类别,所述信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。
  4. 如权利要求3所述的方法,其特征在于,若所述标识信息标识所述信息域所携带的信息类别为定向信道质量测量信息类别;
    所述信息域包括信道标识字段、站点标识字段以及信道时域信息字段;
    所述信道标识字段封装所述用于定向信道质量测量的信道资源的工作频 率;
    所述站点标识字段封装所述至少一个备选站点对中每一个备选站点对的标识,所述备选站点对的标识包括该备选站点对中的一个或者两个备选站点的标识;
    所述信道时域信息字段封装所述用于定向信道质量测量的至少两个信道资源中第一个信道资源时域的开始时间和持续时长。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述目标站点对的个数小于或者等于所述备选站点对的个数。
  6. 一种信道资源的调度装置,其特征在于,包括:
    射频电路,用于发送管理帧,所述管理帧包括定向信道质量测量信息,所述定向信道质量测量信息包括所述接入点选择的进行信道质量测量的至少两个备选站点对的标识,以及为所述至少两个备选站点对中每一个备选站点对分配的用于定向信道质量测量的信道资源,所述信道资源时域均不重叠;
    所述射频电路还用于接收所述至少两个备选站点对中每一个备选站点返回的定向信道质量测量报告,所述定向信道质量测量报告携带该备选站点所测量的其它备选站点对在对应信道资源通信时的接收信号质量;
    处理器,用于根据每一个所述备选站点的定向信道质量测量报告,从所述至少两个备选站点对中选择至少两个目标站点对进行空间共享,并向所述至少两个目标站点对指示进行空间共享的时域重叠信道资源。
  7. 如权利要求6所述的装置,其特征在于,所述管理帧包括信标帧发送间隔BTI中的信标Beacon帧或者广播帧发送间隔ATI中的通知帧;
    所述Beacon帧或者所述通知帧包括分配域,所述定向信道质量测量信息封装于所述分配域中。
  8. 如权利要求7所述的装置,其特征在于,所述分配域包括控制域和信息域;
    所述控制域包括标识信息,所述标识信息用于标识所述信息域所携带的信息类别,所述信息类别包括专属信道资源分配信息类别、竞争信道资源分配信息类别或者定向信道质量测量信息类别。
  9. 如权利要求8所述的装置,其特征在于,若所述标识信息标识所述信息域所携带的信息类别为定向信道质量测量信息类别;
    所述信息域包括信道标识字段、站点标识字段以及信道时域信息字段;
    所述信道标识字段封装所述用于定向信道质量测量的信道资源的工作频率;
    所述站点标识字段封装所述至少一个备选站点对中每一个备选站点对的标识,所述备选站点对的标识包括该备选站点对中的一个或者两个备选站点的标识;
    所述信道时域信息字段封装所述用于定向信道质量测量的至少两个信道资源中第一个信道资源时域的开始时间和持续时长。
  10. 如权利要求6至9任一项所述的装置,其特征在于,所述目标站点对的个数小于或者等于所述备选站点对的个数。
PCT/CN2016/106715 2015-12-24 2016-11-22 一种信道资源的调度方法及装置 WO2017107726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/015,311 US10834740B2 (en) 2015-12-24 2018-06-22 Channel resource scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510982350.7 2015-12-24
CN201510982350.7A CN106922029B (zh) 2015-12-24 2015-12-24 一种信道资源的调度方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/015,311 Continuation US10834740B2 (en) 2015-12-24 2018-06-22 Channel resource scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2017107726A1 true WO2017107726A1 (zh) 2017-06-29

Family

ID=59088993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106715 WO2017107726A1 (zh) 2015-12-24 2016-11-22 一种信道资源的调度方法及装置

Country Status (3)

Country Link
US (1) US10834740B2 (zh)
CN (1) CN106922029B (zh)
WO (1) WO2017107726A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180184314A1 (en) * 2016-12-27 2018-06-28 Intel Corporation Enhanced measurement procedure
GB2570899B (en) * 2018-02-08 2021-01-06 Tcl Communication Ltd Grant-based uplink transmission
CN110719227A (zh) * 2018-07-11 2020-01-21 华为技术有限公司 数据传输方法及相关装置
CN110839272A (zh) * 2018-08-15 2020-02-25 珠海市魅族科技有限公司 无线局域网的通信方法及装置、接入点设备和站点设备
US11272442B2 (en) * 2018-09-07 2022-03-08 Samsung Electronics Co., Ltd Method and system for dynamic access point selection in coordinated access point group
US11553368B2 (en) * 2018-11-09 2023-01-10 Panasonic Intellectual Property Corporation Of America Communication device
CN112188563A (zh) * 2019-07-02 2021-01-05 华为技术有限公司 协作通信方法、装置及系统
CN112242859A (zh) * 2019-07-16 2021-01-19 华为技术有限公司 信道探测方法及装置
CN113453268B (zh) * 2020-03-26 2023-06-02 华为技术有限公司 空间复用的方法、装置、计算机可读存储介质和芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199906A (zh) * 2013-03-14 2013-07-10 东南大学 毫米波高速通信系统波束扇区侦听的空间复用方法
CN103891336A (zh) * 2013-12-31 2014-06-25 华为技术有限公司 一种网络控制器、站点、以及建立保护期的方法
US20150365156A1 (en) * 2014-06-13 2015-12-17 Panasonic Corporation Communication control station device, communication terminal device, and communication control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178593B1 (en) * 2009-04-21 2015-11-03 Marvell International Ltd. Directional channel measurement and interference avoidance
CN105144814B (zh) * 2014-01-03 2019-03-26 华为技术有限公司 调度时隙的装置和方法
US10645605B2 (en) * 2016-01-13 2020-05-05 Lg Electronics Inc. Method and device for reporting channel quality for spatial sharing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199906A (zh) * 2013-03-14 2013-07-10 东南大学 毫米波高速通信系统波束扇区侦听的空间复用方法
CN103891336A (zh) * 2013-12-31 2014-06-25 华为技术有限公司 一种网络控制器、站点、以及建立保护期的方法
US20150365156A1 (en) * 2014-06-13 2015-12-17 Panasonic Corporation Communication control station device, communication terminal device, and communication control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YAN: "Research on Virtual Relay Based Interface Mitigation and Spatial Reuse Scheme in 60 GHZ Communication Network", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 November 2013 (2013-11-15), pages 1136 - 924, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
US20180302910A1 (en) 2018-10-18
US10834740B2 (en) 2020-11-10
CN106922029A (zh) 2017-07-04
CN106922029B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2017107726A1 (zh) 一种信道资源的调度方法及装置
US11245501B2 (en) Multi-access point scheduling in wireless local area networks
CN108541073B (zh) 一种网络控制器、站点、以及建立保护期的方法
US10154502B2 (en) Method for managing the spectrum of a multi-band wireless communication system
US11838793B2 (en) Wireless communication method and wireless communication terminal for transmitting information on buffer status
US20120002634A1 (en) Method of allocating radio resource
US10820335B2 (en) Data transmission method based on channel bonding, and apparatus therefor
TW201740695A (zh) 在mmW無線區域網路系統中多解析度訓練
US20190132724A1 (en) Systems for signaling communication characteristics
WO2021129401A1 (zh) 信道探测方法及装置
WO2016191994A1 (zh) 一种通信的方法、基站及用户设备
US20230247599A1 (en) Wireless communication method and terminal for multi-user uplink transmission
US11844072B2 (en) Simultaneous data transmission between an access point and a plurality of stations
US11523390B2 (en) Wireless communication method and wireless communication terminal, which use network allocation vector
CN115769622A (zh) 探测mld的请求和响应方法及站点,接入点
US11658705B2 (en) Sharing transmission opportunity with beamforming
EP3852281A1 (en) Method and device for beam training
WO2022151281A1 (zh) 无线通信的方法、终端设备和网络设备
CN112714499B (zh) 通信方法及装置
CN109756978B (zh) 一种全双工ofdma ppdu传输方法及装置
WO2023092493A1 (zh) 无线通信的方法及设备
TWI830080B (zh) 多鏈路通信的探測請求方法及裝置
KR102070883B1 (ko) 무선랜에서 채널 관리 방법 및 장치
WO2023221921A1 (zh) 通信方法、装置及系统
WO2023283802A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877537

Country of ref document: EP

Kind code of ref document: A1