WO2024055207A1 - 芳胺化合物及其用途、电致发光器件和显示装置 - Google Patents

芳胺化合物及其用途、电致发光器件和显示装置 Download PDF

Info

Publication number
WO2024055207A1
WO2024055207A1 PCT/CN2022/118770 CN2022118770W WO2024055207A1 WO 2024055207 A1 WO2024055207 A1 WO 2024055207A1 CN 2022118770 W CN2022118770 W CN 2022118770W WO 2024055207 A1 WO2024055207 A1 WO 2024055207A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
substituted
group
groups
unsubstituted
Prior art date
Application number
PCT/CN2022/118770
Other languages
English (en)
French (fr)
Inventor
孙玉倩
邱丽霞
刘杨
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/118770 priority Critical patent/WO2024055207A1/zh
Priority to CN202280003188.8A priority patent/CN118077329A/zh
Publication of WO2024055207A1 publication Critical patent/WO2024055207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, to an aromatic amine compound and its use, electroluminescent devices and display devices.
  • OLED Organic Light Emitting Diode
  • the phenomenon of organic luminescence refers to the phenomenon of converting electrical energy into light energy using organic substances.
  • OLED devices that utilize organic light-emitting phenomena usually have an anode, a cathode, and a functional layer containing organic matter disposed between the anode and cathode.
  • functional layers containing organic matter generally adopt a multi-layer structure composed of various different substances.
  • it can be composed of a hole injection layer (Hole Injection Layer, HIL) and a hole transport layer (Hole Transport layer).
  • Layer (HTL), Emitting Layer (EML), Electron Transport Layer (ETL) and Electron Injection Layer (EIL) are formed, and a hole blocking layer (Hole Block Layer) can also be added.
  • HBL hole blocking layer
  • EBL Electron Block Layer
  • organic materials suitable for OLED functional layers have been developed and developed, such as polycyclic compounds containing heteroatoms.
  • properties of polycyclic compounds are greatly affected by the chemical structure. For example, they may differ depending on the number and fused positions of the rings, the type and arrangement of heteroatoms, band gaps (HOMO, LUMO), chemical characteristics, physical properties, etc. Characteristics. Therefore, research on developing materials suitable for OLED functional layers based on organic diversity has been ongoing.
  • the embodiment of the present disclosure provides an aromatic amine compound, the general structural formula of which is:
  • n 0, 1 or 2;
  • At least one of R 1 to R 12 is -LN(Ar 1 )-Ar 2 , and R 1 to R 12 that is not -LN(Ar 1 )-Ar 2 are each independently selected from the group consisting of hydrogen, deuterium, and carbon atoms.
  • alkyl group of 1 to 39 a substituted or unsubstituted aryl group of 6 to 39 carbon atoms, a substituted or unsubstituted heteroaryl group of 5 to 60 carbon atoms, a substituted or unsubstituted heteroaryl group of 6 to 60 aryloxy groups, substituted or unsubstituted alkoxy groups with 1 to 39 carbon atoms, substituted or unsubstituted arylamine groups with 6 to 39 carbon atoms, substituted or unsubstituted arylamine groups with 6 to 39 carbon atoms Cycloalkyl group with 3 to 39 carbon atoms, substituted or unsubstituted heterocycloalkyl group with 3 to 39 carbon atoms, substituted or unsubstituted alkylsilyl group with 1 to 39 carbon atoms, substituted or unsubstituted Alkylboryl group with carbon atoms from 1 to 39, substituted or unsubstituted arylbory
  • Alkylsilyl group with 39 carbon atoms alkylboronyl group with carbon atoms from 1 to 39, arylboryl group with carbon atoms from 6 to 39, arylsilyl group with carbon atoms from 6 to 39, fluorenyl group, heterofluorenyl;
  • Ar 1 and Ar 2 are each independently selected from an alkyl group with 4 to 39 carbon atoms, a substituted or unsubstituted aryl group with 6 to 39 carbon atoms, a substituted or unsubstituted aryl group with 5 to 60 carbon atoms.
  • Alkylboryl groups with 1 to 39 carbon atoms, substituted arylboryl groups with 6 to 39 carbon atoms, arylsilyl groups with 6 to 39 carbon atoms, substituted fluorenyl groups, and substituted heterofluorenyl groups are Refers to being substituted by one or more of the following groups: alkyl groups with 1 to 39 carbon atoms, aryl groups with 6 to 39 carbon atoms, heteroaryl groups with 5 to 60 carbon atoms, and Aryloxy groups with 6 to 60 carbon atoms, alkoxy groups with 1 to 39 carbon atoms, arylamine groups with 6 to 39 carbon atoms, cycloalkyl groups with 3 to 39 carbon atoms, and cycloalkyl groups with 3 to 39 carbon
  • L is selected from any one of a single bond, a substituted or unsubstituted arylene group having 6 to 39 carbon atoms, and a substituted or unsubstituted heteroarylene group having 5 to 60 carbon atoms;
  • substituted An arylene group with 6 to 39 carbon atoms and a substituted heteroarylene group with 5 to 60 carbon atoms means that it is substituted by an aryl group with 6 to 39 carbon atoms or a heteroarylene group with 5 to 60 carbon atoms;
  • Y 1 , Y 2 , Y 3 satisfy one of the following conditions:
  • Y 1 is selected from any one of N and -C(R 13 )-, Y 2 is -C(R 14 )-, Y 3 is selected from -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )- any one;
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, Y 2 is -C(R 14 )-, Y 3 Selected from any one of N and -C(R 13 )-;
  • Y 1 , Y 2 , and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S-, and -C(R 16 )(R 17 )-, and Y 1 , Y 2 and Y 3 are not selected from -O- and -S- at the same time;
  • R 13 to R 17 are each independently selected from hydrogen, deuterium, an alkyl group having 1 to 39 carbon atoms, and an aryl group having 6 to 39 carbon atoms.
  • Y 1 , Y 2 , and Y 3 may satisfy at least one of the following conditions:
  • At least one of Y 1 , Y 2 , and Y 3 is selected from any one of -N(R 15 )-, -O-, and -S-, and Y 1 , Y 2 , and Y 3 are not simultaneously selected from -O- and -S-;
  • Y 1 , Y 2 , and Y 3 may satisfy at least one of the following conditions:
  • One of Y 1 , Y 2 , and Y 3 is selected from any one of -N(R 13 )-, -O-, and -S-;
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of N and -C(R 13 )-
  • Y 2 is -C(R 14 )-
  • Y 3 is selected from -N(R 15 )-, -O-, -S Any one of - and -C(R 16 )(R 17 )-, the definitions of R 1 to R 17 are the same as those in formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of N and -C(R 13 )-
  • Y 2 is -C(R 14 )-
  • Y 3 is selected from -N(R 15 )-, -O-, -S Any one of - and -C(R 16 )(R 17 )-, the definitions of R 1 to R 17 are the same as those in formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 2 is -C(R 14 )-, Y 3 is selected from any one of N and -C(R 13 )-, and the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in Formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 2 is -C(R 14 )-, Y 3 is selected from any one of N and -C(R 13 )-, and the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in Formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 , Y 2 and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 1.
  • Y 2 and Y 3 are not selected from -O- and -S- at the same time.
  • the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 , Y 2 and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 1.
  • Y 2 and Y 3 are not selected from -O- and -S- at the same time.
  • the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in formula I.
  • Ar 1 and Ar 2 can each be independently selected from a substituted or unsubstituted aryl group with 6 to 39 carbon atoms, a substituted or unsubstituted heteroaryl group with 5 to 60 carbon atoms. group, a substituted or unsubstituted aryloxy group with 6 to 60 carbon atoms, a substituted or unsubstituted alkoxy group with 1 to 39 carbon atoms, a substituted or unsubstituted aryloxy group with 6 to 39 carbon atoms.
  • Ar 1 and Ar 2 can each be independently selected from any one of the following groups:
  • R 13 to R 18 may each be independently selected from any one of hydrogen, deuterium, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • R 1 to R 12 that are not -LN(Ar 1 )-Ar 2 may each be independently selected from any one of hydrogen and deuterium.
  • L may be selected from any one of a single bond, phenylene, benzene or phenyl-substituted phenylene and biphenyl-substituted phenylene.
  • the arylamine compound may include any one of the following compounds:
  • the glass transition temperature of the aromatic amine compound may be 120°C to 180°C.
  • the glass transition temperature of the aromatic amine compound may be 125°C to 140°C.
  • the highest occupied molecular orbital energy level of the aromatic amine compound may be -4.6 eV to -5.7 eV.
  • the highest occupied molecular orbital energy level of the aromatic amine compound may be -4.6eV to -4.9eV or -5.3eV to -5.5eV.
  • the triplet energy level of the aromatic amine compound may be 1.8 eV to 2.6 eV.
  • the triplet energy level of the aromatic amine compound may be 2.1 eV to 2.6 eV.
  • the triplet energy level of the aromatic amine compound may be 2.4 eV to 2.6 eV.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as hole injection materials.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as hole transport materials.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as electron blocking materials.
  • Embodiments of the present disclosure also provide an electroluminescent device including the aromatic amine compound as described above.
  • the electroluminescent device may include a hole injection layer, a hole transport layer, and an electron blocking layer, wherein,
  • Both the hole injection layer and the hole transport layer include an aromatic amine compound as described above; or,
  • Both the hole injection layer and the electron blocking layer include an aromatic amine compound as described above; or,
  • the hole injection layer, the hole transport layer and the electron blocking layer all include the aromatic amine compound as described above.
  • An embodiment of the present disclosure also provides a display device, including the electroluminescent device as described above.
  • Figure 1 is a schematic structural diagram of an electroluminescent device according to an exemplary embodiment of the present disclosure
  • Figure 2 is a curve of the lateral current of the compound of Comparative Example 1 and the compound 2 of the embodiment of the present disclosure as a function of the doping ratio of the P-type dopant.
  • the scale of the drawings in this disclosure can be used as a reference in actual processes, but is not limited thereto.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, and the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display substrate and the number of sub-pixels in each pixel are not limited to the numbers shown in the figures.
  • the figures described in the present disclosure are only structural schematic diagrams, and one mode of the present disclosure is not limited to the figures. The shape or numerical value shown in the figure.
  • the terms "setting” and “connection” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • the specific meanings of the above terms in this disclosure can be understood on a case-by-case basis.
  • film and “layer” may be interchanged.
  • light-emitting layer may sometimes be replaced by “light-emitting film”.
  • Optoelectronic functional materials used in OLED devices include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc.
  • the types and combinations of materials are rich and diverse.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same material in devices with different structures may be completely different.
  • the embodiment of the present disclosure provides an aromatic amine compound, the general structural formula of which is:
  • n 0, 1 or 2;
  • At least one of R 1 to R 12 is -LN(Ar 1 )-Ar 2 , and R 1 to R 12 that is not -LN(Ar 1 )-Ar 2 are each independently selected from the group consisting of hydrogen, deuterium, and carbon atoms.
  • alkyl group of 1 to 39 a substituted or unsubstituted aryl group of 6 to 39 carbon atoms, a substituted or unsubstituted heteroaryl group of 5 to 60 carbon atoms, a substituted or unsubstituted heteroaryl group of 6 to 60 aryloxy groups, substituted or unsubstituted alkoxy groups with 1 to 39 carbon atoms, substituted or unsubstituted arylamine groups with 6 to 39 carbon atoms, substituted or unsubstituted arylamine groups with 6 to 39 carbon atoms Cycloalkyl group with 3 to 39 carbon atoms, substituted or unsubstituted heterocycloalkyl group with 3 to 39 carbon atoms, substituted or unsubstituted alkylsilyl group with 1 to 39 carbon atoms, substituted or unsubstituted Alkylboryl group with carbon atoms from 1 to 39, substituted or unsubstituted arylbory
  • Alkylsilyl group with 39 carbon atoms alkylboronyl group with carbon atoms from 1 to 39, arylboryl group with carbon atoms from 6 to 39, arylsilyl group with carbon atoms from 6 to 39, fluorenyl group, heterofluorenyl;
  • Ar 1 and Ar 2 are each independently selected from an alkyl group with 4 to 39 carbon atoms, a substituted or unsubstituted aryl group with 6 to 39 carbon atoms, a substituted or unsubstituted aryl group with 5 to 60 carbon atoms.
  • Alkylboryl groups with 1 to 39 carbon atoms, substituted arylboryl groups with 6 to 39 carbon atoms, arylsilyl groups with 6 to 39 carbon atoms, substituted fluorenyl groups, and substituted heterofluorenyl groups are Refers to being substituted by one or more of the following groups: alkyl groups with 1 to 39 carbon atoms, aryl groups with 6 to 39 carbon atoms, heteroaryl groups with 5 to 60 carbon atoms, and Aryloxy groups with 6 to 60 carbon atoms, alkoxy groups with 1 to 39 carbon atoms, arylamine groups with 6 to 39 carbon atoms, cycloalkyl groups with 3 to 39 carbon atoms, and cycloalkyl groups with 3 to 39 carbon
  • L is selected from any one of a single bond, a substituted or unsubstituted arylene group having 6 to 39 carbon atoms, and a substituted or unsubstituted heteroarylene group having 5 to 60 carbon atoms;
  • substituted An arylene group with 6 to 39 carbon atoms and a substituted heteroarylene group with 5 to 60 carbon atoms means that it is substituted by an aryl group with 6 to 39 carbon atoms or a heteroarylene group with 5 to 60 carbon atoms;
  • Y 1 , Y 2 , Y 3 satisfy one of the following conditions:
  • Y 1 is selected from any one of N and -C(R 13 )-, Y 2 is -C(R 14 )-, Y 3 is selected from -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )- any one;
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, Y 2 is -C(R 14 )-, Y 3 Selected from any one of N and -C(R 13 )-;
  • Y 1 , Y 2 , and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S-, and -C(R 16 )(R 17 )-, and Y 1 , Y 2 and Y 3 are not selected from -O- and -S- at the same time;
  • R 13 to R 17 are each independently selected from hydrogen, deuterium, an alkyl group having 1 to 39 carbon atoms, and an aryl group having 6 to 39 carbon atoms.
  • the aryl group includes, but is not limited to, phenyl, naphthyl, anthracenyl, acenaphthylenyl, indenyl, phenanthrenyl, azulenyl, pyrenyl, fluorenyl, perylene, and spirofluorenyl , Spirobifluorenyl, base, benzophenanthryl, benzanthracenyl, fluoranthene, benzyl, tetraphenyl, indenyl.
  • hetero as used in heteroaryl means that at least one carbon atom in the aromatic ring is replaced by a heteroatom selected from the group consisting of nitrogen (N), oxygen (O) and sulfur (S). any one or more.
  • the heteroaryl group includes, but is not limited to, benzoxazolyl, benzothiazolyl, indolyl, benzimidazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, Pyridazinyl, triazinyl, tetrazinyl, imidazolyl, pyrazolyl, carbazolyl, thienyl, thiazolyl, benzocarbazolyl, dibenzocarbazolyl, indolocarbazolyl, indene Carbazolyl, quinolinyl, isoquinolyl, phthalazinyl, quinoxalinyl, cinnolinyl, quinazolinyl, phthalazinyl, benzoquinolinyl , benzisoquinolinyl, benzoquinazolinyl, benzoquinoxalinyl, acridinyl,
  • the aromatic amine compounds provided by the embodiments of the present disclosure are a type of aromatic hydrocarbon molecular building blocks with sp3 hybridized carbon atoms as the center and a criss-cross configuration.
  • the molecules have a certain three-dimensionality, which can improve the thermal stability of the molecules.
  • the molecule acquires a higher glass transition temperature (Tg).
  • the aromatic amine compound provided by the embodiments of the present disclosure is film-formed, charges are not easily diffused laterally, which can improve the service life, efficiency and/or operating voltage at the same time. If substituents are introduced into the aromatic amine compounds provided by the embodiments of the present disclosure, the lateral current of the compound can be further reduced, which is about 10% of that of conventional materials. Heteroatoms can also be introduced, which can improve the injection of positive charges, so that the compound can Applied to hole injection materials, hole transport materials or electron blocking materials.
  • the current literature reports the application of some spiro compounds in electron injection layers, electron transport layers, electron blocking layers or hole transport layers, for example, Chinese invention patent applications CN112358471A and CN113773208A.
  • the evaporation temperature (Te) required for the deposition of spiro compounds reported in documents such as CN112358471A and CN113773208A is relatively high, so the mass production process requirements are higher. Otherwise, it is easy to cause material decomposition or defective states, thereby reducing the yield rate. Low, or insufficient life span, etc.
  • the aromatic amine compound provided by the embodiments of the present disclosure has a smaller molecular weight and is beneficial to the formation of molten evaporation materials. Therefore, the evaporation temperature (Te) required during deposition is lower, and the glass transition temperature (Tg) is lower. High, it has higher process feasibility and can improve the stability of mass production evaporation.
  • Y 1 , Y 2 , and Y 3 may satisfy at least one of the following conditions:
  • At least one of Y 1 , Y 2 , and Y 3 is selected from any one of -N(R 15 )-, -O-, and -S-, and Y 1 , Y 2 , and Y 3 are not simultaneously selected from -O- and -S-;
  • Y 1 , Y 2 , and Y 3 may satisfy at least one of the following conditions:
  • One of Y 1 , Y 2 , and Y 3 is selected from any one of -N(R 13 )-, -O-, and -S-;
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of N and -C(R 13 )-
  • Y 2 is -C(R 14 )-
  • Y 3 is selected from -N(R 15 )-, -O-, -S Any one of - and -C(R 16 )(R 17 )-, the definitions of R 1 to R 17 are the same as those in formula I.
  • a double bond is formed between Y 1 and Y 2 to form a ⁇ bond, but this bond is far away from the benzene ring on the right, does not form conjugation with the benzene ring, and has a deeper energy level , which is conducive to the injection of holes; when Y 3 is a heteroatom, its HOMO energy level can be further deepened, which can improve the injection of holes, making the compound more suitable as a hole injection material, a hole transport material or an electron Barrier material.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of N and -C(R 13 )-
  • Y 2 is -C(R 14 )-
  • Y 3 is selected from -N(R 15 )-, -O-, -S Any one of - and -C(R 16 )(R 17 )-, the definitions of R 1 to R 17 are the same as those in formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 2 is -C(R 14 )-, Y 3 is selected from any one of N and -C(R 13 )-, and the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in Formula I.
  • a double bond is formed between Y 2 and Y 3 to form a ⁇ bond, and this bond has a large degree of overlap with the ⁇ orbital of the benzene ring and has better conjugation, so the formula I-
  • the compound shown in 2 has relatively high hole transport ability; when Y 1 is a heteroatom, its HOMO energy level can be deepened and the injection of positive charges can be improved, making the compound more suitable as a hole injection material. Hole transport materials or electron blocking materials.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 is selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 2 is -C(R 14 )-, Y 3 is selected from any one of N and -C(R 13 )-, and the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in Formula I.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 , Y 2 and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 1.
  • Y 2 and Y 3 are not selected from -O- and -S- at the same time.
  • the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in formula I.
  • ⁇ bonds are formed between Y 1 and Y 2 and between Y 2 and Y 3.
  • the ⁇ bond has a longer bond length than the ⁇ bond, so the formula I-3
  • the compound has greater spatial stereoscopicity and smaller lateral current; when Y 1 is a heteroatom, its HOMO energy level can be deepened and the injection of positive charges can be improved, making the compound more suitable as a Hole injection materials, hole transport materials or electron blocking materials.
  • the compound represented by formula I contains -LN(Ar 1 )-Ar 2 and Ar 1 or Ar 2 contains an arylamine group
  • the compound represented by formula I is a bis-aromatic amine compound, and stronger voids can be obtained. Hole properties, and the HOMO energy level becomes shallower, which is conducive to the generation of holes. At this time, the compound is more suitable for use as a hole transport material.
  • the structural formula of the aromatic amine compound may be:
  • Y 1 , Y 2 and Y 3 are each independently selected from any one of -N(R 15 )-, -O-, -S- and -C(R 16 )(R 17 )-, and Y 1.
  • Y 2 and Y 3 are not selected from -O- and -S- at the same time.
  • the definitions of R 1 to R 12 and R 15 to R 17 are the same as those in formula I.
  • Y 1 , Y 2 , and Y 3 are not N at the same time.
  • Y 1 and Y 3 are N
  • Y 2 is not N.
  • Ar 1 and Ar 2 can each be independently selected from a substituted or unsubstituted aryl group with 6 to 39 carbon atoms, a substituted or unsubstituted hetero group with 5 to 60 carbon atoms.
  • Ar 1 and Ar 2 may be alkyl groups with carbon atoms from 4 to 39, for example, alkyl groups with carbon atoms from 4 to 12, 12 to 16, 16 to 28, and 28 to 39. base.
  • Ar 1 and Ar 2 can each be independently selected from any one of the following groups:
  • R 13 to R 18 may each be independently selected from any one of hydrogen, deuterium, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 20 carbon atoms. .
  • R 1 to R 12 that are not -LN(Ar 1 )-Ar 2 may each be independently selected from any one of hydrogen and deuterium.
  • L may be selected from any one of a single bond, phenylene, benzene or phenyl-substituted phenylene and biphenyl-substituted phenylene.
  • the arylamine compound may include any one of the following compounds:
  • the glass transition temperature of the aromatic amine compound can be ⁇ 110°C, for example, it can be 120°C to 180°C, and for example, it can be about 120°C, 125°C, 130°C, 135°C °C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C, 175°C, or 180°C.
  • the highest occupied molecular orbital energy level (Highest Occupied Molecular Orbital, HOMO) of the aromatic amine compound may be -4.6eV to -5.7eV, for example, it may be -4.6eV, -4.7eV , -4.8eV, -4.9eV, -5.0eV, -5.1eV, -5.2eV, -5.3eV, -5.4eV, -5.5eV, -5.6eV or -5.7eV; for another example, it can be -4.6eV to -4.9eV or -5.3eV to -5.5eV.
  • the triplet energy level of the aromatic amine compound may be 1.8eV to 2.6eV, for example, it may be 1.8eV, 1.9eV, 2.0eV, 2.1eV, 2.2eV, 2.3eV, 2.4 eV, 2.5eV or 2.6eV; for another example, it can be 2.1eV to 2.6eV, for another example, it can be 2.4eV to 2.6eV.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as hole injection materials.
  • the aromatic amine compound as described above may be used as a host material of a hole injection layer of an organic electroluminescent device.
  • the aromatic amine compound in the embodiment of the present disclosure still has a large lateral resistance after P doping.
  • the lateral current is only 100 times that without doping.
  • the current material is only doped with 1%, and the lateral current is only 100 times that without doping.
  • the current is increased to nearly 600 times. Therefore, the aromatic amine compound in the embodiment of the present disclosure can be used as the host material of the hole injection layer of the OLED device, and can effectively reduce color crosstalk and solve the current difficulties encountered by OLED device manufacturers.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as hole transport materials.
  • the aromatic amine compounds of the embodiments of the present disclosure have suitable HOMO energy levels, chemical stability, and high charge mobility, and therefore can be used as hole transport materials. Characteristics of high efficiency, low voltage, and long life can be obtained by using an organic electroluminescent device including a hole transport layer formed of an aromatic amine compound according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure also provide the use of aromatic amine compounds as described above as electron blocking materials.
  • the aromatic amine compounds of the embodiments of the present disclosure have high triplet energy levels and electrical stability, and can prevent triplet excitons from overflowing. Characteristics of high efficiency and long life can be obtained by using an organic electroluminescent device including an electron blocking layer formed of an aromatic amine compound according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure also provide an electroluminescent device including the aromatic amine compound as described above.
  • the electroluminescent device may include a hole injection layer, a hole transport layer, and an electron blocking layer.
  • both the hole injection layer and the hole transport layer are aromatic amine compounds as described above.
  • both the hole injection layer and the electron blocking layer include the aromatic amine compound as described above.
  • the hole injection layer, the hole transport layer, and the electron blocking layer each include an aromatic amine compound as described above.
  • the aromatic amine compound disclosed in the embodiment of the present disclosure is used as two or three of the host material of the hole injection layer, the material of the hole transport layer, and the material of the electron blocking layer of the same device, the evaporation source can be reduced. use to reduce production costs.
  • the electroluminescent device may include: an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer ( Electron Injection Layer (EIL), cathode and light extraction layer.
  • EIL Electron Injection Layer
  • FIG. 1 is a schematic structural diagram of an electroluminescent device according to an exemplary embodiment of the present disclosure.
  • the electroluminescent device may include: an anode 100, a hole injection layer 200, a hole transport layer 300, an electron blocking layer 400, a light emitting layer 500, a hole blocking layer 600, and an electron transport layer 700.
  • the hole injection layer 200 is disposed on a surface on one side of the anode 100
  • the hole transport layer 300 is disposed on a surface of the hole injection layer 200 away from the anode 100.
  • the electron The blocking layer 400 is disposed on the surface of the hole transport layer 300 on the side away from the anode 100
  • the light-emitting layer 500 is disposed on the surface of the electron blocking layer 400 on the side away from the anode 100
  • the hole blocking layer 600 is disposed on the surface of the light-emitting layer 500 on the side away from the anode 100
  • the electron transport layer 700 is disposed on the surface of the hole blocking layer 600 on the side away from the anode 100
  • the electron injection layer 800 is disposed on the surface of the electron transport layer 700 on the side away from the anode 100
  • the cathode 900 is disposed on the surface of the electron injection layer 800 on the side away from the anode 100
  • the light extraction layer 1000 is disposed on the surface of the cathode 900 away from the anode 100 .
  • the anode may be a material with a high work function.
  • the anode can be made of transparent oxide materials, such as indium tin oxide (ITO) or indium zinc oxide (Indium Zinc Oxide, IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the anode can use a composite structure of metal and transparent oxide, such as Ag/ITO (Indium Tin Oxide), Ag/IZO (Indium Zinc Oxide), Al/ITO , Al/IZO or ITO/Ag/ITO, etc., which can ensure good reflectivity.
  • the material of the hole injection layer may include the aromatic amine compounds and transition metal oxides provided in the embodiments of the present disclosure, for example, may include molybdenum oxide, titanium oxide, vanadium oxide, Any one or more of rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, and manganese oxide.
  • the material of the hole injection layer may include a p-type dopant of a strong electron-withdrawing system and a hole transport material;
  • the p-type dopant may include 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene, 2,3,5, 6-Tetrafluoro-7,7',8,8'-tetracyano-p-benzoquinone (F4TCNQ), 1,2,3-tris[(cyano)(4-cyano-2,3,5,6 - Any one or more of -tetrafluorophenyl)methylene]cyclopropane;
  • the hole transport material may include any one or more of the aromatic amine compounds, aromatic amine hole transport materials, dimethyl fluorene hole transport materials, and carbazole hole transport materials provided by the embodiments of the present disclosure. species; for example, the hole transport material may include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluorene- 9-yl) triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4, 4'-Bis(9-carbazolyl)biphenyl (CBP) and 9-pheny
  • the hole injection layer may be formed by evaporation.
  • the material of the hole transport layer may include arylamine compounds, arylamine-based hole transport materials, dimethylfluorene-based hole transport materials, carbazole-based hole transport materials provided in the embodiments of the present disclosure.
  • the material of the hole transport layer may include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( NPB), N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4- Phenyl-4'-(9-phenylfluoren-9-yl)triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N -Phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9-carbazolyl)biphenyl (CBP) and 9-phenyl-3-[4-(10-phenyl-9-anthracenyl) ) phenyl]-9H-carbazole (PCzPA) any one or
  • the hole transport layer may be formed by evaporation.
  • the material of the electron blocking layer may include arylamine compounds, arylamine-based electron blocking materials, dimethylfluorene-based electron blocking materials, and carbazole-based electron blocking materials provided in the embodiments of the present disclosure.
  • the material of the electron blocking layer may include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N, N'-Bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4' -(9-Phenylfluoren-9-yl)triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino] Biphenyl (DFLDPBi), 4,4'-bis(9-carbazolyl)biphenyl (CBP) and 9-phenyl-3-[4-(10-phenyl-9-anthracenyl)phenyl]- Any one or more of 9H-carbazole (PCzPA).
  • NBP 4,4'-bis[N-
  • the electron blocking layer may be formed by evaporation.
  • the material of the luminescent layer may include one luminescent material, or may include two or more luminescent materials.
  • a host luminescent material and a guest luminescent material doped into the host luminescent material may be included.
  • the electroluminescent device may be a blue electroluminescent device, a green electroluminescent device or a red electroluminescent device, and the material of the light emitting layer of the blue electroluminescent device includes Blue luminescent material, the material of the luminescent layer of the green electroluminescent device may include green luminescent material, and the material of the luminescent layer of the red electroluminescent device may include red luminescent material.
  • the blue luminescent material may include pyrene derivative-based blue luminescent material, anthracene derivative-based blue luminescent material, fluorene derivative-based blue luminescent material, perylene derivative-based blue luminescent material Any one or more of a luminescent material, a styrylamine derivative blue luminescent material, and a metal complex blue luminescent material.
  • the blue luminescent material may include N1,N6-bis([1,1'-biphenyl]-2-yl)-N1,N6-bis([1,1'-biphenyl]-4-yl )Pyrene-1,6-diamine, 9,10-bis-(2-naphthyl)anthracene (ADN), 2-methyl-9,10-di-2-naphthylanthracene (MADN), 2,5 ,8,11-tetratert-butylperylene (TBPe), 4,4'-bis[4-(diphenylamino)styryl]biphenyl (BDAVBi), 4,4'-bis[4-(di-p- Any one or more of tolylamino)styryl]biphenyl (DPAVBi) and bis(4,6-difluorophenylpyridine-C2,N)pyridylcarboxyliridium (FIrpic).
  • the green luminescent materials may include coumarin dyes, quinacridine copper derivative-based green luminescent materials, polycyclic aromatic hydrocarbon-based green luminescent materials, and diaminanthracene derivative-based green luminescent materials. , any one or more of carbazole derivative green luminescent materials and metal complex green luminescent materials.
  • the green luminescent material may include coumarin 6 (C-6), coumarin 545T (C-525T), copper quinacridine (QA), N,N'-dimethylquinacridone (DMQA), 5,12-diphenylnaphthocene (DPT), N10,N10'-diphenyl-N10,N10'-diphthaloyl-9,9'-dianthracene-10,10'- Diamine (abbreviation: BA-NPB), tris(8-hydroxyquinoline)aluminum(III)(abbreviation: Alq3), tris(2-phenylpyridine)iridium (Ir(ppy)3), acetylacetonate Any one or more of bis(2-phenylpyridine)iridium (Ir(ppy)2(acac)).
  • C-6 coumarin 6
  • DMQA copper quinacridine
  • DMQA N,N'-dimethylquinacridone
  • DPT 5,12-dipheny
  • the red luminescent material may include any one or more of DCM-based red luminescent materials and metal complex-based red luminescent materials.
  • the red luminescent material may include 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), 4-( Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulonidine-9-enyl)-4H-pyran (DCJTB), bis(1- Phenylisoquinoline)(acetylacetonate)iridium(III)(Ir(piq)2(acac)), platinum octaethylporphyrin (abbreviation: PtOEP), bis(2-(2'-benzothienyl) Any one or more of pyridine-N,C3')(acetylacetonate)iridium (abbreviation: Ir(btp)2(acac).
  • DCM dimethyl-6-(4-dimethylaminostyryl)-4H-pyran
  • DCJTB 4-( Dicy
  • the light-emitting layer may be formed by evaporation.
  • the material of the hole blocking layer may include aromatic heterocyclic hole blocking materials, for example, may include benzimidazole and its derivatives hole blocking materials, imidazopyridine and Its derivatives hole blocking materials, benziimidazophenanthridine derivatives hole blocking materials, pyrimidine and its derivatives hole blocking materials, triazine derivatives hole blocking materials, pyridine and its derivatives Hole blocking materials, pyrazine and its derivatives hole blocking materials, quinoxaline and its derivatives hole blocking materials, oxadiazole and its derivatives hole blocking materials, quinoline and its derivatives hole blocking materials Hole blocking materials, isoquinoline derivatives hole blocking materials, phenanthroline derivatives hole blocking materials, diazophospholine hole blocking materials, phosphine oxide hole blocking materials, aromatic Any one or more of ketone hole blocking materials, lactams, and borane hole blocking materials.
  • aromatic heterocyclic hole blocking materials for example, may include benzimidazole and its derivatives hole blocking materials, imidazopyridine and
  • the material of the hole blocking layer may include 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1, 3-Bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4- Phenyl-5-(4-biphenyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5- (4-Biphenyl)-1,2,4-triazole (p-EtTAZ), biphenanthroline (BPhen), (BCP), 4,4'-bis(5-methylbenzoxazole- Any one or more of 2-yl)stilbene (BzOs).
  • PBD 2-(4-biphenyl)-5-(4-tert-
  • the hole blocking layer may be formed by evaporation.
  • the material of the electron transport layer may include aromatic heterocyclic electron transport materials, for example, may include benzimidazole and its derivatives electron transport materials, imidazopyridine and its derivatives Electronic transmission materials, benziimidazophenanthridine derivatives, electron transmission materials, pyrimidine and its derivatives, triazine derivatives, pyridine and its derivatives, pyrazine and Its derivatives electron transport materials, quinoxaline and its derivatives electron transport materials, oxadiazole and its derivatives electron transport materials, quinoline and its derivatives electron transport materials, isoquinoline derivatives electron transport materials Materials, phenanthroline derivatives electron transport materials, diazophosphoryl electron transport materials, phosphine oxide electron transport materials, aromatic ketone electron transport materials, lactams, borane types Any one or more types of electron transport materials.
  • aromatic heterocyclic electron transport materials for example, may include benzimidazole and its derivatives electron transport materials, imidazopyridine and its derivatives Electronic transmission materials, benziimi
  • the material of the electron transport layer may include 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3 -Bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4-benzene Base-5-(4-biphenyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-( 4-Biphenyl)-1,2,4-triazole (p-EtTAZ), biphenanthroline (BPhen), (BCP), 4,4'-bis(5-methylbenzoxazole-2) - any one or more of stilbene (BzOs).
  • PBD 2-(4-biphenyl)-5-(4-tert
  • the electron transport layer may be formed by evaporation.
  • the material of the electron injection layer may include any one or more of alkali metal electron injection materials and metal electron injection materials.
  • the electron injection layer material may include any one or more of LiF, Yb, Mg, and Ca.
  • the electron injection layer may be formed by evaporation.
  • the cathode may be formed of lower work function metals such as Al, Ag, Mg, or an alloy containing low work function metal materials.
  • the light extraction layer may be formed by evaporation using a bis-aromatic amine light extraction material.
  • An embodiment of the present disclosure also provides a display device, including the electroluminescent device as described above.
  • the display device may include a plurality of the electroluminescent devices.
  • the electroluminescent device may be a blue electroluminescent device, a green electroluminescent device or a red electroluminescent device, and the display device may include a blue electroluminescent device, a green electroluminescent device and a red electroluminescent device.
  • Luminescent devices may be a blue electroluminescent device, a green electroluminescent device and a red electroluminescent device.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, a smart bracelet, or the like.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, a smart bracelet, or the like.
  • the embodiments of the present disclosure also provide methods for synthesizing aromatic amine compounds as described above, including:
  • the obtained intermediate 1 is then used to synthesize the aromatic amine compound of the disclosed embodiment.
  • the method can adopt C-C coupling reaction, Suzuki coupling reaction, Negishi coupling reaction, Yamamoto coupling reaction, Grignard Cross coupling reaction, Stille coupling reaction. , Heck coupling reaction, C-N coupling reaction, Buchwald coupling reaction, Ullmann coupling reaction, silylation reaction, phosphating reaction, boronation reaction, polycondensation reaction, etc.
  • Element content (%): C 48 H 35 NO, C, 89.83; H, 5.50; N, 2.18; O, 2.49.
  • Element content (%): C 47 H 29 N 3 O 3 , C, 82.56%; H, 4.28%; N, 6.15%; O, 7.02%.
  • Element content (%): C 45 H 31 NO, C, 89.82%; H, 5.19%; N, 2.33%; O, 2.66%.
  • Element content (%): C 50 H 35 N, C, 92.42%; H, 5.43%; N, 2.16%.
  • the device structure shown in Figure 1 was used to test the lateral current of the compound prepared in the above embodiment.
  • the corresponding current when the voltage is 10V is as shown in Table 3.
  • FIG. 2 is a graph showing the change curve of the lateral current of the compound of Comparative Example 1 (NPB) and the compound 2 of the embodiment of the present disclosure as a function of the doping ratio of the P-type dopant.
  • the aromatic amine compound prepared in the embodiment of the present disclosure has a smaller lateral current after being doped with a P-type dopant, and therefore can effectively suppress the color crosstalk phenomenon of the device.
  • the aromatic amine compound of the embodiment of the present disclosure is used as the host material or hole transport material of the hole injection layer to prepare an OLED device.
  • the structural formulas of other materials used in the device are as follows:
  • the film layer structure of the red light device is shown in Table 4, in which the aromatic amine compound of the embodiment of the present disclosure is used as the host material or hole transport material of the hole injection layer.
  • Device performance is shown in Table 5.
  • the film layer structure of the blue light device is shown in Table 6, in which the aromatic amine compound of the embodiment of the present disclosure is used as the host material of the hole injection layer and the electron blocking layer (blue light emitting auxiliary layer) material.
  • Device performance is shown in Table 7.
  • the film layer structure of the green light device is shown in Table 8, in which the aromatic amine compound of the embodiment of the present disclosure is used as the host material of the hole injection layer and the electron blocking layer (green light emitting auxiliary layer material).
  • the device performance is shown in Table 9.
  • the aromatic amine compounds in the embodiments of the present disclosure can be used as hole transport materials, which can improve device efficiency and enable the device to have a longer life and a low operating voltage.
  • the aromatic amine compounds in the embodiments of the present disclosure can be used as the host material of the hole injection layer,
  • the aromatic amine compounds in the embodiments of the present disclosure have low lateral current (the lateral current data are shown in Table 1). During color display, color crosstalk caused by lateral charge flow can be avoided, thereby greatly improving the color display effect.
  • the aromatic amine compound in the embodiment of the present disclosure can be used as the host material of the electron blocking layer (luminescence auxiliary layer), the luminescence auxiliary layer and the hole injection layer at the same time.
  • the aromatic amine compound in the embodiment of the present disclosure can be used as the host material of the electron blocking layer (luminescence auxiliary layer), the luminescence auxiliary layer and the hole injection layer at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种芳胺化合物及其用途、电致发光器件和显示装置,所述芳胺化合物的结构通式为式I;其中,各个基团和取代基的含义与说明书中相同。

Description

芳胺化合物及其用途、电致发光器件和显示装置 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种芳胺化合物及其用途、电致发光器件和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有自发光、发光亮度与效率高、分辨率高、色域与视角宽、响应速度快、低能耗以及可柔性化等特点,成为目前市场上的主流显示产品。
通常,有机发光现象是指利用有机物质将电能转换为光能的现象。利用有机发光现象的OLED器件通常具有阳极、阴极及设置在阳极与阴极之间的含有有机物的功能层。为了提高OLED的效率和稳定性,含有有机物的功能层普遍采用由各种不同物质构成的多层结构,例如,能够由空穴注入层(Hole Injection Layer,HIL)、空穴传输层(Hole Transport Layer,HTL)、发光层(Emitting Layer,EML)、电子传输层(Electron Transport Layer,ETL)及电子注入层(Electron Injection Layer,EIL)等形成,也可以增加空穴阻挡层(Hole Block Layer,HBL)和电子阻挡层(Electron Block Layer,EBL)。
目前以及开发出了很多适用于OLED功能层的有机物材料,例如,含有杂原子的多环化合物等。然而,多环化合物的性能受化学结构影响较大,例如,可能根据环的个数及稠合位置、杂原子的种类和排列,带隙(HOMO,LUMO)、化学特性、物性等具有相异的特征。因此,基于有机物多样性开发适用于OLED功能层的材料的研究一直在持续进行。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制本申请的保护范围。
本公开实施例提供一种芳胺化合物,其结构通式为:
Figure PCTCN2022118770-appb-000001
其中,n为0、1或2;
R 1至R 12中的至少一个为-L-N(Ar 1)-Ar 2,而不为-L-N(Ar 1)-Ar 2的R 1至R 12各自独立地选自氢、氘、碳原子数为1至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基和取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳 原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;
Ar 1、Ar 2各自独立地选自碳原子数为4至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环;
L选自单键、取代或未取代的碳原子数为6至39的亚芳基和取代或未取代的碳原子数为5至60的亚杂芳基中的任意一种;这里,取代的碳原子数为6至39的亚芳基、取代的碳原子数为5至60的亚杂芳基是指被6至39的芳 基、碳原子数为5至60的杂芳基所取代;
Y 1、Y 2、Y 3满足以下条件之一:
1)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种;
2)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键;
Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种;
3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线不存在;
Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
R 13至R 17各自独立地选自氢、氘、碳原子数为1至39的烷基、碳原子数为6至39的芳基中的任意一种。
在本公开的实施例中,Y 1、Y 2、Y 3可以满足以下条件中的至少一个:
1)Y 1、Y 2、Y 3中的至少一个选自-N(R 15)-、-O-和-S-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
3)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键。
在本公开的实施例中,Y 1、Y 2、Y 3可以满足以下条件中的至少一个:
1)Y 1、Y 2、Y 3中的一个选自-N(R 13)-、-O-和-S-中的任意一种;
2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键,Y 2与Y 3之间的虚线不存在;
3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线存在,Y 2与Y 3之间 形成双键。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000002
其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000003
Figure PCTCN2022118770-appb-000004
其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000005
其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000006
其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000007
其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开的实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000008
其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开的实施例中,Ar 1、Ar 2可以各自独立地选自取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取 代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环。
在本公开的实施例中,Ar 1、Ar 2可以各自独立地选自以下基团中的任意一种:
Figure PCTCN2022118770-appb-000009
Figure PCTCN2022118770-appb-000010
Figure PCTCN2022118770-appb-000011
在本公开的实施例中,R 13至R 18可以各自独立地选自氢、氘、碳原子数为1至4的烷基、碳原子数为6至20的芳基中的任意一种。
在本公开的实施例中,不为-L-N(Ar 1)-Ar 2的R 1至R 12可以各自独立地选自氢和氘中的任意一种。
在本公开的实施例中,L可以选自单键、亚苯基、苯或苯基取代的亚苯基和联苯基取代的亚苯基中的任意一种。
在本公开的实施例中,所述芳胺化合物可以包括下述化合物中的任意一种:
Figure PCTCN2022118770-appb-000012
Figure PCTCN2022118770-appb-000013
Figure PCTCN2022118770-appb-000014
Figure PCTCN2022118770-appb-000015
Figure PCTCN2022118770-appb-000016
Figure PCTCN2022118770-appb-000017
Figure PCTCN2022118770-appb-000018
在本公开的实施例中,所述芳胺化合物的玻璃化转变温度可以为120℃至180℃。
在本公开的实施例中,所述芳胺化合物的玻璃化转变温度可以为125℃至140℃。
在本公开的实施例中,所述芳胺化合物的最高占据分子轨道能级可以为-4.6eV至-5.7eV。
在本公开的实施例中,所述芳胺化合物的最高占据分子轨道能级可以为-4.6eV至-4.9eV或-5.3eV至-5.5eV。
在本公开的实施例中,所述芳胺化合物的三线态能级可以为1.8eV至2.6eV。
在本公开的实施例中,所述芳胺化合物的三线态能级可以为2.1eV至2.6eV。
在本公开的实施例中,所述芳胺化合物的三线态能级可以为2.4eV至2.6eV。
本公开实施例还提供如上所述的芳胺化合物作为空穴注入材料的用途。
本公开实施例还提供如上所述的芳胺化合物作为空穴传输材料的用途。
本公开实施例还提供如上所述的芳胺化合物作为电子阻挡材料的用途。
本公开实施例还提供一种电致发光器件,包括如上所述的芳胺化合物。
在本公开的实施例中,所述电致发光器件可以包括空穴注入层、空穴传输层和电子阻挡层,其中,
所述空穴注入层和所述空穴传输层均包括如上所述的芳胺化合物;或者,
所述空穴注入层和所述电子阻挡层均包括如上所述的芳胺化合物;或者,
所述空穴注入层、所述空穴传输层和所述电子阻挡层均包括如上所述的芳胺化合物。
本公开实施例还提供一种显示装置,包括如上所述的电致发光器件。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开示例性实施例的电致发光器件的结构示意图;
图2为对比例1的化合物与本公开实施例的化合物2的横向电流随P型 掺杂剂的掺杂比例的变化曲线。
附图中的标记符号的含义为:
100-阳极;200-空穴注入层;300-空穴传输层;400-电子阻挡层;500-发光层;600-空穴阻挡层;700-电子传输层;800-电子注入层;900-阴极;1000-光取出层。
具体实施方式
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示基板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“垂直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术 语在本公开中的具体含义。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“发光层”换成为“发光膜”。
应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现,也可能完全迥异。
因此,针对当前OLED器件的产业应用要求、OLED器件的光电特性需求、以及OLED器件的不同功能膜层的特性需求,需要选择更适合、具有高性能的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,因此开发更高性能的有机功能材料显得尤为重要。
另外,当前量产的OLED器件中有串扰现象发生,这一现象发生的原因是常常采用P掺杂后的空穴传输材料作为空穴注入材料,常规空穴传输材料在P掺杂后横向电流变大几百倍,导致电荷横向迁移,而RGB三色的启亮电压逐渐增大,在蓝色子像素启亮时,绿色和红色子像素在横向电流的驱动下同时点亮,导致出现色彩串扰。
本公开实施例提供一种芳胺化合物,其结构通式为:
Figure PCTCN2022118770-appb-000019
其中,n为0、1或2;
R 1至R 12中的至少一个为-L-N(Ar 1)-Ar 2,而不为-L-N(Ar 1)-Ar 2的R 1至R 12各自独立地选自氢、氘、碳原子数为1至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基和取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳 原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;
Ar 1、Ar 2各自独立地选自碳原子数为4至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环;
L选自单键、取代或未取代的碳原子数为6至39的亚芳基和取代或未取代的碳原子数为5至60的亚杂芳基中的任意一种;这里,取代的碳原子数为6至39的亚芳基、取代的碳原子数为5至60的亚杂芳基是指被6至39的芳 基、碳原子数为5至60的杂芳基所取代;
Y 1、Y 2、Y 3满足以下条件之一:
1)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种;
2)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键;
Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种;
3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线不存在;
Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
R 13至R 17各自独立地选自氢、氘、碳原子数为1至39的烷基、碳原子数为6至39的芳基中的任意一种。
在本公开的实施例中,所述芳基包括但不限于苯基、萘基、蒽基、苊烯基、茚基、菲基、薁基、芘基、芴基、苝基、螺芴基、螺双芴基、
Figure PCTCN2022118770-appb-000020
基、苯并菲基、苯并蒽基、荧蒽基、苉基、并四苯基、并茚苯基。
在杂芳基中使用的术语“杂”是指芳香环中的至少一个碳原子被杂原子取代,所述杂原子选自氮原子(N)、氧原子(O)和硫原子(S)中的任意一种或多种。
在本公开的实施例中,所述杂芳基包括但不限于苯并恶唑基、苯并噻唑基、吲哚基、苯并咪唑基、吡咯基、吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、四嗪基、咪唑基、吡唑基、咔唑基、噻吩基、噻唑基、苯并咔唑基、二苯并咔唑基、吲哚并咔唑基、茚并咔唑基、喹啉基、异喹啉基、酞嗪基(phthalazinyl)、喹喔啉基(quinoxalinyl)、噌啉基(cinnolinyl)、喹唑啉基、酞嗪基、苯并喹啉基、苯并异喹啉基、苯并喹唑啉基、苯并喹喔啉基、吖啶基、菲咯啉基、呋喃基、吡喃基、恶嗪基、恶唑基、恶二唑基(oxadiazolyl)、三唑 基、二恶英基(dioxynyl)、苯并呋喃基、二苯并呋喃基、硫代吡喃基、噻嗪基、苯硫基和N-取代的螺芴基。
本公开实施例提供的芳胺化合物是一类以sp3杂化的碳原子为中心、具有十字交叉构型的芳烃类分子砌块,分子具有一定的立体性,可以提高分子的热稳定性,使分子获得更高的玻璃化转变温度(Tg)。
而且,本公开实施例提供的芳胺化合物在成膜后,电荷不易横向扩散,可以使寿命、效率和/或工作电压同时得到改善。若本公开实施例提供的芳胺化合物引入取代基,可以进一步降低化合物的横向电流,横向电流约是常规材料的10%左右,也可以引入杂原子,可以提高正电荷的注入,使该化合物可以应用于空穴注入材料、空穴传输材料或电子阻挡材料。
另外,目前文献报道了一些螺环化合物在电子注入层、电子传输层、电子阻挡层或空穴传输层中的应用,例如,中国发明专利申请CN112358471A和CN113773208A等。但CN112358471A和CN113773208A等文献中报道的螺环化合物在沉积时所需的蒸镀温度(Te)较高,因此量产工艺要求更高,否则易导致材料分解,或产生缺陷态,从而导致良品率低,或寿命不足等。而本公开实施例提供的芳胺化合物的分子量较小,且有利于形成熔融型蒸镀材料,因此在沉积时所需的蒸镀温度(Te)较低,而且玻璃化转变温度(Tg)较高,具有更高的工艺可行性,可以提高量产蒸镀的稳定性。
在本公开示例性实施例中,Y 1、Y 2、Y 3可以满足以下条件中的至少一个:
1)Y 1、Y 2、Y 3中的至少一个选自-N(R 15)-、-O-和-S-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
3)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键。
在本公开示例性实施例中,Y 1、Y 2、Y 3可以满足以下条件中的至少一个:
1)Y 1、Y 2、Y 3中的一个选自-N(R 13)-、-O-和-S-中的任意一种;
2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键,Y 2与Y 3之间的虚 线不存在;
3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000021
其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
在式I-1所示的化合物中,Y 1与Y 2之间形成双键,形成π键,但该键离右侧的苯环较远,不与苯环形成共轭,能级较深,有利于空穴的注入;当Y 3为杂原子时,可以使其HOMO能级进一步变深,可以提高空穴的注入,使该化合物更适合作为空穴注入材料、空穴传输材料或电子阻挡材料。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000022
其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000023
其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在式I-2所示的化合物中,Y 2与Y 3之间形成双键,形成π键,而且该键与苯环的π轨道重叠程度大,具有更好的共轭,因此式I-2所示的化合物具有相对较高的空穴传输能力;当Y 1为杂原子时,可以使其HOMO能级变深,可以提高正电荷的注入,使该化合物更适合作为空穴注入材料、空穴传输材料或电子阻挡材料。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000024
Figure PCTCN2022118770-appb-000025
其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000026
其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在式I-3所示的化合物中,Y 1与Y 2之间、Y 2与Y 3之间均形成σ键,σ键与π键相比键长更长,因此式I-3所示的化合物具有更大的空间立体性,该类化合物具有更小的横向电流;当Y 1为杂原子时,可以使其HOMO能级 变深,可以提高正电荷的注入,使该化合物更适合作为空穴注入材料、空穴传输材料或电子阻挡材料。
当式I所示的化合物中含有-L-N(Ar 1)-Ar 2并且Ar 1或Ar 2中含有芳胺基时,式I所示的化合物为双芳胺类化合物,可以获得更强的空穴属性,且HOMO能级变浅,有利于空穴的产生,此时该化合物更适合用作空穴传输材料。
在本公开示例性实施例中,所述芳胺化合物的结构式可以为:
Figure PCTCN2022118770-appb-000027
其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
在本公开示例性实施例中,在式I-3、式3-1、式3-2中,Y 1、Y 2、Y 3不同时为N,例如,Y 1和Y 3为N,Y 2不为N。
在本公开示例性实施例中,Ar 1、Ar 2可以各自独立地选自取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳 原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环。
在本公开示例性实施例中,Ar 1、Ar 2可以为碳原子数为4至39的烷基,例如,碳原子数为4至12、12至16、16至28、28至39的烷基。
在本公开示例性实施例中,Ar 1、Ar 2可以各自独立地选自以下基团中的任意一种:
Figure PCTCN2022118770-appb-000028
Figure PCTCN2022118770-appb-000029
Figure PCTCN2022118770-appb-000030
在本公开示例性实施例中,R 13至R 18可以各自独立地选自氢、氘、碳原子数为1至4的烷基、碳原子数为6至20的芳基中的任意一种。
在本公开示例性实施例中,不为-L-N(Ar 1)-Ar 2的R 1至R 12可以各自独立地选自氢和氘中的任意一种。
在本公开示例性实施例中,L可以选自单键、亚苯基、苯或苯基取代的亚苯基和联苯基取代的亚苯基中的任意一种。
在本公开示例性实施例中,所述芳胺化合物可以包括下述化合物中的任意一种:
Figure PCTCN2022118770-appb-000031
Figure PCTCN2022118770-appb-000032
Figure PCTCN2022118770-appb-000033
Figure PCTCN2022118770-appb-000034
Figure PCTCN2022118770-appb-000035
Figure PCTCN2022118770-appb-000036
Figure PCTCN2022118770-appb-000037
在本公开示例性实施例中,所述芳胺化合物的玻璃化转变温度可以≥110℃,例如,可以为120℃至180℃,再例如,可以约为120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃、175℃、或180℃。
在本公开示例性实施例中,所述芳胺化合物的最高占据分子轨道能级(Highest Occupied Molecular Orbital,HOMO)可以为-4.6eV至-5.7eV,例如, 可以为-4.6eV、-4.7eV、-4.8eV、-4.9eV、-5.0eV、-5.1eV、-5.2eV、-5.3eV、-5.4eV、-5.5eV、-5.6eV或-5.7eV;又例如,可以为-4.6eV至-4.9eV或-5.3eV至-5.5eV。在本公开示例性实施例中,所述芳胺化合物的三线态能级可以为1.8eV至2.6eV,例如,可以为1.8eV、1.9eV、2.0eV、2.1eV、2.2eV、2.3eV、2.4eV、2.5eV或2.6eV;又例如,可以为2.1eV至2.6eV,再例如,可以为2.4eV至2.6eV。
本公开实施例还提供如上所述的芳胺化合物作为空穴注入材料的用途。
在本公开示例性实施例中,如上所述的芳胺化合物可以作为有机电致发光器件的空穴注入层的主体材料。
本公开实施例的芳胺化合物在P掺杂后仍具有较大的横向电阻,在掺杂5%时,横向电流仅为不掺杂的100倍,而目前的材料仅掺杂1%,横向电流提高到近600倍,因此,本公开实施例的芳胺化合物可以作为OLED器件的空穴注入层的主体材料,而且可以有效降低色彩串扰,解决OLED器件生产厂家目前遇到的困境。
本公开实施例还提供如上所述的芳胺化合物作为空穴传输材料的用途。
本公开实施例的芳胺化合物具有合适的HOMO能级、化学稳定性以及较高的电荷迁移率,因此可以作为空穴传输材料。采用包括本公开实施例的芳胺化合物形成的空穴传输层的有机电致发光器件可以获得高效率、低电压、长寿命的特性。
本公开实施例还提供如上所述的芳胺化合物作为电子阻挡材料的用途。
本公开实施例的芳胺化合物具有较高的三线态能级和电学稳定性,可以防止三线态激子外溢。采用包括本公开实施例的芳胺化合物形成的电子阻挡层的有机电致发光器件可以获得高效率、长寿命的特性。
本公开实施例还提供一种电致发光器件,包括如上所述的芳胺化合物。
在本公开示例性实施例中,所述电致发光器件可以包括空穴注入层、空穴传输层和电子阻挡层。
在本公开示例性实施例中,所述空穴注入层和所述空穴传输层均如上所述的芳胺化合物。
在本公开示例性实施例中,所述空穴注入层和所述电子阻挡层均包括如上所述的芳胺化合物。
在本公开示例性实施例中,所述空穴注入层、所述空穴传输层和所述电子阻挡层均包括如上所述的芳胺化合物。
当采用本公开实施例公开的芳胺化合物作为同一个器件的空穴注入层的主体材料、空穴传输层的材料、电子阻挡层的材料中的两种或三种时,可以减少蒸镀源的使用,降低生产成本。
在本公开示例性实施例中,所述电致发光器件可以包括:阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层(Electron Injection Layer,EIL)、阴极和光取出层。
图1为本公开示例性实施例的电致发光器件的结构示意图。如图1所示,所述电致发光器件可以包括:阳极100、空穴注入层200、空穴传输层300、电子阻挡层400、发光层500、空穴阻挡层600、电子传输层700、电子注入层800、阴极900和光取出层1000。所述空穴注入层200设置在所述阳极100一侧的表面上,所述空穴传输层300设置在所述空穴注入层200的远离所述阳极100一侧的表面上,所述电子阻挡层400设置在所述空穴传输层300的远离所述阳极100一侧的表面上,所述发光层500设置在所述电子阻挡层400的远离所述阳极100一侧的表面上,所述空穴阻挡层600设置在所述发光层500的远离所述阳极100一侧的表面上,所述电子传输层700设置在所述空穴阻挡层600的远离所述阳极100一侧的表面上,所述电子注入层800设置在所述电子传输层700的远离所述阳极100一侧的表面上,所述阴极900设置在所述电子注入层800的远离所述阳极100一侧的表面上,所述光取出层1000设置在所述阴极900的远离所述阳极100一侧的表面上。
在本公开示例性实施例中,所述阳极可以为具有高功函数的材料。例如,对于底发射型器件,阳极可以采用透明氧化物材料,如氧化铟锡(ITO)或氧化铟锌(Indium Zinc Oxide,IZO)等。或者,对于顶发射型器件,阳极可以采用金属和透明氧化物的复合结构,如Ag/ITO(氧化铟锡,Indium Tin Oxide)、Ag/IZO(氧化铟锌,Indium Zinc Oxide)、Al/ITO、Al/IZO或者ITO/Ag/ITO等,可保证良好的反射率。
在本公开示例性实施例中,所述空穴注入层的材料可以包括本公开实施例提供的芳胺化合物、过渡金属氧化物,例如,可以包括钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物、锰氧化物中的任意一种或多种。
在另一本公开示例性实施例中,所述空穴注入层的材料可以包括强吸电子体系的p型掺杂剂和空穴传输材料;
所述p型掺杂剂可以包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、2,3,5,6-四氟-7,7’,8,8’-四氰基对苯醌(F4TCNQ)、1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷中的任意一种或多种;
所述空穴传输材料可以包括本公开实施例提供的芳胺化合物、芳胺类空穴传输材料、二甲基芴类空穴传输材料、咔唑类空穴传输材料中的任意一种或多种;例如,所述空穴传输材料可以包括4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(TPD)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4’-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4’-二(9-咔唑基)联苯(CBP)和9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)中的任意一种或多种。
在本公开示例性实施例中,所述空穴注入层可以通过蒸镀形成。
在本公开示例性实施例中,所述空穴传输层的材料可以包括本公开实施例提供的芳胺化合物、芳胺类空穴传输材料、二甲基芴类空穴传输材料、咔唑类空穴传输材料中的任意一种或多种;例如,所述空穴传输层的材料可以包括4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(TPD)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4’-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4’-二(9-咔唑基)联苯(CBP)和9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)中的任意一种或多种。
在本公开示例性实施例中,所述空穴传输层可以通过蒸镀形成。
在本公开示例性实施例中,所述电子阻挡层的材料可以包括本公开实施例提供的芳胺化合物、芳胺类电子阻挡材料、二甲基芴类电子阻挡材料、咔唑类电子阻挡材料中的任意一种或多种;例如,所述电子阻挡层的材料可以 包括4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(TPD)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4’-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4’-二(9-咔唑基)联苯(CBP)和9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)中的任意一种或多种。
在本公开示例性实施例中,所述电子阻挡层可以通过蒸镀形成。
在本公开示例性实施例中,所述发光层的材料可以包括一种发光材料,也可以包括两种或两种以上的发光材料。例如,可以包括主体发光材料和掺杂到所述主体发光材料中的客体发光材料。
在本公开示例性实施例中,所述电致发光器件可以为蓝色电致发光器件、绿色电致发光器件或红色电致发光器件,所述蓝色电致发光器件的发光层的材料包括蓝色发光材料,所述绿色电致发光器件的发光层的材料包括绿色发光材料,所述红色电致发光器件的发光层的材料可以包括红色发光材料。
在本公开示例性实施例中,所述蓝色发光材料可以包括芘衍生物类蓝色发光材料、蒽衍生物类蓝色发光材料、芴衍生物类蓝色发光材料、苝衍生物类蓝色发光材料、苯乙烯基胺衍生物类蓝色发光材料和金属配合物类蓝色发光材料中的任意一种或多种。
例如,所述蓝色发光材料可以包括N1,N6-二([1,1’-联苯]-2-基)-N1,N6-二([1,1’-联苯]-4-基)芘-1,6-二胺、9,10-二-(2-萘基)蒽(ADN)、2-甲基-9,10-二-2-萘基蒽(MADN)、2,5,8,11-四叔丁基苝(TBPe)、4,4’-二[4-(二苯氨基)苯乙烯基]联苯(BDAVBi)、4,4’-二[4-(二对甲苯基氨基)苯乙烯基]联苯(DPAVBi)、二(4,6-二氟苯基吡啶-C2,N)吡啶甲酰合铱(FIrpic)中的任意一种或多种。
在本公开示例性实施例中,所述绿色发光材料可以包括香豆素染料、喹吖啶铜衍生物类绿色发光材料、多环芳香烃类绿色发光材料、二胺蒽衍生物类绿色发光材料、咔唑衍生物类绿色发光材料和金属配合物类绿色发光材料中的任意一种或多种。
例如,所述绿色发光材料可以包括香豆素6(C-6)、香豆素545T(C-525T)、喹吖啶铜(QA)、N,N’-二甲基喹吖啶酮(DMQA)、5,12-二苯基萘并萘(DPT)、N10,N10'-二苯基-N10,N10’-二苯二甲酰-9,9’-二蒽-10,10’-二胺(简称: BA-NPB)、三(8-羟基喹啉)合铝(III)(简称:Alq3)、三(2-苯基吡啶)合铱(Ir(ppy)3)、乙酰丙酮酸二(2-苯基吡啶)铱(Ir(ppy)2(acac))中的任意一种或多种。
在本公开示例性实施例中,所述红色发光材料可以包括DCM类列红色发光材料和金属配合物类红色发光材料中的任意一种或多种。
例如,所述红色发光材料可以包括4-(二氰基亚甲基)-2-甲基-6-(4-二甲基氨基苯乙烯基)-4H-吡喃(DCM)、4-(二氰基甲撑)-2-叔丁基-6-(1,1,7,7-四甲基久洛尼啶-9-烯基)-4H-吡喃(DCJTB),二(1-苯基异喹啉)(乙酰丙酮)铱(III)(Ir(piq)2(acac))、八乙基卟啉铂(简称:PtOEP)、二(2-(2’-苯并噻吩基)吡啶-N,C3’)(乙酰丙酮)合铱(简称:Ir(btp)2(acac)中的任意一种或多种。
在本公开示例性实施例中,所述发光层可以通过蒸镀形成。
在本公开示例性实施例中,所述空穴阻挡层的材料可以包括芳族杂环类空穴阻挡材料,例如,可以包括苯并咪唑及其衍生物类空穴阻挡材料、咪唑并吡啶及其衍生物类空穴阻挡材料、苯并咪唑并菲啶衍生物类空穴阻挡材料、嘧啶及其衍生物类空穴阻挡材料、三嗪衍生物类空穴阻挡材料、吡啶及其衍生物类空穴阻挡材料、吡嗪及其衍生物类空穴阻挡材料、喹喔啉及其衍生物类空穴阻挡材料、二唑及其衍生物类空穴阻挡材料、喹啉及其衍生物类空穴阻挡材料、异喹啉衍生物类空穴阻挡材料、菲咯啉衍生物类空穴阻挡材料、二氮磷杂环戊二烯类空穴阻挡材料、氧化膦类空穴阻挡材料、芳族酮类空穴阻挡材料类空穴阻挡材料、内酰胺、硼烷类空穴阻挡材料中的任意一种或多种。
再例如,所述空穴阻挡层的材料可以包括2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、(BCP)、4,4’-双(5-甲基苯并噁唑-2-基)芪(BzOs)中的任意一种或多种。
在本公开示例性实施例中,所述空穴阻挡层可以通过蒸镀形成。
在本公开示例性实施例中,所述电子传输层的材料可以包括芳族杂环类电子传输材料,例如,可以包括苯并咪唑及其衍生物类电子传输材料、咪唑并吡啶及其衍生物类电子传输材料、苯并咪唑并菲啶衍生物类电子传输材料、 嘧啶及其衍生物类电子传输材料、三嗪衍生物类电子传输材料、吡啶及其衍生物类电子传输材料、吡嗪及其衍生物类电子传输材料、喹喔啉及其衍生物类电子传输材料、二唑及其衍生物类电子传输材料、喹啉及其衍生物类电子传输材料、异喹啉衍生物类电子传输材料、菲咯啉衍生物类电子传输材料、二氮磷杂环戊二烯类电子传输材料、氧化膦类电子传输材料、芳族酮类电子传输材料类电子传输材料、内酰胺、硼烷类电子传输材料中的任意一种或多种。
再例如,所述电子传输层的材料可以包括2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、(BCP)、4,4’-双(5-甲基苯并噁唑-2-基)芪(BzOs)中的任意一种或多种。
在本公开示例性实施例中,所述电子传输层可以通过蒸镀形成。
在本公开示例性实施例中,所述电子注入层的材料可以包括碱金属电子注入材料和金属电子注入材料中的任意一种或多种。
例如,所述电子注入层材料可以包括LiF、Yb、Mg、Ca中的任意一种或多种。
在本公开示例性实施例中,所述电子注入层可以通过蒸镀形成。
在本公开示例性实施例中,所述阴极可以采用Al、Ag、Mg等较低功函数的金属形成,或采用含有低功函数金属材料的合金形成。
在本公开示例性实施例中,所述光取出层可以采用双芳胺类光取出材料通过蒸镀形成。
本公开实施例还提供一种显示装置,包括如上所述的电致发光器件。
在示例性实施例中,所述显示装置可以包括多个所述电致发光器件。例如,所述电致发光器件可以为蓝色电致发光器件、绿色电致发光器件或红色电致发光器件,所述显示装置可以包括蓝色电致发光器件、绿色电致发光器件和红色电致发光器件。
所述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、 数码相框、导航仪、车载显示器、智能手表、智能手环等任何具有显示功能的产品或部件。
本公开实施例还提供如上所述芳胺化合物的合成方法,包括:
Figure PCTCN2022118770-appb-000038
在氮气气氛下,在500ml的圆底烧瓶中,分别加入化合物sub1-1、3-氯
Figure PCTCN2022118770-appb-000039
丙烯和AlCl 3,反应得到化合物Sub1-2(产率60%)。
取上述得到的Sub1-2溶解于乙醚中,在正丁基锂、Cu 2(CN) 2、N,N,N’,N’,-四甲基乙二胺作用下,反应得到Sub1-3(产率:65%)。加入浓硫酸,并加热反应4小时,得到Sub1-4,然后加入热的HBr进行取代反应,除去溶剂,粗产品用硅胶柱层析,得到中间体1。
接着采用得到的中间体1合成本公开实施例的芳胺化合物,方法可以采用C-C偶联反应、Suzuki偶联反应、Negishi偶联反应、Yamamoto偶联反应、Grignard Cross偶联反应、Stille偶联反应、Heck偶联反应、C-N偶联反应、Buchwald偶联反应、Ullmann偶联反应、硅烷基化反应、磷化反应、硼化反应、缩聚反应等。
反应通式如下:
Figure PCTCN2022118770-appb-000040
下面为本公开的一些示例性实施例的芳胺化合物的合成过程以及性能测试和对比。
化合物的合成
合成实施例1至10所采用的反应原料如表1所示。
表1
Figure PCTCN2022118770-appb-000041
Figure PCTCN2022118770-appb-000042
Figure PCTCN2022118770-appb-000043
合成实施例1至10的化合物的合成过程相似,以合成实施例3的化合物15的合成过程为例,该化合物的合成路线如下:
Figure PCTCN2022118770-appb-000044
在氮气气氛下,在500ml的圆底烧瓶中,将中间体1(11.2mmol)和 N-[1,1’-联苯-4-基]-9,9-二甲基-9H-芴-2-胺[897671-69-1](14.00mmol)完全溶解于200ml的四氢呋喃后,添加2M的碳酸钾水溶液(100ml),加入双(三叔丁基膦)钯(0.23g,0.20mmol)后,加热搅拌2小时。将温度降至常温,去除水层,用无水硫酸镁干燥后,减压浓缩,用200ml的乙酸乙酯重结晶,得到化合物15(4.67g,收率65%)。
化合物15的结构表征数据:
质谱m/z:641.27(100.0%).
元素含量(%):C 48H 35NO,C,89.83;H,5.50;N,2.18;O,2.49。
1H NMR(500MHz,CDCl 3):δ1.69(6H,s),5.87(1H,d),6.56(1H,d),7.12-7.55(21H,m),7.70-7.76(2H,d),7.80-7.90(4H,dd).
化合物18的结构表征数据:
质谱m/z:683.22(100.0%).
元素含量(%):C 47H 29N 3O 3,C,82.56%;H,4.28%;N,6.15%;O,7.02%。
1H NMR(500MHz,CDCl 3):δ6.05(1H,d),6.85(1H,d),7.12-7.28(4H,m),7.30-7.90(23H,m).
化合物20的结构表征数据:
质谱m/z:639.12(100.0%).
元素含量(%):C 49H 37N,C,91.98%;H,5.83%;N,2.19%。
1H NMR(500MHz,CDCl 3):δ1.45(6H,s),2.8-2.99(2H,dd),5.87(1H,d),6.76(1H,d),7.02-7.90(27H,m).
化合物26的结构表征数据:
质谱m/z:601.65(100.0%).
元素含量(%):C 45H 31NO,C,89.82%;H,5.19%;N,2.33%;O,2.66%。
1H NMR(500MHz,CDCl 3):δ5.95(1H,d),6.84(1H,d),7.12-7.28(4H,m),7.30-7.90(25H,m).
化合物30的结构表征数据:
质谱m/z:649.2770(100.0%).
元素含量(%):C 50H 35N,C,92.42%;H,5.43%;N,2.16%。
1H NMR(500MHz,CDCl 3):δ2.8-2.99(2H,dd),5.87(1H,d),6.76(1H,d),7.02-8.01(31H,m).
本申请部分化合物的性能测试数据如表2所示:
表2
化合物 Tg/℃ HOMO能级/eV 三线态能级/eV
化合物2 148 -5.38 2.36
化合物15 143 -5.33 2.25
化合物20 138 -5.37 2.31
化合物26 140 -5.51 2.25
化合物31 139 -5.44 2.18
化合物45 135 -5.28 2.55
化合物56 145 -5.41 /
化合物57 / -5.23 /
化合物58 / -5.34 /
采用图1所示的器件结构测试上述实施例制得的化合物的横向电流,在掺杂3%P型掺杂剂F4TCNQ时,电压为10V时所对应电流如表3所示。
表3
化合物 横向电流 化合物 横向电流
对比例1(NPB) 100.0% 化合物11 10.1%
对比例2(EB-1) 83.0% 化合物15 13.9%
化合物1 12.9% 化合物16 9.6%
化合物2 11.5% 化合物17 8.7%
化合物3 13.0% 化合物18 8.90%
化合物4 13.6% 化合物19 7.80%
化合物5 14.2% 化合物20 11.3%
化合物6 12.3% 化合物21 11.1%
化合物7 10.3% 化合物22 10.6%
化合物8 10.7% 化合物25 11.4%
化合物9 10.5% 化合物40 10.3%
化合物10 11.3% 化合物41 10.6%
图2为对比例1的化合物(NPB)与本公开实施例的化合物2的横向电流随P型掺杂剂的掺杂比例的变化曲线。
可以看出,本公开实施例制得的芳胺化合物在掺杂P型掺杂剂后具有较小的横向电流,因此可以有效抑制器件的颜色串扰现象。
化合物在器件中的应用
采用本公开实施例的芳胺化合物作为空穴注入层的主体材料或空穴传输材料,制备OLED器件,器件中采用的其他材料的结构式如下:
Figure PCTCN2022118770-appb-000045
Figure PCTCN2022118770-appb-000046
红光器件的膜层结构如表4所示,其中本公开实施例的芳胺化合物作为空穴注入层的主体材料或空穴传输材料。器件性能如表5所示。
表4
Figure PCTCN2022118770-appb-000047
表5红光器件的性能
  电压 效率 寿命(LT95@15mA/cm 2)
对比例1 100% 100% 100%
实施例1-1 97% 123% 125%
实施例1-2 96% 135% 158%
实施例1-3 97% 134% 150%
蓝光器件的膜层结构如表6所示,其中本公开实施例的芳胺化合物作为空穴注入层的主体材料以及电子阻挡层(蓝光发光辅助层)材料。器件性能如表7所示。
表6
Figure PCTCN2022118770-appb-000048
表7蓝光器件的性能
  电压 效率 寿命(LT95@15mA/cm 2)
对比例2 100% 100% 100%
实施例2-1 96% 122% 122%
实施例2-2 97% 123% 137%
实施例2-3 100% 102% 109%
实施例2-4 96% 129% 132%
实施例2-5 96% 131% 143%
绿光器件的膜层结构如表8所示,其中本公开实施例的芳胺化合物作为空穴注入层的主体材料以及电子阻挡层(绿光发光辅助层材料。器件性能如表9所示。
表8
Figure PCTCN2022118770-appb-000049
表9绿光器件的性能
  电压 效率 寿命(LT95@15mA/cm 2)
对比例3 100% 100% 100%
实施例3-1 96% 122% 132%
实施例3-2 97% 131% 147%
从器件实施例1-1到1-3可以看出,本公开实施例的芳胺化合物可以作为空穴传输材料,可以提高器件效率,并且使器件具有较长的寿命及低的工作电压。
从器件实施例2-1、实施例2-2与对比例2可以看出,本公开实施例的芳胺化合物可以作为蓝光器件的电子阻挡层材料,提高器件的效率,延长寿命。
由器件实施例3-1、实施例3-2与对比例3可以看出,本公开实施例的芳胺化合物可以作为绿光器件的电子阻挡层材料,提高器件的效率,延长寿命。
由器件实施例1-1到1-3、2-3到2-5、3-1-到3-2可以看出,本公开实施例的芳胺化合物可以作为空穴注入层的主体材料,本公开实施例的芳胺化合物具有较低的横向电流(横向电流数据如表1所示),在彩色显示时,可以避免由于横向电荷流动而导致的色彩串扰现象,从而大大提高色彩显示效果。
为了避免在器件实际生产时多引入一个蒸镀源,可以采用本公开实施例的芳胺化合物同时作为电子阻挡层(发光辅助层)发光辅助层和空穴注入层 的主体材料这一方式,不增加蒸镀源,并同时搭配高迁移率的空穴传输材料(可以采用本公开实施例的芳胺化合物或目前常用的空穴传输材料),已达到节约成本,且实现显示效果最优化的目的。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (28)

  1. 一种芳胺化合物,其结构通式为:
    Figure PCTCN2022118770-appb-100001
    其中,n为0、1或2;
    R 1至R 12中的至少一个为-L-N(Ar 1)-Ar 2,而不为-L-N(Ar 1)-Ar 2的R 1至R 12各自独立地选自氢、氘、碳原子数为1至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基和取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取 代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;
    Ar 1、Ar 2各自独立地选自碳原子数为4至39的烷基、取代或未取代的碳原子数为6至39的芳基、取代或未取代的碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的环烷基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的环烷基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环;
    L选自单键、取代或未取代的碳原子数为6至39的亚芳基和取代或未取代的碳原子数为5至60的亚杂芳基中的任意一种;这里,取代的碳原子数为6至39的亚芳基、取代的碳原子数为5至60的亚杂芳基是指被6至39的芳基、碳原子数为5至60的杂芳基所取代;
    Y 1、Y 2、Y 3满足以下条件之一:
    1)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
    Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种;
    2)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键;
    Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种;
    3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线不存在;
    Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
    R 13至R 17各自独立地选自氢、氘、碳原子数为1至39的烷基、碳原子数为6至39的芳基中的任意一种。
  2. 根据权利要求1所述的芳胺化合物,其中,Y 1、Y 2、Y 3满足以下条件中的至少一个:
    1)Y 1、Y 2、Y 3中的至少一个选自-N(R 15)-、-O-和-S-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-;
    2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键;Y 2与Y 3之间的虚线不存在;
    3)Y 1与Y 2之间的虚线不存在;Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键。
  3. 根据权利要求2所述的芳胺化合物,其中,Y 1、Y 2、Y 3满足以下条 件中的至少一个:
    1)Y 1、Y 2、Y 3中的一个选自-N(R 13)-、-O-和-S-中的任意一种;
    2)Y 1与Y 2之间的虚线存在,Y 1与Y 2之间形成双键,Y 2与Y 3之间的虚线不存在;
    3)Y 1与Y 2之间的虚线不存在,Y 2与Y 3之间的虚线存在,Y 2与Y 3之间形成双键。
  4. 根据权利要求1至3中任一项所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100002
    其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
  5. 根据权利要求4所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100003
    Figure PCTCN2022118770-appb-100004
    其中,Y 1选自N和-C(R 13)-中的任意一种,Y 2为-C(R 14)-,Y 3选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,R 1至R 17的定义与式I中的定义相同。
  6. 根据权利要求1至3中任一项所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100005
    其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
  7. 根据权利要求6所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100006
    其中,Y 1选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,Y 2为-C(R 14)-,Y 3选自N和-C(R 13)-中的任意一种,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
  8. 根据权利要求1至3中任一项所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100007
    其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
  9. 根据权利要求8所述的芳胺化合物,其结构式为:
    Figure PCTCN2022118770-appb-100008
    其中,Y 1、Y 2、Y 3各自独立地选自-N(R 15)-、-O-、-S-和-C(R 16)(R 17)-中的任意一种,并且Y 1、Y 2、Y 3不同时选自-O-和-S-,R 1至R 12、R 15至R 17的定义与式I中的定义相同。
  10. 根据权利要求1至9中任一项所述的芳胺化合物,其中,Ar 1、Ar 2各自独立地选自取代或未取代的碳原子数为6至39的芳基、取代或未取代的 碳原子数为5至60的杂芳基、取代或未取代的碳原子数为6至60的芳氧基、取代或未取代的碳原子数为1至39的烷氧基、取代或未取代的碳原子数为6至39的芳胺基、取代或未取代的碳原子数为3至39的杂环烷基、取代或未取代的碳原子数为1至39的烷基甲硅烷基、取代或未取代的碳原子数为1至39的烷基硼基、取代或未取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代或未取代的芴基、取代或未取代的杂芴基中的任意一种;这里,取代的碳原子数为6至39的芳基、取代的碳原子数为5至60的杂芳基、取代的碳原子数为6至60的芳氧基、取代的碳原子数为1至39的烷氧基、取代的碳原子数为6至39的芳胺基、取代的碳原子数为3至39的杂环烷基、取代的碳原子数为1至39的烷基甲硅烷基、取代的碳原子数为1至39的烷基硼基、取代的碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、取代的芴基、取代的杂芴基是指被一个或多个如下基团所取代:碳原子数为1至39的烷基、碳原子数为6至39的芳基、碳原子数为5至60的杂芳基、碳原子数为6至60的芳氧基、碳原子数为1至39的烷氧基、碳原子数为6至39的芳胺基、碳原子数为3至39的环烷基、碳原子数为3至39的杂环烷基、碳原子数为1至39的烷基甲硅烷基、碳原子数为1至39的烷基硼基、碳原子数为6至39芳基硼基、碳原子数为6至39的芳基甲硅烷基、芴基、杂芴基;或者,Ar 1、Ar 2中的碳以及与Ar 1和Ar 2相连的N能够成环。
  11. 根据权利要求10所述的芳胺化合物,其中,Ar 1、Ar 2各自独立地选自以下基团中的任意一种:
    Figure PCTCN2022118770-appb-100009
    Figure PCTCN2022118770-appb-100010
    Figure PCTCN2022118770-appb-100011
  12. 根据权利要求1至9中任一项所述的芳胺化合物,其中,R 13至R 18各自独立地选自氢、氘、碳原子数为1至4的烷基、碳原子数为6至20的芳基中的任意一种。
  13. 根据权利要求1至9中任一项所述的芳胺化合物,其中,不为-L-N(Ar 1)-Ar 2的R 1至R 12各自独立地选自氢和氘中的任意一种。
  14. 根据权利要求1至9中任一项所述的芳胺化合物,其中,L选自单键、亚苯基、苯或苯基取代的亚苯基和联苯基取代的亚苯基中的任意一种。
  15. 根据权利要求1至14中任一项所述的芳胺化合物,包括下述化合物中的任意一种:
    Figure PCTCN2022118770-appb-100012
    Figure PCTCN2022118770-appb-100013
    Figure PCTCN2022118770-appb-100014
    Figure PCTCN2022118770-appb-100015
    Figure PCTCN2022118770-appb-100016
    Figure PCTCN2022118770-appb-100017
    Figure PCTCN2022118770-appb-100018
  16. 根据权利要求1至15中任一项所述的芳胺化合物,其玻璃化转变温度为120℃至180℃。
  17. 根据权利要求16所述的芳胺化合物,其玻璃化转变温度为125℃至140℃。
  18. 根据权利要求1至15中任一项所述的芳胺化合物,其最高占据分子轨道能级为-4.6eV至-5.7eV。
  19. 根据权利要求18所述的芳胺化合物,其最高占据分子轨道能级为-4.6eV至-4.9eV或-5.3eV至-5.5eV。
  20. 根据权利要求1至15中任一项所述的芳胺化合物,其三线态能级为1.8eV至2.6eV。
  21. 根据权利要求20所述的芳胺化合物,其三线态能级为2.1eV至2.6eV。
  22. 根据权利要求21所述的芳胺化合物,其三线态能级为2.4eV至2.6eV。
  23. 根据权利要求1至22中任一项所述的芳胺化合物作为空穴注入材料的用途。
  24. 根据权利要求1至22中任一项所述的芳胺化合物作为空穴传输材料的用途。
  25. 根据权利要求1至22中任一项所述的芳胺化合物作为电子阻挡材料的用途。
  26. 一种电致发光器件,包括根据权利要求1至22中任一项所述的芳胺化合物。
  27. 根据权利要求26所述的电致发光器件,包括空穴注入层、空穴传输层和电子阻挡层,其中,
    所述空穴注入层和所述空穴传输层均包括根据权利要求1至22中任一项所述的芳胺化合物;或者,
    所述空穴注入层和所述电子阻挡层均包括根据权利要求1至22中任一项所述的芳胺化合物;或者,
    所述空穴注入层、所述空穴传输层和所述电子阻挡层均包括根据权利要求1至22中任一项所述的芳胺化合物。
  28. 一种显示装置,包括根据权利要求26或27所述的电致发光器件。
PCT/CN2022/118770 2022-09-14 2022-09-14 芳胺化合物及其用途、电致发光器件和显示装置 WO2024055207A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/118770 WO2024055207A1 (zh) 2022-09-14 2022-09-14 芳胺化合物及其用途、电致发光器件和显示装置
CN202280003188.8A CN118077329A (zh) 2022-09-14 2022-09-14 芳胺化合物及其用途、电致发光器件和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118770 WO2024055207A1 (zh) 2022-09-14 2022-09-14 芳胺化合物及其用途、电致发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2024055207A1 true WO2024055207A1 (zh) 2024-03-21

Family

ID=90274071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118770 WO2024055207A1 (zh) 2022-09-14 2022-09-14 芳胺化合物及其用途、电致发光器件和显示装置

Country Status (2)

Country Link
CN (1) CN118077329A (zh)
WO (1) WO2024055207A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
CN114133333A (zh) * 2021-08-06 2022-03-04 陕西莱特迈思光电材料有限公司 含氮化合物、电子元件和电子装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
CN114133333A (zh) * 2021-08-06 2022-03-04 陕西莱特迈思光电材料有限公司 含氮化合物、电子元件和电子装置

Also Published As

Publication number Publication date
CN118077329A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
TWI577675B (zh) 有機發光裝置及平板顯示裝置
TWI535821B (zh) 發光元件材料及發光元件
TWI608075B (zh) 苯并吲哚并咔唑衍生物及使用其的發光元件材料及發光元件
TWI458694B (zh) Organic light field components
KR20110016288A (ko) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
US20200006669A1 (en) Fused cyclic compound, and preparation method and use thereof
US11723271B2 (en) Organic compound, and electronic component and electronic device therefor
CN110818670B (zh) 化合物和有机发光装置
CN107406415A (zh) 嘧啶衍生物和有机电致发光器件
KR20180097955A (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20200317706A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
KR101894896B1 (ko) 청색 인광 도펀트 및 이를 이용하는 유기전계발광소자
KR101219485B1 (ko) 다이벤조카바졸을 포함하는 화합물 및 이를 이용한 유기전자소자, 그 단말
CN115057786A (zh) Oled材料及其制备方法、oled元件、显示基板和显示装置
KR101270505B1 (ko) 3개의 카바졸을 가지는 아민 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20120125942A (ko) 신규한 화합물 및 이를 포함한 유기발광 소자
EP4206206A1 (en) Organic compound, organic light emitting diode and organic light emitting device including thereof
TW201412714A (zh) 發光元件材料及發光元件
WO2023190159A1 (ja) 化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置
CN114621102B (zh) 一种芳胺衍生物及其有机电致发光器件
WO2024055207A1 (zh) 芳胺化合物及其用途、电致发光器件和显示装置
CN115643782A (zh) 发光器件、发光装置、电子设备及照明装置
CN112851687B (zh) 有机化合物、包含该化合物的有机发光二极管和装置
KR101077839B1 (ko) 유기전기소자 및 그 화합물, 단말
CN115057838A (zh) 一种芳胺类有机化合物及其有机发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958400

Country of ref document: EP

Kind code of ref document: A1