WO2024055181A1 - 用于车辆动力系统的换挡控制方法及换挡控制装置 - Google Patents

用于车辆动力系统的换挡控制方法及换挡控制装置 Download PDF

Info

Publication number
WO2024055181A1
WO2024055181A1 PCT/CN2022/118646 CN2022118646W WO2024055181A1 WO 2024055181 A1 WO2024055181 A1 WO 2024055181A1 CN 2022118646 W CN2022118646 W CN 2022118646W WO 2024055181 A1 WO2024055181 A1 WO 2024055181A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
motor
shift control
control method
value
Prior art date
Application number
PCT/CN2022/118646
Other languages
English (en)
French (fr)
Inventor
罗品奎
Original Assignee
舍弗勒技术股份两合公司
罗品奎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 罗品奎 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2022/118646 priority Critical patent/WO2024055181A1/zh
Publication of WO2024055181A1 publication Critical patent/WO2024055181A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators

Definitions

  • the present application relates to the field of vehicles, and more specifically to a shift control method for a vehicle power system and a shift control device using the shift control method.
  • FIG. 1 shows a schematic topological structure diagram of a hybrid system of a vehicle.
  • the hybrid system includes an engine ICE, an electric motor EM, a clutch C and a transmission T.
  • the output shaft of the engine ICE is connected in a controlled driving manner with the motor shaft of the electric machine EM via the clutch C.
  • clutch C When clutch C is engaged, the output shaft of the engine ICE is connected to the motor shaft of the motor EM; when the clutch C is disengaged, the output shaft of the engine ICE is disconnected from the motor shaft of the motor EM.
  • the motor shaft of the motor EM is directly connected to the input shaft S of the transmission T in a coaxial manner, so that the motor shaft of the motor EM and the input shaft S of the transmission T are always drivingly connected.
  • the transmission T also includes a plurality of synchronizers and gear pairs that implement corresponding gears.
  • the so-called P2 architecture is implemented.
  • the shift control method of the prior art is usually used in the process of realizing the shift.
  • the related art shift control method includes a first torque control step, a disengagement step, a rotational speed synchronization step, an engagement step, and a second torque control step.
  • the following uses the transmission T as an example to perform shifting from the first gear pair composed of gears G11 and G12 to the second gear pair composed of gears G21 and G22, and the shift control method is explained in detail with reference to FIGS. 2A and 2B .
  • the first torque control step is first performed, and the shifting process enters the S1 stage shown in Figure 2B.
  • the vehicle power system control unit HCU sends a torque request to the vehicle's motor control unit MCU, and the motor control unit MCU controls the torque of the motor EM so that the torque of the motor EM gradually decreases and decreases to 0 at the end of the S1 phase.
  • the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle increases slightly.
  • the power system control unit HCU has set the target gear of synchronizer A from gear G11 to G21, but the power system control unit HCU does not send a signal to the transmission control unit GCU to control the fork action. Therefore, the target fork position, the monitored fork position signal and the actual fork position all indicate that synchronizer A is still engaged with gear G11.
  • the disengagement step begins, and the shifting process enters the S2 stage shown in Figure 2B.
  • the torque of the motor EM remains at 0.
  • the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle remains roughly unchanged.
  • the power system control unit HCU sends the target fork position to the vehicle's transmission control unit GCU.
  • the transmission control unit GCU controls synchronizer A based on the target fork position so that synchronizer A is disengaged from gear G11. Therefore, when the S2 phase ends, both the monitored fork position signal and the actual fork position indicate that synchronizer A is already in a neutral state that is not engaged with any gear.
  • the speed synchronization step begins, and the shifting process enters the S3 stage shown in Figure 2B.
  • the power system control unit HCU sends a speed request to the vehicle's motor control unit MCU.
  • the motor control unit MCU controls the torque of the motor EM. By changing the torque of the motor EM, the speed of the motor EM can be increased, and the torque of the motor EM can be increased. At the end of the S3 phase it decreases to 0 again.
  • the target speed of the motor EM can be calculated by using the speed of the output shaft of the transmission T through the transmission ratio of the second gear pair, or it can directly monitor the speed of gear G21 as the target gear in the second gear pair. Obtained; the actual speed of the motor EM is less than the target speed of the motor EM and by setting the curve corresponding to the control speed, the actual speed gradually approaches the target speed.
  • the vehicle's speed remains roughly constant.
  • the target fork position, the monitored fork position signal and the actual fork position all indicate that synchronizer A is already in a neutral state without engaging any gear.
  • the shift control method simultaneously counts time after starting the rotation speed synchronization step.
  • the engagement step is started, and the gear shifting process enters the S4 stage shown in Figure 2B.
  • the torque of the motor EM remains at 0.
  • the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle is slightly reduced.
  • the power system control unit HCU sends the target fork position to the vehicle's transmission control unit GCU.
  • the transmission control unit GCU controls synchronizer A based on the target fork position so that synchronizer A engages gear G21. Therefore, when the S4 phase ends, both the monitored fork position signal and the actual fork position indicate that synchronizer A is already engaged with gear G21.
  • the second torque control step begins, and the shifting process enters the S5 stage shown in Figure 2B.
  • the vehicle power system control unit HCU sends a torque request to the vehicle's motor control unit MCU, and the motor control unit MCU controls the torque of the motor EM so that the torque of the motor EM gradually increases to a predetermined value.
  • the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle gradually increases.
  • the power system control unit HCU maintains the target gear of synchronizer A as gear G21.
  • the target fork position, the monitored fork position signal and the actual fork position all indicate that synchronizer A is engaged with gear G21. state. In this way, the entire downshift process from the first gear pair to the second gear pair is completed using the above-mentioned shift control method.
  • the following problems may exist in the above-mentioned existing shift control method.
  • the speed difference between the actual speed and the target speed of the motor EM is too large at the beginning of the speed synchronization step and the motor EM's ability to output torque is insufficient (for example, the battery power is insufficient)
  • the speed synchronization step is performed. If the time is too long (the duration of the S3 phase is too long), then the shift control method according to the above-mentioned prior art using the time threshold to make logical judgments may cause the shift process to be interrupted unexpectedly.
  • both the target speed and the actual speed of motor EM increase, making it difficult to achieve the desired speed of motor EM. If the actual speed is consistent with the target speed, the vehicle will accelerate undesirably due to the increased output torque of the motor EM, which may cause safety problems.
  • An object of the present application is to provide a shift control method for a vehicle power system that can avoid possible false interruptions and unexpected acceleration of the vehicle when performing the speed synchronization step.
  • Another object of the present application is to provide a shift control device using the above-mentioned shift control method.
  • the present application provides the following shift control method for a vehicle power system.
  • the vehicle power system includes a motor and a transmission.
  • the motor is always drivingly coupled with the input shaft of the transmission.
  • the shift control method includes :
  • the speed synchronization step is to control the torque of the motor so that the actual speed of the motor gradually approaches the target speed; before the actual speed is consistent with the target speed, obtain the expected speed difference and speed reference value of the motor. If the actual speed is consistent with the target speed, If the absolute value of the desired rotational speed difference is greater than the absolute value of the rotational speed reference value, the rotational speed synchronization step is interrupted.
  • the calculated result value is calculated using the torque of the motor, the drag torque of the input shaft, and the moment of inertia of both the motor and the input shaft as the expected speed difference of the motor. .
  • the offset rotation speed is set to any value from -100 rpm to -300 rpm, and the sum of the result value and the offset rotation speed is used as the expected rotation speed difference.
  • the shifting process is shifting from the first gear pair toward the second gear pair, using the speed of the vehicle, the transmission ratio of the first gear pair and the second gear pair.
  • the result value of the transmission ratio calculation is used as the speed reference value.
  • the offset value is set to any value from 0.95 to 1.05, and the product of the offset value as a weighting coefficient and the result value is used as the rotation speed reference value.
  • the speed of the vehicle is the speed of the vehicle at the moment when the transmission feeds back a signal that the synchronizer switches to a neutral state;
  • the speed of the vehicle is the speed of the vehicle at the current moment when a predetermined time has elapsed after the transmission feeds back a signal that the synchronizer switches to a neutral state.
  • the expected speed of the motor is obtained in real time after the transmission feeds back a signal that the synchronizer switches to a neutral state. difference and speed reference value.
  • the shift control method further includes a correction step after interrupting the rotation speed synchronization step, in which the torque of the motor is reduced to a predetermined value.
  • This application also provides the following shift control device, which adopts the shift control method described in any one of the above technical solutions.
  • a speed synchronization unit is included, which can obtain the expected speed difference and speed reference value of the motor in the process of gradually approaching the actual speed of the motor to the target speed, and determine the expected speed The magnitude relationship between the absolute value of the difference and the absolute value of the rotation speed reference value.
  • the rotation speed synchronization unit includes:
  • a calculation module capable of obtaining the expected speed difference and speed reference value of the motor through calculation
  • a judgment module capable of judging the relationship between the absolute value of the desired rotation speed difference and the absolute value of the rotation speed reference value
  • the calculation module and the judgment module are electrically connected, allowing signal transmission between the calculation module and the judgment module.
  • the judgment module when the judgment module judges that the absolute value of the expected rotation speed difference is greater than the absolute value of the rotation speed reference value, the judgment module generates a signal to gradually approach the actual rotation speed of the motor. Interrupt signal for process interruption of the target speed.
  • the shift control device further includes a correction unit, which can reduce the torque of the motor to predetermined value.
  • the calculation module uses the calculated result value of the torque of the motor, the drag torque of the input shaft, and the moment of inertia of both the motor and the input shaft as the The expected speed of the motor is different.
  • the calculation module uses the sum of the result value and the offset rotation speed as the expected rotation speed difference, and the offset rotation speed is any value from -100 rpm to -300 rpm.
  • the calculation module uses the speed of the vehicle, the transmission of the first gear pair The calculated result value of the ratio and the transmission ratio of the second gear pair is used as the rotation speed reference value.
  • the calculation module uses the offset value as the product of the weighting coefficient and the result value as the rotational speed reference value, and the offset value is any value from 0.95 to 1.05.
  • the present application provides a shift control method for a vehicle power system.
  • the vehicle parameters are used to calculate the expected speed difference and the speed reference value, and the speed is determined based on the relationship between the absolute value of the expected speed difference and the absolute value of the speed reference value.
  • the synchronization step is executed smoothly replaces the prior art shift control method which uses a time threshold in the rotation speed synchronization step to determine whether the rotation speed synchronization step is executed smoothly.
  • the shift control method according to the present application can avoid the problems of false interruptions and unexpected vehicle acceleration that may be caused by solutions in the prior art.
  • this application also provides a shift control device using the above-mentioned shift control method, which also has the same effect.
  • Figure 1 is a schematic diagram showing the topology of a hybrid power system with P2 architecture.
  • FIG. 2A is a flowchart illustrating a related art shift control method of a vehicle power system.
  • FIG. 2B is a schematic diagram showing the curves of various parameters changing with time when the hybrid system in FIG. 1 uses the shift control method of the prior art to perform downshifting.
  • the horizontal axis in the diagram represents time.
  • FIG. 2C is a schematic diagram showing the curves of parameters changing with time when a fault occurs during the downshifting process of the hybrid system in FIG. 1 using the shift control method of the prior art, where the fault is caused by the synchronizer and the shifter. This is caused by the gear in front of the gear not disengaging.
  • the horizontal axis in the figure represents time.
  • FIG. 3A is a flowchart illustrating a shift control method of a vehicle power system according to an embodiment of the present application.
  • FIG. 3B is a schematic diagram illustrating the curves of parameters changing over time when a fault occurs during the downshifting process of the hybrid system in FIG. 1 using the shift control method according to an embodiment of the present application, where the fault is due to synchronization. It is caused by the failure of the gearbox to disengage the gear before shifting.
  • the horizontal axis in the figure represents time.
  • FIG. 4 is a structural block diagram showing a shift control device according to an embodiment of the present application.
  • ICE engine EM motor; C clutch; T transmission; A synchronizer; G11, G12, G21, G22 gears;
  • HCU power system control unit MCU motor control unit; GCU transmission control unit; SCU shift control unit; COM calculation module; JM judgment module; MU correction unit.
  • transmission connection refers to a connection between two components that can transmit torque. Unless otherwise specified, it includes a direct connection or an indirect connection between the two components. "Always transmission connection” means that the transmission connection state between two components is always maintained, and “controlled transmission connection” means that the transmission connection between the two components can be realized and the transmission connection can be released.
  • rotation speed may refer to the number of turns that a rotating object makes around the central axis per unit time, for example, its unit may be rpm (turns/minute); “speed” may refer to the movement of a moving object.
  • the ratio of displacement to time for example, its unit can be m/s, km/h, etc.
  • the outer gear sleeve of the synchronizer is driven by the shift fork to move.
  • the synchronizer is in the engaged state when the external gear sleeve is engaged with the corresponding gear gear under the driving of the shift fork.
  • the synchronizer is in the neutral state. .
  • the shift control method includes a first torque control step, a disengagement step, a rotational speed synchronization step, an engagement step and a second torque control step.
  • a first torque control step a disengagement step
  • a rotational speed synchronization step a rotational speed synchronization step
  • an engagement step a second torque control step.
  • the first torque control step is first performed, and the shifting process enters the S1 stage shown in Figure 3B.
  • the vehicle power system control unit HCU sends a torque request to the vehicle's motor control unit MCU, and the motor control unit MCU controls the torque of the motor EM so that the torque of the motor EM gradually decreases and decreases to 0 at the end of the S1 phase.
  • the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle increases slightly.
  • the power system control unit HCU has set the target gear of synchronizer A from gear G11 to G21, but the power system control unit HCU does not send a signal to the transmission control unit GCU to control the fork action. Therefore, the target fork position, the monitored fork position signal and the actual fork position all indicate that synchronizer A is engaged with gear G11.
  • the disengagement step begins, and the shifting process enters the S2 stage shown in Figure 3B.
  • the torque of the motor EM remains at 0, the actual speed of the motor EM remains consistent with the target speed, and the speed of the vehicle remains roughly unchanged.
  • the power system control unit HCU sends the target fork position to the vehicle's transmission control unit GCU.
  • the transmission control unit GCU controls synchronizer A based on the target fork position so that synchronizer A is disengaged from gear G11.
  • the speed synchronization step begins, and the shifting process enters the S3 stage shown in Figure 3B.
  • the power system control unit HCU sends a speed request to the vehicle's motor control unit.
  • the motor control unit controls the torque of the motor EM.
  • the speed of the motor EM can be increased.
  • the target speed of the motor EM can be calculated by using the speed of the output shaft of the transmission T through the transmission ratio of the second gear pair, or it can directly monitor the speed of gear G21 as the target gear in the second gear pair.
  • the actual speed of the motor EM is less than the target speed of the motor EM and by setting the curve corresponding to the control speed, the actual speed gradually approaches the target speed.
  • Figure 3B shows a situation where a fault occurs during the execution of the shift control method, that is to say, although the transmission control unit GCU feeds back to the power system control unit HCU that the synchronizer A is in a neutral state at the beginning of the S3 phase, The actual fork position indicates that synchronizer A has not actually completed disengagement from gear G11, so synchronizer A is still in the state of engagement with gear G11. In this way, after controlling the torque of the motor EM to accelerate the motor EM, the actual rotation speed of the motor EM cannot be consistent with the target rotation speed.
  • the torque of the motor EM, the drag torque of the input shaft S, and the motor EM and the input shaft S are used.
  • the expected speed difference is calculated based on the rotational inertia of the two, and the speed reference value is calculated using the speed of the vehicle, the transmission ratio of the first gear pair, and the transmission ratio of the second gear pair.
  • the expected speed difference is before the actual speed of the motor EM is consistent with the target speed. If the speed reference value is greater than the speed reference value, the speed synchronization step is interrupted.
  • the torque of the motor EM is TM (the unit is, for example, N ⁇ m)
  • the drag torque of the input shaft S is T f (the unit is, for example, N ⁇ m)
  • the moment of inertia of both the motor EM and the input shaft S is is J (unit, for example, kg ⁇ m 2 )
  • the offset speed is N O and the offset speed is any value from -100rpm to -300rpm
  • the feedback synchronizer A of the transmission T is switched to
  • the expected speed difference N(t) (unit, for example, rpm) after time t (unit, for example, s) elapses from the moment of the signal of the sexual state is expressed as:
  • I the conversion coefficient used in the speed unit conversion process. Since the unit of N(t) is rpm (revolutions per minute), and the unit of the result obtained by integrating the torque is rad/s (radians per second), the above conversion coefficient needs to be set for conversion.
  • the speed of the vehicle is v (the unit is, for example, km/h)
  • the transmission ratio of the first gear pair is r 1
  • the transmission ratio of the second gear pair is r 2
  • the radius of the wheel is R (the unit is, for example, m)
  • the bias If the shift value is f(v) and the offset value is any value between 0.95 and 1.05, then the reference value N(th) (unit is rpm, for example) is expressed as:
  • the speed v of the vehicle can be the speed of the vehicle at the moment when the transmission T feedback synchronizer A switches to the neutral state signal, so that the reference value N (th) is actually a constant value.
  • the speed v of the vehicle can be the speed of the vehicle at the current moment when time t elapses after the signal from the transmission T feedback synchronizer A switches to the neutral state, so that the reference value N(th) is actually a change value.
  • the transmission ratio of the first gear pair is the total transmission ratio of the torque transmission path corresponding to the first gear pair in the entire transmission system
  • the transmission ratio of the second gear pair is the torque transmission corresponding to the second gear pair in the entire transmission system. The overall transmission ratio of the path.
  • I the conversion coefficient used in the speed unit conversion process. Since the speed of the vehicle is v and the unit is km/h and the unit of the reference value N(th) is rpm, it is necessary to set the above conversion coefficient for conversion.
  • the shift control method further includes a correction step.
  • the correction step is executed, and the shifting process enters the S6 stage shown in Figure 3B.
  • the power system control unit HCU changes the target gear.
  • the torque of the motor EM is reduced to a predetermined value (the predetermined value here is optionally 0), and the signal of the target fork position is adjusted based on the target gear. In this way, unintended acceleration of the vehicle can be avoided.
  • the engagement step and the second torque control step are performed sequentially.
  • synchronizer A is engaged with the target gear.
  • the torque of the motor EM is controlled to increase.
  • the torque of the motor EM can be transmitted to the wheels through the second gear pair. In this way, the entire downshift process from the first gear pair to the second gear pair is completed using the above-mentioned shift control method.
  • the shift control method according to the present application can not only avoid the problem of undesired acceleration of the vehicle caused by excessive torque of the motor EM described in the above embodiments , and can also avoid the problem of accidentally interrupting the shifting process due to too small torque of the motor EM.
  • the clutch C can be in a disengaged state before shifting using the shift control method according to the present application, so that the engine ICE and the input shaft S of the transmission T are decoupled.
  • the vehicle power system that can adopt the shift control method according to the present application is not limited to the hybrid power system with the P2 architecture shown in Figure 1, and can also be other power systems.
  • it may be an electric axle drive system in which the engine is omitted and the motor is always drivingly coupled to the input shaft of the transmission.
  • the downshift process is performed using the shift control method of the present application. It can be understood that when the upshift process is performed using the shift control method of the present application, if the actual speed is different from the target speed, If the absolute value of the expected speed difference before agreement is greater than the absolute value of the reference value, the speed synchronization step is interrupted.
  • the offset speed is a parameter used to correct the final value of the expected speed difference.
  • the value standard of the offset speed can be determined according to the relevant requirements for safety performance. Determine; the offset value can be an empirical parameter, and the standard for the offset value can be selected according to the speed of the vehicle. The greater the speed of the vehicle, the greater the offset value.
  • the offset speed and offset value can be cancelled, and the following expressions are correspondingly used to calculate the expected speed difference and the speed reference value.
  • ⁇ in this application may be 3.14, or may be a more precise value for the sake of accuracy.
  • the present application also provides a shift control device that adopts the shift control method according to an embodiment of the present application or implements the shift control method according to an embodiment of the present application.
  • the shift control device may include an independent
  • the rotation speed synchronization unit and correction unit of other control units of the vehicle may also include a rotation speed synchronization unit and correction unit integrated with other control units of the vehicle.
  • the shift control device may include an electrically conductive power system control unit HCU, a transmission control unit GCU, a motor control unit MCU,
  • the speed synchronization unit SCU and the correction unit MU can communicate with each other.
  • the transmission control unit GCU can monitor the status of the synchronizer of the transmission and can provide feedback on the status of the synchronizer.
  • the motor control unit MCU can monitor the torque and speed of the motor and feedback the torque and speed of the motor, and can also control the torque of the motor EM to adjust the speed of the motor EM.
  • the power system control unit HCU is electrically connected to the transmission control unit GCU and the motor control unit MCU.
  • the power system control unit HCU can receive the status signal of the synchronizer fed back by the transmission control unit GCU, and can send a signal to the transmission control unit GCU to cause the synchronizer to In the conversion state, the power system control unit HCU can receive the torque and rotation speed of the motor fed back by the motor control unit MCU, and can send a signal to the motor control unit MCU to adjust the rotation speed of the motor by controlling the torque of the motor.
  • the power system control unit HCU, transmission control unit GCU, and motor control unit MCU can use corresponding control units already in the vehicle.
  • the speed synchronization unit SCU can receive the required parameters sent by the power system control unit HCU to calculate the expected speed difference and the speed reference value, and when judging that the absolute value of the expected speed difference is greater than the speed In the case of an absolute value of the reference value, the speed synchronization unit can generate an interrupt signal and thereby interrupt the speed synchronization step. More specifically, the rotational speed synchronization unit SCU may include a calculation module COM that obtains the expected rotational speed difference and the rotational speed reference value of the motor through calculation, and a judgment module JM that determines the size relationship between the absolute value of the expected rotational speed difference and the absolute value of the rotational speed reference value. .
  • the calculation module COM and the judgment module JM are electrically connected, allowing signal transmission between the calculation module COM and the judgment module JM. It can be understood that in the process of calculating the expected rotation speed difference and the rotation speed reference value by the calculation module COM, the parameters and calculation methods as described above can be used for calculation.
  • the calculation module uses the torque of the motor, the drag torque of the input shaft and the moment of inertia of both the motor and the input shaft to calculate the result value as the expected speed difference of the motor; further, the calculation module COM uses the result value and the offset speed The sum is taken as the desired speed difference, and the offset speed is any value from -100rpm to -300rpm.
  • the calculation module COM uses the speed of the vehicle, the transmission ratio of the first gear pair and the transmission ratio of the second gear pair to calculate the result value As the rotational speed reference value; further, the calculation module COM uses the offset value as the product of the weighting coefficient and the result value as the rotational speed reference value, and the offset value is any value from 0.95 to 1.05.
  • the judgment module JM judges that the absolute value of the desired rotation speed difference is greater than the absolute value of the rotation speed reference value, the judgment module JM generates an interrupt signal that interrupts the process of causing the actual rotation speed of the motor to gradually approach the target rotation speed.
  • the power system control unit HCU can control the torque of the motor EM through the motor control unit MCU to interrupt the speed synchronization step.
  • the correction unit MU generates the predetermined torque that the motor EM needs to reach after the interruption, and then the correction unit MU controls the torque of the motor EM or controls the torque of the motor EM through the motor control unit MCU to achieve the predetermined torque.
  • the predetermined torque may be zero.
  • the functions implemented by the speed synchronization unit and the correction unit can be integrated into the power system control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本申请提供了一种用于车辆动力系统的换挡控制方法。在本申请的换挡控制方法的转速同步步骤中,利用车辆的参数计算期望转速差和转速基准值,根据期望转速差的绝对值与转速基准值的绝对值两者之间的大小关系判断转速同步步骤是否顺利执行,来代替现有技术的换挡控制方法在转速同步步骤中利用时间阈值判断转速同步步骤是否顺利执行的方案。这样,根据本申请的换挡控制方法能够避免现有技术的方案所可能引起的误中断和车辆意外加速的问题。进一步地,本申请还提供了一种采用上述换挡控制方法的换挡控制装置,其也具有同样的效果。

Description

用于车辆动力系统的换挡控制方法及换挡控制装置 技术领域
本申请涉及车辆领域,更具体地涉及一种用于车辆动力系统的换挡控制方法及采用该换挡控制方法的换挡控制装置。
背景技术
图1示出了一种车辆的混合动力系统的拓扑结构示意图,该混合动力系统包括一个发动机ICE、一个电机EM、一个离合器C以及变速器T。发动机ICE的输出轴经由离合器C与电机EM的电机轴受控地传动联接。当离合器C接合时,发动机ICE的输出轴与电机EM的电机轴实现传动联接;当离合器C分离时,发动机ICE的输出轴与电机EM的电机轴解除传动联接。电机EM的电机轴与变速器T的输入轴S以同轴的方式直接连接,使得电机EM的电机轴与变速器T的输入轴S始终传动联接。变速器T除了包括输入轴S之外还包括多个同步器以及实现对应挡位的齿轮副。在该混合动力系统中,实现了所谓的P2架构。
对于以图1为例的车辆动力系统而言,在实现换挡的过程中通常采用现有技术的换挡控制方法。概括而言,如图2A所示,现有技术的换挡控制方法包括第一扭矩控制步骤、解除接合步骤、转速同步步骤、接合步骤和第二扭矩控制步骤。以下采用变速器T执行从齿轮G11、G12构成的第一齿轮副向齿轮G21、G22构成的第二齿轮副换挡为例并结合图2A和图2B具体说明该换挡控制方法。
当采用图2A所示的换挡控制方法开始换挡之后,首先执行第一扭矩控制步骤,换挡过程进入图2B所示的S1阶段。在S1阶段中,车辆动力系统控制单元HCU向车辆的电机控制单元MCU发送扭矩请求,电机控制单元MCU控制 电机EM的扭矩,使得电机EM的扭矩逐渐减小并在S1阶段结束时减小到0。在S1阶段中,电机EM的实际转速和目标转速保持一致,车辆的速度略微增大。另外,当S1阶段开始时,动力系统控制单元HCU已经将同步器A的目标齿轮从齿轮G11设定为G21,但是动力系统控制单元HCU并未向变速器控制单元GCU发送信号来控制拨叉动作,因此目标拨叉位置、监测到的拨叉位置信号和实际拨叉位置均表示同步器A仍然处于与齿轮G11接合的状态。
进一步地,在电机控制单元MCU向动力系统控制单元HCU反馈电机EM的实际扭矩为0之后,开始执行解除接合步骤,换挡过程进入图2B所示的S2阶段。在S2阶段中,电机EM的扭矩保持为0。在S2阶段中,电机EM的实际转速和目标转速保持一致,车辆的速度大致保持不变。另外,当S2阶段开始时,动力系统控制单元HCU向车辆的变速器控制单元GCU发送目标拨叉位置,变速器控制单元GCU基于目标拨叉位置控制同步器A,使得同步器A与齿轮G11解除接合。因此,当S2阶段结束时,监测到的拨叉位置信号和实际拨叉位置均表示同步器A已经处于未与任何齿轮接合的中性状态。
进一步地,在变速器控制单元GCU向动力系统控制单元HCU反馈同步器A处于中性状态之后,开始执行转速同步步骤,换挡过程进入图2B所示的S3阶段。在S3阶段中,动力系统控制单元HCU向车辆的电机控制单元MCU发送转速请求,电机控制单元MCU控制电机EM的扭矩,通过改变电机EM的扭矩能够增大电机EM的转速,并且电机EM的扭矩在S3阶段结束时又减小为0。在S3阶段中,电机EM的目标转速可以是利用变速器T的输出轴的转速通过第二齿轮副的传动比计算得到的,也可以是直接监测第二齿轮副中作为目标齿轮的齿轮G21的转速得到的;电机EM的实际转速小于电机EM的目标转速并且通过设置控制转速对应的曲线,使得实际转速逐渐接近目标转速。在S3阶段中,车辆的速度大致保持不变。另外,当S3阶段开始时,目标拨叉位置、 监测到的拨叉位置信号和实际拨叉位置均表示同步器A已经处于未与任何齿轮接合的中性状态。此外,在开始执行转速同步步骤之后,换挡控制方法同时对时间进行计数。一旦确定S3阶段所消耗的时间比预定阈值长而电机EM的实际转速和目标转速并未一致(可以是大于预定的转速差),则判定转速同步步骤出现问题,需要中断转速同步步骤来进行修正调整。
进一步地,在转速同步步骤顺利执行完成使得电机EM的实际转速与目标转速一致之后,开始执行接合步骤,换挡过程进入图2B所示的S4阶段。在S4阶段中,电机EM的扭矩保持为0。在S4阶段中,电机EM的实际转速和目标转速保持一致,车辆的速度略有降低。另外,当S4阶段开始时,动力系统控制单元HCU向车辆的变速器控制单元GCU发送目标拨叉位置,变速器控制单元GCU基于目标拨叉位置控制同步器A,使得同步器A与齿轮G21接合。因此,当S4阶段结束时,监测到的拨叉位置信号和实际拨叉位置均表示同步器A已经处于与齿轮G21接合的状态。
进一步地,在变速器控制单元GCU向动力系统控制单元HCU反馈同步器A处于与齿轮G21接合的状态之后,开始执行第二次扭矩控制步骤,换挡过程进入图2B所示的S5阶段。在S5阶段中,车辆动力系统控制单元HCU向车辆的电机控制单元MCU发送扭矩请求,电机控制单元MCU控制电机EM的扭矩,使得电机EM的扭矩逐渐增大到预定值。在S5阶段中,电机EM的实际转速和目标转速保持一致,车辆的速度逐渐增大。在S5阶段中,动力系统控制单元HCU将同步器A的目标齿轮保持为齿轮G21,目标拨叉位置、监测到的拨叉位置信号和实际拨叉位置均表示同步器A处于与齿轮G21接合的状态。这样,利用上述换挡控制方法完成从第一齿轮副向第二齿轮副的整个降挡过程。
在上述现有的换挡控制方法中可能存在如下问题。一方面,如果在执行 转速同步步骤初始时电机EM的实际转速和目标转速之间的转速差过大并且电机EM输出扭矩的能力不足(例如电池的电量不足的情况),则执行转速同步步骤的时间过长(S3阶段持续时间过长),那么根据上述现有技术的换挡控制方法利用时间阈值进行逻辑判断有可能导致换挡过程不期望地误中断。另一方面,如果在执行转速同步步骤的过程中电机EM输出扭矩的能力过大,车辆可能在执行转速同步步骤的过程中获得意外的加速,从而可能导致非常严重的后果,图2C中示出了可能产生这种情况的一个示例。如图2C所示,虽然在S3阶段开始时变速器控制单元GCU向动力系统控制单元HCU反馈同步器A处于中性状态,但是如果实际拨叉位置是同步器A实际上并未完成与齿轮G11解除接合,因此同步器A仍然处于与齿轮G11接合的状态,那么,在控制电机EM的扭矩来控制电机EM的转速增大之后,电机EM的目标转速和实际转速均增大,难以实现电机EM的实际转速与目标转速一致,反而会由于电机EM输出扭矩变大导致车辆不期望地加速,由此可能产生安全问题。
发明内容
鉴于上述混合动力系统的缺陷而做出了本申请。本申请的一个目的在于提供一种用于车辆动力系统的换挡控制方法,该换挡控制方法在执行转速同步步骤时能够避免可能的误中断和车辆意外加速的问题。本申请的另一个目的在于提供一种采用上述换挡控制方法的换挡控制装置。
为了实现上述目的,本申请采用如下的技术方案。
本申请提供了一种如下的用于车辆动力系统的换挡控制方法,所述车辆动力系统包括电机和变速器,所述电机与所述变速器的输入轴始终传动联接,所述换挡控制方法包括:
转速同步步骤,控制所述电机的扭矩使所述电机的实际转速逐渐接近目 标转速;在所述实际转速与所述目标转速一致之前,获取所述电机的期望转速差以及转速基准值,若所述期望转速差的绝对值大于所述转速基准值的绝对值,则中断所述转速同步步骤。
在一种可选的方案中,利用所述电机的扭矩、所述输入轴的拖拽扭矩以及所述电机和所述输入轴两者的转动惯量计算的结果数值作为所述电机的期望转速差。
在另一种可选的方案中,设偏移转速为-100rpm至-300rpm中的任意数值,以所述结果数值与所述偏移转速之和作为所述期望转速差。
在另一种可选的方案中,所述换挡过程为从第一齿轮副朝向第二齿轮副换挡,利用车辆的速度、所述第一齿轮副的传动比和所述第二齿轮副的传动比计算的结果数值作为转速基准值。
在另一种可选的方案中,设偏移值为0.95至1.05中的任意数值,以所述偏移值作为加权系数与所述结果数值的乘积作为所述转速基准值。
在另一种可选的方案中,所述车辆的速度为所述车辆在所述变速器反馈所述同步器转换到中性状态的信号的时刻的速度;或者
所述车辆的速度为所述车辆在所述变速器反馈所述同步器转换到中性状态的信号之后经过预定时间的当前时刻的速度。
在另一种可选的方案中,当所述车辆的速度为所述当前时刻的速度时,在所述变速器反馈所述同步器转换到中性状态的信号之后实时获取所述电机的期望转速差以及转速基准值。
在另一种可选的方案中,所述换挡控制方法在中断所述转速同步步骤之后还包括修正步骤,在所述修正步骤中使所述电机的扭矩减小到预定值。
本申请还提供了一种如下的换挡控制装置,其采用以上技术方案中任意一项技术方案所述的换挡控制方法。
在一种可选的方案中,包括转速同步单元,其能够在使所述电机的实际转速逐渐接近目标转速的过程中获取所述电机的期望转速差以及转速基准值,并判断所述期望转速差的绝对值和所述转速基准值的绝对值之间的大小关系。
在一种可选的方案中,所述转速同步单元包括:
计算模块,其能够通过计算获取所述电机的期望转速差以及转速基准值;以及
判断模块,其能够判断所述期望转速差的绝对值和所述转速基准值的绝对值之间的大小关系,
所述计算模块和所述判断模块电性导通,使得在所述计算模块和所述判断模块之间能够进行信号传输。
在一种可选的方案中,在所述判断模块判断所述期望转速差的绝对值大于所述转速基准值的绝对值的情况下,所述判断模块产生使所述电机的实际转速逐渐接近目标转速的过程中断的中断信号。
在一种可选的方案中,所述换挡控制装置还包括修正单元,在所述电机的实际转速逐渐接近目标转速的过程中断之后,所述修正单元能够使所述电机的扭矩减小到预定值。
在另一种可选的方案中,所述计算模块利用所述电机的扭矩、所述输入轴的拖拽扭矩以及所述电机和所述输入轴两者的转动惯量计算的结果数值作为所述电机的期望转速差。在进一步可选的方案中,所述计算模块以所述结果数值与所述偏移转速之和作为所述期望转速差,所述偏移转速为-100rpm至-300rpm中的任意数值。
在另一种可选的方案中,在所述换挡过程为从第一齿轮副朝向第二齿轮副换挡的过程中,所述计算模块利用车辆的速度、所述第一齿轮副的传动比 和所述第二齿轮副的传动比计算的结果数值作为转速基准值。在进一步可选的方案中,所述计算模块以所述偏移值作为加权系数与所述结果数值的乘积作为所述转速基准值,所述偏移值为0.95至1.05中的任意数值。
通过采用上述技术方案,本申请提供了一种用于车辆动力系统的换挡控制方法。在本申请的换挡控制方法的转速同步步骤中,利用车辆的参数计算期望转速差和转速基准值,根据期望转速差的绝对值与转速基准值的绝对值两者之间的大小关系判断转速同步步骤是否顺利执行,来代替现有技术的换挡控制方法在转速同步步骤中利用时间阈值判断转速同步步骤是否顺利执行的方案。这样,根据本申请的换挡控制方法能够避免现有技术的方案所可能引起的误中断和车辆意外加速的问题。进一步地,本申请还提供了一种采用上述换挡控制方法的换挡控制装置,其也具有同样的效果。
附图说明
图1是示出了一种具有P2架构的混合动力系统的拓扑结构示意图。
图2A是示出了现有技术的车辆动力系统的换挡控制方法的流程图。
图2B是示出了图1中的混合动力系统采用现有技术的换挡控制方法执行降挡的过程中各参数随时间变化的曲线的示意图,图中的横轴表示时间。
图2C是示出了图1中的混合动力系统采用现有技术的换挡控制方法执行降挡的过程中出现故障时各参数随时间变化的曲线的示意图,其中该故障是由于同步器与换挡前的齿轮未解除接合引起的,图中的横轴表示时间。
图3A是示出了根据本申请的一实施例的车辆动力系统的换挡控制方法的流程图。
图3B是示出了图1中的混合动力系统采用本申请的一实施例的换挡控制方法执行降挡的过程中出现故障时各参数随时间变化的曲线的示意图,其中 该故障是由于同步器与换挡前的齿轮未解除接合引起的,图中的横轴表示时间。
图4是示出了根据本申请的一实施例的换挡控制装置的结构框图。
附图标记说明
ICE发动机;EM电机;C离合器;T变速器;A同步器;G11、G12、G21、G22齿轮;
HCU动力系统控制单元;MCU电机控制单元;GCU变速器控制单元;SCU换挡控制单元;COM计算模块;JM判断模块;MU修正单元。
具体实施例
下面参照附图描述本申请的示例性实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,包括这两个部件之间直接连接或者间接连接。“始终传动联接”是指两个部件之间始终保持传动联接状态,“受控地传动联接”是指两个部件之间能够实现传动联接也能够解除传动联接。
在本申请中,“转速”可以是指转动的物体单位时间内绕着中心轴线转过的圈数,例如,其单位可以为rpm(圈/分钟);“速度”可以是指运动的物体行进的位移与时间的比值,例如,其单位可以为m/s,km/h等。
在本申请中,同步器的外齿套通过拨叉带动来进行动作。当在拨叉的驱动下外齿套与对应的挡位齿轮接合之后同步器处于接合状态,当在拨叉的驱动下外齿套与任一挡位齿轮均未接合时同步器处于中性状态。
以下将基于说明书附图说明根据本申请的一实施例的车辆动力系统的换挡控制方法。
概括而言,如图3A所示,该换挡控制方法包括第一扭矩控制步骤、解除接合步骤、转速同步步骤、接合步骤和第二扭矩控制步骤。仍然以图1的车辆的混合动力系统为对象,以变速器T执行从齿轮G11、G12构成的第一齿轮副向齿轮G21、G22构成的第二齿轮副进行降挡的过程为例并且结合图3A和图3B具体说明根据本申请的换挡控制方法。
当采用图3A所示的换挡控制方法开始换挡之后,首先执行第一扭矩控制步骤,换挡过程进入图3B所示的S1阶段。在S1阶段中,车辆动力系统控制单元HCU向车辆的电机控制单元MCU发送扭矩请求,电机控制单元MCU控制电机EM的扭矩,使得电机EM的扭矩逐渐减小并在S1阶段结束时减小到0。在S1阶段中,电机EM的实际转速和目标转速保持一致,车辆的速度略微增大。另外,当S1阶段开始时,动力系统控制单元HCU已经将同步器A的目标齿轮从齿轮G11设定为G21,但是动力系统控制单元HCU并未向变速器控制单元GCU发送信号来控制拨叉动作,因此目标拨叉位置、监测到的拨叉位置信号和实际拨叉位置均表示同步器A处于与齿轮G11接合的状态。
进一步地,在电机控制单元MCU向动力系统控制单元HCU反馈电机EM的实际扭矩为0之后,开始执行解除接合步骤,换挡过程进入图3B所示的S2阶段。在S2阶段中,电机EM的扭矩保持为0,电机EM的实际转速和目标转速保持一致,车辆的速度大致保持不变。另外,当S2阶段开始时,动力系统控制单元HCU向车辆的变速器控制单元GCU发送目标拨叉位置,变速器控制单元GCU基于目标拨叉位置控制同步器A,使得同步器A与齿轮G11解除接合。因此,当S2阶段结束时,如果各部件顺利执行上述过程,监测到的拨叉位置信号和实际拨叉位置将均表示同步器A已经处于未与任何齿轮接合的中性状态。但是为了说明本申请的换挡控制方法在执行转速同步步骤时的纠错机制,因此在图3B中示出了同步器A实际上未顺利与齿轮G11解除接合,但 是监测的拨叉位置信号错误地反映了同步器A已经与齿轮G11解除接合。
进一步地,在变速器控制单元GCU向动力系统控制单元HCU反馈同步器A处于中性状态之后,开始执行转速同步步骤,换挡过程进入图3B所示的S3阶段。在S3阶段中,动力系统控制单元HCU向车辆的电机控制单元发送转速请求,电机控制单元控制电机EM的扭矩,通过改变电机EM的扭矩能够增大电机EM的转速。在S3阶段中,电机EM的目标转速可以是利用变速器T的输出轴的转速通过第二齿轮副的传动比计算得到的,也可以是直接监测第二齿轮副中作为目标齿轮的齿轮G21的转速得到的;电机EM的实际转速小于电机EM的目标转速并且通过设置控制转速对应的曲线,使得实际转速逐渐接近目标转速。由于图3B示出了在执行换挡控制方法的过程中出现故障的情况,也就是说,虽然在S3阶段开始时变速器控制单元GCU向动力系统控制单元HCU反馈同步器A处于中性状态,但是实际拨叉位置表示同步器A实际上并未完成与齿轮G11解除接合,因此同步器A仍然处于齿轮G11接合的状态。这样,在控制电机EM的扭矩来控制电机EM进行加速之后并不能实现电机EM的实际转速与目标转速一致。
为了应对这种情况,如图3A所示,在本申请的换挡控制方法中,在开始执行转速同步步骤之后,利用电机EM的扭矩、输入轴S的拖拽扭矩以及电机EM和输入轴S两者的转动惯量计算期望转速差,并且利用车辆的速度、第一齿轮副的传动比和第二齿轮副的传动比计算转速基准值,在电机EM的实际转速与目标转速一致之前期望转速差大于转速基准值的情况下中断转速同步步骤。
具体地,设电机EM的扭矩为T M(单位例如为N·m),输入轴S的拖拽扭矩为T f(单位例如为N·m),电机EM和输入轴S两者的转动惯量为J(单位例如为kg·m 2),偏移转速为N O且该偏移转速为-100rpm至-300rpm中的任意数 值,则在转速同步步骤中从变速器T反馈同步器A转换到中性状态的信号的时刻起经过时间t(单位例如为s)之后期望转速差N(t)(单位例如为rpm)表示为:
Figure PCTCN2022118646-appb-000001
在上式中,
Figure PCTCN2022118646-appb-000002
是用于转速单位转换过程的换算系数。由于N(t)的单位是rpm(转每分),而通过对扭矩进行积分得到的结果的单位是rad/s(弧度每秒),因而需要设定上述换算系数进行换算。
设车辆的速度为v(单位例如为km/h),第一齿轮副的传动比为r 1,第二齿轮副的传动比为r 2,车轮的半径为R(单位例如为m),偏移值为f(v)且该偏移值为0.95至1.05之间的任意数值,则基准值N(th)(单位例如为rpm)表示为:
Figure PCTCN2022118646-appb-000003
其中,车辆的速度v可以为车辆在变速器T反馈同步器A转换到中性状态的信号的时刻的速度,这样基准值N(th)实际上为定值。或者车辆的速度v可以为车辆在变速器T反馈同步器A转换到中性状态的信号之后经过时间t的当前时刻的速度,这样基准值N(th)实际上为变化值。另外,第一齿轮副的传动比是整个传动系统中与第一齿轮副对应的扭矩传递路径的总传动比,第二齿轮副的传动比是整个传动系统中与第二齿轮副对应的扭矩传递路径的总传动比。
在上式中,
Figure PCTCN2022118646-appb-000004
是用于转速单位转换过程的换算系数。由于车辆的速度为v的单位为km/h且基准值N(th)的单位为rpm,因而需要设定上述换算系数进行换算。
在根据本申请的一实施例的换挡控制方法中还包括修正步骤。一旦根据上述逻辑判断中断转速同步步骤,则执行修正步骤,换挡过程进入图3B所示的S6阶段。当S6阶段开始时,动力系统控制单元HCU更换目标齿轮。在S6阶段中,使电机EM的扭矩减小到预定值(这里的预定值可选地为0),并且基于目标齿轮调整目标拨叉位置的信号。这样,能够避免车辆意外加速。
进一步地,如果转速同步步骤顺利执行完成使得电机EM的实际转速与目标转速一致之后,如图3A所示,顺次执行接合步骤和第二次扭矩控制步骤。在接合步骤中,同步器A与目标齿轮实现接合,具体可以参见图2B中的S4阶段。在第二次扭矩控制步骤中,控制电机EM的扭矩增大,具体可以参见图2B中的S5阶段,电机EM的扭矩能够经由第二齿轮副传递到车轮。这样,利用上述换挡控制方法完成从第一齿轮副向第二齿轮副的整个降挡过程。
在以上的具体实施例中对本申请的技术方案进行了详细地阐述,以下进行补充说明。
i.可以理解,利用上述期望转速差和转速基准值之间的逻辑判断,根据本申请的换挡控制方法不仅能够避免上述实施例中说明的电机EM的扭矩过大导致车辆不期望加速的问题,而且还能够避免电机EM的扭矩过小导致换挡过程误中断的问题。
ii.可以理解,在图1所示的混合动力系统在采用根据本申请的换挡控制方法进行换挡之前可以使离合器C处于分离状态,使得发动机ICE与变速器T的输入轴S解除传动联接。
iii.可以理解,能够采用根据本申请的换挡控制方法的车辆动力系统不限于图1中所示的具有P2架构的混合动力系统,还可以是其它动力系统。例如,可以是省略发动机且电机与变速器的输入轴始终传动联接的电桥驱动系统。
iv.在以上的具体实施例中说明了采用本申请的换挡控制方法执行降挡过程,可以理解,在采用本申请的换挡控制方法执行升挡过程的情况下,如 果实际转速与目标转速一致之前期望转速差的绝对值大于基准值的绝对值,则中断转速同步步骤。
v.在根据本申请的一实施例的换挡控制方法中,偏移转速是用于修正期望转速差的最终取值的参数,偏移转速的取值标准可以根据对安全性能的相关需求来决定;偏移值可以是一个经验参数,偏移值的取值标准可以根据车辆的速度来选取,车辆的速度越大则偏移值越大。在本申请的换挡控制方法的可选方案中,可以取消偏移转速和偏移值,则对应地采用如下的表达式计算期望转速差和转速基准值。
Figure PCTCN2022118646-appb-000005
Figure PCTCN2022118646-appb-000006
此外,在本申请中π的取值可以是3.14,也可以为了精确度而更精确地取值。
vi.本申请还提供了一种采用根据本申请的一实施例的换挡控制方法或者实现根据本申请的一实施例的换挡控制方法的换挡控制装置,该换挡控制装置可以包括独立于车辆的其它控制单元的转速同步单元和修正单元,也可以包括与车辆的其它控制单元整合在一起的转速同步单元和修正单元。
在转速同步单元和修正单元独立于其它控制单元的情况下,如图4所示,该换挡控制装置可以包括电性导通的动力系统控制单元HCU、变速器控制单元GCU、电机控制单元MCU、转速同步单元SCU和修正单元MU,它们之间能够进行信号通信。
变速器控制单元GCU能够监测变速器的同步器的状态且能够反馈同步器的状态。电机控制单元MCU能够监测电机的扭矩和转速且能够反馈电机的扭矩和转速,并且还能够控制电机EM的扭矩来调节电机EM的转速。动力系统控制单元HCU与变速器控制单元GCU和电机控制单元MCU电连接,动力系统控制单元HCU能够接收变速器控制单元GCU反馈的同步器的状态信号, 并且能够向变速器控制单元GCU发送信号以使同步器转换状态,动力系统控制单元HCU能够接收电机控制单元MCU反馈的电机的扭矩和转速,并且能够向电机控制单元MCU发送信号以通过控制电机的扭矩来调节电机的转速。动力系统控制单元HCU、变速器控制单元GCU、电机控制单元MCU可以采用车辆已有的对应的控制单元。
在执行本申请的换挡控制方法的过程中,转速同步单元SCU能够接收动力系统控制单元HCU发送所需的参数以计算期望转速差和转速基准值,并且在判断期望转速差的绝对值大于转速基准值的绝对值的情况下转速同步单元能够产生中断信号从而中断转速同步步骤。更具体地,转速同步单元SCU可以包括通过计算获取电机的期望转速差以及转速基准值的计算模块COM以及判断期望转速差的绝对值和转速基准值的绝对值之间的大小关系的判断模块JM。计算模块COM和判断模块JM电性导通,使得在计算模块COM和判断模块JM之间能够进行信号传输。可以理解,在计算模块COM计算期望转速差和转速基准值的过程中,可以利用如上述说明的参数和计算方法进行计算。例如,计算模块利用电机的扭矩、输入轴的拖拽扭矩以及电机和输入轴两者的转动惯量计算的结果数值作为电机的期望转速差;进一步地,计算模块COM以该结果数值与偏移转速之和作为期望转速差,偏移转速为-100rpm至-300rpm中的任意数值。另外,在换挡过程为从第一齿轮副朝向第二齿轮副换挡的过程中,计算模块COM利用车辆的速度、第一齿轮副的传动比和第二齿轮副的传动比计算的结果数值作为转速基准值;进一步地,计算模块COM以偏移值作为加权系数与该结果数值的乘积作为转速基准值,偏移值为0.95至1.05中的任意数值。相应地,在判断模块JM判断期望转速差的绝对值大于转速基准值的绝对值的情况下,判断模块JM产生使电机的实际转速逐渐接近目标转速的过程中断的中断信号。
在执行本申请的换挡控制方法的过程中,当中断信号被输送到动力系统控制单元HCU之后,动力系统控制单元HCU可以通过电机控制单元MCU控 制电机EM的扭矩,来中断速度同步步骤。之后,由修正单元MU产生中断之后电机EM所需到达的预定扭矩,进而修正单元MU控制电机EM的扭矩或者通过电机控制单元MCU控制电机EM的扭矩,以实现预定扭矩。在可选的方案中,该预定扭矩可以是0。
另外,在转速同步单元和修正单元与其它控制单元整合在一起的情况下,在一个可选的方案中,转速同步单元和修正单元所实现的功能可以整合到动力系统控制单元。

Claims (13)

  1. 一种用于车辆动力系统的换挡控制方法,所述车辆动力系统包括电机(EM)和变速器(T),所述电机(EM)与所述变速器(T)的输入轴(S)始终传动联接,所述换挡控制方法包括:
    转速同步步骤,控制所述电机(EM)的扭矩使所述电机(EM)的实际转速逐渐接近目标转速;在所述实际转速与所述目标转速一致之前,获取所述电机的期望转速差以及转速基准值,若所述期望转速差的绝对值大于所述转速基准值的绝对值,则中断所述转速同步步骤。
  2. 根据权利要求1所述的换挡控制方法,其特征在于,利用所述电机(EM)的扭矩、所述输入轴(S)的拖拽扭矩以及所述电机(EM)和所述输入轴(S)两者的转动惯量计算的结果数值作为所述电机(EM)的期望转速差。
  3. 根据权利要求2所述的换挡控制方法,其特征在于,设偏移转速为-100rpm至-300rpm中的任意数值,以所述结果数值与所述偏移转速之和作为所述期望转速差。
  4. 根据权利要求1所述的换挡控制方法,其特征在于,所述换挡过程为从第一齿轮副(G11、G12)朝向第二齿轮副(G21、G22)换挡,利用车辆的速度、所述第一齿轮副(G11、G12)的传动比和所述第二齿轮副(G21、G22)的传动比计算的结果数值作为转速基准值。
  5. 根据权利要求4所述的换挡控制方法,其特征在于,设偏移值为0.95至1.05中的任意数值,以所述偏移值作为加权系数与所述结果数值的乘积作为所述转速基准值。
  6. 根据权利要求4或5所述的换挡控制方法,其特征在于,
    所述车辆的速度为所述车辆在所述变速器(T)反馈所述同步器(A)转换到中性状态的信号的时刻的速度;或者
    所述车辆的速度为所述车辆在所述变速器(T)反馈所述同步器(A)转换到中性状态的信号之后经过预定时间的当前时刻的速度。
  7. 根据权利要求6所述的换挡控制方法,其特征在于,当所述车辆的速度为所述当前时刻的速度时,在所述变速器(T)反馈所述同步器(A)转换到中性状态的信号之后实时获取所述电机的期望转速差以及转速基准值。
  8. 根据权利要求1至7中任一项所述的换挡控制方法,其特征在于,所述换挡控制方法在中断所述转速同步步骤之后还包括修正步骤,在所述修正步骤中使所述电机(EM)的扭矩减小到预定值。
  9. 一种换挡控制装置,其特征在于,采用权利要求1至8中任一项所述的换挡控制方法。
  10. 根据权利要求9所述的换挡控制装置,其特征在于,包括转速同步单元(SCU),其能够在使所述电机(EM)的实际转速逐渐接近目标转速的过程中获取所述电机(EM)的期望转速差以及转速基准值,并判断所述期望转速差的绝对值和所述转速基准值的绝对值之间的大小关系。
  11. 根据权利要求10所述的换挡控制装置,其特征在于,所述转速同步单元(SCU)包括:
    计算模块(COM),其能够通过计算获取所述电机的期望转速差以及转速基准值;以及
    判断模块(JM),其能够判断所述期望转速差的绝对值和所述转速基准值的绝对值之间的大小关系,
    所述计算模块(COM)和所述判断模块(JM)电性导通,使得在所述计算模块(COM)和所述判断模块(JM)之间能够进行信号传输。
  12. 根据权利要求11所述的换挡控制装置,其特征在于,在所述判断模块(JM)判断所述期望转速差的绝对值大于所述转速基准值的绝对值的情况 下,所述判断模块(JM)产生使所述电机(EM)的实际转速逐渐接近目标转速的过程中断的中断信号。
  13. 根据权利要求10至12中任一项所述的换挡控制装置,其特征在于,所述换挡控制装置还包括修正单元(MU),在所述电机(EM)的实际转速逐渐接近目标转速的过程中断之后,所述修正单元(MU)能够使所述电机(EM)的扭矩减小到预定值。
PCT/CN2022/118646 2022-09-14 2022-09-14 用于车辆动力系统的换挡控制方法及换挡控制装置 WO2024055181A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118646 WO2024055181A1 (zh) 2022-09-14 2022-09-14 用于车辆动力系统的换挡控制方法及换挡控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118646 WO2024055181A1 (zh) 2022-09-14 2022-09-14 用于车辆动力系统的换挡控制方法及换挡控制装置

Publications (1)

Publication Number Publication Date
WO2024055181A1 true WO2024055181A1 (zh) 2024-03-21

Family

ID=90274084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118646 WO2024055181A1 (zh) 2022-09-14 2022-09-14 用于车辆动力系统的换挡控制方法及换挡控制装置

Country Status (1)

Country Link
WO (1) WO2024055181A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315131A (zh) * 2014-09-22 2015-01-28 中国北方车辆研究所 一种用于串联式电传动车辆的大传动比间隔换挡控制方法
CN108657162A (zh) * 2017-03-30 2018-10-16 比亚迪股份有限公司 一种换挡控制方法及系统
CN111055695A (zh) * 2020-01-19 2020-04-24 厦门金龙联合汽车工业有限公司 一种电动客车变速箱进档平顺性协调的控制方法
CN111853225A (zh) * 2020-06-04 2020-10-30 宁波上中下自动变速器有限公司 一种自动变速器同步力自学习闭环控制方法及系统和车辆
WO2021035402A1 (zh) * 2019-08-23 2021-03-04 舍弗勒技术股份两合公司 混合动力汽车的换档过程控制方法及装置
CN113339496A (zh) * 2021-06-15 2021-09-03 何亚芳 用于电动车辆的变速器的换挡控制方法
CN114919568A (zh) * 2022-04-24 2022-08-19 奇瑞汽车股份有限公司 换挡控制方法、装置和混合动力车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315131A (zh) * 2014-09-22 2015-01-28 中国北方车辆研究所 一种用于串联式电传动车辆的大传动比间隔换挡控制方法
CN108657162A (zh) * 2017-03-30 2018-10-16 比亚迪股份有限公司 一种换挡控制方法及系统
WO2021035402A1 (zh) * 2019-08-23 2021-03-04 舍弗勒技术股份两合公司 混合动力汽车的换档过程控制方法及装置
CN111055695A (zh) * 2020-01-19 2020-04-24 厦门金龙联合汽车工业有限公司 一种电动客车变速箱进档平顺性协调的控制方法
CN111853225A (zh) * 2020-06-04 2020-10-30 宁波上中下自动变速器有限公司 一种自动变速器同步力自学习闭环控制方法及系统和车辆
CN113339496A (zh) * 2021-06-15 2021-09-03 何亚芳 用于电动车辆的变速器的换挡控制方法
CN114919568A (zh) * 2022-04-24 2022-08-19 奇瑞汽车股份有限公司 换挡控制方法、装置和混合动力车辆

Similar Documents

Publication Publication Date Title
JP3293613B2 (ja) 自動車用制御装置,自動車の制御方法,変速機
WO2009081729A1 (ja) ハイブリッドシステムの制御方法
US9511763B2 (en) Drive system for hybrid vehicle
US7367917B2 (en) Shift change control system and automatic transmission system of automobile
US20070197343A1 (en) Vehicle control apparatus and method
JP2008546599A (ja) 並列ハイブリッド推進動力装置の第1動力源および第2動力源の連結および連結解除を制御するための方法
CN111623113B (zh) 双离合变速器起步过程中一挡升二挡的离合器控制方法
WO2012053508A1 (ja) ハイブリッド車両の制御装置
WO2021035402A1 (zh) 混合动力汽车的换档过程控制方法及装置
CN109237010B (zh) 纯电动车辆机械式自动变速器静态挂挡失效处理方法
KR102598558B1 (ko) 하이브리드 차량의 파워-오프 다운시프트를 위한 능동 변속 제어 방법
JP2013043503A (ja) ハイブリッド車両の制御装置
US9925871B2 (en) Control device for vehicle four-wheel drive device
US9776626B2 (en) Hybrid electric vehicle controller and method of controlling a hybrid electric vehicle
JP2013056618A (ja) ハイブリッド車両の制御装置
WO2024055181A1 (zh) 用于车辆动力系统的换挡控制方法及换挡控制装置
JP2013245590A (ja) 車両の変速制御装置
JP2014126114A (ja) 自動変速機の制御装置
SE541567C2 (en) Method and system for controlling torque transmitting means of a vehicle
EP2226524B1 (en) Control method for closing a clutch in an automatic manual transmission
CN114572188A (zh) 一种车辆起步降档协同控制方法、系统及存储介质
JP2011105022A (ja) ハイブリッド自動車の変速制御装置
CN113803459B (zh) 一种换挡续扭装置及其控制方法
CN114906120A (zh) 车辆动力系统的换挡控制方法及混合动力系统
JP5890154B2 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958375

Country of ref document: EP

Kind code of ref document: A1