WO2024055448A1 - 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法 - Google Patents

一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法 Download PDF

Info

Publication number
WO2024055448A1
WO2024055448A1 PCT/CN2022/138333 CN2022138333W WO2024055448A1 WO 2024055448 A1 WO2024055448 A1 WO 2024055448A1 CN 2022138333 W CN2022138333 W CN 2022138333W WO 2024055448 A1 WO2024055448 A1 WO 2024055448A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
micro
pits
base material
circuit board
Prior art date
Application number
PCT/CN2022/138333
Other languages
English (en)
French (fr)
Inventor
王恒亮
胡宏宇
Original Assignee
德中(天津)技术发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德中(天津)技术发展股份有限公司 filed Critical 德中(天津)技术发展股份有限公司
Publication of WO2024055448A1 publication Critical patent/WO2024055448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Definitions

  • the present invention and the technical field of laser surface processing are specifically a circuit board manufacturing method for laser drilling and roughening the insulating base material with pattern traces.
  • PCB Printed Circuit Board
  • Printed Circuit Board plays the role of connection, insulation and support in electronic components and is one of the most critical components.
  • a bare circuit board or bare board for short, it refers to a circuit board that has not yet been installed with components. It is also called a printed circuit board, a printed circuit board, a printed circuit board, a printed circuit board, a circuit board, a circuit board, and a printed board. Bare boards are generally customized on demand by manufacturers that specialize in manufacturing printed circuit boards.
  • the process flow of bare board manufacturing is roughly as follows: drilling holes on the double-sided copper-clad insulating substrate - metallizing the holes - making conductive patterns and removing the metal resist film or organic resist film —Coating solder resist—making solder mask patterns and generating welding areas—coating the surface of the welding area for solderability—making marking symbols—shipping to manufacturers in the assembly stage.
  • the production of conductive patterns, drilling and hole metallization, and the production of solder mask patterns are key processes in the bare board production stage.
  • the drilling and hole metallization process affects the Z-direction interconnection effect between each horizontal conductive layer of the circuit board on the one hand.
  • the starting material is a laminate with an insulating material covered with a conductive metal layer. Chemical etching is used to remove the conductive layer in designated areas of the copper-clad foil board in accordance with the design requirements. The copper foil remaining on the insulating board is the conductive pattern.
  • the conductive layer is generally high-purity copper foil, or it may be aluminum foil or foil made of other conductive metals such as silver or gold.
  • the thickness of commonly used copper foil is between 5-36 microns, and special circuit boards are also made with thicknesses up to 72 microns or thicker. of copper foil.
  • the thickness of the dielectric layer can range from 30 microns to several mm.
  • the insulating medium can contain fiber or granular reinforcing materials, including aramid fibers, ceramics, and glass fibers.
  • the single filament diameter or particle size of the reinforcing material is between 1-10 microns, and the multi-strand wire diameter is above 10 microns, or even up to Hundreds of microns.
  • the conductive copper foil that needs to be retained on the surface of the copper-clad board is covered with a protective material-resist, while the non-conductive pattern part, the copper that is to be removed, is exposed.
  • the steps are: brush Board - film - exposure - development.
  • liquid etchant is sprayed onto the workpiece.
  • the etchant is a chemical liquid that can interact with copper. It comes into contact with the exposed copper metal and reacts to dissolve the copper into the etchant solution, thereby achieving the purpose of removal.
  • the conductive pattern part, due to the resist protection is left on the surface of the insulating material to form the required conductive pattern.
  • the steps are: etching - removing the resist film.
  • the etching method to produce conductive patterns is an indirect processing technology. It requires a photo-painting plate as a pattern transfer template and a photoresist material to temporarily mask the conductive pattern.
  • the process is long and complex, requires a lot of process equipment and materials, wastes resources, affects the environment, and
  • the production of high-precision and high-quality circuit boards requires high capital, space, and staffing costs.
  • the production process is inflexible, and the industry entry threshold is high. It cannot meet the needs of localized, fast, and flexible production.
  • the processing accuracy of the etching method is affected by many factors and is difficult to control, causing the geometric dimensions of the circuit pattern to deviate from the design requirements. For example, it is difficult to further improve the pattern transfer, side corrosion effects, etc., which have long plagued the circuit board industry and prompted people to Find other processing methods.
  • laser can process the surface of the substrate according to the pattern trajectory, and has the characteristics of "pattern transfer". If there is a method, the laser-processed areas of the insulating substrate can be metallized, while the unprocessed areas are not Will metallize. Then the conductive circuit can be directly manufactured on the insulating substrate, and the conductive circuit is manufactured by the additive method. Compared with the subtractive method, it has huge economic and environmental advantages.
  • the laser can also drill holes, and the drilling efficiency on substrates without copper cladding is also high. Then you can use laser processing to replace the mechanical drilling, lamination, exposure, development, etching and other steps in traditional PCB. This enables circuit boards to be produced quickly, economically and environmentally.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a circuit board manufacturing method for laser drilling and roughening the insulating base material with pattern traces.
  • This method uses an insulating base material and uses a laser to drill and pattern. transfer. Taking advantage of the advanced nature of laser, thin lines with a line width and spacing of less than 20 ⁇ m can be made.
  • a circuit board manufacturing method that uses laser drilling and roughening the insulating base material with graphic traces. First, test the relationship curve between the diameter, size and depth of micro-pits after a single pulse reacts with the material on the insulating base material, and then apply a layer of anti-activation layer.
  • the film is first drilled using a laser, and then processed in a specific laser processing method according to the circuit pattern trajectory. After processing, there are a number of micro-pits in the matrix array on the surface pattern of the substrate. When activating and immersing copper, the copper is only in the laser drilling and The processed parts are deposited, and the parts that have not been processed by the laser are not deposited.
  • the copper layer is thickened to obtain a circuit board with circuit wires; the distance d between two adjacent micro-pits ranges from: 0 ⁇ d ⁇ 1mm, The diameter-to-depth ratio ⁇ of the micro-pits is in the range of 0.1 ⁇ 1000; so that there is sufficient bonding force between the copper layer and the insulating base material;
  • the manufacturing method includes the following steps:
  • the single pulse laser beam parameter range is: wavelength: 266nm-10700nm; pulse width: 10fs-1000 ⁇ s; pulse repetition rate: 1KHz-100MHz; average power: 1W-10000W.
  • a pulsed laser is used to scan the surface of the substrate in the form of a single pulse laser beam to form micropits on the surface, and the diameter and depth of the formed micropits are measured; the energy and processing times of the single pulse laser beam are changed, The relationship curve between the diameter and depth of micro-pits under different energies and processing times is obtained.
  • the anti-activation film is a solid film or a liquid film; compared with an uncoated insulating substrate of the same type, the coated substrate does not adsorb activator or less activator.
  • the range of d is: d1 ⁇ d ⁇ dmax, dmax is the spacing when the binding force is just lower than the specified value, and the substrate with matrix array micro-pits is obtained after scanning.
  • the method provided by the present invention uses a single pulse of laser to process and roughen the surface of the substrate.
  • the shape, size and depth of the micro-pits are easy to control, and the corresponding surface roughness can also be adjusted. It is especially suitable for materials that cannot be processed by current physical roughening, chemical roughening, or electrochemical roughening.
  • the method provided by the present invention can directly produce a conductive layer on an insulating substrate, reducing exposure, development, etching and other process steps, reducing copper material consumption, and is economical and environmentally friendly.
  • Figure 1 is a schematic diagram of the micro-pits arranged in a matrix formed on the surface of the base material after laser processing of the pattern according to the present invention
  • the invention provides a method for manufacturing a circuit board by laser drilling and roughening an insulating base material according to a pattern track.
  • the method first uses a pulsed laser to test the relationship curve between the single pulse and the micro-pit diameter and depth after the material reacts on the substrate; coats a layer of anti-activation film on the surface of the substrate; uses the laser to drill holes first; Then select the laser energy size according to the line width, set a certain processing path and scanning speed, and process the substrate surface according to the pattern trajectory, forming regularly arranged and non-overlapping tiny pits in the pattern; activation, copper deposition, copper It is only deposited on the parts that have been drilled and processed by the laser, and is not deposited on the parts that have not been processed by the laser.
  • the copper layer is thickened to obtain a circuit board with circuit wires.
  • the method includes the following steps:
  • pulse lasers to scan the surface of the substrate in the form of a single pulse laser beam to form micro-pits on the surface, measure the diameter and depth of the formed micro-pits, and select the type of pulse laser that can react with the surface of the substrate;
  • Pulse laser is used because a single pulse or pulse train can independently process a single micro-pit, which is faster and more efficient than using continuous laser to process micro-pits.
  • the diameter and depth of the micro-pits under different energies and processing times can be obtained to determine the relationship curve
  • micro-pits When processing with different energies of the same laser, the size and depth of micro-pits are different. For most materials, the greater the energy density, the larger the diameter of the micro-cavities and the deeper the micro-cavities. Likewise, increasing the number of machining operations can also increase the depth and diameter of micro-pits.
  • the micro-pits cannot be too deep, otherwise it will affect other properties; and too many times of laser processing will also affect the processing efficiency. Therefore, the determination of the relationship curve has guiding significance for practical applications.
  • the coating with the activation liquid repellent function can be solid or liquid.
  • the activator-repellent properties of the coating are key to achieving activator selectivity, so the coating must be completely coated. Whether using film, dipping, spraying, coating, etc., it is necessary to ensure that the surface of the material is fully covered with coating. Compared with the uncoated insulating substrate of the same type, the coated substrate does not absorb activator or absorbs less activator.
  • the chemical solution has acidity and alkalinity in the chemical process steps, such as oil removal, pre-soaking, activation, electroless copper plating, electroplating copper, etc.
  • the coating needs to have certain acid and alkali resistance.
  • the protruding value of the insulating layer is 0 ⁇ m-50 ⁇ m, and the preferred value is 1 ⁇ m-5 ⁇ m.
  • the hole shape includes cylindrical and conical shapes.
  • the laser-processed part of the surface of the base material will form a roughening effect, and the base material will also become more hydrophilic.
  • the base material will be metallized according to conventional activation and copper plating, and the copper layer will be plated. When the required thickness is reached, a circuit board with surface conductors with high bonding force can be obtained.
  • the single pulse laser beam parameter range is: wavelength: 266nm-10700nm; pulse width: 10fs-1000 ⁇ s; pulse repetition rate: 1KHz-100MHz; average power: 1W-10000W.
  • step 1) when performing step 1), set a sufficiently large processing path spacing and scanning speed/frequency based on the type of pulse laser selected.
  • the processing path spacing and scanning speed/frequency can be greater than or equal to 50 ⁇ m to ensure that the laser can Or react with the surface of the substrate in the form of pulse trains to form non-overlapping independent micro-pits on the surface of the substrate.
  • the material selected in this embodiment is PET film insulation material with a film thickness of 50 ⁇ m.
  • the sample is rolled material, using roll-to-roll equipment. The specific steps are as follows:
  • the green light femtosecond roll-to-roll laser machine produced by Dezhong (Tianjin) Technology Development Co., Ltd. to conduct the laser processing test.
  • the test pattern size is 5mm*5mm, the laser path spacing is set to 50 ⁇ m, the frequency is 100kHz, the scanning speed is 5000mm/s, the peak power is 30W, and the microhole diameter is 42 ⁇ m at 100% power.
  • Change the power percentage which means changing the energy of the single pulse laser beam, measure the diameter of the micro-pits under different energies, and make a relationship curve;
  • the type of coating is preferably silicone resin, and the solid content of the prepared solution is 2% to 6%. Use a coater to coat both sides.
  • the laser parameter settings are: power percentage 50%, frequency 100kHz, scanning plating speed 2000mm/s.
  • the activation process in this embodiment is preferably an activation process of oil removal-pre-soaking-colloidal palladium-degumming. Use horizontal copper sinking and electroplating equipment. in:
  • the solution composition is: sodium carbonate 15g/L, sodium phosphate 30g/L, sodium hydroxide 50g/L, surfactant 2g/L, temperature 50 ⁇ 80°C, time 5 ⁇ 10min .
  • the preferred solution composition for pre-soaking is: 200 ml/L hydrochloric acid, room temperature, and time of 1 to 3 minutes.
  • the preferred solution composition of colloidal palladium is: palladium chloride 0.05g/L, dumb tin chloride 10g/L, hydrochloric acid 200ml/L, sodium chloride 50g/L, temperature 25-35°C, time 1-5 minutes.
  • the preferred solution composition for degumming is: etone UDIQUE 8812 ACCELERATOR 250ml/L, temperature 40 ⁇ 55°C, time 2 ⁇ 10min.
  • an alkaline electroless copper plating solution is preferably used.
  • the solution composition is: copper chloride 13-17g/L, disodium ethylenediaminetetraacetate 30-40g/L, sodium hydroxide 10-15g/L, and 37% formaldehyde. 10 ⁇ 14ml/L, ⁇ , ⁇ ′-bipyridine 0.05g/L, potassium ferrocyanide 0.01g/L, pH value 12 ⁇ 13, temperature 30 ⁇ 45°C, time 10 ⁇ 150min.
  • the hundred grid test result is 4B.
  • the material selected in this embodiment is an epoxy resin insulating material with a thickness of 0.5mm, which requires copper plating and copper plating on the surface. After the material is roughened by traditional glue removal methods such as plasma treatment or potassium permanganate, blistering problems will occur during copper deposition. Enhance the processing conditions, or combine the two processing methods, the copper immersion will not blister, but will layer directly after copper plating.
  • DirectLaser 550U ultraviolet nanosecond laser machine produced by Dezhong (Tianjin) Technology Development Co., Ltd. for laser processing testing.
  • the graphics use 5mm*5mm small squares, the laser path spacing is set to 50 ⁇ m, the frequency is 50kHz, the scanning speed is 2500mm/s, and the peak power is 17W.
  • the diameter of the micropores at 100% power is 30.7 ⁇ m and the depth is 18 ⁇ m.
  • the type of coating is preferably silicone resin, and the solid content of the prepared solution is 2% to 6%. Apply by dipping.
  • the soaking time is 10 to 20 seconds, the drying temperature is 50 to 60 degrees Celsius, and the time is 1 to 10 minutes.
  • Drilling parameters power percentage 70%, frequency 50kHz, scanning speed 500mm/s, processing 18 times.
  • the laser scanning path spacing and scanning speed/frequency were set to 20 ⁇ m.
  • the power percentage is 17%
  • the frequency is 50kHz
  • the scanning plating speed is 1000mm/s.
  • the activation process in this embodiment is preferably an activation process of oil removal-pre-soaking-colloidal palladium-degumming. Use horizontal copper sinking and electroplating equipment. in:
  • the solution composition is: sodium carbonate 15g/L, sodium phosphate 30g/L, sodium hydroxide 50g/L, surfactant 2g/L, temperature 50 ⁇ 80°C, time 5 ⁇ 10min .
  • the preferred solution composition for pre-soaking is: hydrochloric acid 200ml/L, room temperature, time 1 to 3 minutes.
  • the preferred solution composition of colloidal palladium is: palladium chloride 0.05g/L, dumb tin chloride 10g/L, hydrochloric acid 200ml/L, sodium chloride 50g/L, temperature 25-35°C, time 1-5 minutes.
  • the preferred solution composition for degumming is: etone UDIQUE 8812 ACCELERATOR 250ml/L, temperature 40 ⁇ 55°C, time 2 ⁇ 10min.
  • an alkaline electroless copper plating solution is preferably used.
  • the solution composition is: copper chloride 13-17g/L, disodium ethylenediaminetetraacetate 30-40g/L, sodium hydroxide 10-15g/L, and 37% formaldehyde. 10 ⁇ 14ml/L, ⁇ , ⁇ ′-bipyridine 0.05g/L, potassium ferrocyanide 0.01g/L, pH value 12 ⁇ 13, temperature 30 ⁇ 45°C, time 10 ⁇ 150min.
  • the hundred grid test result is 5B.

Abstract

本发明公开了一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,先在绝缘基材上测试单脉冲与材料反应后的微坑直径大小和深度的关系曲线,涂覆一层抗活化膜,使用激光先进行钻孔,然后按照电路图案轨迹以特定的激光加工方式加工,加工后基材表面图案部分有矩阵阵列的若干微坑,活化、沉铜时,铜只在激光钻孔和加工过的部位沉积,激光未加工过的部位不沉积,加厚铜层,得到有电路导线的电路板;相邻的两个微坑之间的距离d的范围为:0<d<1mm,微坑的径深比β的范围为0.1<β<1000;使铜层与绝缘基材之间有足够的结合力;该方法使用绝缘基材,并使用激光进行钻孔、图形转移。利用激光的先进性,可做线宽间距20μm以下细线。

Description

一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法 技术领域
本发明及激光表面加工技术领域,具体为一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法。
背景技术
印刷线路板(Printed Circuit Board,简称PCB),在电子元器件中有连接、绝缘和支撑的作用,是最关键的元件之一。也称之为裸电路板,简称裸板,指尚未安装元器件的电路板,还称印制电路板、印刷电路板、印刷线路板、印制板、电路板、线路板、印刷板。裸板一般由专业制造印制电路板的厂家按需定制。以双面电路板板为例,裸板制造的工艺流程大致为:在双面覆铜箔绝缘基板上钻孔—进行孔金属化—制作导电图案并退除金属抗蚀膜或有机抗蚀膜—涂覆阻焊剂—制作阻焊图案及生成焊接区—对焊接区表面进行可焊性涂覆处理—制作标记符号—出货给组装阶段的厂家。
整体考虑电路板的制造技术,可以看出,导电图形制作、钻孔及孔金属化、阻焊图案的制作是裸板生产阶段的关键过程。其中,钻孔和孔金属化过程一方面影响了电路板各个水平导电层间Z方向互连的效果,另一方面,还直接影响着制作电路板的水平方向电气连接导电图案过程。
随着社会经济的进步,对电子产品的要求越来越高,元件越来越小,功能越来越强,管脚数越来越多,对导电图案、阻焊图案的要求越来越精细、准确,对孔的要求也越来越小、越深,使得不论是在裸板制造阶段,还是元器件组装阶段,电路板制造的技术难度越来越大,问题也越来越多。
通用电路板技术,大都采用减成法制作导电图案。起始材料为绝缘材料上覆有导电金属层的层压板,用化学蚀刻方法,按照设计要求,去除覆铜箔板上指定区域的导电层,留在绝缘板上的铜箔即是导电图案。
导电层一般是高纯铜箔,也可能是铝箔或银、金等其它导电金属形成的箔,常用的铜箔厚度在5-36微米之间,特殊电路板也用厚达72微米或更厚的铜箔。绝缘介质材料多种多样,如环氧树脂、酚醛树脂、聚酰亚胺、双马来酸三嗪树脂(BT)、聚四氟乙烯(PTFE)等等,介质层厚度可从30微米到数毫米。绝缘介质中可含有纤维或颗粒状增强材料,包括芳纶纤维、陶瓷、玻璃纤维,增强材料的单丝直径或粒径在1-10微米间,多股线径在10微米以上,甚 至可达数百微米。
进行化学蚀刻前,要先进行图形转移。即将覆铜箔板表面上需要保留的导电图形部分的导电铜箔,用保护性材料—抗蚀剂覆盖起来,而把非导电图案部分,即将要去掉的铜则裸露在外,其步骤为:刷板—贴膜—曝光—显影。然后,再向工件喷射液体蚀刻剂,蚀刻剂是一种能和铜作用的化学药液,和裸露的金属铜相互接触,发生反应,把铜溶解到蚀刻剂溶液中,达到了除去的目的,而导电图案部分,由于有抗蚀剂保护,则被留在了绝缘材料表面,形成所需的导电图案,步骤为:蚀刻—去抗蚀膜。
蚀刻方法制导电图案是间接加工技术,需要光绘底版作为图形转移模版,需要光致抗蚀材料临时掩蔽导电图案,流程长而复杂,需要的工艺设备、材料多,浪费资源,影响环境,而且使得高精度、高质量电路板生产需要资金、场地、人员配备的成本高,生产过程柔性差,行业进入的门槛高,满足不了本地化就近、快速、灵活制作的需求。此外,蚀刻方法的加工精度受很多因素影响,难以控制,导致做出的电路图形的几何尺寸偏离设计要求,比如由于图形转移难以进一步提高,侧腐蚀效应等,长期困扰电路板的行业,促使人们寻找其它加工手段。
激光有一个特点,是可以按照图形轨迹,加工基材表面,有“图形转移”的特点,假如有一种方法,可以使绝缘基材激光加工过的地方金属化,而同时未加工过的地方不会金属化。那么就可以在绝缘基材上直接制造导电电路,而且属于加成法制造导电电路,对比减成法,有巨大的经济和环保优势。
而且激光也可以钻孔,在无覆铜的基材上钻孔效率也高。那么可以使用激光加工这一个步骤,代替传统PCB里面的机械钻孔、覆膜、曝光、显影、蚀刻等多个步骤。从而能快速、经济、环保地生产电路板。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,该方法使用绝缘基材,并使用激光进行钻孔、图形转移。利用激光的先进性,可做线宽间距20μm以下细线。
一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,先在绝缘基材上测试单脉冲与材料反应后的微坑直径大小和深度的关系曲线,涂覆一层抗活化膜,使用激光先进行钻孔,然后按照电路图案轨迹以特定的激光加工方式加工,加工后基材表面图案部分有矩阵阵列的若干微坑,活化、沉铜时,铜只在激光钻孔和加工过的部位沉积,激光未加工过的部位不沉积,加厚铜层,得到有电路导线的电路板;相邻的两个微坑之间的距离d的范围为:0 <d<1mm,微坑的径深比β的范围为0.1<β<1000;使铜层与绝缘基材之间有足够的结合力;
制造方法包括以下步骤:
1)激光测试;
2)涂覆抗活化膜;
3)激光钻孔;
4)激光加工图形;
5)活化、沉铜、电镀。
优选的,单脉冲激光束参数范围为:波长:266nm-10700nm;脉冲宽度:10fs-1000μs;脉冲重复率:1KHz-100MHz;平均功率:1W-10000W。
优选的,步骤1)中,使用脉冲激光,以单脉冲激光束的形式扫描基材表面,在表面形成微坑,测量形成的微坑的直径和深度;改变单脉冲激光束能量和加工次数,得出不同能量和加工次数下微坑的直径大小和深度的关系曲线。
优选的,步骤2)中,抗活化膜为是固态膜或液态膜;与未覆膜的同型号的绝缘基材相比,覆膜后的基材不吸附活化剂或者少吸附活化剂。
优选的,步骤4)中,选取一个激光能量大小,根据单脉冲反应后的微坑直径大小d1,设置大于直径的激光扫描路径间距和扫描速度/频率,即,激光扫描路径间距d=扫描速度/频率,d的范围是:d1<d<dmax,dmax为结合力恰好低于规定值时的间距,扫描后得到的具有矩阵阵列微坑的基材。
本发明的优点和技术效果是:
(1)本发明提供的方法,使用激光单脉冲来加工粗化基材表面,微坑的形状、大小和深度便于控制,相应的表面粗糙度也可调。尤其适用于目前物理粗化、化学粗化、或电化学法粗化无法处理的材料。
(2)本发明提供的方法,明确了提高结合力的激光加工后的表面状态,结合凹坑理论,提出激光扫描路径间距d(d=描速度/频率)的操作范围d1<d<dmax的概念,使操作更加数据化,增加实用性。
(3)本发明提供的方法,激光机输出到工件表面的激光光斑越小,可加工出来的线宽极限越小,可用于20μm以下的线路制造。
(4)本发明提供的方法,可在绝缘基材上直接制造导电层,减少曝光、显影、蚀刻等工艺步骤,减少铜材消耗,经济环保。
附图说明
图1为本发明基材激光加工图形后表面形成的矩阵排列的微坑示意图;
图中:1-基材;2-微坑。
具体实施方式
为能进一步了解本发明的内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。需要说明的是,本实施例是描述性的,不是限定性的,不能由此限定本发明的保护范围。
本发明提供了一种激光钻孔并按照图形轨迹粗化绝缘基材制造电路板的方法。所述方法先使用脉冲激光,在基材上测试单脉冲与材料反应后的微坑直径大小和深度的关系曲线;在基材表面涂覆一层抗活化膜;使用激光,先进行钻孔;然后根据线路线宽选择激光能量大小,并设置一定的加工路径和扫描速度,按照图形轨迹在基材表面进行加工,图形内形成规则排列且无交叠的微小凹坑;活化、沉铜,铜只在激光钻孔和加工过的部位沉积,激光未加工过的部位不沉积,加厚铜层,得到有电路导线的电路板。方法包括如下步骤:
1)激光测试:
使用不同类型的脉冲激光,以单脉冲激光束的形式扫描基材表面,在表面形成微坑,测量形成的微坑的直径和深度,并选取能与基材表面反应的脉冲激光种类;
一般而言,不同激光种类与基材表面的反应机理差别巨大,使用脉冲激光是因为单脉冲或者脉冲串可以对单个微坑进行独立加工,比使用连续激光加工微坑,速度快、效率高。
测试选定的激光与基材表面反应效果时,可以选用简单图形,设置足够大的路径间距和扫描速度,这样可以保证微坑边缘间距足够大,有利于测量其直径大小。
激光确定后,通过改变单脉冲激光束能量和加工次数,可得出不同能量和加工次数下微坑的直径和深度,以确定关系曲线;
采用同一种激光的不同能量加工时,微坑的大小和深度不同。就大部分材料而言,能量密度越大,微坑直径越大,微坑越深。同样,增加加工次数也能增加微坑的深度和直径。
但是,对于某些材料而言,微坑不能太深,否则会影响其它性能;并且激光加工次数过多,也会影响加工效率。因此,关系曲线的确定对实际应用具有指导意义。
2)涂覆抗活化膜:
具有疏活化液功能的涂层可以是固体,也可以是液体。涂层的疏活化液性能是实现活化剂选择性的关键,所以涂层必须涂覆完整。不管是使用贴膜还是浸渍、喷涂、涂布等,需保证材料表面全部覆盖涂层。与未覆膜的同型号的绝缘基材相比,覆膜后的基材不吸附活化剂或者少吸附活化剂。
激光加工后,化学工艺步骤中,药液有酸碱性,例如除油、预浸、活化、化学沉铜、电镀铜等。涂层需具备一定的耐酸和耐碱性能。
3)激光钻孔:
控制钻孔深度,制出孔内绝缘层依次突出的台阶,绝缘层突出值为0μm-50μm,优选值为1μm-5μm,孔形状包括圆柱形和锥形。
4)激光加工图形:
根据选取的单脉冲激光束对应的微坑直径大小d 1,设置大于直径的激光扫描路径间距和扫描速度/频率,即,激光扫描路径间距d=扫描速度/频率,d的范围是:d 1<d<d max,d max为结合力恰好低于规定值时的间距;扫描后得到具有矩阵阵列微坑的基材。
间距d的下限是固定参数下微坑直径d 1,若缩小间距,坑壁就会消失,“微坑”不再存在,锚点没有了支撑,结合力就会变差。相反,增大间距会减少单位面积上的锚点,结合力也会变弱,直到小于规定值。设定结合力恰好低于规定值时的间距为d max,那么激光扫描路径间距d=扫描速度/频率的操作范围是:d 1<d<d max
5)活化、沉铜、电镀:
激光加工之后,基材表面激光加工过的部分形成一种粗化的效果,基材也会变的更加亲水,按照常规的活化、沉铜将基材进行选金属化,并将铜层镀到需要的厚度,即可得到具有高结合力的表面导线的电路板。
进一步,所述单脉冲激光束参数范围为:波长:266nm-10700nm;脉冲宽度:10fs-1000μs;脉冲重复率:1KHz-100MHz;平均功率:1W-10000W。
进一步,在进行步骤1)时,结合所选用脉冲激光的种类,设置足够大的加工路径间距和扫描速度/频率,具体可以使加工路径间距和扫描速度/频率大于等于50μm,确保激光以单脉冲或脉冲串的形式与基材表面反应,在基材表面形成不重叠的独立的微坑。
为了更清楚地描述本发明的具体实施方式,下面提供几种实施例:
实施例一:
本实施例所选用的材料为PET薄膜绝缘材料,膜厚50μm。样品为卷材,使用卷对卷设备,具体步骤如下:
1)激光测试:
在本实施例中优选使用德中(天津)技术发展股份有限公司生产的绿光飞秒卷对卷激光机来进行激光加工测试。
测试图形尺寸为5mm*5mm,激光路径间距设置为50μm,频率100kHz,扫描速度 5000mm/s,峰值功率30W,100%功率下微孔直径大小42μm。
改变功率百分比数,既改变单脉冲激光束能量,测量不同能量下微坑的直径大小,做关系曲线;
表1不同功率百分比下的微坑直径/μm
功率/% 40% 50% 60% 70% 80% 90% 100%
微坑直径/μm 13.9 21 29.5 32 35.9 39 42
2)涂覆抗活化膜:
涂层种类优选有机硅树脂,配制溶液固含量2%~6%。使用涂布机双面涂覆。
3)激光钻孔+加工图形:
本案例在PET上制作导电图形不需要使用孔连接,所以不需要进行激光钻孔。
图形加工,图形最小线宽20μm。根据表1,选取功率百分比50%,那么d 1=21μm,实测d max=29.2μm。将激光扫描路径间距和扫描速度/频率设置为20μm。既激光参数设置,功率百分比50%,频率100kHz,扫描镀速2000mm/s。
4)活化、沉铜、电镀增厚。
本实施例活化过程优选除油-预浸-胶体钯-解胶的活化工艺。使用水平沉铜加电镀设备。其中:
除油优选使用碱性除油剂,溶液组成为:碳酸钠15g/L、磷酸钠30g/L、氢氧化钠50g/L、表面活性剂2g/L,温度50~80℃,时间5~10min。
预浸优选溶液组成为:盐酸200ml/L,室温,时间1~3min。
胶体钯优选的溶液组成为:氯化钯0.05g/L、氯化哑锡10g/L、盐酸200ml/L、氯化钠50g/L,温度25~35℃,时间1~5min。
解胶优选的溶液组成为:ethone UDIQUE 8812 ACCELERATOR 250ml/L,温度40~55℃,时间2~10min。
本实施例优选使用碱性化学镀铜液,溶液组成为:氯化铜13~17g/L、乙二胺四乙酸二钠30~40g/L、氢氧化钠10~15g/L、37%甲醛10~14ml/L、α、α′—联吡啶0.05g/L、亚铁氰化钾0.01g/L,pH值12~13,温度30~45℃,时间10~150min。
使用酸性电镀铜,将铜厚增加到3~4μm。
百格测试结果为4B。
实施例二:
本实施例所选材料为环氧树脂类绝缘材料,厚度0.5mm,需要在表面沉铜和镀铜。该材料经等离子处理或者高锰酸钾等传统除胶方式粗化后,沉铜时会出现起泡问题。增强处理条件,或者两种处理方式结合,沉铜不起泡,但镀铜后直接分层。
1)激光测试:
在本实施例中优选使用德中(天津)技术发展股份有限公司生产的DirectLaser 550U紫外纳秒激光机来进行激光加工测试。
图形使用5mm*5mm小方块,激光路径间距设置为50μm,频率50kHz,扫描速度2500mm/s,峰值功率17W。100%功率下微孔直径大小30.7μm,深度18μm。
改变单脉冲激光束能量,测量不同能量下微坑(2)的直径大小和深度,做关系曲线;
表2不同功率百分比下的微坑直径和微坑深度/μm
功率百分比/% 8% 11% 17% 27% 51% 100%
微坑直径/μm 11.9 12.8 15.5 18.8 27.9 30.7
微坑深度/μm 1.67 2.17 4.89 7.9 10.9 18
2)涂覆抗活化膜:
涂层种类优选有机硅树脂,配制溶液固含量2%~6%。采用浸渍方式涂覆。浸渍时间10~20秒,烘干温度50~60摄氏度,时间1~10min。
3)激光钻孔+加工图形:
钻孔参数:功率百分比70%,频率50kHz,扫描速度500mm/s,加工18次。
图形加工:当功率大于17%时开始出现周边发黑,在保证较小的功率下就能实现要求,同时加工次数不影响加工效率的情况下,选取功率17%,加工一次。
根据选取的单脉冲激光束对应的微坑(2)直径大小d 1=15.5μm,经过测试d max=31μm,将激光扫描路径间距和扫描速度/频率设置为20μm。功率百分比大小为17%,频率50kHz,扫描镀速1000mm/s。
4)活化、沉铜、电镀。
本实施例活化过程优选除油-预浸-胶体钯-解胶的活化工艺。使用水平沉铜加电镀设备。其中:
除油优选使用碱性除油剂,溶液组成为:碳酸钠15g/L、磷酸钠30g/L、氢氧化钠50g/L、 表面活性剂2g/L,温度50~80℃,时间5~10min。
预浸优选溶液组成为:盐酸200ml/L,室温,时间1~3min。
胶体钯优选的溶液组成为:氯化钯0.05g/L、氯化哑锡10g/L、盐酸200ml/L、氯化钠50g/L,温度25~35℃,时间1~5min。
解胶优选的溶液组成为:ethone UDIQUE 8812 ACCELERATOR 250ml/L,温度40~55℃,时间2~10min。
本实施例优选使用碱性化学镀铜液,溶液组成为:氯化铜13~17g/L、乙二胺四乙酸二钠30~40g/L、氢氧化钠10~15g/L、37%甲醛10~14ml/L、α、α′—联吡啶0.05g/L、亚铁氰化钾0.01g/L,pH值12~13,温度30~45℃,时间10~150min。
使用酸性电镀铜,将铜厚增加到8μm。
百格测试结果为5B。
最后,本发明的未述之处均采用现有技术中的成熟产品及成熟技术手段。
本发明公开和提出的方法,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。并且应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (5)

  1. 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,其特征在于:先在绝缘基材上测试单脉冲与材料反应后的微坑直径大小和深度的关系曲线,涂覆一层抗活化膜,使用激光先进行钻孔,然后按照电路图案轨迹以特定的激光加工方式加工,加工后基材表面图案部分有矩阵阵列的若干微坑,活化、沉铜时,铜只在激光钻孔和加工过的部位沉积,激光未加工过的部位不沉积,加厚铜层,得到有电路导线的电路板;相邻的两个微坑之间的距离d的范围为:0<d<1mm,所述微坑的径深比β的范围为0.1<β<1000;使铜层与绝缘基材之间有足够的结合力;
    所述制造方法包括以下步骤:
    1)激光测试;
    2)涂覆抗活化膜;
    3)激光钻孔;
    4)激光加工图形;
    5)活化、沉铜、电镀。
  2. 根据权利要求1所述的一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,其特征在于:所述单脉冲激光束参数范围为:波长:266nm-10700nm;脉冲宽度:10fs-1000μs;脉冲重复率:1KHz-100MHz;平均功率:1W-10000W。
  3. 根据权利要求1所述的一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,其特征在于:所述步骤1)中,使用脉冲激光,以单脉冲激光束的形式扫描基材表面,在表面形成微坑,测量形成的微坑的直径和深度;改变单脉冲激光束能量和加工次数,得出不同能量和加工次数下微坑的直径大小和深度的关系曲线。
  4. 根据权利要求1所述的一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,其特征在于:所述步骤2)中,抗活化膜为是固态膜或液态膜;与未覆膜的同型号的绝缘基材相比,覆膜后的基材不吸附活化剂或者少吸附活化剂。
  5. 根据权利要求1所述的一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法,其特征在于:所述步骤4)中,选取一个激光能量大小,根据单脉冲反应后的微坑直径大小d1,设置大于直径的激光扫描路径间距和扫描速度/频率,即,激光扫描路径间距d=扫描速度/频率,d的范围是:d1<d<dmax,dmax为结合力恰好低于规定值时的间距,扫描后得到的具有矩阵阵列微坑的基材。
PCT/CN2022/138333 2022-09-15 2022-12-12 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法 WO2024055448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211119767.7 2022-09-15
CN202211119767.7A CN115379653A (zh) 2022-09-15 2022-09-15 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法

Publications (1)

Publication Number Publication Date
WO2024055448A1 true WO2024055448A1 (zh) 2024-03-21

Family

ID=84071773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138333 WO2024055448A1 (zh) 2022-09-15 2022-12-12 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法

Country Status (2)

Country Link
CN (1) CN115379653A (zh)
WO (1) WO2024055448A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115379653A (zh) * 2022-09-15 2022-11-22 德中(天津)技术发展股份有限公司 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307407A (zh) * 2015-10-22 2016-02-03 安捷利电子科技(苏州)有限公司 一种半加成法线铜面针孔的制作方式
CN108260303A (zh) * 2017-12-05 2018-07-06 深圳崇达多层线路板有限公司 一种同时电镀填激光钻孔和背钻孔的制作方法
CN113441836A (zh) * 2021-06-25 2021-09-28 德中(天津)技术发展股份有限公司 一种具有高表面结合力的基材及其制备方法
CN113973440A (zh) * 2021-10-28 2022-01-25 深圳市亿方电子有限公司 一种线路板绝缘层处理工艺
CN115379653A (zh) * 2022-09-15 2022-11-22 德中(天津)技术发展股份有限公司 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307407A (zh) * 2015-10-22 2016-02-03 安捷利电子科技(苏州)有限公司 一种半加成法线铜面针孔的制作方式
CN108260303A (zh) * 2017-12-05 2018-07-06 深圳崇达多层线路板有限公司 一种同时电镀填激光钻孔和背钻孔的制作方法
CN113441836A (zh) * 2021-06-25 2021-09-28 德中(天津)技术发展股份有限公司 一种具有高表面结合力的基材及其制备方法
CN113973440A (zh) * 2021-10-28 2022-01-25 深圳市亿方电子有限公司 一种线路板绝缘层处理工艺
CN115379653A (zh) * 2022-09-15 2022-11-22 德中(天津)技术发展股份有限公司 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法

Also Published As

Publication number Publication date
CN115379653A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US4576689A (en) Process for electrochemical metallization of dielectrics
TWI481325B (zh) 印刷配線板的製造方法及雷射加工用銅箔
JP7171059B2 (ja) 電子部品の製造方法
TW201542351A (zh) 粗化處理銅箔、覆銅積層板及印刷電路板
WO2024055448A1 (zh) 一种激光钻孔并以图形轨迹粗化绝缘基材的电路板制造方法
TWI658764B (zh) 在印刷電路板上製造銅柱的方法
JP3670196B2 (ja) プリント配線板の製造法
WO1999031293A1 (en) Pretreating fluid and method of pretreatment for electroless nickel plating
JP2005019577A (ja) 半導体装置用テープキャリアの製造方法
KR20100028306A (ko) 인쇄회로기판 및 그 제조 방법
JP2009094191A (ja) 多層配線基板の製造方法
CN102762037B (zh) 一种陶瓷电路板及其制造方法
JP2005154895A (ja) フレキシブルプリント基板の製法
JP5794740B2 (ja) プリント配線板の製造方法及びそのプリント配線板の製造方法を用いて得られたプリント配線板
Yang et al. Excimer laser-induced formation of metallic microstructures by electroless copper plating
JP6236824B2 (ja) プリント配線基板の製造方法
CN113727537A (zh) 一种用激光分别加工电镀孔、线路掩膜,蚀刻制电路板方法
JPH10168577A (ja) 成形回路部品などのめっき部品の製法
JP5938948B2 (ja) 半導体チップ搭載用基板及びその製造方法
JP2008218540A (ja) 配線基板の製造方法
TWI599279B (zh) 雷射加工用銅箔、具有載體箔之雷射加工用銅箔、貼銅積層體以及印刷配線板之製造方法
JP4452878B2 (ja) 薄膜回路の形成方法
JP2011060969A (ja) 配線基板の製造方法
JP5443157B2 (ja) 高周波用銅箔及びそれを用いた銅張積層板とその製造方法
JP2009200301A (ja) プリント配線板、およびその製造方法