WO2024078309A1 - 一种感知的方法和通信装置 - Google Patents

一种感知的方法和通信装置 Download PDF

Info

Publication number
WO2024078309A1
WO2024078309A1 PCT/CN2023/120970 CN2023120970W WO2024078309A1 WO 2024078309 A1 WO2024078309 A1 WO 2024078309A1 CN 2023120970 W CN2023120970 W CN 2023120970W WO 2024078309 A1 WO2024078309 A1 WO 2024078309A1
Authority
WO
WIPO (PCT)
Prior art keywords
perception
sbp
information
responder
message
Prior art date
Application number
PCT/CN2023/120970
Other languages
English (en)
French (fr)
Inventor
娜仁格日勒
杜瑞
狐梦实
韩霄
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078309A1 publication Critical patent/WO2024078309A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communications, and more specifically, to a sensing method and a communication device.
  • Sensing by proxy means that a station can request another station to perform wireless local area network (WLAN) sensing and request the station to feed back the sensing results to itself.
  • the station that initiates the SBP process is called the SBP initiator, and the requested station participates in the SBP as a proxy.
  • the requested station is called the SBP responder.
  • the requested station is also the sensing initiator in the SBP sensing process.
  • One or more parties participating in the sensing process initiated by the SBP responder are sensing responders.
  • the current SBP process is mainly designed for low frequencies (for example, frequency bands below 7 GHz), and the success rate of perception establishment is not high, which affects the perception efficiency.
  • the present application provides a perception method and communication device, in which an SBP responder can determine whether to accept an SBP request based on a result of perception measurement established by the perception responder, and accept the SBP request when the result of the perception measurement establishment is successful, thereby improving the success rate of SBP establishment and further improving perception efficiency.
  • a perception method is provided, which can be executed by an SBP responder or by a component (eg, a chip, a circuit, or a module, etc.) configured in the SBP responder, and is not limited in this application.
  • a component eg, a chip, a circuit, or a module, etc.
  • the method includes: an SBP responder receives a first message from a perception responder, the first message including information on whether the perception responder accepts the establishment of a first perception measurement; the SBP responder sends a second message to an SBP initiator, the second message including information on whether the first SBP is successfully established, and the second message is determined based on the first message.
  • the SBP responder can determine whether to accept the SBP request according to the result of the perception measurement established by the perception responder.
  • the SBP request is accepted, thereby improving the success rate of SBP establishment and further improving perception efficiency.
  • the method also includes: the SBP responder receives a third message from the SBP initiator, the third message is used to request the establishment of a first SBP, and the third message includes configuration parameters for establishing the first perception measurement; the SBP responder sends a fourth message to the perception responder, the fourth message is used to initiate the establishment of the first perception measurement to the perception responder, and the fourth message is determined based on the third message.
  • the SBP initiator can request the configuration parameters for establishing the perception measurement in the third message. Further, the SBP responder can determine the parameters for establishing the perception measurement with the perception responder based on the configuration parameters. In this way, the SBP initiator can control and manage the SBP process more flexibly and comprehensively.
  • the configuration parameter includes first information, and the first information is used to indicate that the type of the first SBP is dual-station collaboration.
  • the configuration parameter includes second information, and the second information is used to indicate information of a first perception response end and information of a second perception response end, the first perception response end being at least one of the perception response ends that serves as a perception sending end, and the second perception response end being at least one of the perception response ends that serves as a perception receiving end.
  • the information of the first perception responder includes at least one of the following: the number of first perception responders, whether the number of first perception responders must be satisfied, the address of the first perception responder, the identifier of the first perception responder, the number of preferred first perception responders, and the list of preferred first perception responders.
  • the information of the second perception responder includes at least one of the following: the number of second perception responders, whether the number of second perception responders must be satisfied, the number of second perception responders, and the list of first perception responders. The address of the perception responder, the identifier of the second perception responder to which it belongs, the number of preferred second perception responders, and the list of preferred second perception responders.
  • the configuration parameter includes third information, and the third information is used to indicate the correspondence between the first perception response end and the second perception response end.
  • the configuration parameter includes fourth information, and the fourth information is used to indicate that the type of the first SBP is single-station collaboration.
  • the configuration parameter includes fifth information, and the fifth information is used to instruct the perception response end to perform perception measurements simultaneously or the perception response end to perform perception measurements in sequence.
  • the configuration parameter includes sixth information, and the sixth information is used to indicate whether the SBP responder participates in single-station perception.
  • the configuration parameter includes seventh information, and the seventh information is used to indicate that the type of the first SBP is a single-station type.
  • the seventh information is carried in the measurement setup control field (measurement setup control) in the perception measurement setup element (measurement setup element).
  • the configuration parameter includes eighth information, where the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the method further includes: the SBP responder sends a fifth message to the SBP initiator, where the fifth message is used to report the perception measurement result.
  • the fifth message can be determined according to the eighth information.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • the method also includes: if the first SBP is established successfully, the SBP responder starts a timer after sending the second message, and sets the start duration of the timer to the first duration; the SBP responder terminates the first SBP when the timer expires.
  • the configuration parameter includes tenth information, and the tenth information is used to indicate the first duration.
  • the method further includes: the SBP responder sends a sixth message to the SBP initiator, where the sixth message is used to terminate the first SBP.
  • the sixth message includes eleventh information, and the eleventh information is used to instruct the termination of all dual-station cooperative type SBPs, or is used to instruct the termination of all single-station type SBPs.
  • the second message further includes configuration parameters recommended for establishing the perception measurement.
  • a perception method is provided, which can be executed by the SBP initiator or by a component (eg, a chip, a circuit or a module, etc.) configured in the SBP initiator, and is not limited in this application.
  • a component eg, a chip, a circuit or a module, etc.
  • the method includes: an SBP initiator sends a third message to an SBP responder, the third message is used to request the establishment of a first SBP, and the third message includes configuration parameters for establishing a first perception measurement; the SBP initiator receives a second message from the SBP responder, the second message includes information on whether the first SBP is successfully established, the second message is determined based on the first message, and the first message includes information on whether the perception responder accepts the establishment of the first perception measurement.
  • the SBP responder can determine whether to accept the SBP request according to the result of the perception measurement established by the perception responder.
  • the SBP request is accepted, thereby improving the success rate of SBP establishment and further improving perception efficiency.
  • the SBP initiator can request configuration parameters for establishing perception measurements in the third message. Further, the SBP responder can determine parameters for establishing perception measurements with the perception responder based on the configuration parameters. In this way, the SBP initiator can control and manage the SBP process more flexibly and comprehensively.
  • the configuration parameter includes first information, and the first information is used to indicate that the type of the first SBP is dual-station collaboration.
  • the configuration parameter includes second information, and the second information is used to indicate information of a first perception response end and information of a second perception response end, the first perception response end being at least one of the perception response ends that serves as a perception sending end, and the second perception response end being at least one of the perception response ends that serves as a perception receiving end.
  • the information of the first perception responder includes at least one of the following: the number of first perception responders, whether the number of first perception responders must be met, the address of the first perception responder, the identifier of the first perception responder, the number of preferred first perception responders, and the list of preferred first perception responders.
  • the information of the second perception responder includes at least one of the following: the number of second perception responders, whether the number of second perception responders must be met, the address of the second perception responder, the identifier of the second perception responder, the number of preferred second perception responders, and the list of preferred second perception responders.
  • the configuration parameter includes third information, and the third information is used to indicate the correspondence between the first perception response end and the second perception response end.
  • the configuration parameter includes fourth information, and the fourth information is used to indicate that the type of the first SBP is single-station collaboration.
  • the configuration parameter includes fifth information, and the fifth information is used to instruct the perception response end to perform perception measurements simultaneously or the perception response end to perform perception measurements in sequence.
  • the configuration parameter includes sixth information, and the sixth information is used to indicate whether the SBP responder participates in single-station perception.
  • the configuration parameter includes seventh information, and the seventh information is used to indicate that the type of the first SBP is a single-station type.
  • the seventh information is carried in the measurement setup control field (measurement setup control) in the perception measurement setup element (measurement setup element).
  • the configuration parameter includes eighth information, where the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the method further includes: the SBP initiator receives a fifth message from the SBP responder, where the fifth message is used to report the perception measurement result.
  • the fifth message can be determined according to the eighth information.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • the method also includes: if the first SBP is established successfully, the SBP initiator starts a timer after receiving the second message, and sets the start duration of the timer to the first duration; the SBP initiator terminates the first SBP when the timer expires.
  • the configuration parameter includes tenth information, and the tenth information is used to indicate the first duration.
  • the method further includes: the SBP initiator sends a sixth message to the SBP responder, where the sixth message is used to terminate the first SBP.
  • the sixth message includes eleventh information, and the eleventh information is used to instruct the termination of all dual-station cooperative type SBPs, or is used to instruct the termination of all single-station type SBPs.
  • the second message further includes configuration parameters recommended for establishing the perception measurement.
  • a perception method is provided, which can be executed by the SBP responder or by a component (eg, a chip, circuit or module, etc.) configured in the SBP responder, and is not limited in this application.
  • a component eg, a chip, circuit or module, etc.
  • the method includes: the SBP responder generates a fifth message, the fifth message is used to report the perception measurement result; the SBP responder sends a fifth message to the SBP The initiator sends the fifth message, wherein the SBP responder sends the fifth message to the SBP initiator, including: the SBP responder sends the fifth message to the SBP initiator after obtaining the perception measurement results of any perception responder; or the SBP responder sends the fifth message to the SBP initiator after obtaining the perception measurement results of multiple perception responders.
  • the SBP responder can report the perception measurement results to the SBP initiator in different ways, thereby improving the flexibility of feedback of the perception results and improving the perception efficiency.
  • the fifth message may be determined according to eighth information, where the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • a perception method is provided, which can be executed by an SBP responder or by a component (eg, a chip, a circuit, or a module, etc.) configured in the SBP responder, and is not limited in this application.
  • a component eg, a chip, a circuit, or a module, etc.
  • the method includes: if the first SBP is established successfully, the SBP responder starts a timer after sending a second message, and sets the start duration of the timer to a first duration; the SBP responder terminates the first SBP when the timer expires.
  • the SBP responder can terminate the first SBP through a timer, thus eliminating the SBP termination process and reducing signaling overhead.
  • the method further includes: the SBP responding end receiving tenth information from the SBP initiating end, where the tenth information is used to indicate the first duration.
  • a perception method is provided, which can be executed by an SBP initiator or by a component (eg, a chip, a circuit or a module, etc.) configured in the SBP initiator, and is not limited in this application.
  • a component eg, a chip, a circuit or a module, etc.
  • the method comprises: if the first SBP is established successfully, the SBP initiator starts a timer after receiving a second message and sets the start duration of the timer to a first duration; the SBP initiator terminates the first SBP when the timer expires.
  • the SBP initiator can terminate the first SBP through a timer, thus eliminating the SBP termination process and reducing signaling overhead.
  • the method further includes: the SBP initiator sends tenth information to the SBP responder, where the tenth information is used to indicate the first duration.
  • a communication device which may be an SBP responder or a component (eg, a chip, a circuit or a module, etc.) configured in the SBP responder, and the present application does not limit this.
  • the communication device includes: a transceiver unit, used to receive a first message from a perception response end, the first message including information on whether the perception response end accepts the establishment of a first perception measurement; the transceiver unit is also used to: send a second message to an SBP initiator, the second message including information on whether the first SBP is successfully established, and the second message is determined based on the first message.
  • the transceiver unit is also used to: receive a third message from the SBP initiator, the third message is used to request the establishment of a first SBP, and the third message includes configuration parameters for establishing the first perception measurement; send a fourth message to the perception responder, the fourth message is used to initiate the establishment of the first perception measurement to the perception responder, and the fourth message is determined based on the third message.
  • the configuration parameter includes first information, and the first information is used to indicate that the type of the first SBP is dual-station collaboration.
  • the configuration parameter includes second information, and the second information is used to indicate information of a first perception response end and information of a second perception response end, the first perception response end being at least one of the perception response ends that serves as a perception sending end, and the second perception response end being at least one of the perception response ends that serves as a perception receiving end.
  • the information of the first perception response end includes at least one of the following: the number of first perception response ends, whether the number of first perception response ends must be met, the address of the first perception response end, the identifier of the first perception response end, the number of preferred first perception response ends, and the list of preferred first perception response ends.
  • the information of the second perception response end includes at least one of the following: the number of second perception response ends, whether the number of second perception response ends must be met, the address of the second perception response end, the identifier of the second perception response end, the number of preferred second perception response ends, and the list of preferred second perception response ends.
  • the configuration parameter includes third information, and the third information is used to indicate the A corresponding relationship between a first sensing response end and a second sensing response end.
  • the configuration parameter includes fourth information, and the fourth information is used to indicate that the type of the first SBP is single-station collaboration.
  • the configuration parameter includes fifth information, and the fifth information is used to instruct the perception response end to perform perception measurements simultaneously or the perception response end to perform perception measurements in sequence.
  • the configuration parameter includes sixth information, and the sixth information is used to indicate whether the SBP responder participates in single-station perception.
  • the configuration parameter includes seventh information, and the seventh information is used to indicate that the type of the first SBP is a single-station type.
  • the seventh information is carried in the measurement setup control field (measurement setup control) in the perception measurement setup element (measurement setup element).
  • the configuration parameter includes eighth information, and the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the transceiver unit is further used to: send a fifth message to the SBP initiator, where the fifth message is used to report the perception measurement result.
  • the fifth message can be determined according to the eighth information.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • the communication device also includes: a processing unit, used to start a timer after sending a second message when the first SBP is successfully established, and set the start duration of the timer to the first duration; the processing unit is also used to: terminate the first SBP when the timer expires.
  • the configuration parameter includes tenth information, and the tenth information is used to indicate the first duration.
  • the transceiver unit is further used to: send a sixth message to the SBP initiator, where the sixth message is used to terminate the first SBP.
  • the sixth message includes eleventh information, and the eleventh information is used to instruct the termination of all dual-station cooperative type SBPs, or is used to instruct the termination of all single-station type SBPs.
  • the second message further includes configuration parameters for establishing recommendations for perception measurements.
  • a communication device which may be an SBP initiator or a component (eg, a chip, a circuit or a module, etc.) configured in the SBP initiator, and the present application does not limit this.
  • the communication device includes: a transceiver unit, used to send a third message to the SBP responder, the third message is used to request the establishment of a first SBP, and the third message includes configuration parameters for establishing a first perception measurement; the transceiver unit is also used to: receive a second message from the SBP responder, the second message includes information on whether the first SBP is successfully established, the second message is determined based on the first message, and the first message includes information on whether the perception responder accepts the establishment of the first perception measurement.
  • the configuration parameter includes first information, and the first information is used to indicate that the type of the first SBP is dual-station collaboration.
  • the configuration parameter includes second information, and the second information is used to indicate information of a first perception response end and information of a second perception response end, the first perception response end being at least one of the perception response ends that serves as a perception sending end, and the second perception response end being at least one of the perception response ends that serves as a perception receiving end.
  • the information of the first perception responder includes at least one of the following: the number of first perception responders, whether the number of first perception responders must be satisfied, the address of the first perception responder, the identifier of the first perception responder to which it belongs, the number of preferred first perception responders, and a list of preferred first perception responders.
  • the information of the second perception responder includes at least one of the following: the number of second perception responders, whether the number of second perception responders must be satisfied, the number of second perception responders, and the number of second perception responders. The address of the perception responder, the identifier of the second perception responder to which it belongs, the number of preferred second perception responders, and the list of preferred second perception responders.
  • the configuration parameter includes third information, and the third information is used to indicate the correspondence between the first perception response end and the second perception response end.
  • the configuration parameter includes fourth information, and the fourth information is used to indicate that the type of the first SBP is single-station collaboration.
  • the configuration parameter includes fifth information, and the fifth information is used to instruct the perception response end to perform perception measurements simultaneously or the perception response end to perform perception measurements in sequence.
  • the configuration parameter includes sixth information, and the sixth information is used to indicate whether the SBP responder participates in single-station perception.
  • the configuration parameter includes seventh information, and the seventh information is used to indicate that the type of the first SBP is a single-station type.
  • the seventh information is carried in the measurement setup control field (measurement setup control) in the perception measurement setup element (measurement setup element).
  • the configuration parameter includes eighth information, and the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the transceiver unit is further used to: receive a fifth message from the SBP responder, where the fifth message is used to report the perception measurement result.
  • the fifth message can be determined according to the eighth information.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • the communication device also includes: a processing unit, used to start a timer after receiving a second message when the first SBP is successfully established, and set the start duration of the timer to the first duration; the processing unit is also used to: terminate the first SBP when the timer expires.
  • the configuration parameter includes tenth information, and the tenth information is used to indicate the first duration.
  • the transceiver unit is further used to: send a sixth message to the SBP responder, where the sixth message is used to terminate the first SBP.
  • the sixth message includes eleventh information, and the eleventh information is used to instruct the termination of all dual-station cooperative type SBPs, or is used to instruct the termination of all single-station type SBPs.
  • the second message further includes configuration parameters for establishing recommendations for perception measurements.
  • a communication device which may be an SBP responder or a component (eg, a chip, a circuit or a module, etc.) configured in the SBP responder, and the present application does not limit this.
  • the communication device includes: a processing unit, used to generate a fifth message, the fifth message is used to report the perception measurement result; a transceiver unit, used to send the fifth message to the SBP initiator, wherein the transceiver unit is specifically used to: after obtaining the perception measurement result of any perception responder, send the fifth message to the SBP initiator; or after obtaining the perception measurement results of multiple perception responders, send the fifth message to the SBP initiator.
  • the fifth message may be determined according to eighth information, where the eighth information is used to indicate information related to feedback of the perception measurement result.
  • the information related to the feedback of the perception measurement results includes at least one of the following: feedback after each measurement is completed or feedback after multiple measurements are completed; feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time; whether the feedback report includes the location information of the perception response end; whether the feedback report includes the antenna direction of the perception response end; whether the feedback report includes the time when the perception measurement occurs.
  • the type of the first SBP is dual-station collaboration
  • the fifth message includes ninth information, and the ninth information is used to indicate the perception measurement result.
  • a communication device which may be an SBP responder or a component (eg, a chip, a circuit or a module, etc.) configured in the SBP responder, and the present application does not limit this.
  • the communication device comprises: a processing unit, which is used to start a timer after sending a second message when the first SBP is successfully established, and set the starting duration of the timer to the first duration; the processing unit is also used to terminate the first SBP when the timer expires.
  • the communication device further includes: a transceiver unit, configured to receive tenth information from the SBP initiator, wherein the tenth information is used to indicate the first duration.
  • a transceiver unit configured to receive tenth information from the SBP initiator, wherein the tenth information is used to indicate the first duration.
  • a communication device which may be an SBP initiator or a component (eg, a chip, a circuit or a module, etc.) configured in the SBP initiator, and the present application does not limit this.
  • the communication device comprises: a processing unit, which is used to start a timer after receiving a second message when the first SBP is successfully established, and set the start duration of the timer to the first duration; the processing unit is also used to terminate the first SBP when the timer expires.
  • the communication device further includes: a transceiver unit, configured to send tenth information to the SBP responder, wherein the tenth information is used to indicate the first duration.
  • a transceiver unit configured to send tenth information to the SBP responder, wherein the tenth information is used to indicate the first duration.
  • a communication device comprising a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs any of the first to fifth aspects, or any possible implementation of these aspects.
  • a communication device comprising a processor and a communication interface, wherein the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor, and the processor processes the data and/or information, and the communication interface is also used to output the data and/or information after being processed by the processor, so that the method in any aspect of the first to fifth aspects, or any possible implementation of these aspects, is executed.
  • a computer-readable storage medium stores computer instructions.
  • the method in any aspect from the first to the fifth aspect, or any possible implementation of these aspects, is executed.
  • a computer program product comprising a computer program code, which, when executed on a computer, enables the method in any aspect from the first to the fifth aspect, or any possible implementation of any of these aspects, to be executed.
  • a wireless communication system comprising the communication device in the sixth aspect and the seventh aspect, or comprising the communication device in the ninth aspect and the tenth aspect.
  • FIG. 1 is a schematic diagram of an application scenario to which an embodiment of the present application is applicable.
  • Figure 2 shows five types of high frequency perception.
  • FIG3 shows five types of agent-based perception in high-frequency perception.
  • FIG. 4 is a schematic diagram of a process of SBP.
  • FIG5 is a schematic flowchart of a perception method 200 provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing the format of the DMG perception measurement establishment element.
  • FIG. 7 is a schematic flowchart of a perception method 300 provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the format of the DMG perception report control element.
  • FIG. 9 is a schematic flowchart of a perception method 400 provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the DMG SBP termination control field provided in this application.
  • FIG. 11 is a schematic flowchart of a perception method 500 provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the technical solution provided in the embodiments of the present application can be applicable to wireless local area network (WLAN) scenarios, for example, supporting IEEE 802.11 related standards, such as 802.11a/b/g standards, 802.11n standards, 802.11ac standards, 802.11ax standards, IEEE 802.11ax next-generation Wi-Fi protocols, such as 802.11be, Wi-Fi 7, extremely high throughput (EHT), 802.11ad, 802.11ay or 802.11bf, such as 802.11be next generation, Wi-Fi 8, etc., and can also be applied to wireless personal area network systems based on ultra-wide band (UWB), such as the 802.15 series standards, and can also be applied to sensing systems, such as the 802.11bf series standards.
  • IEEE 802.11 related standards such as 802.11a/b/g standards, 802.11n standards, 802.11ac standards, 802.11ax standards, IEEE 802.11ax next-generation Wi-Fi protocols, such as 802.11be, Wi-Fi 7,
  • the 802.11n standard is called high throughput (HT)
  • the 802.11ac standard is called very high throughput (VHT)
  • the 802.11ax standard is called high efficient (HE)
  • the 802.11be standard is called extremely high throughput (EHT).
  • 802.11bf includes two major standards: low frequency (Sub-7GHz) and high frequency (60GHz).
  • the implementation of Sub-7GHz mainly relies on 802.11ac, 802.11ax, 802.11be and the next generation standards
  • the implementation of 60GHz mainly relies on 802.11ad, 802.11ay and the next generation standards.
  • 802.11ad can also be called directional multi-gigabit (DMG) standard
  • 802.11ay can also be called enhanced directional multi-gigabit (EDMG) standard.
  • DMG directional multi-gigabit
  • EDMG enhanced directional multi-gigabit
  • the embodiments of the present application are mainly described by deploying a WLAN network, especially a network using the IEEE 802.11 system standard, it is easy for those skilled in the art to understand that the various aspects involved in the embodiments of the present application can be extended to other networks that adopt various standards or protocols, such as a high performance radio local area network (HIPERLAN), a wireless wide area network (WWAN), a wireless personal area network (WPAN), or other networks now known or developed later. Therefore, regardless of the coverage range and wireless access protocol used, the various aspects provided in the embodiments of the present application can be applied to any suitable wireless network.
  • HIPERLAN high performance radio local area network
  • WWAN wireless wide area network
  • WPAN wireless personal area network
  • WLAN communication system wireless fidelity (Wi-Fi) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5G) system or new radio (NR), future sixth generation (6G) system, Internet of things (IoT) network or vehicle to x (V2X), etc.
  • Wi-Fi wireless fidelity
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • 6G Internet of things
  • IoT Internet of things
  • V2X vehicle to x
  • FIG1 is a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • the resource configuration method provided by the present application is applicable to data communication between stations (STA), wherein the station can be an access point (AP) type station or a non-access point type station (none access point station, non-AP STA), referred to as AP and non-AP station, respectively.
  • STA stations
  • AP access point
  • non-AP STA one access point station
  • AP and non-AP station non-AP station
  • the scheme of the present application is applicable to data communication between an AP and one or more non-AP stations (for example, data communication between AP1 and non-AP STA1, non-AP STA2), and also to data communication between APs (for example, data communication between AP1 and AP2), and data communication between non-AP STAs and non-AP STAs (for example, data communication between non-AP STA2 and non-AP STA3).
  • the access point can be the access point for the terminal (for example, mobile phone) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and parks, with a typical coverage radius of tens to hundreds of meters. Of course, it can also be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the access point may be a terminal or network device with a Wi-Fi chip
  • the network device may be a server, a router, a switch, a bridge, a computer, a mobile phone, a relay station, a vehicle-mounted device, a wearable device, a network device in a 5G network, and a network device in a future 6G network, or a network device in a public land mobile network (PLMN), etc., and the embodiments of the present application are not limited thereto.
  • the access point may be a device that supports the Wi-Fi standard.
  • the access point may also support one or more standards of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 family, such as 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ax, 802.11be, 802.11ad, 802.11ay, etc.
  • IEEE Institute of Electrical and Electronics Engineers
  • a non-AP site can be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc. It can also be called a user, user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • UE user equipment
  • a non-AP site can be a cellular phone, a cordless phone, a conversation Session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, Internet of Things devices, wearable devices, terminal devices in 5G networks, terminal devices in future 6G networks, or terminal devices in PLMNs, etc., are not limited to this in the embodiments of the present application.
  • Non-AP sites can be devices that support WLAN standards.
  • non-AP sites can support one or more standards of the IEEE 802.11 family, such as 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ax, 802.11be, 802.11ad, 802.11ay, etc.
  • non-AP sites can be mobile phones, tablets, set-top boxes, smart TVs, smart wearable devices, vehicle-mounted communication equipment, computers, Internet of Things (IoT) nodes, sensors, smart homes such as smart cameras, smart remote controls, smart water and electricity meters, and sensors in smart cities.
  • IoT Internet of Things
  • the above-mentioned AP or non-AP site may include a transmitter, a receiver, a memory, a processor, etc., wherein the transmitter and the receiver are respectively used for sending and receiving packet structures, the memory is used to store signaling information and store preset values agreed in advance, etc., and the processor is used to parse signaling information, process related data, etc.
  • Radar sensing is a wireless sensing technology. Radar consists of a transmitting antenna and a receiving antenna. The transmitting antenna sends electromagnetic waves, which are reflected when encountering the target, and the reflected waves are received by the receiving antenna. The radar system analyzes the characteristic information of the target, such as position, shape, motion characteristics and motion trajectory, through signal processing based on the changes in the transmitting and receiving waves. Radar sensing has many unique advantages. For example, radar is not affected by light brightness and has the ability to penetrate obstructions, which can better protect personal privacy; radar sensing has a longer distance and will not cause harm to humans and animals. The advantage of using radar technology to achieve perception is mainly reflected in the detection of motion. The Doppler effect of the target echo is used to observe and interpret the target's motion state, such as the direction and speed of motion.
  • Wireless sensing Wi-Fi sensing
  • this technology can be used to detect the movement status and trajectory of people and balls.
  • human fall detection can also be performed to prevent the elderly from falling.
  • Wireless sensing technology can make full use of existing WLAN network resources without a lot of cost.
  • the AP can reasonably schedule resources for each non-AP STA to improve the system's throughput and robustness.
  • the 802.11bf protocol supports sensing in the Sub-7GHz band and high-frequency (e.g., 60GHz) band.
  • sensing is achieved by detecting the wireless channel and estimating the channel state information (CSI) to achieve purposes such as action recognition, motion trajectory tracking, and fall detection.
  • CSI channel state information
  • 60GHz band sensing is achieved by performing directional beam scanning on the environment to obtain the range Doppler map (RD Map) to obtain target state information and environmental information.
  • RD Map Doppler map
  • the energy of the wireless signal will be concentrated in a certain direction to form a directional (or directional) beam.
  • the directional beam has a narrower beam width and more concentrated energy, so it has a higher antenna gain and reduces interference with other received signals.
  • WLAN sensing technology may include the following roles. It should be understood that in some scenarios, the following different roles may be performed by the same device.
  • Perception initiator The site that initiates a perception process.
  • sensing initiator a STA that initiates a WLAN sensing procedure.
  • Perception responder A station that participates in a perception process initiated by a perception initiator.
  • sensing responder a STA that participates in a WLAN sensing procedure initiated by a sensing initiator.
  • Perception sender The station that sends the physical layer protocol data unit (PPDU) used for perception measurement within the perception process.
  • PPDU physical layer protocol data unit
  • Sensing transmitter a STA that transmits PPDUs used for sensing measurements in a sensing procedure.
  • Perception receiver A station that receives the PPDU sent by the perception transmitter during the perception process and performs perception measurements.
  • Sensing receiver a STA that receives PPDUs sent by a sensing transmitter and performs sensing measurements in a sensing procedure.
  • the roles of perception also include:
  • Proxy perception initiator The site that initiates a proxy perception process.
  • SBP responder A station that participates in a proxy sensing process initiated by a proxy sensing initiator, acting as a sensing initiator in the sensing process.
  • the perception process can be used to describe how perception is performed.
  • the perception process can include the following 5 steps:
  • Sensing session setup Indicates that a sensing session is established between sites. Some parameters related to sensing can be exchanged here (specific details to be determined). Note: The sensing session is a protocol between two sites reached by a sensing initiator and a sensing responder. A sensing initiator can maintain a sensing session with multiple sensing responders, but they still need to be established one by one, for example, through orthogonal frequency division multiple access (OFDMA) method, multi-user multiple-input multiple-output (MU-MIMO) method, etc. The sensing session can also be called a sensing session.
  • OFDMA orthogonal frequency division multiple access
  • MU-MIMO multi-user multiple-input multiple-output
  • Sensing measurement setup used for the sensing initiator and the responder to exchange and unify certain parameters and attributes required in the sensing process, such as the roles of the sensing initiator and the responder, the measurement feedback type and other parameters.
  • the roles of the responder may include the sensing sender and the sensing receiver.
  • the sensing measurement setup may be referred to as the measurement setup.
  • the sensing measurement setup may be identified by the sensing measurement setup ID.
  • Sensing measurement occurs in a sensing measurement entity. Multiple sensing responders are allowed to join a sensing measurement entity. The establishment of a sensing measurement entity can also be called a sensing measurement instance. The sensing measurement entity can be simply referred to as a measurement entity or entity. Each sensing measurement entity can be identified by a sensing measurement instance ID.
  • Sensing measurement setup termination is used to terminate the measurement setup corresponding to a sensing responder. After termination, the sensing responder is no longer bound to the corresponding measurement setup, but can still be in the sensing period. Sensing measurement setup termination can be referred to as measurement setup termination.
  • Sensing session termination indicates the termination of the sensing session, and the site no longer participates in the sensing measurement process.
  • a sensing session is initiated by a sensing initiator and participated by one or more sensing responders.
  • the protocol specifies five types of high-frequency sensing, namely monostatic sensing, bistatic sensing, multistatic sensing, monostatic with coordination sensing, and bistatic with coordination sensing.
  • Figure 2 shows the five types of high-frequency perception mentioned above.
  • high-frequency perception refers to DMG perception or EDMG perception defined in the IEEE 802.11bf protocol.
  • DMG perception DMG perception or EDMG perception defined in the IEEE 802.11bf protocol.
  • TX represents the sensing transmitter (transmitter)
  • RX represents the sensing receiver (receiver).
  • Figure 2 (a) shows single-station perception.
  • the perception initiator is both the perception transmitter and the perception receiver. It receives the perception PPDU sent by itself to perform perception measurement, that is, it transmits and receives by itself.
  • Figure 2 (b) and Figure 2 (c) show dual-station sensing.
  • the sensing initiator and the sensing responder respectively play a role in the sensing transmitter and the sensing receiver, that is, one sends and one receives.
  • the sensing transmitter sends the sensing PPDU to the sensing receiver, and the sensing receiver performs sensing measurement.
  • the sensing initiator acts as the sensing transmitter
  • the sensing responder acts as the sensing receiver
  • the sensing responder acts as the sensing transmitter.
  • (d) of Figure 2 shows multi-station perception.
  • the perception initiator acts as a perception transmitter and sends a perception PPDU to multiple perception responders, that is, one send and multiple receive.
  • These perception responders act as perception receivers to perform perception measurements.
  • FIG2(e) shows single-station collaborative sensing.
  • the sensing initiator allows one or more sensing responders to perform self-transmitting and self-receiving sensing measurements.
  • Figure 2 (f), Figure 2 (g) and Figure 2 (h) show dual-station collaborative sensing. As shown in Figure 2 (f), (g) and (h), in dual-station collaborative sensing, the sensing initiator and multiple sensing responders respectively perform one-send-one-receive sensing measurements.
  • the sensing initiator acts as a sensing transmitter, and multiple sensing responders respectively act as sensing receivers.
  • the sensing initiator acts as a sensing receiver, and multiple sensing responders respectively act as sensing transmitters.
  • one sensing responder acts as a sensing transmitter, and the other sensing responder acts as a sensing receiver, that is, the sensing responder acting as TX sends a sensing PPDU to the other sensing responder acting as RX, and the latter performs sensing measurements and then feeds back the measurement results to the sensing initiator.
  • the perception initiator is both a perception transmitter and a perception receiver.
  • a perception responder can send a perception PPDU to the perception initiator, and the perception initiator can also send a perception PPDU to another perception responder.
  • the perception initiator in single-station perception and dual-station perception, can be an AP or a non-AP STA, and the perception responder can also be an AP or a non-AP STA.
  • the perception initiator In multi-station perception, single-station collaborative perception and dual-station collaborative perception, the perception initiator is usually an AP and the perception responder is usually a non-AP STA.
  • Proxy-based perception means that the first station (e.g., non-AP STA) can request the second station (e.g., AP) to perform WLAN perception and request the second station to feed back the perception results to itself.
  • the station that initiates the SBP process (the first station) is called the SBP initiator, and the requested station (the second station) participates in the SBP as a proxy.
  • the requested station is called the SBP responder.
  • the requested station is also the sensing initiator in the SBP perception process.
  • One or more parties participating in the perception process initiated by the SBP responder are sensing responders.
  • SBP in high-frequency perception can also be divided into five types, namely single-station SBP (SBP with monostatic), dual-station SBP (SBP with bistatic), multi-station SBP (SBP with multistatic), single-station coordinated SBP (SBP with monostatic with coordination), and dual-station coordinated SBP (SBP with bistatic with coordination).
  • SBP single-station SBP
  • SBP with bistatic dual-station SBP
  • SBP initiator can request the SBP responder to execute the perception process.
  • the SBP responder acts as the perception initiator and perceives with the perception responder.
  • the perception initiator can finally feed back the perception results to the SBP initiator.
  • FIG3 shows five types of agent-based perception in high-frequency perception.
  • the SBP initiator and the SBP responder exchange SBP request frames and SBP response frames, so that the SBP responder can serve as the perception initiator. Further, the perception initiator can feed back the perception result to the SBP initiator through the SBP report frame. Similar to FIG2, in FIG3, TX represents the perception transmitter, and RX represents the perception receiver.
  • the SBP initiator and the SBP responder are devices used in WLAN high-frequency perception, which can be respectively referred to as the DMG SBP initiator and the DMG SBP responder.
  • the SBP request frame, the SBP response frame, the SBP report frame, and the SBP termination frame are frames used in WLAN high-frequency perception, which can be respectively referred to as the DMG SBP request frame, the DMG SBP response frame, the DMG SBP report frame, and the DMG SBP termination frame.
  • Figure 3(a) shows a single-station SBP. Similar to Figure 2(a), in Figure 3(a), the perception initiator is both a perception transmitter and a perception receiver. It receives the perception PPDU sent by itself for perception measurement, i.e., it is self-transmitting and self-receiving. Different from Figure 2(a), in Figure 3(a), the perception initiator can further feed back the perception results to the DMG SBP initiator.
  • Figures 3(b) and 3(c) show a dual-station SBP. Similar to Figure 2(b), in Figure 3(b), the perception initiator serves as the perception transmitter, and the perception responder serves as the perception receiver. The perception receiver can feed back the perception result to the perception initiator. Similar to Figure 2(c), in Figure 3(c), the perception initiator serves as the perception receiver, and the perception responder serves as the perception transmitter. Different from Figures 2(b) and (c), in Figures 3(b) and (c), the perception initiator can further feed back the perception result to the DMG SBP initiator.
  • Figure 3 (d) shows a multi-station SBP. Similar to Figure 2 (d), in Figure 3 (d), the perception initiator acts as a perception transmitter and sends a perception PPDU to multiple perception responders, i.e., one send and multiple receive. These perception responders act as perception receivers to perform perception measurements, and these perception receivers can feed back the perception results to the perception initiator. Different from Figure 2 (d), in Figure 3 (d), the perception initiator can further feed back the perception results to the DMG SBP initiator.
  • Figure 3 (e) shows a single-station collaborative SBP. Similar to Figure 2 (e), in Figure 3 (e), the perception initiator allows one or more perception responders to perform self-transmitted and self-received perception measurements, and the perception receiver can feed back the perception results to the perception initiator. Unlike Figure 2 (e), in this type of SBP, the DMG SBP initiator can also request the perception initiator to perform self-transmitted and self-received perception. In addition, in Figure 3 (e), the perception initiator can further feed back the perception results to the DMG SBP initiator.
  • Figure 3 (f), Figure 3 (g) and Figure 3 (h) show dual-station collaborative SBP. Similar to Figure 2 (f), in Figure 3 (f), the perception initiator acts as a perception transmitter, and multiple perception responders act as perception receivers. Similar to Figure 2 (g), in Figure 3 (g), the perception initiator acts as a perception receiver, and multiple perception responders act as perception transmitters, and the perception receivers can feed back the perception results to the perception initiator.
  • one perception responder acts as a perception transmitter, and the other perception responder acts as a perception receiver, that is, the perception responder acting as TX sends a perception PPDU to another perception responder acting as RX, and the latter performs perception measurement and then feeds back the measurement results to the perception initiator.
  • the perception initiator is both a perception transmitter and a perception receiver, and a perception responder can send a perception PPDU to the perception initiator.
  • the sensing initiator can also send a sensing PPDU to another sensing responder. Different from (f), (g), and (h) of Figure 2, in (f), (g), and (h) of Figure 3, the sensing initiator can further feed back the sensing result to the DMG SBP initiator.
  • the SBP initiator can be an AP or a non-AP STA
  • the SBP responder i.e., the perception initiator
  • the perception responder can also be an AP or a non-AP STA
  • the SBP initiator is usually a non-AP STA
  • the SBP responder i.e., the perception initiator
  • the perception responder is usually an AP
  • the perception responder is usually a non-AP STA.
  • the SBP initiator can also be an AP
  • the SBP responder i.e., the perception initiator
  • the perception responder can also be an AP.
  • FIG4 is a schematic diagram of a SBP process.
  • FIG4 shows the SBP process defined in the IEEE 802.11bf protocol for the Sub-7 GHz frequency band. As shown in FIG4 , the process may include the following steps.
  • the SBP initiator sends an SBP request (SBP request) frame to the SBP responder, which includes the configuration parameters of the SBP process.
  • SBP request SBP request
  • the SBP responder After receiving the SBP request frame, the SBP responder will reply with an SBP response (SBP response) frame.
  • SBP response SBP response
  • the SBP response frame will indicate that the SBP request is accepted and the SBP is successfully established. Otherwise, the SBP request is rejected and the SBP establishment fails.
  • S101 to S102 can be called the SBP setup phase.
  • the SBP responder as the sensing initiator, will initiate a sensing process to one or more sensing responders.
  • the sensing process includes the sensing measurement setup phase and the sensing measurement instance phase.
  • the sensing measurement setup phase includes S103 to S104.
  • the SBP responder sends a sensing measurement setup request frame to the sensing responder.
  • the sensing measurement setup request frame includes a sensing measurement setup ID and one or more sensing measurement setup parameters elements.
  • the sensing responder sends a sensing measurement setup response frame to the SBP responder.
  • the sensing measurement setup response frame includes a status code (status code) in response to the sensing measurement setup request and/or one or more sensing measurement setup parameter elements (sensing measurement setup parameters element).
  • status code status code
  • sensing measurement setup parameter elements sensing measurement setup parameters element
  • the perception measurement performed in the Sub-7GHz frequency band is a trigger-based (TB) type of perception measurement.
  • the perception measurement includes one of the perception responder and the SBP responder sending a perception PPDU, and the other end obtaining a perception measurement result. If the perception responder obtains the perception measurement result as a perception receiver, the perception responder can send the perception measurement result to the SBP responder.
  • the SBP responder After obtaining the perception measurement result, the SBP responder feeds back the perception measurement result to the SBP initiator through an SBP report frame.
  • S106 is the SBP reporting stage.
  • S107 to S108 are the SBP termination stage.
  • SBP can be terminated by either the SBP initiator or the SBP responder by sending an SBP termination frame.
  • the SBP initiator sends an SBP termination frame to terminate the SBP process.
  • the SBP responder sends an SBP termination frame to terminate the SBP process.
  • the SBP process shown in Figure 4 is mainly designed for the Sub-7GHz frequency band.
  • high-frequency perception directional signals are sent and detected, which are more sensitive to position changes and occlusions. It is very likely that the connection with the perception initiator will be interrupted due to position movement.
  • the process of the Sub-7GHz frequency band is used, it is likely that the known information held by the SBP responder will not match the current information when the SBP is established, resulting in additional signaling overhead, reducing the success rate and efficiency of SBP establishment.
  • the SBP responder after receiving the SBP request frame, the SBP responder will reply whether to accept the SBP request based on the capabilities and information of the perception responder, but this information is likely to be outdated or inaccurate.
  • the SBP responder knows that 5 of the devices associated with it have the ability to perceive.
  • the SBP request frame requires 4 perception responders to participate in perception, the SBP responder can accept the request.
  • the SBP responder can only establish perception measurements with 2 perception devices in the subsequent perception measurement establishment phase.
  • the other 3 perception devices may not be able to perform perception measurements due to reasons such as position movement or physical obstruction.
  • the SBP responder needs to send an SBP termination frame to terminate the SBP process, causing the SBP establishment to fail.
  • the present application provides a method and a communication device for sensing, wherein the SBP responder can determine whether to accept the SBP request according to the result of the sensing measurement establishment by the sensing responder, and accept the SBP request when the result of the sensing measurement establishment is successful, thereby improving The success rate of SBP establishment can be improved, thereby improving perception efficiency.
  • a message can be understood as a frame, and information or parameters in a message can be understood as fields in a frame, or in other words, information or parameters in a message are represented by fields in a frame.
  • a field in this application refers to a field in a broad sense, and in some cases, a field can also be referred to as a domain, an element, a sub-element, or a sub-field, etc.
  • FIG5 is a schematic flow chart of a perception method 200 provided in an embodiment of the present application.
  • FIG5 can refer to the description in FIG1 to FIG4 above.
  • Method 200 can be used in the DMG SBP establishment stage.
  • the perception responder sends a first message to the SBP responder, and correspondingly, the SBP responder receives the first message from the perception responder.
  • the first message includes information on whether the perception response end accepts the establishment of the first perception measurement.
  • the first message includes information on whether the perception response end accepts the establishment of the first perception measurement, which can also be understood as the first message including first indication information, and the first indication information is used to indicate whether the perception response end accepts the establishment of the first perception measurement.
  • the first indication information may be a status code.
  • the perception responder accepts the information of the first perception measurement establishment, or in other words, the information of whether the request for the first perception measurement establishment is successful, or the result of the first perception measurement establishment.
  • the first message may be a measurement setup response frame (measurement setup response), and the information on whether the perception responder accepts the first perception measurement setup may be a status code (status code) field in the measurement setup response frame.
  • the information on whether the perception responder accepts the first perception measurement setup may be a status code (status code) field in the measurement setup response frame.
  • the first message may also include an identifier of the first sensing measurement setup, for example, the identifier of the first sensing measurement setup is a sensing measurement setup ID (sensing measurement setup ID).
  • the identifier of the first sensing measurement setup is a sensing measurement setup ID (sensing measurement setup ID).
  • the SBP responder sends a second message to the SBP initiator, and correspondingly, the SBP initiator receives the second message from the SBP responder.
  • the second message includes information on whether the first SBP is successfully established.
  • the second message includes information on whether the first SBP is successfully established, which can also be understood as: the second message includes second indication information, and the second indication information is used to indicate whether the first SBP is successfully established.
  • the second indication information may be a status code.
  • the information on whether the first SBP is successfully established can also be said to be the information on whether the SBP responder accepts the request for establishing the first SBP, or the result of establishing the first SBP.
  • the second message may be an SBP response frame (SBP response), and the information on whether the first SBP is successfully established may be a status code (status code) field in the SBP response frame.
  • SBP response SBP response frame
  • status code status code
  • the second message may further include an identifier of the first SBP.
  • the identifier of the first SBP may be a value of a dialog token, which may be used to mark an SBP request, and the value of the dialog token may be the same as the value of the dialog token set by the SBP initiator in the SBP request frame.
  • the second message is determined according to the first message.
  • the second message is determined by the first message.
  • the SBP responder determines whether the first SBP is successfully established according to whether the sensing responder accepts the first sensing measurement establishment.
  • the second message includes information that the first SBP is successfully established.
  • the second message includes information that the first SBP fails to be established.
  • the steps in S210 may be performed by multiple perception response terminals.
  • multiple perception response terminals may all send a first message to the same SBP response terminal.
  • the second message is determined according to the first message, which can be understood as the SBP response terminal determining whether the first SBP is successfully established according to whether the multiple perception response terminals accept the establishment of the first perception measurement.
  • the SBP response terminal determines that the first SBP is successfully established, where X can be a preset value.
  • the preset value may be indicated by the SBP initiator to the SBP responder before S210, or may be a method predefined by the protocol.
  • the perception responder can be an AP or a non-AP STA.
  • the SBP responder can be an AP or a non-AP STA.
  • the SBP initiator can be an AP or a non-AP STA. Whether the SBP initiator, the SBP responder, and the perception responder are specifically an AP or a non-AP STA depends on the perception type, and reference can be made to FIG3.
  • the SBP responder can determine whether the SBP is established according to the result of the perception measurement establishment. When the result of the perception measurement establishment is successful, the SBP establishment success message is sent. When the result of the perception measurement establishment is failed, the SBP establishment failure message is sent. The failure information can improve the success rate of SBP establishment and further enhance the perception efficiency.
  • the method 200 further includes: S230, the SBP initiator sends a third message to the SBP responder, and correspondingly, the SBP responder receives the third message from the SBP initiator.
  • the third message is used to request the establishment of the first SBP, or in other words, the third message is used to initiate the establishment of the first SBP.
  • the third message includes configuration parameters for establishing the first perception measurement.
  • the third message includes parameters for configuring the perception measurement establishment in the SBP.
  • the third message includes parameters for perception of different perception types, and the perception type may be any one of those shown in FIG. 3 .
  • the configuration parameters for establishing the perception measurement may include one or more of the following parameters: parameters required for the perception measurement establishment process, parameters required for the perception measurement process, or feedback parameters after the perception measurement is completed.
  • the third message may be an SBP request frame (SBP request), and the second message may be regarded as a response to the third message.
  • SBP request SBP request
  • the second message may be regarded as a response to the third message.
  • the SBP initiator can request the configuration parameters for establishing the perception measurement in the third message. Further, the SBP responder can determine the parameters for establishing the perception measurement with the perception responder based on the configuration parameters. In this way, the SBP initiator can control and manage the SBP process more flexibly and comprehensively.
  • the third message may further include an identifier of the first SBP.
  • the identifier of the first SBP may be a value of a dialog token, and the dialog token may be used to mark the SBP request initiated this time.
  • the third message may further include an identifier of the first perception measurement establishment.
  • the identifier of the first perception measurement establishment may be determined by the SBP initiator.
  • the SBP initiator may carry the identifier of the first perception measurement establishment in the third message
  • the SBP responder may carry the identifier of the first perception measurement establishment in the second message.
  • the identifier of the first perception measurement establishment is determined by the SBP responding end.
  • the SBP initiating end may not carry the identifier of the perception measurement establishment in the third message.
  • the SBP responding end After determining the identifier of the first perception measurement establishment, the SBP responding end carries the identifier of the first perception measurement establishment in the second message.
  • the perception measurement establishment identifier can be determined by the SBP initiator or the SBP responder, thereby improving the flexibility of the SBP process.
  • the method 200 further includes: S240, the SBP responder sends a fourth message to the perception responder, and correspondingly, the perception responder receives the fourth message from the SBP responder.
  • the fourth message is used to request initiation of first perception measurement establishment.
  • the fourth message is determined according to the third message, or in other words, the fourth message includes part of the information in the third message.
  • the third message includes the perception response end #1 as the perception receiving end, and the SBP response end can configure the perception response end #1 as the perception receiving end through the fourth message.
  • the number of perception response ends included in the third message is 5, and the SBP response end can initiate the perception measurement establishment with the 5 perception response ends through the fourth message.
  • the fourth message may be a measurement setup request frame (measurement setup request), and the first message may be regarded as a response to the fourth message.
  • the SBP responder can determine the parameters for establishing perception measurement with the perception responder according to the configuration parameters sent by the SBP initiator, so that the SBP initiator can control and manage the SBP process more flexibly and comprehensively.
  • the second message may also include recommended parameters for establishing the first perception measurement, which may be understood as parameters that the SBP responder may accept for the first SBP.
  • recommended parameters for establishing the first perception measurement may be understood as parameters that the SBP responder may accept for the first SBP.
  • the number of perception responders indicated in the SBP request frame is 5, and the SBP responder can only establish perception measurements with 3 perception responders in the subsequent perception measurement establishment phase.
  • the SBP responder may indicate in the second message that the SBP establishment has failed, and may also carry information indicating that the recommended number of perception responders is 3.
  • the SBP initiator and the SBP responder can be devices used in WLAN high-frequency perception, which can be respectively referred to as the DMG SBP initiator and the DMG SBP responder.
  • the SBP request frame and the SBP response frame are frames used in WLAN high-frequency perception, which can also be referred to as the DMG SBP request frame and the DMG SBP response frame.
  • the method 200 of the present application can also be used in the Sub-7GHz frequency band without limitation.
  • the following description is taken as an example of the DMG SBP initiator, the DMG SBP responder, the DMG SBP request frame, and the DMG SBP response frame.
  • the configuration parameters of the DMG SBP request frame provided by the present application are described in detail below.
  • the configuration parameters may include at least one of the SBP-specific parameters and the DMG sensing common parameters.
  • the SBP-specific parameters may be placed in the DMG SBP parameter element (DMG SBP Parameters element), the DMG sensing common parameters may be represented by reusing the existing DMG sensing measurement setup element (DMG Sensing Measurement Setup element) of the DMG sensing, and the SBP-specific parameters include at least one of the parameters in the DMG SBP parameter element.
  • Number, DMG perception common parameters include at least one parameter in the DMG perception measurement establishment element.
  • the DMG SBP request frame is an action frame, which is sent by the DMG SBP initiator to the DMG SBP responder.
  • the action field of the DMG SBP request frame may include at least one field as shown in Table 1.
  • the "configuration parameters for establishing the first perception measurement" in S230 may include information carried by at least one field of the DMG SBP parameter element and/or at least one field in the DMG perception measurement establishment element.
  • the order of DMG TX-RX Pair 1 to Q in the DMG TX-RX pair sub-elements can represent the perceptual measurement order of each pairing. That is, the perceptual measurement can be performed in sequence according to DMG TX-RX pair 1, DMG TX-RX pair 2, ..., DMG TX-RX pair Q.
  • FIG6 shows a format diagram of a DMG sensing measurement setup element.
  • the DMG sensing measurement setup element can be used in the DMG sensing measurement setup.
  • the element includes at least one of the following fields: an element ID field, a length field, an element ID extension field, a measurement setup control field, a report type field, a location configuration information (LCI) field, a peer orientation field, and optional subelements.
  • the measurement setup control field includes at least one of the following fields: a sensing type field, an RX initiator field, an LCI present field, an orientation present field, and a reserved field.
  • the so-called RX initiator is the initiator of the sensing receiving end.
  • the Perception Type field is used in the DMG SBP request frame to indicate the perception type performed during the DMG SBP request process. This field has 3 bits, and the values 0 to 3 are defined, and 4-7 are reserved bits. Table 6 shows the meaning of the Perception Type field.
  • the DMG SBP initiator can request a single-station SBP, so there are two ways to achieve this goal: one way is through the Monostatic field in Table 2, and the other way is in Table 6, using the value 4 to indicate the single-station type.
  • the perception type field can be used to indicate the perception type performed in the DMG SBP request process.
  • the single-station type in addition to being indicated by the value in Table 6, it can also be indicated by the monostatic field in Table 2.
  • the perception type field or the monostatic field can carry the seventh information, and the seventh information is used to indicate that the type of SBP is a single-station type.
  • the perception type field can also carry the first information or the fourth information, and the first information is used to indicate that the type of SBP is dual-station collaboration, and the fourth information is used to indicate that the type of SBP is single-station collaboration.
  • the sensing response end used as the sensing sending end is referred to as the first sensing response end, and the first sensing response end indicated in the SBP initiator may be one or more.
  • the sensing response end used as the sensing receiving end may be referred to as the second sensing response end, and the second sensing response end indicated in the SBP initiator may be one or more.
  • the address field of the DMG perception response end as TX, the identification field of the DMG perception response end as TX in Table 2, the number field of the DMG perception response end as TX, the mandatory field of the number of the DMG perception response end as TX, and the reference field of the number of the DMG perception response end as TX in Table 3 can all be regarded as information of the first perception response end, and the address field of the DMG perception response end as RX, the identification field of the DMG perception response end as RX, and the number field of the DMG perception response end as RX in Table 2, the mandatory field of the number of the DMG perception response end as RX, and the reference field of the number of the DMG perception response end as RX in Table 3 can all be regarded as information of the second perception response end. Further, the information of the first perception response end and the second perception response end can both be referred to as second information. In other words, the second information can be carried in multiple fields.
  • the DMG SBP request frame can indicate the information of the perception responder as the perception transmitter and the information of the perception responder as the perception receiver, so that the perception between the perception responders in the dual-station collaborative perception type can be realized, which can improve the efficiency of perception.
  • the DMG TX-RX pair sub-element is used to indicate the sending direction of the perception PPDU occurring between the perception responders.
  • the DMG TX-RX pair sub-element is used to indicate the corresponding relationship between the first perception responder and the second perception responder.
  • the DMG SBP responder can know the perception responder as RX corresponding to the perception responder as TX.
  • the DMG TX-RX pair 1 field in the DMG TX-RX pair sub-element is A and B, so the DMG SBP responder can know that A is RX and B is TX, that is, the sending direction of the perception PPDU occurring between the perception responders is from B to A.
  • the information carried by the DMG TX-RX pair sub-element can be called the third information.
  • the DMG SBP request frame can indicate the sending direction of the perception PPDU between the perception responders, so that the perception between the perception responders in the dual-station collaborative perception type can be realized, which can improve the efficiency of perception.
  • the sequential measurement field in Table 2 can be used to indicate that multiple perception responders perform perception measurements simultaneously or sequentially
  • the perception initiator single-station request field in Table 3 can be used to indicate whether the DMG SBP responder participates in single-station perception as a perception responder.
  • the information carried by the sequential measurement field can be called the fifth information
  • the information carried by the perception initiator single-station request field can be called the sixth information.
  • the DMG SBP report control field in Table 2 is used to set parameters related to the feedback of the perception results, and the information carried by the DMG SBP report control field can be called the eighth information.
  • the eighth information may include at least one of the following: feedback after each measurement or feedback after multiple measurements, feedback of the perception measurement results of one perception response end each time or feedback of the perception measurement results of multiple perception response ends at one time, whether the feedback report includes the location information of the perception response end, whether the feedback report includes the antenna direction of the perception response end, and whether the feedback report includes the occurrence time of the perception measurement, each of which can be carried by a field in Table 5.
  • the DMG SBP initiator requests parameters related to the feedback of perception results, so that the DMG SBP initiator can manage the content and feedback method of the DMG SBP report frame, thereby improving the flexibility of the feedback of perception results and improving the perception efficiency.
  • the fourth message may include a DMG sensing measurement setup element, and the measurement setup parameters are configured to the sensing responder through the DMG sensing measurement setup element.
  • a new field may be added to the DMG Sensing Measurement Setup element (DMG Sensing Measurement Setup element) shown in Figure 6 to set the TX or RX role.
  • the DMG SBP responder may set the sensing responder to TX or RX, respectively, according to the list.
  • the DMG SBP responder may carry the TX or RX information through the measurement setup control field in the DMG sensing measurement setup element, and the sensing responder may use the measurement setup control field in the DMG sensing measurement setup element to carry the TX or RX information.
  • B6 and B7 in FIG6 can be set to the DMG R2R TX field and the DMG R2R RX field, each field uses one bit, and the DMG R2R TX field is set to 1, indicating that the sensing response end is TX, and the DMG R2R RX field is set to 1, indicating that the sensing response end is RX.
  • the SBP initiator may request multiple types of perception in one SBP request.
  • different types of SBPs shown in FIG3 may exist at the same time.
  • the DMG SBP request frame may include one or more DMG perception measurement establishment elements, wherein each DMG perception measurement establishment element may be used to establish a perception measurement, and each DMG perception measurement establishment element corresponds to a perception type, and the format of each DMG perception measurement establishment element may be as shown in FIG6.
  • the DMG sensing measurement setup identifier field in Table 1 can be set to a reserved value, and further, the DMG sensing measurement setup identifier can be carried by the DMG sensing measurement setup element in the DMG SBP request frame.
  • the implementation method of the sensing measurement setup element carrying the DMG sensing measurement setup identifier can be: in order to identify each sensing measurement, each DMG sensing measurement setup element can include a DMG sensing measurement setup identifier (DMG sensing measurement setup ID) field, and the DMG sensing measurement setup identifier field is used to indicate the DMG sensing measurement setup identifier.
  • the length of the DMG sensing measurement setup identifier field can be 1 byte, and its position can be located between the element identifier extension field and the measurement setup control field shown in Figure 6.
  • the DMG SBP request frame may include multiple DMG perception measurement establishment elements
  • the DMG SBP request frame may also include multiple DMG SBP parameter elements
  • the multiple DMG perception measurement establishment elements and the multiple DMG SBP parameter elements may correspond one to one
  • one DMG perception measurement establishment element and one DMG SBP parameter element correspond to one perception measurement.
  • a successful SBP establishment indicates that all requested types of perception measurements are established successfully, and a failed SBP establishment may indicate that all requested types of perception measurements cannot be established.
  • the DMG SBP response frame may indicate which types are successfully established, and the DMG SBP initiator may further determine whether to resend the DMG SBP request frame to carry the perception types that can be successfully established.
  • the DMG SBP initiator can use the Report Type field in the DMG sensing measurement setup element to request the type of measurement report, and the DMG SBP responder can request other sensing responders to feedback the type of measurement report according to the request of this field.
  • the length of the Report Type field is 1 byte
  • the values 1-7 can respectively represent the following report types: channel state information (CSI), DMG sensing image range direction, DMG sensing image range-doppler, DMG sensing image range-direction, DMG sensing image doppler-direction, DMG sensing image range-doppler direction, and target.
  • CSI channel state information
  • the DMG sensing measurement establishment element also includes a DMG sensing scheduling subelement, which is used to set the time, frequency, period, number of times, etc. of the measurement.
  • a DMG sensing scheduling subelement which is used to set the time, frequency, period, number of times, etc. of the measurement.
  • the DMG SBP initiator can use the DMG sensing scheduling subelement to request the measurement time of the sensing, and the DMG SBP responder can establish the sensing measurement with other sensing responders according to this time setting.
  • the DMG sensing scheduling subelement may include at least one field as shown in Table 7, and the meaning of each field is also shown in Table 7. In Table 7, the unit of the field length is byte.
  • the recommended parameters of the DMG SBP response frame provided in the present application are described in detail below.
  • the recommended parameters may include at least one of the SBP-specific parameters and the DMG sensing common parameters.
  • the SBP-specific parameters may be placed in the DMG SBP parameters element (DMG SBP Parameters element), and the DMG sensing common parameters may be represented by reusing the existing DMG sensing measurement setup element (DMG Sensing Measurement Setup element) of DMG sensing.
  • the SBP-specific parameters include at least one parameter in the DMG SBP parameters element, and the DMG sensing common parameters include at least one parameter in the DMG sensing measurement setup element.
  • the DMG SBP response frame is also an action frame.
  • the action field of the DMG SBP response frame may include at least one field as shown in Table 8.
  • the fields included in the DMG SBP parameter element and the DMG perception measurement establishment element in the DMG SBP response frame and the content carried by each field can refer to the DMG SBP parameter element and the DMG perception measurement establishment element in the DMG SBP request frame, and will not be repeated here.
  • These fields represent the configuration parameters requested by the DMG SBP initiator in the DMG SBP request frame, and represent the recommended parameters of the DMG SBP responder in the DMG SBP response frame.
  • the configuration of the SBP report control field in the DMG SBP request frame refers to the configuration requested by the DMG SBP initiator to the DMG SBP responder, that is, how the DMG SBP responder should report back to the DMG SBP initiator.
  • the setting of the SBP report control field in the DMG SBP response frame refers to the configuration desired by the DMG SBP responder, that is, how the DMG SBP responder hopes to report back to the DMG SBP initiator.
  • the DMG perception measurement establishment identifier field in Table 8 can be set to a reserved value, and further, the DMG perception measurement establishment identifier can be carried by the DMG perception measurement establishment element in the DMG SBP response frame.
  • the way in which the perception measurement establishment element carries the DMG perception measurement establishment identifier can be: in order to identify each perception measurement, each DMG perception measurement establishment element can include a DMG perception measurement establishment identifier field, and the DMG perception measurement establishment identifier field is used to indicate the DMG perception measurement establishment identifier.
  • the length of the DMG perception measurement establishment identifier field can be 1 byte, and its position can be located between the element identifier extension field and the measurement establishment control field shown in Figure 6.
  • the DMG Perception Measurement Setup Flag field in the DMG SBP request frame may be set to a reserved value. If the DMG Perception Measurement Setup Flag is determined by the DMG SBP initiator, the DMG Perception Measurement Setup Flag field in the DMG SBP response frame may be set to a reserved value or repeat the value of the DMG Perception Measurement Setup Flag field in the DMG SBP request frame.
  • the second message may also include recommended parameters for establishing the first perception measurement.
  • the DMG SBP initiator can re-initiate the DMG SBP request according to the recommended parameters in the DMG SBP response frame, thereby improving the success rate of SBP establishment and enhancing perception efficiency.
  • Fig. 7 is a schematic flow chart of a sensing method 300 provided in an embodiment of the present application.
  • Fig. 7 may refer to the descriptions in Fig. 1 to Fig. 6 above.
  • the method 300 may be used in the SBP reporting stage.
  • the SBP responder generates a fifth message.
  • the fifth message is used to report the perception measurement result of the perception response end, or in other words, the fifth message carries the perception measurement report of the perception response end, or in other words, the fifth message carries the SBP report.
  • the fifth message may be an SBP report frame (SBP report).
  • SBP report SBP report frame
  • the fifth message includes an identifier of the first SBP.
  • the identifier of the first SBP may be a value of a dialog token.
  • the dialog token may be used to mark the SBP request.
  • the value of the dialog token may be the same as the value of the dialog token set by the SBP initiator in the SBP request frame.
  • the SBP responder can receive the perception measurement result from the perception receiving end. If the SBP responder is a perception receiving end, the SBP responder can obtain the perception measurement result according to the received perception PPDU.
  • the SBP responder sends a fifth message to the SBP initiator, and correspondingly, the SBP initiator receives the fifth message from the SBP responder.
  • the feedback mode of the SBP report frame and the parameters carried by the SBP report frame should be consistent with the request of the SBP initiator, or should be consistent with the negotiation result between the SBP initiator and the responder.
  • the fifth message may be determined according to the eighth information in method 200.
  • the SBP responder feeds back the sensed measurement result of the response to the SBP initiator according to the request of the SBP initiator, and the sensed measurement result is a result related to the sensed responder.
  • the eighth information indicates that the feedback report includes the location information of the sensed responder
  • the SBP responder may request the sensed responder for its location information, so that the SBP responder may obtain its location information from the sensed responder and feed back the corresponding location information to the SBP initiator.
  • the feedback of the SBP report frame includes the following two methods:
  • Method 1 The SBP responder feeds back the measurement results of a single sensing responder.
  • the SBP responder can send an SBP report to the SBP initiator. frame.
  • the SBP initiator may send eighth information to the SBP responder, where the eighth information includes an indication of feeding back a perception measurement result of a perception responder each time, and for details, reference may be made to method 200.
  • Method 2 The DMG SBP responder feeds back the measurement results of multiple perception responders.
  • the SBP responder may send an SBP report frame to the SBP initiator.
  • the SBP responder can provide feedback through an aggregated MAC protocol data unit (A-MPDU).
  • A-MPDU aggregated MAC protocol data unit
  • the SBP initiator may send eighth information to the SBP responder, where the eighth information includes an indication of feeding back the perception measurement results of multiple perception responders at one time.
  • the eighth information includes an indication of feeding back the perception measurement results of multiple perception responders at one time.
  • the SBP responder can report the perception measurement results to the SBP initiator in different ways, thereby improving the flexibility of feedback of the perception results and improving the perception efficiency.
  • the SBP initiator and the SBP responder can be devices used in WLAN high-frequency perception, which can be respectively referred to as the DMG SBP initiator and the DMG SBP responder.
  • the SBP report frame is a frame used in WLAN high-frequency perception, which can also be referred to as the DMG SBP report frame.
  • the method 300 of the present application can also be used in the Sub-7GHz frequency band without limitation.
  • the following description is taken as an example of the DMG SBP initiator, the DMG SBP responder, and the DMG SBP report frame.
  • the DMG SBP report frame may include at least one field as shown in Table 9.
  • FIG8 is a schematic diagram of the format of the DMG sensing report control element.
  • the DMG sensing report control element includes at least one of the following: an element ID field, a length field, an element ID extension field, a DMG sensing measurement setup ID field, a measurement burst ID field, a sensing entity sequence number (sensing SN) field, a DMG sensing report type field, a DMG sensing report control field, and a DMG sensing report (DMG Sensing Report) field.
  • the DMG sensing report control field includes at least one of the following: a report ID subfield, a sequence number (SN) subfield, and a last report ID subfield.
  • the DMG SBP responder may carry one or more items of the location configuration information (LCI), MAC address or identifier (e.g., AID or USID), antenna orientation, and the timestamp (Timestamp) of the corresponding measurement of the corresponding perception responder according to the request of the DMG SBP request frame.
  • This information can be carried by the DMG perception report control element and the DMG perception report element.
  • the fifth message may include ninth information, where the ninth information is used to indicate a perception sending end and a perception receiving end corresponding to the perception measurement result.
  • the DMG SBP Report frame can indicate which TX-RX pair the report corresponds to.
  • the IDs of TX and RX can be used, and these two IDs can be placed in the DMG sensing report control field.
  • the DMG sensing report control field can also include at least one of the following: a TX sensing responder information subfield and an RX sensing responder information subfield, which are used to indicate the information of the sensing responder as TX and the sensing responder as RX corresponding to this report.
  • the TX sensing responder information subfield and the RX sensing responder information subfield can include 8 bytes respectively, and at this time, the DMG sensing report control field can be extended to 19 bytes.
  • FIG8 shows an example of the content included in the TX sensing responder information subfield.
  • the TX sensing responder information subfield can include at least one of the following: a TX sensing responder identification subfield, a TX sensing responder LCI subfield, and a TX sensing responder antenna direction subfield, which occupy 1, 2, and 5 bytes respectively.
  • the TX sensing responder LCI and the TX sensing responder antenna direction are optional subfields.
  • the situation is similar and will not be repeated here.
  • LCI can be carried in the DMG perception report element, or in the TX perception response end information field, or the RX perception response end information field, and this application is not limited.
  • the SBP responder can report the R2R (i.e., between the perception responder as the perception sender and the perception responder as the perception receiver) measurement results to the SBP initiator.
  • the error rate of DMG SBP reports can be reduced and the perception efficiency can be improved.
  • FIG9 is a schematic flow chart of a method 400 of perception provided by an embodiment of the present application.
  • FIG9 can refer to the description in FIG1 to FIG8 above.
  • the method 400 can be used in the SBP termination phase.
  • the method 400 can include the following three methods:
  • Method 1 The SBP responder and the SBP initiator terminate the first SBP through a timer.
  • the SBP responder starts a first timer and sets the start duration of the first timer to the first duration.
  • the SBP initiator may start a second timer and set the start duration of the second timer to the first duration.
  • the first duration may be a preset duration.
  • the SBP initiator indicates the first duration to the SBP responder.
  • the SBP request frame in method 200 may carry tenth information, and the tenth information indicates the first duration.
  • the tenth information may be carried in the DMG SBP expiration index field. As shown in Table 3, there is a corresponding relationship between the DMG SBP expiration index and the first duration, and the first duration may be determined by the DMG SBP expiration index.
  • the first duration may be predefined in the protocol.
  • the SBP responder may start the first timer in any of the following situations: for example, after sending the second message, or after receiving an ACK (Acknowledgement, ACK) of the second message, or after sending the first SBP report frame.
  • the SBP initiator may start the second timer in any of the following situations: for example, after receiving the second message, or after sending an ACK of the second message, or after receiving the first SBP report frame.
  • the second message indicates that the first SBP is established successfully.
  • the SBP responder terminates the first SBP when the first timer expires.
  • the SBP initiator may terminate the first SBP when the second timer SBP expires.
  • timer expiration can be understood as the timer timing out, or the timer returning to zero.
  • the first timer and the second timer may be paused.
  • the DMG SBP initiator and the DMG SBP responder each set a countdown clock.
  • the timing is paused, otherwise the timing continues.
  • the countdown time is the first duration, which can be interacted in the DMG SBP Setup phase and indicated using the DMG SBP Expiration Index field.
  • the SBP responder and the SBP initiator can terminate the first SBP through a timer, thus eliminating the SBP termination process and reducing signaling overhead.
  • Mode 2 The SBP responder and the SBP initiator terminate the first SBP through an SBP termination frame.
  • the SBP responder sends a sixth message to the SBP initiator, where the sixth message is used to terminate the first SBP.
  • the SBP initiator sends a seventh message to the SBP responder, where the seventh message is used to terminate the first SBP.
  • the sixth message and the seventh message may be SBP termination frames (SBP termination).
  • the sixth message or the seventh message includes eleventh information, and the eleventh information is used to instruct the termination of all dual-station cooperative type SBPs, or is used to instruct the termination of all single-station type SBPs.
  • the SBP initiator and the SBP responder can be devices used in WLAN high-frequency perception, which can be respectively referred to as the DMG SBP initiator and the DMG SBP responder.
  • the SBP termination frame is a frame used in WLAN high-frequency perception, which can also be referred to as the DMG SBP termination frame.
  • the method 400 of the present application can also be used in the Sub-7GHz frequency band without limitation.
  • the following description is taken as an example of the DMG SBP initiator, the DMG SBP responder, and the DMG SBP termination frame.
  • the DMG SBP initiator or the DMG SBP responder sends a DMG SBP Termination frame to terminate the DMG SBP perception according to the perception type.
  • the SBP termination frame may include at least one field as shown in Table 10.
  • the DMG SBP termination control field may include at least one of the following: terminate all coordinated monostatic setups field, terminate all bistatic setups field, terminate all mutistatic setups field, DMG SBP setup unsuccessful field, and reserved field.
  • the DMG SBP termination control field may also include at least one of the terminate all coordinated bistatic setups field and the terminate all monostatic setups field, and these two fields occupy 1 bit respectively, which are used to indicate whether to terminate all bistatic setups, and, whether to terminate all monostatic setups.
  • the schematic diagram of the DMG SBP termination control field is specifically shown in FIG10.
  • the information carried by the terminate all bistatic setups field and the terminate all monostatic setups field may be the eleventh information.
  • Method 3 Instruct SBP termination through the last report.
  • a bit may be used in the DMG SBP report frame to indicate the last report, namely, Last SBP Report.
  • the DMG SBP initiator automatically terminates the DMG SBP after receiving the indication of the last report, and the DMG SBP responder automatically terminates the DMG SBP after sending the indication of the last report.
  • the content and format of the DMG SBP report frame may refer to method 300.
  • the frame formats, field names, and field lengths in this application are only exemplary. Segment length, etc. may also be in other formats, as long as they can carry or indicate the corresponding information, and this application does not limit the specific format.
  • the DMG SBP expiration index field in Table 3 is 4 bits, however, the length of this field may also be other values, such as 2 bits or 8 bits.
  • the fields in any table are not mandatory, and in some cases, the message provided in this application may only include some of the fields proposed in the text.
  • the fields shown in Figures 6, 8, and 10 are not mandatory, and in some cases, may only include some of the fields shown in the figures.
  • Fig. 11 is a schematic flow chart of a perception method 500 provided in an embodiment of the present application.
  • the method 500 can be regarded as a specific implementation of the combination of methods 200, 300, and 400.
  • the contents not described in detail in the method 500 can refer to methods 200, 300, and 400.
  • the DMG SBP initiator sends a DMG SBP request frame (an example of the third message) to the DMG SBP responder.
  • the frame includes configuration parameters about the DMG SBP process. The specific configuration parameters can be found in Tables 1 to 8.
  • the DMG SBP responder after receiving the DMG SBP request frame, the DMG SBP responder sends a DMG perception measurement establishment request frame (an example of the fourth message) to one or more perception responders.
  • the DMG perception measurement establishment request frame includes a perception measurement establishment identifier and one or more perception measurement establishment parameter elements.
  • one or more perception responders send a DMG perception measurement establishment response frame (an example of the first message) to the DMG SBP responder.
  • Each DMG perception measurement establishment response frame includes a status code (status code) in response to the perception measurement establishment request, indicating whether the perception measurement corresponding to the perception response end is successfully established.
  • the DMG perception measurement establishment response frame may also include one or more perception measurement establishment parameter elements.
  • the DMG SBP responder replies with an SBP response frame (an example of the second message).
  • S501 to S504 can be called the DMG SBP establishment (DMG SBP setup) phase and the perception measurement establishment phase.
  • the perception response end and the DMG SBP response end perform perception measurements.
  • the perception measurement includes one of the perception responder and the DMG SBP responder sending the perception PPDU, and the other end obtaining the perception measurement result. If the perception responder obtains the perception measurement result as the perception receiving end, the perception responder can send the perception measurement result to the DMG SBP responder.
  • the SBP responder feeds back the perception measurement result to the DMG SBP initiator through a DMG SBP report frame.
  • S506 is the DMG SBP reporting stage.
  • the specific process of S506 can refer to method 300.
  • FIG5 shows the second method in method 400, including S507 and S508.
  • the DMG SBP initiator sends a DMG SBP termination frame to terminate the DMG SBP process.
  • the DMG SBP responder sends a DMG SBP termination frame to terminate the DMG SBP process.
  • FIG12 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • the device 1000 may include a transceiver unit 1010 and/or a processing unit 1020.
  • the transceiver unit 1010 may communicate with the outside, and the processing unit 1020 is used to process data/information.
  • the transceiver unit 1010 may also be referred to as a communication interface or a communication unit.
  • the device 1000 may be the SBP responder in the above method 200, or may be a chip for implementing the functions of the SBP responder in the above method 200.
  • the device 1000 may implement a process corresponding to the execution of the SBP responder in the above method 200, wherein the transceiver unit 1010 is used to execute operations related to the transmission and reception of the SBP responder in the above method 200.
  • the transceiver unit 1010 is used to receive a first message from the perception response end, the first message including information on whether the perception response end accepts the establishment of the first perception measurement; the transceiver unit 1010 is also used to: send a second message to the SBP initiator, the second message including information on whether the first SBP is successfully established, and the second message is determined based on the first message.
  • the apparatus 1000 further includes a processing unit 1020, and the processing unit 1020 may be configured to execute operations related to the processing of the SBP responder in the above method 200.
  • the device 1000 may implement a process corresponding to that performed by the SBP initiator in the above method embodiment 200 , wherein the transceiver unit 1010 is used to perform the transceiver-related operations of the SBP initiator in the above method embodiment 200 .
  • the transceiver unit 1010 is used to send a third message to the SBP responder, the third message is used to request the establishment of the first SBP, and the third message includes the configuration parameters for establishing the first perception measurement; the transceiver unit 1010 is also used to: receive a second message from the SBP responder, the second message includes information on whether the first SBP is successfully established, the second message is determined based on the first message, and the first message includes information on whether the perception responder accepts the establishment of the first perception measurement.
  • the apparatus 1000 may further include a processing unit 1020, and the processing unit 1020 is configured to execute operations related to the processing of the SBP initiator in the above method embodiment 200.
  • the device 1000 may implement the process executed by the SBP responder in method 300, method 400 or method 500 in the above method embodiments.
  • the relevant steps and actions executed by the device 1000 may refer to method 300, method 400 or method 500 and will not be repeated here.
  • the device 1000 may implement a process corresponding to that executed by the SBP initiator in the above method embodiments 300, 400 or 500.
  • the relevant steps and actions executed by the device 1000 may refer to method 300, 400 or 500 and will not be repeated here.
  • the apparatus 1000 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (e.g., a shared processor, a dedicated processor, or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor e.g., a shared processor, a dedicated processor, or a group processor, etc.
  • memory for executing one or more software or firmware programs, a combined logic circuit, and/or other suitable components that support the described functionality.
  • the above-mentioned device 1000 has the function of implementing the corresponding steps executed by the SBP responder in the above-mentioned method, or the above-mentioned device 1000 has the function of implementing the corresponding steps executed by the SBP initiator in the above-mentioned method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • the above-mentioned transceiver unit can also be a transceiver circuit (for example, it can include a receiving circuit and a sending circuit), and the processing unit can be a processing circuit.
  • the device 1000 can be the SBP responder or SBP initiator in the aforementioned embodiment, or it can be a chip or a chip system, for example: a system on chip (system on chip, SoC).
  • the transceiver unit can be an input and output circuit, a communication interface.
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • FIG13 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device 2000 includes: at least one processor 2010 and a transceiver 2020.
  • the processor 2010 is coupled to the memory and is used to execute instructions stored in the memory to control the transceiver 2020 to send signals and/or receive signals.
  • the communication device 2000 also includes a memory 2030 for storing instructions.
  • processor 2010 and the memory 2030 can be combined into one processing device, and the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above functions.
  • the memory 2030 can also be integrated into the processor 2010, or independent of the processor 2010.
  • the transceiver 2020 may include a receiver (or receiver) and a transmitter (or transmitter).
  • the transceiver 2020 may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 1020 may also be a communication interface or an interface circuit.
  • the chip When the communication device 2000 is a chip, the chip includes a transceiver unit and a processing unit, wherein the transceiver unit may be an input/output circuit or a communication interface; and the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the present application also provides a processing device, including a processor and an interface.
  • the processor can be used to execute the method 200, method 300, method 400, or method 500 in the above method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), or a processor. It can be a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • FIG14 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the device 3000 includes a processing circuit 3010 and a transceiver circuit 3020.
  • the processing circuit 3010 and the transceiver circuit 3020 communicate with each other through an internal connection path, and the processing circuit 3010 is used to execute instructions to control the transceiver circuit 3020 to send and/or receive signals.
  • the device 3000 may further include a storage medium 3030, which communicates with the processing circuit 3010 and the transceiver circuit 3020 via an internal connection path.
  • the storage medium 3030 is used to store instructions, and the processing circuit 3010 may execute the instructions stored in the storage medium 3030.
  • the apparatus 3000 is used to implement the process corresponding to the SBP responder in the above method embodiment.
  • the apparatus 3000 is used to implement the process corresponding to the SBP initiator in the above method embodiment.
  • the present application also provides a computer program product, which includes: a computer program code, when the computer program code runs on a computer, the computer executes the method in the embodiment shown in Figure 5 or Figure 9.
  • the present application also provides a computer-readable medium, which stores a program code.
  • the program code runs on a computer, the computer executes the method in the above method embodiment.
  • the present application also provides a system, which includes the aforementioned SBP responding end and/or SBP initiating end.
  • At least one of" or "at least one item of" herein refers to all or any combination of the items listed.
  • “at least one of A, B, and C” may refer to the following six situations: A exists alone, B exists alone, C exists alone, A and B exist at the same time, B and C exist at the same time, and A, B, and C exist at the same time.
  • At least one herein refers to one or more.
  • “More than one" refers to two or more.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, but B can also be determined according to A and/or other information.
  • the terms “include”, “comprises”, “has” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components shown as units may be Or it may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,尤其涉及基于代理的感知的方法和通信装置,该方案可以应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi 7或EHT,再如802.11be下一代,Wi-Fi 8等802.11系列协议的WLAN系统,还可以应用于基于UWB的无线个人局域网系统、感知sensing系统,例如,802.11bf协议。在该方法中,SBP响应端可以根据感知响应端感知测量建立的结果来确定是否接受SBP请求,在感知测量建立的结果为成功时,接受SBP请求,从而能够提高SBP建立的成功率,进而提升感知效率。

Description

一种感知的方法和通信装置
本申请要求于2022年10月10日提交中国国家知识产权局、申请号为202211234899.4、申请名称为“一种感知的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种感知的方法和通信装置。
背景技术
基于代理的感知(sensing by proxy,SBP)指的是,一个站点可以请求另一个站点执行无线局域网(wireless local area network,WLAN)感知,并请求该站点将感知结果反馈给自己。发起SBP流程的站点被成为SBP发起端(SBP initiator),被请求的站点作为代理(proxy)参与SBP,被请求的站点被称为SBP响应端(SBP responder),同时被请求的站点也是SBP感知流程里的感知发起端(sensing initiator),参与SBP响应端发起的感知流程的一方或多方为感知响应端(sensing responder)。
目前的SBP流程主要是针对低频(例如,7GHz以下频段)设计,感知建立的成功率不高,影响感知效率。
发明内容
本申请提供一种感知的方法和通信装置,SBP响应端可以根据感知响应端感知测量建立的结果来确定是否接受SBP请求,在感知测量建立的结果为成功时,接受SBP请求,从而能够提高SBP建立的成功率,进而提升感知效率。
第一方面,提供了一种感知的方法,该方法可以由SBP响应端执行,也可以由配置于SBP响应端中的部件(例如,芯片、电路或模块等)执行,本申请不做限定。
该方法包括:SBP响应端接收来自感知响应端的第一消息,第一消息包括感知响应端是否接受第一感知测量建立的信息;SBP响应端向SBP发起端发送第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定。
基于上述方案,SBP响应端可以根据感知响应端感知测量建立的结果来确定是否接受SBP请求,在感知测量建立的结果为成功时,接受SBP请求,从而能够提高SBP建立的成功率,进而提升感知效率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:SBP响应端接收来自SBP发起端的第三消息,第三消息用于请求建立第一SBP,第三消息包括第一感知测量建立的配置参数;SBP响应端向感知响应端发送第四消息,第四消息用于向感知响应端发起第一感知测量建立,第四消息根据第三消息确定。
基于上述方案,SBP发起端可以在第三消息中请求感知测量建立的配置参数,进一步,SBP响应端可以根据该配置参数确定与感知响应端进行感知测量建立的参数,如此,使得SBP发起端可以更加灵活全面地控制和管理SBP流程。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第一信息,第一信息用于指示第一SBP的类型为双站协同。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第二信息,第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,第一感知响应端为感知响应端中作为感知发送端的至少一个,第二感知响应端为感知响应端中作为感知接收端的至少一个。
结合第一方面,在第一方面的某些实现方式中,该第一感知响应端的信息包括以下至少一个:第一感知响应端的数目、第一感知响应端的数目是否必须满足、第一感知响应端的地址、所属第一感知响应端的标识、首选的第一感知响应端的数目、首选的第一感知响应端的列表。类似地,第二感知响应端的信息包括以下至少一个:第二感知响应端的数目、第二感知响应端的数目是否必须满足、第二 感知响应端的地址、所属第二感知响应端的标识、首选的第二感知响应端的数目、首选的第二感知响应端的列表。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第三信息,第三信息用于指示第一感知响应端和第二感知响应端之间的对应关系。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第四信息,第四信息用于指示第一SBP的类型为单站协同。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第五信息,第五信息用于指示感知响应端同时进行感知测量或感知响应端按顺序进行感知测量。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第六信息,第六信息用于指示SBP响应端是否参与单站感知。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第七信息,第七信息用于指示第一SBP的类型为单站类型。
示例性地,第七信息携带于感知测量建立元素(measurement setup element)中的测量建立控制字段(measurement setup control)中。
结合第一方面,在第一方面的某些实现方式中,该配置参数包括第八信息,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:SBP响应端向SBP发起端发送第五消息,第五消息用于报告感知测量结果。
可选地,第五消息可以根据第八信息确定。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:若第一SBP建立成功,则SBP响应端在发送第二消息后启动定时器,并设置定时器的起始时长为第一时长;SBP响应端在定时器到期时终止第一SBP。
可选地,该配置参数包括第十信息,第十信息用于指示第一时长。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:SBP响应端向SBP发起端发送第六消息,第六消息用于终止第一SBP。
可选地,第六消息包括第十一信息,第十一信息用于指示终止所有双站协同类型的SBP,或用于指示终止所有单站类型的SBP。
结合第一方面,在第一方面的某些实现方式中,若第一SBP建立失败,第二消息还包括对于感知测量建立建议的配置参数。
第二方面,提供了一种感知的方法,该方法可以由SBP发起端执行,也可以由配置于SBP发起端中的部件(例如,芯片、电路或模块等)执行,本申请不做限定。
该方法包括:SBP发起端向SBP响应端发送第三消息,第三消息用于请求建立第一SBP,第三消息包括第一感知测量建立的配置参数;SBP发起端接收来自SBP响应端的第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定,第一消息包括感知响应端是否接受第一感知测量建立的信息。
基于上述方案,SBP响应端可以根据感知响应端感知测量建立的结果来确定是否接受SBP请求,在感知测量建立的结果为成功时,接受SBP请求,从而能够提高SBP建立的成功率,进而提升感知效率。
另外,SBP发起端可以在第三消息中请求感知测量建立的配置参数,进一步,SBP响应端可以根据该配置参数确定与感知响应端进行感知测量建立的参数,如此,使得SBP发起端可以更加灵活全面地控制和管理SBP流程。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第一信息,第一信息用于指示第一SBP的类型为双站协同。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第二信息,第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,第一感知响应端为感知响应端中作为感知发送端的至少一个,第二感知响应端为感知响应端中作为感知接收端的至少一个。
结合第二方面,在第二方面的某些实现方式中,该第一感知响应端的信息包括以下至少一个:第一感知响应端的数目、第一感知响应端的数目是否必须满足、第一感知响应端的地址、所属第一感知响应端的标识、首选的第一感知响应端的数目、首选的第一感知响应端的列表。类似地,第二感知响应端的信息包括以下至少一个:第二感知响应端的数目、第二感知响应端的数目是否必须满足、第二感知响应端的地址、所属第二感知响应端的标识、首选的第二感知响应端的数目、首选的第二感知响应端的列表。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第三信息,第三信息用于指示第一感知响应端和第二感知响应端之间的对应关系。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第四信息,第四信息用于指示第一SBP的类型为单站协同。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第五信息,第五信息用于指示感知响应端同时进行感知测量或感知响应端按顺序进行感知测量。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第六信息,第六信息用于指示SBP响应端是否参与单站感知。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第七信息,第七信息用于指示第一SBP的类型为单站类型。
示例性地,第七信息携带于感知测量建立元素(measurement setup element)中的测量建立控制字段(measurement setup control)中。
结合第二方面,在第二方面的某些实现方式中,该配置参数包括第八信息,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:SBP发起端接收来自SBP响应端的第五消息,第五消息用于报告感知测量结果。
可选地,第五消息可以根据第八信息确定。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:若第一SBP建立成功,则SBP发起端在收到第二消息后启动定时器,并设置定时器的起始时长为第一时长;SBP发起端在定时器到期时终止第一SBP。
可选地,该配置参数包括第十信息,第十信息用于指示第一时长。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:SBP发起端向SBP响应端发送第六消息,第六消息用于终止第一SBP。
可选地,第六消息包括第十一信息,第十一信息用于指示终止所有双站协同类型的SBP,或用于指示终止所有单站类型的SBP。
结合第二方面,在第二方面的某些实现方式中,若第一SBP建立失败,第二消息还包括对于感知测量建立建议的配置参数。
第三方面,提供了一种感知的方法,该方法可以由SBP响应端执行,也可以由配置于SBP响应端中的部件(例如,芯片、电路或模块等)执行,本申请不做限定。
该方法包括:SBP响应端生成第五消息,第五消息用于报告感知测量结果;SBP响应端向SBP发 起端发送第五消息,其中,SBP响应端向SBP发起端发送第五消息,包括:SBP响应端在获得任一个感知响应端的感知测量结果后,向SBP发起端发送第五消息;或者,SBP响应端在获得多个感知响应端的感知测量结果后,向SBP发起端发送第五消息。
基于上述方案,SBP响应端可以通过不同的方式向SBP发起端报告感知测量结果,从而能够提高感知结果的反馈的灵活性,提高感知效率。
可选地,第五消息可以根据第八信息确定,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
第四方面,提供了一种感知的方法,该方法可以由SBP响应端执行,也可以由配置于SBP响应端中的部件(例如,芯片、电路或模块等)执行,本申请不做限定。
该方法包括:若第一SBP建立成功,则SBP响应端在发送第二消息后启动定时器,并设置定时器的起始时长为第一时长;SBP响应端在定时器到期时终止第一SBP。
基于上述方案,SBP响应端可以通过定时器终止第一SBP,如此,可以省去SBP终止流程,能够减少信令开销。
可选地,该方法还包括:SBP响应端接收来自SBP发起端的第十信息,第十信息用于指示第一时长。
第五方面,提供了一种感知的方法,该方法可以由SBP发起端执行,也可以由配置于SBP发起端中的部件(例如,芯片、电路或模块等)执行,本申请不做限定。
该方法包括:若第一SBP建立成功,则SBP发起端在接收第二消息后启动定时器,并设置定时器的起始时长为第一时长;SBP发起端在定时器到期时终止第一SBP。
基于上述方案,SBP发起端可以通过定时器终止第一SBP,如此,可以省去SBP终止流程,能够减少信令开销。
可选地,该方法还包括:SBP发起端向SBP响应端发送第十信息,第十信息用于指示第一时长。
第六方面,提供了一种通信装置,该通信装置可以为SBP响应端,也可以为配置于SBP响应端中的部件(例如,芯片、电路或模块等),本申请不做限定。
该通信装置包括:收发单元,用于接收来自感知响应端的第一消息,第一消息包括感知响应端是否接受第一感知测量建立的信息;该收发单元还用于:向SBP发起端发送第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:接收来自SBP发起端的第三消息,第三消息用于请求建立第一SBP,第三消息包括第一感知测量建立的配置参数;向感知响应端发送第四消息,第四消息用于向感知响应端发起第一感知测量建立,第四消息根据第三消息确定。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第一信息,第一信息用于指示第一SBP的类型为双站协同。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第二信息,第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,第一感知响应端为感知响应端中作为感知发送端的至少一个,第二感知响应端为感知响应端中作为感知接收端的至少一个。
结合第六方面,在第六方面的某些实现方式中,该第一感知响应端的信息包括以下至少一个:第一感知响应端的数目、第一感知响应端的数目是否必须满足、第一感知响应端的地址、所属第一感知响应端的标识、首选的第一感知响应端的数目、首选的第一感知响应端的列表。类似地,第二感知响应端的信息包括以下至少一个:第二感知响应端的数目、第二感知响应端的数目是否必须满足、第二感知响应端的地址、所属第二感知响应端的标识、首选的第二感知响应端的数目、首选的第二感知响应端的列表。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第三信息,第三信息用于指示第 一感知响应端和第二感知响应端之间的对应关系。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第四信息,第四信息用于指示第一SBP的类型为单站协同。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第五信息,第五信息用于指示感知响应端同时进行感知测量或感知响应端按顺序进行感知测量。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第六信息,第六信息用于指示SBP响应端是否参与单站感知。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第七信息,第七信息用于指示第一SBP的类型为单站类型。
示例性地,第七信息携带于感知测量建立元素(measurement setup element)中的测量建立控制字段(measurement setup control)中。
结合第六方面,在第六方面的某些实现方式中,该配置参数包括第八信息,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:向SBP发起端发送第五消息,第五消息用于报告感知测量结果。
可选地,第五消息可以根据第八信息确定。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
结合第六方面,在第六方面的某些实现方式中,该通信装置还包括:处理单元,用于在第一SBP建立成功的情况下,在发送第二消息后启动定时器,并设置定时器的起始时长为第一时长;处理单元还用于:在定时器到期时终止第一SBP。
可选地,该配置参数包括第十信息,第十信息用于指示第一时长。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于:向SBP发起端发送第六消息,第六消息用于终止第一SBP。
可选地,第六消息包括第十一信息,第十一信息用于指示终止所有双站协同类型的SBP,或用于指示终止所有单站类型的SBP。
结合第六方面,在第六方面的某些实现方式中,若第一SBP建立失败,第二消息还包括对于感知测量建立建议的配置参数。
第七方面,提供了一种通信装置,该通信装置可以为SBP发起端,也可以为配置于SBP发起端中的部件(例如,芯片、电路或模块等),本申请不做限定。
该通信装置包括:收发单元,用于向SBP响应端发送第三消息,第三消息用于请求建立第一SBP,第三消息包括第一感知测量建立的配置参数;该收发单元还用于:接收来自SBP响应端的第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定,第一消息包括感知响应端是否接受第一感知测量建立的信息。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第一信息,第一信息用于指示第一SBP的类型为双站协同。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第二信息,第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,第一感知响应端为感知响应端中作为感知发送端的至少一个,第二感知响应端为感知响应端中作为感知接收端的至少一个。
结合第七方面,在第七方面的某些实现方式中,该第一感知响应端的信息包括以下至少一个:第一感知响应端的数目、第一感知响应端的数目是否必须满足、第一感知响应端的地址、所属第一感知响应端的标识、首选的第一感知响应端的数目、首选的第一感知响应端的列表。类似地,第二感知响应端的信息包括以下至少一个:第二感知响应端的数目、第二感知响应端的数目是否必须满足、第二 感知响应端的地址、所属第二感知响应端的标识、首选的第二感知响应端的数目、首选的第二感知响应端的列表。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第三信息,第三信息用于指示第一感知响应端和第二感知响应端之间的对应关系。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第四信息,第四信息用于指示第一SBP的类型为单站协同。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第五信息,第五信息用于指示感知响应端同时进行感知测量或感知响应端按顺序进行感知测量。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第六信息,第六信息用于指示SBP响应端是否参与单站感知。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第七信息,第七信息用于指示第一SBP的类型为单站类型。
示例性地,第七信息携带于感知测量建立元素(measurement setup element)中的测量建立控制字段(measurement setup control)中。
结合第七方面,在第七方面的某些实现方式中,该配置参数包括第八信息,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
结合第七方面,在第七方面的某些实现方式中,该收发单元还用于:接收来自SBP响应端的第五消息,第五消息用于报告感知测量结果。
可选地,第五消息可以根据第八信息确定。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
结合第七方面,在第七方面的某些实现方式中,该通信装置还包括:处理单元,用于在第一SBP建立成功的情况下,在收到第二消息后启动定时器,并设置定时器的起始时长为第一时长;处理单元还用于:在定时器到期时终止第一SBP。
可选地,该配置参数包括第十信息,第十信息用于指示第一时长。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于:向SBP响应端发送第六消息,第六消息用于终止第一SBP。
可选地,第六消息包括第十一信息,第十一信息用于指示终止所有双站协同类型的SBP,或用于指示终止所有单站类型的SBP。
结合第七方面,在第七方面的某些实现方式中,若第一SBP建立失败,第二消息还包括对于感知测量建立建议的配置参数。
第八方面,提供了一种通信装置,该通信装置可以为SBP响应端,也可以为配置于SBP响应端中的部件(例如,芯片、电路或模块等),本申请不做限定。
该通信装置包括:处理单元,用于生成第五消息,第五消息用于报告感知测量结果;收发单元,用于向SBP发起端发送第五消息,其中,收发单元具体用于:在获得任一个感知响应端的感知测量结果后,向SBP发起端发送第五消息;或者,在获得多个感知响应端的感知测量结果后,向SBP发起端发送第五消息。
可选地,第五消息可以根据第八信息确定,第八信息用于指示与感知测量结果的反馈相关的信息。
可选地,与感知测量结果的反馈相关的信息包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈;每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;反馈报告是否包括感知响应端的位置信息;反馈报告是否包括感知响应端的天线方向;反馈报告是否包括感知测量的发生时间。
可选地,第一SBP的类型为双站协同,第五消息包括第九信息,第九信息用于指示感知测量结果 对应的感知发送端和感知接收端。
第九方面,提供了一种通信装置,该通信装置可以为SBP响应端,也可以为配置于SBP响应端中的部件(例如,芯片、电路或模块等),本申请不做限定。
该通信装置包括:处理单元,用于在第一SBP建立成功时,在发送第二消息后启动定时器,并设置定时器的起始时长为第一时长;该处理单元还用于:在定时器到期时终止第一SBP。
可选地,该通信装置还包括:收发单元,用于接收来自SBP发起端的第十信息,第十信息用于指示第一时长。
第十方面,提供了一种通信装置,该通信装置可以为SBP发起端,也可以为配置于SBP发起端中的部件(例如,芯片、电路或模块等),本申请不做限定。
该通信装置包括:处理单元,用于在第一SBP建立成功时,在接收第二消息后启动定时器,并设置定时器的起始时长为第一时长;该处理单元还用于:在定时器到期时终止第一SBP。
可选地,该通信装置还包括:收发单元,用于向SBP响应端发送第十信息,第十信息用于指示第一时长。
第十一方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面至第五方面的任一方面,或这些方面的任一可能的实现方式中的方法。
第十二方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面至第五方面中的任一方面,或这些方面的任一可能的实现方式中的方法被执行。
第十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面至第五方面的任一方面,或这些方面的任一可能的实现方式中的方法被执行。
第十四方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面至第五方面的任一方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十五方面,提供一种无线通信系统,包括第六方面和第七方面中的通信装置,或者包括第九方面和第十方面中的通信装置。
附图说明
图1是本申请实施例适用的一种应用场景的示意图。
图2示出了五种高频感知的类型。
图3示出了高频感知中基于代理的感知的五种类型。
图4是一种SBP的流程示意图。
图5是本申请实施例提供的一种感知的方法200的示意性流程图。
图6示出的是DMG感知测量建立元素的格式示意图。
图7是本申请实施例提供的一种感知的方法300的示意性流程图。
图8是DMG感知报告控制元素的格式示意图。
图9是本申请实施例提供的一种感知的方法400的示意性流程图。
图10是本申请提供的DMG SBP终止控制字段的示意图。
图11是本申请实施例提供的一种感知的方法500的示意性流程图。
图12是本申请实施例提供的一种通信装置的示意图。
图13是本申请实施例提供的通信装置的又一示意性结构图。
图14是本申请实施例提供的通信装置的又一示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的技术方案可以适用于无线局域网(wireless local area network,WLAN)场景,例如,支持IEEE 802.11相关标准,例如802.11a/b/g标准、802.11n标准、802.11ac标准、802.11ax标准、IEEE 802.11ax下一代Wi-Fi协议,如802.11be、Wi-Fi 7、极高吞吐量(extremely high throughput,EHT)、802.11ad、802.11ay或802.11bf,再如802.11be下一代、Wi-Fi 8等,还可以应用于基于超宽带(ultra wide band,UWB)的无线个人局域网系统,如802.15系列标准,还可以应用于感知(sensing)系统,如802.11bf系列标准。其中,802.11n标准称为高吞吐率(high throughput,HT),802.11ac标准称为非常高吞吐率(very high throughput,VHT),802.11ax标准称为高效(high efficient,HE),802.11be标准称为超高吞吐率(extremely high throughput,EHT)。其中,802.11bf包括低频(Sub-7GHz)和高频(60GHz)两个大类标准。Sub-7GHz的实现方式主要依托802.11ac、802.11ax、802.11be及下一代等标准,60GHz实现方式主要依托802.11ad、802.11ay及下一代等标准。其中,802.11ad也可以称为定向多吉比特(directional multi-gigabit,DMG)标准,802.11ay也可以称为增强定向多吉比特(enhanced directional multi-gigabit,EDMG)标准。
虽然本申请实施例主要以部署WLAN网络,尤其是应用IEEE 802.11系统标准的网络为例进行说明,本领域技术人员容易理解,本申请实施例涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,高性能无线局域网(high performance radio local area network,HIPERLAN)、无线广域网(wireless wide area network,WWAN)、无线个人区域网(wireless personal area network,WPAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请实施例提供的各种方面可以适用于任何合适的无线网络。
本申请实施例的技术方案还可以应用于各种通信系统,例如:WLAN通信系统,无线保真(wireless fidelity,Wi-Fi)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、未来第六代(6th generation,6G)系统、物联网(internet of things,IoT)网络或车联网(vehicle to x,V2X)等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
图1为本申请实施例适用的一种应用场景的示意图。如图1所示,本申请提供的资源配置的方法适用于站点(station,STA)之间的数据通信,其中,站点可以是接入点(access point,AP)类的站点,也可以是非接入点类的站点(none access point station,non-AP STA),分别简称为AP和非AP站点。具体地,本申请的方案适用于AP与一个或多个非AP站点之间的数据通信(例如,AP1与non-AP STA1、non-AP STA2之间的数据通信),也适用于AP与AP之间的数据通信(例如,AP1与AP2之间的数据通信),以及,non-AP STA与non-AP STA之间的数据通信(例如,non-AP STA2与non-AP STA3之间的数据通信)。
其中,接入点可以为终端(例如,手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。
具体的,接入点可以是带有Wi-Fi芯片的终端或者网络设备,该网络设备可以为服务器、路由器、交换机、网桥、计算机、手机、中继站、车载设备、可穿戴设备、5G网络中的网络设备以及未来6G网络中的网络设备或者公用陆地移动通信网络(public land mobile network,PLMN)中的网络设备等,本申请实施例并不限定。接入点可以为支持Wi-Fi制式的设备。例如,接入点也可以支持802.11a、802.11b、802.11g、802.11n、802.11ac、802.11ax、802.11be、802.11ad、802.11ay等电气和电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)802.11家族的一种或多种标准。
非AP站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。非AP站点可以是蜂窝电话、无绳电话、会话 启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、物联网设备、可穿戴设备、5G网络中的终端设备、未来6G网络中的终端设备或者PLMN中的终端设备等,本申请实施例对此并不限定。非AP站点可以为支持WLAN制式的设备。例如,非AP站点可以支持802.11a、802.11b、802.11g、802.11n、802.11ac、802.11ax、802.11be、802.11ad、802.11ay等IEEE 802.11家族的一种或多种标准。
例如,非AP站点可以为移动电话、平板电脑、机顶盒、智能电视、智能可穿戴设备、车载通信设备、计算机、物联网(internet of things,IoT)节点、传感器、智慧家居,如智能摄像头、智能遥控器、智能水表电表、以及智慧城市中的传感器等。
上述AP或非AP站点可以包括发送器、接收器、存储器、处理器等,其中,发送器和接收器分别用于分组结构的发送和接收,存储器用于存储信令信息以及存储提前约定的预设值等,处理器用于解析信令信息、处理相关数据等。
雷达感知是一种无线感知技术,雷达由发射天线和接收天线组成,发射天线会发送电磁波,电磁波遇到目标会发生反射,反射波会被接收天线接收。雷达系统会根据发射波和接收波的变化,通过信号处理,分析出目标的特征信息,例如位置、形状、运动特性和运动轨迹等。雷达感知具有许多独特的优势,例如,雷达不受光线明暗的影响,具有穿透遮挡物的能力,可以更好地保护个人隐私;雷达感知的距离更远,不会对人和动物造成伤害。利用雷达技术实现感知的优势主要体现在对于运动的检测,通过对目标回波的多普勒效应来观测和解读目标的运动状态,如运动方向和运动速度。
在WLAN中引入感知技术具有很好的商业前景,无线感知(Wi-Fi sensing)技术可以应用在不同的场景中,例如,在体育运动中,可以通过这项技术检测人和球类的运动状态和运动轨迹。又如,在居家环境下,还可以做人体摔倒检测,用于预防老人摔倒。无线感知技术可以充分利用现存的WLAN网络资源,无需大量成本。在未来的密集部署的WLAN中,一个AP覆盖范围内有很多个non-AP STA,AP可以对每个non-AP STA进行合理的资源调度来提高系统的吞吐量、鲁棒性等。
802.11bf协议支持在Sub-7GHz频段和高频(例如,60GHz)频段实现感知。在Sub-7GHz频段,感知是通过对无线信道进行探测,估计信道状态信息(channel state information,CSI),从而实现动作识别、运动轨迹追踪、摔倒检测等目的。在60GHz频段,感知是通过对环境进行定向波束扫描,得到距离多普勒谱(range doppler map,RD Map)来获取目标状态信息和环境信息。通过调节发射天线的相位,无线信号的能量会聚集在某一方向,形成一个指向性(或定向)波束(beam)。定向波束的波束宽度较窄,能量更集中,因此具有更高的天线增益,且减少了对其他接收信号的干扰。
下面对感知过程的一些概念进行简单介绍。
1.感知中的角色
WLAN感知技术中可以包括以下几种角色。应理解,在一些场景中,以下不同的角色可以由同一个设备执行。
1)感知发起端:发起一个感知过程的站点。
sensing initiator:a STA that initiates a WLAN sensing procedure.
2)感知响应端:参与一个由感知发起端发起的感知过程的站点。
sensing responder:a STA that participates in a WLAN sensing procedure initiated by a sensing initiator.
3)感知发送端:在感知过程内发送用于感知测量的物理层协议数据单元(physical protocol data unit,PPDU)的站点。
sensing transmitter:a STA that transmits PPDUs used for sensing measurements in a sensing procedure.
4)感知接收端:在感知过程内接收感知发送端发送的PPDU且进行感知测量的站点。
sensing receiver:a STA that receives PPDUs sent by a sensing transmitter and performs sensing measurements in a sensing procedure.
在SBP中,感知中的角色还包括:
5)代理感知发起端(SBP initiator):发起一个代理感知过程的站点。
6)代理感知响应端(SBP responder):参与一个由代理感知发起端发起的代理感知过程的站点,作为感知过程里的感知发起端。
2.感知过程
感知过程可以用于描述如何进行感知,感知过程可以包括以下5个步骤:
1)感知时段建立(sensing session setup):表示站点间建立一个感知时段。感知相关的一些参数可以在这里交互(具体待定)。注意:感知时段是一个感知发起端和一个感知响应端达成的两站点间的协议。一个感知发起端可以与多个感知响应端保持感知时段,但仍然需要一个个建立,例如,通过正交频分多址接入(orthogonal frequency division multiple access,OFDMA)方式、多用户-多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)方式等。感知时段也可以称为感知会话。
2)感知测量建立(sensing measurement setup):用于感知发起端与响应端交换和统一某些在感知过程中需要使用的参数、属性等,例如,感知发起端、响应端的角色、测量反馈类型等参数,例如,响应端的角色可以包括感知发送端、感知接收端。感知测量建立可以简称为测量建立。感知测量建立可以通过感知测量建立标识(sensing measurement setup ID)进行标识。
3)感知测量实体(sensing measurement instance):感知测量发生在感知测量实体中,一个感知测量实体中允许多个感知响应端的加入。感知测量实体建立又可以称为感知测量实例,感知测量实体可以简称为测量实体或实体。每一个感知测量实体可以通过感知测量实体标识(sensing measurement instance ID)进行标识。
4)感知测量建立终止(sensing measurement setup termination):感知测量建立终止用于终于某个感知响应端对应的measurement setup的过程,终止后该感知响应端不再与对应的measurement setup绑定,但可以仍在感知时段中。感知测量建立终止可以简称为测量建立终止。
5)感知时段终止(sensing session termination):表示感知时段的终止,站点不再参与感知测量等过程。
3.高频感知的类型
在IEEE 802.11bf协议里,一个感知会话由一个感知发起端(sensing initiator)发起,由一个或多个感知响应端(sensing responder)参与。协议里规定了五种高频感知的类型,分别是单站(monostatic)感知、双站(bistatic)感知、多站(multistatic)感知、单站协同(monostatic with coordination)感知和双站协同(bistatic with coordination)感知。
图2示出了上述五种高频感知的类型。其中,高频感知指的是IEEE 802.11bf协议里定义的DMG感知或EDMG感知。对于高频感知,当发送端和接收端是同一设备时,可以称为自发自收。当发送端和接收端是不同设备时,可以称为收发分置。在图2中,TX表示感知发送端(transmitter),RX表示感知接收端(receiver)。
图2的(a)示出的是单站感知,如图2的(a)所示,在单站感知中,感知发起端既是感知发送端,也是感知接收端,它接收自己发送的感知PPDU进行感知测量,即自发自收。
图2的(b)和图2的(c)示出的是双站感知,如图2的(b)和(c)所示,在双站感知中,感知发起端和感知响应端分别承担感知发送端和感知接收端中的一个角色,即一发一收,感知发送端发送感知PPDU给感知接收端,由感知接收端进行感知测量。在图2的(b)中,感知发起端作为感知发送端,感知响应端作为感知接收端。在图2的(c)中,感知发起端作为感知接收端,感知响应端作为感知发送端。
图2的(d)示出的是多站感知,如图2的(d)所示,在多站感知中,感知发起端作为感知发送端,发送一个感知PPDU给多个感知响应端,即一发多收,这些感知响应端作为感知接收端进行感知测量。
图2的(e)示出的是单站协同感知,如图2的(e)所示,在单站协同感知中,感知发起端让一个或多个感知响应端做自发自收的感知测量。
图2的(f)、图2的(g)和图2的(h)示出的是双站协同感知。如图2的(f)、(g)和(h)所示,在双站协同感知中,感知发起端和多个感知响应端分别进行一发一收的感知测量。在图2的(f)中,感知发起端作为感知发送端,多个感知响应端分别作为感知接收端。在图2的(g)中,感知发起端作为感知接收端,多个感知响应端分别作为感知发送端。在图2的(h)中,一个感知响应端作为感知发送端,另一个感知响应端作为感知接收端,即作为TX的感知响应端发送感知PPDU给作为RX的另一个感知响应端,后者进行感知测量,之后会将测量结果反馈给感知发起端。此外,在图2的(h) 中,感知发起端既是感知发送端,也是感知接收端,一个感知响应端可以向感知发起端发送感知PPDU,该感知发起端也可以向另一个感知响应端发送感知PPDU。
由图2可以看出,在单站感知、双站感知中,感知发起端可以为AP或non-AP STA,感知响应端也可以为AP或non-AP STA,在多站感知、单站协同感知和双站协同感知中,感知发起端通常为AP,感知响应端通常为non-AP STA。
4.基于代理的感知(sensing by proxy,SBP)
基于代理的感知指的是,第一站点(例如,non-AP STA)可以请求第二站点(例如,AP)执行WLAN感知,并请求该第二站点将感知结果反馈给自己。这个发起SBP流程的站点(第一站点)被称为SBP发起端(SBP initiator),被请求的站点(第二站点)作为代理(proxy)参与SBP,被请求的站点被称为SBP响应端(SBP responder),同时被请求的站点也是SBP感知流程里的感知发起端(sensing initiator),参与SBP响应端发起的感知流程的一方或多方为感知响应端。
5.高频感知中的SBP
对应于图2所示的高频感知的五种类型,高频感知中的SBP也可以分为五种类型,分别为单站SBP(SBP with monostatic)、双站SBP(SBP with bistatic)、多站SBP(SBP with multistatic)、单站协同SBP(SBP with monostatic with coordination)、双站协同SBP(SBP with bistatic with coordination)。与图2不同的是,在SBP中,SBP发起端可以请求SBP响应端执行感知流程,SBP响应端作为感知发起端,与感知响应端进行感知,感知发起端最终可以将感知结果反馈给SBP发起端。
图3示出了高频感知中基于代理的感知的五种类型。如图3所示,在任一种SBP类型中,SBP发起端和SBP响应端之间通过交互SBP请求帧和SBP响应帧,从而SBP响应端可以作为感知发起端,进一步,感知发起端可以将感知结果通过SBP报告帧反馈给SBP发起端。与图2类似,在图3中,TX表示感知发送端(transmitter),RX表示感知接收端(receiver)。另外,在图3所示的高频SBP中,SBP发起端和SBP响应端是用于WLAN高频感知中的设备,其可以分别称为DMG SBP发起端和DMG SBP响应端。类似地,SBP请求帧、SBP响应帧、SBP报告帧、SBP终止帧是用于WLAN高频感知中的帧,分别又可以称为DMG SBP请求帧、DMG SBP响应帧、DMG SBP报告帧、DMG SBP终止帧。
图3的(a)示出的是单站SBP,与图2的(a)类似,在图3的(a)中,感知发起端既是感知发送端,也是感知接收端,它接收自己发送的感知PPDU进行感知测量,即自发自收。与图2的(a)不同的是,在图3的(a)中,感知发起端可以进一步将感知结果反馈给DMG SBP发起端。
图3的(b)和图3的(c)示出的是双站SBP,与图2的(b)类似,在图3的(b)中,感知发起端作为感知发送端,感知响应端作为感知接收端,感知接收端可以将感知结果反馈给感知发起端。与图2的(c)类似,在图3的(c)中,感知发起端作为感知接收端,感知响应端作为感知发送端。与图2的(b)、(c)不同的是,在图3的(b)、(c)中,感知发起端可以进一步将感知结果反馈给DMG SBP发起端。
图3的(d)示出的是多站SBP,与图2的(d)类似,在图3的(d)中,感知发起端作为感知发送端,发送一个感知PPDU给多个感知响应端,即一发多收,这些感知响应端作为感知接收端进行感知测量,这些感知接收端可以将感知结果反馈给感知发起端。与图2的(d)不同的是,在图3的(d)中,感知发起端可以进一步将感知结果反馈给DMG SBP发起端。
图3的(e)示出的是单站协同SBP,与图2的(e)类似,在图3的(e)中,感知发起端让一个或多个感知响应端做自发自收的感知测量,感知接收端可以将感知结果反馈给感知发起端。与图2的(e)不同的是,在这种SBP类型中,DMG SBP发起端还可以请求让感知发起端做自发自收的感知。此外,在图3的(e)中,感知发起端可以进一步将感知结果反馈给DMG SBP发起端。
图3的(f)、图3的(g)和图3的(h)示出的是双站协同SBP。与图2的(f)类似,在图3的(f)中,感知发起端作为感知发送端,多个感知响应端分别作为感知接收端。与图2的(g)类似,在图3的(g)中,感知发起端作为感知接收端,多个感知响应端分别作为感知发送端,感知接收端可以将感知结果反馈给感知发起端。与图2的(h)类似,在图3的(h)中,一个感知响应端作为感知发送端,另一个感知响应端作为感知接收端,即作为TX的感知响应端发送感知PPDU给作为RX的另一个感知响应端,后者进行感知测量,之后会将测量结果反馈给感知发起端。此外,在图3的(h)中,感知发起端既是感知发送端,也是感知接收端,一个感知响应端可以向感知发起端发送感知PPDU, 该感知发起端也可以向另一个感知响应端发送感知PPDU。与图2的(f)、(g)、(h)不同的是,在图3的(f)、(g)、(h)中,感知发起端可以进一步将感知结果反馈给DMG SBP发起端。
由图3可以看出,在单站SBP、双站SBP中,SBP发起端可以为AP或non-AP STA,SBP响应端(即感知发起端)可以为AP或non-AP STA,感知响应端也可以为AP或non-AP STA。在多站SBP、单站协同SBP和双站协同SBP中,SBP发起端通常为non-AP STA,SBP响应端(即感知发起端)通常为AP,感知响应端通常为non-AP STA。应理解,图3仅为本申请的应用场景的几种示例,并不构成本申请的限定。例如,在多站SBP、单站协同SBP和双站协同SBP中,SBP发起端也可以为AP,SBP响应端(即感知发起端)也可以为non-AP STA,感知响应端也可以为AP。
6.SBP流程
图4是一种SBP的流程示意图。图4示出的是IEEE 802.11bf协议中对Sub-7GHz频段定义的SBP的流程。如图4所示,该流程可以包括以下步骤。
S101,SBP发起端发送SBP请求(SBP request)帧给SBP响应端,该帧里包括SBP流程的配置参数。
S102,收到SBP请求帧后,SBP响应端会回复SBP响应(SBP response)帧。
如果SBP请求帧配置参数符合SBP响应端的设置,SBP响应帧会表示接受SBP请求,SBP建立成功,否则,拒绝SBP请求,SBP建立失败。
S101至S102可以称为SBP建立(SBP setup)阶段。当SBP建立成功后,SBP响应端作为感知发起端会向一个或多个感知响应端发起感知流程,该感知流程包括感知测量建立(sensing measurement setup)阶段和感知测量实体(sensing measurement instance)阶段。感知测量建立阶段包括S103至S104。
S103,SBP响应端向感知响应端发送感知测量建立请求(sensing measurement setup request)帧。
感知测量建立请求帧中包括感知测量建立标识(sensing measurement setup ID)和一个或多个感知测量建立参数元素(sensing measurement setup parameters element)。
S104,感知响应端向SBP响应端发送感知测量建立响应(sensing measurement setup response)帧。
感知测量建立响应帧中包括响应于感知测量建立请求的状态码(status code)和/或一个或多个感知测量建立参数元素(sensing measurement setup parameters element)。
S105,感知响应端和SBP响应端进行感知测量。
在Sub-7GHz频段进行的感知测量为基于触发(trigger based,TB)类型的感知测量。感知测量包括感知响应端和SBP响应端中的一端发送感知PPDU,另一端获得感知测量结果。如果感知响应端作为感知接收端获得感知测量结果,那么感知响应端可以将感知测量结果发给SBP响应端。
S106,SBP响应端在获得感知测量结果后,将感知测量结果通过SBP报告(SBP report)帧反馈给SBP发起端。
S106为SBP报告(SBP reporting)阶段。S107至S108为SBP终止(SBP termination)阶段,SBP可以由SBP发起端或SBP响应端任一方终止,通过发送SBP终止(SBP termination)帧。
S107,SBP发起端发送SBP终止帧,终止SBP流程。
S108,SBP响应端发送SBP终止帧,终止SBP流程。
图4所示的SBP流程主要针对Sub-7GHz频段设计的,然而,在高频感知中,发送和检测的是方向性的信号,对位置的变化和遮挡更加敏感,很有可能因为位置移动导致与感知发起端连接中断,如果沿用Sub-7GHz频段的流程的话,很可能会因为SBP响应端掌握的已知信息与SBP建立时的当下信息不符而导致额外的信令开销,降低SBP建立的成功率和效率。例如,在图4中,SBP响应端在接收到SBP请求帧后,会根据感知响应端的能力和信息回复是否接受SBP请求,但这些信息很可能是过时的或不准确的。比如,SBP响应端知道与自己关联的设备中有5个设备具备感知的能力,当SBP请求帧里要求4个感知响应端参与感知时,SBP响应端可以接受该请求。但是,在接受请求后,SBP响应端在后续的感知测量建立阶段,只能与2个感知设备建立感知测量,另外3个感知设备很可能因为位置移动了,或被物理遮挡了等原因没办法进行感知测量。这样的话,SBP响应端需要发送SBP终止帧来终止SBP流程,使得SBP建立失败。
有鉴于此,本申请提供一种感知的方法和通信装置,SBP响应端可以根据感知响应端感知测量建立的结果来确定是否接受SBP请求,在感知测量建立的结果为成功时,接受SBP请求,从而能够提高 SBP建立的成功率,进而提升感知效率。
在本申请中,消息可以理解为帧,消息中的信息或参数可以理解为帧中的字段(field),或者说,消息中的信息或参数通过帧中的字段表示。此外,本申请中的字段指的是广义的字段,在一些情况下,字段又可以称为域、元素、子元素或子字段等。
图5是本申请实施例提供的一种感知的方法200的示意性流程图。图5可参考上述图1至图4中的描述。方法200可以用于DMG SBP建立阶段。
S210,感知响应端向SBP响应端发送第一消息,相应地,SBP响应端接收来自感知响应端的第一消息。
其中,第一消息包括感知响应端是否接受第一感知测量建立的信息。第一消息包括感知响应端是否接受第一感知测量建立的信息,也可以理解为,第一消息包括第一指示信息,该第一指示信息用于指示感知响应端是否接受第一感知测量建立。
示例性地,第一指示信息可以为状态码。
感知响应端是否接受第一感知测量建立的信息,也可以说,第一感知测量建立的请求是否成功的信息,或者说,第一感知测量建立的结果。
例如,第一消息可以为测量建立响应帧(measurement setup response),感知响应端是否接受第一感知测量建立的信息可以为测量建立响应帧中的状态码(status code)字段。
可选地,第一消息还可以包括第一感知测量建立的标识,例如,第一感知测量建立的标识为感知测量建立ID(sensing measurement setup ID)。
S220,SBP响应端向SBP发起端发送第二消息,相应地,SBP发起端接收来自SBP响应端的第二消息。
其中,第二消息包括第一SBP是否建立成功的信息。第二消息包括第一SBP是否建立成功的信息,也可以理解为:第二消息包括第二指示信息,第二指示信息用于指示第一SBP是否建立成功。
示例性地,第二指示信息可以为状态码。
第一SBP是否建立成功的信息,也可以说,SBP响应端是否接受第一SBP建立的请求的信息,或者说,第一SBP建立的结果。
作为示例,第二消息可以为SBP响应帧(SBP response),第一SBP是否建立成功的信息可以为SBP响应帧中的状态码(status code)字段。
可选地,第二消息还可以包括第一SBP的标识。例如,第一SBP的标识可以为对话令牌(dialog token)的值,对话令牌可以用于标记SBP请求,该对话令牌的值可以与SBP发起端在SBP请求帧中设置的对话令牌的值相同。
其中,第二消息根据第一消息确定。或者说,第二消息由第一消息确定。或者说,SBP响应端根据感知响应端是否接受第一感知测量建立来确定第一SBP建立是否成功。
例如,第一消息中包括感知响应端接受第一感知测量建立的信息,则第二消息包括第一SBP建立成功的信息。又如,第一消息中包括感知响应端拒绝第一感知测量建立的信息,则第二消息包括第一SBP建立失败的信息。
可选地,S210中的步骤可以由多个感知响应端执行,换言之,多个感知响应端可以均向同一个SBP响应端发送第一消息。这种情况下,第二消息根据第一消息确定,可以理解为,SBP响应端根据多个感知响应端是否接受第一感知测量建立来确定第一SBP是否建立成功。例如,当多个感知响应端中有X个感知响应端接受第一感知测量建立时,SBP响应端确定第一SBP建立成功,其中,X可以为预设值。
作为示例,该预设值可以在S210之前由SBP发起端向SBP响应端指示,也可以为协议预定义的方式。
可选地,在本申请中,感知响应端可以为AP,也可以为non-AP STA。类似地,SBP响应端可以为AP,也可以为non-AP STA。SBP发起端可以为AP,也可以为non-AP STA。SBP发起端、SBP响应端、感知响应端具体为AP或non-AP STA视感知类型而定,可以参考图3。
基于上述方案,SBP响应端可以根据感知测量建立的结果来确定是否SBP建立的结果,在感知测量建立的结果为成功时,发送SBP建立成功的信息,在感知测量建立结果为失败时,发送SBP建立失 败的信息,从而能够提高SBP建立的成功率,进而提升感知效率。
可选地,在S210之前,该方法200还包括:S230,SBP发起端向SBP响应端发送第三消息,相应地,SBP响应端接收来自SBP发起端的第三消息。
其中,第三消息用于请求建立第一SBP,或者说,第三消息用于发起第一SBP的建立。
其中,第三消息包括第一感知测量建立的配置参数。或者说,第三消息包括用于配置SBP中的感知测量建立的参数。或者说,第三消息包括不同感知类型的感知的参数,该感知类型可以为图3所示的任一种。
此外,感知测量建立的配置参数可以包括以下一种或多种参数:感知测量建立过程所需的参数、感知测量过程所需的参数、或感知测量完成后的反馈参数等。
作为示例,第三消息可以为SBP请求帧(SBP request),第二消息可以视为第三消息的响应。
基于上述方案,SBP发起端可以在第三消息中请求感知测量建立的配置参数,进一步,SBP响应端可以根据该配置参数确定与感知响应端进行感知测量建立的参数,如此,使得SBP发起端可以更加灵活全面地控制和管理SBP流程。
可选地,第三消息还可以包括第一SBP的标识。例如,第一SBP的标识可以为对话令牌(dialog token)的值,对话令牌可以用于标记本次发起的SBP请求。
可选地,第三消息还可以包括第一感知测量建立的标识。换言之,第一感知测量建立的标识可以由SBP发起端确定,这种情况下,SBP发起端可以在第三消息中携带第一感知测量建立的标识,SBP响应端在第二消息中携带该第一感知测量建立的标识。
可选地,第一感知测量建立的标识由SBP响应端确定,在这种情况下,SBP发起端第三消息中可以不携带感知测量建立的标识,SBP响应端在确定第一感知测量建立的标识后,在第二消息中携带该第一感知测量建立的标识。
基于上述方案,感知测量建立标识可以由SBP发起端确定,也可以由SBP响应端确定,如此,能够提高SBP流程的灵活性。
可选地,在S230之后,且在S210之前,该方法200还包括:S240,SBP响应端向感知响应端发送第四消息,相应地,感知响应端接收来自SBP响应端的第四消息。
其中,第四消息用于请求发起第一感知测量建立。
其中,第四消息根据第三消息确定,或者说,第四消息包括第三消息中的部分信息。例如,第三消息中包括感知响应端#1为感知接收端,此时SBP响应端可以通过第四消息将感知响应端#1配置为感知接收端。又如,第三消息中包括感知响应端的个数为5,SBP响应端可以通过第四消息与5个感知响应端发起感知测量建立。
作为示例,第四消息可以为测量建立请求帧(measurement setup request),第一消息可以视为第四消息的响应。
基于上述方案,SBP响应端可以根据SBP发起端发送的配置参数确定与感知响应端进行感知测量建立的参数,如此,使得SBP发起端可以更加灵活全面地控制和管理SBP流程。
可选地,若第一SBP建立失败,则第二消息还可以包括第一感知测量建立的建议参数,该建议参数可以理解为SBP响应端针对第一SBP可以接受的参数。例如,SBP请求帧中指示感知响应端的数量为5,SBP响应端在后续的感知测量建立阶段,只能与3个感知响应端建立感知测量,SBP响应端可以在第二消息中指示SBP建立失败,还可以携带信息指示感知响应端的建议数量为3。
应理解,在本申请方法200中,SBP发起端和SBP响应端可以是用于WLAN高频感知中的设备,其可以分别称为DMG SBP发起端和DMG SBP响应端。类似地,SBP请求帧、SBP响应帧是用于WLAN高频感知中的帧,其又可以称为DMG SBP请求帧、DMG SBP响应帧。可选地,本申请方法200也可以用于Sub-7GHz频段,不予限制。以下为了便于说明,以DMG SBP发起端、DMG SBP响应端、DMG SBP请求帧、DMG SBP响应帧为例进行说明。
下面对本申请提供的DMG SBP请求帧的配置参数进行详细说明,该配置参数可以包括SBP特有的参数和DMG感知通用参数至少一种。SBP特有的参数可以放在DMG SBP参数元素(DMG SBP Parameters element)中,DMG感知通用参数可以复用DMG感知已有的DMG感知测量建立元素(DMG Sensing Measurement Setup element)来表示,SBP特有的参数包括DMG SBP参数元素中的至少一个参 数,DMG感知通用参数包括DMG感知测量建立元素中的至少一个参数。
具体地,DMG SBP请求帧是一个动作(action)帧,由DMG SBP发起端发送给DMG SBP响应端,DMG SBP请求帧的动作字段(action field)可以包括如表1所示的至少一个字段。
表1
作为示例,S230中的“第一感知测量建立的配置参数”可以包括DMG SBP参数元素的至少一个字段、和/或DMG感知测量建立元素中的至少一个字段所携带的信息。
表2

表3


表4
应理解,在表4中,DMG TX-RX Pair 1至Q在DMG TX-RX对子元素的排序可以表示每个配对的感知测量顺序。即可以按照DMG TX-RX对1、DMG TX-RX对2、……、DMG TX-RX对Q依次进行感知测量。
表5
图6示出的是DMG感知测量建立元素的格式示意图。该DMG感知测量建立元素可以用于DMG感知测量建立中,如图6所示,该元素包括以下至少一个字段:元素标识(element ID)字段、长度(length)字段、元素标识扩展(element ID extension)字段、测量建立控制(measurement setup control)字段、报告类型(report type)字段、位置配置信息(location configuration information,LCI)字段、同伴方向(peer orientation)字段和可选的子元素(optional subelements)。其中,测量建立控制字段包括以下至少一个字段:感知类型(sensing type)字段、RX发起端(RX initator)字段、LCI出现(LCI present)字段、方向出现字段(orientation present)字段和预留(reserved)字段,所谓RX发起端,也就是作为感知接收端的发起者。
其中,感知类型字段用在DMG SBP请求帧中表示在DMG SBP请求过程中执行的感知类型。该字段共3比特,取值0至3已经定义,4-7为预留比特。表6为感知类型字段的含义。
表6
这里没有单站类型的指示,但是在SBP中,DMG SBP发起端可以请求进行单站SBP,所以可以有两种方式达到这个目的:一种方式是通过表2中的Monostatic field,另一种方式是在表6中,用数值4表示单站类型。
在上述DMG SBP请求帧的示例中,感知类型字段可以用于指示在DMG SBP请求过程中执行的感知类型。此外,对于单站类型,除了通过表6中的取值指示,还可以通过表2中的单站(monostatic)字段指示。换言之,感知类型字段或单站字段可以携带第七信息,第七信息用于指示SBP的类型为单站类型。此外,感知类型字段还可以携带第一信息或第四信息,第一信息用于指示SBP的类型为双站协同,第四信息用于指示SBP的类型为单站协同。
对于双站协同SBP类型,例如,如图3的(h)所示,感知响应端中有一部分作为感知发送端,另一部分作为感知接收端,本申请中,将作为感知发送端的感知响应端称为第一感知响应端,SBP发起端中指示的第一感知响应端可以为一个,也可以为多个。类似地,作为感知接收端的感知响应端可以称为第二感知响应端,SBP发起端中指示的第二感知响应端可以为一个,也可以为多个。因此,表2中的作为TX的DMG感知响应端地址字段、作为TX的DMG感知响应端的标识字段以及表3中的作为TX的DMG感知响应端的数量字段、作为TX的DMG感知响应端的数量的强制性字段、可参考的作为TX的DMG感知响应端的数量字段均可以视为第一感知响应端的信息,表2中的作为RX的DMG感知响应端地址字段、作为RX的DMG感知响应端的标识字段以及表3中的作为RX的DMG感知响应端的数量字段、作为RX的DMG感知响应端的数量的强制性字段、可参考的作为RX的DMG感知响应端的数量字段均可以视为第二感知响应端的信息,进一步,第一感知响应端和第二感知响应端的信息可以均称为第二信息。换言之,第二信息可以携带于多个字段。
基于上述方案,DMG SBP请求帧中可以指示作为感知发送端的感知响应端的信息和作为感知接收端的感知响应端的信息,使得双站协同感知类型中的感知响应端之间的感知可以实现,能够提高感知的效率。
此外,对于双站协同SBP类型,在表2中,DMG TX-RX对子元素用于指示指示发生在感知响应端之间的感知PPDU的发送方向,换言之,DMG TX-RX对子元素用于指示第一感知响应端和第二感知响应端之间的对应关系,根据DMG TX-RX对子元素,DMG SBP响应端可以获知作为TX的感知响应端所对应的作为RX的感知响应端。例如,DMG TX-RX对子元素中的DMG TX-RX对1字段为A和B,因此,DMG SBP响应端可以获知A为RX,B为TX,也就是发生在感知响应端之间的感知PPDU的发送方向为由B到A。本申请中,DMG TX-RX对子元素携带的信息可以称为第三信息。
基于上述方案,DMG SBP请求帧中可以指示感知响应端之间的感知PPDU的发送方向,使得双站协同感知类型中的感知响应端之间的感知可以实现,能够提高感知的效率。
对于单站协同类型,表2中的顺序测量字段可以用于指示多个感知响应端同时或者按顺序进行感知测量,表3中的感知发起端单站请求字段可以用于指示DMG SBP响应端是否作为感知响应端参与单站感知,顺序测量字段携带的信息可以称为第五信息,感知发起端单站请求字段携带的信息可以称为第六信息。
对于上述任一种感知类型,表2中的DMG SBP报告控制字段用来设置和感知结果的反馈相关的参数,DMG SBP报告控制字段承载的信息可以称为第八信息。具体地,如表5所示,第八信息可以包括以下至少一项:每次测量结束后反馈或者多次测量结束后反馈、每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果、反馈报告是否包括感知响应端的位置信息、反馈报告是否包括感知响应端的天线方向、反馈报告是否包括感知测量的发生时间,每一项可以通过表5中的一个字段携带。
基于上述方案,DMG SBP发起端通过请求与感知结果的反馈相关的参数,使得DMG SBP发起端可以管理DMG SBP报告帧的内容和反馈方式,从而能够提高感知结果的反馈的灵活性,提高感知效率。
可选地,SBP响应端在向感知响应端发送第四消息时,第四消息可以包括DMG感知测量建立元素,通过DMG感知测量建立元素向感知响应端配置测量建立的参数。为了支持双站协同(bistatic with coordination)类型中感知响应端之间做感知测量(前文提到的TX-RX,或者R2R),图6所示的DMG感知测量建立元素(DMG Sensing Measurement Setup element)中可以新增字段用来设定TX或RX角色,在DMG SBP响应端获得作为TX的感知响应端的列表和作为RX的感知响应端的列表后,DMG SBP响应端可以根据该列表将感知响应端分别设置为TX或RX。作为一种实现方式,DMG SBP响应端可以通过DMG感知测量建立元素中测量建立控制字段来携带TX或RX的信息,感知响应端可以通过该 信息来确定其为TX或RX。例如,图6中的B6和B7可以设置为DMG R2R TX字段和DMG R2R RX字段,每个字段分别使用一个比特,DMG R2R TX字段置1,表示该感知响应端作为TX,DMG R2R RX字段置1,表示该感知响应端作为RX。
可选地,SBP发起端可以在一次SBP请求中请求多种类型的感知,换言之,图3所示的不同类型的SBP可以同时存在。在这种情况中,DMG SBP请求帧中可以包括一个或多个DMG感知测量建立元素,其中,每个DMG感知测量建立元素可以用于建立一个感知测量,并且每个DMG感知测量建立元素对应一个感知类型,每个DMG感知测量建立元素的格式可以如图6所示。
此外,在上述情况中,如果DMG感知测量建立标识由DMG SBP发起端确定,那么表1中的DMG感知测量建立标识字段可以设置为保留值,进一步,可以通过DMG SBP请求帧中的DMG感知测量建立元素来携带DMG感知测量建立标识。具体地,感知测量建立元素携带DMG感知测量建立标识的实现方式可以为:为了标识每个感知测量,每个DMG感知测量建立元素可以包括一个DMG感知测量建立标识(DMG sensing measurement setup ID)字段,DMG感知测量建立标识字段用于指示DMG感知测量建立标识。示例性地,DMG感知测量建立标识字段的长度可以为1个字节,其位置可以位于图6所示的元素标识扩展字段和测量建立控制字段之间。
可选地,当DMG SBP请求帧中可以包括多个DMG感知测量建立元素时,DMG SBP请求帧中也可以包括多个DMG SBP参数元素,多个DMG感知测量建立元素和多个DMG SBP参数元素可以一一对应,并且一个DMG感知测量建立元素和一个DMG SBP参数元素对应一个感知测量。
作为示例,当请求多种感知类型时,SBP建立成功表示所请求的全部类型的感知测量建立成功,SBP建立失败可以表示无法全部建立所请求类型的感知测量。此外,在DMG SBP响应帧可以指示哪些类型建立成功,DMG SBP发起端可以进一步判断是否重新发送DMG SBP请求帧,携带能够建立成功的感知类型。
可选地,DMG SBP发起端可以利用DMG感知测量建立元素中的报告类型(Report Type)这一字段来请求测量报告的类型,DMG SBP响应端可以根据该字段的请求要求其他感知响应端反馈该类型的测量报告。例如,如图6所示,报告类型字段的长度为1个字节,其中的取值1-7可以分别表示的报告类型为:信道状态信息(channel state information,CSI)、DMG感知图像距离方向(DMG sensing image range direction)、DMG感知图像距离-多普勒(DMG sensing image range-doppler)、DMG感知图像距离-方向(DMG sensing image range-direction)、DMG感知图像多普勒-方向(DMG sensing image doppler-direction)、DMG感知图像距离-多普勒方向(DMG sensing image range-doppler direction)、目标(target)。
可选地,DMG感知测量建立元素还包括DMG感知调度子元素(DMG sensing scheduling subelement),DMG感知调度子元素用来设置测量发生的时间、频率、周期、次数等。例如,DMG SBP发起端可以使用DMG感知调度子元素请求感知发生的测量时间,DMG SBP响应端可以根据这一时间设定与其他感知响应端进行感知测量建立。DMG感知调度子元素可以包括如表7所示的至少一个字段,每个字段的含义也如表7所示,在表7中,字段长度的单位为字节。
表7

下面对本申请提供的DMG SBP响应帧的建议参数进行详细说明,该建议参数可以包括SBP特有的参数和DMG感知通用参数中至少一种。SBP特有的参数可以放在DMG SBP参数元素(DMG SBP Parameters element)中,DMG感知通用参数可以复用DMG感知已有的DMG感知测量建立元素(DMG Sensing Measurement Setup element)来表示,SBP特有的参数包括DMG SBP参数元素中的至少一个参数,DMG感知通用参数包括DMG感知测量建立元素中的至少一个参数。
具体地,DMG SBP响应帧也是一个动作帧。由DMG SBP响应端发送给DMG SBP发起端,DMG SBP响应帧的动作字段(action field)可以包括如表8所示的至少一个字段。
表8

应理解,DMG SBP响应帧中的DMG SBP参数元素、DMG感知测量建立元素包括的字段及每个字段承载的内容,可以参考DMG SBP请求帧中的DMG SBP参数元素、DMG感知测量建立元素,在此不赘述。这些字段在DMG SBP请求帧中,表示DMG SBP发起端请求的配置参数,在DMG SBP响应帧中,表示DMG SBP响应端的建议参数。例如,DMG SBP请求帧里关于SBP报告控制字段的配置,指的是DMG SBP发起端请求DMG SBP响应端的配置,即DMG SBP响应端应该如何向DMG SBP发起端反馈报告。DMG SBP响应帧里关于SBP报告控制字段的设置,指的是DMG SBP响应端希望的配置,即DMG SBP响应端希望可以如何向DMG SBP发起端反馈报告。
还应理解,如果DMG感知测量建立标识由DMG SBP响应端确定,那么表8中的DMG感知测量建立标识字段可以设置为保留值,进一步,可以通过DMG SBP响应帧中的DMG感知测量建立元素来携带DMG感知测量建立标识。其中,感知测量建立元素携带DMG感知测量建立标识的方式可以为:为了标识每个感知测量,每个DMG感知测量建立元素可以包括一个DMG感知测量建立标识字段,DMG感知测量建立标识字段用于指示DMG感知测量建立标识。示例性地,DMG感知测量建立标识字段的长度可以为1个字节,其位置可以位于图6所示的元素标识扩展字段和测量建立控制字段之间。
此外,如果DMG感知测量建立标识由DMG SBP响应端确定,那么DMG SBP请求帧中的DMG感知测量建立标识字段可以设置为保留值。如果DMG感知测量建立标识由DMG SBP发起端确定,那么DMG SBP响应帧中的DMG感知测量建立标识字段可以设置为保留值或重复DMG SBP请求帧中的DMG感知测量建立标识字段的数值。
基于上述方案,若第一SBP建立失败,则第二消息还可以包括第一感知测量建立的建议参数,如此,DMG SBP发起端可以根据DMG SBP响应帧中的建议参数重新发起DMG SBP请求,进而能够提高SBP建立的成功率,提升感知效率。
图7是本申请实施例提供的一种感知的方法300的示意性流程图。图7可参考上述图1至图6中的描述。方法300可以用于SBP报告阶段。
S310,SBP响应端生成第五消息。
其中,第五消息用于报告感知响应端的感知测量结果,或者说,第五消息携带感知响应端的感知测量报告,或者说,第五消息携带SBP报告。
作为示例,第五消息可以为SBP报告帧(SBP report)。
可选地,第五消息包括第一SBP的标识,例如,第一SBP的标识可以为对话令牌(dialog token)的值,对话令牌可以用于标记SBP请求,该对话令牌的值可以与SBP发起端在SBP请求帧中设置的对话令牌的值相同。
其中,若SBP响应端为感知发送端或者SBP响应端不作为感知响应端,则SBP响应端可以从感知接收端接收感知测量结果,若SBP响应端为感知接收端,则SBP响应端可以根据接收到的感知PPDU获得感知测量结果,
S320,SBP响应端向SBP发起端发送第五消息,相应地,SBP发起端接收来自SBP响应端的第五消息。
其中,SBP报告帧的反馈方式和SBP报告帧携带的参数应当和SBP发起端请求的一致,或者应当和SBP发起端与响应端的协商结果一致。
可选地,第五消息可以根据方法200中的第八信息确定,换言之SBP响应端根据SBP发起端的请求,向SBP发起端反馈响应的感知测量结果,且该感知测量结果是与感知响应端的相关的结果。例如,第八信息指示反馈报告包括感知响应端的位置信息,则SBP响应端可以向感知响应端请求其位置信息,从而SBP响应端可以从感知响应端获得其位置信息,并向SBP发起端反馈相应的位置信息。
作为示例,SBP报告帧的反馈包括以下两种方式:
方式一、SBP响应端反馈单一感知响应端的测量结果。
例如,SBP响应端可以在获得任一个感知响应端的感知测量结果后,向SBP发起端发送SBP报告 帧。
可选地,在方式一中,S310之前,SBP发起端可以向SBP响应端发送第八信息,第八信息包括每次反馈一个感知响应端的感知测量结果的指示,具体可以参考方法200。
方式二:DMG SBP响应端反馈多个感知响应端的测量结果。
例如,SBP响应端可以在获得多个感知响应端的感知测量结果后,向SBP发起端发送SBP报告帧。
作为示例,在方式二中,SBP响应端可以通过聚合的MAC协议数据单元(aggregated MAC protocol data unit,A-MPDU)进行反馈。
可选地,在方式二中,S310之前,SBP发起端可以向SBP响应端发送第八信息,第八信息包括一次反馈多个感知响应端的感知测量结果的指示,具体可以参考方法200。
应理解,SBP报告帧携带的参数与哪种反馈方式无关。
基于上述方案,SBP响应端可以通过不同的方式向SBP发起端报告感知测量结果,从而能够提高感知结果的反馈的灵活性,提高感知效率。
应理解,在本申请方法300中,SBP发起端和SBP响应端可以是用于WLAN高频感知中的设备,其可以分别称为DMG SBP发起端和DMG SBP响应端。类似地,SBP报告帧是用于WLAN高频感知中的帧,其又可以称为DMG SBP报告帧。可选地,本申请方法300也可以用于Sub-7GHz频段,不予限制。以下为了便于说明,以DMG SBP发起端、DMG SBP响应端、DMG SBP报告帧为例进行说明。
DMG SBP报告帧可以包括如表9所示至少一个字段。
表9
图8是DMG感知报告控制元素的格式示意图。如图8所示,DMG感知报告控制元素(DMG Sensing Report Control element)包括以下至少一项:元素标识(element ID)字段、长度(length)字段、元素ID扩展(element ID extension)字段、DMG感知测量建立标识(DMG sensing measurement setup ID)字段、测量发生标识(measurement burst ID)字段、感知实体序列号(sensing instance sequence number,sensing SN)字段、DMG感知报告类型(DMG sensing report type)字段、DMG感知报告控制(DMG sensing report control)字段、DMG感知报告(DMG Sensing Report)字段。其中,DMG感知报告控制字段包括以下至少一项:报告标识(report ID)子字段、序列号(SN)子字段、最后一个报告标识(last report ID)子字段。
可选地,DMG SBP响应端在发送DMG SBP报告帧时,可以根据DMG SBP请求帧的请求,携带对应感知响应端的位置配置信息(LCI)、MAC地址或标识(例如,AID或USID)、天线朝向、对应测量发生的时间戳(Timestamp)等一项或多项。这些信息可以通过DMG感知报告控制元素和DMG感知报告元素承载。
可选地,第五消息可以包括第九信息,第九信息用于指示感知测量结果对应的感知发送端和感知接收端。
具体地,对于bistatic with coordination感知类型中发生在感知响应端之间的感知测量的情况,DMG SBP Report帧可以指示该报告对应哪一个TX-RX pair。
作为一种实现方式,可以使用TX和RX的ID,即TX Sensing Responder ID和RX Sensing Responder ID,这两个ID可以放在DMG感知报告控制字段中。例如,继续如图8所示,在DMG感知报告控制字段还可以包括以下至少一项:TX感知响应端信息子字段和RX感知响应端信息子字段,其分别用于指示本次报告对应的作为TX的感知响应端的信息和作为RX的感知响应端的信息。作为示例,TX感知响应端信息子字段和RX感知响应端信息子字段可以分别包括8个字节,此时,DMG感知报告控制字段可以扩展为19个字节。图8给出了TX感知响应端信息子字段所包括的内容的示例,如图8所示,TX感知响应端信息子字段可以包括以下至少一项:TX感知响应端标识子字段、TX感知响应端LCI子字段、TX感知响应端天线方向子字段,分别占用1、2、5个字节。其中,TX感知响应端LCI、TX感知响应端天线方向为可选的子字段。对于RX感知响应端信息子字段,情况是类似的,在此不赘述。
应理解,LCI可以携带于DMG感知报告元素中,也可以携带于TX感知响应端信息字段,或RX感知响应端信息字段,本申请不予限制。
基于上述方案,针对感知响应端之间的感知测量,SBP响应端可以向SBP发起端报告R2R(即作为感知发送端的感知响应端和作为感知接收端的感知响应端之间)的测量结果,如此,可以降低DMG SBP报告的错误率,提升感知效率。
图9是本申请实施例提供的一种感知的方法400的示意性流程图。图9可参考上述图1至图8中的描述。方法400可以用于SBP终止阶段。方法400可以包括以下三种方式:
方式一、SBP响应端和SBP发起端通过定时器终止第一SBP。
S410-a,SBP响应端启动第一定时器,并设置第一定时器的起始时长为第一时长。相应地,SBP发起端可以启动第二定时器,并设置第二定时器的起始时长为第一时长。
作为示例,第一时长可以是预设时长,一种实现方式是,在S410之前由SBP发起端向SBP响应端指示第一时长,例如,方法200中的SBP请求帧中可以携带第十信息,第十信息指示第一时长,其中,第十信息可以携带于DMG SBP过期指数字段,如表3所示,DMG SBP过期指数和第一时长之间存在对应关系,通过DMG SBP过期指数可以确定第一时长。又一种实现方式为,协议中可以预定义第一时长。
其中,SBP响应端可以在以下任一种情况启动第一定时器:例如,在发送第二消息后,或者在收到第二消息的肯定应答(Acknowledgement,ACK)后,或者,在发送第一个SBP报告帧后。类似地,SBP发起端可以在以下任一种情况启动第二定时器:例如,在收到第二消息后,或者,在发送第二消息的ACK后,或者在收到第一个SBP报告帧后。
应理解,在方法400中,第二消息指示第一SBP建立成功。
S420-a,SBP响应端在第一定时器到期时终止第一SBP。相应地,SBP发起端可以在第二定时器SBP到期时终止第一SBP。
应理解,定时器到期(expire),可以理解为定时器超时,或者定时器归零。
可选地,在SBP响应端与SBP发起端交互感知测量结果时以及在SBP响应端和感知响应端执行进行感知测量时,第一定时器和第二定时器可以暂停。
具体地,DMG SBP发起端和DMG SBP响应端各自设置一个倒计时时钟,DMG SBP发起端从收到携带Status Code=SUCCESS的DMG SBP Response帧开始计时,DMG SBP响应端从收到Ack(对应DMG SBP Response帧,表示DMG SBP发起端收到了DMG SBP Response帧)开始计时,即从DMG SBP建立成功开始计时。当有感知测量发生或结果反馈时,计时暂停,否则计时持续,当计时归零,表示DMG SBP终止。倒计时的时间即为第一时长,可以在DMG SBP Setup阶段交互,使用DMG SBP过期指数字段指示。
基于上述方案,SBP响应端和SBP发起端可以通过定时器终止第一SBP,如此,可以省去SBP终止流程,能够减少信令开销。
方式二:SBP响应端和SBP发起端通过SBP终止帧终止第一SBP。
S410-b,SBP响应端向SBP发起端发送第六消息,第六消息用于终止第一SBP。
S420-b,SBP发起端向SBP响应端发送第七消息,第七消息用于终止第一SBP。
作为示例,第六消息和第七消息可以为SBP终止帧(SBP termination)。
可选地,第六消息或第七信息包括第十一信息,第十一信息用于指示终止所有双站协同类型的SBP,或用于指示终止所有单站类型的SBP。
应理解,在本申请方法400中,SBP发起端和SBP响应端可以是用于WLAN高频感知中的设备,其可以分别称为DMG SBP发起端和DMG SBP响应端。类似地,SBP终止帧是用于WLAN高频感知中的帧,其又可以称为DMG SBP终止帧。可选地,本申请方法400也可以用于Sub-7GHz频段,不予限制。以下为了便于说明,以DMG SBP发起端、DMG SBP响应端、DMG SBP终止帧为例进行说明。
具体地,DMG SBP发起端或DMG SBP响应端发送DMG SBP Termination帧,按照感知类型对DMG SBP感知执行终止。SBP终止帧可以包括如表10所示至少一个字段。
表10
DMG SBP终止控制字段可以包括以下至少一项:终止所有单站协同建立(terminate all coordinated monostatic setups)字段、终止所有双站建立(terminate all bistatic setups)字段、终止所有多站建立(terminate all mutistatic setups)字段、DMG SBP建立未成功(DMG SBP setup unsuccess)字段、预留(reserved)字段。然而,目前缺少两种感知类型的终止指示。因此,在本申请中,DMG SBP终止控制字段还可以包括终止所有双站协同建立(terminate all coordinated bistatic setups)字段和终止所有单站建立(terminate all monostatic setups)字段中的至少一个,这两个字段分别占用1比特,用于指示是否终止所有双站协同建立,以及,用于指示是否终止所有单站建立。DMG SBP终止控制字段的示意图具体如图10所示。终止所有双站协同建立字段、终止所有单站建立字段携带的信息可以为第十一信息。
方式三:通过最后一个报告指示SBP终止。
具体地,可以在DMG SBP报告帧使用一个bit表示最后一个报告,即Last SBP Report,DMG SBP发起端收到最后一个报告的指示后自动终止DMG SBP,DMG SBP响应端发送后最后一个报告的指示后自动终止DMG SBP。DMG SBP报告帧的内容和格式可以参考方法300。
应理解,方法300中的方式一至方式三可以单独实施,也可以在某些场景中相互结合,本申请不予限制。
还应理解,上述方法200、方法300、方法400可以单独实施,也可以相互结合,不予限制。
此外,本申请中的帧格式、字段名称和字段长度等仅为示例性说明,这些帧格式、字段名称和字 段长度等也可以是其他格式,只要可以携带或指示相应的信息即可,本申请对具体格式不作限定。例如,表3中的DMG SBP过期指数字段为4比特,然而,该字段的长度也可以为其他值,比如2比特或8比特等。另外,本申请中,任一表格中的字段并不是必选地,在一些情况下,本申请中提供的消息可以仅包括文中提出的部分字段。类似地,图6、图8、图10示出的字段也不是必选地,在一些情况下,可以仅包括图中所示的部分字段。
图11是本申请实施例提供的一种感知的方法500的示意性流程图。该方法500可以视为方法200、300、400的结合一种具体实现。方法500中未详细描述的内容可以参考方法200、300、400。
S501,DMG SBP发起端向DMG SBP响应端发送DMG SBP请求帧(第三消息的一例),该帧包括关于DMG SBP流程的配置参数,该配置参数具体可以参考表1至表8。
S502,收到DMG SBP请求帧后,DMG SBP响应端向一个或多个感知响应端发送DMG感知测量建立请求帧(第四消息的一例)。
DMG感知测量建立请求帧中包括感知测量建立标识和一个或多个感知测量建立参数元素。
S503,一个或多个感知响应端向DMG SBP响应端发送DMG感知测量建立响应帧(第一消息的一例)。
每个DMG感知测量建立响应帧中包括响应于感知测量建立请求的状态码(status code),指示该感知响应端对应的感知测量建立是否成功,DMG感知测量建立响应帧还可以包括一个或多个感知测量建立参数元素。
S504,DMG SBP响应端回复SBP响应(SBP response)帧(第二消息的一例)。
如果一个或多个DMG感知测量建立响应帧的结果符合DMG SBP发起端的中的配置参数,SBP响应帧中会携带接受SBP请求的状态码,即状态码=success。否则,状态码=fail,标识SBP建立失败。
S501至S504可以称为DMG SBP建立(DMG SBP setup)阶段和感知测量建立阶段。
S505,感知响应端和DMG SBP响应端进行感知测量。
感知测量包括感知响应端和DMG SBP响应端中的一端发送感知PPDU,另一端获得感知测量结果。如果感知响应端作为感知接收端获得感知测量结果,那么感知响应端可以将感知测量结果发给DMG SBP响应端。
S506,SBP响应端在获得感知测量结果后,将感知测量结果通过DMG SBP报告(DMG SBP report)帧反馈给DMG SBP发起端。
S506为DMG SBP报告阶段。S506的具体过程可以参考方法300。
在S506之后,DMG SBP发起端和DMG SBP响应端可以终止DMG SBP流程,具体参考方法400。图5示出的是方法400中的方式二,包括S507和S508。
S507,DMG SBP发起端发送DMG SBP终止帧,终止DMG SBP流程。
S508,DMG SBP响应端发送DMG SBP终止帧,终止DMG SBP流程。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行简单介绍。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图12是本申请实施例提供的一种通信装置的示意图。如图12所示,装置1000可以包括收发单元1010和/或处理单元1020。收发单元1010可以与外部进行通信,处理单元1020用于进行数据/信息的处理。收发单元1010还可以称为通信接口或通信单元。
在一种可能的实现方式中,该装置1000可以是上文方法200中的SBP响应端,也可以是用于实现上文方法200中SBP响应端的功能的芯片。该装置1000可实现对应于上文方法200中的SBP响应端执行的流程,其中,收发单元1010用于执行上文方法200中与SBP响应端的收发相关的操作。
示例性地,收发单元1010,用于接收来自感知响应端的第一消息,第一消息包括感知响应端是否接受第一感知测量建立的信息;该收发单元1010还用于:向SBP发起端发送第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定。
可选地,在该实现方式中,装置1000还包括处理单元1020,处理单元1020可用于执行上文方法200中与SBP响应端的处理相关的操作。
应理解,上述内容仅作为示例性理解,该装置1000还能够实现上述方法200中的其他与SBP响应端相关的步骤、动作或者方法,在此不再赘述。
在又一种可能的实现方式中,该装置1000可实现对应于上文方法实施例200中的SBP发起端执行的流程,其中,收发单元1010用于执行上文方法实施例200中SBP发起端的收发相关的操作。
示例性地,收发单元1010,用于向SBP响应端发送第三消息,第三消息用于请求建立第一SBP,第三消息包括第一感知测量建立的配置参数;该收发单元1010还用于:接收来自SBP响应端的第二消息,第二消息包括第一SBP是否建立成功的信息,第二消息根据第一消息确定,第一消息包括感知响应端是否接受第一感知测量建立的信息。
可选地,在该实现方式中,该装置1000还可以包括处理单元1020,处理单元1020用于执行上文方法实施例200中与SBP发起端的处理相关的操作。
应理解,上述内容仅作为示例性理解,该装置1000还能够实现上述方法200中的其他与SBP发起端相关的步骤、动作或者方法,在此不再赘述。
在另一种可能的实现方式中,该装置1000可实现对应于上文方法实施例中的方法300、方法400或方法500中的SBP响应端执行的流程,该装置1000执行的相关的步骤、动作可以参考方法300、方法400或方法500,在此不再赘述。
在另一种可能的实现方式中,该装置1000可实现对应于上文方法实施例300、方法400或方法500中的SBP发起端执行的流程,该装置1000执行的相关的步骤、动作可以参考方法300、方法400或方法500,在此不再赘述。
应理解,这里的装置1000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
上述装置1000具有实现上述方法中SBP响应端所执行的相应步骤的功能,或者,上述装置1000具有实现上述方法中SBP发起端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,装置1000可以是前述实施例中的SBP响应端或SBP发起端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图13是本申请实施例提供的通信装置的又一示意性结构图。如图13所示,该通信装置2000包括:至少一个处理器2010和收发器2020。该处理器2010与存储器耦合,用于执行存储器中存储的指令,以控制收发器2020发送信号和/或接收信号。可选地,该通信装置2000还包括存储器2030,用于存储指令。
应理解,上述处理器2010和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。
还应理解,收发器2020可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。收发器1020有可以是通信接口或者接口电路。
当该通信装置2000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法200、方法300、方法400、或方法500。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还 可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图14是本申请实施例提供的通信装置的又一示意性结构图。如图14所示,该装置3000包括处理电路3010和收发电路3020。其中,处理电路3010和收发电路3020通过内部连接通路互相通信,该处理电路3010用于执行指令,以控制该收发电路3020发送信号和/或接收信号。
可选地,该装置3000还可以包括存储介质3030,该存储介质3030与处理电路3010、收发电路3020通过内部连接通路互相通信。该存储介质3030用于存储指令,该处理电路3010可以执行该存储介质3030中存储的指令。
在一种可能的实现方式中,装置3000用于实现上述方法实施例中的SBP响应端对应的流程。
在另一种可能的实现方式中,装置3000用于实现上述方法实施例中的SBP发起端对应的流程。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图5或图9所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的SBP响应端和/或SBP发起端。
本文中术语“……中的至少一个”或“……中的至少一项”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一项”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是 或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种感知的方法,其特征在于,包括:
    基于代理的感知SBP响应端接收来自感知响应端的第一消息,所述第一消息包括所述感知响应端是否接受第一感知测量建立的信息;
    所述SBP响应端向SBP发起端发送第二消息,所述第二消息包括第一SBP是否建立成功的信息,所述第二消息根据所述第一消息确定。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述SBP响应端接收来自所述SBP发起端的第三消息,所述第三消息用于请求建立所述第一SBP,所述第三消息包括所述第一感知测量建立的配置参数;
    所述SBP响应端向所述感知响应端发送第四消息,所述第四消息用于向所述感知响应端发起所述第一感知测量建立,所述第四消息根据所述第三消息确定。
  3. 一种感知的方法,其特征在于,包括:
    基于代理的感知SBP发起端向SBP响应端发送第三消息,所述第三消息用于请求建立第一SBP,所述第三消息包括第一感知测量建立的配置参数;
    所述SBP发起端接收来自所述SBP响应端的第二消息,所述第二消息包括所述第一SBP是否建立成功的信息,所述第二消息根据第一消息确定,所述第一消息包括感知响应端是否接受所述第一感知测量建立的信息。
  4. 如权利要求2或3所述的方法,其特征在于,所述配置参数包括第一信息,所述第一信息用于指示所述第一SBP的类型为双站协同。
  5. 如权利要求4所述的方法,其特征在于,所述配置参数包括第二信息,所述第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,所述第一感知响应端为所述感知响应端中作为感知发送端的至少一个,所述第二感知响应端为所述感知响应端中作为感知接收端的至少一个。
  6. 如权利要求5所述的方法,其特征在于,
    所述第一感知响应端的信息包括以下至少一个:
    所述第一感知响应端的数目、所述第一感知响应端的数目是否必须满足、所述第一感知响应端的地址、所属第一感知响应端的标识、首选的所述第一感知响应端的数目、首选的所述第一感知响应端的列表;
    所述第二感知响应端的信息包括以下至少一个:
    所述第二感知响应端的数目、所述第二感知响应端的数目是否必须满足、所述第二感知响应端的地址、所属第二感知响应端的标识、首选的所述第二感知响应端的数目、首选的所述第二感知响应端的列表。
  7. 如权利要求5或6所述的方法,其特征在于,所述配置参数包括第三信息,所述第三信息用于指示所述第一感知响应端和所述第二感知响应端之间的对应关系。
  8. 如权利要求2至7中任一项所述的方法,其特征在于,所述配置参数包括第四信息,所述第四信息用于指示所述第一SBP的类型为单站协同。
  9. 如权利要求8所述的方法,其特征在于,所述配置参数包括第五信息,所述第五信息用于指示所述感知响应端同时进行感知测量或所述感知响应端按顺序进行感知测量。
  10. 如权利要求8或9所述的方法,其特征在于,所述配置参数包括第六信息,所述第六信息用于指示所述SBP响应端是否参与单站感知。
  11. 如权利要求2至10中任一项所述的方法,其特征在于,所述配置参数包括第七信息,所述第七信息用于指示所述第一SBP的类型为单站类型。
  12. 如权利要求2至11中任一项所述的方法,其特征在于,所述配置参数包括第八信息,所述第八信息用于指示与感知测量结果的反馈相关的信息。
  13. 如权利要求12所述的方法,其特征在于,所述与感知测量结果的反馈相关的信息包括以下至少一项:
    每次测量结束后反馈或者多次测量结束后反馈;
    每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;
    反馈报告是否包括所述感知响应端的位置信息;
    反馈报告是否包括所述感知响应端的天线方向;
    反馈报告是否包括感知测量的发生时间。
  14. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自感知响应端的第一消息,所述第一消息包括所述感知响应端是否接受第一感知测量建立的信息;
    所述收发单元还用于:向SBP发起端发送第二消息,所述第二消息包括第一SBP是否建立成功的信息,所述第二消息根据所述第一消息确定。
  15. 如权利要求14所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述SBP发起端的第三消息,所述第三消息用于请求建立所述第一SBP,所述第三消息包括所述第一感知测量建立的配置参数;
    向所述感知响应端发送第四消息,所述第四消息用于向所述感知响应端发起所述第一感知测量建立,所述第四消息根据所述第三消息确定。
  16. 一种通信装置,其特征在于,包括:
    收发单元,用于向SBP响应端发送第三消息,所述第三消息用于请求建立第一SBP,所述第三消息包括第一感知测量建立的配置参数;
    所述收发单元还用于:接收来自所述SBP响应端的第二消息,所述第二消息包括所述第一SBP是否建立成功的信息,所述第二消息根据第一消息确定,所述第一消息包括感知响应端是否接受所述第一感知测量建立的信息。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述配置参数包括第一信息,所述第一信息用于指示所述第一SBP的类型为双站协同。
  18. 如权利要求17所述的通信装置,其特征在于,所述配置参数包括第二信息,所述第二信息用于指示第一感知响应端的信息和第二感知响应端的信息,所述第一感知响应端为所述感知响应端中作为感知发送端的至少一个,所述第二感知响应端为所述感知响应端中作为感知接收端的至少一个。
  19. 如权利要求18所述的通信装置,其特征在于,
    所述第一感知响应端的信息包括以下至少一个:
    所述第一感知响应端的数目、所述第一感知响应端的数目是否必须满足、所述第一感知响应端的地址、所属第一感知响应端的标识、首选的所述第一感知响应端的数目、首选的所述第一感知响应端的列表;
    所述第二感知响应端的信息包括以下至少一个:
    所述第二感知响应端的数目、所述第二感知响应端的数目是否必须满足、所述第二感知响应端的地址、所属第二感知响应端的标识、首选的所述第二感知响应端的数目、首选的所述第二感知响应端的列表。
  20. 如权利要求18或19所述的通信装置,其特征在于,所述配置参数包括第三信息,所述第三信息用于指示所述第一感知响应端和所述第二感知响应端之间的对应关系。
  21. 如权利要求15至20中任一项所述的通信装置,其特征在于,所述配置参数包括第四信息,所述第四信息用于指示所述第一SBP的类型为单站协同。
  22. 如权利要求21所述的通信装置,其特征在于,所述配置参数包括第五信息,所述第五信息用于指示所述感知响应端同时进行感知测量或所述感知响应端按顺序进行感知测量。
  23. 如权利要求21或22所述的通信装置,其特征在于,所述配置参数包括第六信息,所述第六信息用于指示所述SBP响应端是否参与单站感知。
  24. 如权利要求15至23中任一项所述的通信装置,其特征在于,所述配置参数包括第七信息,所述第七信息用于指示所述第一SBP的类型为单站类型。
  25. 如权利要求15至24中任一项所述的通信装置,其特征在于,所述配置参数包括第八信息,所述第八信息用于指示与感知测量结果的反馈相关的信息。
  26. 如权利要求25所述的通信装置,其特征在于,所述与感知测量结果的反馈相关的信息包括以下至少一项:
    每次测量结束后反馈或者多次测量结束后反馈;
    每次反馈一个感知响应端的感知测量结果或者一次反馈多个感知响应端的感知测量结果;
    反馈报告是否包括所述感知响应端的位置信息;
    反馈报告是否包括所述感知响应端的天线方向;
    反馈报告是否包括感知测量的发生时间。
  27. 一种感知的方法,其特征在于,包括:
    基于代理的感知SBP响应端在发送第二消息后或在发送第一个SBP报告帧后启动定时器,所述第二消息包括第一SBP建立成功的信息,所述第一SBP为所述SBP响应端与SBP发起端之间的SBP;
    所述SBP响应端设置所述定时器的起始时长为第一时长;
    所述SBP响应端在所述定时器到期时终止所述第一SBP。
  28. 如权利要求27所述的方法,其特征在于,所述第一时长为预设值。
  29. 一种感知的方法,其特征在于,包括:
    基于代理的感知SBP发起端在接收第二消息后或在接收第一个SBP报告帧后启动定时器,所述第二消息包括第一SBP建立成功的信息,所述第一SBP为所述SBP发起端与SBP响应端之间的SBP;
    所述SBP发起端设置所述定时器的起始时长为第一时长;
    所述SBP发起端在所述定时器到期时终止所述第一SBP。
  30. 如权利要求29所述的方法,其特征在于,所述第一时长为预设值。
  31. 一种通信装置,其特征在于,包括:
    收发单元,用于在发送第二消息后或在发送第一个SBP报告帧后启动定时器,所述第二消息包括第一SBP建立成功的信息,所述第一SBP为所述通信装置与SBP发起端之间的SBP;
    处理单元,用于设置所述定时器的起始时长为第一时长;
    所述处理单元,还用于在所述定时器到期时终止所述第一SBP。
  32. 如权利要求31所述的通信装置,其特征在于,所述第一时长为预设值。
  33. 一种通信装置,其特征在于,包括:
    收发单元,用于在接收第二消息后或在接收第一个SBP报告帧后启动定时器,所述第二消息包括第一SBP建立成功的信息,所述第一SBP为所述通信装置与SBP响应端之间的SBP;
    处理单元,用于设置所述定时器的起始时长为第一时长;
    所述处理单元,还用于在所述定时器到期时终止所述第一SBP。
  34. 如权利要求33所述的通信装置,其特征在于,所述第一时长为预设值。
  35. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至13或权利要求27至30中任一项所述的方法。
  36. 一种芯片,其特征在于,包括:处理器和存储器,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述芯片执行如权利要求1至13或权利要求27至30中任一项所述的方法。
  37. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至13或权利要求27至30中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求1至13或权利要求27至30中任一项所述的方法。
PCT/CN2023/120970 2022-10-10 2023-09-25 一种感知的方法和通信装置 WO2024078309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211234899.4 2022-10-10
CN202211234899.4A CN117880842A (zh) 2022-10-10 2022-10-10 一种感知的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2024078309A1 true WO2024078309A1 (zh) 2024-04-18

Family

ID=90593431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120970 WO2024078309A1 (zh) 2022-10-10 2023-09-25 一种感知的方法和通信装置

Country Status (2)

Country Link
CN (1) CN117880842A (zh)
WO (1) WO2024078309A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299692A (zh) * 2008-07-01 2008-11-05 华为技术有限公司 一种终止专用测量的方法、系统和装置
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
CN114828075A (zh) * 2022-03-24 2022-07-29 成都极米科技股份有限公司 无线感知测量控制方法、装置、设备及存储介质
US20220304051A1 (en) * 2021-03-19 2022-09-22 Huawei Technologies Co., Ltd. Method and system for wi-fi sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299692A (zh) * 2008-07-01 2008-11-05 华为技术有限公司 一种终止专用测量的方法、系统和装置
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置
US20220304051A1 (en) * 2021-03-19 2022-09-22 Huawei Technologies Co., Ltd. Method and system for wi-fi sensing
CN114731679A (zh) * 2022-02-28 2022-07-08 北京小米移动软件有限公司 用于代理感知的通信方法和通信装置
CN114828075A (zh) * 2022-03-24 2022-07-29 成都极米科技股份有限公司 无线感知测量控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117880842A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US20230138224A1 (en) Wlan sensing frame exchange protocol
US10361832B2 (en) Block acknowledgment generation and selection rules
JP6392338B2 (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
US9332523B2 (en) Systems and methods of offloaded positioning for determining location of WLAN nodes
US20200068520A1 (en) Enhancements to fine timing measurement (ftm) protocol
CN104620659B (zh) 减少与传递小数据分组相关联的开销
US10219299B2 (en) Channel aware resource allocation
US20190373439A1 (en) Scheduled and triggered mmw discovery assistance by lower band signaling
CN108551683A (zh) 在无线局域网中的增强型主动扫描
KR20150115931A (ko) 지향성 송신을 이용한 장거리 디바이스 검색
US20170077999A1 (en) Access point-controlled responses to uplink multi-user frames
US20180092115A1 (en) Reliable wi-fi packet delivery using delayed/scheduled block acknowledgment mechanism
WO2021139681A1 (zh) 一种数据帧的接收状态确定方法及通信装置
US20160360397A1 (en) Color coding for data confirmation signals
WO2024078309A1 (zh) 一种感知的方法和通信装置
WO2024078255A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2023231707A1 (zh) 一种用于感知的方法和装置
WO2023226713A1 (zh) 一种通信的方法和装置
WO2023240423A1 (zh) 能力信息的发送方法、装置、设备及存储介质
WO2024067517A1 (zh) 一种通信方法及装置
WO2023039798A1 (zh) 无线通信的方法和设备
WO2024051488A1 (zh) 一种信息传输方法和装置
WO2023130571A1 (zh) 无线通信的方法及设备
WO2023212082A1 (en) Methods for sensing in a wireless local area network (wlan)
CN118044132A (zh) 通信方法及装置