WO2021035402A1 - 混合动力汽车的换档过程控制方法及装置 - Google Patents
混合动力汽车的换档过程控制方法及装置 Download PDFInfo
- Publication number
- WO2021035402A1 WO2021035402A1 PCT/CN2019/102290 CN2019102290W WO2021035402A1 WO 2021035402 A1 WO2021035402 A1 WO 2021035402A1 CN 2019102290 W CN2019102290 W CN 2019102290W WO 2021035402 A1 WO2021035402 A1 WO 2021035402A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed
- torque
- target
- drive motor
- engine
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000004886 process control Methods 0.000 title claims abstract description 10
- 230000008569 process Effects 0.000 claims description 33
- 238000010586 diagram Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000004069 differentiation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
- B60W20/17—Control strategies specially adapted for achieving a particular effect for noise reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/20—Reducing vibrations in the driveline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to the technical field of hybrid electric vehicles, and in particular to a method and device for controlling a gear shift process of a hybrid electric vehicle.
- a hybrid vehicle includes an engine, a drive motor, and a clutch (English: clutch) provided between the engine and the drive motor.
- the clutch provided between the engine and the drive motor may be referred to as a P2 clutch.
- the gear shift process of the hybrid electric vehicle includes: reducing the torque of the engine to 0Nm and disengaging the clutch; manual automatic transmission (English: Automated Manual Transmission, abbreviated as: AMT) shifts the current gear to neutral, which needs to be reduced The torque of the drive motor is small; AMT switches the neutral gear to the target gear.
- AMT Automated Manual Transmission
- the speed of the drive motor needs to be adjusted; according to the target gear, the engine speed is adjusted to the new target speed (ie, drive The speed of the motor in the target gear), and then engage the clutch.
- the last step in the aforementioned shifting process is to engage the clutch.
- the speed of the engine is inconsistent with the speed of the drive motor and the input shaft of the gearbox, which are rigidly connected to each other due to the gear shift. Therefore, the speed of the engine needs to be adjusted to be basically the same as the speed of the drive motor (ie, Synchronize the speed of the engine with the speed of the drive motor) to be able to fully engage the clutch. Otherwise, the rotation speed difference between the rotation speed of the engine and the rotation speed of the driving motor will cause the driver to feel an impact, and the driver's comfort is poor.
- method 1 and method 2 can be used to adjust the engine speed.
- FIGS 1a and 1b show schematic diagrams of the effect of using method 1 to adjust the engine speed.
- the clutch is partially engaged ( The clutch is in a slip friction state) to transmit a small clutch torque to the engine, so that the engine speed is increased or reduced to be basically the same as the driving motor speed, and then the clutch is completely engaged (corresponding to the "clutch engagement phase" in Figures 1a and 1b ).
- the clutch engagement phase the engine speed curve and the drive motor speed curve basically overlap.
- the driving motor does not perform any processing. That is, assuming that the drive motor originally has a drive torque, the drive torque of the drive motor remains unchanged.
- the above method 1 uses the clutch torque to drag the engine to adjust the speed of the engine.
- dragging the engine will apply extra force to the hybrid electric vehicle, the driver feels uncomfortable during the shift process, that is, the driver The comfort is poor.
- FIGS 2a and 2b show schematic diagrams of the effect of using method 2 to adjust the engine speed.
- an engine torque command is sent to the engine to control the engine torque based on the command, so that the engine speed is increased or decreased to the same level as the drive
- the motor speeds are basically the same, and then the clutch is fully engaged (corresponding to the "clutch engagement phase" in Figures 2a and 2b).
- the clutch engagement phase due to the clutch torque, the engine speed curve and the drive motor speed curve gradually reach a basic overlap.
- the engine torque command is positive because the engine speed needs to increase.
- the clutch engagement phase is entered.
- the curve of the engine torque command overlaps the time axis, that is, the engine torque command is 0 Nm.
- the clutch is gradually closed to fully closed, and the process ends.
- the engine torque command is negative because the engine speed needs to decrease (for example, the engine torque is the friction torque of the engine at this time).
- the engine torque is the friction torque of the engine at this time.
- the curve of the engine torque command overlaps the time axis, that is, the engine torque command is 0 Nm.
- the clutch is gradually closed to fully closed, and the process ends.
- the above method 2 controls the torque of the engine based on the engine torque command to adjust the rotation speed of the engine, however, the rotation speed adjustment of the engine is not accurate, and overshoot is prone to occur.
- the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art, and provide a method and device for controlling the shift process of a hybrid electric vehicle.
- a method for controlling a gear shift process of a hybrid vehicle includes an engine, a drive motor, and a clutch arranged between the engine and the drive motor.
- the control method is applied to a hybrid control unit HCU of a hybrid electric vehicle, and the control method includes:
- the torques of the drive motor and the clutch are respectively controlled based on the compensation torque and the target torque, so that the rotation speed of the engine tends to coincide with the rotation speed of the drive motor.
- a gear shift process control device for a hybrid electric vehicle.
- the hybrid electric vehicle includes an engine, a drive motor, and a clutch arranged between the engine and the drive motor.
- the control device includes:
- the first control module is used to control the drive motor so that the drive motor is adjusted to the target gear speed, and control the actuator to hang into the target gear;
- An acquisition module for acquiring the target speed and current speed of the engine, where the target speed is the target gear speed of the drive motor;
- a calculation module for calculating the compensation torque of the drive motor and the target torque of the clutch according to the target speed and the current speed
- the second control module is configured to respectively control the torque of the drive motor and the clutch based on the compensation torque and the target torque, so that the engine speed and the drive motor speed tend to be consistent.
- the drive motor is controlled to adjust the speed to the target gear speed and the actuator is controlled to engage the target gear to obtain the target speed of the engine and the current speed of the engine
- the compensation torque of the drive motor and the target torque of the clutch are calculated according to the target speed and the current speed, and the torque of the drive motor and the clutch are respectively controlled based on the compensation torque and the target torque so that the engine speed and the drive motor speed tend to be consistent.
- the current torque of the drive motor can be adjusted based on the compensation torque to avoid the shift frustration caused by the reaction torque brought to the drive motor when the clutch transmits the target torque to the engine for engine speed synchronization processing; and
- the torque transmitted to the engine when the clutch is partially engaged can be controlled based on the target torque, so that the engine speed and the drive motor speed tend to be consistent, so that the engine speed can be accurately and quickly adjusted during the shifting process of the hybrid electric vehicle to make the engine speed
- the rotation speed is synchronized with the target gear rotation speed of the drive motor, thereby improving the shift quality.
- the shift process control method and device of the hybrid electric vehicle according to the embodiment of the present invention can be realized by using the existing components of the hybrid electric vehicle, without adding additional components to the hybrid electric vehicle, the hybrid electric vehicle will not be increased. Cost and easy to implement.
- the method and device for controlling the shift process of a hybrid electric vehicle according to the embodiments of the present invention can also improve the robustness of the engine speed adjustment.
- Figures 1a and 1b show schematic diagrams of the effect of using method 1 to adjust the engine speed.
- 2a and 2b show schematic diagrams of the effect of using method 2 to adjust the engine speed.
- Fig. 3 is a schematic diagram showing a connection structure of an engine, a P2 module and a transmission of a hybrid electric vehicle according to an exemplary embodiment.
- Fig. 4 is a flow chart showing a method for controlling a shift process of a hybrid electric vehicle according to an exemplary embodiment.
- 5a and 5b show schematic diagrams of the effect of adjusting the speed of the engine by adopting the method for controlling the shift process of the hybrid electric vehicle of this embodiment.
- Fig. 6 is a block diagram showing a gear shift process control device of a hybrid electric vehicle according to an exemplary embodiment.
- Fig. 3 is a schematic diagram showing a connection structure of an engine, a P2 module and a transmission of a hybrid electric vehicle according to an exemplary embodiment.
- Hybrid vehicles include HEV and PHEV.
- a hybrid vehicle includes an engine 310, a P2 module 320, and an AMT330.
- the P2 module 320 includes a k0 clutch 321 and a drive motor 322.
- the P2 module 320 is located between the engine 310 and the AMT 330, and the k0 clutch 321 is located between the engine 310 and the drive motor 322.
- Fig. 4 is a flow chart showing a method for controlling a shift process of a hybrid electric vehicle according to an exemplary embodiment.
- the hybrid electric vehicle may be an HEV or a PHEV.
- the hybrid electric vehicle includes an engine, a drive motor, and a hybrid electric vehicle.
- this control method can be applied to a hybrid control unit (English: Hybrid Control Unit, HCU for short) of a hybrid electric vehicle. That is to say, the HCU can adopt the control method in this embodiment to realize the engine speed control during the shifting process of the hybrid electric vehicle.
- the control method may include the following steps.
- step S410 the driving motor is controlled so that the speed of the driving motor is adjusted to the target gear speed, and the actuator is controlled to be engaged in the target gear.
- the shifting process of a hybrid electric vehicle includes: first, the engine reduces the torque, the clutch is disengaged (opened), the drive motor reduces the torque, the actuator (shift actuator) is removed from neutral, and the drive motor is adjusted to speed Target gear speed (where the target gear speed is the speed of the drive motor in the target gear engaged), the actuator is hooked into the target gear; then, the engine speed is adjusted to the target gear speed (this time is the drive motor Current speed), the clutch is engaged.
- step S420 the target speed and the current speed of the engine are acquired, where the target speed is the target gear speed of the drive motor.
- the target gear speed is the speed of the drive motor in the target gear engaged
- the target speed of the engine is the speed to which the engine is to be adjusted.
- the engine speed needs to be adjusted to the target gear speed, and before the engine speed is adjusted, the driving motor speed has been adjusted to the target gear speed. Therefore, the driving motor speed at this time is the engine speed. Target speed.
- the HCU may obtain the current speed of the engine in the following manner: receiving the flywheel end speed of the engine, where the flywheel end speed is the current speed.
- the HCU may receive, for example, a message sent by the engine control unit, where the message may carry the flywheel end speed of the engine obtained in real time; then the HCU may obtain the flywheel end speed of the engine according to the message, and The speed of the flywheel end of the engine is regarded as the current speed of the engine.
- the HCU may obtain the target speed of the engine in the following manner: obtain the target gear speed of the drive motor.
- the HCU can obtain the target gear speed of the drive motor by at least the following methods: Method 1.
- the HCU can record the gear and drive motor according to the target gear. Find the speed corresponding to the target gear in the table of the corresponding relationship of the target gear speed, and the found speed is the target gear speed of the drive motor; mode two, the HCU can receive, for example, the message sent by the drive motor control unit, Then the HCU can obtain the target gear speed of the drive motor according to the message, where the message can carry the current speed of the drive motor (the current speed of the drive motor is the target gear speed of the drive motor).
- the HCU may obtain the target rotational speed of the engine in the following manner: obtain the input shaft rotational speed obtained by the gearbox input shaft rotational speed sensor, where the input shaft rotational speed is the target rotational speed.
- the HCU may, for example, receive the input shaft speed obtained by the transmission input shaft speed sensor sent by the transmission controller, and then the HCU may use the input shaft speed as the target engine speed.
- the HCU can also obtain the target speed of the engine in the following manner: obtain the output shaft speed obtained by the transmission output shaft speed sensor, and according to the speed ratio between the input shaft speed and the output shaft speed And the obtained output shaft rotational speed to calculate the input shaft rotational speed, where the calculated input shaft rotational speed is the target rotational speed.
- the output shaft speed obtained by the gearbox output shaft speed sensor is multiplied by the speed corresponding to the target gear.
- the speed ratio can calculate the input shaft speed of the gearbox, and the calculated input shaft speed can be used as the target speed of the engine.
- the HCU can, for example, receive the output shaft speed obtained by the gearbox output shaft speed sensor sent by the gearbox controller, and multiply the output shaft speed by the speed corresponding to the target gear.
- the ratio (the ratio of the gearbox input shaft speed to the gearbox output shaft speed) is used to calculate the gearbox input shaft speed, and the calculated input shaft speed is used as the engine's target speed.
- step S430 the compensation torque of the drive motor and the target torque of the clutch are calculated according to the target speed of the engine and the current speed of the engine.
- step S440 the torques of the drive motor and the clutch are respectively controlled based on the compensation torque and the target torque, so that the engine speed and the drive motor speed tend to be consistent.
- the torque can be transmitted to the engine through the partial engagement of the clutch, thereby pulling the engine speed up (that is, increasing the engine speed) or pulling it Down (that is, reduce the engine speed), so that the engine speed and the target gear speed of the drive motor tend to be consistent.
- the engine speed is pulled up or down by the torque transmitted when the clutch is partially engaged, so that the engine speed is close to the target speed of the engine (that is, the target gear speed of the drive motor).
- the HCU can calculate the target torque of the clutch (the torque transmitted to the engine when the clutch is partially engaged) based on the engine speed (current engine speed) and the target gear speed of the drive motor (engine target speed).
- the driving torque of the drive motor can be transmitted to the wheels of the hybrid vehicle through the gearbox.
- the clutch transfers torque to the engine to synchronize the engine speed, it will bring reaction torque to the drive motor.
- This reaction torque may be transmitted to the wheels through the gearbox and cause shift frustration. Therefore, in order to avoid this Shifting feeling of frustration also needs to control the original drive torque of the drive motor (also referred to as the current torque of the drive motor).
- the current torque of the drive motor may change, that is, the drive motor may have a compensation torque that reflects the torque change. Since the compensation torque reflects the torque change of the drive motor, the compensation torque should include the torque adjustment amount and the torque adjustment direction (for example, up or down). Therefore, the HCU can also calculate the compensation torque of the drive motor based on the engine speed and the target gear speed of the drive motor.
- the HCU can control the torque transmitted to the engine when the clutch is partially engaged based on the target torque, so as to adjust the engine speed to be consistent with the drive motor speed; and the HCU can also control the current torque of the drive motor based on the compensation torque to Avoid the shift frustration caused by the reaction torque to the drive motor in the process of the clutch transmitting the target torque to the engine for the engine speed synchronization process, so as to keep the output of the drive motor torque from the engine speed synchronization process (engine speed adjustment Treatment) interference.
- the HCU can control the torque of the drive motor and the clutch respectively based on the compensation torque and the target torque by sending commands to the drive motor and the clutch to adjust the torque of the drive motor based on the compensation torque respectively.
- a drive motor torque command a command for torque adjustment of the clutch based on the target torque
- a clutch torque command a command for torque adjustment of the clutch based on the target torque
- the HCU controls the drive motor to adjust the speed to the target gear speed and controls the actuator to engage the target gear to obtain the target speed of the engine and the current speed of the engine, according to the target Calculate the compensation torque of the drive motor and the target torque of the clutch based on the speed and the current speed, and control the torque of the drive motor and the clutch respectively based on the compensation torque and the target torque, so that the engine speed and the drive motor speed tend to be consistent.
- the current torque of the drive motor is adjusted based on the compensation torque to avoid the shift frustration caused by the reaction torque to the drive motor during the process of the clutch transmitting the target torque to the engine for engine speed synchronization processing, so as to maintain the drive motor
- the torque output is not interfered by the engine speed synchronization process; the torque transmitted to the engine when the clutch is partially engaged can be controlled based on the target torque, so that the engine speed and the driving motor speed tend to be consistent, so that the hybrid vehicle can be used in the shift process.
- the shift process control method of the hybrid electric vehicle of the present embodiment can be realized by using the existing components of the hybrid electric vehicle without adding additional components to the hybrid electric vehicle, it does not increase the cost of the hybrid electric vehicle, and Easy to implement.
- the shift process control method of the hybrid electric vehicle of this embodiment can also improve the robustness of the engine speed adjustment.
- 5a and 5b show schematic diagrams of the effect of adjusting the speed of the engine by adopting the method for controlling the shift process of the hybrid electric vehicle of this embodiment.
- the following takes the upshift shown in FIG. 5a as an example for description.
- the clutch is partially engaged (the clutch is in a slipping state) to transmit the target torque to the engine, so that the engine speed is increased to the target gear speed of the drive motor (corresponding to the target gear speed in Figure 5a).
- the "drive motor speed") is basically the same (that is, the torque transmitted from the clutch to the engine is controlled based on the target torque, so that the engine speed and the drive motor speed tend to be consistent), and the current torque of the drive motor is controlled by the compensation torque of the drive motor , In order to avoid the shift frustration caused by the reaction torque brought to the drive motor in the process of the clutch transmitting the target torque to the engine for the process of synchronizing the engine speed.
- the compensation torque of the drive motor and the target torque transmitted by the clutch (corresponding to the drive motor torque command and the clutch torque command in Fig. 5a) have overlapping curves, and both of them have experienced a small The process of getting bigger and getting smaller again.
- the engine speed is basically the same as the target gear speed of the drive motor, and the engine speed synchronization process has been completed.
- the engine speed adjustment phase ends ,
- the clutch torque gradually increases to the clutch engagement torque according to a certain gradient, and the shift process ends.
- the power distribution of the drive motor and the engine can be adjusted according to the existing mode.
- the clutch engagement phase the engine speed curve and the driving motor speed curve basically overlap, and the driving motor torque command curve overlaps the time axis, that is, the compensation torque is 0 Nm.
- Figure 5b is similar to Figure 5a and will not be repeated here. For details, please refer to the previous description of Figure 5a.
- the foregoing step S430 may include:
- the target torque of the clutch is calculated.
- the HCU can calculate the speed difference between the target speed and the current speed by subtracting the target speed of the engine and the current speed of the engine; the compensation torque of the drive motor is calculated according to the speed difference, and the compensation torque is calculated according to the speed difference. Torque is used to calculate the target torque of the clutch.
- calculating the compensation torque of the drive motor according to the rotational speed difference includes:
- T Feedback is the compensation torque of the drive motor
- n diff is the speed difference
- t is the integral and derivative period of the speed difference
- K p is the proportional coefficient
- K i is the integral coefficient
- K d is the differential coefficient .
- the specific values of K p , K i and K d can be set according to the specific needs of the designer.
- the HCU uses the set K p , K i and K d , and the calculated speed difference n diff and the above formula are used to calculate the compensation torque T Feedback of the drive motor.
- the HCU can quickly reduce the speed difference by K p being proportional to the speed difference n diff. However, considering that if K p is proportional to the speed difference n diff to reduce the speed difference, there may be a steady-state error. Therefore, it may be necessary to further consider the integration and differentiation of the speed difference to eliminate the steady-state error. .
- the HCU can further use K i to be proportional to the integral of the speed difference n diff , and K d and the speed difference n diff Micro-dividing is proportional to eliminate steady-state errors.
- the integral of the speed difference n diff is mainly the choice of the integration period (it can be understood as integrating once in several cycles), and the derivative of the speed difference n diff is also mainly The choice of the differentiation period (can be understood as a differentiation of several periods).
- the compensation torque includes a torque adjustment amount and a torque adjustment direction, and the target torque is the same as the torque adjustment amount.
- the HCU may determine the torque adjustment direction of the compensation torque in the following manner: determine the torque adjustment direction according to the current speed of the engine and the target speed. If the current rotation speed is higher than the target rotation speed, it is determined that the torque adjustment direction is downward adjustment; if the current rotation speed of the engine is lower than the target rotation speed, it is determined that the torque adjustment direction is upward adjustment.
- the compensation torque of the driving motor is positive (wherein, the compensation torque is positive, indicating that the current torque of the driving motor is increased)
- the compensation torque of the drive motor is a negative value (where the compensation torque is negative means the current torque of the drive motor is reduced) to make the engine The speed drops.
- the adjustment direction (ie, up-regulation or down-regulation) of the compensation torque of the drive motor is determined according to whether the current rotation speed of the engine exceeds or falls below the target rotation speed of the engine. Exemplarily, as shown in FIG. 5a, when upshifting, the compensation torque of the driving motor is a positive value, and as shown in FIG. 5b, when downshifting, the compensation torque of the driving motor is a negative value.
- the HCU since the clutch is partially engaged to transmit torque to the engine during the engine speed adjustment phase, the torque transmitted by the clutch is a positive torque. Therefore, when the torque adjustment direction of the compensation torque of the drive motor is adjusted upwards, the HCU can directly adjust the torque.
- the compensation torque is used as the target torque of the clutch.
- the HCU needs to use the torque adjustment amount of the compensation torque as the target torque of the clutch.
- FIG. 5a when upshifting, the target torque of the clutch is the compensation torque of the drive motor.
- the target torque of the clutch is the torque adjustment amount of the drive motor.
- the torques of the drive motor and the clutch are respectively controlled based on the compensation torque and the target torque, and the foregoing control method may further include:
- the engine speed needs to be adjusted multiple times until the speed difference is sufficiently small.
- the HCU can obtain the current engine speed in real time. Therefore, the HCU can also obtain the current engine speed after adjusting the engine speed, and calculate the target gear speed of the drive motor and re The obtained speed difference between the current engine speeds. The HCU can determine whether the speed difference between the engine speed and the target gear speed of the drive motor is sufficiently small by judging whether the speed difference is greater than the threshold.
- the rotation speed difference is greater than the threshold, it means that the rotation speed difference between the engine rotation speed and the target gear rotation speed of the drive motor is not small enough, and the engine rotation speed needs to be adjusted again until the rotation speed difference is small enough, so it is necessary to return to step S430 and S440 . Conversely, if the speed difference is less than or equal to the threshold, it means that the speed difference between the engine speed and the target gear speed of the drive motor is small enough, the engine speed adjustment is completed, and then the clutch can be completely engaged according to a certain gradient.
- the engine speed is adjusted multiple times until the difference between the engine speed and the target gear speed of the drive motor is sufficiently small, so the engine can be adjusted more accurately ⁇ rpm ⁇
- Fig. 6 is a block diagram showing a gear shift process control device of a hybrid electric vehicle according to an exemplary embodiment.
- the hybrid electric vehicle may be an HEV or PHEV.
- the hybrid electric vehicle includes an engine, a drive motor, and The clutch between the engine and the drive motor.
- the control device 600 can be applied to a hybrid control unit HCU of a hybrid vehicle. As shown in FIG. 6, the control device 600 may include a first control module 610, an acquisition module 620, a calculation module 630, and a second control module 640.
- the first control module 610 is used to control the drive motor so that the drive motor is adjusted to the target gear speed, and control the actuator to engage the target gear.
- the acquisition module 620 is connected to the first control module 610, and is used to acquire the target speed and the current speed of the engine, where the target speed may be a target gear speed of the drive motor.
- the calculation module 630 is connected to the acquisition module 620, and is used to calculate the compensation torque of the drive motor and the target torque of the clutch according to the target speed of the engine and the current speed of the engine.
- the second control module 640 is connected to the calculation module 630, and is used to control the torque of the drive motor and the clutch based on the compensation torque and the target torque, so that the engine speed and the drive motor speed tend to Unanimous.
- the acquiring module 620 re-acquires the current speed of the engine
- the control device 600 further includes a judgment module (not shown) for judging whether the speed difference between the target speed of the drive motor and the re-acquired current speed of the engine is greater than a threshold,
- the calculation module 630 recalculates the compensation torque of the driving motor and the target torque of the clutch, and the second control module 640 recalculates based on the calculation module
- the recalculated compensation torque and target torque in 630 respectively control the torque of the drive motor and the clutch, so that the engine speed and the drive motor speed tend to be consistent.
- the calculation module 630 is configured to:
- the target torque of the clutch is calculated.
- the compensation torque includes a torque adjustment amount and a torque adjustment direction, and the target torque is the same as the torque adjustment amount.
- the calculation module 630 is configured to:
- the calculation module 630 is configured to:
- T Feedback is the compensation torque of the drive motor
- n diff is the speed difference
- t is the integral and derivative period of the speed difference
- K p is the proportional coefficient
- K i is the integral coefficient
- K d is the differential coefficient .
- the obtaining module 620 is configured to:
- the acquiring module 620 is also configured to:
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种混合动力汽车的换档过程控制方法及装置,该混合动力汽车包括发动机(310)、驱动电机(322)、以及设置在所述发动机(310)和所述驱动电机(322)之间的离合器(321),该方法包括:控制驱动电机(322)以使驱动电机(322)被调速至目标挡位转速,控制执行器挂入目标挡位(步骤S410);获取发动机(310)的目标转速和当前转速,其中,该目标转速为驱动电机(322)的目标挡位转速(步骤S420);根据该目标转速和该当前转速,计算驱动电机(322)的补偿扭矩和离合器(321)的目标扭矩(步骤S430);基于该补偿扭矩和该目标扭矩分别对所述驱动电机(322)和所述离合器(321)的扭矩进行控制,使所述发动机(310)转速与所述驱动电机(322)转速趋向一致(步骤S440)。由此,在混合动力汽车的换挡过程中能够精确且快速地调整发动机的转速。
Description
本发明涉及混合动力汽车技术领域,且特别地涉及一种混合动力汽车的换档过程控制方法及装置。
相关技术中,混合动力汽车包括发动机、驱动电机、以及设置在发动机和驱动电机之间的离合器(英文:clutch),可将设置于发动机和驱动电机之间的离合器称为P2离合器。该混合动力汽车的换挡过程包括:将发动机的扭矩减小至0Nm并且将离合器分离;手自动一体变速器(英文:Automated Manual Transmission,简称:AMT)将当前挡位切换至空挡,其中,需要减小驱动电机的扭矩;AMT将空挡切换至目标挡位,其中,在切换至目标挡位之前,需要调整驱动电机的转速;根据目标挡位将发动机的转速调整至新的目标转速(即,驱动电机在目标挡位的转速),然后将离合器接合。
因此,上述换挡过程的最后一步是将离合器接合。但是,由于换挡导致在离合器接合前,发动机的转速与彼此刚性连接的驱动电机和变速箱的输入轴的转速不一致,因此,需要将发动机的转速调整为与驱动电机的转速基本一致(即,使发动机的转速与驱动电机的转速同步)才能够完全接合离合器。否则,发动机的转速和驱动电机的转速之间的转速差会导致驾驶人员感觉到冲击感,驾驶人员的舒适感差。
由此,在混合动力汽车的换挡过程中,需要调整发动机的转速。通常,可使用方法1和方法2(稍后将分别描述方法1和2)来调整发动机的转速。
图1a和1b示出采用方法1来调整发动机的转速的效果示意图。如图1a和1b所示,针对升挡(即,从低挡位切换至高挡位)或降挡(即,从高挡位切换至低挡位),在发动机转速调整阶段,离合器部分接合(离合器处于滑摩状态)以向发动机传递小的离合器扭矩,从而使发动机转速增大或减小至与驱动电机转速基本一致,然后离合器完全接合(对应于图1a和1b中的“离合器接合阶段”)。在离合器接合阶段,发动机转速曲线与驱动电机转速曲线基本重叠。本领域技术人员应能够理解,在采用方法1调整发动机的转速的过程中,驱动电机不作处理。即,假设驱动电机原来有驱动扭矩,则驱动电机的驱动扭矩维持不变。
其中,如图1a和1b所示,针对升挡或降挡,在发动机转速调整阶段和离合器接合阶段,发动机扭矩命令的曲线均与时间轴重叠,即,发动机扭矩命令为0Nm。
因此,上述方法1通过离合器扭矩来拖动发动机从而调整发动机的转速,然而,由于拖动发动机会给混合动力汽车施加额外的力,因此在换挡过程中驾驶人员感觉到不舒服、即驾驶人员的舒适感差。
图2a和2b示出采用方法2来调整发动机的转速的效果示意图。如图2a和2b所示,针对升挡或降挡,在发动机转速调整阶段,向发动机发送发动机扭矩命令,以基于该命令来控制发动机的扭矩,从而使发动机转速增大或减小至与驱动电机转速基本一致,然后离合器完全接合(对应于图2a和2b中的“离合器接合阶段”)。在离合器接合阶段,由于离合器扭矩作用,发动机转速曲线与驱动电机转速曲线逐渐达到基本重叠。
其中,如图2a所示,在发动机转速调整阶段,由于发动机转速需要上升,因此发动机扭矩命令为正值,当发动机转速上升到驱动电机转速附近时,进入离合器接合阶段。在离合器接合阶段,发动机扭矩命令的曲线与时间轴重叠,即,发动机扭矩命令为0Nm。离合器逐渐闭合到完全闭合,该过程结束。
如图2b所示,在发动机转速调整阶段,由于发动机转速需要下降,因此发动机扭矩命令为负值(例如,发动机扭矩为此时发动机的摩擦扭矩),当发动机转速下降到驱动电机转速附近时,进入离合器接合阶段。在离合器接合阶段,发动机扭矩命令的曲线与时间轴重叠,即,发动机扭矩命令为0Nm。离合器逐渐闭合到完全闭合,该过程结束。
因此,上述方法2基于发动机扭矩命令来控制发动机的扭矩以调整发动机的转速,然而,发动机的转速调整不精确,并且容易发生超调。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种混合动力汽车的换档过程控制方法及装置。
根据本发明的一方面,提供了一种混合动力汽车的换档过程控制方法,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,所述控制方法应用于混合动力汽车的混合动力控制单元HCU,所述控制方法包括:
控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位;
获取所述发动机的目标转速和当前转速,其中,所述目标转速为所述驱动电机的目标挡位转速;
根据所述目标转速和所述当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩;以及
基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发 动机转速与所述驱动电机转速趋向一致。
根据本发明的另一方面,提供了一种混合动力汽车的换档过程控制装置,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,应用于混合动力汽车的混合动力控制单元HCU,所述控制装置包括:
第一控制模块,用于控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位;
获取模块,用于获取所述发动机的目标转速和当前转速,其中,所述目标转速为所述驱动电机的目标挡位转速;
计算模块,用于根据所述目标转速和所述当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩;以及
第二控制模块,用于基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
根据本发明实施例的混合动力汽车的换档过程控制方法及装置,控制驱动电机以调速至目标挡位转速并控制执行器挂入目标挡位,获取发动机的目标转速和发动机的当前转速,根据该目标转速和当前转速计算驱动电机的补偿扭矩和离合器的目标扭矩,并基于该补偿扭矩和该目标扭矩分别对驱动电机和离合器的扭矩进行控制以使发动机转速与驱动电机转速趋向一致,由此,可基于补偿扭矩对驱动电机的当前扭矩进行调整,以避免在离合器向发动机传递目标扭矩以进行发动机转速同步处理的过程中给驱动电机带来的反作用扭矩所引起的换档顿挫感;并可基于目标扭矩控制离合器部分接合时传递到发动机的扭矩,以使发动机转速与驱动电机转速趋向一致,从而在混合动力汽车的换挡过程中能够精确且快速地调整发动机的转速,以使发动机的转速与驱动电机的目标挡位转速同步,进而能够改善换挡品质。
此外,由于本发明实施例的混合动力汽车的换档过程控制方法及装置利用混合动力汽车的现有组件就能够实现,而无需向混合动力汽车添加额外的组件,因此不会增加混合动力汽车的成本,并且易于实现。另外,根据本发明实施例的混合动力汽车的换档过程控制方法及装置还能够提高发动机的转速调整的鲁棒性。
图1a和1b示出采用方法1来调整发动机的转速的效果示意图。
图2a和2b示出采用方法2来调整发动机的转速的效果示意图。
图3是根据一示例性实施例示出的一种混合动力汽车的发动机、P2模块和变速器的连接结构的示意图。
图4是根据一示例性实施例示出的一种混合动力汽车的换档过程控制方法的流程图。
图5a和5b示出采用本实施例的混合动力汽车的换档过程控制方法来调整发动机的转速的效果示意图。
图6是根据一示例性实施例示出的一种混合动力汽车的换档过程控制装置的框图。
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
图3是根据一示例性实施例示出的一种混合动力汽车的发动机、P2模块和变速器的连接结构的示意图。混合动力汽车包括HEV和PHEV。如图3所示,混合动力汽车包括发动机310、P2模块320和AMT330。其中,P2模块320包括k0离合器321和驱动电机322,P2模块320位于发动机310和AMT 330之间,并且k0离合器321位于发动机310和驱动电机322之间。
图4是根据一示例性实施例示出的一种混合动力汽车的换档过程控制方法的流程图,该混合动力汽车可为HEV或PHEV,该混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,该控制方法可以应用于混合动力汽车的混合动力控制单元(英文:Hybrid Control Unit,简称:HCU)。也就是说,HCU可采用本实施方式中的控制方法来实现混合动力汽车换挡过程中发动机的转速控制。如图4所示,该控制方法可以包括如下步骤。
在步骤S410中,控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位。
本领域技术人员应能够了解,混合动力汽车的换挡过程包括:首先,发动机降低扭矩,离合器分离(打开),驱动电机降低扭矩,执行器(换挡执行器)摘空挡,驱动电机调速至目标挡位转速(其中, 目标挡位转速是驱动电机在所挂入的目标挡位的转速),执行器挂入目标挡位;然后,发动机调速至目标挡位转速(此时就是驱动电机的当前转速),离合器接合。
因此,在对发动机的转速进行调整之前,驱动电机的转速已被调整至目标挡位转速,并且执行器已挂入目标挡位(即,已经完成了挡位的切换)。也就是说,在执行器已挂入目标挡位之后,才执行下述步骤S420、步骤S430和步骤S440。
在步骤S420中,获取所述发动机的目标转速和当前转速,其中,所述目标转速为所述驱动电机的目标挡位转速。
本实施例中,目标挡位转速是驱动电机在所挂入的目标挡位的转速,发动机的目标转速是发动机要被调整至的转速。如上所述的,发动机的转速需要被调整至目标挡位转速,并且在对发动机的转速进行调整之前,驱动电机的转速已被调整至目标挡位转速,因此此时驱动电机的转速就是发动机的目标转速。
在一种可能的实现方式中,HCU可通过如下方式来获取发动机的当前转速:接收所述发动机的飞轮端转速,其中所述飞轮端转速为所述当前转速。
本实施例中,HCU可接收例如发动机控制单元所发送的报文,其中,该报文可携带实时获取的发动机的飞轮端转速;然后HCU可根据该报文来获取发动机的飞轮端转速,并将发动机的飞轮端转速作为发动机的当前转速。
在一种可能的实现方式中,HCU可通过如下方式来获取发动机的目标转速:获取所述驱动电机的目标挡位转速。
本实施例中,在执行器挂入目标挡位之后,HCU可至少通过如下方式来获取驱动电机的目标挡位转速:方式一、HCU可根据目标挡位在用于记录挡位和驱动电机的目标挡位转速的对应关系的表中查找与目标挡位相对应的转速,所查找到的转速为驱动电机的目标挡位转速;方式二、HCU可接收例如驱动电机控制单元所发送的报文,然后HCU可根据该报文来获取驱动电机的目标挡位转速,其中,该报文可携带驱动电机的当前转速(驱动电机的当前转速就是驱动电机的目标挡位转速)。
在一种可能的实现方式中,HCU可通过如下方式来获取发动机的目标转速:获取变速箱输入轴转速传感器所获得的输入轴转速,其中所述输入轴转速为所述目标转速。
本实施例中,在执行器挂入目标挡位之后,假设混合动力汽车设置有变速箱输入轴转速传感器,则变速箱输入轴转速传感器所获得的输入轴转速可以作为发动机的目标转速。因此,在执行器挂入目标挡位之后,HCU例如可接收变速箱控制器所发送的变速箱输入轴转速传感器所获得的输入轴转速,然后HCU可将该输入轴转速作为发动机的目标转速。
在一种可能的实现方式中,HCU还可通过如下方式来获取发动机的目标转速:获取变速箱输出轴转速传感器所获得的输出轴转速,并且根据输入轴转速与输出轴转速之间的速比和所获取的输出轴转速来计算输入轴转速,其中所计算的输入轴转速为所述目标转速。
本实施例中,在执行器挂入目标挡位之后,假设混合动力汽车设置有变速箱输出轴转速传感器,则通过将变速箱输出轴转速传感器所获得的输出轴转速乘以目标挡位对应的速比可以计算出变速箱的输入轴转速,所计算的输入轴转速可以作为发动机的目标转速。
因此,在执行器挂入目标挡位之后,HCU例如可接收变速箱控制器所发送的变速箱输出轴转速传感器所获得的输出轴转速,通过将该输出轴转速乘以目标挡位对应的速比(变速箱输入轴转速与变速箱输出轴转速的比值)来计算变速箱的输入轴转速,并且将所计算的输入轴转速作为发动机的目标转速。
应能够理解,上述获取发动机的目标转速和发动机的当前转速的方式仅为示例,本实施例不限于此,本领域技术人员应可采用其它相关技术来获取发动机的目标转速和发动机的当前转速。
在步骤S430中,根据所述发动机的目标转速和所述发动机的当前转速,计算所述驱动电机的补偿扭矩和离合器的目标扭矩。
在步骤S440中,基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
本实施例中,由于在执行器挂入目标挡位之后,离合器部分接合,因此可通过离合器部分接合来向发动机传递扭矩,从而将发动机的转速拉上去(即,增大发动机的转速)或拉下来(即,减小发动机的转速),以使得发动机的转速与驱动电机的目标挡位转速趋向一致。换言之,通过离合器部分接合时所传递的扭矩将发动机的转速拉高或拉低来使得发动机的转速接近发动机的目标转速(即,驱动电机的目标挡位转速)。
因此,HCU可根据发动机的转速(发动机的当前转速)与驱动电机的目标挡位转速(发动机的目标转速),计算离合器的目标扭矩(离合器部分接合时向发动机所传递的扭矩)。
在执行器挂入目标挡位之后,驱动电机的驱动扭矩可以通过变速箱传递到混合动力汽车的车轮。然而,由于在离合器向发动机传递扭矩以进行发动机转速同步处理的过程中会给驱动电机带来反作用扭矩,该反作用扭矩可能会通过变速箱传递到车轮而引起换档顿挫感,因此,为避免该换档顿挫感,还需要控制驱动电机的原驱动扭矩(也可称为驱动电机的当前扭矩)。也就是说,驱动电机的当前扭矩可能发生改变,亦即,驱动电机可能存在反映扭矩变化的补偿扭矩。由于补偿扭矩反映驱动电机的扭矩变化,因此补偿扭矩应包括扭矩调整量以及扭矩调整方向(例如,上调或下调)。因此HCU也可根据 发动机的转速与驱动电机的目标挡位转速,计算驱动电机的补偿扭矩。
由此,HCU可基于目标扭矩来控制离合器部分接合时向发动机传递的扭矩,以将发动机的转速调整至与驱动电机转速趋向一致;并且HCU还可基于补偿扭矩来控制驱动电机的当前扭矩,以避免在离合器向发动机传递目标扭矩以进行发动机转速同步处理的过程中给驱动电机带来的反作用扭矩所引起的换档顿挫感,从而保持驱动电机扭矩的输出不受发动机转速同步处理(发动机转速调整处理)的干扰。
本领域技术人员应能够理解,HCU基于补偿扭矩来控制驱动电机的扭矩的处理与HCU基于目标扭矩来控制离合器的扭矩的处理没有优先级之分,这两个处理的执行没有先后顺序之分。
在一种可能的实现方式中,HCU可通过如下方式来基于补偿扭矩和目标扭矩分别对驱动电机和离合器的扭矩进行控制:向驱动电机和离合器分别发送基于补偿扭矩进行驱动电机的扭矩调整的命令(可称为“驱动电机扭矩命令”)和基于目标扭矩进行离合器的扭矩调整的命令(可称为“离合器扭矩命令”)。
本实施例的混合动力汽车的换档过程控制方法,HCU控制驱动电机以调速至目标挡位转速并控制执行器挂入目标挡位,获取发动机的目标转速和发动机的当前转速,根据该目标转速和当前转速计算驱动电机的补偿扭矩和离合器的目标扭矩,并基于该补偿扭矩和该目标扭矩分别对驱动电机和离合器的扭矩进行控制,使发动机转速与驱动电机转速趋向一致,由此,可基于补偿扭矩对驱动电机的当前扭矩进行调整,以避免在离合器向发动机传递目标扭矩以进行发动机转速同步处理的过程中给驱动电机带来的反作用扭矩所引起的换档顿挫感,从而保持驱动电机扭矩的输出不受发动机转速同步处理的干扰;并可基于目标扭矩控制离合器部分接合时传递到发动机的扭矩,以使发动机转速与驱动电机转速趋向一致,从而在混合动力汽车的换挡过程中能够精确且快速地调整发动机的转速,以使发动机的转速与驱动电机的目标挡位转速同步,进而能够改善换挡品质。
此外,由于本实施例的混合动力汽车的换档过程控制方法利用混合动力汽车的现有组件就能够实现,而无需向混合动力汽车添加额外的组件,因此不会增加混合动力汽车的成本,并且易于实现。另外,本实施例的混合动力汽车的换档过程控制方法还能够提高发动机的转速调整的鲁棒性。
图5a和5b示出采用本实施例的混合动力汽车的换档过程控制方法来调整发动机的转速的效果示意图。为便于说明,以下以图5a所示的升挡为例进行说明。
如图5a所示,在发动机转速调整阶段,离合器部分接合(离合器处于滑摩状态)以向发动机传递目标扭矩,从而使发动机转速增大至与驱动电机的目标挡位转速(对应于图5a中的“驱动电机转速”)基本一致(即,基于目标扭矩控制离合器传递到发动机的扭矩,使发动机转速与驱动电机转速趋向一 致),并且通过驱动电机的补偿扭矩来对驱动电机的当前扭矩进行控制,以避免在离合器向发动机传递目标扭矩以进行发动机转速同步处理的过程中给驱动电机带来的反作用扭矩所引起的换档顿挫感。其中,在发动机转速调整阶段,驱动电机的补偿扭矩和离合器所传递的目标扭矩这两者(对应于图5a中的驱动电机扭矩命令和离合器扭矩命令)的曲线重叠,并且这两者均经历从小变大、再从大变小的过程。
在发动机的转速与驱动电机的目标挡位转速之间的转速差小于阈值时,发动机的转速与驱动电机的目标挡位转速基本一致,发动机转速同步处理已完成,此时,发动机转速调整阶段结束,离合器扭矩按照一定梯度逐渐增加到离合器接合扭矩,换挡过程结束。此后,可根据现有模式来调整驱动电机和发动机的动力分配。在离合器接合阶段,发动机转速曲线与驱动电机转速曲线基本重叠,并且驱动电机扭矩命令的曲线与时间轴重叠,即,补偿扭矩为0Nm。
图5b与图5a类似,在此不再赘述,具体可参见前文关于图5a的描述。
通过比较图1a和1b、图2a和2b、以及图5a和5b可知,相比于采用现有技术中的方法1和2来调整发动机的转速,采用本实施例的控制方法能够精确且快速地调整发动机的转速,并且还能够提高转速调整的鲁棒性。
在一种可能的实施方式中,上述步骤S430可以包括:
计算所述发动机的目标转速和所述发动机的当前转速之间的转速差;
根据所述转速差计算所述驱动电机的补偿扭矩;
根据所述驱动电机的补偿扭矩,计算所述离合器的目标扭矩。
本实施例中,HCU可通过将发动机的目标转速和发动机的当前转速相减,来计算目标转速和当前转速之间的转速差;根据该转速差来计算驱动电机的补偿扭矩,并根据该补偿扭矩来计算离合器的目标扭矩。
在一种可能的实施方式中,根据转速差计算驱动电机的补偿扭矩,包括:
根据转速差,使用如下公式来计算驱动电机的补偿扭矩:
其中,T
Feedback为所述驱动电机的补偿扭矩,n
diff为所述转速差,t为所述转速差的积分和微分周期,K
p为比例系数,K
i为积分系数,K
d为微分系数。
在本实施方式中,K
p、K
i和K
d的具体数值可以根据设计人员的具体需要来设定,HCU利用所设定的K
p、K
i和K
d、所计算出的转速差n
diff以及上述公式来计算出驱动电机的补偿扭矩T
Feedback。
HCU可通过K
p与转速差n
diff成正比来快速减小转速差。然而,考虑到如果仅通过K
p与转速差n
diff成正比来减小转速差,则可能存在稳态误差,因此可能需要在此基础上进一步考虑转速差的积分和微分,以消除稳态误差。
也就是说,HCU在通过K
p与转速差n
diff成正比来减小转速差的基础上,HCU可进一步通过K
i与转速差n
diff的积分成正比、以及K
d与转速差n
diff的微分成正比来消除稳态误差。
另外,由于积分和微分均是作用在时间轴上的,因此转速差n
diff的积分主要是对积分周期的选择(可以理解成几个周期积分一次),并且转速差n
diff的微分也主要是对微分周期的选择(可以理解成几个周期微分一次)。
在一种可能的实施方式中,所述补偿扭矩包括扭矩调整量和扭矩调整方向,所述目标扭矩与所述扭矩调整量相同。
在一种可能的实施方式中,HCU可以通过如下方式来确定补偿扭矩的扭矩调整方向:根据所述发动机的当前转速和所述目标转速,确定所述扭矩调整方向,其中,若所述发动机的当前转速高于所述目标转速,则确定为所述扭矩调整方向为下调;若所述发动机的当前转速低于所述目标转速,则确定为所述扭矩调整方向为上调。
本实施例中,若驱动电机的目标挡位转速(发动机的目标转速)高于发动机的当前转速,则驱动电机的补偿扭矩为正值(其中,补偿扭矩为正表示驱动电机的当前扭矩上调),以使发动机转速上升;若驱动电机的目标挡位转速低于发动机的当前转速,则驱动电机的补偿扭矩为负值(其中,补偿扭矩为负表示驱动电机的当前扭矩下调),以使发动机转速下降。换言之,驱动电机的补偿扭矩的调整方向(即,上调或下调)是根据发动机的当前转速是超过还是低于发动机的目标转速所确定的。示例性的,如图5a所示,在升挡时,驱动电机的补偿扭矩为正值,如图5b所示,在降挡时,驱动电机的补偿扭矩为负值。
然而,由于在发动机转速调整阶段,离合器部分接合以向发动机传递扭矩,因此离合器传递的扭矩为正扭矩,因此,在驱动电机的补偿扭矩的扭矩调整方向是上调的情况下,HCU可直接将该补偿扭矩作为离合器的目标扭矩。与之相比地,在驱动电机的补偿扭矩的扭矩调整方向是下调的情况下,HCU需要将该补偿扭矩的扭矩调整量作为离合器的目标扭矩。示例性的,如图5a所示,在升挡时,离合器的目标扭矩为驱动电机的补偿扭矩,如图5b所示,在降挡时,离合器的目标扭矩为驱动电机的扭矩调整量。
在一种可能的实施方式中,基于所述补偿扭矩和所述目标扭矩分别对驱动电机和所述离合器的扭矩进行控制,上述控制方法还可以包括:
重新获取所述发动机的当前转速;
判断所述驱动电机的目标挡位转速和重新获取的所述发动机的当前转速之间的转速差是否大于阈值;
若判断为所述转速差大于所述阈值,则返回所述驱动电机的补偿扭矩和所述离合器的目标扭矩的计算步骤(即,上述步骤S430)。
本实施例中,考虑到在混合动力汽车的换档过程中若仅对发动机的转速进行一次调整可能难以使发动机的转速与驱动电机的目标挡位转速同步(即,使发动机转速与驱动电机转速趋向一致),即,发动机的转速和驱动电机的目标挡位转速之间的转速差不足够小,因此,本实施例需要对发动机的转速进行多次调整直至该转速差足够小为止。
在混合动力汽车的换档过程中,HCU可实时获取发动机的当前转速,因此,HCU还可在调整了发动机的转速之后再重新获取发动机的当前转速,并且计算驱动电机的目标挡位转速和重新获取的发动机的当前转速之间的转速差。HCU可通过判断该转速差是否大于阈值,来判断发动机的转速与驱动电机的目标挡位转速之间的转速差是否足够小。
如果该转速差大于阈值,则表示发动机的转速与驱动电机的目标挡位转速之间的转速差不足够小,需要再次调整发动机的转速直至转速差足够小为止,因而需要返回执行步骤S430和S440。反之,如果该转速差小于或等于阈值,则表示发动机的转速与驱动电机的目标挡位转速之间的转速差足够小,发动机的转速调整完成,然后可按一定梯度完全接合离合器。
本实施例的混合动力汽车的换档过程控制方法,由于对发动机转速进行多次调整直至发动机的转速与驱动电机的目标挡位转速之间的转速差足够小为止,因此可以更精确地调整发动机的转速。
图6是根据一示例性实施例示出的一种混合动力汽车的换档过程控制装置的框图,该混合动力汽车可为HEV或PHEV,该混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器。该控制装置600可以应用于混合动力汽车的混合动力控制单元HCU。如图6所示,该控制装置600可以包括第一控制模块610、获取模块620、计算模块630和第二控制模块640。
第一控制模块610用于控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位。获取模块620与第一控制模块610连接,用于获取所述发动机的目标转速和当前转速,其中所述目标转速可以为所述驱动电机的目标挡位转速。计算模块630与获取模块620连接,用于根据所述发动机的目标转速和所述发动机的当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩。第二控制模块640与计算模块630连接,用于基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
在一种可能的实现方式中,所述获取模块620重新获取所述发动机的当前转速,
所述控制装置600还包括判断模块(未示出),所述判断模块用于判断所述驱动电机的目标转速和重新获取的所述发动机的当前转速之间的转速差是否大于阈值,
若所述判断模块判断为所述转速差大于阈值,则所述计算模块630重新计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩,所述第二控制模块640重新基于所述计算模块630重新计算的补偿扭矩和目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
在一种可能的实现方式中,所述计算模块630被配置为:
计算所述发动机的目标转速和所述发动机的当前转速之间的转速差;
根据所述转速差计算所述驱动电机的补偿扭矩;
根据所述驱动电机的补偿扭矩,计算所述离合器的目标扭矩。
在一种可能的实现方式中,所述补偿扭矩包括扭矩调整量和扭矩调整方向,所述目标扭矩与所述扭矩调整量相同。
在一种可能的实现方式中,所述计算模块630被配置为:
根据所述发动机的当前转速和所述目标转速,确定所述扭矩调整方向,
其中,若所述发动机的当前转速高于所述目标转速,则确定为所述扭矩调整方向为下调;
若所述发动机的当前转速低于所述目标转速,则确定为所述扭矩调整方向为上调。
在一种可能的实现方式中,所述计算模块630被配置为:
根据所述转速差,使用如下公式来计算所述驱动电机的补偿扭矩:
其中,T
Feedback为所述驱动电机的补偿扭矩,n
diff为所述转速差,t为所述转速差的积分和微分周期,K
p为比例系数,K
i为积分系数,K
d为微分系数。
在一种可能的实现方式中,所述获取模块620被配置为:
接收所述发动机的飞轮端转速,其中所述飞轮端转速为所述当前转速;
所述获取模块620还被配置为:
获取所述驱动电机的目标挡位转速;或者
获取变速箱输入轴转速传感器所获得的输入轴转速,其中所述输入轴转速为所述目标转速;或者
获取变速箱输出轴转速传感器所获得的输出轴转速,并且根据输入轴转速与输出轴转速之间的速比和所获取的输出轴转速来计算输入轴转速,其中所计算的输入轴转速为所述目标转速。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
当然,本发明不限于上述实施方式,本领域技术人员在本发明的教导下可以对本发明的上述实施方式做出各种变型,而不脱离本发明的范围。
Claims (14)
- 一种混合动力汽车的换档过程控制方法,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,其特征在于,所述控制方法应用于混合动力汽车的混合动力控制单元HCU,所述控制方法包括:控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位;获取所述发动机的目标转速和当前转速,其中,所述目标转速为所述驱动电机的目标挡位转速;根据所述目标转速和所述当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩;以及基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
- 根据权利要求1所述的控制方法,其特征在于,基于所述补偿扭矩和所述目标扭矩分别对驱动电机和所述离合器的扭矩进行控制,所述控制方法还包括:重新获取所述发动机的当前转速;判断所述驱动电机的目标挡位转速和重新获取的所述发动机的当前转速之间的转速差是否大于阈值;若判断为所述转速差大于所述阈值,则返回所述驱动电机的补偿扭矩和所述离合器的目标扭矩的计算步骤。
- 根据权利要求1所述的控制方法,其特征在于,根据所获取的目标转速和所获取的当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩的步骤,包括:计算所述目标转速和所述当前转速之间的转速差;根据所述转速差计算所述驱动电机的补偿扭矩;根据所述驱动电机的补偿扭矩,计算所述离合器的目标扭矩。
- 根据权利要求3所述的控制方法,其特征在于,所述补偿扭矩包括扭矩调整量和扭矩调整方向,所述目标扭矩与所述扭矩调整量相同。
- 根据权利要求4所述的控制方法,其特征在于,还包括:根据所述发动机的当前转速和所述目标转速,确定所述扭矩调整方向,其中,若所述发动机的当前转速高于所述目标转速,则确定为所述扭矩调整方向为下调;若所述发动机的当前转速低于所述目标转速,则确定为所述扭矩调整方向为上调。
- 根据权利要求1至6中任一项所述的控制方法,其特征在于,获取所述发动机的当前转速,包括:接收所述发动机的飞轮端转速,其中所述飞轮端转速为所述当前转速,获取所述发动机的目标转速,包括:获取所述驱动电机的目标挡位转速;或者获取变速箱输入轴转速传感器所获得的输入轴转速,其中所述输入轴转速为所述目标转速;或者获取变速箱输出轴转速传感器所获得的输出轴转速,并且根据输入轴转速与输出轴转速之间的速比和所获取的输出轴转速来计算输入轴转速,其中所计算的输入轴转速为所述目标转速。
- 一种混合动力汽车的换档过程控制装置,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,其特征在于,所述控制装置应用于混合动力汽车的混合动力控制单元HCU,所述控制装置包括:第一控制模块,用于控制所述驱动电机以使所述驱动电机被调速至目标挡位转速,控制执行器挂入目标挡位;获取模块,用于获取所述发动机的目标转速和当前转速,其中,所述目标转速为所述驱动电机的目标挡位转速;计算模块,用于根据所述目标转速和所述当前转速,计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩;以及第二控制模块,用于基于所述补偿扭矩和所述目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
- 根据权利要求8所述的控制装置,其特征在于,所述获取模块重新获取所述发动机的当前转速,所述控制装置还包括判断模块,所述判断模块用于判断所述驱动电机的目标挡位转速和重新获取的所述发动机的当前转速之间的转速差是否大于阈值,若所述判断模块判断为所述转速差大于所述阈值,则所述计算模块重新计算所述驱动电机的补偿扭矩和所述离合器的目标扭矩,所述第二控制模块重新基于重新计算的补偿扭矩和目标扭矩分别对所述驱动电机和所述离合器的扭矩进行控制,使所述发动机转速与所述驱动电机转速趋向一致。
- 根据权利要求8所述的控制装置,其特征在于,所述计算模块被配置为:计算所述目标转速和所述当前转速之间的转速差;根据所述转速差计算所述驱动电机的补偿扭矩;根据所述驱动电机的补偿扭矩,计算所述离合器的目标扭矩。
- 根据权利要求10所述的控制装置,其特征在于,所述补偿扭矩包括扭矩调整量和扭矩调整方向,所述目标扭矩与所述扭矩调整量相同。
- 根据权利要求11所述的控制装置,其特征在于,所述计算模块被配置为:根据所述发动机的当前转速和所述目标转速,确定所述扭矩调整方向,其中,若所述发动机的当前转速高于所述目标转速,则确定为所述扭矩调整方向为下调;若所述发动机的当前转速低于所述目标转速,则确定为所述扭矩调整方向为上调。
- 根据权利要求8至13中任一项所述的控制装置,其特征在于,所述获取模块被配置为:接收所述发动机的飞轮端转速,其中所述飞轮端转速为所述当前转速;所述获取模块还被配置为:获取所述驱动电机的目标挡位转速;或者获取变速箱输入轴转速传感器所获得的输入轴转速,其中所述输入轴转速为所述目标转速;或者获取变速箱输出轴转速传感器所获得的输出轴转速,并且根据输入轴转速与输出轴转速之间的速比和所获取的输出轴转速来计算输入轴转速,其中所计算的输入轴转速为所述目标转速。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/102290 WO2021035402A1 (zh) | 2019-08-23 | 2019-08-23 | 混合动力汽车的换档过程控制方法及装置 |
DE112019007653.1T DE112019007653T5 (de) | 2019-08-23 | 2019-08-23 | Verfahren und Vorrichtung zum Steuern des Schaltvorgangs eines Hybridfahrzeugs |
CN201980099669.1A CN114286769B (zh) | 2019-08-23 | 2019-08-23 | 混合动力汽车的换档过程控制方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/102290 WO2021035402A1 (zh) | 2019-08-23 | 2019-08-23 | 混合动力汽车的换档过程控制方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035402A1 true WO2021035402A1 (zh) | 2021-03-04 |
Family
ID=74683800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/102290 WO2021035402A1 (zh) | 2019-08-23 | 2019-08-23 | 混合动力汽车的换档过程控制方法及装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN114286769B (zh) |
DE (1) | DE112019007653T5 (zh) |
WO (1) | WO2021035402A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113027625A (zh) * | 2021-04-15 | 2021-06-25 | 常州易控汽车电子股份有限公司 | 一种ipu控制器速度补偿方法 |
CN113650602A (zh) * | 2021-09-23 | 2021-11-16 | 东风汽车有限公司东风日产乘用车公司 | 挡位切换方法、装置、车辆及存储介质 |
CN113753014A (zh) * | 2021-08-13 | 2021-12-07 | 江铃汽车股份有限公司 | 混动架构下换挡过程中发动机和isg协调调速控制方法 |
CN114198430A (zh) * | 2021-12-20 | 2022-03-18 | 潍柴动力股份有限公司 | 一种离合器接合方法、装置、设备及介质 |
CN114658841A (zh) * | 2022-04-20 | 2022-06-24 | 中国第一汽车股份有限公司 | 一种动力升档转速调整方法和车辆 |
CN116066556A (zh) * | 2023-01-02 | 2023-05-05 | 重庆长安汽车股份有限公司 | 防止双离合变速器拨叉挂挡失败的控制方法、系统及车辆 |
CN116620249A (zh) * | 2023-07-24 | 2023-08-22 | 潍柴动力股份有限公司 | 一种混合动力车辆的扭矩控制方法及装置 |
CN117416337A (zh) * | 2023-12-14 | 2024-01-19 | 南昌大学 | 一种无同步环3dht动力换挡控制方法 |
WO2024055181A1 (zh) * | 2022-09-14 | 2024-03-21 | 舍弗勒技术股份两合公司 | 用于车辆动力系统的换挡控制方法及换挡控制装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070278022A1 (en) * | 2006-05-02 | 2007-12-06 | Nissan Motor Co., Ltd. | Drive state shift control apparatus and method for vehicle |
CN101830221A (zh) * | 2010-04-15 | 2010-09-15 | 大连理工大学 | 混合动力车用电机零转矩控制双同步换挡方法 |
CN103260982A (zh) * | 2010-10-26 | 2013-08-21 | 日产自动车株式会社 | 混合动力车辆的发动机启动控制装置 |
CN104627183A (zh) * | 2013-11-06 | 2015-05-20 | 福特全球技术公司 | 混合动力车辆 |
CN104859638A (zh) * | 2014-12-19 | 2015-08-26 | 北汽福田汽车股份有限公司 | 混合动力车并联模式换档控制方法和系统 |
CN105216788A (zh) * | 2014-06-12 | 2016-01-06 | 福特全球技术公司 | 控制具有发动机分离离合器的车辆中的电机的方法 |
CN109532816A (zh) * | 2018-12-27 | 2019-03-29 | 重庆长安汽车股份有限公司 | 一种混合动力汽车发动机启动控制方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5338471B2 (ja) * | 2009-05-13 | 2013-11-13 | 日産自動車株式会社 | 電動車両の変速制御装置 |
KR101673813B1 (ko) * | 2015-10-01 | 2016-11-16 | 현대자동차주식회사 | 건식클러치 탑재 차량의 발진 제어방법 |
CN109094553B (zh) * | 2018-09-06 | 2020-07-10 | 重庆长安汽车股份有限公司 | 混合动力汽车及其发动机启动控制方法 |
-
2019
- 2019-08-23 WO PCT/CN2019/102290 patent/WO2021035402A1/zh active Application Filing
- 2019-08-23 CN CN201980099669.1A patent/CN114286769B/zh active Active
- 2019-08-23 DE DE112019007653.1T patent/DE112019007653T5/de not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070278022A1 (en) * | 2006-05-02 | 2007-12-06 | Nissan Motor Co., Ltd. | Drive state shift control apparatus and method for vehicle |
CN101830221A (zh) * | 2010-04-15 | 2010-09-15 | 大连理工大学 | 混合动力车用电机零转矩控制双同步换挡方法 |
CN103260982A (zh) * | 2010-10-26 | 2013-08-21 | 日产自动车株式会社 | 混合动力车辆的发动机启动控制装置 |
CN104627183A (zh) * | 2013-11-06 | 2015-05-20 | 福特全球技术公司 | 混合动力车辆 |
CN105216788A (zh) * | 2014-06-12 | 2016-01-06 | 福特全球技术公司 | 控制具有发动机分离离合器的车辆中的电机的方法 |
CN104859638A (zh) * | 2014-12-19 | 2015-08-26 | 北汽福田汽车股份有限公司 | 混合动力车并联模式换档控制方法和系统 |
CN109532816A (zh) * | 2018-12-27 | 2019-03-29 | 重庆长安汽车股份有限公司 | 一种混合动力汽车发动机启动控制方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113027625B (zh) * | 2021-04-15 | 2023-05-12 | 常州易控汽车电子股份有限公司 | 一种ipu控制器速度补偿方法 |
CN113027625A (zh) * | 2021-04-15 | 2021-06-25 | 常州易控汽车电子股份有限公司 | 一种ipu控制器速度补偿方法 |
CN113753014A (zh) * | 2021-08-13 | 2021-12-07 | 江铃汽车股份有限公司 | 混动架构下换挡过程中发动机和isg协调调速控制方法 |
CN113753014B (zh) * | 2021-08-13 | 2023-06-20 | 江铃汽车股份有限公司 | 混动架构下换挡过程中发动机和isg协调调速控制方法 |
CN113650602A (zh) * | 2021-09-23 | 2021-11-16 | 东风汽车有限公司东风日产乘用车公司 | 挡位切换方法、装置、车辆及存储介质 |
CN113650602B (zh) * | 2021-09-23 | 2022-10-18 | 东风汽车有限公司东风日产乘用车公司 | 挡位切换方法、装置、车辆及存储介质 |
CN114198430B (zh) * | 2021-12-20 | 2024-02-20 | 潍柴动力股份有限公司 | 一种离合器接合方法、装置、设备及介质 |
CN114198430A (zh) * | 2021-12-20 | 2022-03-18 | 潍柴动力股份有限公司 | 一种离合器接合方法、装置、设备及介质 |
CN114658841A (zh) * | 2022-04-20 | 2022-06-24 | 中国第一汽车股份有限公司 | 一种动力升档转速调整方法和车辆 |
CN114658841B (zh) * | 2022-04-20 | 2024-05-03 | 中国第一汽车股份有限公司 | 一种动力升档转速调整方法和车辆 |
WO2024055181A1 (zh) * | 2022-09-14 | 2024-03-21 | 舍弗勒技术股份两合公司 | 用于车辆动力系统的换挡控制方法及换挡控制装置 |
CN116066556A (zh) * | 2023-01-02 | 2023-05-05 | 重庆长安汽车股份有限公司 | 防止双离合变速器拨叉挂挡失败的控制方法、系统及车辆 |
CN116620249A (zh) * | 2023-07-24 | 2023-08-22 | 潍柴动力股份有限公司 | 一种混合动力车辆的扭矩控制方法及装置 |
CN116620249B (zh) * | 2023-07-24 | 2023-10-20 | 潍柴动力股份有限公司 | 一种混合动力车辆的扭矩控制方法及装置 |
CN117416337A (zh) * | 2023-12-14 | 2024-01-19 | 南昌大学 | 一种无同步环3dht动力换挡控制方法 |
CN117416337B (zh) * | 2023-12-14 | 2024-03-29 | 南昌大学 | 一种无同步环3dht动力换挡控制方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112019007653T5 (de) | 2022-06-15 |
CN114286769A (zh) | 2022-04-05 |
CN114286769B (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021035402A1 (zh) | 混合动力汽车的换档过程控制方法及装置 | |
KR102588929B1 (ko) | 하이브리드 dct 차량의 변속 제어방법 | |
US8214116B2 (en) | Apparatus and method for decreasing an upshift delay in an automatic transmission | |
US20090280951A1 (en) | Method for operating a vehicle drivetrain | |
CN109466541B (zh) | 用于在混合动力车辆中控制换档阶段的方法和相应的变速器系统 | |
JP5928580B2 (ja) | 車両の変速制御装置 | |
KR102588930B1 (ko) | Dct 차량의 변속 제어 방법 | |
CN111895082A (zh) | 一种amt升挡控制方法 | |
KR20200105605A (ko) | Dct 차량의 변속 제어방법 | |
EP2239175B1 (en) | Control method of a vehicle provided with an automatic manual transmission during a gear shift or during a drive-away | |
JP2005186740A (ja) | 車両の変速制御装置 | |
US11378142B2 (en) | Method and controller for operating a drivetrain of a vehicle | |
JP2009274718A (ja) | 車両の変速制御装置 | |
WO2024074106A1 (zh) | 混合动力汽车变速换档的控制方法、装置及存储介质 | |
JP2013245590A (ja) | 車両の変速制御装置 | |
JP2014126114A (ja) | 自動変速機の制御装置 | |
JP5810211B2 (ja) | 自動変速機及びその制御方法 | |
CN113531109B (zh) | 一种主动同步式换挡控制方法、系统及汽车 | |
JP2018100731A (ja) | 車両の変速制御装置 | |
CN117279813A (zh) | 混合动力系统的换挡控制方法及混合动力系统 | |
JP7122304B2 (ja) | ハイブリッド自動車両用の半自動式ギアボックスを制御する方法および装置 | |
CN107914710B (zh) | 用于车辆推进系统控制的系统和方法 | |
KR102465907B1 (ko) | Dct 차량의 업쉬프트 제어방법 | |
KR102532332B1 (ko) | Dct차량용 변속 제어방법 | |
JP7148224B2 (ja) | 車両用自動変速機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19943745 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19943745 Country of ref document: EP Kind code of ref document: A1 |