WO2024055631A1 - 电驱传动系统和汽车 - Google Patents

电驱传动系统和汽车 Download PDF

Info

Publication number
WO2024055631A1
WO2024055631A1 PCT/CN2023/096415 CN2023096415W WO2024055631A1 WO 2024055631 A1 WO2024055631 A1 WO 2024055631A1 CN 2023096415 W CN2023096415 W CN 2023096415W WO 2024055631 A1 WO2024055631 A1 WO 2024055631A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
shaft
housing
electric drive
motor
Prior art date
Application number
PCT/CN2023/096415
Other languages
English (en)
French (fr)
Inventor
杨一帆
章昊
姚伟科
宋建军
Original Assignee
浙江凌昇动力科技有限公司
浙江零跑科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211131304.2A external-priority patent/CN115195460A/zh
Priority claimed from CN202310515677.8A external-priority patent/CN116733936A/zh
Application filed by 浙江凌昇动力科技有限公司, 浙江零跑科技股份有限公司 filed Critical 浙江凌昇动力科技有限公司
Publication of WO2024055631A1 publication Critical patent/WO2024055631A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing

Definitions

  • This application relates to the field of automobiles, and in particular to electric drivetrains and automobiles.
  • the main technical problem solved by this application is to provide an electric drive transmission system and automobile that can reduce the efficiency loss of the transmission mechanism during the lubrication process.
  • an electric drive transmission system including a motor assembly, a differential and at least one first reducer; wherein, the motor assembly also includes a motor shaft, and the motor shaft is connected to the differential.
  • the first reducer includes a first housing and a first input shaft arranged on the first housing. The first input shaft is connected to the differential.
  • the first input shaft is a hollow shaft and includes a hollow oil circuit; the electric The drive transmission system also includes a first lubricating oil circuit system arranged in the first housing; the first lubricating oil circuit system includes a first oil pipe assembly, the first oil pipe assembly is connected with the hollow oil circuit, and the first oil pipe assembly is also provided with spaced-apart A plurality of oil injection holes are arranged at interconnections between the first input shaft, the differential and the first housing.
  • the first reducer further includes a first transmission shaft; the first transmission shaft and the first input shaft are transmission connected through at least one pair of gear meshes;
  • the first transmission shaft and the first input shaft are connected to the first housing through bearings.
  • the first housing is provided with a first oil guide groove.
  • the first oil guide groove and the at least one pair of The gear is located within the injection range corresponding to the oil injection hole.
  • the first housing includes a first side wall and a second side wall arranged oppositely; the first transmission shaft and the first input shaft are arranged between the two side walls, and the first side wall and the second side wall are arranged oppositely.
  • the side wall is provided with the first oil guide groove
  • the first oil pipe assembly includes a first pipeline provided on the first side wall and a second pipeline provided on the second side wall, and the first pipeline and the second pipeline are respectively provided with There are oil injection holes so that the first oil guide grooves of the first side wall and the second side wall can be located within the injection range corresponding to the oil injection holes;
  • the first pipeline is also provided with a connection hole
  • the first housing is also provided with an oil guide channel connected to the hollow oil circuit, and the connection hole is connected to the oil guide channel.
  • the first lubricating oil circuit system further includes an oil guide pipe connecting the oil guide channel and the hollow oil circuit.
  • the first transmission shaft includes a first output shaft and at least one first intermediate shaft; the first intermediate shaft and the first input shaft are transmission connected through the meshing of a first pair of gears, and the first intermediate shaft and the first intermediate shaft
  • the first output shaft is transmission connected through the meshing of a second pair of gears; the first pair of gears is located within the injection range of at least one injection hole of the first pipeline, and the second pair of gears is located in the second Within the injection range of at least one injection hole in the pipeline.
  • a gear portion is provided on the first intermediate shaft, and the first pair of gears is provided on the intermediate shaft;
  • the first input shaft is provided with a driving gear member, and the first gear member is connected to the driving gear member;
  • the second gear member is disposed on the first output shaft, and the second gear member meshes with the gear portion;
  • the first intermediate shaft is arranged on the upper part of the first output shaft along the direction of gravity.
  • the axis center of the first intermediate shaft is located above the axis centers of the first output shaft and the first input shaft in the direction of gravity, and the axis center of the first intermediate shaft is in contact with the first output shaft.
  • the axes of the shaft and the first input shaft are distributed in a triangle.
  • the first housing is further provided with a bearing chamber, and the first oil guide groove is located above the bearing chamber and communicates with the bearing chamber, so that the lubricating oil sprayed through the oil injection hole can pass through.
  • the first oil guide groove flows to the bearing chamber.
  • it also includes a second reducer, the second reducer and the first reducer are respectively located on opposite sides of the motor assembly;
  • the second reducer also includes a second input shaft connected to the differential.
  • the second reducer includes a second housing and a second lubricating oil circuit system, and the second lubricating oil circuit system is provided in the second housing;
  • the second reducer also includes a second transmission shaft; the second input shaft and the second transmission shaft are transmission connected through at least one pair of gear meshes,
  • the second lubricating oil circuit system includes a second oil pipe assembly.
  • the second oil pipe assembly is also provided with a plurality of oil injection holes at intervals.
  • the oil injection holes are arranged on the second input shaft, the second transmission shaft, The interconnection between the motor assembly and the first housing.
  • the second housing includes a third side wall and a fourth side wall arranged oppositely; the second transmission shaft and the second input shaft are arranged between the two side walls, and the third side wall and the fourth side wall are arranged oppositely.
  • a second oil guide groove is provided on the side wall.
  • the second oil pipe assembly includes a third pipeline provided on the third side wall and a fourth pipeline provided on the fourth side wall, and the third pipeline and the fourth pipeline are respectively provided with There are oil injection holes so that the second oil guide grooves of the third side wall and the fourth side wall can be located within the injection range corresponding to the oil injection holes,
  • the third pipeline is also provided with a diverter hole, and the second housing is also provided with an internal oil passage connected to the diverter hole.
  • the second lubricating oil circuit system also includes an auxiliary pipeline connected to the oil passage in the housing and the motor assembly.
  • the oil passage in the housing includes a first internal oil passage and a second internal oil passage that are not connected.
  • the first internal oil passage is One end of the internal oil passage is connected with the diverter hole,
  • the auxiliary pipeline includes multiple sections of external pipelines, and the inlet of the filter is connected to another section of the first inner oil passage through at least one section of the multiple sections of external pipelines. One end is connected, the outlet of the filter is connected to one end of the second inner oil passage through at least one section of the multi-section outer pipeline, and the inlet of the oil cooling heat exchanger is connected through at least one section of the multi-section external pipeline. And connected with the other end of the second internal oil passage.
  • the second transmission shaft includes a second output shaft and at least one second intermediate shaft; the second intermediate shaft and the second input shaft are transmission connected through meshing of a third pair of gears, and the second intermediate shaft It is transmission connected to the second output shaft through a fourth pair of gears; the third pair of gears is located within the injection range of at least one injection hole of the third pipeline, and the fourth pair of gears is located in the Within the injection range of at least one injection hole of the fourth pipeline.
  • a gear portion is provided on the second intermediate shaft, and the third pair of gears is provided on the intermediate shaft;
  • the second input shaft is provided with a driving gear member, and the third gear member is connected to the driving gear member;
  • the fourth gear member is disposed on the second output shaft, and the fourth gear member meshes with the gear portion;
  • the second intermediate shaft is arranged on the upper part of the second output shaft along the direction of gravity.
  • the axis center of the second intermediate shaft is located above the axis centers of the second output shaft and the second input shaft in the direction of gravity, and the axis center of the second intermediate shaft is in contact with the second output shaft.
  • the axes of the shaft and the second input shaft are distributed in a triangular shape.
  • the second housing is further provided with a bearing chamber, and the second oil guide groove is located above the bearing chamber and communicates with the bearing chamber, so that the lubricating oil sprayed through the oil injection hole can pass through.
  • the second oil guide groove flows to the bearing chamber.
  • the second input shaft is a hollow shaft and includes a second hollow oil passage, and the second hollow oil passage is connected to the oil passage in the housing and the motor shaft.
  • the second side wall and the third side wall are located between the first side wall and the fourth side wall, and the motor assembly is disposed on the second side wall and the third side wall. between the walls,
  • the first housing further includes a first cylindrical side wall and a second cylindrical side wall connected to the second side wall, the first cylindrical side wall extending toward the first side wall, the The second cylindrical side wall extends toward the third side wall and serves as a housing for the stator assembly of the motor assembly.
  • At least two spaced cooling oil channel inlets are provided inside the second cylindrical side wall, and at least two of the cooling oil channel inlets are connected to the oil channel in the shell;
  • a cooling oil channel branch is also provided on the outer periphery of the stator assembly, and the cooling oil channel branch communicates with at least two cooling oil channel inlets.
  • the motor assembly includes a motor housing and an electric motor arranged in the motor housing, and the motor shaft is connected to the electric motor;
  • the electric drive transmission system also includes an oil cooling piece, which is arranged on the motor housing.
  • the oil cooling piece is used to store oil cooling liquid and is connected with the motor housing and the third motor housing.
  • a lubricating oil circuit system is connected with the second lubricating oil circuit system.
  • the oil cooling component includes an oil cooling box, an oil pool and an oil pump assembly, and the oil cooling box is integrated on the motor housing;
  • the oil pool is disposed in the motor housing, and the oil pump assembly is used to pump lubricating oil in the oil pool to the first oil pipe assembly.
  • a motor controller connected to the electric motor
  • the motor controller is arranged in a cavity surrounded by the motor housing, the first reducer and the second reducer;
  • the motor controller also includes a three-phase copper bar
  • the three-phase copper bar extends into the oil cooling element, passes through the oil cooling element and is connected to the motor, and part of the three-phase copper bar is inserted into the oil cooling liquid.
  • the electric motor includes a stator assembly
  • the three-phase copper bar includes a main copper bar and a transfer copper bar connected to each other, wherein the main copper bar is connected to the motor controller and inserted into the oil cooling liquid;
  • the adapter copper bar is arranged in the oil cooling component, and the adapter copper bar extends through the oil cooling component and is connected to the stator assembly.
  • the second reducer includes a second housing, and the first housing and the second housing are respectively connected to opposite end surfaces of the motor housing;
  • the electric drive transmission system also includes a controller cover
  • the controller cover, part of the motor housing, the end surfaces of the first housing and the second housing facing the motor housing together form a sealed accommodation cavity
  • the motor controller is accommodated in the sealed accommodation cavity.
  • both the first input shaft and the second input shaft are coaxially arranged with the motor shaft;
  • the first reducer further includes a first output shaft
  • the second reducer further includes a second output shaft
  • the first output shaft and the second output shaft are coaxially arranged and are not coaxially arranged with the motor shaft;
  • first output shaft, the second output shaft and the motor shaft are all coaxially arranged;
  • first output shaft, the second output shaft and the motor shaft are all disposed asynchronously.
  • a car including a battery; and an electric drive transmission system as described above, the electric drive transmission system is electrically connected to the battery.
  • lubricating oil can be accurately sprayed on areas that need lubrication through the first oil pipe assembly, thereby reducing the amount of lubricating oil and reducing factors such as the viscosity or gravity of the lubricating oil.
  • the lubricating oil can lubricate the differential through the first oil pipe assembly and the hollow oil passage. As a result, the transmission mechanism can be fully lubricated.
  • Figure 1 is a module schematic diagram of an automobile embodiment of the present application.
  • Figure 2 is a schematic cross-sectional view of the electric drive transmission system provided by the first embodiment of the present application
  • FIG. 3 is a partial schematic diagram of the transmission mechanism in Figure 2;
  • Figure 4 is a partial schematic view of the first housing and the second housing in Figure 2;
  • Figure 5 is a schematic structural diagram of the first oil pipe assembly and the second oil pipe assembly
  • Figure 6 is a schematic structural diagram of the first pipeline being arranged on the first side wall
  • Figure 7 is a schematic diagram of the assembly relationship of the first housing
  • Figure 8 is a schematic cross-sectional view along the A-A section in Figure 7;
  • Figure 9 is a schematic structural diagram of the second pipeline
  • Figure 10 is a schematic structural diagram of the second pipeline from another perspective
  • Figure 11 is a schematic structural diagram of the second pipeline provided on the second side wall
  • Figure 12 is a schematic diagram of the assembly relationship of the second side wall
  • Figure 13 is a schematic diagram of the principle of spray lubrication of the first pair of gears by the first pipeline
  • Figure 14 is a schematic diagram of the principle of spray lubrication of the second team of gears by the second pipeline
  • Figure 15 is a schematic structural diagram of the third pipeline
  • Figure 16 is a schematic structural diagram of the third pipeline from another perspective
  • Figure 17 is a schematic structural diagram of the third pipeline provided on the third side wall
  • Figure 18 is a schematic diagram of the assembly relationship of the third side wall
  • Figure 19 is a schematic structural diagram of the fourth pipeline
  • Figure 20 is a schematic structural diagram of the fourth pipeline provided on the fourth side wall
  • Figure 21 is a schematic plan view of the fourth pipeline provided on the fourth side wall
  • Figure 22 is a schematic diagram of the cooling principle of the motor assembly
  • Figure 23 is a schematic cross-sectional view of the cooling oil passage inlet opening in the first housing
  • FIG 24 is a schematic three-dimensional structural diagram of an electric drive system provided by the second embodiment of the present application.
  • the electric drive system includes an electric motor, an electric drive reducer and a differential;
  • Figure 25 is a cross-sectional view of the embodiment of Figure 24;
  • Figure 26 is a cross-sectional view of the electric drive assembly shown in Figure 24;
  • Figure 27 is a cross-sectional view of the electric drive reducer in Figure 24;
  • Figure 28 is a schematic diagram of an electric drive system housing of an electric drive system provided by this application.
  • Figure 29 is a schematic structural diagram of the interior of the electric drive system casing in Figure 28;
  • Figure 30 is a schematic diagram of another embodiment of an electric drive system provided by this application.
  • Figure 31 is a schematic diagram of the layout and structure of the electric drive system according to other embodiments provided by this application.
  • Figure 32 is a schematic structural diagram of the intermediate shaft and gear assembly in the differential shown in Figure 1 .
  • car 1 is a common vehicle in life.
  • the car 1 includes an electric drive system 10 , a battery 20 and a driving system 30 .
  • the electric drive transmission system 10 can be electrically connected to the battery 20 to drive the driving system 30 to work.
  • the driving system 30 may include components such as a frame, a spindle, wheels (steering wheels and driving wheels), and a frame (front suspension and rear suspension).
  • the electric drive transmission system 10 can be dynamically connected to the driving system 30 to drive the main shaft and wheels to rotate, thereby enabling the car 1 to move.
  • the electric drive transmission system 10 generally includes: a motor assembly 100, a transmission mechanism 200 and a converter 300.
  • the motor assembly 100 can be used to convert electrical energy into mechanical energy to provide power for the operation of the new energy vehicle 1 .
  • the transmission mechanism 200 can be used to reduce the rotation speed and increase the torque of the driving motor, and further transmit it to the main shaft of the vehicle 1 to drive the new energy vehicle 1 to travel.
  • the converter 300 is mainly used to convert direct current into alternating current and further drive the motor to operate.
  • the converter 300 generally includes an inverter and a DC/DC converter 300.
  • the inverter can be used to convert the DC power of the battery 20 into AC power, thereby driving the motor to operate.
  • the DC/DC converter 300 can be used to convert the power supply voltage of the battery 20 to perform high-low voltage conversion.
  • the high-voltage electricity of the battery 20 can be converted into low-voltage electricity to provide power for equipment such as multimedia equipment or air conditioners.
  • the transmission mechanism 200 generally includes a speed reducer and a differential 210 .
  • the main function of the differential 210 is to make the speeds of the vehicles on both sides of the car 1 be different when the car 1 turns.
  • the reducer is mainly used to reduce the speed of the drive motor and increase the torque output by the drive motor, and then transmit it to the main shaft of the car 1.
  • the electric drive transmission system 10 includes a motor assembly 100 , a differential 210 and at least one first reducer 230 .
  • the motor assembly 100 may include a motor shaft 101, a rotor assembly, and a stator assembly.
  • Motor shaft 101 is connected to differential 210 .
  • the first reducer 230 includes a first housing 240 and a first input shaft 231 disposed on the first housing 240 .
  • the first input shaft 231 is connected to the differential 210 .
  • the first input shaft 231 is a hollow shaft and includes a hollow oil passage 2310 .
  • the electric drive transmission system 10 also includes a first lubricating oil circuit system 400 provided in the first housing 240 .
  • the first lubricating oil circuit system 400 includes a first oil pipe assembly 401 .
  • the first oil pipe assembly 401 is connected with the hollow oil passage 2310.
  • the first oil pipe assembly 401 is also provided with a plurality of oil injection holes 402 at intervals.
  • the oil injection hole 402 is arranged at the interconnection between the first input shaft 231 , the differential 210 and the first housing 240 .
  • the lubricating oil in the first oil pipe assembly 401 can be sprayed through the plurality of oil spray holes 402 to the parts that need lubrication, such as the connection between the first input shaft 231 and the first housing 240, The surface of the gear on the first input shaft 231 and the gear meshing point.
  • the first oil pipe assembly 401 is also connected to the hollow oil passage 2310 of the first input shaft 231. Since the first input shaft 231 is also connected to the differential 210, the lubricating oil of the first oil pipe assembly 401 can pass through the hollow oil passage 2310. And flows to the differential 210 to lubricate the differential 210 .
  • the lubricating oil flowing in the first oil pipe assembly 401 may be hot lubricating oil with a low viscosity.
  • lubricating oil can be accurately sprayed on areas that need lubrication through the first oil pipe assembly 401, thereby reducing the amount of lubricating oil.
  • using hot low-viscosity lubricating oil for lubrication can help reduce the impact of factors such as the viscosity of the lubricating oil or gravity on the efficiency loss of the transmission mechanism 200 (such as the first reducer 230 and the differential 210).
  • the lubricating oil can lubricate the differential 210 through the first oil pipe assembly 401 and the hollow oil passage 2310. Therefore, the transmission mechanism 200 can be fully lubricated.
  • the first reducer 230 further includes a first transmission shaft 232 .
  • the first transmission shaft 232 and the first input shaft 231 are transmission connected through at least one pair of gear meshes.
  • the first transmission shaft 232 and the first input shaft 231 are connected to the first housing 240 through bearings.
  • a first oil guide groove 241 is defined in the first housing 240 .
  • the first oil guide groove 241 and at least one pair of gears are located within the injection range of the corresponding oil injection hole 402 .
  • the lubricating oil of the first oil pipe assembly 401 can be sprayed through the plurality of oil injection holes 402 at the connection between the first transmission shaft 232 and the first input shaft 231 and the first housing 240, as well as the first reduction gear.
  • the gear mesh of the device 230 is then lubricated in a targeted manner.
  • a first oil guide groove 241 is provided in the first housing 240.
  • the first oil guide groove 241 is located within the spray range of the oil injection hole 402, so that the lubricating oil can be sprayed into the first oil guide groove 241 and then sprayed on the first transmission shaft.
  • the connection between the first input shaft 231 and the first housing 240 such as the bearings in the bearing chamber of the first housing 240).
  • connection with the first housing 240 can reduce the effect on the first transmission shaft 232 and the first input shaft 231, thereby reducing the efficiency loss of the transmission mechanism 200 and improving the transmission efficiency of the transmission mechanism 200.
  • the first housing 240 includes a first side wall 242 and a second side wall 243 arranged oppositely (see FIG. 4 ).
  • the first transmission shaft 232 and the first input shaft 231 are provided between the two side walls.
  • a first oil guide groove 241 is defined in the first side wall 242 and the second side wall 243 .
  • the first oil pipe assembly 401 includes a first pipe 410 provided on the first side wall 242 and a second pipe 420 provided on the second side wall 243 (see Figures 4, 5, 9 to 12).
  • the first pipeline 410 and the second pipeline 420 are respectively provided with oil injection holes 402 so that the first oil guide grooves 241 of the first side wall 242 and the second side wall 243 can be located at the injection point of the corresponding oil injection hole 402 within the range. Therefore, the first reducer 230 (including the bearings and gears) can be fully and accurately lubricated.
  • the first pipeline 410 is also provided with a connecting hole 411 (see Figure 5).
  • the first housing 240 is also provided with an oil guide passage 244 connected with the hollow oil passage 2310 (see Figures 6, 7 and 8).
  • the connecting hole 411 is connected with the oil guide channel 244.
  • the lubricating oil in the first pipeline 410 can flow to the oil guide passage 244 inside the first housing 240 through the connecting hole 411, and further flow to the hollow oil passage 2310 to lubricate the differential 210.
  • part of the lubricating oil in the first pipeline 410 is sprayed to the parts of the first reducer 230 that need to be lubricated through the plurality of oil injection holes 402, and the other part can be diverted through the connecting hole 411 and passed through the oil guide channel 244 and The hollow oil passage 2310 flows to the differential 210 .
  • both ends of the first input shaft 231 are connected to the first side wall 242 and the second side wall 243 respectively, so the first side wall 242 can also be provided with
  • the first oil passage hole and the second oil passage hole (not shown) communicate with the inside and outside of the first reducer 230 .
  • the first oil through hole may be used to connect an external guide pipeline (not shown) and the first pipeline 410 .
  • the second oil through hole can be used to connect the external guide pipeline and the hollow oil pipeline 2310. In this case, the lubricating oil in the first pipeline 410 can flow to the external guide pipeline through the first oil passage hole, and further flow to the hollow oil passage 2310 through the second oil passage hole.
  • the solution of opening the first oil passage hole and the second oil passage hole in the first side wall 242 requires additional external guide pipelines, so it is possible This will cause the electric drive transmission system 10 to become larger in size and increase assembly and production costs. That is to say, opening the oil guide passage 244 inside the first housing 240 can make the structure of the first housing 240 compact and reduce the assembly cost.
  • the processing cost of opening the first oil passage hole and the second oil passage hole in the first side wall 242 is higher than opening the oil guide channel 244 in the first housing 240 (for example, the first side wall 242). Low.
  • the first lubricating oil circuit system 400 also includes an oil guide pipe 412 (see Figures 5, 6 and 8).
  • the oil guide pipe 412 connects the oil guide passage 244 and the hollow oil passage 2310.
  • the first transmission shaft 232 includes a first output shaft 233 and at least one first intermediate shaft 234 .
  • the first intermediate shaft 234 and the first input shaft 231 are transmission connected through the meshing of the first pair of gears.
  • the first intermediate shaft 234 and the first output shaft 233 are transmission connected through the meshing of the second pair of gears.
  • the first pair of gears is located within the injection range of at least one injection hole 402 of the first pipeline 410 .
  • the second pair of gears is located within the injection range of at least one injection hole 402 of the second pipeline 420 .
  • the first housing 240 is also provided with a bearing chamber 245.
  • the first oil guide groove 241 is located above the bearing chamber 245 and communicates with the bearing chamber 245 so that the lubricating oil sprayed through the oil injection hole 402 can flow to the bearing chamber 245 through the first oil guide groove 241 .
  • the first oil guide groove 241 may be hole-shaped (see Figure 6).
  • the first oil guide groove 241 may be an oil hole opened in the first housing 240 (such as the first side wall 242 or the second side wall 243) and communicated with the bearing chamber 245.
  • first oil guide groove 241 may also be a groove opened in the first housing 240 (for example, the first side wall 242 or the second side wall 243) and communicated with the bearing chamber 245 (see FIG. 11 ).
  • shape of the first oil guide groove 241 may be V-shaped, that is to say, the width of the first oil guide groove 241 may gradually decrease from top to bottom, and the cross section of the first oil guide groove 241 may gradually decrease.
  • the upper portion of the first oil guide groove 241 has a larger opening area, which is beneficial to receiving the lubricating oil sprayed from the oil injection hole 402 .
  • the lubricating oil is collected in the first oil guide groove 241 and flows into the bearing chamber 245 .
  • the area of the groove opening near the lower part of the first oil guide groove 241 is smaller, which can reduce the possibility of lubricating oil accumulating in the first oil guide groove 241 .
  • the first transmission shaft 232 includes a first output shaft 233 and a first intermediate shaft 234 .
  • the first pair of gears includes a first gear provided on the first input shaft 231 and a second gear provided on the first intermediate shaft 234 .
  • the second pair of gears includes a third gear provided on the first intermediate shaft 234 and a fourth gear provided on the first output shaft 233 .
  • first input shaft 231, the first intermediate shaft 234 and the first output shaft 233 may be disposed on the first side wall 242 and the second side wall 243 through bearings at both ends.
  • first side wall 242 may be provided with three bearing chambers 245 to respectively accommodate bearings at one end of the first input shaft 231 , the first intermediate shaft 234 and the first output shaft 233 .
  • the second side wall 243 may be provided with three bearing chambers 245 for accommodating bearings at the other end of the first input shaft 231 , the first intermediate shaft 234 and the first output shaft 233 respectively.
  • first side wall 242 may be provided with three first oil guide grooves 241 to correspond to the three bearing chambers 245 one by one
  • second side wall 243 may be provided with three first oil guide grooves 241 to correspond to the three bearing chambers 245.
  • first side wall 242 may be provided with three first oil guide grooves 241 to correspond to the three bearing chambers 245 one by one
  • second side wall 243 may be provided with three first oil guide grooves 241 to correspond to the three bearing chambers 245.
  • the first pipeline 410 may be provided with three injection holes 402 .
  • the three first oil guide grooves 241 of the first side wall 242 may be respectively located within the injection range of the three oil injection holes 402 of the first pipeline 410 . Therefore, the lubricating oil in the first pipeline 410 can be sprayed on the three first oil guide grooves 241 of the first side wall 242 through the three oil injection holes 402 of the first pipeline 410, thereby affecting the first side wall 242.
  • the three bearings provided in the three bearing chambers 245 are lubricated.
  • the first pipeline 410 may also have one or more oil injection holes 402 for spraying the meshing part of the first pair of gears.
  • the first pair of gear meshing locations may include tooth surfaces near the meshing locations of the first gear and the second gear.
  • the mutual meshing point of the first gear and the second gear may be located within the injection range of the oil injection hole 402 . Therefore, the lubricating oil in the first pipeline 410 can be sprayed at the meshing position of the first pair of gears through the oil injection hole 402 .
  • the second pipeline 420 may be provided with three injection holes 402 .
  • the three first oil guide grooves 241 of the second side wall 243 may be respectively located within the injection range of the three oil injection holes 402 of the second pipeline 420. Therefore, the lubricating oil in the second pipeline 420 can be sprayed on the three first oil guide grooves 241 of the second side wall 243 through the three oil injection holes 402 of the second pipeline 420, and then spray on the second side wall.
  • the three bearings provided in the three bearing chambers 245 of 243 are lubricated.
  • the second pipeline 420 may also have one or more oil spray holes 402 for spraying the meshing position of the second pair of gears.
  • the gear meshing portion may include a tooth surface near the meshing portion of the third gear and the fourth gear.
  • the meshing portion of the third gear and the fourth gear may be located within the spraying range of the oil spray hole 402.
  • the first reducer 230 may also be a first-level reducer or a third-level reducer. That is to say, the number of the first intermediate shafts 234 may change. In this case, the number and position of the fuel injection holes 402 may also be appropriately adjusted.
  • part of the lubricating oil in the first pipeline 410 can also be diverted and flowed to the differential 210 to perform submersion lubrication on the differential 210 .
  • part of the lubricating oil in the first pipeline 410 can also be diverted and flowed to the differential 210 to perform submersion lubrication on the differential 210 .
  • partial flow of lubricating oil from the first pipeline 410 to the differential 210 reference may be made to the foregoing description and will not be described again here.
  • the electric drive transmission system 10 further includes a second reducer 250 (see FIGS. 2 to 4 ).
  • the second reducer 250 and the first reducer 230 are respectively located at opposite sides of the motor assembly 100 and connected to the motor assembly 100 .
  • the second reducer 250 includes a second housing 260 and a second lubricating oil circuit system 450 .
  • the second lubricating oil circuit system 450 is provided in the second housing 260 .
  • the second reducer 250 also includes a second input shaft 251 and a second transmission shaft 252 .
  • the second input shaft 251 is connected to the motor shaft 101 of the motor assembly 100 and is transmission connected to the second transmission shaft 252 through at least one pair of gear meshes.
  • the second lubricating oil circuit system 450 includes a second oil pipe assembly 451 (see FIG. 5 ).
  • the second oil pipe assembly 451 is also provided with a plurality of oil injection holes 402 at intervals.
  • the oil injection holes 402 are arranged on the second input shaft. 251.
  • the lubricating oil in the second oil pipe assembly 451 can be accurately sprayed to the area in the second reducer 250 that needs lubrication through the plurality of oil spray holes 402 .
  • the lubricating oil flowing in the second oil pipe assembly 451 can be hot lubricating oil with low viscosity.
  • hot lubricating oil with low viscosity for lubrication is beneficial to reducing the viscosity of the lubricating oil or the impact of factors such as gravity on the transmission mechanism 200 ( For example, the impact caused by the efficiency loss of the second reducer 250 and the motor assembly 100).
  • the lubricating oil flows through at least one of the differential, the first reducer, the second reducer and the motor assembly, it can also partially absorb the heat therein to appropriately cool down the transmission components.
  • the second housing 260 includes oppositely arranged third side walls 261 and fourth side walls 262 (see FIG. 4 ).
  • the second transmission shaft 252 and the second input shaft 251 are provided between the two side walls.
  • the third side wall 261 and the fourth side wall 262 are provided with second oil guide grooves 263 .
  • the second oil pipe assembly 451 includes a third pipe 460 provided on the third side wall 261 and a fourth pipe 470 provided on the fourth side wall 262 (see FIGS. 15 to 21 ).
  • the third pipeline 460 and the fourth pipeline 470 are respectively provided with oil injection holes 402 so that the second oil guide grooves 263 of the third side wall 261 and the fourth side wall 262 can be located within the injection range of the corresponding oil injection holes 402 .
  • each bearing and gear of the second reducer 250 can be fully and accurately lubricated.
  • the third pipeline 460 is also provided with a diverter hole 461.
  • the second housing 260 is also provided with an internal oil passage 264 that communicates with the diverter hole 461 . That is to say, part of the lubricating oil in the third pipeline 460 may flow to the inner oil passage 264 of the second housing 260 through the diverter hole.
  • the second lubricating oil circuit system 450 also includes an auxiliary pipeline, which is connected to the oil passage 264 in the shell and the motor assembly 100 .
  • the electric drive transmission system 10 further includes a filter 500 and an oil-cooling heat exchanger 510 disposed outside the second housing 260 .
  • the oil passage 264 in the shell includes a first internal oil passage 2641 and a second internal oil passage 2642 that are not connected. One end of the first internal oil passage 2641 is connected with the diverter hole 461 .
  • the auxiliary pipeline includes multiple sections of external pipeline.
  • the inlet of the filter 500 is connected to the other end of the first inner oil passage 2641 through at least one section of the multi-section outer pipeline.
  • the outlet of the filter 500 is connected to one end of the second inner oil passage 2642 through at least one section of the multi-section outer pipeline.
  • the inlet of the oil cooling heat exchanger 510 is connected to the other end of the second inner oil passage 2642 through at least one section of the multiple sections of outer pipelines.
  • the hot lubricating oil in the third pipeline 460 can partially flow to the first internal oil passage 2641 through the diverter hole 461, and pass through the first internal oil passage 2641 and at least a section connected to the first internal oil passage 2641.
  • the outer pipeline enters the filter 500 for filtration to filter possible impurities such as iron filings and dust.
  • the filtered hot lubricating oil can flow out from the outlet of the filter 500 and flow to the second inner oil channel 2642 through at least a section of the outer pipeline connected to the outlet of the filter 500 and the second inner oil channel 2642.
  • the second inner oil passage 2642 and at least a section of the outer pipeline of the oil-cooling heat exchanger 510 flow into the oil-cooling heat exchanger 510 for cooling. That is to say, the lubricating oil in the second oil pipe assembly 451 is cooled down after passing through the oil cooling heat exchanger.
  • the filtered and cooled clean lubricating oil can flow to the motor assembly 100 to perform oil cooling on the motor assembly 100 .
  • the third pipeline 460 may not be provided with the diverter hole 461 . That is to say, the lubricating oil in the third pipeline 460 can flow to the motor assembly 100 without splitting to cool the motor assembly 100 .
  • the cooling system of the motor assembly 100 can be independent, and the cooling system can be either an oil cooling system or a water cooling system.
  • the second transmission shaft 252 includes a second output shaft 253 and at least one second intermediate shaft 254 .
  • the second intermediate shaft 254 and the second input shaft 251 are transmission connected through meshing of a third pair of gears.
  • the second intermediate shaft 254 and the second output shaft 253 are connected in transmission through the meshing of the fourth pair of gears.
  • the third pair of gears is located within the injection range of at least one injection hole 402 of the third pipeline 460 .
  • the fourth pair of gears is located in at least one jet of the fourth pipeline 470 Within the injection range of the oil hole 402.
  • the lubrication principle of the third pair of gears and the fourth pair of gears reference can be made to the lubrication principle of the first pair of gears and the second pair of gears, which will not be described again here.
  • the second housing 260 is also provided with a bearing chamber 245 (see Figures 17 and 20).
  • the second oil guide groove 263 is located above the bearing chamber 245 and communicates with the bearing chamber 245 , so that the hot lubricating oil sprayed through the oil injection hole 402 can flow to the bearing chamber 245 through the second oil guide groove 263 .
  • the second transmission shaft 252 includes a second output shaft 253 and a second intermediate shaft 254 .
  • the third pair of gears includes a fifth gear provided on the second input shaft 251 and a sixth gear provided on the second intermediate shaft 254 .
  • the fourth pair of gears includes a seventh gear provided on the second intermediate shaft 254 and an eighth gear provided on the second output shaft 253 .
  • the second input shaft 251, the second intermediate shaft 254 and the second output shaft 253 may be disposed on the third side wall 261 and the fourth side wall 262 through bearings at both ends.
  • the third side wall 261 may be provided with three bearing chambers 245 to accommodate bearings at one end of the second input shaft 251 , the second intermediate shaft 254 and the second output shaft 253 respectively.
  • the third side wall 261 may be provided with three bearing chambers 245 for accommodating bearings at the other end of the second input shaft 251 , the second intermediate shaft 254 and the second output shaft 253 respectively.
  • the fourth side wall 262 may be provided with three second oil guide grooves 263 to correspond to the three bearing chambers 245 one by one, and the fourth side wall 262 may be provided with three second oil guide grooves 263 to correspond to the three bearing chambers 245.
  • the fourth side wall 262 may be provided with three second oil guide grooves 263 to correspond to the three bearing chambers 245.
  • the third pipeline 460 may be provided with three injection holes 402 (see FIGS. 15 to 18 ).
  • the three second oil guide grooves 263 of the third side wall 261 may be respectively located within the injection range of the three oil injection holes 402 of the third pipeline 460 . Therefore, the hot lubricating oil in the third pipeline 460 can be sprayed on the three second oil guide grooves 263 of the third side wall 261 through the three oil injection holes 402 of the third pipeline 460, thereby affecting the third side wall.
  • the three bearings provided in the three bearing chambers 245 of 261 are lubricated.
  • the third pipeline 460 may also have one or more oil injection holes 402 for spraying the meshing part of the fourth pair of gears.
  • the meshing point of the fourth pair of gears may include tooth surfaces near the meshing point of the seventh gear and the eighth gear.
  • the mutual meshing point of the seventh gear and the eighth gear may be located within the injection range of the fuel injection hole 402 . Therefore, the lubricating oil in the third pipeline 460 can be sprayed to the meshing position of the fourth pair of gears through the oil injection hole 402 .
  • the fourth pipeline 470 may be provided with three injection holes 402 (see FIGS. 19 to 21 ).
  • the three second oil guide grooves 263 of the fourth side wall 262 may be respectively located within the injection range of the three oil injection holes 402 of the fourth pipeline 470 . Therefore, the lubricating oil in the fourth pipeline 470 can be sprayed on the three second oil guide grooves 263 of the fourth side wall 262 through the three oil injection holes 402 of the fourth pipeline 470, thereby affecting the fourth side wall.
  • the three bearings provided in the three bearing chambers 245 of 262 are lubricated.
  • the fourth pipeline 470 may also have one or more oil injection holes 402 for spraying the meshing part of the third pair of gears.
  • the mutual meshing point of the fifth gear and the sixth gear may be located within the injection range of the fuel injection hole 402 .
  • the meshing point of the third pair of gears may include tooth surfaces adjacent the meshing point of the fifth gear and the sixth gear. Therefore, the lubricating oil in the fourth pipeline 470 can be sprayed to the meshing position of the third pair of gears through the oil injection hole 402 .
  • the second reducer 250 may also be a first-level reducer or a third-level reducer. That is to say, the number of the first intermediate shafts 234 may change. In this case, the number and position of the fuel injection holes 402 may also be appropriately adjusted.
  • the second input shaft 251 is a hollow shaft and includes a second hollow oil passage 2510 .
  • the second hollow oil passage 2510 is connected to the oil passage 264 in the shell and the motor shaft 101 .
  • the oil passage 264 in the shell also includes a split flow passage 2643.
  • the inlet of the split flow channel 2643 is connected to the outlet of the oil-cooling heat exchanger 510 through at least a section of external pipeline, so as to receive the filtered and cooled lubricating oil.
  • the branch flow channel 2643 may also include a first branch outlet and a second branch outlet. The first branch outlet and the second branch outlet are both connected to the inlet of the branch channel 2643, so that the cooled lubricating oil can partially flow to the stator assembly of the motor assembly 100 through the first branch outlet, and part of it can flow to the motor assembly through the second branch outlet. 100 rotor assembly.
  • the second hollow oil passage 2510 is also connected to the second branch outlet.
  • the clean cold lubricating oil flowing out through the second branch outlet can flow to the motor shaft 101 of the rotor assembly through the second hollow oil passage 2510 to cool the rotor assembly.
  • the motor shaft 101 can rotate so that the lubricating oil is thrown out under the action of centrifugal force and cools the inside of the stator assembly, for example, the windings inside the stator assembly can be cooled.
  • the second side wall 243 and the third side wall 261 are located between the first side wall 242 and the fourth side wall 262, and the motor is disposed between the second side wall 243 and the third side wall 261 (see Figure 2 to Figure 4, Figure 22).
  • the first housing 240 further includes a first cylindrical side wall 246 and a second cylindrical side wall 247 connected to the second side wall 243 .
  • the first cylindrical side wall 246 extends toward the first side wall 242 .
  • the second cylindrical side wall 247 extends toward the third side wall 261 and serves as a housing for the stator assembly of the motor.
  • the motor assembly 100 can be disposed between two reducers, and the electric drive transmission system 10 can be made compact.
  • At least two spaced apart cooling oil channel inlets 2471 are provided inside the second cylindrical side wall 247 .
  • At least two cooling oil passage inlets 2471 are connected to the oil passage 264 in the shell.
  • At least two cooling oil channel inlets 2471 can communicate with the first branch outlet of the branch flow channel 2643 of the flow channel in the shell.
  • the filtered and cooled lubricating oil can flow to at least two cooling oil passage inlets 2471 through the split flow channel 2643, and further cool the stator assembly.
  • the cold-filtered lubricating oil can cool the stator core inside the stator assembly and the outside of the windings.
  • the path of the cooled lubricating oil flowing to each area of the stator assembly can be roughly the same and not too long. It effectively avoids the possibility that the cooled lubricating oil will heat up unevenly during the flow process, which will lead to a decrease in cooling effect.
  • a cooling oil channel branch (not shown) is also provided on the outer periphery of the stator assembly.
  • the outer periphery of the stator assembly and the second cylindrical side wall 247 may jointly form a cooling oil channel branch.
  • the cooling oil channel branch connects at least two cooling oil channel inlets 2471.
  • the cooling oil channel branch may further include an annular main oil channel and a branch oil channel.
  • the annular main oil passage may be arranged annularly or spirally along the circumferential direction of the stator assembly.
  • the number of branch oil passages may be multiple, and the plurality of branch oil passages may be arranged at intervals around the stator assembly along a circumferential direction parallel to the stator assembly.
  • the electric drive system 10 also includes an oil sump 249 and an oil pump assembly 520 .
  • the oil pump assembly 520 may be disposed on the first housing 240 .
  • the oil pool 249 is located inside the first housing 240 .
  • the oil pump assembly 520 is used to pump the lubricating oil in the oil pool 249 to the first oil pipe assembly 401 .
  • the oil pump assembly 520 can also be used to pump the lubricating oil in the oil pool 249 to the second oil pipe assembly 451 .
  • the first housing 240 may also have an oil inlet hole 248 .
  • the lubrication in the oil pool 249 can flow into the oil inlet 248 through the external pipeline under the action of the oil pump assembly 520.
  • the oil inlet hole 248 may be opened inside the first housing 240 , and the oil inlet hole 248 may communicate with the first oil pipe assembly 401 and the second oil pipe assembly 451 . In this case, the lubricating oil can flow to the first oil pipe assembly 401 and the second oil pipe assembly 451 through the oil inlet hole 248 .
  • the second side wall 243 , the second cylindrical side wall 247 of the first housing 240 and the third side wall 261 of the second housing 260 may be combined to form an oil pool 249 .
  • the area formed between the first side wall 242 and the second side wall 243 of the first housing 240 for accommodating the first input shaft 231 and the first transmission shaft 232 can be connected with the area where the oil pool 249 is located, so as to This allows the lubricating oil to flow back to the oil pool 249.
  • the area formed between the third side wall 261 and the fourth side wall 262 of the second housing 260 for accommodating the second input shaft 251 and the second transmission shaft 252 can be connected with the area where the oil pool 249 is located, so that The lubricating oil returns to the oil pool 249.
  • the electric drive system 10 further includes a controller.
  • Controllers can be used to control motor components to achieve controlled operation. That is, the controller may be used to control at least one of the speed and torque of the motor assembly.
  • the controller can also control the flow rate and/or flow rate of the lubricating oil of the oil pump assembly. In this case, the flow rate and/or flow rate of the lubricating oil can be controlled, thereby improving the efficiency of lubrication and accurately lubricating various areas.
  • the hot lubricating oil can be sprayed through the first oil pipe assembly 401 to the areas that need lubrication in the first reducer 230 and the differential 210; and it can be sprayed to the second reducer 250 and the motor through the second oil pipe assembly 451.
  • the area in the assembly 100 that needs lubrication can be accurately sprayed and lubricated to the transmission mechanism 200, thereby further reducing the efficiency loss caused by lubrication.
  • this active lubrication system can fully cool the motor component 100 with filtered and cooled cold oil, so that the temperature rise during motor operation can be better controlled to prevent overheating or temperature imbalance, thereby better releasing the performance of the motor component 100.
  • Figure 24 is a schematic three-dimensional structural diagram of an electric drive system provided in the second embodiment of the present application.
  • the electric drive force transmission system includes an electric motor, an electric motor, and an electric drive system.
  • Drive reducer and differential
  • Figure 25 is a cross-sectional view of the embodiment of Figure 24.
  • an electric drive system is provided.
  • the electric drive system includes an electric drive assembly 102, a differential 210, two electric drive reducers 301, a motor controller 700 and an oil cooling component 600.
  • the electric drive assembly 102 includes a motor housing 110 (not shown) and an electric motor (not shown) disposed in the motor housing 110 .
  • the differential 210 is connected to the electric motor.
  • the two electric drive reducers 301 The differential 210 includes a first power shaft 390 and a second power shaft 310.
  • the single power output by the electric drive assembly 102 is divided into mutually independent first powers. and second motivation.
  • Two electric drive reducers 301 are respectively provided at opposite ends of the motor housing 110, and are respectively connected to the first power shaft 390 and the second power shaft 310, and perform deceleration and torque increase to provide two independent output powers. . Therefore, this mutually independent first power and second power can be easily distributed on both sides of the electric drive system, without the need for a transmission shaft to traverse the entire electric drive system, which is conducive to full utilization of space.
  • the motor controller 700 is disposed on the motor housing 110, making the entire electric drive system more compact.
  • the motor controller 700 is connected to the motor and used to control the motor.
  • the oil cooling piece 600 is provided on the motor housing 110 for storing Oil cooling liquid is stored and the oil cooling piece 600 is connected with the motor housing 110 for cooling the motor and lubricating the electric drive reducer 301.
  • the differential 210 in the present application can adopt a small differential, which makes it smaller, lighter and less expensive.
  • the electric drive system and the electric drive transmission system 10 in the first embodiment are both used to drive the traveling system 30; the electric drive assembly 102 and the motor assembly 100 in the first embodiment Both are used to convert electrical energy into mechanical energy; the electric drive reducer 301 and the first reducer 230 or the second reducer 250 in the first embodiment are both used to reduce speed and increase torque; the first power shaft 390 and the second power shaft
  • the shaft 310 may respectively correspond to the first input shaft 231 and the second input shaft 251 in the first embodiment, and is used to connect the power output of the electric drive power transmission system 10/electric drive system to the mutually independent first power and third power. Two motivation.
  • first power shaft 390 and the second power shaft 310 are provided with a first power bearing 311 and a second power bearing 312, which are connected with the first power shaft 390 and the second power shaft through interference fit. 310 is solidly connected and bears its rotation.
  • Figure 28 is an electric drive of an electric drive force transmission system provided by this application. Schematic diagram of the force transmission system housing.
  • the oil cooling component 600 is disposed below the electric drive assembly 102 along the direction of gravity.
  • the oil cooling component 600 includes an oil cooling box (not shown), and the oil cooling box is integrated on the motor housing 110 .
  • the oil cooling liquid circulates inside the motor controller 700 and the motor, and in the oil cooling Under the cooling of the component 600, the internal cooling of the entire electric drive system is realized, and because the oil cooling component 600 is located close to both the motor and the motor controller 700, it can provide oil coolant to both at the fastest speed, speeding up This improves cooling efficiency and further reduces losses in the electric drive system.
  • the electric drive system in this embodiment also includes the first lubricating oil circuit system 400 and the second lubricating oil circuit system 450 in the first embodiment of the present application, the oil cooling component 600 can also be used with the electric drive system.
  • the machine casing 110, the first lubricating oil circuit system 400 and the second lubricating oil circuit system 450 are connected.
  • the motor assembly 100 includes a motor housing 110 and a motor disposed in the motor housing 110 .
  • the motor shaft 101 Connect the motor.
  • the motor housing 110 is mainly used to cover the motor.
  • the electric drive transmission system 10 also includes an oil cooling component 600.
  • the oil cooling component 600 is arranged on the motor housing 110.
  • the oil cooling component 600 is used to store oil cooling liquid and communicate with the motor housing 110 and the first lubricating oil circuit.
  • the system 400 and the second lubricating oil circuit system 450 are connected.
  • Figure 29 is a schematic structural diagram of the interior of the electric drive system casing in Figure 28.
  • the oil cooling component 600 includes an oil cooling box, an oil pool 249 and The oil pump assembly 520 and the oil cooling box are integrated on the motor housing 110 .
  • the oil pool 249 is provided inside the motor housing 110 .
  • the oil pump assembly 520 is also used to pump the lubricating oil in the oil pool 249 to the first oil pipe assembly 401 .
  • the motor controller 700 also includes a three-phase copper bar 701 .
  • the three-phase copper bar 701 extends into the oil cooling piece 600, and the oil cooling piece 600 is used to cool the heat taken out of the motor through the three-phase copper bar 701.
  • the three-phase copper bar 701 passes through the oil cooling piece 600 and is connected to the motor. Part of the three-phase copper bar 701 is inserted into the oil cooling liquid to further prevent the heat of the motor from being transmitted to the motor controller 700 and increase the cooling burden of the oil cooling component 600 inside the entire electric drive system.
  • Figure 26 is a cross-sectional view of the electric drive assembly shown in Figure 24.
  • the electric motor includes a stator assembly 130 .
  • the three-phase copper bar 701 includes a main copper bar and a transfer copper bar connected to each other.
  • the main copper bar is connected to the motor controller 700 and inserted into the oil cooling liquid.
  • the transfer copper bar is arranged in the oil cooling part 600, and the transfer copper bar extends through the oil cooling part 600 and is connected to the stator assembly 130 for transmitting kinetic energy and thermal energy in the motor.
  • the three-phase copper bar 701 is inserted
  • the oil cooling component 600 further prevents the heat energy inside the motor from entering the motor controller 700 through the three-phase copper bar 701, thereby affecting the heat dissipation in the entire electric drive system and increasing the cooling burden of the entire system.
  • the three-phase copper bars 701 can be directly overlapped with the stator terminals in the stator assembly 130 to directly cool the stator terminals, thereby achieving cooling at the heat-generating parts of the motor, thereby improving the cooling efficiency of the motor.
  • the motor controller 700 is disposed in the cavity 702 surrounded by the motor housing 110 and the two electric drive reducers 301, and is used to control the output kinetic energy of the motor according to demand. It can be understood that both the cavity 702 and the oil pool 249 in the first embodiment of the present application are used for oil storage.
  • the motor controller 700 is connected to the electric drive assembly 102 through bolts or a common housing, which reduces the size of the entire electric drive system to a certain extent, and the installation distance between the motor controller 700 and the electric drive assembly 102 Recently, when the motor controller 700 controls the electric drive assembly 102, the kinetic energy lost in transmission is smaller, so that the driving energy of the entire electric drive system during operation can be reduced to a certain extent, thereby achieving energy saving.
  • the motor controller 700 is installed in the cavity 702, which protects the motor controller 700 from being affected by other structures.
  • the motor controller 700 is one of the key components of an electric vehicle. Its function is to convert the electrical energy stored in the power battery into the electrical energy required by the motor according to instructions such as gear position, accelerator, and brake. It can control the starting operation, forward and backward speed, climbing intensity and other driving conditions of electric vehicles, or it can help electric vehicles brake and store part of the braking energy in the power battery.
  • FIG. 27 is a cross-sectional view of the electric drive reducer in FIG. 24 .
  • each electric drive reducer 301 includes a reducer housing 350, and the reducer housing 350 is connected to the opposite end surfaces of the motor housing 110 respectively.
  • the electric drive reducer 301 can be the first reducer 230 or the second reducer 250 . Since the two electric drive reducers 301 can be the first reducer 230 and the second reducer 250 respectively, at this time, the two reducer housings 350 can be the first housing 240 and the second housing 260 respectively; wherein, The first housing 240 and the second housing 260 are connected to opposite end surfaces of the motor housing 110 respectively.
  • the electric drive system also includes a controller cover 430 .
  • the controller cover 430, part of the motor housing 110, and the end surface of each electric drive reducer 301 facing the motor housing 110 together form a sealed accommodation cavity.
  • the end surfaces of the controller cover 430 , part of the motor housing 110 , the first housing 240 , and the second housing 260 facing the motor housing 110 together form a sealed accommodation cavity.
  • the motor controller 700 is accommodated in a sealed accommodation cavity.
  • the sealed accommodation cavity and the motor housing 110 are fixed together.
  • the motor housing 110 is provided with a through hole 440 through which the three-phase copper bar 701 passes.
  • Each electric drive reducer 301 is provided with a spline 341 and an output shaft 370.
  • the spline 341 is located at the power output end of the electric drive system and meshes with the output shaft 370 to transmit the output power to the vehicle. tire.
  • the splines 341 are arranged on the left and right sides of the output shaft 370, and the output power output to the electric drive reducer 301 and then decelerated and increased in torque is transmitted to the wheel transmission system through the output shaft 370.
  • the electric drive reducer 301 decelerates and increases the torque of the input power through the meshing transmission between gear parts. Its speed ratio and the degree of deceleration and torque increase are changed by changing the number of gear teeth.
  • the electric drive reducer 301 can be the first reducer 230 or the second reducer 250 . Since the two electric drive reducers 301 can be the first reducer 230 and the second reducer 250 respectively, at this time, the output shaft of the electric drive reducer 301 can be the first output shaft 233 or the second output shaft 253 .
  • each electric drive reducer 301 further includes an intermediate shaft 320 , a first gear member 330 and a second gear member 340 .
  • the intermediate shaft 320 is provided with a gear portion 325
  • the first gear member 330 is provided on the intermediate shaft 320 .
  • the first power shaft 390 and the second power shaft 310 are each provided with a driving gear member 315
  • the first gear member 330 is connected to the driving gear member 315 of the first power shaft 390 or the second power shaft 310 .
  • the second gear member 340 is disposed on the output shaft 370 and meshes with the gear portion 325 .
  • the intermediate shaft 320 is disposed above the output shaft 370 in the direction of gravity.
  • the first power shaft 390 or the second power shaft 310 rotates, and the driving gear member 315 meshes with the first gear member 330 to rotate, driving the intermediate shaft 320 to rotate together, and the gear portion 325 and the second gear member 340
  • the meshing drives the second gear member 340 and the output shaft 370 to rotate together, thereby transmitting the power of the first power shaft 390 or the second power shaft 310 to the output shaft 370, completing the power transmission, that is, transmitting the power to the wheel transmission system.
  • the electric drive reducer 301 can be the first reducer 230 or the second reducer 250
  • the first power shaft 390 and the second power shaft 310 can respectively correspond to the first power shaft in the first embodiment.
  • the input shaft 231 and the second input shaft 251; the intermediate shaft 320, the first gear member 330, the second gear member 340, the gear portion 325 and the driving gear member 315 may respectively correspond to the first intermediate shaft 234/ in the first embodiment.
  • Figure 32 is a schematic structural diagram of the intermediate shaft and gear assembly in the differential shown in Figure 1 .
  • the intermediate shaft 320 is disposed above the output shaft 370 and the first power shaft 390 or the second power shaft 310 .
  • the first intermediate shaft 234 is arranged above the first output shaft 233 along the direction of gravity
  • the second intermediate shaft 254 is arranged above the second output shaft 253 along the direction of gravity.
  • the axis center of the intermediate shaft 320 is located above the axis center of the output shaft 370 and the first power shaft 390 or the second power shaft 310 , and the axis center of the intermediate shaft 320 is in contact with the output shaft 370 and the first power shaft 310 .
  • the axis center of the power shaft 390 or the second power shaft 310 is distributed in a triangle.
  • the axis center of the first intermediate shaft 234 is located above the axis centers of the first output shaft 233 and the first input shaft 231 along the gravity direction, and the axis center of the first intermediate shaft 234 is in contact with the first output shaft 233 and the first input shaft 231 .
  • the axis center of the input shaft 231 is distributed in a triangular shape; the axis center of the second intermediate shaft 254 is located above the axis centers of the second output shaft 253 and the second input shaft 251 along the direction of gravity, and the axis center of the second intermediate shaft 254 is aligned with the axis center of the second intermediate shaft 254 .
  • the axes of the two output shafts 253 and the second input shaft 251 are distributed in a triangle.
  • the center of gravity of the intermediate shaft 320 is relatively high, and the oil coolant will not hang on the gear part 325, thereby preventing the gear part 325 from being
  • the movement in the oil cooling liquid causes oil churning loss, which affects the cooling efficiency of the oil cooling component 600, which in turn affects the cooling effect inside the entire electric drive system and affects the service life.
  • the triangular arrangement on the gears of the electric drive reducer 301 causes the radial forces between the gears of the electric drive reducer 301 to cancel each other out, preventing the electric drive reducer 301 from generating excessive noise and vibration during operation, which in turn affects the entire electric drive. electric drive system, thereby improving the NVH index of vehicles with this electric drive system and enhancing the experience and comfort of drivers and passengers.
  • each gear member in each electric drive reducer 301 includes a gear part 325, a first gear member 330, a second gear member 340 and a driving gear member 315.
  • the center distance between each gear member is based on According to actual needs, the settings can be the same or different, providing the possibility to diversify the electric drive system.
  • the intermediate shaft 320 is provided with a first transmission bearing 321 and a second transmission bearing 322, which are firmly connected to the intermediate shaft 320 through interference fit to bear its rotation.
  • the second gear member 340 is provided with an output bearing 342, which is tightly coupled with an interference fit to the second gear member 340 to ensure its rotation.
  • the arrangement of the bearing supports and fixes the intermediate shaft 320 and bears part of the radial load.
  • the electric drive reducer 301 also includes an oil seal 343.
  • the oil seal 343 is disposed on the output shaft 370 and contacts the power output end of the electric drive system. While used to protect the stability of the bearings and oil in the electric drive reducer 301, the oil seal 343 ensures the rotation of the output shaft 370 and isolates external impurity contamination. And when replacing the oil seal 343, you only need to disassemble the oil seal 343 and clean the sludge before installing it. There is no need to change the structure of the entire electric drive system, which is more conducive to worker operation and saves human resources. .
  • the electric motor includes a motor shaft 101 .
  • the differential 210 is disposed at one end of the motor shaft 101.
  • the first power shaft 390 extends within the motor shaft 101 of the electric drive assembly 102 toward the other end of the electric drive assembly 102 and extends out of the motor shaft 101 to communicate with the electric drive assembly.
  • the stator assembly 130 is similar to the stator assembly of a traditional motor. It is composed of silicon steel punching sheets and copper wire windings, and is fixedly connected to the inner hole of the motor housing 110 through interference fit or bolt connection.
  • the motor rotor assembly 140 is composed of silicon steel punched sheets and permanent magnets, and is firmly connected to the motor shaft 101 through interference fit. Both ends of the motor shaft 101 cooperate with the bearings 154 through interference fit or bolt connection to support the high-speed rotation of the motor shaft 101 and perform power output.
  • the motor rotor assembly 140 transmits the power to the motor shaft 101 through interference or key fit, and then to the differential 210. The power is divided into left and right paths through the differential 210, and passes through the gap between the differential 210 and the input shaft.
  • the transmission spline 211 is transmitted to the second power shaft 310 and the first power shaft 390 .
  • FIG. 31 is a schematic structural diagram of an electric drive system in other embodiments provided by this application.
  • the output shafts 370 of the two electric drive reducers 301 are coaxially arranged and are not axially arranged with the motor shaft 101. At this time, the output shaft 370 is located on the same straight line as the first power shaft 390 and the second power shaft 310.
  • the first power shaft 390 and the second power shaft 310 directly transmit the power to the output shaft 370 without going through the energy consumption of other gear sets, reducing the The consumption of kinetic energy during transmission is reduced.
  • first input shaft 231 and the second input shaft 251 are both coaxially disposed with the motor shaft 101
  • first output shaft 233 and the second output shaft 253 are coaxially disposed and not coaxially disposed with the motor shaft 101 .
  • the output shafts 370 and the motor shafts 101 of the two electric drive reducers 301 are coaxially arranged, and the input power sources of the first power shaft 390 and the second power shaft 310 are the same.
  • the third power shaft can be
  • the first power shaft 390, the second power shaft 310 and the motor shaft 101 are configured as an integrated shaft, thereby reducing the loss of input power passing through the connecting structure.
  • the first input shaft 231 and the second input shaft 251 are both coaxially disposed with the motor shaft 101
  • the first output shaft 233 and the second output shaft 253 are coaxially disposed with the motor shaft 101 .
  • both the output shaft 370 and the motor shaft 101 are disposed non-axially.
  • the output shaft 370, the motor shaft 101, the first power shaft 390 and the second power shaft 310 are all arranged on different axes, and each shaft is no longer on the same straight line, and are transmitted through each spline 341 or gear set. , making the output of the entire electric drive system more flexible, and the direction of the output can be changed by changing the installation position of the output shaft 370, which provides the possibility of variability in the vehicle's drive output.
  • first input shaft 231 and the second input shaft 251 are both coaxially disposed with the motor shaft 101
  • first output shaft 233 and the second output shaft 253 are coaxially disposed, and are coaxially disposed with the motor shaft 101
  • first input shaft 231 and the second input shaft 251 are coaxially arranged with the motor shaft 101
  • first output shaft 233 and the second output shaft 253 are not arranged coaxially with the motor shaft 101.
  • FIG. 30 is a schematic diagram of another embodiment of an electric drive system provided by this application.
  • the electric drive system also includes a suspension structure 21.
  • the suspension structure 21 is provided with four connection parts (points 11-14 in the figure) that are connected to the vehicle frame. Through these four connection parts, the electric drive system is connected to the vehicle frame.
  • the drive system is fixed on the frame, and in a specific embodiment, the center of mass 17 of the electric drive system is located at the center of the four connections (points 11-14 in the figure) at or near the location. It can be understood that when the center of mass 17 of the electric drive system is located at or near its center, due to the structural stability, the force on the electric drive system and the suspension will be relatively balanced, and will not be caused by uneven force.
  • the output shafts 370 on both sides can also achieve the same effect with the same minimum size, which is more beneficial to the layout of the electric drive system and the layout of the entire vehicle.
  • the differential 210 transmits the first power shaft 390 and the second power shaft 310 through the corresponding transmission splines 211 on the left and right sides respectively, and transmits the first power and the second power shaft through the first power shaft 390 and the second power shaft 310 .
  • Power is input to the left and right electric drive reducers 301 to reduce speed and increase torque.
  • the output power is transmitted from the first power shaft 390 , the second power shaft 310 is transmitted to the output shaft 370. Since the power output positions of the left and right splines 341 are independent and do not affect each other, various power output structural arrangements can be realized by changing the position of the output shaft 370 .
  • the two electric drive reducers 301 in this application are exactly the same. According to different needs, the two electric drive reducers 301 can also be designed differently. . Among them, in one embodiment, the speed ratios of the two electric drive reducers 301 can be set to the same or different settings. When the speed change efficiency of the output shafts 370 on both sides of the electric drive system is required to be different, the speed ratios of the two electric drive reducers 301 can be set. The ratio is set to different values to achieve different deceleration rates on different output shafts 370 within the electric drive system, which can be applicable to some special application conditions.
  • Another aspect of this application also provides a vehicle, which includes a vehicle frame and the electric drive system of any of the above embodiments connected to the vehicle frame. Therefore, the vehicle of the present application also has all the beneficial effects of the above-mentioned electric drive system, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

本申请公开了电驱传动系统和汽车,其中,电驱传动系统包括电机组件、差速器及至少一个第一减速器;其中,电机组件还包括电机轴,电机轴连接于差速器;第一减速器包括第一壳体及设置在第一壳体上的第一输入轴,第一输入轴与差速器连接,第一输入轴为中空轴,包括中空油路;电驱传动系统还包括设置在第一壳体的第一润滑油路系统;第一润滑油路系统包括第一油管组件,第一油管组件与中空油路连通,第一油管组件上还间隔设有多个喷油孔,喷油孔布置在第一输入轴、差速器及第一壳体之间的相互连接。通过上述方式,本申请能够降低润滑过程中的传动机构的效率损失。

Description

电驱传动系统和汽车 【技术领域】
本申请涉及汽车领域,特别是涉及电驱传动系统和汽车。
【背景技术】
在汽车领域,电驱传动系统在工作时需要进行润滑。但是在润滑的过程中也存在传动机构的效率损失的问题,因此需要降低润滑过程中的传动机构的效率损失。
【发明内容】
本申请主要解决的技术问题是提供电驱传动系统和汽车,能够降低润滑过程中的传动机构的效率损失。
为解决上述技术问题,本申请采用的一个技术方案是:提供电驱传动系统,包括电机组件、差速器及至少一个第一减速器;其中,电机组件还包括电机轴,电机轴连接于差速器;第一减速器包括第一壳体及设置在第一壳体上的第一输入轴,第一输入轴与差速器连接,第一输入轴为中空轴,包括中空油路;电驱传动系统还包括设置在第一壳体的第一润滑油路系统;第一润滑油路系统包括第一油管组件,第一油管组件与中空油路连通,第一油管组件上还间隔设有多个喷油孔,喷油孔布置在第一输入轴、差速器及第一壳体之间的相互连接处。
进一步,所述第一减速器还包括第一传动轴;所述第一传动轴与所述第一输入轴通过至少一对齿轮啮合而传动连接;
所述第一传动轴和所述第一输入轴通过轴承与所述第一壳体连接,所述第一壳体上开设有第一导油槽,所述第一导油槽及所述至少一对齿轮位于对应所述喷油孔的喷射范围内。
进一步,所述第一壳体包括相对设置的第一侧壁和第二侧壁;所述第一传动轴和所述第一输入轴设置在两侧壁之间,第一侧壁和第二侧壁开设有所述第一导油槽,
所述第一油管组件包括设置于所述第一侧壁的第一管路和设置于所述第二侧壁的第二管路,所述第一管路和所述第二管路分别开设有喷油孔以使得所述第一侧壁和所述第二侧壁的第一导油槽能够位于对应所述喷油孔的喷射范围内;
所述第一管路上还设有连接孔,所述第一壳体上还设有与所述中空油路连通的导油通道,所述连接孔与所述导油通道连通。
进一步,所述第一润滑油路系统还包括导油管,所述导油管连接所述导油通道和所述中空油路。
进一步,第一传动轴包括第一输出轴和至少一个第一中间轴;所述第一中间轴和所述第一输入轴通过第一对齿轮啮合而传动连接,所述第一中间轴和所述第一输出轴通过第二对齿轮啮合而传动连接;所述第一对齿轮位于所述第一管路的至少一个喷油孔的喷射范围内,所述第二对齿轮位于所述第二管路的至少一个喷油孔的喷射范围内。
进一步,所述第一中间轴上设有齿轮部,且所述第一对齿轮设置在所述中间轴上;
所述第一输入轴上均设有主动齿轮件,所述第一齿轮件与所述主动齿轮件连接;
所述第二齿轮件设置在所述第一输出轴上,且所述第二齿轮件与所述齿轮部啮合;
所述第一中间轴沿重力方向设置在所述第一输出轴的上部。
进一步,沿重力方向所述第一中间轴的轴心位于所述第一输出轴及所述第一输入轴的轴心的上方,且所述第一中间轴的轴心与所述第一输出轴及所述第一输入轴的轴心呈三角形分布。
进一步,所述第一壳体还设有轴承室,所述第一导油槽位于所述轴承室的上方且与所述轴承室连通,以使得经所述喷油孔喷出的润滑油能够经所述第一导油槽而流向所述轴承室。
进一步,还包括第二减速器,所述第二减速器和所述第一减速器分别位于所述电机组件的相对两侧;
所述第二减速器还包括第二输入轴,所述第二输入轴连接于所述差速器。
进一步,所述第二减速器包括第二壳体及第二润滑油路系统,所述第二润滑油路系统设置于所述第二壳体;
所述第二减速器还包括第二传动轴;所述第二输入轴与所述第二传动轴通过至少一对齿轮啮合而传动连接,
所述第二润滑油路系统包括第二油管组件,所述第二油管组件上还间隔设有多个喷油孔,所述喷油孔布置在所述第二输入轴、第二传动轴、所述电机组件及所述第一壳体之间的相互连接处。
进一步,所述第二壳体包括相对设置的第三侧壁和第四侧壁;所述第二传动轴和所述第二输入轴设置在两侧壁之间,第三侧壁和第四侧壁开设有第二导油槽,
所述第二油管组件包括设置于所述第三侧壁的第三管路和设置于所述第四侧壁的第四管路,所述第三管路和所述第四管路分别开设有喷油孔以使得所述第三侧壁和所述第四侧壁的第二导油槽能够位于对应所述喷油孔的喷射范围内,
所述第三管路上还设有分流孔,所述第二壳体上还设有与所述分流孔连通的壳内油道。
进一步,所述第二润滑油路系统还包括辅助管路,所述辅助管路连接于所述壳内油道和所述电机组件。
进一步,还包括设置于所述第二壳体外的滤清器和油冷换热器,所述壳内油道包括不相连通的第一内油道和第二内油道,所述第一内油道的一端与所述分流孔连通,
所述辅助管路包括多段外管路,所述滤清器的入口通过多段外管路中的至少一段而与所述第一内油道的另 一端连通,所述滤清器的出口通过多段外管路中的至少一段而与所述第二内油道的一端连通,所述油冷换热器的入口通过多段外管路中的至少一段而与所述第二内油道的另一端连通。
进一步,所述第二传动轴包括第二输出轴和至少一个第二中间轴;所述第二中间轴和所述第二输入轴通过第三对齿轮啮合而传动连接,所述第二中间轴和所述第二输出轴通过第四对齿轮啮合而传动连接;所述第三对齿轮位于所述第三管路的至少一个喷油孔的喷射范围内,所述第四对齿轮位于所述第四管路的至少一个喷油孔的喷射范围内。
进一步,所述第二中间轴上设有齿轮部,且所述第三对齿轮设置在所述中间轴上;
所述第二输入轴上均设有主动齿轮件,所述第三齿轮件与所述主动齿轮件连接;
所述第四齿轮件设置在所述第二输出轴上,且所述第四齿轮件与所述齿轮部啮合;
所述第二中间轴沿重力方向设置在所述第二输出轴的上部。
进一步,沿重力方向所述第二中间轴的轴心位于所述第二输出轴及所述第二输入轴的轴心的上方,且所述第二中间轴的轴心与所述第二输出轴及所述第二输入轴的轴心呈三角形分布。
进一步,所述第二壳体还设有轴承室,所述第二导油槽位于所述轴承室的上方且与所述轴承室连通,以使得经所述喷油孔喷出的润滑油能够经所述第二导油槽而流向所述轴承室。
进一步,所述第二输入轴为中空轴,包括第二中空油路,所述第二中空油路连接于所述壳内油道和所述电机轴。
进一步,所述第二侧壁和所述第三侧壁位于所述第一侧壁和所述第四侧壁之间,所述电机组件设置于所述第二侧壁和所述第三侧壁之间,
所述第一壳体还包括连接于所述第二侧壁的第一筒状侧壁和第二筒状侧壁,所述第一筒状侧壁朝向所述第一侧壁延伸,所述第二筒状侧壁朝向所述第三侧壁延伸,并且所述第二筒状侧壁作为所述电机组件的定子组件的外壳。
进一步,所述第二筒状侧壁内部开设有至少两个间隔设置的冷却油道入口,至少两个所述冷却油道入口连通所述壳内油道;
所述定子组件的外周还设置有冷却油道支路,所述冷却油道支路连通至少两个所述冷却油道入口。
进一步,所述电机组件包括电机壳体及设置在电机壳体内的电动机,所述电机轴连接所述电动机;
所述电驱传动系统还包括油冷件,所述油冷件设置在所述电机壳体上,所述油冷件用于存储油冷液且与所述电机壳体、所述第一润滑油路系统及所述第二润滑油路系统连通。
进一步,所述油冷件包括油冷箱体、油池和油泵组件,所述油冷箱体集成在所述电机壳体上;
所述油池设置在所述电机壳体内,所述油泵组件用于将所述油池中的润滑油泵送至所述第一油管组件。
进一步,还包括与所述电动机连接的电机控制器;
所述电机控制器设置在所述电机壳体、所述第一减速器及所述第二减速器围成的空腔内;
所述电机控制器还包括三相铜排;
所述三相铜排伸入至所述油冷件内,穿过所述油冷件后与所述电动机连接,部分所述三相铜排插入至所述油冷液中。
进一步,所述电动机包括定子组件;
所述三相铜排包括相互连接的主体铜排及转接铜排,其中,所述主体铜排连接所述电机控制器,并插入所述油冷液中;
所述转接铜排设置在所述油冷件内,且所述转接铜排延伸至穿过所述油冷件后连接于所述定子组件。
进一步,所述第二减速器包括第二壳体,所述第一壳体和所述第二壳体分别与所述电机壳体的相对两端面连接;
所述电驱传动系统还包括控制器盖板;
所述控制器盖板、部分所述电机壳体、所述第一壳体和所述第二壳体面向所述电机壳体的端面一起形成一个密封容置腔;
所述电机控制器容置在所述密封容置腔内。
进一步,所述第一输入轴和所述第二输入轴均与所述电机轴同轴设置;
所述第一减速器还包括第一输出轴,所述第二减速器还包括第二输出轴;
所述第一输出轴和所述第二输出轴同轴设置,且与所述电机轴不同轴设置;
或者所述第一输出轴、所述第二输出轴及所述电机轴均同轴设置;
或者所述第一输出轴、所述第二输出轴和所述电机轴均不同轴设置。
为解决上述技术问题,本申请采用的另一个技术方案是:提供汽车,包括电池;以及如上所述的电驱传动系统,所述电驱传动系统电连接所述电池。
本申请的有益效果是:区别于相关技术的情况,润滑油能够经第一油管组件而精准喷淋于需要润滑的区域,进而减少润滑油的用量,并且降低润滑油的黏性或者重力等因素对传动机构(例如减速器、差速器)效率损失造成的影响。另外,润滑油能够经第一油管组件和中空油路对差速器进行润滑。由此,能够全面地对传动机构进行润滑。
【附图说明】
图1是本申请汽车实施例的模块示意图;
图2是本申请第一实施方式提供的电驱传动系统的剖面示意图;
图3是图2中传动机构的局部示意图;
图4是图2中第一壳体和第二壳体的局部示意图;
图5是第一油管组件和第二油管组件的结构示意图;
图6是第一管路设置于第一侧壁的结构示意图;
图7是第一壳体的装配关系示意图;
图8是图7中沿A-A剖切面的剖面示意图;
图9是第二管路的结构示意图;
图10是第二管路在另一个视角下的结构示意图;
图11是第二管路设置于第二侧壁的结构示意图;
图12是第二侧壁的装配关系示意图;
图13是第一管路对第一对齿轮进行喷淋润滑的原理示意图;
图14是第二管路对第二队齿轮进行喷淋润滑的原理示意图;
图15是第三管路的结构示意图;
图16是第三管路在另一个视角下的结构示意图;
图17是第三管路设置于第三侧壁的结构示意图;
图18是第三侧壁的装配关系示意图;
图19是第四管路的结构示意图;
图20是第四管路设置于第四侧壁的结构示意图;
图21是第四管路设置于第四侧壁的平面示意图;
图22是电机组件的冷却原理示意图;
图23是冷却油道入口开设于第一壳体的截面示意图;
图24是本申请第二实施方式提供的电驱系统的的立体结构示意图,所述电驱系统包括电动机、电驱减速机及差速器;
图25是图24实施例的剖视图;
图26是图24中所述电驱总成的剖视图;
图27是图24中所述电驱减速机的剖视图;
图28是本申请提供的一种电驱系统的电驱系统壳体的示意图;
图29是图28中电驱系统壳体内部的结构示意图;
图30是本申请提供的一种电驱系统的另一个实施例的示意图;
图31是本申请提供的其他实施例的电驱系统布置结构示意图;
图32是图1中所述差速器内中间轴及齿轮件组的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下本申请汽车实施例描述汽车1的示例性结构。
参见图1,汽车1是生活中常见的载具。一般来说,汽车1都包括电驱传动系统10、电池20和行驶系统30。电驱传动系统10可以和电池20电连接,以驱动行驶系统30工作。
其中,行驶系统30可以包括车架、主轴、车轮(转向车轮和驱动车轮)、最架(前悬架和后悬架)等部件。电驱传动系统10可以和行驶系统30动力连接,以驱动主轴和车轮转动,进而使得汽车1能够移动。
电驱传动系统10一般包括:电机组件100、传动机构200和变换器300。
电机组件100可以用于将电能转化为机械能,以为新能源汽车1的工作提供动力。传动机构200可以用于将驱动电机的转速降低、转矩升高,并进一步传递到汽车1的主轴上以用于驱动新能源汽车1行驶。变换器300主要用于将直流电转化为交流电,并进一步驱动电机工作。
其中,变换器300一般包括逆变器和DC/DC变换器300。逆变器可以用于将电池20的直流电转化为交流电,进而驱动电机工作。DC/DC变换器300可以用于将电池20的电源电压进行变压处理,以进行高低压转化。例如可以将电池20的高压电转化为低压电,以为多媒体设备或空调等设备进行供电。
传动机构200一般包括减速器和差速器210。差速器210主要作用是使得汽车1转弯时两侧的车辆的转速不同。减速器主要用于将降低驱动电机的转速、同时增大驱动电机输出的扭矩,进而传递至汽车1的主轴上。
本申请发明人经过长期研究发现,在相关技术中,对电驱传动系统10进行润滑时,一般都是采用浸没润滑和飞溅润滑的方式。在上述方式中,减速器和差速器210中需要润滑的部件(例如齿轮)都需要浸没到润滑油中,没有浸没到润滑油中的部件需要通过齿轮搅动润滑油飞溅进而被飞溅的润滑油润滑。由于电驱传动系统10在搅动润滑油的过程中需要做功,因此会导致电驱传动系统10的效率损失。为了解决上述技术问题,本申请提出以下实施例。
关于本申请汽车1实施例涉及的电驱传动系统10可以参照以下本申请电驱传动系统实施例中的相关描述。以下本申请电驱传动系统实施例描述电驱传动系统10的示例性结构。
在本申请的第一个实施方式中,请参见图2至图14,电驱传动系统10包括电机组件100、差速器210及至少一个第一减速器230。电机组件100可以包括电机轴101、转子组件、定子组件。电机轴101连接于差速器210。第一减速器230包括第一壳体240及设置在第一壳体240上的第一输入轴231。第一输入轴231与差速器210连接。第一输入轴231为中空轴,包括中空油路2310。电驱传动系统10还包括设置在第一壳体240的第一润滑油路系统400。第一润滑油路系统400包括第一油管组件401。第一油管组件401与中空油路2310连通。第一油管组件401上还间隔设有多个喷油孔402。喷油孔402布置在第一输入轴231、差速器210及第一壳体240之间的相互连接处。
在这种情况下,第一油管组件401内的润滑油能够经多个喷油孔402而喷淋于需要润滑的部位,例如第一输入轴231和第一壳体240之间的连接处、第一输入轴231上的齿轮的表面及齿轮啮合处。另外,第一油管组件401还和第一输入轴231的中空油路2310连通,由于第一输入轴231还连接于差速器210,因此第一油管组件401的润滑油能够经由中空油路2310而流向差速器210以对差速器210进行润滑。其中,第一油管组件401内流动的润滑油可以为热的粘度较低的润滑油。
区别于相关技术的情况,润滑油能够经第一油管组件401而精准喷淋于需要润滑的区域,进而减少润滑油的用量。另外,使用热的低粘度的润滑油进行润滑有利于降低润滑油的黏性或者重力等因素对传动机构200(例如第一减速器230、差速器210)效率损失造成的影响。另外,润滑油能够经第一油管组件401和中空油路2310对差速器210进行润滑。由此,能够全面地对传动机构200进行润滑。
参见图5和图6,可选地,第一减速器230还包括第一传动轴232。第一传动轴232与第一输入轴231通过至少一对齿轮啮合而传动连接。第一传动轴232和第一输入轴231通过轴承与第一壳体240连接。第一壳体240上开设有第一导油槽241。第一导油槽241及至少一对齿轮位于对应喷油孔402的喷射范围内。
在这种情况下,第一油管组件401的润滑油能经多个喷油孔402喷淋于第一传动轴232和第一输入轴231和第一壳体240的连接处、以及第一减速器230的齿轮啮合处,进而针对性地润滑。另外,第一壳体240内开设有第一导油槽241,第一导油槽241位于喷油孔402的喷射范围内,可以使得润滑油喷淋于第一导油槽241后再对第一传动轴232和第一输入轴231和第一壳体240的连接处(例如第一壳体240的轴承室内的轴承)进行润滑,相较于直接喷淋于第一传动轴232和第一输入轴231和第一壳体240的连接处,可以减少对第一传动轴232和第一输入轴231的作用,进而降低传动机构200的效率损失,提高传动机构200的传动效率。
可选地,第一壳体240包括相对设置的第一侧壁242和第二侧壁243(参见图4)。第一传动轴232和第一输入轴231设置在两侧壁之间。第一侧壁242和第二侧壁243开设有第一导油槽241。第一油管组件401包括设置于第一侧壁242的第一管路410和设置于第二侧壁243的第二管路420(参见图4、图5、图9至图12)。可选地,第一管路410和第二管路420分别开设有喷油孔402以使得第一侧壁242和第二侧壁243的第一导油槽241能够位于对应喷油孔402的喷射范围内。由此,能够对第一减速器230(包括轴承以及齿轮)进行全面、精准的润滑。
可选地,第一管路410上还设有连接孔411(参见图5)。第一壳体240上还设有与中空油路2310连通的导油通道244(参见图6、图7和图8)。连接孔411与导油通道244连通。在这种情况下,第一管路410的润滑油能够经连接孔411而流向第一壳体240内部的导油通道244,并进一步流向中空油路2310,以对差速器210进行润滑。也就是说,第一管路410的润滑油部分经多个喷油孔402喷淋于第一减速器230中需要润滑的部位,另一部分可以经连接孔411分流,并经导油通道244和中空油路2310而流向差速器210。
另外,第一输入轴231的两端分别连接于第一侧壁242和第二侧壁243,因此第一侧壁242上还可以开设 连通第一减速器230内部和外部的第一过油孔和第二过油孔(图未示)。第一过油孔可以用于连接外界的引导管路(图未示)和第一管路410。第二过油孔可以用于连接外界的引导管路和中空油路2310。在这种情况下,第一管路410的润滑油可以经第一过油孔而流向外界的引导管路,并进一步经第二过油孔流向中空油路2310。
和在第一壳体240内部开设导油通道244的方案相比,在第一侧壁242开设第一过油孔和第二过油孔的方案需要额外增加外界的引导管路,因此有可能会导致电驱传动系统10的体积变大,装配成本和生产成本提高。也就是说,在第一壳体240内部开设导油通道244可以使第一壳体240的结构紧凑,装配成本降低。另外,在第一侧壁242开设第一过油孔和第二过油孔,相较于在第一壳体240开设导油通道244而言,其(例如第一侧壁242)加工成本更低。
可选地,第一润滑油路系统400还包括导油管412(参见图5、图6和图8)。导油管412连接导油通道244和中空油路2310。
可选地,第一传动轴232包括第一输出轴233和至少一个第一中间轴234。第一中间轴234和第一输入轴231通过第一对齿轮啮合而传动连接。第一中间轴234和第一输出轴233通过第二对齿轮啮合而传动连接。第一对齿轮位于第一管路410的至少一个喷油孔402的喷射范围内。第二对齿轮位于第二管路420的至少一个喷油孔402的喷射范围内。
可选地,第一壳体240还设有轴承室245。第一导油槽241位于轴承室245的上方且与轴承室245连通,以使得经喷油孔402喷出的润滑油能够经第一导油槽241而流向轴承室245。
可选地,第一导油槽241可以呈孔状(参见图6)。换言之,第一导油槽241可以是开设于第一壳体240(例如第一侧壁242或第二侧壁243)的、且与轴承室245连通的油孔。
另外,第一导油槽241也可以是开设于第一壳体240(例如第一侧壁242或第二侧壁243)、且于轴承室245连通的槽(参见图11)。进一步地,第一导油槽241的形状可以是V字状,也就是说,第一导油槽241的宽度可以自上而下逐渐减小、第一导油槽241的截面可以逐渐减小。在这种情况下,第一导油槽241的靠近上方的部分槽口面积较大,有利于接收喷油孔402喷出的润滑油。润滑油在第一导油槽241内汇集并流入轴承室245。另外,第一导油槽241的靠近下方的部分槽口的面积较小,能够降低润滑油积累在第一导油槽241的可能性。
以第一减速器230为二级减速器为例,如图4至图14所示,第一传动轴232包括第一输出轴233和第一中间轴234。第一对齿轮包括设于第一输入轴231的第一齿轮和设于第一中间轴234的第二齿轮。第二对齿轮包括设于第一中间轴234的第三齿轮和设于第一输出轴233的第四齿轮。
另外,第一输入轴231、第一中间轴234和第一输出轴233可以通过两端的轴承而设置于第一侧壁242和第二侧壁243。对应地,第一侧壁242可以设有三个轴承室245,以分别用于容纳第一输入轴231、第一中间轴234和第一输出轴233一端的轴承。第二侧壁243可以设有三个轴承室245,以分别用于容纳第一输入轴231、第一中间轴234和第一输出轴233另一端的轴承。对应的,第一侧壁242可以设有三个第一导油槽241以和三个轴承室245一一对应,第二侧壁243可以设有三个第一导油槽241以和三个轴承室245一一对应。
对应地,第一管路410可以开设有三个喷油孔402。第一侧壁242的三个第一导油槽241可以分别位于第一管路410的三个喷油孔402的喷射范围内。因此,第一管路410的润滑油能够经第一管路410的三个喷油孔402而分别喷淋于第一侧壁242的三个第一导油槽241,进而对第一侧壁242的三个轴承室245内设置的三个轴承进行润滑。
此外,如图13所示,第一管路410还可以开设一个以上用于喷淋第一对齿轮啮合处的喷油孔402。其中,第一对齿轮啮合处可以包括第一齿轮和第二齿轮啮合处附近的齿面。第一齿轮和第二齿轮互相啮合处可以位于该喷油孔402的喷射范围内。由此,第一管路410的润滑油能够经该喷油孔402而喷淋于第一对齿轮的啮合处。
同样,第二管路420可以开设有三个喷油孔402。第二侧壁243的三个第一导油槽241可以分别位于第二管路420的三个喷油孔402的喷射范围内。因此,第二管路420的润滑油能够经第二管路420的三个喷油孔402而喷别喷淋于第二侧壁243的三个第一导油槽241,进而对第二侧壁243的三个轴承室245内设置的三个轴承进行润滑。
此外,如图14所示,第二管路420还可以开设一个以上用于喷淋第二对齿轮啮合处的喷油孔402。第二对 齿轮啮合处可以包括第三齿轮和第四齿轮啮合处附近的齿面。第三齿轮和第四齿轮互相啮合出可以位于该喷油孔402的喷射范围内。由此,第二管路420的润滑油能够经该喷油孔402而喷淋于第二对齿轮的啮合处。
当然,在另一些示例中,第一减速器230也可以为一级减速器、三级减速器。也就是说,第一中间轴234的数量可能会变化,在这种情况下,也可以适当地调整喷油孔402的数量和位置。
此外,第一管路410的部分润滑油还可以分流流向差速器210以对差速器210进行浸没润滑。关于第一管路410的部分润滑油分流流向差速器210可以参照前文描述,在此不再赘述。
可选地,电驱传动系统10还包括第二减速器250(参见图2至图4)。可选地,第二减速器250和第一减速器230分别位于电机组件100的相对两侧并且连接于电机组件100。可选地,第二减速器250包括第二壳体260及第二润滑油路系统450。第二润滑油路系统450设置于第二壳体260。第二减速器250还包括第二输入轴251和第二传动轴252。第二输入轴251连接于电机组件100的电机轴101,并与第二传动轴252通过至少一对齿轮啮合而传动连接。
可选地,第二润滑油路系统450包括第二油管组件451(参见图5),第二油管组件451上还间隔设有多个喷油孔402,喷油孔402布置在第二输入轴251、第二传动轴252、电机组件100及第二壳体260之间的相互连接处。在这种情况下,第二油管组件451内的润滑油能够经多个喷油孔402而精准喷淋于第二减速器250中需要润滑的区域。另外,第二油管组件451内流动的润滑油可以为热的粘度较低的润滑油,使用热的低粘度的润滑油进行润滑有利于降低润滑油的黏性或者重力等因素对传动机构200(例如第二减速器250、电机组件100)效率损失造成的影响。
此外,润滑油在流经差速器、第一减速器、第二减速器以及电机组件中的至少一者的时候,还可以部分吸收其中的热量,以适当对传动部件进行降温。
可选地,第二壳体260包括相对设置的第三侧壁261和第四侧壁262(参见图4)。第二传动轴252和第二输入轴251设置在两侧壁之间。第三侧壁261和第四侧壁262开设有第二导油槽263。第二油管组件451包括设置于第三侧壁261的第三管路460和设置于第四侧壁262的第四管路470(参见图15至图21)。第三管路460和第四管路470分别开设有喷油孔402以使得第三侧壁261和第四侧壁262的第二导油槽263能够位于对应喷油孔402的喷射范围内。由此,能够对第二减速器250的各轴承及齿轮进行全面、精准的润滑。
可选地,参见图15和图16,第三管路460上还设有分流孔461。第二壳体260上还设有与分流孔461连通的壳内油道264。也就是说,第三管路460的润滑油中的一部分可以经分流孔流向第二壳体260的壳内油道264。
可选地,参见图17,第二润滑油路系统450还包括辅助管路,辅助管路连接于壳内油道264和电机组件100。
可选地,参见图17,电驱传动系统10还包括设置于第二壳体260外的滤清器500和油冷换热器510。壳内油道264包括不相连通的第一内油道2641和第二内油道2642。第一内油道2641的一端与分流孔461连通。辅助管路包括多段外管路。滤清器500的入口通过多段外管路中的至少一段而与第一内油道2641的另一端连通。滤清器500的出口通过多段外管路中的至少一段而与第二内油道2642的一端连通。油冷换热器510的入口通过多段外管路中的至少一段而与第二内油道2642的另一端连通。
在这种情况下,第三管路460的热润滑油可以部分经分流孔461流至第一内油道2641,并通过第一内油道2641以及于第一内油道2641连通的至少一段外管路进入滤清器500进行过滤,以过滤可能存在的铁屑灰尘等杂质。经过滤的热润滑油可以从滤清器500的出口流出,并经连接于滤清器500的出口和第二内油道2642的至少一段外管路流向第二内油道2642,在经连通第二内油道2642和油冷换热器510的至少一段外管路流向油冷换热器510中进行冷却。也就是说,第二油管组件451内的润滑油在经过油冷换热器之后冷却降温。过滤、冷却后的干净润滑油可以流向电机组件100以对电机组件100进行油冷。
当然,在另一些示例中,第三管路460也可以不设有分流孔461。也就是说,第三管路460的润滑油可以不分流流向电机组件100对电机组件100进行冷却。在这种情况下,电机组件100的冷却系统可以是独立的,冷却系统既可以是油冷系统,也可以是水冷系统。
可选地,第二传动轴252包括第二输出轴253和至少一个第二中间轴254。第二中间轴254和第二输入轴251通过第三对齿轮啮合而传动连接。第二中间轴254和第二输出轴253通过第四对齿轮啮合而传动连接。第三对齿轮位于第三管路460的至少一个喷油孔402的喷射范围内。第四对齿轮位于第四管路470的至少一个喷 油孔402的喷射范围内。关于第三对齿轮和第四对齿轮的润滑原理可以参照第一对齿轮和第二对齿轮的润滑原理,在此不再赘述。
可选地,第二壳体260还设有轴承室245(参见图17、图20)。第二导油槽263位于轴承室245的上方且与轴承室245连通,以使得经喷油孔402喷出的热润滑油能够经第二导油槽263而流向轴承室245。
以第二减速器250为二级减速器为例,参见图15至图21,第二传动轴252包括第二输出轴253和第二中间轴254。第三对齿轮包括设于第二输入轴251的第五齿轮和设于第二中间轴254的第六齿轮。第四对齿轮包括设于第二中间轴254的第七齿轮和设于第二输出轴253的第八齿轮。
另外,第二输入轴251、第二中间轴254和第二输出轴253可以通过两端的轴承而设置于第三侧壁261和第四侧壁262。对应地,第三侧壁261可以设有三个轴承室245,以分别用于容纳第二输入轴251、第二中间轴254和第二输出轴253一端的轴承。第三侧壁261可以设有三个轴承室245,以分别用于容纳第二输入轴251、第二中间轴254和第二输出轴253另一端的轴承。对应的,第四侧壁262可以设有三个第二导油槽263以和三个轴承室245一一对应,第四侧壁262可以设有三个第二导油槽263以和三个轴承室245一一对应。
对应地,第三管路460可以开设有三个喷油孔402(参见图15至图18)。第三侧壁261的三个第二导油槽263可以分别位于第三管路460的三个喷油孔402的喷射范围内。因此,第三管路460的热润滑油能够经第三管路460的三个喷油孔402而分别喷淋于第三侧壁261的三个第二导油槽263,进而对第三侧壁261的三个轴承室245内设置的三个轴承进行润滑。
此外,第三管路460还可以开设一个以上用于喷淋第四对齿轮啮合处的喷油孔402。第四对齿轮啮合处可以包括第七齿轮和第八齿轮啮合处附近的齿面。第七齿轮和第八齿轮互相啮合处可以位于该喷油孔402的喷射范围内。由此,第三管路460的润滑油能够经该喷油孔402而喷淋于第四对齿轮的啮合处。
同样,第四管路470可以开设有三个喷油孔402(参见图19至图21)。第四侧壁262的三个第二导油槽263可以分别位于第四管路470的三个喷油孔402的喷射范围内。因此,第四管路470的润滑油能够经第四管路470的三个喷油孔402而喷别喷淋于第四侧壁262的三个第二导油槽263,进而对第四侧壁262的三个轴承室245内设置的三个轴承进行润滑。
此外,第四管路470还可以开设一个以上用于喷淋第三对齿轮啮合处的喷油孔402。第五齿轮和第六齿轮互相啮合处可以位于该喷油孔402的喷射范围内。第三对齿轮啮合处可以包括第五齿轮和第六齿轮啮合处附近的齿面。由此,第四管路470的润滑油能够经该喷油孔402而喷淋于第三对齿轮的啮合处。
当然,在另一些示例中,第二减速器250也可以为一级减速器、三级减速器。也就是说,第一中间轴234的数量可能会变化,在这种情况下,也可以适当地调整喷油孔402的数量和位置。
可选地,第二输入轴251为中空轴,包括第二中空油路2510。第二中空油路2510连接于壳内油道264和电机轴101。
可选地,参见图18和图22,壳内油道264还包括分流流道2643。分流流道2643的入口经过至少一段外管路而连接于油冷换热器510的出口,以用于接收过滤冷却后的润滑油。另外,分流流道2643还可以包括第一分流出口和第二分流出口。第一分流出口和第二分流出口都连通于分流流道2643的入口,以使得冷却后的润滑油能够部分经第一分流出口流向电机组件100的定子组件,部分经第二分流出口流向电机组件100的转子组件。
可选地,第二中空油路2510还连通于第二分流出口。另外,由于第二输入轴251和电机轴101连接,因此经第二分流出口流出的干净冷润滑油可以经第二中空油路2510流向转子组件的电机轴101,以对转子组件进行冷却。另外,电机轴101可以转动以使得润滑油在离心力的作用下甩出,并对定子组件的内部进行冷却,例如可以对定子组件内部的绕组进行冷却。
可选地,第二侧壁243和第三侧壁261位于第一侧壁242和第四侧壁262之间,电机设置于第二侧壁243和第三侧壁261之间(参见图2至图4,图22)。
可选地,第一壳体240还包括连接于第二侧壁243的第一筒状侧壁246和第二筒状侧壁247。第一筒状侧壁246朝向第一侧壁242延伸。第二筒状侧壁247朝向第三侧壁261延伸,并且第二筒状侧壁247作为电机的定子组件的外壳。在这种情况下,电机组件100可以设置于两个减速器之间,并且能够使得电驱传动系统10结构紧凑。
可选地,参见图23,第二筒状侧壁247内部开设有至少两个间隔设置的冷却油道入口2471。至少两个冷却油道入口2471连通壳内油道264。
进一步的,至少两个冷却油道入口2471可以连通壳内流道的分流流道2643的第一分流出口。在这种情况下,经过滤冷却后的润滑油能够经分流流道2643流向至少两个冷却油道入口2471,并进一步地对定子组件进行冷却。具体地,冷过滤冷却后的润滑油可以对定子组件买内的定子铁芯以及绕组的外部进行冷却。
在这种情况下,过滤冷却后的润滑油经至少两个冷却油道入口2471流向定子组件时,可以使得冷却后的润滑油流向定子组件各个区域的路径大致相同,且不会过长,可以有效避免冷却后的润滑油在流动的过程中升温不均衡进而导致冷却效果下降的可能性。
可选地,定子组件的外周还设置有冷却油道支路(图未示)。可选地,定子组件的外周可以和第二筒状侧壁247共同形成冷却油道支路。冷却油道支路连通至少两个冷却油道入口2471。
可选地,冷却油道支路可以进一步包括环状主油道和支路油道。环状主油道可以沿着定子组件的周向呈环状布置或者呈螺旋状布置。可选地,支路油道的数量可以为多个,多个支路油道可以沿着平行于定子组件的周向绕定子组件间隔布置。
可选地,电驱传动系统10还包括油池249和油泵组件520。油泵组件520可以设置于第一壳体240。油池249开设于第一壳体240内部。油泵组件520用于将油池249中的润滑油泵送至第一油管组件401。可选地,油泵组件520还可以用于将油池249中的润滑油泵送至第二油管组件451。
可选地,如图11和图17所示,第一壳体240还可以具有进油孔248。在这种情况下,油池249内的润滑可以在油泵组件520的作用下,经外界的管路流入进油孔248。可选地,进油孔248可以开设于第一壳体240的内部,并且进油孔248可以连通第一油管组件401和第二油管组件451。在这种情况下,润滑油可以经进油孔248而流向第一油管组件401和第二油管组件451。
可选地,第一壳体240的第二侧壁243、第二筒状侧壁247和第二壳体260的第三侧壁261可以组合形成油池249。另外,第一壳体240的第一侧壁242和第二侧壁243之间形成的用于容纳第一输入轴231、第一传动轴232的区域可以和油池249所在的区域连通,以使得润滑油能够回流至油池249。同样,第二壳体260的第三侧壁261和第四侧壁262之间形成的用于容纳第二输入轴251、第二传动轴252的区域可以和油池249所在的区域连通,以便于润滑油回流至油池249。
可选地,电驱传动系统10还包括控制器。控制器可以用于控制电机组件实现可控的运转。也即,控制器可以用于控制电机组件的转速扭矩中的至少一者。另外,控制器还可以控制油泵组件的润滑油的流量和/或流速。在这种情况下,能够对润滑油的流量和/或流速进行控制,进而能够提高润滑的效率,精准地对于各个区域进行润滑。
综上所述,热润滑油能够经第一油管组件401喷淋于第一减速器230和差速器210中需要润滑的区域;经第二油管组件451喷淋于第二减速器250和电机组件100中需要润滑的区域,由此能够实现对传动机构200的精确喷淋润滑,进一步可以降低润滑带来的效率损失。另外,此主动润滑系统,可以实现过滤冷却后的冷油对电机组件100的充分冷却,使电机工作中的温升控制更好不至于过热或温度不均衡,进而更好的释放电机组件100性能。
在本申请的第二个实施方式中,请参照图24和图25,图24是本申请第二实施方式提供的电驱系统的的立体结构示意图,所述电驱传力系统包括电动机、电驱减速机及差速器;图25是图24实施例的剖视图。在本申请的第二个实施方式中,提供了一种电驱系统。在一个实施例中,该电驱系统包括电驱总成102、差速器210、两个电驱减速机301、电机控制器700及油冷件600。电驱总成102包括电机壳体110(图未示)及设置在电机壳体110内的电动机(图未示)。差速器210与电动机连接,两个电驱减速机301差速器210包括第一动力轴390和第二动力轴310,将电驱总成102输出的单动力分为相互独立的第一动力和第二动力。两个电驱减速机301分别设置在电机壳体110的相对两端,且分别与第一动力轴390和第二动力轴310连接,并进行减速增扭,以提供两个独立的输出动力。从而,这种相互独立的第一动力和第二动力便于分布在电驱系统的两侧,无需传动轴横穿整个电驱系统,进而有利于空间的充分利用。电机控制器700设置在电机壳体110上,使得整个电驱系统更加紧凑。电机控制器700与电动机连接,用于控制电动机。油冷件600设置在电机壳体110上,用于存 储油冷液且油冷件600与电机壳体110连通,用于冷却电动机并润滑电驱减速机301。此外,本申请中的差速器210可采用小型差速器,这使得其体积更小、重量更轻且价格更低。
需要说明的是,在该实施方式中,电驱系统与第一实施方式中的电驱传动系统10均是用于驱动行驶系统30;电驱总成102与第一实施方式中的电机组件100均用于将电能转化为机械能;电驱减速机301与第一实施方式中的第一减速器230或第二减速器250,均用于进行减速增扭;第一动力轴390和第二动力轴310可分别对应于第一实施方式中的第一输入轴231和第二输入轴251,用于将电驱传力系统10/电驱系统的的动力输出威相互独立的第一动力和第二动力。
进一步地,在一些实施例中,第一动力轴390和第二动力轴310上设置有第一动力轴承311和第二动力轴承312,通过过盈配合与第一动力轴390和第二动力轴310固联,承担其旋转。
为了能够加强整个电驱系统内部的冷却效率,同时不对整个电驱系统造成较大的负担,请结合参照图24和图28,图28是本申请提供的一种电驱传力系统的电驱传力系统壳体的示意图。
请继续参阅图24和图28,在一些实施例中,沿着重力方向,油冷件600设置在电驱总成102的下方。油冷件600包括油冷箱体(图未示),油冷箱体集成在电机壳体110上。通过将油冷件600设置在电动机及电机控制器700的下方,并在油冷箱体内部存储足够量的油冷液,通过油冷液在电机控制器700与电动机内部流通,并在油冷件600的冷却下,实现对整个电驱系统内部的冷却,且由于油冷件600的位置位于电动机和电机控制器700都较近,能够以最快的速度为二者提供油冷液,加快了冷却的效率,进一步减小了电驱系统内的损耗。可以理解的是,当该实施方式中电驱系统还包括有本申请第一实施方式中的第一润滑油路系统400及第二润滑油路系统450时,油冷件600还可用于与电机壳体110、第一润滑油路系统400及第二润滑油路系统450连通。
请结合参照图2、图4、图24和图28,可以理解的是,在第一实施方式中,电机组件100包括电机壳体110及设置在电机壳体110内的电动机,电机轴101连接电动机。可以理解的是,电机壳体110主要是用于对电动机进行遮盖。其中,电驱传动系统10还包括油冷件600,油冷件600设置在电机壳体110上,油冷件600用于存储油冷液且与电机壳体110、第一润滑油路系统400及第二润滑油路系统450连通。
请参阅图2、图4、图28和图29,图29是图28中电驱系统壳体内部的结构示意图,在一些实施例中,油冷件600包括油冷箱体、油池249和油泵组件520,油冷箱体集成在电机壳体110上。其中,油池249设置在电机壳体110内部。当电驱传动系统10设置有第一润滑油路系统400及第二润滑油路系统450时,油泵组件520还用于将油池249中的润滑油泵送至第一油管组件401。
在一些实施例中,电机控制器700还包括三相铜排701。三相铜排701伸入至油冷件600内,通过三相铜排701利用油冷件600冷却从电动机中带出的热量,三相铜排701穿过油冷件600后与电动机连接,部分三相铜排701插入至油冷液中,进一步避免电动机的热量传输到电机控制器700,加大整个电驱系统内部油冷件600的冷却负担。
请结合参照图26、图28和图29,图26是图24中所述电驱总成的剖视图。在一些实施例中,电动机包括定子组件130。三相铜排701包括相互连接的主体铜排及转接铜排,其中,主体铜排连接电机控制器700,并插入油冷液中。转接铜排设置在油冷件600内,且转接铜排延伸至穿过油冷件600,连接于定子组件130,用于传递电动机中传输中的动能及热能,三相铜排701插入到油冷件600中,进一步避免了电动机内部的热能通过三相铜排701进入到电机控制器700内,进而影响整个电驱系统内的散热情况,增大了整个系统的冷却负担。
在另一个实施例中,三相铜排701可以与定子组件130中的定子端子直接进行搭接,直接对定子端子进行冷却,进而实现在电动机的发热处进行冷却,提高了电动机的冷却效率。
在一些实施例中,电机控制器700设置在电机壳体110与两个电驱减速机301围成的空腔702内,用于根据需求控制电动机的输出动能。可以理解的是,该空腔702与本申请中第一实施方式中的油池249均用于储油。同样的,电机控制器700通过螺栓或共壳体与电驱总成102连接,在一定程度上,减小了整个电驱系统的体积大小,且电机控制器700与电驱总成102安装距离较近,使得电机控制器700在对电驱总成102进行控制时,其在传动中损耗的动能更小,使得整个电驱系统在工作时的驱动能量能得到一定的减少,从而实现节能。电机控制器700安装在空腔702内,保护了电机控制器700不受到其他结构的影响。电机控制器700是电动车辆的关键零部件之一,其功能为根据档位、油门、刹车等指令,将动力电池所存储的电能转化为电动机所需的电能, 来控制电动车辆的启动运行、进退速度、爬坡力度等行驶状态,或者将帮助电动车辆刹车,并将部分刹车能量存储到动力电池中。
更为具体地,请结合参照图27和图29,图27是图24中所述电驱减速机的剖视图。在一些具体实施例中,每一电驱减速机301均包括减速机壳体350,减速机壳体350分别与电机壳体110的相对两端面连接。可以理解的是,电驱减速机301可为第一减速器230或第二减速器250。由于两个电驱减速机301可分别为第一减速器230和第二减速器250,此时,两个减速机壳体350可分别为第一壳体240和第二壳体260;其中,第一壳体240和第二壳体260分别于电机壳体110的相对两端面连接。
在一些更为具体的实施例中,电驱系统还包括控制器盖板430。控制器盖板430、部分电机壳体110、每一电驱减速机301面向电机壳体110的端面一起形成一个密封容置腔。具体的,控制器盖板430、部分电机壳体110、第一壳体240、第二壳体260面向电机壳体110的端面一起形成一个密封容置腔。电机控制器700容置在密封容置腔内,通过将密封容置腔与电机壳体110固定在一起,电机壳体110上设置有一个通孔440,三相铜排701通过通孔440进入到电机壳体110内部,进一步实现将电动机内部的热量在进入到电机控制器700之前就已接受冷却处理,保证电机控制器700的使用寿命,且通过将电机控制器700与电动机安装在较近的位置,避免了由于二者的位置有一定的距离使得在电机控制器700在对电动机进行控制时由于距离较远造成动能浪费。
请继续参照图26,每一电驱减速机301上设置有花键341和输出轴370,花键341位于电驱系统的动力输出端,并与输出轴370啮合配合,将输出动力传递至车辆轮胎。可以理解的,花键341设置在输出轴370的左右两侧,通过输出轴370将输出给电驱减速机301后进行减速增扭后的输出动力传输给车轮传动系统。且电驱减速机301是通过齿轮件之间的啮合传递对所输入的动力进行减速增扭的,其速比,及减速增扭的程度是通过轮齿数量的改变而改变的。因此,在需要增大电驱减速机301的扭矩时,采用轮齿数量少的齿轮带动齿轮多的齿轮,进而实现减速的功能。可以理解的是,电驱减速机301可为第一减速器230或第二减速器250。由于两个电驱减速机301可分别为第一减速器230和第二减速器250,此时,电驱减速机301的输出轴可为第一输出轴233或第二输出轴253。
请参照图27,在一些具体地实施例中,每一电驱减速机301还包括中间轴320、第一齿轮件330和第二齿轮件340。其中,中间轴320上设有齿轮部325,且第一齿轮件330设置在中间轴320上。第一动力轴390和第二动力轴310上均设有主动齿轮件315,第一齿轮件330与第一动力轴390或第二动力轴310的主动齿轮件315连接。第二齿轮件340设置在输出轴370上,且第二齿轮件340与齿轮部325啮合。中间轴320沿重力方向设置在输出轴370的上部。在进行动力输出时,第一动力轴390或第二动力轴310发生转动,主动齿轮件315与第一齿轮件330啮合转动,带动中间轴320共同转动,且齿轮部325与第二齿轮件340啮合,带动第二齿轮件340与输出轴370共同转动,进而实现将第一动力轴390或第二动力轴310的动力传输给输出轴370,完成动力传输,即将动力传送到车轮传动系统。
需要说明的是,由于电驱减速机301可为第一减速器230或第二减速器250,因此,第一动力轴390和第二动力轴310可分别对应于第一实施方式中的第一输入轴231和第二输入轴251;中间轴320、第一齿轮件330、第二齿轮件340、齿轮部325和主动齿轮件315可分别对应于第一实施方式中的第一中间轴234/第二中间轴254、第二齿轮/第六齿轮、第四齿轮/第八齿轮、第三齿轮/第七齿轮、第一齿轮/第五齿轮。
为了避免中间轴320上的齿轮部325尽可能不接触油冷液,在一个实施例中,请参照图32,图32是图1中所述差速器内中间轴及齿轮件组的结构示意图。沿重力方向,中间轴320设置在输出轴370及第一动力轴390或第二动力轴310的上方。优选的,第一中间轴234沿重力方向设置在第一输出轴233的上方,第二中间轴254沿重力方向设置在第二输出轴253的上方。
在一些具体的实施例中,中间轴320的轴心位于输出轴370及第一动力轴390或第二动力轴310的轴心的上方,且中间轴320的轴心与输出轴370及第一动力轴390或第二动力轴310的轴心呈三角形分布。优选的,沿重力方向第一中间轴234的轴心位于第一输出轴233及第一输入轴231的轴心的上方,且第一中间轴234的轴心与第一输出轴233及第一输入轴231的轴心呈三角形分布;沿重力方向第二中间轴254的轴心位于第二输出轴253及第二输入轴251的轴心的上方,且第二中间轴254的轴心与第二输出轴253及第二输入轴251的轴心呈三角形分布。此时,中间轴320的重心较高,油冷液不会挂在齿轮部325上,进而避免了齿轮部325的在 油冷液内运动,产生搅油损失,对油冷件600的冷却效率造成影响,进而影响到整个电驱系统内部的冷却效果,影响使用寿命。且电驱减速机301齿轮上三角形设置使得电驱减速机301各个齿轮之间的径向受力相互抵消,避免电驱减速机301在运行时产生过量的噪声及振动,进而影响到占整个电驱系统,进而提高具有该电驱系统的车辆的NVH指数,加强驾乘人员的体验感和舒适感。
在一些实施例中,每一电驱减速机301内的各个齿轮件,包括齿轮部325,第一齿轮件330、第二齿轮件340及主动齿轮件315,各个齿轮件之间的中心距根据实际需要,可以相同设置也可以不同设置,为实现电驱系统多样化提供了可能。
进一步地,为了保护中间轴320的使用寿命并保证其正常旋转,中间轴320上设置有第一传动轴承321和第二传动轴承322,通过过盈配合与中间轴320固联,承担其旋转。第二齿轮件340上设置有输出轴承342,与第二齿轮件340过盈配合固联,保证其旋转。轴承的设置支撑并固定了中间轴320,并为其承担了一部分的径向载荷。
在一些实施例中,电驱减速机301还包括有油封件343,油封件343设置在输出轴370上,并抵接于电驱系统的动力输出端。用于保护电驱减速机301内轴承与油的稳定性的同时,油封件343保证输出轴370旋转并隔绝外部杂质污染。且在对油封件343进行更换时,仅需要将油封件343拆卸下来在清洗油泥后再进行安装即可,不需要改变对整个电驱系统的结构进行改变,更有利于工人操作,节省人力资源。
在一些实施例中,请继续参照图25和图26,电动机包括电机轴101。差速器210设置在电机轴101的其中一端,第一动力轴390在电驱总成102的电机轴101内朝电驱总成102的另一端延伸并伸出电机轴101,以和电驱减速机301中的一个啮合连接。其中,定子组件130与传统电机定子组件类似,由硅钢冲片、铜线绕组组成,通过过盈配合或螺栓连接与电机壳体110的内孔配合固联。同理地,电机转子组件140由硅钢冲片和永磁体组成,通过过盈配合与电机轴101固联。电机轴101两端通过过盈配合或螺栓连接与轴承154配合,以支撑电机轴101的高速旋转,并进行动力输出。电机转子组件140通过过盈或键配合,将动力传递给电机轴101,再到差速器210,通过差速器210将动力分为左右两路,经由差速器210和输入轴之间的传动花键211传递至第二动力轴310和第一动力轴390。
在一些实施例中,请结合参照图31,图31是本申请提供的其他实施例的电驱系统布置结构示意图。两个电驱减速机301的输出轴370同轴设置,且与电机轴101不同轴设置,此时输出轴370与第一动力轴390和第二动力轴310位于同一条直线上,在电机轴101旋转并将动力输出至第一动力轴390和第二动力轴310时,第一动力轴390和第二动力轴310在不经过其他齿轮组的耗能,直接传递给输出轴370,减小了在传输过程中动能的消耗。具体的,第一输入轴231和第二输入轴251均与电机轴101同轴设置,第一输出轴233和第二输出轴253同轴设置,且与电机轴101不同轴设置。
在另一个实施例中,两个电驱减速机301的输出轴370及电机轴101均同轴设置,第一动力轴390和第二动力轴310所输入动力的来源相同,在左右两电驱减速机301和电驱总成102所处位置结构上处于同一条线上且第一动力轴390、第二动力轴310及电机轴101的轴线也在同一条直线上时,此时可将第一动力轴390、第二动力轴310及电机轴101设置为一体轴,进而减少输入动力在通过连接结构上的损耗。具体的,第一输入轴231和第二输入轴251均与电机轴101同轴设置,第一输出轴233和第二输出轴253同轴设置,且与电机轴101同轴设置。
在另一个实施例中,输出轴370和电机轴101均不同轴设置。此时输出轴370,电机轴101及第一动力轴390和第二动力轴310皆不同轴设置,及各个轴都不再同一条直线上,之间通过各个花键341或齿轮组进行传动,使得整个电驱系统的输出更加灵活,能够通过改变输出轴370的安装位置,进而改变输出的方向,为车辆的驱动输出的多变性提供了可能。具体的,第一输入轴231和第二输入轴251均与电机轴101均不同轴设置,第一输出轴233和第二输出轴253同轴设置,且与电机轴101均不同轴设置;或者第一输入轴231和第二输入轴251与电机轴101同轴设置,第一输出轴233和第二输出轴253和电机轴101均不同轴设置。
请参照图30,图30是本申请提供的一种电驱系统的另一实施例的示意图。在一些实施例中,电驱系统还包括悬置结构21,悬置结构21上设置有与车架连接安装的四个连接部(图中点11-14),通过这四个连接部将电驱系统固定在车架上,且一个具体的实施例中,电驱系统的质心17位于四个连接部(图中点11-14)的中心 位置处或附近。可以理解的,当电驱系统的质心17位于其中心位置或附近时,由于结构上的稳定性,对于电驱系统受力、悬置受力是较为均衡的,不会由于受力不均导致一端发生断裂。同时,其质心17位于中心或附近时,两侧的输出轴370也能以等长的最小尺寸达到相同的效果,对电驱系统布置和整车布置也更为有利。
差速器210通过左右两侧对应设置的传动花键211分别传递给第一动力轴390和第二动力轴310,并经由第一动力轴390、第二动力轴310将第一动力和第二动力输入给左右两电驱减速机301,进行减速增扭,在第一齿轮件330、第二齿轮件340及齿轮部325和主动齿轮件315的作用下,将输出动力从第一动力轴390、第二动力轴310传递至输出轴370。由于左右两花键341动力输出位置独立,互不影响,因此,可通过改变输出轴370的位置实现多种动力输出的结构布置形式。请继续参照图8,如图8-a所示的三角形结构形式,图8-b所示的同轴结构形式,图8-c所示的直线结构形式,都均为本申请的电驱系统可实现的布置架构,但不限于上述四种结构形式,其余类似变形结构亦本申请保护。
同理地,由于左右两输出轴370能够灵活设置调整,实现分布式动力输出,本申请的两电驱减速机301完全相同,可根据需求不同,两电驱减速机301也可进行差异化设计。其中,在一个实施例中,两电驱减速机301的速比可相同设置也可以不同设置,在需要电驱系统两侧输出轴370的变速效率不同时,将两电驱减速机301的速比设置为不同,实现对电驱系统内部不同输出轴370上减速速率的不同,可适用于一些特殊应用条件下。
本申请的另一个方面,还提出一种车辆,车辆包括车架和连接在车架上的上述任一实施例的电驱系统。因此,本申请的车辆也具有上述电驱系统的所有有益效果,在此不再赘述。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (27)

  1. 一种电驱传动系统,包括电机、差速器及至少一个第一减速器;其中,所述电机组件还包括电机轴,所述电机轴连接于所述差速器;所述第一减速器包括第一壳体及设置在所述第一壳体上的第一输入轴,所述第一输入轴与所述差速器连接,其特征在于,
    所述第一输入轴为中空轴,包括中空油路;
    所述电驱传动系统还包括设置在所述第一壳体的第一润滑油路系统;所述第一润滑油路系统包括第一油管组件,所述第一油管组件与所述中空油路连通,所述第一油管组件上还间隔设有多个喷油孔,所述喷油孔布置在所述第一输入轴、所述差速器及所述第一壳体之间的相互连接处。
  2. 根据权利要求1所述的电驱传动系统,其特征在于,所述第一减速器还包括第一传动轴;所述第一传动轴与所述第一输入轴通过至少一对齿轮啮合而传动连接;
    所述第一传动轴和所述第一输入轴通过轴承与所述第一壳体连接,所述第一壳体上开设有第一导油槽,所述第一导油槽及所述至少一对齿轮位于对应所述喷油孔的喷射范围内。
  3. 根据权利要求2所述的电驱传动系统,其特征在于,所述第一壳体包括相对设置的第一侧壁和第二侧壁;所述第一传动轴和所述第一输入轴设置在两侧壁之间,第一侧壁和第二侧壁开设有所述第一导油槽,
    所述第一油管组件包括设置于所述第一侧壁的第一管路和设置于所述第二侧壁的第二管路,所述第一管路和所述第二管路分别开设有喷油孔以使得所述第一侧壁和所述第二侧壁的第一导油槽能够位于对应所述喷油孔的喷射范围内;
    所述第一管路上还设有连接孔,所述第一壳体上还设有与所述中空油路连通的导油通道,所述连接孔与所述导油通道连通。
  4. 根据权利要求3所述的电驱传动系统,其特征在于,所述第一润滑油路系统还包括导油管,所述导油管连接所述导油通道和所述中空油路。
  5. 根据权利要求3所述的电驱传动系统,其特征在于,第一传动轴包括第一输出轴和至少一个第一中间轴;所述第一中间轴和所述第一输入轴通过第一对齿轮啮合而传动连接,所述第一中间轴和所述第一输出轴通过第二对齿轮啮合而传动连接;所述第一对齿轮位于所述第一管路的至少一个喷油孔的喷射范围内,所述第二对齿轮位于所述第二管路的至少一个喷油孔的喷射范围内。
  6. 根据权利要求5所述的电驱传动系统,其特征在于,
    所述第一中间轴上设有齿轮部,且所述第一对齿轮设置在所述中间轴上;
    所述第一输入轴上均设有主动齿轮件,所述第一齿轮件与所述主动齿轮件连接;
    所述第二齿轮件设置在所述第一输出轴上,且所述第二齿轮件与所述齿轮部啮合;
    所述第一中间轴沿重力方向设置在所述第一输出轴的上部。
  7. 根据权利要求6所述的电驱传动系统,其特征在于,沿重力方向所述第一中间轴的轴心位于所述第一输出轴及所述第一输入轴的轴心的上方,且所述第一中间轴的轴心与所述第一输出轴及所述第一输入轴的轴心呈三角形分布。
  8. 根据权利要求5所述的电驱传动系统,其特征在于,所述第一壳体还设有轴承室,所述第一导油槽位于所述轴承室的上方且与所述轴承室连通,以使得经所述喷油孔喷出的润滑油能够经所述第一导油槽而流向所述轴承室。
  9. 根据权利要求1-4任一项所述的电驱传动系统,其特征在于,还包括第二减速器,所述第二减速器和所述第一减速器分别位于所述电机组件的相对两侧;
    所述第二减速器还包括第二输入轴,所述第二输入轴连接于所述差速器。
  10. 根据权利要求9所述的电驱传动系统,其特征在于,所述第二减速器包括第二壳体及第二润滑油路系统,所述第二润滑油路系统设置于所述第二壳体;
    所述第二减速器还包括第二传动轴;所述第二输入轴与所述第二传动轴通过至少一对齿轮啮合而传动连接,
    所述第二润滑油路系统包括第二油管组件,所述第二油管组件上还间隔设有多个喷油孔,所述喷油孔布置在所述第二输入轴、第二传动轴、所述电机组件及所述第一壳体之间的相互连接处。
  11. 根据权利要求10所述的电驱传动系统,其特征在于,所述第二壳体包括相对设置的第三侧壁和第四侧壁;所述第二传动轴和所述第二输入轴设置在两侧壁之间,第三侧壁和第四侧壁开设有第二导油槽,
    所述第二油管组件包括设置于所述第三侧壁的第三管路和设置于所述第四侧壁的第四管路,所述第三管路和所述第四管路分别开设有喷油孔以使得所述第三侧壁和所述第四侧壁的第二导油槽能够位于对应所述喷油孔的喷射范围内,
    所述第三管路上还设有分流孔,所述第二壳体上还设有与所述分流孔连通的壳内油道。
  12. 根据权利要求11所述的电驱传动系统,其特征在于,所述第二润滑油路系统还包括辅助管路,所述辅助管路连接于所述壳内油道和所述电机组件。
  13. 根据权利要求12所述的电驱传动系统,其特征在于,还包括设置于所述第二壳体外的滤清器和油冷换 热器,所述壳内油道包括不相连通的第一内油道和第二内油道,所述第一内油道的一端与所述分流孔连通,
    所述辅助管路包括多段外管路,所述滤清器的入口通过多段外管路中的至少一段而与所述第一内油道的另一端连通,所述滤清器的出口通过多段外管路中的至少一段而与所述第二内油道的一端连通,所述油冷换热器的入口通过多段外管路中的至少一段而与所述第二内油道的另一端连通。
  14. 根据权利要求11所述的电驱传动系统,其特征在于,所述第二传动轴包括第二输出轴和至少一个第二中间轴;所述第二中间轴和所述第二输入轴通过第三对齿轮啮合而传动连接,所述第二中间轴和所述第二输出轴通过第四对齿轮啮合而传动连接;所述第三对齿轮位于所述第三管路的至少一个喷油孔的喷射范围内,所述第四对齿轮位于所述第四管路的至少一个喷油孔的喷射范围内。
  15. 根据权利要求14所述的电驱传动系统,其特征在于,
    所述第二中间轴上设有齿轮部,且所述第三对齿轮设置在所述中间轴上;
    所述第二输入轴上均设有主动齿轮件,所述第三齿轮件与所述主动齿轮件连接;
    所述第四齿轮件设置在所述第二输出轴上,且所述第四齿轮件与所述齿轮部啮合;
    所述第二中间轴沿重力方向设置在所述第二输出轴的上部。
  16. 根据权利要求14所述的电驱传动系统,其特征在于,沿重力方向所述第二中间轴的轴心位于所述第二输出轴及所述第二输入轴的轴心的上方,且所述第二中间轴的轴心与所述第二输出轴及所述第二输入轴的轴心呈三角形分布。
  17. 根据权利要求14所述的电驱传动系统,其特征在于,所述第二壳体还设有轴承室,所述第二导油槽位于所述轴承室的上方且与所述轴承室连通,以使得经所述喷油孔喷出的润滑油能够经所述第二导油槽而流向所述轴承室。
  18. 根据权利要求12所述的电驱传动系统,其特征在于,所述第二输入轴为中空轴,包括第二中空油路,所述第二中空油路连接于所述壳内油道和所述电机轴。
  19. 根据权利要求11所述的电驱传动系统,其特征在于,所述第二侧壁和所述第三侧壁位于所述第一侧壁和所述第四侧壁之间,所述电机组件设置于所述第二侧壁和所述第三侧壁之间,
    所述第一壳体还包括连接于所述第二侧壁的第一筒状侧壁和第二筒状侧壁,所述第一筒状侧壁朝向所述第一侧壁延伸,所述第二筒状侧壁朝向所述第三侧壁延伸,并且所述第二筒状侧壁作为所述电机组件的定子组件的外壳。
  20. 根据权利要求19所述的电驱传动系统,其特征在于,所述第二筒状侧壁内部开设有至少两个间隔设置的冷却油道入口,至少两个所述冷却油道入口连通所述壳内油道;
    所述定子组件的外周还设置有冷却油道支路,所述冷却油道支路连通至少两个所述冷却油道入口。
  21. 根据权利要求10所述的电驱传动系统,其特征在于,所述电机组件包括电机壳体及设置在电机壳体内的电动机,所述电机轴连接所述电动机;
    所述电驱传动系统还包括油冷件,所述油冷件设置在所述电机壳体上,所述油冷件用于存储油冷液且与所述电机壳体、所述第一润滑油路系统及所述第二润滑油路系统连通。
  22. 根据权利要求21所述的电驱传动系统,其特征在于,
    所述油冷件包括油冷箱体、油池和油泵组件,所述油冷箱体集成在所述电机壳体上;
    所述油池设置在所述电机壳体内,所述油泵组件用于将所述油池中的润滑油泵送至所述第一油管组件。
  23. 根据权利要求21所述的电驱传动系统,其特征在于,还包括与所述电动机连接的电机控制器;
    所述电机控制器设置在所述电机壳体、所述第一减速器及所述第二减速器围成的空腔内;
    所述电机控制器还包括三相铜排;
    所述三相铜排伸入至所述油冷件内,穿过所述油冷件后与所述电动机连接,部分所述三相铜排插入至所述油冷液中。
  24. 根据权利要求23所述的电驱传动系统,其特征在于,所述电动机包括定子组件;
    所述三相铜排包括相互连接的主体铜排及转接铜排,其中,所述主体铜排连接所述电机控制器,并插入所述油冷液中;
    所述转接铜排设置在所述油冷件内,且所述转接铜排延伸至穿过所述油冷件后连接于所述定子组件。
  25. 根据权利要求23所述的电驱传动系统,其特征在于,所述第二减速器包括第二壳体,所述第一壳体和所述第二壳体分别与所述电机壳体的相对两端面连接;
    所述电驱传动系统还包括控制器盖板;
    所述控制器盖板、部分所述电机壳体、所述第一壳体和所述第二壳体面向所述电机壳体的端面一起形成一个密封容置腔;
    所述电机控制器容置在所述密封容置腔内。
  26. 根据权利要求9所述的电驱传动系统,其特征在于,所述第一输入轴和所述第二输入轴均与所述电机轴同轴设置;
    所述第一减速器还包括第一输出轴,所述第二减速器还包括第二输出轴;
    所述第一输出轴和所述第二输出轴同轴设置,且与所述电机轴不同轴设置;
    或者所述第一输出轴、所述第二输出轴及所述电机轴均同轴设置;
    或者所述第一输出轴、所述第二输出轴和所述电机轴均不同轴设置。
  27. 一种汽车,其特征在于,
    包括电池;
    以及如权利要求1-26中任一项所述的电驱传动系统,所述电驱传动系统电连接所述电池。
PCT/CN2023/096415 2022-09-16 2023-05-25 电驱传动系统和汽车 WO2024055631A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211131304.2A CN115195460A (zh) 2022-09-16 2022-09-16 电驱系统及车辆
CN202211131304.2 2022-09-16
CN202320225716.6 2023-01-18
CN202320225716.6U CN219312511U (zh) 2022-09-16 2023-01-18 电驱系统及车辆
CN202310515677.8 2023-05-08
CN202310515677.8A CN116733936A (zh) 2023-05-08 2023-05-08 电驱传动系统和汽车

Publications (1)

Publication Number Publication Date
WO2024055631A1 true WO2024055631A1 (zh) 2024-03-21

Family

ID=90274141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096415 WO2024055631A1 (zh) 2022-09-16 2023-05-25 电驱传动系统和汽车

Country Status (1)

Country Link
WO (1) WO2024055631A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112755A1 (en) * 2016-10-26 2018-04-26 GM Global Technology Operations LLC Multi-axis final drive assembly
KR20200035641A (ko) * 2018-09-27 2020-04-06 엘지전자 주식회사 전기 자동차용 구동장치
CN113669435A (zh) * 2021-07-15 2021-11-19 东风汽车集团股份有限公司 一种混合动力式驱动系统的润滑冷却系统及车辆
CN215861676U (zh) * 2021-08-25 2022-02-18 浙江零跑科技股份有限公司 一种减速器润滑系统
CN115076347A (zh) * 2022-06-28 2022-09-20 重庆青山工业有限责任公司 油冷电驱用减速器总成
CN115195460A (zh) * 2022-09-16 2022-10-18 浙江凌昇动力科技有限公司 电驱系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112755A1 (en) * 2016-10-26 2018-04-26 GM Global Technology Operations LLC Multi-axis final drive assembly
KR20200035641A (ko) * 2018-09-27 2020-04-06 엘지전자 주식회사 전기 자동차용 구동장치
CN113669435A (zh) * 2021-07-15 2021-11-19 东风汽车集团股份有限公司 一种混合动力式驱动系统的润滑冷却系统及车辆
CN215861676U (zh) * 2021-08-25 2022-02-18 浙江零跑科技股份有限公司 一种减速器润滑系统
CN115076347A (zh) * 2022-06-28 2022-09-20 重庆青山工业有限责任公司 油冷电驱用减速器总成
CN115195460A (zh) * 2022-09-16 2022-10-18 浙江凌昇动力科技有限公司 电驱系统及车辆

Similar Documents

Publication Publication Date Title
JP4591428B2 (ja) 車両の駆動装置
EP4002656B1 (en) Oil-water-cooled electric drive assembly and new energy automobile
CN106505791B (zh) 电机、电机控制器、减速机构一体化结构
CN201509123U (zh) 一种轮毂电机系统及其润滑系统
JP4696885B2 (ja) 車両の駆動装置
CN201549972U (zh) 一种轮毂电机系统和包括该轮毂电机系统的车辆
CN219312511U (zh) 电驱系统及车辆
WO2024087601A1 (zh) 一种混合动力电驱动系统以及混合动力车辆
CN113212134B (zh) 一种电驱动总成及车辆
CN110091700A (zh) 减速器、驱动装置和电动汽车
WO2024087600A1 (zh) 一种混合动力变速机构总成、混合动力电驱动系统和车辆
CN114872493A (zh) 一种多合一集成式商用车电驱桥
CN118182100A (zh) 一种电驱动系统及电动汽车
WO2024055631A1 (zh) 电驱传动系统和汽车
CN111391645A (zh) 一种带行星减速机构的双盘式电机新型混联机电一体化系统
CN218616195U (zh) 增程电驱动系统和车辆
CN110848346A (zh) 一种双电机横置可换挡电驱桥减速器总成
CN210821789U (zh) 动力驱动总成和车辆
CN207683336U (zh) 一种纯电动汽车用单级减速器
WO2024055593A1 (zh) 动力输出组件、动力总成及车辆
CN208469529U (zh) 动力驱动总成及电动汽车
CN111376698A (zh) 一种双盘式电机电动无极变速机电一体化系统
CN116733936A (zh) 电驱传动系统和汽车
US20240344604A1 (en) Electric drive assembly and electric device
CN220748841U (zh) 电机轴分布式通油的电机、动力总成及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864370

Country of ref document: EP

Kind code of ref document: A1