WO2024053568A1 - 焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置 - Google Patents
焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置 Download PDFInfo
- Publication number
- WO2024053568A1 WO2024053568A1 PCT/JP2023/032001 JP2023032001W WO2024053568A1 WO 2024053568 A1 WO2024053568 A1 WO 2024053568A1 JP 2023032001 W JP2023032001 W JP 2023032001W WO 2024053568 A1 WO2024053568 A1 WO 2024053568A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manipulated variable
- sintering process
- variable
- sintering
- specific
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
- C22B1/205—Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
Definitions
- the present disclosure relates to a sintering process control method, an operation guidance method, a sintered ore manufacturing method, a sintering process control device, an operation guidance device, a sintering operation guidance system, and a terminal device.
- FIG. 1 is a diagram showing an overview of the sintering process.
- sintering raw materials which are granulated by mixing ore powder, coke powder, limestone, quicklime, etc.
- the sintering raw material is melted in the sintering machine by the combustion heat of coke powder, the pseudo particles are fused together, and the material is cooled by air drawn from the top and discharged.
- the heat pattern in this series of heating and cooling processes has a large effect on product yield.
- the heat pattern is the temperature distribution of the sintering raw material in the machine length direction and thickness direction of the sintering machine.
- BRP Bit Rising Point
- BTP Bit Through Point
- BRP is the position in the machine length direction where the exhaust gas temperature in the wind box at the bottom of the sintering machine exceeds a threshold value.
- BTP is the position in the machine length direction where the temperature of the exhaust gas measured in the wind box at the bottom of the sintering machine is the highest.
- Patent Document 1 and Patent Document 2 disclose a method of controlling the position of the BTP to be constant.
- Patent Document 1 and Patent Document 2 performs feedback control based on actual measured values.
- time delay of about 30 to 40 minutes from when raw materials are input until they are discharged. Therefore, in conventional feedback control, control accuracy may decrease due to the time delay inherent in the process.
- the purpose of the present disclosure is to provide a sintering process control method, an operation guidance method, a sintered ore manufacturing method, a sintering process control device, an operation guidance device, and a sintering process control method capable of presenting appropriate operation actions that take into account time delays in the process.
- the purpose of the present invention is to provide a sintering operation guidance system and a terminal device.
- a method for controlling a sintering process includes: A sintering process control method that controls the sintering process using a physical model capable of calculating the state of the sintering process including the temperature distribution of the sintering raw material in the longitudinal direction and thickness direction in the sintering machine, the method comprising: a first prediction step of calculating a first predicted value of a future controlled variable when the current manipulated variable is held using the physical model; A deviation between a target value and a superimposed predicted value of the control variable based on the first predicted value and a step response when a specific manipulated variable that is a part of the manipulated variables is changed by a unit amount is reduced. and a manipulated variable calculation step of calculating the manipulated variable of the specific manipulated variable.
- the control variable is a characteristic amount of the temperature distribution of the sintering raw material.
- control variable is BRP or BTP.
- the manipulated variable calculating step calculates the manipulated variable of the specific manipulated variable such that an evaluation function having a term corresponding to the deviation and a term corresponding to the manipulated variable of the specific manipulated variable is minimized or maximized. .
- the specific operating variable includes at least one of pallet speed, underbed flow rate, coagulant ratio, and feed moisture percentage.
- the operation guidance method includes: The method includes a guidance operation amount presentation step of presenting the operation amount of the specific operation variable calculated by the sintering process control method according to any one of (1) to (6) as a guidance operation amount.
- Sintered ore is manufactured using the guidance operation amount presented by the operation guidance method described in (7).
- a method for producing sintered ore according to an embodiment of the present disclosure includes: Sintered ore is manufactured using the manipulated variable of the specific manipulated variable calculated by the sintering process control method of any one of (1) to (6).
- a sintering process control device includes: A sintering process control device that controls the sintering process using a physical model capable of calculating the state of the sintering process including the temperature distribution of the sintering raw material in the longitudinal direction and thickness direction in the sintering machine, a first prediction unit that uses the physical model to obtain a first predicted value of a future control variable when the current manipulated variable is held; A deviation between a target value and a superimposed predicted value of the control variable based on the first predicted value and a step response when a specific manipulated variable that is a part of the manipulated variables is changed by a unit amount is reduced. and a manipulated variable calculation unit that calculates the manipulated variable of the specific manipulated variable.
- the operation guidance device includes: (10) A guidance operation amount presentation unit is provided that presents the operation amount of the specific operation variable calculated by the sintering process control device as the guidance operation amount.
- the sintering operation guidance system includes: A sintering operation guidance system comprising an operation data server, a sintering process control device, and a terminal device,
- the operational data server includes a database that stores operational data acquired from each device of the sintering process and operational management target values of the sintering process
- the control device for the sintering process includes: Using a physical model that can calculate the state of the sintering process, including the temperature distribution of the sintered raw material in the machine length direction and thickness direction in the sintering machine, we calculate the first of the future control variables when the current operating variables are maintained.
- a first prediction unit that calculates a predicted value of A deviation between a target value and a superimposed predicted value of the control variable based on the first predicted value and a step response when a specific manipulated variable that is a part of the manipulated variables is changed by a unit amount is reduced.
- a manipulated variable calculation unit that calculates the manipulated variable of the specific manipulated variable
- a guidance operation amount presentation unit that outputs a guidance operation amount including the operation amount of the specific operation variable
- a manipulated variable transmitter that transmits the manipulated variable of the specific manipulated variable calculated by the manipulated variable calculator or the manipulated variable of the specific manipulated variable corrected by the operator to each device of the sintering process
- the terminal device is a guidance operation amount display section that acquires and displays the guidance operation amount from the control device for the sintering process; a manipulated variable change input unit that obtains an input to change the manipulated variable of the specific manipulated variable by the operator;
- a manipulated variable change input transmitter that transmits the change input to a control device for the sintering process.
- a terminal device includes: a guidance manipulated variable display unit that acquires and displays a guidance manipulated variable including a manipulated variable of a specific manipulated variable from a sintering process control device; a manipulated variable change input unit that obtains input to change the manipulated variable of a specific manipulated variable by an operator; a manipulated variable change input transmitter that transmits the change input to the control device of the sintering process,
- the operation amount of the specific operation variable is determined by the sintering process control device using a physical model capable of calculating the state of the sintering process including the temperature distribution of the sintering raw material in the machine length direction and thickness direction in the sintering machine.
- a sintering process control method capable of presenting appropriate operation actions that take into account time delays in the process.
- a sintering operation guidance system and terminal device can be provided.
- FIG. 1 is a diagram showing an overview of the sintering process.
- FIG. 2 is a diagram showing input/output information of a physical model used in the present disclosure.
- FIG. 3 is a diagram showing predicted values of BRP.
- FIG. 4 is a diagram showing the step response of the BRP when the pallet speed is increased by a unit amount.
- FIG. 5 is a diagram showing predicted values of BRP.
- FIG. 6 is a diagram showing the step response of BRP when the under-bed flow rate is increased by a unit amount.
- FIG. 7 is a diagram showing changes in actual values and estimated values of the under-bed flow rate.
- FIG. 8 is a diagram showing changes in explanatory variables of the estimation formula for the under-bed flow rate.
- FIG. 1 is a diagram showing an overview of the sintering process.
- FIG. 2 is a diagram showing input/output information of a physical model used in the present disclosure.
- FIG. 3 is a diagram showing predicted values of BRP.
- FIG. 9 is a diagram showing changes in BRP, pallet speed, and quicklime ratio when operational guidance is implemented.
- FIG. 10 is a diagram illustrating a configuration example of a control device for a sintering process according to an embodiment.
- FIG. 11 is a flowchart showing a sintering process control method (operation guidance method) according to one embodiment.
- FIG. 12 is a diagram illustrating a configuration example of a sintering operation guidance system according to an embodiment.
- a sintering process control method an operation guidance method, a sintered ore manufacturing method, a sintering process control device, an operation guidance device, a sintering operation guidance system, and A terminal device is described.
- BRP and BTP are listed as the characteristic quantities of the heat pattern, but in this embodiment, BRP is used as an index of the heat pattern, and a control method for keeping this index constant will be explained.
- the sintering process control method according to the present embodiment uses a physical model of the sintering machine to predict the heat pattern with high accuracy, and to control the bed so that the future BRP is maintained near the target value. Find the manipulated variable of manipulated variables such as downstream flow rate.
- BTP is also possible to use BTP as an index of the heat pattern by replacing BRP with BTP.
- the physical model used in this disclosure is similar to the model of the method described in the reference (Yamaoka et al. ISIJ International, Vol. 45, No. 4, pp. 522).
- the physical model is a model that can calculate the conditions inside the sintering machine and is composed of a group of partial differential equations that takes into account the physical phenomena of combustion of coke breeze, thermal decomposition of limestone, and evaporation of water.
- this physical model is a two-dimensional unsteady model that can calculate the state of the sintering process including the temperature distribution (heat pattern) of the sintering raw material in the machine length direction and thickness direction within the sintering machine. Further, the BRP can be known from the calculated heat pattern.
- the main ones that change over time are pallet speed, exhaust gas flow rate, raw material bulk density, raw material moisture ratio, raw material limestone ratio, and raw material coke ratio.
- These input variables may be operating variables or operating factors of the sintering machine.
- the pallet speed is the speed at which the pallet of the sintering machine on which the sintering raw materials are placed moves.
- the exhaust gas flow rate is the flow rate of the exhaust gas of the sintering machine per unit time, and can be adjusted, for example, by an exhaust fan.
- the raw material bulk density is the bulk density of the sintered raw material calculated from the layer thickness, sintering machine width, etc.
- the raw material moisture ratio, raw material limestone ratio, and raw material coke ratio are the ratios of water, limestone, and coke in the sintering raw material, respectively.
- coke is the main coagulant, and the proportion of raw coke is sometimes referred to as the coagulant ratio.
- the main output variables of the physical model are BTP, exhaust gas composition, and BRP.
- the exhaust gas composition includes the proportions of O 2 , CO 2 and CO.
- a physical model is used to calculate output variables that change from moment to moment.
- the time interval of this calculation (the time difference between "t+1" and "t" in the physical model equation described later) is, for example, one minute, although it is not particularly limited.
- the physical model can be expressed by the following equations (1) and (2).
- u(t) is the input variable described above, and is a variable that can be operated by the operator who operates the sintering machine.
- x(t) is a state variable calculated within the physical model. State variables are, for example, the heat pattern in the sintering machine, the reaction rate of the coke, the gas fractions such as CO and CO2 .
- y(t) is the output variable described above, such as BTP, O 2 proportion in exhaust gas composition, CO 2 proportion, BRP, etc. In this embodiment, y(t) includes at least BRP.
- the output variables of y(t), such as BTP, exhaust gas composition, and BRP may be referred to as control variables.
- a control variable is a variable that must be controlled in operation, but cannot or cannot be directly manipulated, and is changed through a correlated manipulated variable.
- a model predictive control system for controlling the BRP is constructed using the physical models of equations (1) and (2).
- the detailed configuration of the model predictive control system (control device) will be described later, and the processing will be described here.
- future prediction of the BRP is performed on the assumption that the current input variables will be maintained in the future.
- the response y f (t) obtained in this way is called a free response.
- the predicted value in the free response may be referred to as a "first predicted value.”
- FIG. 3 is a diagram showing predicted values of BRP.
- the BRP is expressed as a distance [m] from the position of the surge hopper in the direction of movement of the pallet.
- free responses are shown as solid lines ("no action" in FIG. 3).
- a predicted value when some of the manipulated variables are changed may be referred to as a "second predicted value.”
- the pallet speed has been changed (increased) by ⁇ PS 0 .
- the BRP y′(t 0 +k)
- the predicted value of BRP in this case is shown by the dashed line (“increase pallet speed” in FIG. 3).
- FIG. 4 is a diagram showing the step response of the BRP when the pallet speed is increased by a unit amount.
- the step response is calculated from the difference between these predicted values by also calculating the predicted values with some manipulated variables changed when calculating the predicted values in the free response of the BRP. It is also possible to use a value calculated in advance.
- the manipulated variable that was changed was the pallet speed, but other manipulated variables may be changed.
- the under-bed flow rate is changed and prediction is executed in the model predictive control system.
- the under-bed flow rate is one specific example of the exhaust gas flow rate, and is the flow rate of the exhaust gas in the lower portion of the sintering bed.
- FIG. 5 is a diagram showing predicted values of BRP.
- the free response is shown as a solid line ("no action" in FIG. 5).
- the under-bed flow rate was changed (increased) by ⁇ v0 .
- the change in the input variable corresponding to the change in ⁇ v 0 of the under-bed flow rate is ⁇ u 2
- the predicted value of BRP in this case is shown by a broken line (“increase in air volume” in FIG. 5).
- FIG. 6 is a diagram showing the step response of BRP when the under-bed flow rate is increased by a unit amount.
- the manipulated variable of the manipulated variable whose step response was determined is determined using the evaluation function J so as to reduce the deviation between the predicted value of BRP and the target value.
- evaluation function J is used to calculate the manipulated variable of pallet speed ( ⁇ PS) and the manipulated variable of under-bed flow rate ( ⁇ v ) is required.
- the evaluation function J is set as follows. Formula (5) can be used.
- the manipulated variable ( ⁇ PS) of the pallet speed and the manipulated variable ( ⁇ v) of the under-bed flow rate are determined so as to minimize the evaluation function J of Equation (5).
- y ref is the target value of BRP.
- y pre is a predicted value of BRP.
- future BRP can be approximated by superimposing a response y f (t), which is a free response, and a step response.
- the predicted value of such BRP, y pre (overlapping predicted value), can be expressed by the following equation (6).
- manipulated variables for which step responses are obtained when the manipulated variables are changed by a unit amount will be referred to as "specific manipulated variables.”
- the terms related to the manipulated variables ( ⁇ PS and ⁇ v) in equations (5) and (6) can be increased or decreased depending on the specific manipulated variable. For example, when the step response (S CR (k
- the term “+a( ⁇ PS) 2 " may be removed from equation (5) or a may be set to 0. Then, the term “+S PS (k
- equation (6) is a linear equation regarding the manipulated variables ( ⁇ PS and ⁇ v) of the specific manipulated variable, which is an unknown variable, and the evaluation function J is a quadratic equation regarding the unknown variable. Therefore, ⁇ PS and ⁇ v can be determined by the quadratic programming technique.
- the specific operating variables are the pallet speed and the flow rate under the bed, but the specific operating variables are not limited to these.
- the specific operating variable may include at least one of pallet speed, underbed flow rate, coagulant ratio (raw material coke ratio), and material moisture percentage, or variables other than these may be used.
- the unknown variables are obtained when the evaluation function J is minimized, but the deviation between the predicted value of BRP and the target value and the amount of manipulation of the unknown variables are minimized, and the evaluation function J is maximized.
- the evaluation function J may be designed such that . In other words, the manipulated variable of the unknown variable may be determined so that the evaluation function J is minimized or maximized.
- the specific manipulated variables are not limited to manipulated variables that can be directly manipulated by the operator.
- the manipulated variable of the manipulated variable that has a correlation with the under-bed flow rate and can be directly manipulated is required. It will be done.
- the manipulated variable of the quicklime ratio is calculated in order to manipulate the under-bed flow rate.
- the flow rate under the bed depends on the ventilation resistance of the sintering bed.
- powdered ore which is a raw material
- quicklime which acts as a binder
- the operating variables x 1 to x 5 having a correlation with the underbed flow rate (v) are the damper opening degree, the quicklime ratio, the layer thickness, the return ore ratio, and the moisture content of the raw material, respectively.
- the damper opening degree is the opening degree of the air volume adjustment damper for adjusting the air volume under the bed, and is, for example, 100% when fully opened.
- the quicklime ratio is the proportion of quicklime in the sintering raw material.
- Layer thickness is the thickness of the layer of sintered raw material on the pallet.
- the return ore ratio is the ratio of return ore to the sintered ore after firing.
- the raw material water content is the water content in the sintered raw material.
- FIG. 7 shows estimated values and actual values using equation (7).
- FIG. 8 shows changes in five manipulated variables during the same estimation period as FIG. 7. Changes in the five manipulated variables are shown as differences from typical operating conditions.
- ⁇ CaO which is the manipulated variable of the quicklime ratio
- ⁇ v 0pt is the optimum manipulated variable of the under-bed flow rate obtained by the above processing using the evaluation function J.
- the model predictive control system outputs the optimal operation amount determined through the above processing so that it can be reflected in the process computer that manages the sintering process.
- the output of the optimum operation amount includes an output as guidance for the operator who operates the sintering machine.
- Output as guidance includes not only information on the optimal manipulated variable, but also free response prediction curves as shown in Figures 3 to 6, prediction curves when some manipulated variables (specific manipulated variables) are changed, and BRP.
- Information such as a curve indicating the step response of may be output. That is, the information output as operation guidance includes at least the guidance operation amount (optimum operation amount), and may be displayed on a display that can be viewed by the operator.
- Figure 9 shows an example in which the optimum pallet speed and quicklime ratio operation variables are determined by the above control method, are shown to the operator as guidance information, and are reflected in the sintering process by the operator's final decision. .
- the BRP was able to be maintained near the target value (approximately within the range of -1.0 m to +1.0 m with respect to the target value).
- FIG. 10 is a diagram showing a configuration example of a control device 10 for a sintering process according to an embodiment.
- the sintering process control device 10 includes a storage section 11, a first prediction section 12, a second prediction section 13, a step response calculation section 14, and an operation amount calculation section 15. , and a guidance operation amount presentation section 16.
- the sintering process control device 10 acquires actual values and target values in the operation process of the sintering machine from the operation data server 60.
- the actual values may include various measured values and current operating variables indicating the operational status.
- the target value is the target value of BRP.
- the operation data server 60 can communicate with the sintering process control device 10 via a network, and may be realized, for example, by a computer that manages the production of sintered ore.
- the network is, for example, the Internet.
- the sintering process control device 10 uses the above processing, that is, the physical model, to predict the BRP, and adjusts the manipulated variables of specific manipulated variables such as the under-bed flow rate so that the future BRP is maintained near the target value. Execute the process to find .
- the sintering process control device 10 has a function of presenting the manipulated variable of a specific manipulated variable in the guidance manipulated variable by the guidance manipulated variable presentation unit 16, and also functions as an operation guidance device. do.
- the display unit 30 displays the guidance operation amount output from the sintering process control device 10 (operation guidance device).
- the sintering process control device 10 is configured with a computer different from the operation data server 60 (for example, a process computer that manages the operation of the sintering machine or a sintering process control calculation server 10A as in the example of FIG. 12). good.
- the display unit 30 may be a display device such as a liquid crystal display or an organic EL panel. Further, the display unit 30 may be realized by a display of a terminal device 30A (see FIG. 12) such as a smartphone or a tablet.
- the terminal device 30A can communicate with the sintering process control device 10 via the network.
- a sintering operation guidance system may be configured by a sintering process control calculation server 10A having the function of the sintering process control device 10 and a terminal device 30A having the function of the display section 30.
- the sintering process control calculation server 10A and the terminal device 30A may be located at the same location (for example, within the same factory) or may be physically separated.
- the sintering operation guidance system may further include an operation data server 60.
- the storage unit 11 stores physical models.
- the storage unit 11 also stores programs and data related to control of the sintering process.
- the storage unit 11 may store the acquired actual values and target values.
- the storage unit 11 may store various information (for example, characteristic curves as shown in FIGS. 3 to 6) obtained in processing for controlling the sintering process.
- the storage unit 11 may include any storage device such as a semiconductor storage device, an optical storage device, and a magnetic storage device.
- a semiconductor storage device may include, for example, a semiconductor memory.
- the storage unit 11 may include multiple types of storage devices.
- the first prediction unit 12 uses a physical model to obtain a first predicted value of the future control variable when the current manipulated variable is held.
- the control variable is BRP in this embodiment.
- the second prediction unit 13 uses the physical model to obtain a second predicted value of the future control variable when the specific manipulated variable is changed.
- the specific manipulated variables are part of the manipulated variables, and the step response of the BRP when each of the specific manipulated variables is changed by a unit amount is determined.
- the step response calculation unit 14 calculates the step response for the specific manipulated variable based on the first predicted value and the second predicted value.
- the manipulated variable calculation unit 15 calculates the manipulated variable of the specific manipulated variable so that the deviation between the superimposed predicted value of the control variable based on the first predicted value and the step response and the target value is reduced.
- the overlay predicted value is calculated using equation (6) above.
- the manipulated variable of the specific manipulated variable is calculated using the evaluation function J.
- the evaluation function J has a term corresponding to the deviation and a term corresponding to the manipulated variable of the specific manipulated variable.
- the guidance operation amount presentation section 16 presents the calculated operation amount of the specific operation variable on the display section 30 as the guidance operation amount.
- the guidance operation amount presentation unit 16 displays free response prediction curves as shown in FIGS. 3 to 6, prediction curves when some operation variables (specific operation variables) are changed, and BRP steps. Information on a curve indicating the response, etc. may be output to the display unit 30.
- the operator may change the operating conditions of the sintering machine based on the guidance operation amount shown on the display unit 30. Operational guidance for such a sintering machine may be implemented as part of a manufacturing method for producing sintered ore.
- the sintering process control device 10 can be realized, for example, by a computer as described above.
- a computer includes, for example, a memory, a hard disk drive (storage device), a CPU (processing unit), and the like.
- the program can be stored on the hard disk drive and read from the hard disk drive into memory when executed by the CPU. Furthermore, data that is being processed is stored in the memory, and if necessary, stored in the HDD.
- the storage unit 11 may be realized by, for example, a storage device.
- the first prediction unit 12, the second prediction unit 13, the step response calculation unit 14, the operation amount calculation unit 15, and the guidance operation amount presentation unit 16 may be realized by, for example, a CPU that reads and executes a program.
- FIG. 11 is a flowchart illustrating a method for controlling a sintering process according to one embodiment.
- the sintering process control device 10 calculates the manipulated variable of the specific manipulated variable according to the flowchart shown in FIG. 11, and outputs it as a guidance manipulated variable.
- the sintering process control method shown in FIG. 11 is also an operation guidance method and may be executed as part of a sintered ore manufacturing method.
- the sintering process control device 10 acquires actual values and target values (step S1).
- the first prediction unit 12 uses the physical model to obtain a first predicted value of the future control variable when the current manipulated variable is held (step S2, first prediction step).
- the second prediction unit 13 uses the physical model to obtain a second predicted value of the future control variable when the specific manipulated variable is changed (step S3, second prediction step).
- the step response calculation unit 14 calculates the step response for the specific manipulated variable based on the first predicted value and the second predicted value (step S4, step response calculation step).
- the manipulated variable calculation unit 15 calculates the manipulated variable of the specific manipulated variable so that the deviation between the target value and the superimposed predicted value of the control variable based on the first predicted value and the step response for the specific manipulated variable is reduced. Calculate (step S5, operation amount calculation step).
- the guidance operation amount presentation unit 16 presents the calculated operation amount of the specific operation variable as the guidance operation amount (step S6, guidance operation amount presentation step).
- FIG. 12 is a diagram illustrating a configuration example of a sintering operation guidance system according to an embodiment.
- the sintering operation guidance system may be configured to include an operation data server 60, a sintering process control device 10, and a terminal device 30A.
- the operation data server 60 includes a database that stores operation data acquired from each device of the sintering process and operation management target values of the sintering process.
- the sintering process control device 10 is realized by a sintering process control calculation server 10A, which is a server computer that can communicate with an operation data server 60 and a terminal device 30A via a network.
- a sintering process control calculation server 10A which is a server computer that can communicate with an operation data server 60 and a terminal device 30A via a network.
- the sintering process control calculation server 10A includes a storage section 11, a first prediction section 12, a second prediction section 13, a step response calculation section 14, an operation amount calculation section 15, A guidance operation amount presentation section 16 is provided. Further, the sintering process control calculation server 10A further includes a manipulated variable transmitter 17. The manipulated variable transmitter 17 transmits the manipulated variable of the specific manipulated variable calculated by the manipulated variable calculator 15 or the manipulated variable of the specific manipulated variable corrected by the operator to each device of the sintering process. Here, the manipulated variable of the specific manipulated variable modified by the operator is obtained from the terminal device 30A.
- the terminal device 30A includes a guidance operation amount display section 31, an operation amount change input section 32, and an operation amount change input transmission section 33.
- the guidance operation amount display section 31 acquires and displays the guidance operation amount from the sintering process control calculation server 10A.
- the guidance operation amount includes the operation amount of the specific operation variable calculated by the operation amount calculation section 15, and is output from the guidance operation amount presentation section 16.
- the manipulated variable change input unit 32 receives an input by an operator to change the manipulated variable of a specific manipulated variable.
- the operation amount change input unit 32 may be realized by, for example, a touch panel included in the terminal device 30A.
- the manipulated variable change input transmitter 33 transmits a change input of the manipulated variable of the specific manipulated variable to the sintering process control calculation server 10A.
- the operation amount change input transmitter 33 may transmit a signal indicating that there is no change to the sintering process control calculation server 10A.
- the manipulated variable transmitter 17 transmits the manipulated variable of the specific manipulated variable after modification by the operator to each device of the sintering process, but when a signal indicating that there is no change is obtained, the manipulated variable calculation unit 15 transmits the manipulated variable.
- the manipulated variable of the specified manipulated variable may be transmitted.
- the sintering process control method (operation guidance method), the sintered ore manufacturing method, the sintering process control device 10 (operation guidance device), and the sintering operation guidance system according to the present embodiment are capable of controlling the process. It is possible to present appropriate operational actions that take time delays into consideration. Further, the terminal device 30A according to the present embodiment is used to present appropriate operation actions that take into account time delays in processes. For example, the operator can change the operating conditions based on the indicated guidance operation amount and keep the characteristic value of the temperature distribution (heat pattern) of the sintered raw material close to the target value, which can improve the yield in the production of sintered ore. can be improved.
- the configuration of the sintering process control device 10 shown in FIG. 10 is an example.
- the sintering process control device 10 may not include all of the components shown in FIG.
- the sintering process control device 10 may include components other than those shown in FIG.
- the sintering process control device 10 may further include a display section 30.
- the second prediction step (step S3) and step response calculation step (step S4) are omitted in the flowchart of FIG. good.
- the calculated operation amount is presented as a guidance operation amount and is reflected in the sintering process after the operator's final decision, and such operation guidance is used to control the manufacturing method for producing sintered ore. It was explained that it is executed as a part.
- the control device 10 for the sintering process may directly output the calculated manipulated variable of the specific manipulated variable to the equipment that manufactures sintered ore, and the equipment may automatically update the manipulated variable.
- calculation of the manipulated variable of the specific manipulated variable in the ore return rate control method according to the present embodiment may be performed as part of the manufacturing method for manufacturing sintered ore, without providing operational guidance to the operator.
- the equipment from which the manipulated variable of the specific manipulated variable is output may be, for example, a sintering machine or a process computer that manages the sintering process.
- the operating variables are automatically updated by the equipment, operations can be carried out without the intervention of the operator, freeing the operator from the task of determining the operating variables, and enabling stable production of high-grade sintered ore. can concentrate on monitoring the entire process.
- Sintering process control device 10A Sintering process control calculation server 11 Storage section 12 First prediction section 13 Second prediction section 14 Step response calculation section 15 Operation amount calculation section 16 Guidance operation amount presentation section 17 Operation amount transmission section 30 Display section 30A Terminal device 31 Guidance operation amount display section 32 Operation amount change input section 33 Operation amount change input transmission section 60 Operation data server
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、前記焼結プロセスを制御する焼結プロセスの制御方法であって、
前記物理モデルを用いて現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測ステップと、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出ステップと、を含む。
前記物理モデルを用いて前記特定操作変数が変更された場合の将来の前記制御変数の第2の予測値を求める第2の予測ステップと、
前記第1の予測値及び前記第2の予測値に基づいて前記特定操作変数についてのステップ応答を算出するステップ応答算出ステップと、を含む。
前記制御変数は、前記焼結原料の温度分布の特徴量である。
前記制御変数はBRP又はBTPである。
前記操作量算出ステップは、前記偏差に対応する項と前記特定操作変数の操作量に対応する項とを有する評価関数が最小化又は最大化するように、前記特定操作変数の操作量を算出する。
前記特定操作変数は、パレットスピード、ベッド下流量、凝結材比及び原料水分割合のうち少なくとも1つを含む。
(1)から(6)のいずれかの焼結プロセスの制御方法で算出された前記特定操作変数の操作量をガイダンス操作量として提示するガイダンス操作量提示ステップを含む。
(7)に記載の操業ガイダンス方法によって提示されるガイダンス操作量を用いて焼結鉱を製造する。
(1)から(6)のいずれかの焼結プロセスの制御方法で算出された前記特定操作変数の操作量を用いて焼結鉱を製造する。
焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、前記焼結プロセスを制御する焼結プロセスの制御装置であって、
前記物理モデルを用いて現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測部と、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出部と、を備える。
(10)の焼結プロセスの制御装置によって算出された前記特定操作変数の操作量をガイダンス操作量として提示するガイダンス操作量提示部を備える。
操業データサーバと、焼結プロセスの制御装置と、端末装置と、を備える焼結操業ガイダンスシステムであって、
前記操業データサーバは、焼結プロセスの各機器から取得した操業データと前記焼結プロセスの操業管理目標値を保存するデータベースを備え、
前記焼結プロセスの制御装置は、
焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測部と、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出部と、
前記特定操作変数の操作量を含むガイダンス操作量を出力するガイダンス操作量提示部と、
前記操作量算出部によって算出された前記特定操作変数の操作量又はオペレータによって修正された前記特定操作変数の操作量を前記焼結プロセスの各機器に送信する操作量送信部と、を備え、
前記端末装置は、
前記焼結プロセスの制御装置から前記ガイダンス操作量を取得して表示するガイダンス操作量表示部と、
前記オペレータによる前記特定操作変数の操作量の変更入力を取得する操作量変更入力部と、
前記変更入力を前記焼結プロセスの制御装置に送信する操作量変更入力送信部と、を備える。
焼結プロセスの制御装置から、特定操作変数の操作量を含むガイダンス操作量を取得して表示するガイダンス操作量表示部と、
オペレータによる特定操作変数の操作量の変更入力を取得する操作量変更入力部と、
前記変更入力を前記焼結プロセスの制御装置に送信する操作量変更入力送信部と、を備え、
前記特定操作変数の操作量は、前記焼結プロセスの制御装置によって、焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて求められる、現在の操作変数が保持された場合の将来の制御変数の第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように算出される。
10A 焼結プロセス制御演算サーバ
11 記憶部
12 第1の予測部
13 第2の予測部
14 ステップ応答算出部
15 操作量算出部
16 ガイダンス操作量提示部
17 操作量送信部
30 表示部
30A 端末装置
31 ガイダンス操作量表示部
32 操作量変更入力部
33 操作量変更入力送信部
60 操業データサーバ
Claims (13)
- 焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、前記焼結プロセスを制御する焼結プロセスの制御方法であって、
前記物理モデルを用いて現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測ステップと、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出ステップと、を含む、焼結プロセスの制御方法。 - 前記物理モデルを用いて前記特定操作変数が変更された場合の将来の前記制御変数の第2の予測値を求める第2の予測ステップと、
前記第1の予測値及び前記第2の予測値に基づいて前記特定操作変数についてのステップ応答を算出するステップ応答算出ステップと、を含む、請求項1に記載の焼結プロセスの制御方法。 - 前記制御変数は、前記焼結原料の温度分布の特徴量である、請求項1又は2に記載の焼結プロセスの制御方法。
- 前記制御変数はBRP又はBTPである、請求項3に記載の焼結プロセスの制御方法。
- 前記操作量算出ステップは、前記偏差に対応する項と前記特定操作変数の操作量に対応する項とを有する評価関数が最小化又は最大化するように、前記特定操作変数の操作量を算出する、請求項1から4のいずれか一項に記載の焼結プロセスの制御方法。
- 前記特定操作変数は、パレットスピード、ベッド下流量、凝結材比及び原料水分割合のうち少なくとも1つを含む、請求項1から5のいずれか一項に記載の焼結プロセスの制御方法。
- 請求項1から6のいずれか一項に記載の焼結プロセスの制御方法で算出された前記特定操作変数の操作量をガイダンス操作量として提示するガイダンス操作量提示ステップを含む、操業ガイダンス方法。
- 請求項7に記載の操業ガイダンス方法によって提示されるガイダンス操作量を用いて焼結鉱を製造する、焼結鉱の製造方法。
- 請求項1から6のいずれか一項に記載の焼結プロセスの制御方法で算出された前記特定操作変数の操作量を用いて焼結鉱を製造する、焼結鉱の製造方法。
- 焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、前記焼結プロセスを制御する焼結プロセスの制御装置であって、
前記物理モデルを用いて現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測部と、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出部と、を備える、焼結プロセスの制御装置。 - 請求項10に記載の焼結プロセスの制御装置によって算出された前記特定操作変数の操作量をガイダンス操作量として提示するガイダンス操作量提示部を備える、操業ガイダンス装置。
- 操業データサーバと、焼結プロセスの制御装置と、端末装置と、を備える焼結操業ガイダンスシステムであって、
前記操業データサーバは、焼結プロセスの各機器から取得した操業データと前記焼結プロセスの操業管理目標値を保存するデータベースを備え、
前記焼結プロセスの制御装置は、
焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて、現在の操作変数が保持された場合の将来の制御変数の第1の予測値を求める第1の予測部と、
前記第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように、前記特定操作変数の操作量を算出する操作量算出部と、
前記特定操作変数の操作量を含むガイダンス操作量を出力するガイダンス操作量提示部と、
前記操作量算出部によって算出された前記特定操作変数の操作量又はオペレータによって修正された前記特定操作変数の操作量を前記焼結プロセスの各機器に送信する操作量送信部と、を備え、
前記端末装置は、
前記焼結プロセスの制御装置から前記ガイダンス操作量を取得して表示するガイダンス操作量表示部と、
前記オペレータによる前記特定操作変数の操作量の変更入力を取得する操作量変更入力部と、
前記変更入力を前記焼結プロセスの制御装置に送信する操作量変更入力送信部と、を備える、焼結操業ガイダンスシステム。 - 焼結プロセスの制御装置から、特定操作変数の操作量を含むガイダンス操作量を取得して表示するガイダンス操作量表示部と、
オペレータによる特定操作変数の操作量の変更入力を取得する操作量変更入力部と、
前記変更入力を前記焼結プロセスの制御装置に送信する操作量変更入力送信部と、を備え、
前記特定操作変数の操作量は、前記焼結プロセスの制御装置によって、焼結機内の機長方向及び厚み方向の焼結原料の温度分布を含む焼結プロセスの状態を計算可能な物理モデルを用いて求められる、現在の操作変数が保持された場合の将来の制御変数の第1の予測値と、前記操作変数の一部である特定操作変数が単位量だけ変更された場合のステップ応答とに基づく前記制御変数の重ね合わせ予測値と目標値との偏差が低減するように算出される、端末装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023578860A JP7537636B2 (ja) | 2022-09-05 | 2023-08-31 | 焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置 |
EP23863106.3A EP4545661A1 (en) | 2022-09-05 | 2023-08-31 | Sintering process control method, operation guidance method, sintered ore manufacturing method, sintering process control device, operation guidance device, sintering operation guidance system, and terminal device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-141017 | 2022-09-05 | ||
JP2022141017 | 2022-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024053568A1 true WO2024053568A1 (ja) | 2024-03-14 |
Family
ID=90191094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/032001 WO2024053568A1 (ja) | 2022-09-05 | 2023-08-31 | 焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4545661A1 (ja) |
JP (1) | JP7537636B2 (ja) |
WO (1) | WO2024053568A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223940A (ja) * | 1985-07-24 | 1987-01-31 | Kobe Steel Ltd | 連続焼結機における焼結制御方法 |
JP2006307259A (ja) * | 2005-04-27 | 2006-11-09 | Jfe Steel Kk | 焼結機のパレットスピード制御方法 |
JP2013044491A (ja) * | 2011-08-25 | 2013-03-04 | Nippon Steel & Sumitomo Metal Corp | 焼結プロセス操業状態監視装置、焼結プロセス操業状態監視方法、及びコンピュータプログラム |
-
2023
- 2023-08-31 JP JP2023578860A patent/JP7537636B2/ja active Active
- 2023-08-31 WO PCT/JP2023/032001 patent/WO2024053568A1/ja active Application Filing
- 2023-08-31 EP EP23863106.3A patent/EP4545661A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223940A (ja) * | 1985-07-24 | 1987-01-31 | Kobe Steel Ltd | 連続焼結機における焼結制御方法 |
JP2006307259A (ja) * | 2005-04-27 | 2006-11-09 | Jfe Steel Kk | 焼結機のパレットスピード制御方法 |
JP2013044491A (ja) * | 2011-08-25 | 2013-03-04 | Nippon Steel & Sumitomo Metal Corp | 焼結プロセス操業状態監視装置、焼結プロセス操業状態監視方法、及びコンピュータプログラム |
Non-Patent Citations (1)
Title |
---|
YAMAOKA ET AL., ISIJ INTERNATIONAL, vol. 45, no. 4, pages 522 |
Also Published As
Publication number | Publication date |
---|---|
JP7537636B2 (ja) | 2024-08-21 |
EP4545661A1 (en) | 2025-04-30 |
JPWO2024053568A1 (ja) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7418301B2 (en) | Method and apparatus for approximating gains in dynamic and steady-state processes for prediction, control, and optimization | |
US20110208341A1 (en) | Method and system for controlling an industrial process | |
EP3989013B1 (en) | Method for controlling process, operation guidance method, method for operating blast furnace, method for producing hot metal, and device for controlling process | |
JP2019196515A (ja) | 焼結鉱製造設備の制御装置、焼結鉱製造設備および焼結鉱の製造方法 | |
JP2023025646A (ja) | 制御装置、方法及びプログラム | |
JP5608961B2 (ja) | 焼結装置及び焼結方法 | |
WO2024053568A1 (ja) | 焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置 | |
Nistala et al. | Virtual Sinter®: digital twin for integrated sinter plants | |
WO2023286653A1 (ja) | 焼結プロセスの状態推定方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの状態推定装置、操業ガイダンス装置、焼結操業ガイダンスシステム、焼結操業ガイダンスサーバ及び端末装置 | |
WO2023008242A1 (ja) | 溶銑温度の予測方法、操業ガイダンス方法、溶銑の製造方法、溶銑温度の予測装置、操業ガイダンス装置、高炉操業ガイダンスシステム、高炉操業ガイダンスサーバ及び端末装置 | |
JP7679812B2 (ja) | プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置 | |
JP7687439B2 (ja) | プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置 | |
WO2024202882A1 (ja) | 返鉱制御装置、返鉱制御方法及び焼結鉱の製造方法 | |
WO2025146772A1 (ja) | 焼結鉱強度制御装置、焼結鉱強度制御方法、焼結鉱の製造方法、予測モデル生成方法、焼結鉱強度予測方法、焼結操業ガイダンスシステム及び端末装置 | |
TWI848627B (zh) | 燒結機的運行管理方法、燒結礦的製造方法及控制裝置 | |
JP7697592B2 (ja) | Si濃度予測方法、操業ガイダンス方法、Si濃度予測装置、操業ガイダンス装置、操業ガイダンスシステム及び端末装置 | |
RU2812444C1 (ru) | Система и способ управления распределением материала на основе прогнозирования толщины слоя материала | |
Kronberger et al. | Latest generation sinter process optimization systems | |
WO2023189329A1 (ja) | 焼結鉱の製造方法及び制御装置 | |
Shiau et al. | A Visualization Technique to Predict Abnormal Channeling Phenomena in the Blast Furnace Operation | |
JP2022108041A (ja) | 学習モデル生成方法、学習モデル生成装置、高炉の制御ガイダンス方法、及び溶銑の製造方法 | |
JP2024015703A (ja) | 焼結鉱の品質予測方法及び焼結鉱の歩留予測方法 | |
Matthes et al. | Identification and Control of the Waelz Process Using Infrared Image Processing | |
Shukla et al. | Improving Fuel Efficiency Through Carbon-Direct Rate Reduction for Sustainable Blast Furnace Operation | |
JP2022091600A (ja) | 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法及び操業ガイダンス装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023578860 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23863106 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023863106 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023863106 Country of ref document: EP Effective date: 20250124 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202517011473 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112025003222 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 202517011473 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2023863106 Country of ref document: EP |