WO2024040446A1 - 一种信息指示方法及装置、通信设备 - Google Patents

一种信息指示方法及装置、通信设备 Download PDF

Info

Publication number
WO2024040446A1
WO2024040446A1 PCT/CN2022/114342 CN2022114342W WO2024040446A1 WO 2024040446 A1 WO2024040446 A1 WO 2024040446A1 CN 2022114342 W CN2022114342 W CN 2022114342W WO 2024040446 A1 WO2024040446 A1 WO 2024040446A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
field
sensing
sta
ppdu
Prior art date
Application number
PCT/CN2022/114342
Other languages
English (en)
French (fr)
Inventor
高宁
黄磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/114342 priority Critical patent/WO2024040446A1/zh
Publication of WO2024040446A1 publication Critical patent/WO2024040446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present application relate to the field of short-distance communication technology, and specifically relate to an information indication method and device, and communication equipment.
  • the station (STA) participating in sensing sends and/or receives sensing (Sensing) Physical Layer Protocol Data Unit (PPDU) to achieve sensing measurement.
  • STA sensing
  • PPDU Physical Layer Protocol Data Unit
  • the types of sensing PPDUs sent and/or received by STAs and the sensing field types used to implement sensing in sensing PPDUs are not defined in relevant standards, resulting in greater uncertainty in the degree of interference between STAs.
  • Embodiments of the present application provide an information indication method and device, communication equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the first STA sends at least one of first information, second information and third information to one or more second STAs, where the first information is used to indicate the empty space of the Golay sequence used in sensing PPDU. Time stream sequence number, the second information is used to indicate the type of sensing PPDU, and the third information is used to indicate the type of sensing field used to sense the PPDU.
  • the second STA receives at least one of the first information, the second information, and the third information sent by the first STA, where the first information is used to indicate the space-time flow sequence number of the Golay sequence used to sense the PPDU, and the The second information is used to indicate the type of the sensing PPDU, and the third information is used to indicate the type of sensing field used in the sensing PPDU.
  • the information indication device provided by the embodiment of the present application is applied to the first STA, and the device includes:
  • a sending unit configured to send at least one of first information, second information and third information to one or more second STAs, where the first information is used to indicate the space time of the Golay sequence used by the sensing PPDU.
  • the flow sequence number the second information is used to indicate the type of sensing PPDU
  • the third information is used to indicate the sensing field type used to sense the PPDU.
  • the information indication device provided by the embodiment of the present application is applied to the second STA, and the device includes:
  • a receiving unit configured to receive at least one of the first information, the second information, and the third information sent by the first STA, where the first information is used to indicate the space-time flow sequence number of the Golay sequence used to sense the PPDU, the second information is used to indicate the type of the sensing PPDU, and the third information is used to indicate the type of sensing field used in the sensing PPDU.
  • the communication device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory and execute the above information indicating method.
  • the chip provided by the embodiment of the present application is used to implement the above information indicating method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned information indication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above-mentioned information indicating method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above information indicating method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to execute the above information indicating method.
  • the first STA indicates to the second STA the space-time flow sequence number of the Golay sequence used to sense the PPDU through the first information.
  • the second STA can be caused to send a space-time flow with the specified The sensing PPDU of the Golay sequence of the sequence number can reduce the mutual interference between STAs in sensing communication.
  • the first STA indicates to the second STA the type of sensing PPDU through the second information and/or indicates to the second STA the type of sensing field used in the sensing PPDU through the third information. In this way, the second STA can be caused to send the specified type of sensing PPDU and/or sending sensing PPDU with a specified type of sensing field to avoid large uncertainty in the degree of interference between STAs.
  • Figure 1 is a communication system architecture diagram applied in the embodiment of the present application.
  • Figure 2 is a schematic diagram of millimeter wave sensing type
  • Figure 3 is the millimeter wave sensing flow chart
  • Figure 4(a) is a flow chart of an example of cooperative single-base sensing measurement in sequential mode
  • Figure 4(b) is a flow chart of an example of collaborative single-base sensing measurement in parallel mode
  • Figure 5 is a schematic diagram of the DMG perception measurement setting element frame format
  • FIG. 6 is a schematic diagram of the TDD beamforming frame format
  • FIG. 7 is a schematic diagram of the DMG sensing request frame format
  • Figure 8 is a schematic diagram of the DMG sensing response frame format
  • FIG. 9 is a schematic diagram of the DMG sensing polling frame format
  • Figure 10 is Autocorrelation and cross-correlation simulation results diagram
  • Figure 11 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the Extended Configuration sub-element frame format provided by the embodiment of this application.
  • Figure 13 is a schematic diagram 2 of the Extended Configuration sub-element frame format provided by the embodiment of this application;
  • FIG 14 is a schematic diagram 1 of the DMG sensing request frame format provided by the embodiment of the present application.
  • Figure 15-1 is a schematic diagram 2 of the DMG sensing request frame format provided by the embodiment of this application.
  • Figure 15-2 is a schematic diagram 3 of the DMG sensing request frame format provided by the embodiment of this application.
  • Figure 16 is a schematic diagram 4 of the DMG sensing request frame format provided by the embodiment of the present application.
  • Figure 17-1 is a schematic diagram 5 of the DMG sensing request frame format provided by the embodiment of this application.
  • Figure 17-2 is a schematic diagram 6 of the DMG sensing request frame format provided by the embodiment of this application.
  • Figure 18 is a scene diagram of cooperative single-base sensing in parallel mode provided by the embodiment of the present application.
  • Figure 19-1 is a schematic diagram of the interference situation when EDMG STA 1 uses the Golay sequence with space-time stream number 1 provided by the embodiment of this application;
  • Figure 19-2 is a schematic diagram of the interference situation caused by LDPC BLK when EDMG STA 1 uses the Golay sequence with space-time stream number 1 provided by the embodiment of this application;
  • Figure 20-1 is a schematic diagram of the interference situation when EDMG STA 1 uses the Golay sequence with space-time stream number 2 provided by the embodiment of this application;
  • Figure 20-2 is a schematic diagram of the interference situation caused by LDPC BLK when EDMG STA 1 uses the Golay sequence with space-time stream number 2 provided by the embodiment of this application;
  • Figure 21 is a schematic diagram 1 of the information indication device provided by the embodiment of the present application.
  • Figure 22 is a second schematic diagram of the information indication device provided by the embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 24 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 25 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the frequency bands that WLAN can support may include but are not limited to: low frequency bands (2.4GHz, 5GHz, 6GHz) and high frequency bands (60GHz).
  • Figure 1 is an example of a communication system architecture applied in the embodiment of the present application.
  • the communication system 100 may include an AP 110, and a STA 120 that accesses the network through the AP 110.
  • AP 110 can be called AP STA, that is, in a certain sense, AP 110 is also a kind of STA.
  • STA 120 may be called non-AP STA (non-AP STA).
  • STAs 120 may include AP STAs and non-AP STAs.
  • Communication in the communication system 100 may include: communication between the AP 110 and the STA 120, or communication between the STA 120 and the STA 120, or communication between the STA 120 and the peer STA, where the peer STA may refer to the peer STA 120.
  • the device that communicates, for example, the peer STA may be an AP or a non-AP STA.
  • AP 110 can be used as a bridge connecting wired networks and wireless networks. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • AP 110 can be a terminal device (such as a mobile phone) or a network device (such as a router) with a WiFi chip.
  • the role of STA 120 in the communication system is not absolute. That is to say, the role of STA 120 in the communication system can be switched between AP and STA.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a STA, and when the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP.
  • the AP 110 and the STA 120 may be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls in smart homes, Smart water meters, electricity meters, etc., as well as sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart cameras
  • smart remote controls smart homes
  • Smart water meters Smart water meters
  • electricity meters etc.
  • sensors in smart cities etc.
  • the AP 110 may be a device supporting the 802.11be standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • STA 120 may support the 802.11be standard.
  • STA can also support a variety of current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the AP 110 and/or STA 120 can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; can also be deployed on water (such as ships); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the STA 120 may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (Virtual Reality, VR) device, or an augmented reality (Augmented Reality) device that supports WLAN/WiFi technology.
  • AR AR equipment, wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, smart grid Wireless devices in grid, wireless devices in transportation safety, wireless devices in smart city or wireless devices in smart home, vehicle-mounted communication equipment, wireless communication chips/application-specific integration Circuit (application specific integrated circuit, ASIC)/system on chip (System on Chip, SoC), etc.
  • the STA 120 may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • FIG. 1 is only an example of the present application and should not be understood as a limitation of the present application.
  • FIG. 1 only exemplarily shows one AP and two STAs.
  • the communication system 100 may include multiple APs and other numbers of STAs, which are not limited in this embodiment of the present application.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined or “predefined rules” mentioned in the embodiments of this application can be pre-saved in the device (for example, including terminal devices and network devices) by pre-saving corresponding codes, tables or other available
  • the method is implemented by indicating relevant information, and this application does not limit its specific implementation method.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field.
  • Figure 2 shows the five types of millimeter wave sensing.
  • (a) in Figure 2 is Monostatic sensing. There is only one device participating in the sensing. It senses the environment through spontaneous sensing of PPDU and self-reflected (Echo) signals, which is similar to the working method of traditional radar; in Figure 2 (b) is Bistatic sensing. There are two devices participating in sensing. One device sends sensing PPDU, and the other device receives the reflected signal to sense the environment; (c) in Figure 2 is Coordinated Monostatic. ) sensing, more than one device participates in sensing. Each device senses the environment by spontaneously sensing PPDU and self-collecting reflected signals.
  • sensing initiator that controls all other devices to achieve collaboration
  • (d) in Figure 2 is Coordinated Bistatic sensing involves more than two devices participating in sensing, that is, there are at least two pairs of bistatic sensing devices.
  • the sending device sends sensing PPDUs separately and is received by different receiving devices respectively, thereby achieving cooperative sensing
  • Figure 2 (e) is multistatic sensing. More than two devices participate in sensing.
  • One sending device sends sensing PPDU, and multiple receiving devices receive reflected signals at the same time to complete environment sensing.
  • the reflected signal is the signal after the perceived PPDU has been reflected by the environment. Therefore, the reflected signal can also be understood as the perceived PPDU.
  • the sender of the aware PPDU is called the aware sender, and the receiver of the aware PPDU is called the aware receiver.
  • FIG. 3 shows the general process of millimeter wave sensing. From left to right, it is the session setup stage, the millimeter wave sensing measurement setup stage and the sensing measurement stage.
  • the millimeter wave sensing measurement setup stage is also the directional multi-gigabit (Directional multi-gigabit) -gigabit, DMG) perception measurement setup (referred to as DMG Measurement setup) stage.
  • DMG Measurement setup the perceptual measurement stage consists of multiple perceptual measurement bursts (Burst), and each burst is composed of multiple perceptual measurement instances.
  • the perceptual measurement instances are also DMG Sensing Instances.
  • the time interval between bursts is the inter-burst interval, and the time interval between adjacent sensing measurement instances in a burst is the intra-burst interval.
  • the similarity between the sequential mode and the parallel mode is that the sensing initiator needs to send a DMG Sensing Request frame to each sensing responder (Responder) in the initial stage of the sensing measurement instance, and each sensing response The user needs to reply a DMG Sensing Response (DMG Sensing Response) frame to the sensing initiator within the Short Interframe Space (SIFS) time.
  • DMG Sensing Response DMG Sensing Response
  • sequential mode multiple sensing responders sequentially send and receive single-base sensing measurement frames (i.e. Monostatic PPDU) to sense the environment and send sensing measurement report frames (i.e. DMG Sensing Measurement Report) to the sensing initiator; in parallel mode, multiple sensing responders simultaneously send and receive Monostatic PPDU to sense the environment, and then send sensing measurement report frames (i.e., DMG Sensing Measurement Report) to the sensing initiator in sequence.
  • single-base sensing measurement frames i.e. Monostatic PPDU
  • sensing measurement report frames i.e. DMG Sensing Measurement Report
  • FIG. 5 shows the frame format of the DMG Sensing Measurement Setup element.
  • the DMG sensing measurement setting element carries information used to set a DMG sensing measurement. This element is located in the DMG Sensing Measurement Setup Request (DMG Sensing Measurement Setup Request) frame and the DMG Sensing Measurement Setup Response (DMG Sensing Measurement Setup Response) frame.
  • the DMG perception measurement setting element contains the following fields:
  • Element ID Indicates the ID of the DMG sensing measurement setting element.
  • Length Indicates the number of bytes in the DMG sensing measurement setting element except the element ID field and length field.
  • Element ID Extended Indicates the extended ID of the DMG sensing measurement setting element.
  • Measurement Setup Control including the following four fields:
  • Sensing Type Indicates the type of DMG sensing measurement. See Table 1 for specific values and meanings.
  • Rx Initiator Indicates whether the sensing initiator is the sensing receiver or the sensing sender in the dual-base sensing type. A value of 1 indicates that the perception initiator is a perception receiver, and a value of 0 indicates that the perception initiator is a perception sender.
  • LCI presence Indicates whether the LCI field exists in the DMG sensing measurement setting element. A value of 1 indicates existence, a value of 0 indicates absence.
  • Orientation Present Indicates whether the Peer Orientation field exists in the DMG sensing measurement setting element. A value of 1 indicates existence, a value of 0 indicates absence.
  • Report Type Indicates the type of report that the sensing initiator expects the sensing responder to report. The values and their meanings are shown in Table 2.
  • Location configuration information (LCI): carries the LCI field in the 9.4.2.21.10 (LCI report (Location configuration information report)) chapter in IEEE 802.11REVme 1.2.
  • Peer Orientation Indicates the direction and distance of the peer device, including three subfields: Azimuth, Elevation, and Range.
  • Optional child elements Contains zero or more child elements. All sub-elements and their order are shown in Table 3.
  • FIG. 6 shows the frame format of the TDD Beamforming frame, which is a type of control frame.
  • the TDD beamforming frame consists of a Media Access Control (MAC) frame header, a MAC frame body, and a frame check.
  • the MAC frame body consists of two parts: TDD Beamforming Control field and TDD Beamforming Information field.
  • TDD Beamforming Control field In the TDD beamforming control field:
  • TDD Beamforming Frame Type Indicates the type of TDD beamforming frame. See Table 4 for specific values and meanings.
  • the values 0, 1, and 2 all indicate that the TDD beamforming frame is a type related to beam training; the value 3 indicates that the TDD beamforming frame is a type related to DMG sensing.
  • the TDD Group Beamforming (TDD Group Beamforming) field and the TDD Beam Measurement (TDD Beam Measurement) field jointly indicate the location of a TDD beamforming frame in DMG perception. Purpose, specific values and meanings are shown in Table 5.
  • the value of the TDD group beamforming field is 0 and the value of the TDD beam measurement field is 0: indicating that the TDD beamforming frame is a DMG sensing request frame.
  • the TDD group beamforming field has a value of 0 and the TDD beam measurement field has a value of 1: indicating that the TDD beamforming frame is a DMG sensing response frame.
  • the TDD group beamforming field has a value of 1 and the TDD beam measurement field has a value of 0: indicating that the TDD beamforming frame is a DMG sensing polling frame.
  • the DMG sensing request frame, DMG sensing response frame and DMG sensing polling frame are further described below.
  • the frame format of the DMG sensing request frame is shown in Figure 7.
  • the TDD beamforming information field contains the following fields:
  • Measurement Setup ID An identifier indicating the sensing measurement setup associated with this frame.
  • Measurement Burst ID Indicates the identifier of the sensing measurement burst associated with this frame.
  • Measurement Instance Number Indicates the sequence number of a sensing measurement instance in a measurement burst.
  • Sensing type Indicates the sensing type requested by the frame. See Table 6 for specific values and meanings.
  • STA ID Indicates the order in which a STA participates in measurement in a sensing measurement instance.
  • First Beam Index Indicates the index of the first transmit beam used in a sensing measurement instance.
  • Number of STAs in Instance Indicates the number of STAs participating in the measurement in a sensing measurement instance.
  • Number of PPDUs in Instance Indicates the number of PPDUs that appear in a sensing measurement instance.
  • EDMG TRN Length Indicates the number of training units (TRN-Unit) included in a PPDU.
  • the number of receive training units (RX TRN-Unit) per transmit training unit (TX TRN-Unit) (RX TRN-Units per Each TX TRN-Unit): Indicates the number of TRN-Units that are continuously transmitted in the same direction.
  • EDMG TRN-Unit P Indicates the number of TRN subfields (TRN subfields) in a TRN-Unit in which the beam direction is aligned with the opposite end device.
  • EDMG TRN-Unit M Indicates the number of TRN subfields with variable beam directions in a TRN-Unit.
  • EDMG TRN-Unit N Indicates the number of TRN subfields sent continuously using the same beam direction in TRN-Unit-M TRN subfields.
  • TRN Subfield Sequence Length Indicates the length of the Gray sequence used for each TRN subfield.
  • Bandwidth Indicates the bandwidth used to send the TRN field.
  • the frame format of the DMG sensing response frame is shown in Figure 8.
  • the MAC frame body of the DMG sensing response frame only contains the TDD beamforming control field.
  • the frame format of the DMG sensing polling frame is shown in Figure 9.
  • the TDD beamforming information field contains the following fields:
  • Measurement Setup ID An identifier indicating the sensing measurement setup associated with this frame.
  • Measurement Burst ID Indicates the identifier of the sensing measurement burst associated with this frame.
  • Measurement Instance ID An identifier indicating the sensing measurement instance associated with this frame.
  • the regular length Golay sequence is defined in EDMG PHY as follows:
  • the non-conventional length Golay sequence is as follows:
  • Ga, Gb, Gc, Gd represent the type of Golay sequence
  • the subscript represents the length of the Golay sequence
  • Golay sequence has good autocorrelation and is used for receiving symbol detection; Golay sequences with different space-time stream sequence numbers but the same length and type have good cross-correlation and are used to reduce the interference between different space-time streams. interference.
  • Figure 10 The simulation results of autocorrelation and cross-correlation, the abscissa represents the displacement between the two sequences (that is, the bit displacement), and the ordinate represents the result of the cross-correlation operation between the two sequences (that is, the cross-correlation value), The cross-correlation operation result is used as an indicator to measure the degree of interference. The larger the cross-correlation value, the greater the degree of interference. The smaller the cross-correlation value, the smaller the degree of interference.
  • DMG control mode PPDU DMG control mode PPDU
  • DMG single carrier mode PPDU DMG SC mode PPDU
  • EDMG control mode PPDU (EDMG control mode PPDU) and EDMG single carrier mode PPDU (EDMG SC mode PPDU) are defined in EDMG PHY. Their formats and the types of Golay sequences contained are shown in Table 9 and Table 10 respectively.
  • LDPC BLK represents the LDPC coding block
  • GI represents the guard interval
  • NCB represents the number of continuously occupied 2.16GHz channels
  • TRN_BL represents the length of the TRN subfield indicated by the TRN Subfield Sequence Length field in EDMG-Header-A.
  • the EDMG SC mode PPDU only transmits a space-time stream on a 2.16GHz channel, then the EDMG-STF and EDMG-CEF fields will not exist; if the EDMG SC mode PPDU is only used for SU transmission, then the EDMG-Header-B field will does not exist.
  • sensing communication devices participating in sensing send and/or receive sensing PPDUs to achieve sensing measurements.
  • multiple STAs send and/or receive sensing PPDUs at the same time, there will be mutual interference between STAs, which affects the accuracy of the final sensing measurement.
  • sensing responder STA A and sensing responder STA B will spontaneously receive Monostatic PPDU at the same time to achieve parallel sensing measurement.
  • one STA will also receive Monostatic PPDUs sent by other STAs, so there will be mutual interference between STAs, affecting the accuracy of the final perception measurement.
  • the types of sensing PPDUs sent and/or received by STAs and the sensing field types used to implement sensing in sensing PPDUs are not defined in relevant standards, resulting in greater uncertainty in the degree of interference between STAs.
  • the type/format of Monostatic PPDU used in cooperative single-base sensing type has not yet been defined in relevant standards, so different sensing responders may send different types/formats of Monostatic PPDU, that is It is said that the training (TRN) field or channel estimation filter (Channel Estimation Filter, CEF) field sent by a sensing responder for sensing may be interfered by any field sent by other sensing responders, resulting in a degree of interference. Randomness and uncertainty.
  • first STA in the embodiment of this application may be, but is not limited to, a sensing initiator.
  • second STA in the embodiment of this application may be, but is not limited to, a sensing responder.
  • the "awareness PPDU" in the embodiment of this application may have different names according to the sensing type.
  • the sensing PPDU is Monostatic PPDU.
  • space-time stream sequence number in the embodiment of the present application may also be called the “transmitting and/or receiving link sequence number”.
  • FIG 11 is a schematic flowchart of an information indication method provided by an embodiment of the present application. As shown in Figure 11, the information indication method includes the following steps:
  • Step 1101 The first STA sends at least one of first information, second information and third information to one or more second STAs, where the first information is used to indicate the empty space of the Golay sequence used in sensing PPDU. Time stream sequence number, the second information is used to indicate the type of sensing PPDU, and the third information is used to indicate the type of sensing field used to sense the PPDU.
  • Step 1102 The second STA receives at least one of the first information, the second information, and the third information sent by the first STA.
  • the first information is used to indicate the space-time flow sequence number of the Golay sequence used to sense the PPDU.
  • the second information is used to indicate the type of the sensing PPDU
  • the third information is used to indicate the sensing field type used in the sensing PPDU.
  • the first STA sends at least one kind of information to one or more second STAs
  • the at least one kind of information includes at least one of the following: first information, second information, and third information, where: The first information is used to indicate the space-time stream sequence number of the Golay sequence used for sensing the PPDU, the second information is used to indicate the type of the sensing PPDU, and the third information is used to indicate the type of sensing field used for sensing the PPDU.
  • the second STA receives the at least one information sent by the first STA.
  • the value and meaning of the space-time stream sequence number of the Golay sequence may refer to the description of the above-mentioned related solutions.
  • the type of the sensing PPDU includes at least one of the following: DMG control mode PPDU; DMG SC mode PPDU; EDMG control mode PPDU; EDMG SC mode PPDU.
  • DMG control mode PPDU includes at least one of the following: DMG control mode PPDU; DMG SC mode PPDU; EDMG control mode PPDU; EDMG SC mode PPDU.
  • the sensing field type includes at least one of the following: TRN field; CEF field.
  • the Golay sequences contained in these types of sensing fields can refer to the descriptions of the aforementioned related solutions.
  • the space-time flow sequence number of the Golay sequence indicated by the first information sent by the first STA to each of the one or more second STAs is different.
  • the type of awareness PPDU indicated by the second information sent by the first STA to each of the one or more second STAs may be the same or different.
  • the sensing field type indicated by the third information sent by the first STA to each of the one or more second STAs may be the same or different.
  • a frame format carrying at least one of the above information is designed.
  • the implementation of the frame format is described below.
  • the first STA sends a DMG Sensing Measurement Setup element (DMG Sensing Measurement Setup element) to one or more second STAs.
  • the second STA receives the DMG sent by the first STA.
  • Perception measurement setting element the DMG perception measurement setting element carries at least one of the first information, the second information and the third information.
  • the DMG sensing measurement setting element includes an optional sub-element field, the optional sub-element field is used to carry a first sub-element, the first sub-element carries the first information, the at least one of the second information and the third information.
  • the first sub-element includes at least one of a first field, a second field and a third field, the first field is used to carry the first information, and the second field used to carry the second information, and the third field is used to carry the third information. Further, the first sub-element further includes at least one of the following fields: a sub-element identification field, used to indicate the identification of the first sub-element; a length field, used to indicate the length of the first sub-element except the sub-element. The element identifies the field and the length of fields other than the stated length field.
  • the DMG awareness measurement setting element is carried in a DMG awareness measurement setting request frame.
  • the DMG sensing measurement setting request frame is sent by the sensing initiator (ie, the first STA) to the sensing responder (ie, the second STA).
  • a new sub-element type i.e. the first sub-element
  • the optional sub-element field in the DMG sensing measurement setting element
  • Stream sequence number information i.e. the first information
  • the newly defined optional sub-elements are shown in Table 11.
  • the corresponding sub-element ID is 4 and the sub-element name is "Extended Configuration (Extended Configuration)".
  • Table 11 is only an example, and the name and sub-element ID of the newly defined sub-element are not limited to the examples shown in Table 11. Taking the example shown in Table 11 as an example, the Extended Configuration sub-element is used to carry extended configuration information.
  • the specific frame format is shown in Figure 12.
  • the Extended Configuration sub-element in Figure 12 includes the following fields:
  • Subelement ID The value is any integer between 4-255. The value 4 here is just for example.
  • Length Indicates the number of bytes of the element except the sub-element ID field and length field.
  • Golay sequence Space-time Stream Index of Golay Sequence indicates the space-time stream index of the Golay sequence used to sense PPDU, such as indicating the Monostatic PPDU sent by the responder in the cooperative single-base sensing type.
  • the space-time stream sequence number of the Golay sequence The specific values and meanings of the Golay sequence space-time stream sequence number are shown in Table 12.
  • the field corresponding to the Golay sequence space-time stream sequence number is the first field.
  • the name of the first field can also be other names. This application does not specify the name of the first field and the number of bits occupied by the first field. limited.
  • a new sub-element type i.e. the first sub-element
  • Flow sequence number information ie, first information
  • type information of the sensing PPDU ie, second information
  • type information of the sensing field in the sensing PPDU ie, third information.
  • the newly defined optional sub-elements can be shown in Table 11 above.
  • the corresponding sub-element ID is 4 and the sub-element name is "Extended Configuration (Extended Configuration)".
  • the newly defined Extended Configuration sub-element is used to carry extended configuration information.
  • the specific frame format is shown in Figure 13.
  • the Extended Configuration sub-element in Figure 13 includes the following fields:
  • Subelement ID The value is any integer between 4-255. The value 4 here is just for example.
  • Length Indicates the number of bytes of the element except the sub-element ID and length fields.
  • Golay sequence Space-time Stream Index of Golay Sequence indicates the space-time stream index of the Golay sequence used to sense PPDU, such as indicating the Monostatic PPDU sent by the responder in the cooperative single-base sensing type.
  • the space-time stream sequence number of the Golay sequence The specific values and meanings of the Golay sequence space-time stream sequence numbers can be found in Table 12 above.
  • Sensing PPDU Type Indicates the type of sensing PPDU used by the sensing responder, for example, indicates the type of Monostatic PPDU used by the sensing responder in the cooperative single-base sensing type. See Table 13 for the specific values and meanings of sensing PPDU types.
  • DMG control mode PPDU refers to the DMG control mode PPDU format defined in IEEE DMG PHY (Data field length is 0). This format can refer to the description of the above-mentioned related solutions;
  • DMG SC mode PPDU refers to the DMG SC mode PPDU format defined in IEEE DMG PHY (Data field length is 0). This format can refer to the description of the above-mentioned related solutions;
  • EDMG control mode PPDU refers to the EDMG control mode PPDU format defined in IEEE EDMG PHY (Data field length is 0). This format can refer to the description of the aforementioned related solutions;
  • EDMG SC mode PPDU refers to the EDMG SC mode PPDU format defined in IEEE EDMG PHY (Data field length is 0). For this format, please refer to the description of the aforementioned related solutions.
  • Sensing Field Type Indicates that the field used to sense the channel in the sensing PPDU sent and/or received by the sensing responder is the TRN field or CEF field, for example, indicating that the sensing responder sends and/or Or the field used to sense the channel in the received Monostatic PPDU is the TRN field or CEF field.
  • the value 1 represents the TRN field
  • the value 0 represents the CEF field.
  • the field corresponding to the Golay sequence space-time flow sequence number is the first field
  • the field corresponding to the sensing PPDU type is the second field
  • the field corresponding to the sensing field type is the third field.
  • the first field and the third field The names of the second field and the third field can also be other names. This application does not limit the names of the first field, the second field and the third field and the number of occupied bits.
  • the first STA sends a DMG Sensing Request (DMG Sensing Request) frame to one or more second STAs.
  • the second STA receives the DMG Sensing Request frame sent by the first STA.
  • the DMG sensing request frame carries at least one of the first information, the second information and the third information.
  • At least one of the first information, the second information and the third information is carried in a TDD beamforming information field in the DMG sensing request frame.
  • the TDD beamforming information field includes at least one of a fourth field, a fifth field and a sixth field, the fourth field is used to carry the first information, and the third field The fifth field is used to carry the second information, and the sixth field is used to carry the third information.
  • the fourth field, the fifth field and the sixth field are newly added fields in the TDD beamforming information field.
  • the TDD beamforming information field includes at least one of an STA identification field, a fifth field, and a sixth field.
  • the STA identification field is used to carry the first information
  • the third field is used to carry the second information
  • the sixth field is used to carry the third information.
  • the STA identification field is an existing field in the TDD beamforming information field
  • the fifth field and the sixth field are newly added fields in the TDD beamforming information field.
  • the STA identification field is used to indicate the identity of the sensing responder and is used to indicate the space-time flow sequence number of the Golay sequence used for sensing PPDU.
  • the STA identification field is used to indicate the index of the receiving STA synchronization subfield in the sensing PPDU.
  • the first type of sensing is cooperative single-base sensing.
  • the second type of sensing is multi-base sensing.
  • the TDD beamforming information field also includes a seventh field; for the case where the sensing type is not the first type of sensing, the seventh field is reserved.
  • the seventh field is used to indicate whether the mode of the sensing measurement instance corresponding to the first type of sensing is the sequential mode or the parallel mode.
  • the first type of sensing is cooperative single-base sensing.
  • the TRN-related fields include at least one of the following fields:
  • EDMG TRN length field used to indicate the number of TRN-Units contained in a sensing PPDU
  • the quantity field of RX TRN-Unit of TX TRN-Unit is used to indicate the number of TRN-Units sent continuously in the same direction;
  • EDMG TRN-Unit P field is used to indicate the number of TRN subfields indicating that the beam direction is aligned with the opposite end device in a TRN-Unit;
  • EDMG TRN-Unit M field is used to indicate the number of TRN subfields with variable beam directions in a TRN-Unit;
  • EDMG TRN-Unit N field is used to indicate the number of TRN subfields sent continuously using the same beam direction among the TRN-Unit-M TRN subfields;
  • the TRN subfield sequence length field is used to indicate the length of the Golay sequence used in each TRN subfield
  • Bandwidth field used to indicate the bandwidth used to send the TRN field.
  • the DMG sensing request frame can be used to transmit the space-time flow sequence number information of the Golay sequence (ie, the first information) in the sensing measurement instance phase.
  • a new subfield is defined in the TDD beamforming information field of the DMG sensing request frame to convey the space-time flow sequence number information of the Golay sequence.
  • the newly defined subfield (the fourth field) is shown in Figure 14, and the corresponding field name is Golay sequence space-time stream index (Space-time Stream Index of Golay Sequence).
  • Golay sequence Space-time Stream Index of Golay Sequence indicates the space-time stream index of the Golay sequence used to sense PPDU, such as indicating the Monostatic PPDU sent by the responder in the cooperative single-base sensing type.
  • the space-time stream sequence number of the Golay sequence For the specific values and meanings of the Golay sequence space-time stream sequence number, please refer to the aforementioned Table 12.
  • the field corresponding to the Golay sequence space-time stream sequence number is the fourth field.
  • the name of the fourth field can also be other names. This application does not specify the name of the fourth field and the number of bits occupied by the fourth field. limited.
  • the DMG sensing request frame can be used to transmit the space-time flow sequence number information of the Golay sequence (ie, the first information) in the sensing measurement instance phase.
  • the space-time flow sequence number information of the Golay sequence is transmitted by reusing the existing STA ID field in the DMG sensing request frame.
  • the STA ID field is shown in Figure 15-1.
  • STA ID When the sensing type is the second type of sensing (such as multi-base sensing), it indicates the index of the receiving STA synchronization subfield in the sensing PPDU (such as EDMG Multistatic Sensing PPDU); when the sensing type is the first type of sensing (such as collaborative unit base sensing), not only indicates the ID of a sensing responder, but also indicates the space-time flow sequence number of the Golay sequence used by the sensing PPDU (such as Monostatic PPDU) sent and/or received by the sensing responder.
  • the space-time flow sequence number of the Golay sequence For specific values and their meanings, please refer to the aforementioned Table 12.
  • a sensing measurement instance mode field (ie, the seventh field) can also be added to the TDD beamforming information field in the DMG sensing request frame, as shown in Figure 15-2.
  • Perception measurement instance mode When the sensing type is not the first type of sensing (such as cooperative single-base sensing), this field is reserved; when the sensing type is the first type of sensing (such as cooperative single-base sensing), this field indicates the first type
  • the mode of perception measurement instance is sequential mode or parallel mode. For example, a value of 1 indicates sequential mode, and a value of 0 indicates parallel mode.
  • the field corresponding to the perceptual measurement instance mode is the seventh field.
  • the name of the seventh field can also be other names. This application does not limit the name of the seventh field and the number of bits occupied by the seventh field.
  • the name of the seventh field can also be "Coordinated Monostatic Sequential/Parallel".
  • the DMG sensing request frame can be used to transmit the space-time flow sequence number information of the Golay sequence (i.e., the first information), the type information of the sensing PPDU (i.e., the second information), and the sensing information in the sensing PPDU during the sensing measurement instance phase.
  • Type information of the field ie, third information.
  • new subfields are defined in the TDD beamforming information field of the DMG sensing request frame to transmit the space-time flow sequence number information of the Golay sequence, the type information of the sensing PPDU, and the type information of the sensing field.
  • the newly defined subfields i.e., the fourth field, the fifth field, and the sixth field
  • the corresponding field names are Golay sequence space-time stream index (Space-time Stream Index of Golay Sequence) and perception PPDU.
  • Type aware field type.
  • Golay sequence Space-time Stream Index of Golay Sequence indicates the space-time stream index of the Golay sequence used to sense PPDU, such as indicating the Monostatic PPDU sent by the responder in the cooperative single-base sensing type.
  • the space-time stream sequence number of the Golay sequence For the specific values and meanings of the Golay sequence space-time stream sequence number, please refer to the aforementioned Table 12.
  • Sensing PPDU Type Indicates the type of sensing PPDU, for example, indicates the type of Monostatic PPDU used by the sensing responder in the cooperative single-base sensing type.
  • Sensing PPDU types please refer to the aforementioned Table 13.
  • Sensing Field Type Indicates that the field used to sense the channel in the sensing PPDU sent and/or received by the sensing responder is the TRN field or CEF field, for example, indicating that the sensing responder sends and/or Or the field used to sense the channel in the received Monostatic PPDU is the TRN field or CEF field.
  • the value 1 represents the TRN field
  • the value 0 represents the CEF field.
  • the values of TRN-related fields in the TDD beamforming information field in the DMG sensing request frame sent by the first STA to each STA remain consistent.
  • the TRN-related fields include at least one of the following fields: EDMG TRN Length field, number of RX TRN-Units per TX TRN-Unit (RX TRN-Units per Each TX TRN-Unit ) field, EDMG TRN-Unit P field, EDMG TRN-Unit M field, EDMG TRN-Unit N, TRN Subfield Sequence Length field, and bandwidth (Bandwidth) field.
  • the field corresponding to the Golay sequence space-time flow sequence number is the fourth field
  • the field corresponding to the sensing PPDU type is the fifth field
  • the field corresponding to the sensing field type is the sixth field.
  • the fourth field and the field The names of the fifth field and the sixth field can also be other names. This application does not limit the names of the fourth field, the fifth field and the sixth field and the number of occupied bits.
  • the DMG sensing request frame can be used to transmit the space-time flow sequence number information of the Golay sequence (i.e., the first information), the type information of the sensing PPDU (i.e., the second information), and the sensing information in the sensing PPDU during the sensing measurement instance phase.
  • Type information of the field ie, third information.
  • the space-time flow sequence number information of the Golay sequence is transmitted by reusing the existing STA ID field in the TDD beamforming information field of the DMG sensing request frame, and is defined in the TDD beamforming information field of the DMG sensing request frame.
  • New subfields are used to convey the type information of the sensing PPDU and the type information of the sensing field.
  • the STA ID field and the newly defined subfields i.e., the fifth field and the sixth field) are shown in Figure 17-1.
  • the corresponding field names are STA ID field, sensing PPDU type, and sensing field type.
  • STA ID When the sensing type is the second type of sensing (such as multi-base sensing), it indicates the index of the receiving STA synchronization subfield in the sensing PPDU (such as EDMG Multistatic Sensing PPDU); when the sensing type is the first type of sensing (such as collaborative unit base sensing), not only indicates the ID of a sensing responder, but also indicates the space-time flow sequence number of the Golay sequence used by the sensing PPDU (such as Monostatic PPDU) sent and/or received by the sensing responder.
  • the space-time flow sequence number of the Golay sequence For specific values and their meanings, please refer to the aforementioned Table 12.
  • Sensing PPDU Type Indicates the type of sensing PPDU, for example, indicates the type of Monostatic PPDU used by the sensing responder in the cooperative single-base sensing type.
  • Sensing PPDU types please refer to the aforementioned Table 13.
  • Sensing Field Type Indicates that the field used to sense the channel in the sensing PPDU sent and/or received by the sensing responder is the TRN field or CEF field, for example, indicating that the sensing responder sends and/or Or the field used to sense the channel in the received Monostatic PPDU is the TRN field or CEF field.
  • the value 1 represents the TRN field
  • the value 0 represents the CEF field.
  • a sensing measurement instance mode field (ie, the seventh field) can also be added to the TDD beamforming information field in the DMG sensing request frame, as shown in Figure 17-2.
  • Perception measurement instance mode When the sensing type is not the first type of sensing (such as cooperative single-base sensing), this field is reserved; when the sensing type is the first type of sensing (such as cooperative single-base sensing), this field indicates the first type
  • the mode of perception measurement instance is sequential mode or parallel mode. For example, a value of 1 indicates sequential mode, and a value of 0 indicates parallel mode.
  • the TRN-related fields include at least one of the following fields: EDMG TRN Length (EDMG TRN Length) field, the number of RX TRN-Units per TX TRN-Unit (RXTRN-Units per Each TX TRN-Unit) Field, EDMG TRN-Unit P field, EDMG TRN-Unit M field, EDMG TRN-Unit N, TRN Subfield Sequence Length field, Bandwidth field.
  • EDMG TRN Length EDMG TRN Length
  • RXTRN-Units per Each TX TRN-Unit Each TX TRN-Unit
  • the field corresponding to the sensing PPDU type is the fifth field
  • the field corresponding to the sensing field type is the sixth field
  • the field corresponding to the sensing measurement instance mode is the seventh field.
  • the name of the seventh field can also be other names. This application does not limit the names of the fifth field, the sixth field, the seventh field and the number of occupied bits.
  • the name of the seventh field can also be "Coordinated Monostatic Sequential/Parallel".
  • the second STA after the second STA obtains at least one of the first information, the second information and the third information from the first STA, the second STA based on the first information , at least one of the second information and the third information, sending the sensing PPDU and/or receiving the sensing PPDU.
  • the first STA (such as the sensing initiator) transmits at least one of the following information to each second STA (such as the sensing responder): the space-time of the Golay sequence Flow sequence number (also called transmission link sequence number) information, sensing PPDU type information, sensing field type information, where the space-time flow sequence number information of the Golay sequence is used to instruct the second STA (such as the sensing responder) to send and/or receive
  • the space-time flow sequence number of the Golay sequence used by the sensing PPDU reduces the interference between STAs by allowing different second STAs (such as sensing responders) to send and/or receive sensing PPDUs of Golay sequences with different space-time flow sequence numbers.
  • the sensing PPDU type information is used to indicate the type of sensing PPDU used by the second STA (such as the sensing responder), and the sensing field type information is used to indicate the sensing field in the sensing PPDU used by the second STA (such as the sensing responder).
  • Type such that different second STAs (such as sensing responders) send and/or receive sensing PPDUs in a specific format, ensuring that the TRN field or CEF field used for sensing sent by one second STA will not be sent by other second STA interfered by any field.
  • the CEF field and TRN field in the DMG PPDU and the L-CEF field in the EDMG PPDU are composed of Ga 128 and Gb 128
  • the TRN field in the EDMG PPDU is composed of Ga TRN_BL , Gb TRN_BL or composition.
  • the EDMG PHY stipulates that an EDMG STA must support Golay sequences with lengths of 128 and 256, so the TRN field in the EDMG PPDU must support the use of Ga 128 and Gb 128 .
  • the simulation scenarios are as follows: 1) A collaborative single-base sensing in parallel mode (as shown in Figure 18), in which one AP serves as the sensing initiator and is responsible for setting and scheduling other sensing responders, one DMG STA and two EDMG STAs (EDMG STA 1 and EDMG STA 2) As sensing responders, they spontaneously collect Monostatic PPDUs simultaneously under the scheduling of the sensing initiator; 2) Using the above solution of the embodiment of this application, the type and number of Monostatic PPDUs spontaneously collected by each sensing responder are not determined.
  • sensing field type only set the space-time flow sequence number of the Golay sequence used by each sensing responder; 3) All sensing responders only send Monostatic PPDU of a single space-time flow, but the sequence numbers of the space-time flows used can be different, 2 The number of 2.16GHz channels occupied by each EDMG STA may be different, and the format and length of Monostatic PPDU sent by different sensing responders may be different; 4) The fields used by different sensing responders for sensing may be the same or different. If CEF is used field as the sensing field, then different sensing responders use different beams to send the entire Monostatic PPDU.
  • TRN field is used as the sensing field, then different sensing responders only use different beams to send the TRN field part of the Monostatic PPDU; 5) Use one of the EDMG STA 1 as the observation object, and observe the interference degree of the CEF field or Ga 128 in the TRN field of the Monostatic PPDU spontaneously received by EDMG STA 1 from the Monostatic PPDU sent by other sensing responders; 6) Use two The cross-correlation operation result between sequences is used as an indicator to measure the degree of interference. A strong cross-correlation indicates that there may be strong interference, and a low cross-correlation indicates that there is small interference; the LDPC BLK field is replaced by a random sequence of length 128.
  • both EDMG STA 1 and EDMG STA 2 use the same Golay sequence with space-time stream number 1.
  • the CEF field or TRN field of EDMG STA 1 The possible interference is shown in Figure 19-1 and Figure 19-2.
  • the abscissa represents the displacement between the two sequences (i.e., the bit displacement), and the ordinate represents the cross-correlation operation result between the two sequences (i.e., the mutual Correlation value), the cross-correlation operation result is used as an indicator to measure the degree of interference.
  • the larger the cross-correlation value the greater the degree of interference, and the smaller the cross-correlation value, which means the smaller the degree of interference.
  • Figure 19-1 shows that EDMG STA 1 uses the Golay sequence with space-time flow number 1 (i.e. ), Figure 19-1 shows from left to right:
  • the former Exists in the CEF field or TRN field sent by EDMG STA 1.
  • the latter Exists in the STF, CEF, and TRN fields sent by DMG STA and the L-STF, L-CEF, and TRN fields sent by EDMG STA 2.
  • Ga 64 exists in the Header, Data, and AGC fields sent by DMG STA and the L-Header and EDMG-Header-A fields sent by EDMG STA 2.
  • Gb 64 is present in the AGC field sent by the DMG STA.
  • Ga 32 exists in the Header and Data fields sent by DMG STA and the L-Header, EDMG-Header-A, EDMG-Header-B, and Data fields sent by EDMG STA 2.
  • LDPC BLK exists in the Header and Data fields sent by DMG STA and the L-Header, EDMG-Header-A, EDMG-Header-B, and Data fields sent by EDMG STA 2.
  • FIG. 19-2 shows that DMG STA 1 uses the Golay sequence with space-time flow number 1 (i.e. ), the interference from LDPC BLK is shown in Figure 19-2 from left to right:
  • the sensing initiator configures different space-time flow sequence numbers for each sensing responder participating in the collaborative single-base sensing measurement, so that the sensing responders sent by different sensing responders
  • the Golay sequence used by Monostatic PPDU is different.
  • the Golay sequence space-time flow number of EDMG STA 1 is configured as 2
  • the Golay sequence space-time flow number of EDMG STA1 is configured as 1.
  • DMG STA does not support multi-space-time stream transmission, so the space-time stream sequence number of the Golay sequence cannot be configured.
  • the CEF field or TRN field of EDMG STA 1 The possible interference is shown in Figure 20-1 and Figure 20-2.
  • the abscissa represents the displacement between the two sequences (i.e., the bit displacement), and the ordinate represents the cross-correlation operation result between the two sequences (i.e., the mutual Correlation value), the cross-correlation operation result is used as an indicator to measure the degree of interference.
  • Figure 20-1 shows that EDMG STA 1 uses the Golay sequence with space-time flow number 2 (i.e. ), Figure 20-1 shows from left to right:
  • Ga 64 exists in the Header, Data, and AGC fields sent by DMG STA and the L-Header and EDMG-Header-A fields sent by EDMG STA 2.
  • Gb 64 is present in the AGC field sent by the DMG STA.
  • Ga 32 exists in the Header and Data fields sent by DMG STA and the L-Header, EDMG-Header-A, EDMG-Header-B, and Data fields sent by EDMG STA 2.
  • LDPC BLK exists in the Header and Data fields sent by DMG STA and the L-Header, EDMG-Header-A, EDMG-Header-B, and Data fields sent by EDMG STA 2.
  • FIG. 20-2 shows that DMG STA 1 uses the Golay sequence with space-time flow number 2 (i.e. ), the interference from LDPC BLK is shown in Figure 20-2 from left to right:
  • EDMG STA 1 sends The correlation with the sequences in all fields sent by other STAs is relatively low, that is, the CEF field or TRN field of EDMG STA 1
  • the interference suffered by the sequence is small, which can reduce the mutual interference problem in cooperative single-base sensing in parallel mode.
  • Figure 21 is a schematic diagram 1 of an information indication device provided by an embodiment of the present application, applied to the first STA. As shown in Figure 21, the device includes:
  • the sending unit 2101 is configured to send at least one of the first information, the second information, and the third information to one or more second STAs, where the first information is used to indicate the empty space of the Golay sequence used by the sensing PPDU. Time stream sequence number, the second information is used to indicate the type of sensing PPDU, and the third information is used to indicate the type of sensing field used to sense the PPDU.
  • the sending unit 2101 is configured to send a DMG sensing measurement setting element to one or more second STAs, where the DMG sensing measurement setting element carries the first information, the second information and the at least one of the third information.
  • the DMG sensing measurement setting element includes an optional sub-element field, the optional sub-element field is used to carry a first sub-element, the first sub-element carries the first information, the at least one of the second information and the third information.
  • the first sub-element includes at least one of a first field, a second field and a third field, the first field is used to carry the first information, and the second field used to carry the second information, and the third field is used to carry the third information.
  • the first sub-element further includes at least one of the following fields:
  • a sub-element identification field used to indicate the identification of the first sub-element
  • the length field is used to indicate the length of fields in the first sub-element other than the sub-element identification field and the length field.
  • the DMG awareness measurement setting element is carried in a DMG awareness measurement setting request frame.
  • the sending unit 2101 is configured to send a DMG sensing request frame to one or more second STAs, where the DMG sensing request frame carries the first information, the second information and the third At least one of the three pieces of information.
  • At least one of the first information, the second information and the third information is carried in a time division multiplexed TDD beamforming information field in the DMG sensing request frame.
  • the TDD beamforming information field includes at least one of a fourth field, a fifth field and a sixth field, the fourth field is used to carry the first information, and the third field The fifth field is used to carry the second information, and the sixth field is used to carry the third information.
  • the TDD beamforming information field includes at least one of an STA identification field, a fifth field, and a sixth field.
  • the STA identification field is used to carry the first information
  • the third field is used to carry the second information
  • the sixth field is used to carry the third information.
  • the STA identification field is used to indicate the identification of the sensing responder and the space-time flow sequence number of the Golay sequence used for sensing the PPDU.
  • the STA identification field is used to indicate the index of the receiving STA synchronization subfield in the sensing PPDU.
  • the TDD beamforming information field also includes a seventh field; for the case where the sensing type is the first type of sensing, the seventh field is used to indicate the sensing measurement instance corresponding to the first type of sensing.
  • the mode is sequential mode or parallel mode.
  • the values are the same.
  • the TRN-related fields include at least one of the following fields:
  • EDMG TRN length field used to indicate the number of TRN-Units contained in a sensing PPDU
  • the number field of RX TRN-Unit of each TX TRN-Unit is used to indicate the number of TRN-Units sent continuously in the same direction;
  • EDMG TRN-Unit P field is used to indicate the number of TRN subfields indicating that the beam direction is aligned with the opposite end device in a TRN-Unit;
  • EDMG TRN-Unit M field is used to indicate the number of TRN subfields with variable beam directions in a TRN-Unit;
  • EDMG TRN-Unit N field is used to indicate the number of TRN subfields sent continuously using the same beam direction among the TRN-Unit-M TRN subfields;
  • the TRN subfield sequence length field is used to indicate the length of the Golay sequence used in each TRN subfield
  • Bandwidth field used to indicate the bandwidth used to send the TRN field.
  • the type of the sensing PPDU includes at least one of the following: DMG control mode PPDU; DMG SC mode PPDU; EDMG control mode PPDU; EDMG SC mode PPDU.
  • the sensing field type includes at least one of the following: TRN field; CEF field.
  • Figure 22 is a second schematic diagram of an information indication device provided by an embodiment of the present application, applied to the second STA. As shown in Figure 22, the device includes:
  • the receiving unit 2201 is configured to receive at least one of the first information, the second information, and the third information sent by the first STA, where the first information is used to indicate the space-time flow sequence number of the Golay sequence used by the sensing PPDU. , the second information is used to indicate the type of the sensing PPDU, and the third information is used to indicate the sensing field type used in the sensing PPDU.
  • the receiving unit 2201 is configured to receive a DMG sensing measurement setting element sent by the first STA, where the DMG sensing measurement setting element carries the first information, the second information and the third at least one of the information.
  • the DMG sensing measurement setting element includes an optional sub-element field, the optional sub-element field is used to carry a first sub-element, the first sub-element carries the first information, the at least one of the second information and the third information.
  • the first sub-element includes at least one of a first field, a second field and a third field, the first field is used to carry the first information, and the second field used to carry the second information, and the third field is used to carry the third information.
  • the first sub-element further includes at least one of the following fields:
  • a sub-element identification field used to indicate the identification of the first sub-element
  • the length field is used to indicate the length of fields in the first sub-element other than the sub-element identification field and the length field.
  • the DMG awareness measurement setting element is carried in a DMG awareness measurement setting request frame.
  • the receiving unit 2201 is configured to receive a DMG sensing request frame sent by the first STA, where the DMG sensing request frame carries the first information, the second information, and the third information. at least one piece of information.
  • At least one of the first information, the second information and the third information is carried in a TDD beamforming information field in the DMG sensing request frame.
  • the TDD beamforming information field includes at least one of a fourth field, a fifth field and a sixth field, the fourth field is used to carry the first information, and the third field The fifth field is used to carry the second information, and the sixth field is used to carry the third information.
  • the TDD beamforming information field includes at least one of an STA identification field, a fifth field, and a sixth field.
  • the STA identification field is used to carry the first information
  • the third field is used to carry the second information
  • the sixth field is used to carry the third information.
  • the STA identification field is used to indicate the identification of the sensing responder and the space-time flow sequence number of the Golay sequence used for sensing the PPDU.
  • the STA identification field is used to indicate the index of the receiving STA synchronization subfield in the sensing PPDU.
  • the TDD beamforming information field also includes a seventh field; for the case where the sensing type is the first type of sensing, the seventh field is used to indicate the sensing measurement instance corresponding to the first type of sensing.
  • the mode is sequential mode or parallel mode.
  • the type of the sensing PPDU includes at least one of the following: DMG control mode PPDU; DMG SC mode PPDU; EDMG control mode PPDU; EDMG SC mode PPDU.
  • the sensing field type includes at least one of the following: TRN field; CEF field.
  • the apparatus further includes: a sensing communication unit, configured to send and/or receive sensing PPDU based on at least one of the first information, the second information and the third information. Sensing PPDU.
  • Figure 23 is a schematic structural diagram of a communication device 2300 provided by an embodiment of the present application.
  • the communication device may be the first STA or the second STA.
  • the communication device 2300 shown in Figure 23 includes a processor 2310.
  • the processor 2310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 2300 may also include a memory 2320.
  • the processor 2310 can call and run the computer program from the memory 2320 to implement the method in the embodiment of the present application.
  • the memory 2320 may be a separate device independent of the processor 2310, or may be integrated into the processor 2310.
  • the communication device 2300 can also include a transceiver 2330, and the processor 2310 can control the transceiver 2330 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 2330 may include a transmitter and a receiver.
  • the transceiver 2330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2300 can be specifically the first STA in the embodiment of the present application, and the communication device 2300 can implement the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application.
  • the details are not mentioned here. Again.
  • the communication device 2300 can be specifically the second STA in the embodiment of the present application, and the communication device 2300 can implement the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application. For the sake of brevity, they are not mentioned here. Again.
  • Figure 24 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 2400 shown in Figure 24 includes a processor 2410.
  • the processor 2410 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 2400 may also include a memory 2420.
  • the processor 2410 can call and run the computer program from the memory 2420 to implement the method in the embodiment of the present application.
  • the memory 2420 may be a separate device independent of the processor 2410, or may be integrated into the processor 2410.
  • the chip 2400 may also include an input interface 2430.
  • the processor 2410 can control the input interface 2430 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2400 may also include an output interface 2440.
  • the processor 2410 can control the output interface 2440 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first STA in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second STA in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application.
  • the chip can be applied to the second STA in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application.
  • details will not be repeated here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 25 is a schematic block diagram of a communication system 2500 provided by an embodiment of the present application. As shown in Figure 25, the communication system 2500 includes a first STA 2510 and a second STA 2520.
  • the first STA 2510 can be used to implement the corresponding functions implemented by the first STA in the above method
  • the second STA 2520 can be used to implement the corresponding functions implemented by the second STA in the above method.
  • this is not mentioned here. Again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first STA in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the second STA in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first STA in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the second STA in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first STA in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first STA in the various methods of the embodiment of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the computer program can be applied to the second STA in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second STA in the various methods of the embodiment of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into a first processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息指示方法及装置、通信设备,该方法包括:第一STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。

Description

一种信息指示方法及装置、通信设备 技术领域
本申请实施例涉及短距离通信技术领域,具体涉及一种信息指示方法及装置、通信设备。
背景技术
在感知通信中,参与感知的站点(STA)发送和/或接收感知(Sensing)物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU),从而实现感知测量。然而,在多个STA同时发送和/或接收感知PPDU的情况下,STA之间会存在互相干扰,影响最终感知测量的精确度。此外,STA发送和/或接收的感知PPDU的类型以及感知PPDU中用于实现感知的感知字段类型在相关标准中没有定义,导致STA之间的干扰程度存在较大的不确定性。
发明内容
本申请实施例提供一种信息指示方法及装置、通信设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的信息指示方法,包括:
第一STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的格雷(Golay)序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
本申请实施例提供的信息指示方法,包括:
第二STA接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
本申请实施例提供的信息指示装置,应用于第一STA,所述装置包括:
发送单元,用于向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
本申请实施例提供的信息指示装置,应用于第二STA,所述装置包括:
接收单元,用于接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信息指示方法。
本申请实施例提供的芯片,用于实现上述的信息指示方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信息指示方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信息指示方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息指示方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信息指示方法。
本申请实施例的技术方案中,一方面,第一STA通过第一信息向第二STA指示感知PPDU所使用的Golay序列的空时流序号,如此,可以使得第二STA发送具有指定空时流序号的Golay序列的感知PPDU,从而可以降低感知通信中STA之间的互相干扰。另一方面,第一STA通过第二信息向第二STA指示感知PPDU的类型和/或通过第三信息向第二STA指示感知PPDU所使用的感知字段类型,如此,可以使得第二STA发送指定类型的感知PPDU和/或发送具有指定类 型的感知字段的感知PPDU中,避免STA之间的干扰程度存在较大的不确定性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例应用的一种通信系统架构图;
图2是毫米波感知类型的示意图;
图3是毫米波感知流程图;
图4(a)是顺序模式的协作单基感知测量实例流程图;
图4(b)是并行模式的协作单基感知测量实例流程图;
图5是DMG感知测量设置元素帧格式示意图;
图6是TDD波束赋形帧格式示意图;
图7是DMG感知请求帧格式示意图;
图8是DMG感知响应帧格式示意图;
图9是DMG感知轮询帧格式示意图;
图10是
Figure PCTCN2022114342-appb-000001
的自相关性和互相关性仿真结果图;
图11是本申请实施例提供的信息指示方法的流程示意图;
图12是本申请实施例提供的Extended Configuration子元素帧格式示意图一;
图13是本申请实施例提供的Extended Configuration子元素帧格式示意图二;
图14是本申请实施例提供的DMG感知请求帧格式示意图一;
图15-1是本申请实施例提供的DMG感知请求帧格式示意图二;
图15-2是本申请实施例提供的DMG感知请求帧格式示意图三;
图16是本申请实施例提供的DMG感知请求帧格式示意图四;
图17-1是本申请实施例提供的DMG感知请求帧格式示意图五;
图17-2是本申请实施例提供的DMG感知请求帧格式示意图六;
图18是本申请实施例提供的并行模式的协作单基感知的场景图;
图19-1是本申请实施例提供的EDMG STA 1使用空时流序号为1的Golay序列时的干扰情况示意图;
图19-2是本申请实施例提供的EDMG STA 1使用空时流序号为1的Golay序列时的受LDPC BLK干扰情况示意图;
图20-1是本申请实施例提供的EDMG STA 1使用空时流序号为2的Golay序列时的干扰情况示意图;
图20-2是本申请实施例提供的EDMG STA 1使用空时流序号为2的Golay序列时的受LDPC BLK干扰情况示意图;
图21是本申请实施例提供的信息指示装置的示意图一;
图22是本申请实施例提供的信息指示装置的示意图二;
图23是本申请实施例提供的一种通信设备示意性结构图;
图24是本申请实施例的芯片的示意性结构图;
图25是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。WLAN可支持频段可以包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(60GHz)。
图1是本申请实施例应用的一种通信系统架构的示例。
如图1所示,该通信系统100可以包括AP 110,以及通过AP 110接入网络的STA 120。在一些 场景中,AP 110可以或称AP STA,即在某种意义上来说,AP 110也是一种STA。在一些场景中,STA 120或称为非AP STA(non-AP STA)。在一些场景中,STA 120可以包括AP STA和non-AP STA。通信系统100中的通信可以包括:AP 110与STA 120之间通信,或STA 120与STA 120之间通信,或STA 120和peer STA之间通信,其中,peer STA可以指与STA 120的对端进行通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
其中,AP 110可用于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP 110可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
需要说明的是,STA 120在通信系统中的角色不是绝对的,也即是说,STA 120在通信系统中的角色可以在AP和STA之间进行切换。例如,在一些场景中,手机连接路由的时候,手机是STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
在一些实施例中,AP 110和STA 120可以是应用于车联网中的设备,物联网(internet of things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,AP 110可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。在一些实施例中,STA 120可以支持802.11be制式。STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式。
在一些实施例中,AP 110和/或STA 120可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船);还可以部署在空中(例如飞机、气球和卫星上等)。
在一些实施例中,STA 120可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self-driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
示例性地,STA 120还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解,图1仅为本申请的示例,不应理解为对本申请的限制。例如,图1仅示例性地示出了一个AP和两个STA,在一些实施例中,该通信系统100可以包括多个AP以及包括其它数量的STA,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其他系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技 术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
毫米波感知类型
图2展示了毫米波感知的五种类型。图2中的(a)为单基(Monostatic)感知,参与感知的设备仅有一个,通过自发感知PPDU和自收反射(Echo)信号来感知环境,与传统的雷达工作方式相似;图2中的(b)为双基(Bistatic)感知,参与感知的设备有两个,一个设备发送感知PPDU,另一个设备接收反射信号来感知环境;图2中的(c)为协作单基(Coordinated Monostatic)感知,参与感知的设备大于一个,每个设备通过自发感知PPDU和自收反射信号来感知环境,存在一个感知发起者(Initiator)控制所有其他设备以实现协作;图2中的(d)为协作双基(Coordinated Bistatic)感知,参与感知的设备多于两个,即存在至少两对双基感知设备,发送设备分别发送感知PPDU且由不同的接收设备分别接收,从而实现协作感知;图2中的(e)为多基(Multistatic)感知,参与感知的设备大于两个,一个发送设备发送感知PPDU,多个接收设备同时接收反射信号同时完成环境感知。
需要说明的是,反射信号是感知PPDU经过环境反射后的信号,因此,反射信号也可以理解为是感知PPDU。
感知PPDU的发送者称为感知发送者,感知PPDU的接收者称为感知接收者。
毫米波感知流程
图3为毫米波感知的一般流程,从左向右依次为会话建立(session setup)阶段、毫米波感知测量设置阶段和感知测量阶段,毫米波感知测量设置阶段也即方向性多吉比特(Directional multi-gigabit,DMG)感知测量设置(简称为DMG Measurement setup)阶段。其中,感知测量阶段由多个感知测量突发(Burst)组成,每个突发又由多个感知测量实例组成,感知测量实例也即DMG感知实例(DMG Sensing Instance)。突发与突发之间的时间间隔为突发间间隔(Inter-burst interval),一个突发中相邻的感知测量实例之间的时间间隔为突发内间隔(Intra-burst interval)。
毫米波协作单基感知测量实例
毫米波协作单基感知测量实例有两种模式,一种为顺序模式,如图4(a)所示,另一种为并行模式,如图4(b)所示。
顺序模式与并行模式的相同点在于:感知发起者(Initiator)在感知测量实例的初始阶段需要分别发送DMG感知请求(DMG Sensing Request)帧至每个感知响应者(Responder),而且每个感知响应者需要在短帧间空(Short Interframe Space,SIFS)时间内回复一个DMG感知响应(DMG Sensing Response)帧至感知发起者。
顺序模式与并行模式的不同点在于:顺序模式中,多个感知响应者先后依次发送且接收单基感知测量帧(即Monostatic PPDU)来感知环境并在SIFS时间内分别发送感知测量报告帧(即DMG Sensing Measurement Report)至感知发起者;并行模式中,多个感知响应者同时发送且接收Monostatic PPDU来感知环境,随后依次发送感知测量报告帧(即DMG Sensing Measurement Report)至感知发起者。
DMG感知测量设置元素
图5为DMG感知测量设置(DMG Sensing Measurement Setup)元素的帧格式。DMG感知测量设置元素携带用于设置一个DMG感知测量的信息。这个元素位于DMG感知测量设置请求(DMG Sensing Measurement Setup Request)帧和DMG感知测量设置响应(DMG Sensing Measurement Setup Response)帧当中。如图5所示,DMG感知测量设置元素包含以下字段:
元素ID(Element ID):指示DMG感知测量设置元素的ID。
长度(Length):指示DMG感知测量设置元素中除元素ID字段和长度字段以外的字节数。
元素ID扩展(Element ID Extened):指示DMG感知测量设置元素的扩展ID。
测量设置控制(Measurement Setup Control),包含以下四个字段:
感知类型(Sensing Type):指示DMG感知测量的类型,具体取值及含义见表1。
表1-感知类型字段
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 双基(Bistatic)
3 多基(Multistatic)
4-7 保留(Reserved)
Rx发起者(RX Initiator):指示在双基感知类型中感知发起者是感知接收者或感知发送者。取值1指示感知发起者是感知接收者,取值0指示感知发起者是感知发送者。
LCI存在(LCI Present):指示LCI字段是否存在于DMG感知测量设置元素。取值1指示存在,取值0指示不存在。
位置存在(Orientation Present):指示对端位置(Peer Orientation)字段是否存在于DMG感知测量设置元素。取值1指示存在,取值0指示不存在。
上报类型(Report Type):指示感知发起者期望感知响应者上报的类型,取值及其含义见表2。
表2-感知类型字段
Figure PCTCN2022114342-appb-000002
位置配置信息(LCI):携带IEEE 802.11REVme 1.2中9.4.2.21.10(LCI report(Location configuration information report))章节中的LCI字段。
对端位置(Peer Orientation):指示对端设备的方向和距离,包含方位角(Azimuth)、俯仰角(Elevation)和距离(Range)三个子字段。
可选子元素:包含零个或多个子元素。全部的子元素和顺序见表3。
表3-可选子元素
Figure PCTCN2022114342-appb-000003
时分复用(Time Division Duplex,TDD)波束赋形帧
图6为TDD波束赋形帧(TDD Beamforming frame)的帧格式,为控制帧的一种。TDD波束赋 形帧由媒介接入控制(Media Access Control,MAC)帧头、MAC帧体以及帧校验组成。其中,MAC帧体由两部分组成:TDD波束赋形控制(TDD Beamforming Control)字段和TDD波束赋形信息(TDD Beamforming Information)字段。在TDD波束赋形控制字段中:
TDD波束赋形帧类型(TDD Beamforming Frame Type):指示TDD波束赋形帧的类型,具体取值及其含义见表4。
表4-TDD波束赋形帧类型
取值 含义
0 TDD扇区扫描(Sector Sweep,SSW)
1 TDD SSW反馈(TDD SSW Feedback)
2 TDD SSW确认(TDD SSW Ack)
3 DMG感知(DMG Sensing)
其中取值0,1,2均表示TDD波束赋形帧为波束训练相关的类型;取值3表示TDD波束赋形帧为DMG感知相关的类型。
当TDD波束赋形帧类型字段的取值为3时,TDD群组波束赋形(TDD Group Beamforming)字段和TDD波束测量(TDD Beam Measurement)字段共同指示一个TDD波束赋形帧在DMG感知中的用途,具体取值及其含义见表5。
表5-TDD波束赋形帧的用途
Figure PCTCN2022114342-appb-000004
其中,
TDD群组波束赋形字段取值为0且TDD波束测量字段取值为0:指示该TDD波束赋形帧为DMG感知请求帧。
TDD群组波束赋形字段取值为0且TDD波束测量字段取值为1:指示该TDD波束赋形帧为DMG感知响应帧。
TDD群组波束赋形字段取值为1且TDD波束测量字段取值为0:指示该TDD波束赋形帧为DMG感知轮询帧。
以下对DMG感知请求帧、DMG感知响应帧和DMG感知轮询帧做进一步说明。
1)DMG感知请求帧
DMG感知请求帧的帧格式如图7所示,在TDD波束赋形信息字段中,包含以下字段:
测量设置ID(Measurement Setup ID):指示与该帧相关的感知测量设置的标识符。
测量突发ID(Measurement Burst ID):指示与该帧相关的感知测量突发的标识符。
测量实例序号(Measurement Instance Number):指示一个感知测量实例在一个测量突发中的序号。
感知类型(Sensing type):指示该帧所请求的感知类型,具体取值及含义见表6,
表6-感知类型字段
取值 含义
0 协作单基(Coordinated Monostatic)
1 协作双基(Coordinated Bistatic)
2 多基(Multistatic)
3 保留(Reserved)
STA ID:指示某个STA在一个感知测量实例中参与测量的顺序。
第一波束下标(First Beam Index):指示在一个感知测量实例中第一个使用的发送波束的索引。
实例中STA数量(Num of STAs in Instance):指示一个感知测量实例中参与测量的STA的个数。
实例中PPDU数量(Num of PPDUs in Instance):指示一个感知测量实例中出现的PPDU的个数。
EDMG TRN长度(EDMG TRN Length):指示一个PPDU中包含的训练单元(TRN-Unit)的个数。
每个发射训练单元(TX TRN-Unit)的接收训练单元(RX TRN-Unit)的数量(RX TRN-Units per Each TX TRN-Unit):指示连续向相同方向发送的TRN-Unit的数量。
EDMG TRN-Unit P:指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段(TRN subfield)的个数。
EDMG TRN-Unit M:指示在一个TRN-Unit中波束方向可变的TRN子字段的个数。
EDMG TRN-Unit N:指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数。
TRN子字段序列长度(TRN Subfield Sequence Length):指示每个TRN子字段所使用的格雷序列的长度。
带宽(Bandwidth):指示发送TRN字段所使用的带宽。
2)DMG感知响应帧
DMG感知响应帧的帧格式如图8所示,DMG感知响应帧的MAC帧体仅包含TDD波束赋形控制字段。
3)DMG感知轮询帧
DMG感知轮询帧的帧格式如图9所示,在TDD波束赋形信息字段中,包含以下字段:
测量设置ID(Measurement Setup ID):指示与该帧相关的感知测量设置的标识符。
测量突发ID(Measurement Burst ID):指示与该帧相关的感知测量突发的标识符。
测量实例ID(Measurement Instance ID):指示与该帧相关的感知测量实例的标识符。
Golay序列
在EDMG PHY中定义常规长度的Golay序列如下:
Figure PCTCN2022114342-appb-000005
非常规长度的Golay序列如下:
Figure PCTCN2022114342-appb-000006
其中,Ga,Gb,Gc,Gd表示Golay序列的类型,下标表示Golay序列的长度,上标i=1,2,3,…,8表示Golay序列的空时流序号或者发送链路编号。
任何一个Golay序列都具有良好的自相关性,用于接收符号检测;不同时空流序号但长度和类型相同的Golay序列之间具有良好的互相关性,用于减小不同空时流之间的干扰。图10中给出了
Figure PCTCN2022114342-appb-000007
的自相关性和互相关性的仿真结果,横坐标代表两个序列之间的位移(即比特位移),纵坐标代表两个序列之间的互相关运算结果(也即互相关性值),互相关运算结果作为衡量干扰程度的指标,互相关性值越大表示干扰程度越大,互相关性值越小表示干扰程度较小;图10中从左至右依次为:
Figure PCTCN2022114342-appb-000008
的自相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000009
Figure PCTCN2022114342-appb-000010
之间的互相关运算结果)、
Figure PCTCN2022114342-appb-000011
Figure PCTCN2022114342-appb-000012
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000013
Figure PCTCN2022114342-appb-000014
之间的互相关运算结果)、
Figure PCTCN2022114342-appb-000015
Figure PCTCN2022114342-appb-000016
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000017
Figure PCTCN2022114342-appb-000018
之间的互相关运算结果)、
Figure PCTCN2022114342-appb-000019
Figure PCTCN2022114342-appb-000020
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000021
Figure PCTCN2022114342-appb-000022
之间的互相关运算结果)。可以看到
Figure PCTCN2022114342-appb-000023
的自相关性的仿真结果中具有尖锐的自相关峰,而
Figure PCTCN2022114342-appb-000024
之间的互相关性的仿真结果中几乎没有突出峰值。
DMG/EDMG PPDU格式
在DMG PHY中定义了DMG控制模式PPDU(DMG control mode PPDU)和DMG单载波模式PPDU(DMG SC mode PPDU),其格式和所含Golay序列的类型分别如表7、表8所示。
表7-DMG control mode PPDU格式
Figure PCTCN2022114342-appb-000025
表8-DMG SC mode PPDU格式
Figure PCTCN2022114342-appb-000026
在EDMG PHY中定义了EDMG控制模式PPDU(EDMG control mode PPDU)、EDMG单载波模式PPDU(EDMG SC mode PPDU),其格式和所含Golay序列的类型分别如表9、表10所示。
表9-EDMG control mode PPDU格式
Figure PCTCN2022114342-appb-000027
表10-EDMG SC mode PPDU格式
Figure PCTCN2022114342-appb-000028
其中,LDPC BLK代表LDPC编码块,GI代表保护间隔,NCB代表连续占用的2.16GHz信道的个数,TRN_BL代表EDMG-Header-A中TRN Subfield Sequence Length字段指示的TRN subfield的长度。
如果EDMG SC mode PPDU仅在一个2.16GHz信道上传输一个空时流,那么EDMG-STF和EDMG-CEF字段将不存在;如果EDMG SC mode PPDU仅用于SU传输,那么EDMG-Header-B字段将不存在。
在感知通信中,参与感知的设备发送和/或接收感知PPDU,从而实现感知测量。然而,在多个STA同时发送和/或接收感知PPDU的情况下,STA之间会存在互相干扰,影响最终感知测量的精确度。以协作单基感知测量实例来说,如图4(b)所示,在并行模式下,感知响应者STA A和感知响应者STA B会同时自发自收Monostatic PPDU以实现并行感知测量。但是,在这种模式下,一个STA也会收到其他STA发送的Monostatic PPDU,所以STA之间会存在互相干扰,影响最终感知测量的精确度。
另外,STA发送和/或接收的感知PPDU的类型以及感知PPDU中用于实现感知的感知字段类型在相关标准中没有定义,导致STA之间的干扰程度存在较大的不确定性。以协作单基感知测量实例来说,目前相关标准中尚未定义协作单基感知类型中使用的Monostatic PPDU的类型/格式,所以不同的感知响应者可能会发送不同类型/格式的Monostatic PPDU,也就是说一个感知响应者发送的用于感知的训练(Tranning,TRN)字段或信道估计滤波(Channel Estimation Filter,CEF)字段可能会被其他感知响应者发送的任意一个字段所干扰,导致干扰的程度存在随机性和不确定性。
为了解决上述至少一种问题,提出了本申请实施例的以下技术方案,可以有效解决感知通信中STA之间的干扰问题,例如并行模式下的协作单基感知测量中的干扰问题。
需要说明的是,本申请实施例中的“第一STA”可以但不局限于是感知发起者。本申请实施例中的“第二STA”可以但不局限于是感知响应者。
需要说明的是,本申请实施例中的“感知PPDU”根据感知类型可以有不同的名称,例如对于协作单基感知来说,感知PPDU为Monostatic PPDU。
需要说明的是,本申请实施例中的“空时流序号”也可以称为“发送和/或接收链路序号”。
图11是本申请实施例提供的信息指示方法的流程示意图,如图11所示,所述信息指示方法包括以下步骤:
步骤1101:第一STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
步骤1102:第二STA接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
本申请实施例中,第一STA向一个或多个第二STA发送至少一种信息,所述至少一种信息包括以下至少之一:第一信息、第二信息和第三信息,其中,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。对于每个第二STA来说,第二STA接收第一STA发送的所述至少一种信息。
这里,所述Golay序列的空时流序号的取值及含义可以参照前述相关方案的描述。
这里,所述感知PPDU的类型包括以下至少之一:DMG control mode PPDU;DMG SC mode PPDU;EDMG control mode PPDU;EDMG SC mode PPDU。这几种类型的感知PPDU的格式和所含Golay序列的类型可以参照前述相关方案的描述。
这里,所述感知字段类型包括以下至少之一:TRN字段;CEF字段。这几种类型的感知字段所含Golay序列可以参照前述相关方案的描述。
在一些实施方式中,所述第一STA向所述一个或多个第二STA中的每个STA发送的第一信息所指示的Golay序列的空时流序号不同。
在一些实施方式中,所述第一STA向所述一个或多个第二STA中的每个STA发送的第二信息所指示的感知PPDU的类型可以相同也可以不同。
在一些实施方式中,所述第一STA向所述一个或多个第二STA中的每个STA发送的第三信息所指示的感知字段类型可以相同也可以不同。
本申请实施例中,设计了携带上述至少一种信息的帧格式,以下对该帧格式的实现方案进行说明。
方案一
在一些实施方式中,在感知测量设置阶段,第一STA向一个或多个第二STA发送DMG感知测量设置元素(DMG Sensing Measurement Setup element),相应地,第二STA接收第一STA发送的DMG感知测量设置元素,所述DMG感知测量设置元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述DMG感知测量设置元素包括可选子元素字段,所述可选子元素字段用于携带第一子元素,所述第一子元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一子元素包括第一字段、第二字段和第三字段中的至少一种字段,所述第一字段用于携带所述第一信息,所述第二字段用于携带所述第二信息,所述第三字段用于携带所述第三信息。进一步,所述第一子元素还包括以下至少一种字段:子元素标识字段,用于指示所述第一子元素的标识;长度字段,用于指示所述第一子元素中除所述子元素标识字段和所述长度字段以外的字段长度。
在一些实施方式中,所述DMG感知测量设置元素携带在DMG感知测量设置请求帧中。这里,在感知测量设置阶段,所述DMG感知测量设置请求帧由感知发起者(即第一STA)发送给感知响应者(即第二STA)。
在一个示例中,通过在DMG感知测量设置元素中的可选子元素字段中定义一种新的子元素类 型(即第一子元素),就可以实现在感知测量设置阶段传递Golay序列的空时流序号信息(即第一信息)。新定义的可选子元素如表11所示,对应的子元素ID为4,子元素名称为“扩展配置(Extended Configuration)”。
表11-可选子元素
Figure PCTCN2022114342-appb-000029
表11仅为示例,新定义的子元素的名称和子元素ID不局限于表11所示的例子。以表11所示的例子来说,Extended Configuration子元素用于携带扩展的配置信息,具体帧格式如图12所示。图12中的Extended Configuration子元素包括以下字段:
子元素ID(Subelement ID):取值为4-255之间的任意整数,这里取值为4仅作示例。
长度(Length):指示该元素除了子元素ID字段和长度字段之外的字节数。
Golay序列空时流序号(Space-time Stream Index of Golay Sequence):指示感知PPDU所使用的Golay序列的空时流序号,例如指示在协作单基感知类型中感知响应者发送的Monostatic PPDU所使用的Golay序列的空时流序号。Golay序列空时流序号的具体取值及其含义见表12。
表12-Golay序列空时流序号
取值 含义
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
上述示例中,Golay序列空时流序号对应的字段即为第一字段,当然,第一字段的名称也可以是其他名称,本申请对第一字段的名称以及第一字段占用的比特数不做限定。
在一个示例中,通过在DMG感知测量设置元素中的可选子元素字段中定义一种新的子元素类型(即第一子元素),就可以实现在感知测量设置阶段传递Golay序列的空时流序号信息(即第一信息)、感知PPDU的类型信息(即第二信息)以及感知PPDU中的感知字段的类型信息(即第三信息)。新定义的可选子元素可以参照上述表11所示,对应的子元素ID为4,子元素名称为“扩展配置(Extended Configuration)”。新定义的Extended Configuration子元素用于携带扩展的配置信息,具体帧格式如图13所示。图13中的Extended Configuration子元素包括以下字段:
子元素ID(Subelement ID):取值为4-255之间的任意整数,这里取值为4仅作示例。
长度(Length):指示该元素除了子元素ID和长度字段之外的字节数。
Golay序列空时流序号(Space-time Stream Index of Golay Sequence):指示感知PPDU所使用的Golay序列的空时流序号,例如指示在协作单基感知类型中感知响应者发送的Monostatic PPDU所使用的Golay序列的空时流序号。Golay序列空时流序号的具体取值及其含义可以参照上述表12所示。
感知PPDU类型(感知PPDU Type):指示感知响应者使用的感知PPDU的类型,例如指示 在协作单基感知类型中感知响应者使用的Monostatic PPDU的类型。感知PPDU类型的具体取值及含义见表13。
表13-感知PPDU类型
Figure PCTCN2022114342-appb-000030
其中,
DMG control mode PPDU:指IEEE DMG PHY中定义的DMG control mode PPDU格式(Data字段长度为0),该格式可以参照前述相关方案的描述;
DMG SC mode PPDU:指IEEE DMG PHY中定义的DMG SC mode PPDU格式(Data字段长度为0),该格式可以参照前述相关方案的描述;
EDMG control mode PPDU:指IEEE EDMG PHY中定义的EDMG control mode PPDU格式(Data字段长度为0),该格式可以参照前述相关方案的描述;
EDMG SC mode PPDU:指IEEE EDMG PHY中定义的EDMG SC mode PPDU格式(Data字段长度为0),该格式可以参照前述相关方案的描述。
感知字段类型(Sensing Field Type):指示感知响应者发送和/或接收的感知PPDU中用来感知信道的字段是TRN字段或者CEF字段,例如指示在协作单基感知类型中感知响应者发送和/或接收的Monostatic PPDU中用来感知信道的字段是TRN字段或者CEF字段。示例性地,取值1表示TRN字段,取值0表示CEF字段。
上述示例中,Golay序列空时流序号对应的字段即为第一字段,感知PPDU类型对应的字段即为第二字段,感知字段类型对应的字段即为第三字段,当然,第一字段、第二字段、第三字段的名称也可以是其他名称,本申请对第一字段、第二字段、第三字段的名称以及占用的比特数不做限定。
方案二
在一些实施方式中,在感知测量实例阶段,第一STA向一个或多个第二STA发送DMG感知请求(DMG Sensing Request)帧,相应地,第二STA接收第一STA发送的DMG感知请求帧,所述DMG感知请求帧携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一信息、所述第二信息和所述第三信息中的至少一种信息携带在所述DMG感知请求帧中的TDD波束赋形信息字段中。
在一些实施方式中,所述TDD波束赋形信息字段包括第四字段、第五字段和第六字段中的至少一种字段,所述第四字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
这里,所述第四字段、第五字段和第六字段是所述TDD波束赋形信息字段中新增加的字段。
在一些实施方式中,所述TDD波束赋形信息字段包括STA标识字段、第五字段和第六字段中的至少一种字段,所述STA标识字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
这里,所述STA标识字段是所述TDD波束赋形信息字段中已有的字段,所述第五字段和第六字段是所述TDD波束赋形信息字段中新增加的字段。
这里,对于感知类型为第一类型感知的情况,所述STA标识字段用于指示感知响应者的标识 以及用于指示感知PPDU所使用的Golay序列的空时流序号。对于感知类型为第二类型感知的情况,所述STA标识字段用于指示感知PPDU中的接收STA同步子字段的索引。作为示例,所述第一类型感知为协作单基感知。所述第二类型感知为多基感知。
可选地,所述TDD波束赋形信息字段还包括第七字段;对于感知类型不是第一类型感知的情况,所述第七字段保留。对于感知类型为第一类型感知的情况,所述第七字段用于指示所述第一类型感知对应的感知测量实例的模式是顺序模式或者并行模式。作为示例,所述第一类型感知为协作单基感知。
在一些实施方式中,所述第一STA向所述一个或多个第二STA中的每个STA发送的DMG感知请求帧中的TDD波束赋形信息字段中的与TRN相关的字段的取值相同。这里,所述与TRN相关的字段包括以下至少一种字段:
EDMG TRN长度字段,用于指示一个感知PPDU中包含的TRN-Unit的个数;
TX TRN-Unit的RX TRN-Unit的数量字段,用于指示连续向相同方向发送的TRN-Unit的数量;
EDMG TRN-Unit P字段,用于指示指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段的个数;
EDMG TRN-Unit M字段,用于指示在一个TRN-Unit中波束方向可变的TRN子字段的个数;
EDMG TRN-Unit N字段,用于指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数;
TRN子字段序列长度字段,用于指示每个TRN子字段所使用的Golay序列的长度;
带宽字段,用于指示发送TRN字段所使用的带宽。
在一个示例中,通过DMG感知请求帧可以实现在感知测量实例阶段传递Golay序列的空时流序号信息(即第一信息)。具体地,在DMG感知请求帧的TDD波束赋形信息字段中定义新的的子字段来传递Golay序列的空时流序号信息。新定义的子字段(即第四字段)如图14所示,对应的字段名称为Golay序列空时流序号(Space-time Stream Index of Golay Sequence)。
Golay序列空时流序号(Space-time Stream Index of Golay Sequence):指示感知PPDU所使用的Golay序列的空时流序号,例如指示在协作单基感知类型中感知响应者发送的Monostatic PPDU所使用的Golay序列的空时流序号。Golay序列空时流序号的具体取值及其含义可以参照前述表12。
上述图14所示的DMG感知请求帧中的其他字段的含义可以参照前述相关方案的描述。
上述示例中,Golay序列空时流序号对应的字段即为第四字段,当然,第四字段的名称也可以是其他名称,本申请对第四字段的名称以及第四字段占用的比特数不做限定。
在一个示例中,通过DMG感知请求帧可以实现在感知测量实例阶段传递Golay序列的空时流序号信息(即第一信息)。具体地,通过复用DMG感知请求帧中已有的STA ID字段来传递Golay序列的空时流序号信息。STA ID字段如图15-1所示。
STA ID:当感知类型为第二类型感知(如多基感知)时,指示感知PPDU(如EDMG Multistatic Sensing PPDU)中接收STA同步子字段的索引;当感知类型为第一类型感知(如协作单基感知)时,不仅指示一个感知响应者的ID,而且指示感知响应者发送和/或接收的感知PPDU(如Monostatic PPDU)所使用的Golay序列的空时流序号,Golay序列空时流序号的具体取值及其含义可以参照前述表12。
可选地,还可以在DMG感知请求帧中的TDD波束赋形信息字段中增加感知测量实例模式字段(即第七字段),如图15-2所示。
感知测量实例模式:当感知类型不为第一类型感知(如协作单基感知)时,该字段保留;当感知类型为第一类型感知(如协作单基感知)时,该字段指示第一类型感知的感知测量实例的模式是顺序模式或者并行模式。示例性的,取值1表示顺序模式,取值0表示并行模式。
上述图15-1和图15-2所示的DMG感知请求帧中的其他字段的含义可以参照前述相关方案的描述。
上述示例中,感知测量实例模式对应的字段即为第七字段,当然,第七字段的名称也可以是其他名称,本申请对第七字段的名称以及第七字段占用的比特数不做限定,例如第七字段的名称也可以是“协作单基顺序/并行(Coordinated Monostatic Sequential/Parallel)”。
在一个示例中,通过DMG感知请求帧可以实现在感知测量实例阶段传递Golay序列的空时流序号信息(即第一信息)、感知PPDU的类型信息(即第二信息)以及感知PPDU中的感知字 段的类型信息(即第三信息)。具体地,通过DMG感知请求帧的TDD波束赋形信息字段中定义新的的子字段来传递Golay序列的空时流序号信息、感知PPDU的类型信息以及感知字段的类型信息。新定义的子字段(即第四字段、第五字段和第六字段)如图16所示,对应的字段名称分别为Golay序列空时流序号(Space-time Stream Index of Golay Sequence)、感知PPDU类型、感知字段类型。
Golay序列空时流序号(Space-time Stream Index of Golay Sequence):指示感知PPDU所使用的Golay序列的空时流序号,例如指示在协作单基感知类型中感知响应者发送的Monostatic PPDU所使用的Golay序列的空时流序号。Golay序列空时流序号的具体取值及其含义可以参照前述表12。
感知PPDU类型(Sensing PPDU Type):指示感知PPDU的类型,例如指示在协作单基感知类型中感知响应者使用的Monostatic PPDU的类型。感知PPDU类型的具体取值及含义可以参照前述表13。
感知字段类型(Sensing Field Type):指示感知响应者发送和/或接收的感知PPDU中用来感知信道的字段是TRN字段或者CEF字段,例如指示在协作单基感知类型中感知响应者发送和/或接收的Monostatic PPDU中用来感知信道的字段是TRN字段或者CEF字段。示例性地,取值1表示TRN字段,取值0表示CEF字段。
上述图16所示的DMG感知请求帧中的其他字段的含义可以参照前述相关方案的描述。其中,第一STA向每个STA发送的DMG感知请求帧中的TDD波束赋形信息字段中的与TRN相关的字段的取值保持一致。这里,所述与TRN相关的字段包括以下至少一种字段:EDMG TRN长度(EDMG TRN Length)字段、每个TX TRN-Unit的RX TRN-Unit的数量(RX TRN-Units per Each TX TRN-Unit)字段、EDMG TRN-Unit P字段、EDMG TRN-Unit M字段、EDMG TRN-Unit N、TRN子字段序列长度(TRN Subfield Sequence Length)字段、带宽(Bandwidth)字段。
上述示例中,Golay序列空时流序号对应的字段即为第四字段,感知PPDU类型对应的字段即为第五字段,感知字段类型对应的字段即为第六字段,当然,第四字段、第五字段、第六字段的名称也可以是其他名称,本申请对第四字段、第五字段、第六字段的名称以及占用的比特数不做限定。
在一个示例中,通过DMG感知请求帧可以实现在感知测量实例阶段传递Golay序列的空时流序号信息(即第一信息)、感知PPDU的类型信息(即第二信息)以及感知PPDU中的感知字段的类型信息(即第三信息)。具体地,通过复用DMG感知请求帧的TDD波束赋形信息字段中已有的STA ID字段来传递Golay序列的空时流序号信息,以及通过DMG感知请求帧的TDD波束赋形信息字段中定义新的的子字段来传递感知PPDU的类型信息以及感知字段的类型信息。STA ID字段和新定义的子字段(即第五字段和第六字段)如图17-1所示,对应的字段名称分别为STA ID字段、感知PPDU类型、感知字段类型。
STA ID:当感知类型为第二类型感知(如多基感知)时,指示感知PPDU(如EDMG Multistatic Sensing PPDU)中接收STA同步子字段的索引;当感知类型为第一类型感知(如协作单基感知)时,不仅指示一个感知响应者的ID,而且指示感知响应者发送和/或接收的感知PPDU(如Monostatic PPDU)所使用的Golay序列的空时流序号,Golay序列空时流序号的具体取值及其含义可以参照前述表12。
感知PPDU类型(Sensing PPDU Type):指示感知PPDU的类型,例如指示在协作单基感知类型中感知响应者使用的Monostatic PPDU的类型。感知PPDU类型的具体取值及含义可以参照前述表13。
感知字段类型(Sensing Field Type):指示感知响应者发送和/或接收的感知PPDU中用来感知信道的字段是TRN字段或者CEF字段,例如指示在协作单基感知类型中感知响应者发送和/或接收的Monostatic PPDU中用来感知信道的字段是TRN字段或者CEF字段。示例性地,取值1表示TRN字段,取值0表示CEF字段。
可选地,还可以在DMG感知请求帧中的TDD波束赋形信息字段中增加感知测量实例模式字段(即第七字段),如图17-2所示。
感知测量实例模式:当感知类型不为第一类型感知(如协作单基感知)时,该字段保留;当感知类型为第一类型感知(如协作单基感知)时,该字段指示第一类型感知的感知测量实例的模式是顺序模式或者并行模式。示例性的,取值1表示顺序模式,取值0表示并行模式。
上述图17-1和图17-2所示的DMG感知请求帧中的其他字段的含义可以参照前述相关方案 的描述。其中,第一STA向每个STA发送的DMG感知请求帧中的TDD波束赋形信息字段中的与TRN相关的字段的取值保持一致。这里,所述与TRN相关的字段包括以下至少一种字段:EDMG TRN长度(EDMG TRN Length)字段、每个TX TRN-Unit的RX TRN-Unit的数量(RXTRN-Units per Each TX TRN-Unit)字段、EDMG TRN-Unit P字段、EDMG TRN-Unit M字段、EDMG TRN-Unit N、TRN子字段序列长度(TRN Subfield Sequence Length)字段、带宽(Bandwidth)字段。
上述示例中,感知PPDU类型对应的字段即为第五字段,感知字段类型对应的字段即为第六字段,感知测量实例模式对应的字段即为第七字段,当然,第五字段、第六字段、第七字段的名称也可以是其他名称,本申请对第五字段、第六字段、第七字段的名称以及占用的比特数不做限定。例如第七字段的名称也可以是“协作单基顺序/并行(Coordinated Monostatic Sequential/Parallel)”。
在一些实施方式中,第二STA从第一STA获得所述第一信息、所述第二信息和所述第三信息中的至少一种信息后,所述第二STA基于所述第一信息、所述第二信息和所述第三信息中的至少一种信息,发送感知PPDU和/或接收感知PPDU。
本申请实施例的技术方案,一方面,在感知测量设置阶段,第一STA(例如感知发起者)向每个第二STA(例如感知响应者)传递以下至少一种信息:Golay序列的空时流序号(也称为发送链路序号)信息、感知PPDU类型信息、感知字段类型信息,其中,Golay序列的空时流序号信息用于指示第二STA(例如感知响应者)发送和/或接收的感知PPDU所使用的Golay序列的空时流序号,通过让不同的第二STA(例如感知响应者)发送和/或接收具有不同空时流序号的Golay序列的感知PPDU来降低STA之间的互相干扰。感知PPDU类型信息用于指示第二STA(例如感知响应者)所使用的感知PPDU的类型,感知字段类型信息用于指示第二STA(例如感知响应者)所使用的感知PPDU中的感知字段的类型,如此,不同的第二STA(例如感知响应者)发送和/或接收特定格式的感知PPDU,保障一个第二STA发送的用于感知的TRN字段或CEF字段不会被其他第二STA发送的任意一个字段所干扰。
为了验证本申请实施例的技术方案的抗干扰性能,以下给出了多种干扰情况下的仿真结果。
从前述相关技术可以看出,DMG PPDU中的CEF字段和TRN字段以及EDMG PPDU中的L-CEF字段都是由Ga 128和Gb 128组成,而EDMG PPDU中的TRN字段是由Ga TRN_BL,Gb TRN_BL
Figure PCTCN2022114342-appb-000031
组成。但是,EDMG PHY中规定:一个EDMG STA必须支持长度为128和256的Golay序列,所以EDMG PPDU中的TRN字段一定要支持使用Ga 128和Gb 128。由于现有标准尚未规定在协作单基感知中是否只能使用TRN字段还是CEF字段来实现感知,所以这两个字段目前都可以用来实现感知。为了降低仿真压力且不失一般性,假定以CEF字段或TRN字段中的Ga 128为例来验证其他PPDU的不同字段对其造成的干扰。
仿真的场景如下:1)一个并行模式的协作单基感知(如图18),其中,一个AP作为感知发起者,负责设置和调度其他感知响应者,一个DMG STA和两个EDMG STA(EDMG STA 1和EDMG STA 2)作为感知响应者在感知发起者的调度下同时自发自收Monostatic PPDU;2)使用本申请实施例的上述方案,不对每个感知响应者自发自收的Monostatic PPDU的类型和感知字段类型做设置,仅设置每个感知响应者使用的Golay序列的空时流序号;3)全部感知响应者仅发送单个空时流的Monostatic PPDU但是使用的空时流的序号可以不同,2个EDMG STA占用的2.16GHz信道的个数可以不同,不同感知响应者发送的Monostatic PPDU的格式和长度可能不同;4)不同感知响应者用来做感知的字段可能相同也可能不同,若使用CEF字段作为感知字段,则不同的感知响应者使用不同的波束发送整个Monostatic PPDU,若使用TRN字段作为感知字段,则不同的感知响应者仅使用不同的波束发送Monostatic PPDU中的TRN字段部分;5)以其中一个EDMG STA 1作为观察对象,观察EDMG STA 1自发自收的Monostatic PPDU中的CEF字段或TRN字段中的Ga 128的受其他感知响应者发送的Monostatic PPDU的干扰程度;6)用两个序列之间的互相关运算结果作为衡量干扰程度的指标,互相关性强表示可能存在较强干扰,互相关性若表示存在较小的干扰;LDPC BLK字段用长度为128的随机序列代替。
按照目前的技术,EDMG STA 1和EDMG STA 2都使用相同的空时流序号为1的Golay序列,此时EDMG STA 1的CEF字段或TRN字段中的
Figure PCTCN2022114342-appb-000032
可能受到的干扰如图19-1和图19-2所示,横坐标代表两个序列之间的位移(即比特位移),纵坐标代表两个序列之间的互相关运算结果(也即互相关性值),互相关运算结果作为衡量干扰程度的指标,互相关性值越大表示干扰程度越大,互相关性值越小表示干扰程度较小。图19-1示意出了EDMG STA 1使用空时流序号为1的Golay序列(即
Figure PCTCN2022114342-appb-000033
)时的干扰情况,图19-1从左至右依次为:
1-1)
Figure PCTCN2022114342-appb-000034
Figure PCTCN2022114342-appb-000035
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000036
Figure PCTCN2022114342-appb-000037
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000038
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000039
存在于EDMG STA 2发送的EDMG-STF、EDMG-CEF、Data、TRN字段中。
1-2)
Figure PCTCN2022114342-appb-000040
Figure PCTCN2022114342-appb-000041
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000042
Figure PCTCN2022114342-appb-000043
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000044
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000045
存在于EDMG STA 2发送的EDMG-STF、EDMG-CEF、TRN字段中。
1-3)
Figure PCTCN2022114342-appb-000046
Figure PCTCN2022114342-appb-000047
的自相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000048
Figure PCTCN2022114342-appb-000049
之间的互相关运算结果);
这里,前者的
Figure PCTCN2022114342-appb-000050
存在于EDMG STA 1发送的CEF字段或TRN字段中。后者的
Figure PCTCN2022114342-appb-000051
存在于DMG STA发送的STF、CEF、TRN字段和EDMG STA 2发送的L-STF、L-CEF、TRN字段中。
1-4)
Figure PCTCN2022114342-appb-000052
Figure PCTCN2022114342-appb-000053
的自相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000054
Figure PCTCN2022114342-appb-000055
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000056
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000057
存在于EDMG STA 2发送的L-STF、L-CEF、L-TRN、TRN字段中。
1-5)
Figure PCTCN2022114342-appb-000058
和Ga 64的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000059
和Ga 64之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000060
存在于EDMG STA 1发送的CEF字段或TRN字段中。Ga 64存在于DMG STA发送的Header、Data、AGC字段和EDMG STA 2发送的L-Header、EDMG-Header-A字段中。
1-6)
Figure PCTCN2022114342-appb-000061
和Gb 64的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000062
和Gb 64之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000063
存在于EDMG STA 1发送的CEF字段或TRN字段中。Gb 64存在于DMG STA发送的AGC字段中。
1-7)
Figure PCTCN2022114342-appb-000064
和Ga 32的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000065
和Ga 32之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000066
存在于EDMG STA 1发送的CEF字段或TRN字段中。Ga 32存在于DMG STA发送的Header、Data字段和EDMG STA 2发送的L-Header、EDMG-Header-A、EDMG-Header-B、Data字段中。
1-8)
Figure PCTCN2022114342-appb-000067
和LDPC BLK的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000068
和LDPC BLK之间的互相关运算结果)。
这里,
Figure PCTCN2022114342-appb-000069
存在于EDMG STA 1发送的CEF字段或TRN字段中。LDPC BLK存在于DMG STA发送的Header、Data字段和EDMG STA 2发送的L-Header、EDMG-Header-A、EDMG-Header-B、Data字段中。
对于上述1-8)中的LDPC BLK可以进一步进行区分,图19-2示意出了DMG STA 1使用空时流序号为1的Golay序列(即
Figure PCTCN2022114342-appb-000070
)时的受LDPC BLK的干扰情况,图19-2从左至右依次为:
1-8.1)
Figure PCTCN2022114342-appb-000071
和LDPC BLK1的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000072
和LDPC BLK1之间的互相关运算结果)。
1-8.2)
Figure PCTCN2022114342-appb-000073
和LDPC BLK2的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000074
和LDPC BLK2之间的互相关运算结果)。
1-8.3)
Figure PCTCN2022114342-appb-000075
和LDPC BLK3的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000076
和LDPC BLK3之间的互相关运算结果)。
1-8.4)
Figure PCTCN2022114342-appb-000077
和LDPC BLK4的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000078
和LDPC BLK4之间的互相关运算结果)。
1-8.5)
Figure PCTCN2022114342-appb-000079
和LDPC BLK5的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000080
和LDPC BLK5之间的互相关运算结果)。
1-8.6)
Figure PCTCN2022114342-appb-000081
和LDPC BLK6的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000082
和LDPC BLK6之间的互相关运算结果)。
1-8.7)
Figure PCTCN2022114342-appb-000083
和LDPC BLK7的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000084
和LDPC BLK7之间的互相关运算结果)。
1-8.8)
Figure PCTCN2022114342-appb-000085
和LDPC BLK8的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000086
和LDPC BLK8之间的互相关运算结果)。
从图19-1和图19-2可以看到,
Figure PCTCN2022114342-appb-000087
Figure PCTCN2022114342-appb-000088
的互相关性的仿真结果、
Figure PCTCN2022114342-appb-000089
Figure PCTCN2022114342-appb-000090
的互相关性的仿真结果、以及
Figure PCTCN2022114342-appb-000091
Figure PCTCN2022114342-appb-000092
的自相关性的仿真结果中具有突出的峰值,可见,EDMG STA 2发送的EDMG-STF、EDMG-LTF、Data、TRN字段中的
Figure PCTCN2022114342-appb-000093
EDMG-STF、EDMG-LTF、TRN字段中的
Figure PCTCN2022114342-appb-000094
DMG STA发送的STF、CEF、TRN字段和EDMG STA 2发送的L-STF、L-CEF、TRN字段中的
Figure PCTCN2022114342-appb-000095
与EDMG STA 1中的
Figure PCTCN2022114342-appb-000096
存在强互相关性(即),可能会产生较强的干扰;而其他 Golay序列与
Figure PCTCN2022114342-appb-000097
的互相关性都较弱,产生的干扰较小。
按照本申请的技术,在感知测量设置阶段或感知测量实例阶段由感知发起者为每个参与协作单基感知测量的感知响应者配置不同的空时流序号,从而使得不同的感知响应者发送的Monostatic PPDU所使用的Golay序列不同。这里配置EDMG STA 1的Golay序列空时流序号为2,EDMG STA1的Golay序列空时流序号为1。DMG STA不支持多时空流传输,故无法配置Golay序列的空时流序号。此时EDMG STA 1的CEF字段或TRN字段中的
Figure PCTCN2022114342-appb-000098
可能受到的干扰如图20-1和图20-2所示,横坐标代表两个序列之间的位移(即比特位移),纵坐标代表两个序列之间的互相关运算结果(也即互相关性值),互相关运算结果作为衡量干扰程度的指标,互相关性值越大表示干扰程度越大,互相关性值越小表示干扰程度较小。图20-1示意出了EDMG STA 1使用空时流序号为2的Golay序列(即
Figure PCTCN2022114342-appb-000099
)时的干扰情况,图20-1从左至右依次为:
2-1)
Figure PCTCN2022114342-appb-000100
Figure PCTCN2022114342-appb-000101
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000102
Figure PCTCN2022114342-appb-000103
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000104
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000105
存在于EDMG STA 2发送的EDMG-STF、EDMG-CEF、Data、TRN字段中。
2-2)
Figure PCTCN2022114342-appb-000106
Figure PCTCN2022114342-appb-000107
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000108
Figure PCTCN2022114342-appb-000109
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000110
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000111
存在于EDMG STA 2发送的EDMG-STF、EDMG-CEF、TRN字段中。
2-3)
Figure PCTCN2022114342-appb-000112
Figure PCTCN2022114342-appb-000113
的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000114
Figure PCTCN2022114342-appb-000115
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000116
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000117
存在于DMG STA发送的STF、CEF、TRN字段和EDMG STA 2发送的L-STF、L-CEF、TRN字段中。
2-4)
Figure PCTCN2022114342-appb-000118
Figure PCTCN2022114342-appb-000119
的自相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000120
Figure PCTCN2022114342-appb-000121
之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000122
存在于EDMG STA 1发送的CEF字段或TRN字段中。
Figure PCTCN2022114342-appb-000123
存在于EDMG STA 2发送的L-STF、L-CEF、L-TRN、TRN字段中。
2-5)
Figure PCTCN2022114342-appb-000124
和Ga 64的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000125
和Ga 64之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000126
存在于EDMG STA 1发送的CEF字段或TRN字段中。Ga 64存在于DMG STA发送的Header、Data、AGC字段和EDMG STA 2发送的L-Header、EDMG-Header-A字段中。
2-6)
Figure PCTCN2022114342-appb-000127
和Gb 64的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000128
和Gb 64之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000129
存在于EDMG STA 1发送的CEF字段或TRN字段中。Gb 64存在于DMG STA发送的AGC字段中。
2-7)
Figure PCTCN2022114342-appb-000130
和Ga 32的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000131
和Ga 32之间的互相关运算结果);
这里,
Figure PCTCN2022114342-appb-000132
存在于EDMG STA 1发送的CEF字段或TRN字段中。Ga 32存在于DMG STA发送的Header、Data字段和EDMG STA 2发送的L-Header、EDMG-Header-A、EDMG-Header-B、Data字段中。
2-8)
Figure PCTCN2022114342-appb-000133
和LDPC BLK的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000134
和LDPC BLK之间的互相关运算结果)。
这里,
Figure PCTCN2022114342-appb-000135
存在于EDMG STA 1发送的CEF字段或TRN字段中。LDPC BLK存在于DMG STA发送的Header、Data字段和EDMG STA 2发送的L-Header、EDMG-Header-A、EDMG-Header-B、Data字段中。
对于上述2-8)中的LDPC BLK可以进一步进行区分,图20-2示意出了DMG STA 1使用空时流序号为2的Golay序列(即
Figure PCTCN2022114342-appb-000136
)时的受LDPC BLK的干扰情况,图20-2从左至右依次为:
2-8.1)
Figure PCTCN2022114342-appb-000137
和LDPC BLK1的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000138
和LDPC BLK1之间的互相关运算结果)。
2-8.2)
Figure PCTCN2022114342-appb-000139
和LDPC BLK2的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000140
和LDPC BLK2之间的互相关运算结果)。
2-8.3)
Figure PCTCN2022114342-appb-000141
和LDPC BLK3的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000142
和LDPC BLK3之间的互相关运算结果)。
2-8.4)
Figure PCTCN2022114342-appb-000143
和LDPC BLK4的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000144
和LDPC BLK4之间的互相关运算结果)。
2-8.5)
Figure PCTCN2022114342-appb-000145
和LDPC BLK5的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000146
和LDPC BLK5之间的互相关运算结果)。
2-8.6)
Figure PCTCN2022114342-appb-000147
和LDPC BLK6的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000148
和LDPC BLK6之间的互相关运算结果)。
2-8.7)
Figure PCTCN2022114342-appb-000149
和LDPC BLK7的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000150
和LDPC BLK7之间的互相关运算结果)。
2-8.8)
Figure PCTCN2022114342-appb-000151
和LDPC BLK8的互相关性的仿真结果(也即
Figure PCTCN2022114342-appb-000152
和LDPC BLK8之间的互相关运算结果)。
从图20-1和图20-2可以看到,EDMG STA 1发送的
Figure PCTCN2022114342-appb-000153
与其他STA发送的所有字段中的序列的相关性都较若,即EDMG STA 1的CEF字段或TRN字段中的
Figure PCTCN2022114342-appb-000154
序列受到的干扰都较小,可以降低并行模式下协作单基感知中的互相干扰问题。
图21是本申请实施例提供的信息指示装置的示意图一,应用于第一STA,如图21所示,所述装置包括:
发送单元2101,用于向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
在一些实施方式中,所述发送单元2101,用于向一个或多个第二STA发送DMG感知测量设置元素,所述DMG感知测量设置元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述DMG感知测量设置元素包括可选子元素字段,所述可选子元素字段用于携带第一子元素,所述第一子元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一子元素包括第一字段、第二字段和第三字段中的至少一种字段,所述第一字段用于携带所述第一信息,所述第二字段用于携带所述第二信息,所述第三字段用于携带所述第三信息。
在一些实施方式中,所述第一子元素还包括以下至少一种字段:
子元素标识字段,用于指示所述第一子元素的标识;
长度字段,用于指示所述第一子元素中除所述子元素标识字段和所述长度字段以外的字段长度。
在一些实施方式中,所述DMG感知测量设置元素携带在DMG感知测量设置请求帧中。
在一些实施方式中,所述发送单元2101,用于向一个或多个第二STA发送DMG感知请求帧,所述DMG感知请求帧携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一信息、所述第二信息和所述第三信息中的至少一种信息携带在所述DMG感知请求帧中的时分复用TDD波束赋形信息字段中。
在一些实施方式中,所述TDD波束赋形信息字段包括第四字段、第五字段和第六字段中的至少一种字段,所述第四字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
在一些实施方式中,所述TDD波束赋形信息字段包括STA标识字段、第五字段和第六字段中的至少一种字段,所述STA标识字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
在一些实施方式中,对于感知类型为第一类型感知的情况,所述STA标识字段用于指示感知响应者的标识以及用于指示感知PPDU所使用的Golay序列的空时流序号。
在一些实施方式中,对于感知类型为第二类型感知的情况,所述STA标识字段用于指示感知PPDU中的接收STA同步子字段的索引。
在一些实施方式中,所述TDD波束赋形信息字段还包括第七字段;对于感知类型为第一类型感知的情况,所述第七字段用于指示所述第一类型感知对应的感知测量实例的模式是顺序模式或者并行模式。
在一些实施方式中,所述第一STA向所述一个或多个第二STA中的每个STA发送的DMG感知请求帧中的TDD波束赋形信息字段中的与训练TRN相关的字段的取值相同。
在一些实施方式中,所述与TRN相关的字段包括以下至少一种字段:
EDMG TRN长度字段,用于指示一个感知PPDU中包含的TRN-Unit的个数;
每个TX TRN-Unit的RX TRN-Unit的数量字段,用于指示连续向相同方向发送的TRN-Unit的数量;
EDMG TRN-Unit P字段,用于指示指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段的个数;
EDMG TRN-Unit M字段,用于指示在一个TRN-Unit中波束方向可变的TRN子字段的个数;
EDMG TRN-Unit N字段,用于指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数;
TRN子字段序列长度字段,用于指示每个TRN子字段所使用的Golay序列的长度;
带宽字段,用于指示发送TRN字段所使用的带宽。
在一些实施方式中,所述感知PPDU的类型包括以下至少之一:DMG control mode PPDU;DMG SC mode PPDU;EDMG control mode PPDU;EDMG SC mode PPDU。
在一些实施方式中,所述感知字段类型包括以下至少之一:TRN字段;CEF字段。
本领域技术人员应当理解,本申请实施例的上述信息指示装置的相关描述可以参照本申请实施例的信息指示方法的相关描述进行理解。
图22是本申请实施例提供的信息指示装置的示意图二,应用于第二STA,如图22所示,所述装置包括:
接收单元2201,用于接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
在一些实施方式中,所述接收单元2201,用于接收第一STA发送的DMG感知测量设置元素,所述DMG感知测量设置元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述DMG感知测量设置元素包括可选子元素字段,所述可选子元素字段用于携带第一子元素,所述第一子元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一子元素包括第一字段、第二字段和第三字段中的至少一种字段,所述第一字段用于携带所述第一信息,所述第二字段用于携带所述第二信息,所述第三字段用于携带所述第三信息。
在一些实施方式中,所述第一子元素还包括以下至少一种字段:
子元素标识字段,用于指示所述第一子元素的标识;
长度字段,用于指示所述第一子元素中除所述子元素标识字段和所述长度字段以外的字段长度。
在一些实施方式中,所述DMG感知测量设置元素携带在DMG感知测量设置请求帧中。
在一些实施方式中,所述接收单元2201,用于接收第一STA发送的DMG感知请求帧,所述DMG感知请求帧携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
在一些实施方式中,所述第一信息、所述第二信息和所述第三信息中的至少一种信息携带在所述DMG感知请求帧中的TDD波束赋形信息字段中。
在一些实施方式中,所述TDD波束赋形信息字段包括第四字段、第五字段和第六字段中的至少一种字段,所述第四字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
在一些实施方式中,所述TDD波束赋形信息字段包括STA标识字段、第五字段和第六字段中的至少一种字段,所述STA标识字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
在一些实施方式中,对于感知类型为第一类型感知的情况,所述STA标识字段用于指示感知响应者的标识以及用于指示感知PPDU所使用的Golay序列的空时流序号。
在一些实施方式中,对于感知类型为第二类型感知的情况,所述STA标识字段用于指示感知PPDU中的接收STA同步子字段的索引。
在一些实施方式中,所述TDD波束赋形信息字段还包括第七字段;对于感知类型为第一类型感知的情况,所述第七字段用于指示所述第一类型感知对应的感知测量实例的模式是顺序模式或者并行模式。
在一些实施方式中,所述感知PPDU的类型包括以下至少之一:DMG control mode PPDU;DMG SC mode PPDU;EDMG control mode PPDU;EDMG SC mode PPDU。
在一些实施方式中,所述感知字段类型包括以下至少之一:TRN字段;CEF字段。
在一些实施方式中,所述装置还包括:感知通信单元,用于基于所述第一信息、所述第二信息和所述第三信息中的至少一种信息,发送感知PPDU和/或接收感知PPDU。
本领域技术人员应当理解,本申请实施例的上述信息指示装置的相关描述可以参照本申请实施例的信息指示方法的相关描述进行理解。
图23是本申请实施例提供的一种通信设备2300示意性结构图。该通信设备可以是第一STA,也可以是第二STA。图23所示的通信设备2300包括处理器2310,处理器2310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图23所示,通信设备2300还可以包括存储器2320。其中,处理器2310可以从存储器2320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2320可以是独立于处理器2310的一个单独的器件,也可以集成在处理器2310中。
可选地,如图23所示,通信设备2300还可以包括收发器2330,处理器2310可以控制该收发器2330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2330可以包括发射机和接收机。收发器2330还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2300具体可为本申请实施例的第一STA,并且该通信设备2300可以实现本申请实施例的各个方法中由第一STA实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备2300具体可为本申请实施例的第二STA,并且该通信设备2300可以实现本申请实施例的各个方法中由第二STA实现的相应流程,为了简洁,在此不再赘述。
图24是本申请实施例的芯片的示意性结构图。图24所示的芯片2400包括处理器2410,处理器2410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,芯片2400还可以包括存储器2420。其中,处理器2410可以从存储器2420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2420可以是独立于处理器2410的一个单独的器件,也可以集成在处理器2410中。
可选地,该芯片2400还可以包括输入接口2430。其中,处理器2410可以控制该输入接口2430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2400还可以包括输出接口2440。其中,处理器2410可以控制该输出接口2440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一STA,并且该芯片可以实现本申请实施例的各个方法中由第一STA实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二STA,并且该芯片可以实现本申请实施例的各个方法中由第二STA实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图25是本申请实施例提供的一种通信系统2500的示意性框图。如图25所示,该通信系统2500包括第一STA2510和第二STA2520。
其中,该第一STA2510可以用于实现上述方法中由第一STA实现的相应的功能,以及该第二STA2520可以用于实现上述方法中由第二STA实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是 限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其他适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其他适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一STA,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一STA实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二STA,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二STA实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一STA,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一STA实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二STA,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二STA实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一STA,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一STA实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二STA,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二STA实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其他的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个第一处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执 行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种信息指示方法,所述方法包括:
    第一站点STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知物理层协议数据单元PPDU所使用的格雷Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
  2. 根据权利要求1所述的方法,其中,所述第一STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,包括:
    第一STA向一个或多个第二STA发送方向性多吉比特DMG感知测量设置元素,所述DMG感知测量设置元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  3. 根据权利要求2所述的方法,其中,所述DMG感知测量设置元素包括可选子元素字段,所述可选子元素字段用于携带第一子元素,所述第一子元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  4. 根据权利要求3所述的方法,其中,所述第一子元素包括第一字段、第二字段和第三字段中的至少一种字段,所述第一字段用于携带所述第一信息,所述第二字段用于携带所述第二信息,所述第三字段用于携带所述第三信息。
  5. 根据权利要求4所述的方法,其中,所述第一子元素还包括以下至少一种字段:
    子元素标识字段,用于指示所述第一子元素的标识;
    长度字段,用于指示所述第一子元素中除所述子元素标识字段和所述长度字段以外的字段长度。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述DMG感知测量设置元素携带在DMG感知测量设置请求帧中。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述第一STA向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,包括:
    第一STA向一个或多个第二STA发送DMG感知请求帧,所述DMG感知请求帧携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  8. 根据权利要求7所述的方法,其中,所述第一信息、所述第二信息和所述第三信息中的至少一种信息携带在所述DMG感知请求帧中的时分复用TDD波束赋形信息字段中。
  9. 根据权利要求8所述的方法,其中,所述TDD波束赋形信息字段包括第四字段、第五字段和第六字段中的至少一种字段,所述第四字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
  10. 根据权利要求8所述的方法,其中,所述TDD波束赋形信息字段包括STA标识字段、第五字段和第六字段中的至少一种字段,所述STA标识字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
  11. 根据权利要求10所述的方法,其中,对于感知类型为第一类型感知的情况,所述STA标识字段用于指示感知响应者的标识以及用于指示感知PPDU所使用的Golay序列的空时流序号。
  12. 根据权利要求10所述的方法,其中,对于感知类型为第二类型感知的情况,所述STA标识字段用于指示感知PPDU中的接收STA同步子字段的索引。
  13. 根据权利要求10或11所述的方法,其中,所述TDD波束赋形信息字段还包括第七字段;对于感知类型为第一类型感知的情况,所述第七字段用于指示所述第一类型感知对应的感知测量实例的模式是顺序模式或者并行模式。
  14. 根据权利要求7至13中任一项所述的方法,其中,所述第一STA向所述一个或多个第二STA中的每个STA发送的DMG感知请求帧中的TDD波束赋形信息字段中的与训练TRN相关的字段的取值相同。
  15. 根据权利要求14所述的方法,其中,所述与TRN相关的字段包括以下至少一种字段:
    增强方向性多吉比特EDMG TRN长度字段,用于指示一个感知PPDU中包含的训练单元TRN-Unit的个数;
    每个发送训练单元TX TRN-Unit的接收训练单元RX TRN-Unit的数量字段,用于指示连续 向相同方向发送的TRN-Unit的数量;
    EDMG TRN-Unit P字段,用于指示指示在一个TRN-Unit中波束方向对准对端设备的TRN子字段的个数;
    EDMG TRN-Unit M字段,用于指示在一个TRN-Unit中波束方向可变的TRN子字段的个数;
    EDMG TRN-Unit N字段,用于指示在TRN-Unit-M个TRN子字段中,使用相同波束方向连续发送的TRN子字段的个数;
    TRN子字段序列长度字段,用于指示每个TRN子字段所使用的Golay序列的长度;
    带宽字段,用于指示发送TRN字段所使用的带宽。
  16. 根据权利要求1至15中任一项所述的方法,其中,所述感知PPDU的类型包括以下至少之一:
    DMG控制模式control mode PPDU;
    DMG单载波模式SC mode PPDU;
    增强方向性多吉比特EDMG control mode PPDU;
    增强方向性多吉比特EDMG SC mode PPDU。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述感知字段类型包括以下至少之一:
    训练TRN字段;
    信道估计滤波CEF字段。
  18. 一种信息指示方法,所述方法包括:
    第二STA接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
  19. 根据权利要求18所述的方法,其中,所述第二STA接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,包括:
    第二STA接收第一STA发送的DMG感知测量设置元素,所述DMG感知测量设置元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  20. 根据权利要求19所述的方法,其中,所述DMG感知测量设置元素包括可选子元素字段,所述可选子元素字段用于携带第一子元素,所述第一子元素携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  21. 根据权利要求20所述的方法,其中,所述第一子元素包括第一字段、第二字段和第三字段中的至少一种字段,所述第一字段用于携带所述第一信息,所述第二字段用于携带所述第二信息,所述第三字段用于携带所述第三信息。
  22. 根据权利要求21所述的方法,其中,所述第一子元素还包括以下至少一种字段:
    子元素标识字段,用于指示所述第一子元素的标识;
    长度字段,用于指示所述第一子元素中除所述子元素标识字段和所述长度字段以外的字段长度。
  23. 根据权利要求19至22中任一项所述的方法,其中,所述DMG感知测量设置元素携带在DMG感知测量设置请求帧中。
  24. 根据权利要求18至23中任一项所述的方法,其中,所述第二STA接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,包括:
    第二STA接收第一STA发送的DMG感知请求帧,所述DMG感知请求帧携带所述第一信息、所述第二信息和所述第三信息中的至少一种信息。
  25. 根据权利要求24所述的方法,其中,所述第一信息、所述第二信息和所述第三信息中的至少一种信息携带在所述DMG感知请求帧中的TDD波束赋形信息字段中。
  26. 根据权利要求25所述的方法,其中,所述TDD波束赋形信息字段包括第四字段、第五字段和第六字段中的至少一种字段,所述第四字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
  27. 根据权利要求25所述的方法,其中,所述TDD波束赋形信息字段包括STA标识字段、第五字段和第六字段中的至少一种字段,所述STA标识字段用于携带所述第一信息,所述第五字段用于携带所述第二信息,所述第六字段用于携带所述第三信息。
  28. 根据权利要求27所述的方法,其中,对于感知类型为第一类型感知的情况,所述STA 标识字段用于指示感知响应者的标识以及用于指示感知PPDU所使用的Golay序列的空时流序号。
  29. 根据权利要求27所述的方法,其中,对于感知类型为第二类型感知的情况,所述STA标识字段用于指示感知PPDU中的接收STA同步子字段的索引。
  30. 根据权利要求27或28所述的方法,其中,所述TDD波束赋形信息字段还包括第七字段;对于感知类型为第一类型感知的情况,所述第七字段用于指示所述第一类型感知对应的感知测量实例的模式是顺序模式或者并行模式。
  31. 根据权利要求18至30中任一项所述的方法,其中,所述感知PPDU的类型包括以下至少之一:
    DMG control mode PPDU;
    DMG SC mode PPDU;
    EDMG control mode PPDU;
    EDMG SC mode PPDU。
  32. 根据权利要求18至31中任一项所述的方法,其中,所述感知字段类型包括以下至少之一:
    TRN字段;
    CEF字段。
  33. 根据权利要求18至32中任一项所述方法,其中,所述方法还包括:
    所述第二STA基于所述第一信息、所述第二信息和所述第三信息中的至少一种信息,发送感知PPDU和/或接收感知PPDU。
  34. 一种信息指示装置,应用于第一STA,所述装置包括:
    发送单元,用于向一个或多个第二STA发送第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
  35. 一种信息指示装置,应用于第二STA,所述装置包括:
    接收单元,用于接收第一STA发送的第一信息、第二信息和第三信息中的至少一种信息,所述第一信息用于指示感知PPDU所使用的Golay序列的空时流序号,所述第二信息用于指示感知PPDU的类型,所述第三信息用于指示感知PPDU所使用的感知字段类型。
  36. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法,或者权利要求18至33中任一项所述的方法。
  37. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法,或者权利要求18至33中任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或者权利要求18至33中任一项所述的方法。
  39. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法,或者权利要求18至33中任一项所述的方法。
  40. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或者权利要求18至33中任一项所述的方法。
PCT/CN2022/114342 2022-08-23 2022-08-23 一种信息指示方法及装置、通信设备 WO2024040446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114342 WO2024040446A1 (zh) 2022-08-23 2022-08-23 一种信息指示方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114342 WO2024040446A1 (zh) 2022-08-23 2022-08-23 一种信息指示方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2024040446A1 true WO2024040446A1 (zh) 2024-02-29

Family

ID=90012202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114342 WO2024040446A1 (zh) 2022-08-23 2022-08-23 一种信息指示方法及装置、通信设备

Country Status (1)

Country Link
WO (1) WO2024040446A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150351102A1 (en) * 2014-06-02 2015-12-03 Solomon Trainin Techniques for interference mitigation in directional multi-gigabit networks
CN108702676A (zh) * 2016-05-11 2018-10-23 华为技术有限公司 在无线帧中指示控制信息的方法和装置
CN109155660A (zh) * 2016-05-12 2019-01-04 交互数字专利控股公司 用于在毫米波无线局域网络中波束成形反馈的系统和方法
US20190208463A1 (en) * 2016-09-08 2019-07-04 Interdigital Patent Holdings, Inc. MULTI-CHANNEL SETUP MECHANISMS AND WAVEFORM DESIGNS FOR MILLIMETER WAVE (mmW) SYSTEMS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150351102A1 (en) * 2014-06-02 2015-12-03 Solomon Trainin Techniques for interference mitigation in directional multi-gigabit networks
CN108702676A (zh) * 2016-05-11 2018-10-23 华为技术有限公司 在无线帧中指示控制信息的方法和装置
CN109155660A (zh) * 2016-05-12 2019-01-04 交互数字专利控股公司 用于在毫米波无线局域网络中波束成形反馈的系统和方法
US20190208463A1 (en) * 2016-09-08 2019-07-04 Interdigital Patent Holdings, Inc. MULTI-CHANNEL SETUP MECHANISMS AND WAVEFORM DESIGNS FOR MILLIMETER WAVE (mmW) SYSTEMS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DJORDJE TUJKOVIC (FACEBOOK): "Interference Mitigation in Distribution Networks", IEEE DRAFT; 11-18-0164-01-00AY-INTERFERENCE-MITIGATION-IN-DISTRIBUTION-NETWORKS, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11ay, no. 1, 25 January 2018 (2018-01-25), Piscataway, NJ USA , pages 1 - 40, XP068122921 *

Similar Documents

Publication Publication Date Title
US11758427B2 (en) WLAN sensing frame exchange protocol
US10142005B2 (en) Beamforming training
WO2014183081A2 (en) Systems and methods of offloaded positioning for determining location of wlan nodes
WO2021204293A1 (zh) 定位信号处理方法及装置
CN111683413B (zh) 多链路连接建立的方法、终端、网络接入设备及存储介质
EP4190055A1 (en) Methods and apparatus for wi-fi ranging protocol enhancement with reduced throughput impact
US20230379012A1 (en) Mimo beamforming based sensing method and related apparatus
WO2024040446A1 (zh) 一种信息指示方法及装置、通信设备
US11240846B2 (en) Anonymous collection of directional transmissions
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2023016441A1 (zh) 通信方法以及装置
WO2023092493A1 (zh) 无线通信的方法及设备
CN117941336A (zh) 通过多链路操作的延迟增强
WO2020125635A1 (zh) 一种通信方法及装置
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质
WO2023245664A1 (zh) 无线通信的方法和设备
WO2023093747A1 (zh) 一种通信方法及装置
WO2024040541A1 (zh) 感知测量方法、装置、设备及存储介质
KR20150067033A (ko) 무선랜에서 채널 관리 방법 및 장치
WO2023130388A1 (zh) 无线通信的方法及设备
WO2024040612A1 (zh) 无线通信的方法和设备
WO2024087224A1 (zh) 感知测量方法、装置、设备、介质和程序产品
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
EP4322650A1 (en) Communication method and communication apparatus under multiple links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955995

Country of ref document: EP

Kind code of ref document: A1