WO2024055587A1 - 喷溅浸没电池热管理系统以及控制方法 - Google Patents
喷溅浸没电池热管理系统以及控制方法 Download PDFInfo
- Publication number
- WO2024055587A1 WO2024055587A1 PCT/CN2023/089321 CN2023089321W WO2024055587A1 WO 2024055587 A1 WO2024055587 A1 WO 2024055587A1 CN 2023089321 W CN2023089321 W CN 2023089321W WO 2024055587 A1 WO2024055587 A1 WO 2024055587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- management system
- thermal management
- splash
- water inlet
- Prior art date
Links
- 238000007654 immersion Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 239000000110 cooling liquid Substances 0.000 claims abstract description 8
- 230000004308 accommodation Effects 0.000 claims description 36
- 238000002347 injection Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 32
- 239000007921 spray Substances 0.000 claims description 21
- 239000002826 coolant Substances 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000004321 preservation Methods 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009422 external insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the technical field of vehicle batteries, and specifically to a thermal management system and control method for a splash immersion battery.
- This application requests the priority of the patent application submitted to the China State Intellectual Property Office on September 15, 2022, with the application number 202211124739.4 and the application name "Splash Immersion Battery Thermal Management System and Control Method".
- the current mainstream battery assembly solutions are standard module or CTP configuration battery assemblies.
- the structures of these two solutions are relatively complex and have two major problems: 1. Limited by the height limit of the Z-direction layout, integration is low; 2. Thermal The management performance is poor and the temperature consistency between and within the battery cells cannot be guaranteed.
- the main purpose of this application is to provide a splash immersion battery thermal management system and a control method to solve the problem of low management efficiency of battery thermal management systems in the prior art.
- a splash immersion battery thermal management system including: a box body with a receiving cavity for installing the battery module; a water inlet system, the water inlet system includes The water inlet end and the spray end, the water inlet end includes a water inlet pipe, the water inlet pipe is connected with the spray end, the spray end is installed in the accommodation cavity, and the water inlet pipe extends from the accommodation cavity to the outside of the box, and the injection end is provided with multiple Some of the plurality of injection parts are arranged along the width and length directions of the bottom of the accommodation cavity, and some injection parts are arranged along the height direction of the side walls of the accommodation cavity.
- the end of the water inlet pipe is provided with a flange joint for connecting to an external water source.
- the spray end includes: a U-shaped pipe, the U-shaped pipe is erected on one of the side walls of the box, the first end of the U-shaped pipe is connected to the water inlet pipe; a vertical pipe, the first end of the vertical pipe is connected to the U-shaped pipe.
- the second end of the vertical tube is connected to the second end of the vertical tube, and the second end of the vertical tube extends toward the bottom of the accommodation cavity.
- the vertical tube is provided with a spray portion; the second end of the vertical tube is provided with multiple horizontal tubes, and the multiple horizontal tubes
- the length direction extends along the length direction of the accommodation cavity, a plurality of horizontal tubes are arranged at intervals along the width direction of the accommodation cavity, and at least one horizontal tube among the plurality of horizontal tubes is provided with a spray portion.
- a drain groove is provided in the accommodation cavity, and a drain pipe connected to the drain groove is provided outside the box.
- a plurality of spray parts are provided on the vertical pipe, and the plurality of spray parts are spaced apart along the length direction of the vertical pipe. It is set that the height of the injection part on the vertical pipe that is farthest from the bottom of the accommodation cavity is set to be greater than the highest height of the leakage groove.
- the box body has a side wall, the vertical tube is arranged close to the side wall, and the direction of the cooling liquid sprayed from the injection part on the vertical tube is arranged to have a first included angle with the side wall, wherein the first included angle Located between 95° and 135°.
- a water outlet pipe is also provided on the side wall of the box, and the water outlet pipe is connected with the accommodation cavity, and the highest water outlet point of the water outlet pipe is lower than the lowest point of the cell of the battery module, or the highest water outlet of the water outlet pipe is point is higher than the lowest point setting of the cells of the battery module.
- the direction of the cooling liquid ejected from the injection part located on the horizontal tube is arranged at a second included angle with the bottom surface of the accommodation cavity, wherein the second included angle is between 35° and 45°.
- a battery core fixing plate is provided at the bottom of the accommodation cavity.
- the battery core fixing plate is used to fix the battery core with an external insulation structure, and an overflow hole is provided on the battery core fixing plate so that the battery core of the battery module Completely immersed in coolant.
- a method for controlling a battery thermal management system is provided.
- the method is used to control the above-mentioned splash immersion battery thermal management system, including: accepting a mode request instruction, wherein the mode request instruction is used to request spraying.
- the splash immersion battery thermal management system executes a target mode, and the target mode includes at least one of the following: cooling working mode, heating working mode, heat preservation working mode, and safe working mode; responding to mode request instructions, collecting temperature information of the battery module in the current target mode ; Determine whether the temperature information meets the preset conditions; if so, exit the current target mode.
- the temperature information meets the preset conditions, including: when the current target mode is the cooling working mode and TH ⁇ TYL-2°C, exit the current mode; when the current target mode is the heating working mode , and TN ⁇ TYH+3°C, exit the current mode; when the current target mode is the heat preservation working mode, and TD ⁇ TYB, exit the current mode; when the current target mode is the safe working mode, control the spray
- the battery module is placed in the box, the water inlet system is connected to the box, and multiple injection ends are provided in the water inlet pipe in the accommodation cavity.
- the coolant in the water inlet system is evenly distributed in the box through the injection end. This allows the battery module to be immersed in the coolant, which increases the heat dissipation capacity of the battery and effectively improves the management efficiency of the battery thermal management system.
- Figure 1 shows a schematic structural diagram of a first embodiment of a thermal management system for a splash immersion battery according to the present application
- Figure 2 shows a schematic structural diagram of a second embodiment of a thermal management system for a splash immersion battery according to the present application
- Figure 3 shows a schematic structural diagram of an embodiment of a water inlet system according to the present application
- Figure 4 shows a schematic structural diagram of a third embodiment of a thermal management system for a splash immersion battery according to the present application
- Figure 5 shows a schematic structural diagram of a fourth embodiment of a thermal management system for a splash immersion battery according to the present application
- Figure 6 shows a schematic structural diagram of a fifth embodiment of a thermal management system for a splash immersion battery according to the present application
- Figure 7 shows a flow chart of a control method of a battery thermal management system according to the present application.
- a thermal management system for a splash immersion battery is provided.
- a splash immersion battery thermal management system includes: a box 6 and a water inlet system.
- the box 6 has a receiving cavity for installing the battery module 8 .
- the water inlet system includes a water inlet end and a spray end.
- the water inlet end includes a water inlet pipe 1.
- the water inlet pipe 1 is connected to the spray end.
- the spray end is installed in the accommodation cavity, and the water inlet pipe 1 extends from the accommodation cavity to the outside of the box 6.
- the injection end is provided with a plurality of injection parts, some of the plurality of injection parts are arranged along the width and length directions of the bottom of the accommodation cavity, and some of the injection parts are arranged along the height direction of the side wall of the accommodation cavity.
- the water inlet system is connected to the box, and the water inlet pipe in the accommodation cavity is provided with multiple injection ends.
- the coolant in the water inlet system is evenly distributed in the box through the injection end. This allows the battery module to be immersed in the coolant, which increases the heat dissipation capacity of the battery and effectively improves the management efficiency of the splash immersion battery thermal management system.
- the end of the water inlet pipe 1 is provided with a flange joint 101 for connecting to an external water source.
- This arrangement enables the water inlet pipe 1 to be firmly connected to the external water source through the flange joint 101, thereby preventing water leakage.
- the spray end includes: a U-shaped pipe 102, which is installed on one of the side walls of the box 6, and the first end of the U-shaped pipe 102 is connected to the water inlet pipe 1; a vertical pipe 103, The first end of the vertical tube 103 is connected to the second end of the U-shaped tube 102, and the second end of the vertical tube 103 extends toward the bottom of the accommodation cavity.
- the vertical tube 103 is provided with a spray part;
- a plurality of horizontal tubes 104 are provided at the second end. The length direction of the plurality of horizontal tubes 104 extends along the length direction of the accommodation cavity.
- the plurality of horizontal tubes 104 are arranged at intervals along the width direction of the accommodation cavity.
- At least one of the plurality of horizontal tubes 104 One horizontal pipe 104 is provided with a spray part.
- This arrangement allows the external water source to flow through the water inlet pipe 1 through the U-shaped pipe 102 into the vertical pipe 103 and finally flow into the multiple horizontal pipes 104 evenly, and the multiple spray parts opened on the horizontal pipe 104 and the vertical pipe 103 can evenly oppose each other.
- the battery module is sprayed with external water source, which keeps the temperature of the battery module consistent and improves the heat dissipation efficiency of the battery.
- the splash immersion battery thermal management system realizes functional management of battery thermal management through complete immersion and splash injection of coolant.
- the working modes include but are not limited to heating, cooling, insulation, safety, etc.
- a drain groove 9 is provided in the accommodation cavity, a drain pipe 5 connected to the drain groove 9 is provided outside the box 6, and a plurality of injection parts are provided on the vertical pipe 103.
- the plurality of injection parts are arranged along the The vertical tubes 103 are arranged at intervals in the length direction, and the height of the injection part on the vertical tube 103 that is farthest from the bottom of the accommodation cavity is greater than the highest height of the leakage groove 9 .
- This arrangement effectively prevents excessive external liquid from overflowing the box 6 . When the external liquid accumulates to a certain height, it can flow out through the leakage groove 9. It protects the battery.
- the box 6 also includes a box side frame 2 .
- the box 6 has a side wall 3, a vertical tube 103 is disposed close to the side wall 3, and the ejected from the injection part on the vertical tube 103
- the direction of the cooling liquid is arranged to have a first included angle with the side wall 3 , wherein the first included angle is between 95° and 135°. This arrangement prevents the coolant ejected from the injection part from having an excessive flow rate and causing damage to the battery module.
- a water outlet pipe 4 is also provided on the side wall of the box 6.
- the water outlet pipe 4 is connected to the accommodation cavity, and the highest water outlet point of the water outlet pipe 4 is lower than the power of the battery module.
- the lowest point setting of the battery core, or the highest water outlet point of the water outlet pipe 4 is higher than the lowest point setting of the battery core of the battery module.
- the direction of the cooling liquid ejected from the injection part located on the horizontal tube 104 is set at a second included angle with the bottom surface of the accommodation cavity, where the second included angle is between 35° and 45°.
- a battery core fixing plate 7 is provided at the bottom of the accommodation cavity.
- the battery core fixing plate 7 is used to fix the battery core with an external insulation structure, and an overflow hole is provided on the battery core fixing plate 7 so that the battery module can The battery cells are completely immersed in the coolant. This setting supports the battery core, prevents the battery core from directly contacting the water inlet pipe, and protects the battery core.
- the overflow hole opened on the core fixing plate 7 allows the bottom of the battery module to exchange heat with the coolant, effectively improving the temperature consistency of the battery module.
- a method for controlling a battery thermal management system is provided.
- the method is used to control the above-mentioned splash immersion battery thermal management system, including: S01, accepting mode request instructions.
- the mode request instruction is used to request the battery thermal management system to execute the target mode.
- the target mode includes at least one of the following: cooling working mode, heating working mode, heat preservation working mode, and safe working mode;
- S02 respond to the mode request instruction and collect the current Temperature information of the battery module in the target mode;
- S03 determine whether the temperature information meets the preset conditions; S04, if so, exit the current target mode.
- This application can request the battery thermal management system to execute the target mode according to the mode request instruction, so that the battery module maintains a consistent temperature, effectively improving the management efficiency of the battery thermal management system.
- determine whether the temperature information meets the preset conditions including: when the current target mode is the cooling working mode and TH ⁇ TYL-2°C, exit the current mode; when the current target mode is the heating working mode , and TN ⁇ TYH+3°C, exit the current mode; when the current target mode is the heat preservation working mode, and TD ⁇ TYB, exit the current mode; when the current target mode is the safe working mode, control the spray
- the coolant of the splash immersion battery thermal management system works in the maximum flow mode until the splash immersion battery thermal management system fails and exits the current mode; where TH is the highest temperature of the battery module collected, and TN is the battery collected.
- TYL is the cooling operating mode threshold
- TYH is the heating mode threshold
- TYB is the thermal insulation operating mode threshold. This setting allows the working mode request to be made based on the collected battery module temperature, keeping the battery module in a stable temperature environment, effectively improving the management efficiency of the battery thermal management system.
- spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
- the exemplary term “over” may include both orientations “above” and “below.”
- the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
Abstract
本申请提供了一种喷溅浸没电池热管理系统以及控制方法。喷溅浸没电池热管理系统包括:箱体,箱体具有用于安装电池模组的容纳腔;进水系统,进水系统包括进水端和喷射端,进水端包括进水管,进水管与喷射端连通设置,喷射端设置于容纳腔内,且进水管从容纳腔内延伸至箱体外设置,喷射端设置有多个喷射部,多个喷射部中有的沿容纳腔底部的宽度和长度方向布置,有的喷射部沿容纳腔的侧壁的高度方向布置。本申请设置了箱体容纳电池模组,并将进水系统连通箱体,这样使得电池模组浸泡在由进水系统流入箱体内的冷却液内,有效提高了电池热管理系统的效率。
Description
本申请涉及车辆电池技术领域,具体而言,涉及一种喷溅浸没电池热管理系统以及控制方法。本申请要求于2022年09月15日提交至中国国家知识产权局、申请号为202211124739.4、申请名称为“喷溅浸没电池热管理系统以及控制方法”的专利申请的优先权。
动力电池作为新能源汽车的关键核心零部件,结构安全及热管理性能非常重要。目前主流的电池总成方案是标准模组或者CTP构型电池总成,这两种方案结构比较复杂,且存在两大问题:1.受制于Z向布置高度限制,集成化低;2.热管理性能差,无法保证电池电芯之间和电芯内部的温度一致性。
申请内容
本申请的主要目的在于提供一种喷溅浸没电池热管理系统以及控制方法,以解决现有技术中电池热管理系统管理效率低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种喷溅浸没电池热管理系统,包括:箱体,箱体具有用于安装电池模组的容纳腔;进水系统,进水系统包括进水端和喷射端,进水端包括进水管,进水管与喷射端连通设置,喷射端设置于容纳腔内,且进水管从容纳腔内延伸至箱体外设置,喷射端设置有多个喷射部,多个喷射部中有的沿容纳腔底部的宽度和长度方向布置,有的喷射部沿容纳腔的侧壁的高度方向布置。
进一步地,进水管的端部设置有用于与外界水源连接的法兰接头。
进一步地,喷射端包括:U形管,U形管架设在箱体的其中一个侧壁上,U形管的第一端与进水管连接;竖直管,竖直管的第一端与U形管的第二端连接,竖直管的第二端朝向容纳腔的底部延伸设置,竖直管上开设有喷射部;竖直管的第二端设置有多个水平管,多个水平管的长度方向沿容纳腔的长度方向延伸设置,多个水平管沿容纳腔的宽度方向间隔地设置,多个水平管中至少一个水平管上开设有喷射部。
进一步地,容纳腔内设置有泄流槽,箱体外部设置有与泄流槽连通的泄流管,竖直管上开设多个喷射部,多个喷射部沿竖直管的长度方向间隔地设置,竖直管上距离容纳腔底部距离最远的喷射部的高度,大于泄流槽的最高高度设置。
进一步地,箱体具有侧壁,竖直管靠近侧壁设置,且从竖直管上的喷射部喷出的冷却液的方向与侧壁具有第一夹角地设置,其中,第一夹角位于95°至135°之间。
进一步地,箱体的侧壁上还设置有出水管,出水管与容纳腔连通设置,且出水管的最高出水点低于电池模组的电芯的最低点设置,或者,出水管的最高出水点高于电池模组的电芯的最低点设置。
进一步地,位于水平管上的喷射部喷出的冷却液的方向与容纳腔的底面具有第二夹角地设置,其中,第二夹角位于35°至45°之间。
进一步地,容纳腔的底部设置有电芯固定板,电芯固定板用于固定外部设置有绝缘结构的电芯,且电芯固定板上开设有溢流孔,以使电池模组的电芯完全浸泡在冷却液中。
根据本申请的另一方面,提供了一种电池热管理系统的控制方法,方法用于控制上述的喷溅浸没电池热管理系统,包括:接受模式请求指令,其中,模式请求指令用于请求喷溅浸没电池热管理系统执行目标模式,目标模式包括如下至少之一:冷却工作模式、加热工作模式、保温工作模式、安全工作模式;响应模式请求指令,采集当前目标模式的电池模组的温度信息;判断温度信息是否满足预设条件;如果是,则退出当前目标模式。
进一步地,判断温度信息是否满足预设条件,包括:在当前目标模式为冷却工作模式的情况下,且TH≤TYL-2℃时,退出当前模式;在当前目标模式为加热工作模式的情况下,且TN≥TYH+3℃时,退出当前模式;在当前目标模式为保温工作模式的情况下,且TD≤TYB时,退出当前模式;在当前目标模式为安全工作模式的情况下,控制喷溅浸没电池热管理系统的冷却液以最大流量模式进行工作,直至喷溅浸没电池热管理系统失效后退出当前模式;其中,TH为采集到的电池模组的最高温度、TN为采集到的电池模组的最低温度、TD=TH-TN、TYL为冷却工作模式阈值、TYH为加热模式阈值、TYB为保温工作模式阈值。
应用本申请的技术方案,在箱体内放置电池模组,将进水系统连通箱体,并在容纳腔内的进水管设置有多个喷射端。使得进水系统内的冷却液通过喷射端均匀的分布在箱体内。这样使得电池模组浸泡在冷却液内,增加了电池的散热能力,有效提高了电池热管理系统的管理效率。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一种喷溅浸没电池热管理系统的第一实施例的结构示意图;
图2示出了根据本申请的一种喷溅浸没电池热管理系统的第二实施例的结构示意图;
图3示出了根据本申请的一种进水系统的实施例的结构示意图;
图4示出了根据本申请的一种喷溅浸没电池热管理系统的第三实施例的结构示意图;
图5示出了根据本申请的一种喷溅浸没电池热管理系统的第四实施例的结构示意图;
图6示出了根据本申请的一种喷溅浸没电池热管理系统的第五实施例的结构示意图;
图7示出了根据本申请的一种电池热管理系统的控制方法的流程图。
其中,上述附图包括以下附图标记:
1、进水管;2、箱体侧边框;3、侧壁;4、出水管;5、泄流管;6、箱体;7、电芯固定板;8、电池模组;9、泄流槽;
101、法兰接头;102、U形管;103、竖直管;104、水平管。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图6所示,根据本申请的具体实施例,提供了一种喷溅浸没电池热管理系统。
具体地,一种喷溅浸没电池热管理系统,包括:箱体6和进水系统。箱体6具有用于安装电池模组8的容纳腔。进水系统包括进水端和喷射端,进水端包括进水管1,进水管1与喷射端连通设置,喷射端设置于容纳腔内,且进水管1从容纳腔内延伸至箱体6外设置,喷射端设置有多个喷射部,多个喷射部中有的沿容纳腔底部的宽度和长度方向布置,有的喷射部沿容纳腔的侧壁的高度方向布置。
本实施例中,如图1和图2所示,将进水系统连通箱体,并在容纳腔内的进水管设置有多个喷射端。使得进水系统内的冷却液通过喷射端均匀的分布在箱体内。这样使得电池模组浸泡在冷却液内,增加了电池的散热能力,有效提高了喷溅浸没电池热管理系统的管理效率。
进一步地,进水管1的端部设置有用于与外界水源连接的法兰接头101。这样设置使得进水管1通过法兰接头101牢固地与外界水源接通,预防了漏水现象。
如图3所示,喷射端包括:U形管102,U形管102架设在箱体6的其中一个侧壁上,U形管102的第一端与进水管1连接;竖直管103,竖直管103的第一端与U形管102的第二端连接,竖直管103的第二端朝向容纳腔的底部延伸设置,竖直管103上开设有喷射部;竖直管103的第二端设置有多个水平管104,多个水平管104的长度方向沿容纳腔的长度方向延伸设置,多个水平管104沿容纳腔的宽度方向间隔地设置,多个水平管104中至少一个水平管104上开设有喷射部。这样设置使得外接水源通过进水管1经过U形管102流入竖直管103最后均匀地流入多个水平管104,并在水平管104与竖直管103上开设的多个喷射部可以均匀地对电池模组进行外部水源的喷撒,使得电池模组温度一直保持一致性,提高了电池的散热效率。本实施例中,喷溅浸没电池热管理系统通过冷却液的完全浸没飞溅喷射实现对电池热管理的功能管理,工作模式包括但不限于加热、冷却、保温、安全等。
如图4所示,容纳腔内设置有泄流槽9,箱体6外部设置有与泄流槽9连通的泄流管5,竖直管103上开设多个喷射部,多个喷射部沿竖直管103的长度方向间隔地设置,竖直管103上距离容纳腔底部距离最远的喷射部的高度,大于泄流槽9的最高高度设置。这样设置有效防止因外界液体过多而溢出箱体6的现象。当外界液体累积到一定的高度可通过泄流槽9流出。对电池起到了保护的作用。本实施例中箱体6还包括箱体侧边框2。
在本申请的另一实施例中,如图1、图5所示,箱体6具有侧壁3,竖直管103靠近侧壁3设置,且从竖直管103上的喷射部喷出的冷却液的方向与侧壁3具有第一夹角地设置,其中,第一夹角位于95°至135°之间。这样设置防止了喷射部喷出的冷却液流速过大对电池模组造成损害。
进一步地,如图5、图6所示,箱体6的侧壁上还设置有出水管4,出水管4与容纳腔连通设置,且出水管4的最高出水点低于电池模组的电芯的最低点设置,或者,出水管4的最高出水点高于电池模组的电芯的最低点设置。这样设置避免了因出水管4开得过大箱体6内冷却液全部流出而造成的电池散热效果太差的问题。并且,也可以防止冷却液过多可通过出水管进行冷却液的泄流,防止液体溢出对电池造成损害。
具体地,位于水平管104上的喷射部喷出的冷却液的方向与容纳腔的底面具有第二夹角地设置,其中,第二夹角位于35°至45°之间。这样设置可使得电池模组更加均匀的受到冷却液的喷撒,提高了电池模组温度的一致性,并提高了电池模组的散热效率。
进一步地,容纳腔的底部设置有电芯固定板7,电芯固定板7用于固定外部设置有绝缘结构的电芯,且电芯固定板7上开设有溢流孔,以使电池模组的电芯完全浸泡在冷却液中。这样设置对电芯起到了支撑作用,防止电芯直接与进水管接触,对电芯起到保护作用,并且电
芯固定板7上开设的溢流孔可将电池模组的底部也进行与冷却液的热交换,有效提高了电池模组温度的一致性。
在本申请的另一实施例中,如图7所示,提供了一种电池热管理系统的控制方法,方法用于控制上述的喷溅浸没电池热管理系统,包括:S01,接受模式请求指令,其中,模式请求指令用于请求电池热管理系统执行目标模式,目标模式包括如下至少之一:冷却工作模式、加热工作模式、保温工作模式、安全工作模式;S02,响应模式请求指令,采集当前目标模式的电池模组的温度信息;S03,判断温度信息是否满足预设条件;S04如果是,则退出当前目标模式。本申请可根据模式请求指令请求电池热管理系统执行目标模式,使得电池模组保持温度一致,有效提高了电池热管理系统管理效率。
进一步地,判断温度信息是否满足预设条件,包括:在当前目标模式为冷却工作模式的情况下,且TH≤TYL-2℃时,退出当前模式;在当前目标模式为加热工作模式的情况下,且TN≥TYH+3℃时,退出当前模式;在当前目标模式为保温工作模式的情况下,且TD≤TYB时,退出当前模式;在当前目标模式为安全工作模式的情况下,控制喷溅浸没电池热管理系统的冷却液以最大流量模式进行工作,直至喷溅浸没电池热管理系统失效后退出当前模式;其中,TH为采集到的电池模组的最高温度、TN为采集到的电池模组的最低温度、TD=TH-TN、TYL为冷却工作模式阈值、TYH为加热模式阈值、TYB为保温工作模式阈值。这样设置使得根据采集到的电池模组温度进行工作模式请求,使得电池模组保持在一个稳定的温度环境中,有效提高了电池热管理系统的管理效率。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (10)
- 一种喷溅浸没电池热管理系统,其特征在于,包括:箱体(6),所述箱体(6)具有用于安装电池模组(8)的容纳腔;进水系统,所述进水系统包括进水端和喷射端,所述进水端包括进水管(1),所述进水管(1)与所述喷射端连通设置,所述喷射端设置于所述容纳腔内,且所述进水管(1)从所述容纳腔内延伸至所述箱体(6)外设置,所述喷射端设置有多个喷射部,多个所述喷射部中有的沿所述容纳腔底部的宽度和长度方向布置,有的所述喷射部沿所述容纳腔的侧壁的高度方向布置。
- 根据权利要求1所述的喷溅浸没电池热管理系统,其特征在于,所述进水管(1)的端部设置有用于与外界水源连接的法兰接头(101)。
- 根据权利要求1或2所述的喷溅浸没电池热管理系统,其特征在于,所述喷射端包括:U形管(102),所述U形管(102)架设在所述箱体(6)的其中一个侧壁上,所述U形管(102)的第一端与所述进水管(1)连接;竖直管(103),所述竖直管(103)的第一端与所述U形管(102)的第二端连接,所述竖直管(103)的第二端朝向所述容纳腔的底部延伸设置,所述竖直管(103)上开设有所述喷射部;所述竖直管(103)的第二端设置有多个水平管(104),多个所述水平管(104)的长度方向沿所述容纳腔的长度方向延伸设置,多个所述水平管(104)沿所述容纳腔的宽度方向间隔地设置,多个所述水平管(104)中至少一个所述水平管(104)上开设有所述喷射部。
- 根据权利要求3所述的喷溅浸没电池热管理系统,其特征在于,所述容纳腔内设置有泄流槽(9),所述箱体(6)外部设置有与所述泄流槽(9)连通的泄流管(5),所述竖直管(103)上开设多个所述喷射部,多个所述喷射部沿所述竖直管(103)的长度方向间隔地设置,所述竖直管(103)上距离所述容纳腔底部距离最远的所述喷射部的高度,大于所述泄流槽(9)的最高高度设置。
- 根据权利要求3所述的喷溅浸没电池热管理系统,其特征在于,所述箱体(6)具有侧壁(3),所述竖直管(103)靠近所述侧壁(3)设置,且从所述竖直管(103)上的所述喷射部喷出的冷却液的方向与所述侧壁(3)具有第一夹角地设置,其中,所述第一夹角位于95°至135°之间。
- 根据权利要求3所述的喷溅浸没电池热管理系统,其特征在于,所述箱体(6)的侧壁上还设置有出水管(4),所述出水管(4)与所述容纳腔连通设置,且所述出水管(4)的最高出水点低于所述电池模组(8)的电芯的最低点设置,或者,所述出水管(4)的最高出水点高于所述电池模组(8)的电芯的最低点设置。
- 根据权利要求3所述的喷溅浸没电池热管理系统,其特征在于,位于所述水平管(104)上的所述喷射部喷出的冷却液的方向与所述容纳腔的底面具有第二夹角地设置,其中,所述第二夹角位于35°至45°之间。
- 根据权利要求1所述的喷溅浸没电池热管理系统,其特征在于,所述容纳腔的底部设置有电芯固定板(7),所述电芯固定板(7)用于固定外部设置有绝缘结构的电芯,且所述电芯固定板(7)上开设有溢流孔,以使所述电池模组(8)的电芯完全浸泡在冷却液中。
- 一种电池热管理系统的控制方法,所述方法用于控制权利要求1至8中任一项所述的喷溅浸没电池热管理系统,其特征在于,包括:接受模式请求指令,其中,所述模式请求指令用于请求所述喷溅浸没电池热管理系统执行目标模式,所述目标模式包括如下至少之一:冷却工作模式、加热工作模式、保温工作模式、安全工作模式;响应所述模式请求指令,采集当前所述目标模式的所述电池模组(8)的温度信息;判断所述温度信息是否满足预设条件;如果是,则退出当前所述目标模式。
- 根据权利要求9所述的方法,其特征在于,判断所述温度信息是否满足预设条件,包括:在当前所述目标模式为所述冷却工作模式的情况下,且TH≤TYL-2℃时,退出当前模式;在当前所述目标模式为所述加热工作模式的情况下,且TN≥TYH+3℃时,退出当前模式;在当前所述目标模式为所述保温工作模式的情况下,且TD≤TYB时,退出当前模式;在当前所述目标模式为所述安全工作模式的情况下,控制所述喷溅浸没电池热管理系统的冷却液以最大流量模式进行工作,直至所述喷溅浸没电池热管理系统失效后退出当前模式;其中,TH为采集到的所述电池模组(8)的最高温度、TN为采集到的所述电池模组(8)的最低温度、TD=TH-TN、TYL为冷却工作模式阈值、TYH为加热模式阈值、TYB为保温工作模式阈值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211124739.4A CN115425324A (zh) | 2022-09-15 | 2022-09-15 | 喷溅浸没电池热管理系统以及控制方法 |
CN202211124739.4 | 2022-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024055587A1 true WO2024055587A1 (zh) | 2024-03-21 |
Family
ID=84204490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/089321 WO2024055587A1 (zh) | 2022-09-15 | 2023-04-19 | 喷溅浸没电池热管理系统以及控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115425324A (zh) |
WO (1) | WO2024055587A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115425324A (zh) * | 2022-09-15 | 2022-12-02 | 中国第一汽车股份有限公司 | 喷溅浸没电池热管理系统以及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208781A (ja) * | 1997-01-20 | 1998-08-07 | Mitsubishi Motors Corp | バッテリ冷却装置 |
CN207265198U (zh) * | 2017-10-10 | 2018-04-20 | 华霆(合肥)动力技术有限公司 | 热管理系统及供电装置 |
CN211719658U (zh) * | 2020-04-14 | 2020-10-20 | 恒大新能源技术(深圳)有限公司 | 电池箱体 |
CN112151710A (zh) * | 2019-06-28 | 2020-12-29 | 比亚迪股份有限公司 | 电池包热安全结构、电池包热管理系统及车辆 |
KR20220092740A (ko) * | 2020-12-24 | 2022-07-04 | 현대모비스 주식회사 | 전기자동차용 배터리의 열폭주 저지를 위한 감압분사형 자가 소화 시스템 및 방법 |
CN115425324A (zh) * | 2022-09-15 | 2022-12-02 | 中国第一汽车股份有限公司 | 喷溅浸没电池热管理系统以及控制方法 |
-
2022
- 2022-09-15 CN CN202211124739.4A patent/CN115425324A/zh active Pending
-
2023
- 2023-04-19 WO PCT/CN2023/089321 patent/WO2024055587A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208781A (ja) * | 1997-01-20 | 1998-08-07 | Mitsubishi Motors Corp | バッテリ冷却装置 |
CN207265198U (zh) * | 2017-10-10 | 2018-04-20 | 华霆(合肥)动力技术有限公司 | 热管理系统及供电装置 |
CN112151710A (zh) * | 2019-06-28 | 2020-12-29 | 比亚迪股份有限公司 | 电池包热安全结构、电池包热管理系统及车辆 |
CN211719658U (zh) * | 2020-04-14 | 2020-10-20 | 恒大新能源技术(深圳)有限公司 | 电池箱体 |
KR20220092740A (ko) * | 2020-12-24 | 2022-07-04 | 현대모비스 주식회사 | 전기자동차용 배터리의 열폭주 저지를 위한 감압분사형 자가 소화 시스템 및 방법 |
CN115425324A (zh) * | 2022-09-15 | 2022-12-02 | 中国第一汽车股份有限公司 | 喷溅浸没电池热管理系统以及控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115425324A (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024055587A1 (zh) | 喷溅浸没电池热管理系统以及控制方法 | |
CN207542361U (zh) | 一种浸没式冷却结构 | |
CN110571379A (zh) | 低温自加热高温散热锂电池及控制方法 | |
CN111240448B (zh) | 一种服务器中部喷射液体浸没式液冷装置 | |
TW201703312A (zh) | 具有熱管理功能的電池系統 | |
WO2019126996A1 (zh) | 一种浸没式的动力电池散热装置 | |
CN107785954A (zh) | 一种电池恒温充电装置 | |
CN112740461B (zh) | 蓄热装置、换热装置、控制方法、控制部件以及热管理系统 | |
CN109935854A (zh) | 一种加湿器、燃料电池和车辆 | |
CN206893766U (zh) | 一种电池箱散热盖板 | |
CN205944149U (zh) | 一种锂电池高散热外壳 | |
CN219553725U (zh) | 储能系统液冷电池模组 | |
CN209016163U (zh) | 电池包 | |
CN113270809B (zh) | 一种馈线终端冷却装置 | |
CN110544807A (zh) | 动力电池的液冷系统及其控制方法 | |
CN208655718U (zh) | 一种电池模组、大容量电池和箱体电池 | |
CN217721805U (zh) | 一种制冷系统 | |
CN114784418A (zh) | 浸没式电池包与电动汽车 | |
CN115377564A (zh) | 电池模组冷却系统、电池箱及储能设备 | |
CN211139057U (zh) | 一种可自主散热的电源板 | |
CN207183471U (zh) | 可伸缩接头、热管理装置及电池模组 | |
CN207098017U (zh) | 一种散热锂电池模组盖板 | |
CN220472370U (zh) | 一种散热器 | |
CN217486834U (zh) | 一种均流散热的单相浸没式液冷装置 | |
RU138982U1 (ru) | Устройство батарейного модуля с жидкостной термостабилизацией накопителей |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23864328 Country of ref document: EP Kind code of ref document: A1 |