WO2024053464A1 - 分析システム、分析方法 - Google Patents

分析システム、分析方法 Download PDF

Info

Publication number
WO2024053464A1
WO2024053464A1 PCT/JP2023/031024 JP2023031024W WO2024053464A1 WO 2024053464 A1 WO2024053464 A1 WO 2024053464A1 JP 2023031024 W JP2023031024 W JP 2023031024W WO 2024053464 A1 WO2024053464 A1 WO 2024053464A1
Authority
WO
WIPO (PCT)
Prior art keywords
color information
concentration
color
detection
substance
Prior art date
Application number
PCT/JP2023/031024
Other languages
English (en)
French (fr)
Inventor
慶音 西山
信行 古園井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024053464A1 publication Critical patent/WO2024053464A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator

Definitions

  • the present invention relates to an analysis system and an analysis method.
  • Patent Document 1 does not take into account the influence of the pH value of the specimen on the change in color of the reagent. Furthermore, in the technique described in Non-Patent Document 1, it is unclear to what extent the pH value of the solution is corrected. Furthermore, in the technique described in Non-Patent Document 1, in order to reduce the influence of the pH value on the color of the colorimetric reagent, it is necessary to add one pH adjustment layer to the device, which increases cost. As described above, with conventional techniques, it has been difficult to improve the accuracy of measurement results of substance concentrations using colorimetric reagents. One aspect aims to improve the accuracy of measurement results.
  • a sensor that includes a plurality of detection units each including a colorimetric reagent and detects a plurality of types of substances from the same sample;
  • An analysis system comprising: an analyzer that performs measurement; Among the detection units, color information indicating the color of a colorimetric reagent included in the detection unit that detects the first substance, and color information indicating the color of the colorimetric reagent included in the detection unit other than the detection unit that detects the first substance. and a concentration calculation unit that calculates the concentration of the one substance using the color information shown in FIG.
  • the purpose is to improve the accuracy of measurement results.
  • FIG. 1 is a diagram showing an example of a system configuration of an analysis system according to a first embodiment. It is a figure explaining a sensor. It is a figure explaining the relationship between pH value, the concentration of sodium ions, and the color of a reagent. It is a diagram showing an example of the hardware configuration of an analysis device.
  • FIG. 2 is a diagram illustrating the functional configuration of the analyzer of the first embodiment.
  • FIG. 3 is a diagram illustrating an example of teacher data when generating trained data. It is a first flowchart explaining the processing of the analyzer of the first embodiment. It is a second flowchart explaining the processing of the analyzer of the first embodiment.
  • FIG. 2 is a diagram showing an example of a system configuration of an analysis system according to a second embodiment.
  • FIG. 3 is a first diagram illustrating a display example of a determination result.
  • FIG. 7 is a second diagram showing a display example of a determination result.
  • FIG. 1 is a diagram showing an example of the system configuration of the analysis system of the first embodiment.
  • the analysis system 100 of this embodiment includes a sensor 200, a detector 300, and an analysis device 400.
  • the sensor 200 is sealed with a plurality of base materials impregnated with a plurality of different types of reagents.
  • the reagent is a colorimetric reagent that changes color in response to a substance contained in the specimen, and the sensor 200 detects multiple types of substances and characteristics contained in the specimen by the change in color of each colorimetric reagent.
  • the senor 200 of the present embodiment is a sensor that has a plurality of detection sections containing a colorimetric reagent, and each detection section detects a plurality of types of substances and characteristics from the same specimen.
  • one of the substances contained in the sample is assumed to be a target substance, and the concentration of the target substance is measured.
  • a target substance whose concentration is to be measured among substances contained in a specimen will be referred to as a measurement target.
  • the specimen may be, for example, sweat or saliva collected from a human body.
  • the object to be measured is sodium ion (Na + ), which is a type of electrolyte contained in the sample, and the concentration of the object to be measured is the concentration of sodium ion (Na + ).
  • the electrolyte may be chloride ion (Cl - ) in addition to sodium ion (Na + ).
  • the detector 300 of this embodiment extracts color information indicating the color of each detection unit included in the sensor 200.
  • the detector 300 extracts color information indicating the color of the reagent infiltrated into the substrate placed on the sensor 200.
  • the color information in this embodiment may be, for example, RGB values (R value, G value, B value).
  • the detector 300 of this embodiment may be, for example, an imaging device or a spectrometer.
  • the detector 300 of this embodiment may be any device as long as it can detect color information indicating the color of the reagent.
  • the analyzer 400 of this embodiment acquires color information of each detection section of the sensor 200 from the detector 300, calculates the concentration of the measurement target from the color information, and outputs it as a measurement result.
  • FIG. 2 is a diagram explaining the sensor.
  • the sensor 200 of this embodiment includes a detection section 210, a detection section 220, and a detection section 230.
  • Each of the detection section 210, the detection section 220, and the detection section 230 may be a base material impregnated with a reagent.
  • the base material may be, for example, filter paper or nonwoven fabric.
  • the detection section 210, the detection section 220, and the detection section 230 are enclosed in a transparent member, and an inflow path is provided for the sample to reach the detection sections 210, 220, and 230. good.
  • the reagent included in the detection unit 210 changes color depending on the pH value of the sample
  • the reagent included in the detection unit 220 changes color depending on the concentration of sodium ions (Na + ).
  • the reagent included in the detection unit 230 may change color depending on the detection of amino acids.
  • Amino acids include, for example, valine, leucine, isoleucine, and the like.
  • the number of detection units that the sensor 200 has is not limited to three as shown in FIG. 2, but may be any number.
  • the types of reagents included in sensor 200 are not limited to three types.
  • the sensor 200 may include a detection part (reagent) whose color changes depending on, for example, lactic acid, uric acid, protein, lipid, ketone, hormone, mRNA, iron, or the like.
  • a detection part (reagent) whose color changes depending on, for example, lactic acid, uric acid, protein, lipid, ketone, hormone, mRNA, iron, or the like.
  • FIG. 3 is a diagram illustrating the relationship between pH value, sodium ion concentration, and reagent color.
  • the horizontal axis indicates the concentration of sodium ions contained in the sample, and the vertical axis indicates color information of a reagent for detecting sodium ions.
  • the straight line L1 shown in FIG. 3 shows the relationship between the concentration of sodium ions and the color information indicating the color of the reagent that reacts with sodium ions when the pH value of the specimen is X1
  • the straight line L2 shows the relationship between the pH value of the specimen
  • the straight line L3 shows the relationship between the concentration of sodium ions and the color information indicating the color of the reagent that reacts with sodium ions when the value is X2.
  • concentration and color information indicating the color of a reagent that reacts with sodium ions is shown.
  • the concentration of sodium ions will differ depending on whether the pH value of the sample is X1 or X2. , X3.
  • the concentration of sodium ions is calculated by taking into account the influence of the pH value of the specimen on the color of the reagent that reacts with sodium ions.
  • the color information indicating the color of the detection unit 210 that detects the pH value of the sample and the color information indicating the color of the detection unit 220 that detects sodium ions are used to detect sodium ions. Measure concentration.
  • the influence of the pH value of the specimen on the color change of the reagent that reacts with sodium ions can thereby be excluded, and the accuracy of the measurement results can be improved.
  • FIG. 4 is a diagram showing an example of the hardware configuration of the analysis device.
  • the analysis device 400 of this embodiment includes a processor 41, a memory 42, an auxiliary storage device 43, an I/F (Interface) device 44, a communication device 45, and a drive device 46. Note that each piece of hardware in the analyzer 400 is interconnected via a bus 47.
  • the processor 41 includes various computing devices such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the processor 41 reads various programs (for example, learning programs, etc.) onto the memory 42 and executes them.
  • the memory 42 includes main storage devices such as ROM (Read Only Memory) and RAM (Random Access Memory).
  • the processor 41 and the memory 42 form a so-called computer, and when the processor 41 executes various programs read onto the memory 42, the computer realizes the functions of the analysis device 400, which will be described later.
  • the auxiliary storage device 43 stores various programs and various data used when the various programs are executed by the processor 41.
  • the I/F device 44 is a connection device that connects an operating device 48 and a display device 49, which are examples of external devices, to the analysis device 400.
  • the I/F device 44 receives operations on the analysis device 400 via the operating device 48. Further, the I/F device 44 may output the results of the processing by the analysis device 400 and display them to the administrator of the analysis device 400 via the display device 49.
  • the communication device 45 is a communication device for communicating with another device (in this embodiment, the detector 300).
  • the drive device 46 is a device for setting the recording medium 50.
  • the recording medium 50 herein includes a medium for recording information optically, electrically, or magnetically, such as a CD-ROM, a flexible disk, or a magneto-optical disk. Further, the recording medium 50 may include a semiconductor memory or the like that electrically records information, such as a ROM or a flash memory.
  • the various programs to be installed in the auxiliary storage device 43 can be installed by, for example, setting the distributed recording medium 50 in the drive device 46 and reading out the various programs recorded on the recording medium 50 by the drive device 46. be done.
  • the various programs installed in the auxiliary storage device 43 may be installed by being downloaded from the network via the communication device 45.
  • FIG. 5 is a diagram illustrating the functional configuration of the analyzer of the first embodiment.
  • the analysis device 400 of this embodiment includes a color information acquisition section 410, a density calculation section 420, and an output section 430.
  • the color information acquisition unit 410 of this embodiment acquires the color information extracted by the detector 300 from each of the detection units 210, 220, and 230 of the sensor 200.
  • the color information in this embodiment indicates an image of the sensor 200 captured after the reagents included in the detection units 210, 220, and 230 react with the specimen. It may be the RGB values of the image of each detection unit extracted from the image data.
  • the color information may include luminance indicating the brightness of the image of each detection unit and color difference.
  • the density calculation unit 420 calculates the density of the measurement target using, for example, the color information acquired by the color information acquisition unit 410.
  • the concentration calculation unit 420 of this embodiment has a learned model 421.
  • the concentration calculation unit 420 may be a storage unit that holds the learned model 421.
  • the trained model 421 of this embodiment is a model generated by performing machine learning using pre-created teacher data, and is a model that is generated by performing machine learning using pre-created teacher data, and the color information of the detection unit 210 and the color information of the detection unit 220 are input. Then, the pH value of the sample and the concentration of sodium ions are output. Details of the training data of the trained model 421 will be described later.
  • the density calculation unit 420 of this embodiment inputs the color information acquired by the color information acquisition unit 410 into the trained model 421, and acquires the density of the measurement target output from the trained model 421 as a measurement result.
  • the concentration calculation unit 420 obtains the result of measuring the concentration of the measurement target using the learned model 421, but the concentration calculation unit 420 may calculate the concentration of the measurement target using other methods. You may also obtain the results of the measurement. Specifically, when the relationship between the color and concentration of the reagent is expressed by a simple regression equation, the concentration calculation unit 420 may use this regression equation and does not need to use the trained model 421. .
  • the output unit 430 outputs the concentration of the measurement object calculated by the concentration calculation unit 420.
  • FIG. 6 is a diagram illustrating an example of teacher data when generating trained data.
  • the teacher data 60 shown in FIG. 6 is a data set that uses the color information of the detection unit 210 and the color information of the detection unit 220 as input data, and uses the pH value of the sample and the concentration of sodium ions as output data.
  • the color information of the detection section 210 is color information indicating the color of the reagent contained in the detection section 210
  • the color information of the detection section 220 is color information indicating the color of the reagent contained in the detection section 220.
  • the color information of the detection unit 210 and the color information of the detection unit 220 include RGB values.
  • the trained model 421 of this embodiment is a trained model generated by machine learning using the teacher data shown in FIG.
  • the sodium ion concentration and pH value are output according to the combination of information.
  • the trained model 421 of this embodiment may be generated in the analysis device 400, or may be generated in a device other than the analysis device 400.
  • a learning section is provided in the analysis device 400, and machine learning is performed using the teacher data 60 as pre-processing for the processing described later to generate the trained model 421. Just do it.
  • the teacher data 60 is a data set in which color information of two types of reagents and two types of values corresponding to the two types of reagents are associated with each other, but the present invention is not limited to this.
  • the teacher data 60 may be a data set in which color information of three or more types of reagents and three or more types of values corresponding to each of the three or more types of reagents are associated.
  • the trained model 421 is generated by machine learning using such training data, even if the sensor 200 includes three or more detection units, the color information of the reagent included in each detection unit is By inputting this into the trained model 421, it is possible to obtain values corresponding to each of the reagents included in each detection unit.
  • FIG. 7 is a first flowchart explaining the processing of the analyzer of the first embodiment.
  • the analyzer 400 of this embodiment uses the color information acquisition unit 410 to acquire color information of each detection unit of the sensor 200 extracted by the detector 300 (step S701).
  • the analyzer 400 and the detector 300 may be connected, for example, by wireless communication, and the color information may be acquired by the analyzer 400 through communication.
  • the analyzer 400 uses the color information acquired in step S701 to calculate the concentration of the measurement target by the concentration calculation unit 420 (step S702).
  • the analyzer 400 outputs the concentration of the measurement object obtained by the concentration calculation unit 420 using the output unit 430 (step S703).
  • the detector 300 will be described as an imaging device.
  • the color of the reagent contained in each detection section changes.
  • the detector 300 captures image data of the sensor 200 after the color of the reagent contained in the detection units 210, 220, and 230 has changed.
  • the color information acquisition unit 410 of the analysis device 400 acquires image data from the detector 300, and identifies the images of the detection units 210, 220, and 230 from among the images indicated by the acquired image data. Specifically, for example, the color information acquisition unit 410 may specify a circular image included in the image of the sensor 200 as an image of each detection unit.
  • the color information acquisition unit 410 extracts color information from the identified image. Specifically, the color information acquisition unit 410 may extract the RGB values, brightness, color difference, etc. of the identified image as color information.
  • the density calculation unit 420 inputs this color information to the learned model 421, and outputs the learned model 421. Obtain the pH value and concentration of sodium ions.
  • the color information input to the learned model 421 does not need to include the color information of the detection unit 230.
  • the color information of the detection unit 210 and the color information of the detection unit 220 may be input to the trained model 421.
  • the trained model 421 only needs to output the concentration of sodium ions as the value of the measurement target, and does not need to output the pH value.
  • information specifying the measurement target may be input to the trained model 421 along with the color information.
  • image data is acquired from the detector 300, and color information of the detection units 210, 220, and 230 is extracted in the analysis device 400, but the present invention is not limited to this. Extraction of color information may be performed at the detector 300.
  • the color information of the detection units 210, 220, and 230 is extracted based on the image data of the sensor 200, and the extracted color information is input to the learned model 421, but this is not limited to this. Not done.
  • the image data captured by the detector 300 may be input to the learned model 421 as is.
  • the learned model 421 may extract color information from input image data.
  • the color information of the reagent after reacting with the analyte contained in the sample and the analyte other than the analyte contained in the sample are used.
  • the concentration of the substance to be measured is obtained using the color information of the reagent that reacts with the substance and the characteristics of the sample.
  • color information of a reagent that reacts with sodium ions and color information of a reagent that reacts with the pH value of the sample are used.
  • the concentration of sodium ions is measured using color information.
  • the influence of the pH value of the specimen on the color of the reagent that reacts with sodium ions can be excluded, and the measurement accuracy of the sodium ion concentration output as the measurement result can be improved. can be improved.
  • ⁇ Modified example> A modification of this embodiment will be described below with reference to FIG. 8.
  • the detector 300 is an imaging device, before extracting color information from the image data captured by the detector 300, correction is performed on the image data to reduce the influence of the external environment.
  • FIG. 8 is a second flowchart illustrating the processing of the analyzer of the first embodiment.
  • the analyzer 400 of this embodiment uses the color information acquisition unit 410 to acquire color information of the detection units 210, 220, and 230 included in the sensor 200 from the detector 300 (step S801). Specifically, the color information acquisition unit 410 extracts color information from the detection units 210 , 220 , and 230 based on the image data acquired from the detector 300 .
  • the analyzer 400 corrects the extracted color information using the density calculation unit 420 (step S802).
  • the correction performed here is, for example, correction performed by the density calculation unit 420 to suppress the influence of the environment on the color when the image is captured, and correction using a predetermined reference color. good.
  • the environment when an image is captured includes, for example, the angle of the detector 300 when the image is captured, the distance from the sensor 200 to the detector 300, and the illuminance of surrounding illumination and external light when the image is captured. color temperature, etc.
  • the density calculation unit 420 uses the corrected color information to calculate the density of the measurement object (step S803). Specifically, the density calculation unit 420 inputs the corrected color information to the learned model 421, and obtains the density of the measurement object output from the learned model 421 as a measurement result. Subsequently, the analyzer 400 outputs the concentration of the measurement target using the output unit 430 (step S804).
  • the environment when the image data of the detection unit included in the sensor 200 is acquired is changed to It is possible to exclude the influence of color information on color information, and improve the accuracy of measurement results.
  • the color information is corrected in the analyzer 400, but the present invention is not limited to this; the color information may be corrected in the detector 300. In that case, since the color information acquisition unit 410 acquires the corrected color information from the detector 300, the color information does not need to be corrected in the analysis device 400.
  • the second embodiment will be described below with reference to the drawings.
  • the second embodiment differs from the first embodiment in that a terminal device is used instead of the detector 300, and that information obtained according to the measurement results is output to the terminal device. Therefore, in the following explanation of the second embodiment, differences from the first embodiment will be explained, and functional configurations similar to those of the first embodiment will be denoted by the reference numerals used in the explanation of the first embodiment. The same reference numerals as in the above will be given, and the explanation thereof will be omitted.
  • FIG. 9 is a diagram showing an example of the system configuration of the analysis system of the second embodiment.
  • the analysis system 100A of this embodiment includes a sensor 200, a terminal device 500, and an analysis device 400A.
  • the terminal device 500 and the analysis device 400A are connected via a network such as the Internet.
  • the analysis device 400A of this embodiment may be, for example, a server device provided on the Internet.
  • the terminal device 500 of this embodiment is a portable computer having an imaging device, and specifically, is a smartphone or a tablet-type terminal device.
  • the sensor 200 may be attached to, for example, the skin of the user of the terminal device 500. Further, in this embodiment, an image of the sensor 200 attached to the human body may be captured by the imaging device included in the terminal device 500. In other words, the user of the terminal device 500 is the user of the analysis system 100A.
  • FIG. 10 is a diagram illustrating the functional configuration of the analyzer according to the second embodiment.
  • the analysis device 400A of this embodiment includes a color information acquisition section 410, a concentration calculation section 420, a state determination section 450, and a display control section 460.
  • the state determination unit 450 determines the state of the user of the terminal device 500 using the concentration of the measurement object calculated by the concentration calculation unit 420. Specifically, the state determination unit 450 may make a determination regarding the amount of water, which is one of the items indicating the state of the user of the terminal device 500, for example. In other words, the state determining unit 450 may determine whether the user of the terminal device 500 is dehydrated.
  • the state determination unit 450 of the present embodiment uses the characteristics and concentration of the specimen detected by the reagent included in the detection unit of the sensor 200 among the items indicating the state of the user of the terminal device 500. It is only necessary to make a judgment for items for which it is possible to make a judgment. In other words, the state determination unit 450 can determine the state of the specimen collection source using the characteristics, concentration, etc. of the specimen detected by the reagent included in the detection unit included in the sensor 200.
  • the display control unit 460 causes the terminal device 500 to display a screen according to the result of the determination by the state determination unit 450.
  • FIG. 11A, FIG. 11B, and FIG. 11C are diagrams showing display examples of the terminal device.
  • a screen 501 shown in FIG. 11A is an example of a guide screen for capturing an image of the sensor 200, and a screen 502 shown in FIG. , a screen 503 shown in FIG. 11C is a second diagram showing a display example of the determination result by the state determination unit 450.
  • Screen 501 includes display areas 501a and 501b and operation buttons 501e.
  • a message prompting the user of the terminal device 500 to take an image of the sensor 200 is displayed in the display area 501a.
  • a guide image 501c for capturing an image of the sensor 200 is displayed in the display area 501b.
  • the image 501d of the sensor 200 is placed within the area indicated by the guide image 501c in the display area 501b.
  • the operation button 501e is an operation button for instructing to capture the image data of the image displayed in the display area 501b.
  • the terminal device 500 captures the image displayed in the display area 501b and transmits it to the analysis device 400A as image data.
  • the screen 502 shown in FIG. 11B includes a display area 502a and operation buttons 502b.
  • the determination result by the state determination unit 450 is displayed in the display area 502a.
  • the operation button 502b is an operation button for displaying a detailed screen of the determination result by the state determination unit 450.
  • the display area 502a displays the result of determining whether the user of the terminal device 500 is in a state where the amount of water is insufficient. Specifically, a message indicating that the amount of water is insufficient is displayed in the display area 502a.
  • the value of the substance detected from the specimen by the detection unit included in the sensor 200 may be displayed in the display area 502a.
  • protein concentration, sugar concentration, etc. are displayed in the display area 502a as values of substances detected by the sensor 200.
  • the screen 502 displayed on the terminal device 500 transitions to a screen 503 shown in FIG. 11C.
  • Screen 503 shown in FIG. 11C includes display areas 503a, 503b, and 503c.
  • the display areas 503a and 503b display a history of values measured using the sensor 200 in the past, a list of values detected by the detection unit included in the sensor 200, and the like. Furthermore, the display areas 503a and 503b may display a determination result as to whether or not the value measured by the sensor 200 is appropriate.
  • a message indicating the status of the user of the terminal device 500 determined from the values displayed in the display areas 503a and 503b is displayed in the display area 503c.
  • the display area 503a displays changes in the concentration of amino acids detected in the past. Further, in the display area 503b, a list is displayed in which the substances whose concentration is measured by the sensor 200 and the concentration of the substance that is the measurement result are associated with each other. Furthermore, in the example of FIG. 11C, in the display area 503b, the determination result of determining whether or not the concentration of each substance whose concentration was measured is appropriate as the concentration in the sample (sweat) collected from the human body. is displayed.
  • This determination result may be, for example, a result of determining whether or not it is appropriate based on a concentration threshold value for each substance that is preset in the state determination unit 450.
  • a message is displayed in the display area 503c shown in FIG. 11C to inform the user of the terminal device 500 that the user's immune system is in a weakened state.
  • a state of the user may be determined according to the concentration of the substance displayed in the display areas 503a, 503b, the change in the concentration of the substance from the past to the present, and the like.
  • a sample can be collected from the user by simply attaching the sensor 200 to the user of the terminal device 500.
  • the user's condition at that time can be determined using the sample collected from the user, and the determination result can be notified to the user, making it easy to inform the user of his or her own condition. can be made to understand.
  • the sample collection source is a human body; however, the sample collection source is not limited to this, and may be any source that can collect a sample that can reach the detection section of the sensor 200. It can be anything.
  • the concentration calculation unit 420 calculates the concentration of the measurement target by inputting the color information of the plurality of detection units acquired by the color information acquisition unit 410 to the trained model 421.
  • the concentration calculation unit 420 calculates the concentration of the measurement target by inputting the color information of the plurality of detection units acquired by the color information acquisition unit 410 to the trained model 421.
  • it is not limited to this.
  • the concentration calculation unit 420 may calculate the concentration of the measurement target object based on the color information of the plurality of detection units acquired by the color information acquisition unit 410, using a method other than the method using the learned model 421.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

比色試薬を含む検出部を複数有し、同一の検体から複数種類の物質を検出するセンサと、前記複数種類の物質のうちの、少なくとも何れか一の物質の濃度を測定する分析装置と、を有する分析システムであって、前記分析装置は、複数の前記検出部のそれぞれに含まれる比色試薬の色を示す色情報を取得する色情報取得部と、複数の前記検出部のうち、前記一の物質を検出する検出部に含まれる比色試薬の色を示す色情報と、前記一の物質を検出する検出部以外の検出部に含まれる比色試薬の色を示す色情報と、を用いて、前記一の物質の濃度を算出する濃度算出部と、を有する、分析システムである。

Description

分析システム、分析方法
 本発明は、分析システム、分析方法に関する。
 従来では、比色試薬が複数配置された試験ユニットにおいて、比色試薬が分析対象物に反応した後の試験ユニットの画像を撮像し、撮像された画像に基づき分析対象物の濃度を測定する測定方法が知られている(特許文献1)。また、近年では、比色試薬を用いて溶液体に含まれる物質の濃度を測定する際に、溶液のpH値が、比色試薬の色の変化に影響することが知られている(非特許文献1)。
特開2017-53849号公報
Y. Suenaga, et al., BUNSEKI KAGAKU 70, 165 (2021).
 特許文献1に記載された測定方法では、検体のpH値が試薬の色の変化に及ぼす影響について考慮されていない。また、非特許文献1に記載された技術では、溶液のpH値がどの程度補正されているか不明である。さらに、非特許文献1に記載された技術では、pH値による比色試薬の色への影響を低減する場合には、デバイスにpH調整層を1層追加する必要があり、コストが増大する。このように、従来の技術では、比色試薬を用いた物質の濃度の測定結果の精度を向上させることは困難であった。
 一つの側面では、測定結果の精度を向上させることを目的としている。
 一態様によれば、比色試薬を含む検出部を複数有し、同一の検体から複数種類の物質を検出するセンサと、前記複数種類の物質のうちの、少なくとも何れか一の物質の濃度を測定する分析装置と、を有する分析システムであって、前記分析装置は、複数の前記検出部のそれぞれに含まれる比色試薬の色を示す色情報を取得する色情報取得部と、複数の前記検出部のうち、前記一の物質を検出する検出部に含まれる比色試薬の色を示す色情報と、前記一の物質を検出する検出部以外の検出部に含まれる比色試薬の色を示す色情報と、を用いて、前記一の物質の濃度を算出する濃度算出部と、を有する、分析システムである。
 測定結果の精度を向上させることを目的としている。
第一の実施形態の分析システムのシステム構成の一例を示す図である。 センサについて説明する図である。 pH値と、ナトリウムイオンの濃度と、試薬の色との関係を説明する図である。 分析装置のハードウェア構成の一例を示す図である。 第一の実施形態の分析装置の機能構成を説明する図である。 学習済みデータを生成する際の教師データの一例を示す図である。 第一の実施形態の分析装置の処理を説明する第一のフローチャートである。 第一の実施形態の分析装置の処理を説明する第二のフローチャートである。 第二の実施形態の分析システムのシステム構成の一例を示す図である。 第二の実施形態の分析装置の機能構成を説明する図である。 案内画面の一例を示す図である。 判定結果の表示例を示す第一の図である。 判定結果の表示例を示す第二の図である。
 (第一の実施形態)
 以下に図面を参照して、本実施形態について説明する。はじめに、図1を参照して、本実施形態の分析システムについて説明する。
 図1は、第一の実施形態の分析システムのシステム構成の一例を示す図である。本実施形態の分析システム100は、センサ200と、検出器300と、分析装置400とを含む。
 センサ200は、種類の異なる複数の試薬のそれぞれを浸透させた複数の基材が配置されて封入されている。試薬は、検体に含まれる物質に反応して色が変化する比色試薬であり、センサ200は、各比色試薬の色の変化によって、検体に含まれる複数種類の物質や特性を検出する。
 以下の説明では、比色試薬を浸透させた基材を検出部と表現する。したがって、本実施形態のセンサ200は、比色試薬を含む検出部を複数有し、同一の検体から、検出部毎に複数種類の物質や特性を検出するセンサである。
 また、本実施形態の分析システム100では、検体に含まれる物質のうちの1つを、対象物質とし、対象物質の濃度を測定するものとする。以下の説明では、検体に含まれる物質のうち、濃度を測定する対象となる対象物質を、測定対象物と呼ぶ。
 本実施形態では、検体とは、例えば、人体から採取される汗や唾液等であってもよい。また、本実施形態では、測定対象物を、検体に含まれる電解質の一種であるナトリウムイオン(Na)とし、測定対象物の濃度をナトリウムイオン(Na)の濃度とした。電解質は、ナトリウムイオン(Na)の他に、塩化物イオン(Cl)等であってもよい。
 本実施形態の検出器300は、センサ200の有する各検出部の色を示す色情報を抽出する。言い換えれば、検出器300は、センサ200に配置された基材に浸透させた試薬の色を示す色情報を抽出する。
 本実施形態の色情報とは、例えばRGB値(R値、G値、B値)であってよい。本実施形態の検出器300は、具体的には、例えば、撮像装置であってもよいし、分光器であってもよい。本実施形態の検出器300は、試薬の色を示す色情報を検出することができれば、どのような装置であってもよい。
 本実施形態の分析装置400は、検出器300から、センサ200の有する各検出部の色情報を取得し、色情報から測定対象物の濃度を算出し、測定結果として出力する。
 ここで、図2を参照して、本実施形態におけるセンサ200について説明する。
 図2は、センサについて説明する図である。本実施形態のセンサ200は、検出部210、検出部220、検出部230を有する。検出部210、検出部220、検出部230のそれぞれは、試薬を浸透させた基材であってよい。基材は、例えば、ろ紙や不織布等であってよい。
 また、センサ200では、検出部210、検出部220、検出部230が、透明な部材で封入されており、検出部210、220、230まで、検体が到達するような流入経路が設けられていてよい。
 本実施形態において、検出部210に含まれる試薬は、検体のpH値に応じて色が変化するものであり、検出部220に含まれる試薬は、ナトリウムイオン(Na)の濃度に応じて色が変化するものであってよい。また、検出部230に含まれる試薬は、アミノ酸の検出に応じて色が変化するものであってよい。アミノ酸とは、例えば、バリン、ロイシン、イソロイシン等を含む。
 なお、センサ200が有する検出部の数は、図2に示す3つに限定されず、任意の数であってよい。言い換えれば、センサ200に含まれる試薬の種類は、3種類に限定されない。
 センサ200は、例えば、乳酸、尿酸、タンパク質、脂質、ケトン、ホルモン、mRNA、鉄分等によって色が変化する検出部(試薬)を含んでもよい。
 次に、図3を参照して、測定対象物の濃度の算出について説明する。以下の実施形態では、ナトリウムイオンを測定対象物とした場合について説明する。
 図3は、pH値と、ナトリウムイオンの濃度と、試薬の色との関係を説明する図である。図3において、横軸は検体に含まれるナトリウムイオンの濃度を示し、縦軸はナトリウムイオンを検出する試薬の色情報を示す。
 図3に示す直線L1は、検体のpH値がX1である場合における、ナトリウムイオンの濃度と、ナトリウムイオンに反応する試薬の色を示す色情報との関係を示し、直線L2は、検体のpH値がX2である場合における、ナトリウムイオンの濃度と、ナトリウムイオンに反応する試薬の色を示す色情報との関係を示し、直線L3は、検体のpH値がX3である場合における、ナトリウムイオンの濃度とナトリウムイオンに反応する試薬の色を示す色情報との関係を示す。
 ここで、X1<X2<X3とした場合、ナトリウムイオンの濃度は、色情報が同じ値であっても、pH値が大きくなるにしたがって、高くなる傾向がある。
 つまり、ナトリウムイオンに反応する試薬の色の変化の仕方は、検体のpH値と相関関係がある。
 このため、ナトリウムイオンの濃度は、例えば、ナトリウムイオンに反応する試薬の色を示すRGB値(色情報)が同じであっても、検体のpH値がX1である場合と、X2である場合と、X3である場合とでは異なる。
 本実施形態では、この点に着目し、検体のpH値が、ナトリウムイオンに反応する試薬の色に与える影響を考慮して、ナトリウムイオンの濃度を算出する。
 具体的には、本実施形態では、検体のpH値を検出する検出部210の色を示す色情報と、ナトリウムイオンを検出する検出部220の色を示す色情報とを用いて、ナトリウムイオンの濃度を測定する。
 本実施形態では、これにより、検体のpH値が、ナトリウムイオンに反応する試薬の色変化に及ぼす影響を除外することができ、測定結果の精度を向上させることができる。
 以下に、本実施形態の分析装置400について説明する。図4は、分析装置のハードウェア構成の一例を示す図である。
 本実施形態の分析装置400は、プロセッサ41、メモリ42、補助記憶装置43、I/F(Interface)装置44、通信装置45、ドライブ装置46を有する。なお、分析装置400の各ハードウェアは、バス47を介して相互に接続されている。
 プロセッサ41は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等の各種演算デバイスを有する。プロセッサ41は、各種プログラム(例えば、学習プログラム等)をメモリ42上に読み出して実行する。
 メモリ42は、ROM(Read Only Memory)、RAM(Random Access Memory)等の主記憶デバイスを有する。プロセッサ41とメモリ42とは、いわゆるコンピュータを形成し、プロセッサ41が、メモリ42上に読み出した各種プログラムを実行することで、コンピュータは、後述する分析装置400の機能を実現する。
 補助記憶装置43は、各種プログラムや、各種プログラムがプロセッサ41によって実行される際に用いられる各種データを格納する。
 I/F装置44は、外部装置の一例である操作装置48、表示装置49と、分析装置400とを接続する接続デバイスである。I/F装置44は、分析装置400に対する操作を、操作装置48を介して受け付ける。また、I/F装置44は、分析装置400による処理の結果を出力し、表示装置49を介して、分析装置400の管理者に表示してもよい。
 通信装置45は、他の装置(本実施形態では、検出器300)と通信するための通信デバイスである。
 ドライブ装置46は記録媒体50をセットするためのデバイスである。ここでいう記録媒体50には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体50には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
 なお、補助記憶装置43にインストールされる各種プログラムは、例えば、配布された記録媒体50がドライブ装置46にセットされ、該記録媒体50に記録された各種プログラムがドライブ装置46により読み出されることでインストールされる。あるいは、補助記憶装置43にインストールされる各種プログラムは、通信装置45を介してネットワークからダウンロードされることで、インストールされてもよい。
 次に、図5を参照して、本実施形態の分析装置400の機能について説明する。図5は、第一の実施形態の分析装置の機能構成を説明する図である。
 本実施形態の分析装置400は、色情報取得部410、濃度算出部420、出力部430を有する。
 本実施形態の色情報取得部410は、検出器300がセンサ200の検出部210、220、230のそれぞれのから抽出した色情報を取得する。
 なお、本実施形態の色情報は、例えば、検出器300が撮像装置である場合には、検出部210、220、230に含まれる試薬が検体に反応した後に撮像されたセンサ200の画像を示す画像データから抽出された、各検出部の画像のRGB値であってもよい。
 また、検出器300が撮像装置である場合には、色情報は、各検出部の画像の明るさを示す輝度と、色差を含んでよい。
 濃度算出部420は、例えば、色情報取得部410が取得した色情報を用いて、測定対象物の濃度を算出する。
 具体的には、本実施形態の濃度算出部420は、学習済みモデル421を有する。言い換えれば、濃度算出部420は、学習済みモデル421を保持する記憶部であってよい。
 本実施形態の学習済みモデル421は、予め作成された教師データを用いた機械学習を行うことで生成されるモデルであって、検出部210の色情報と、検出部220の色情報が入力されると、検体のpH値と、ナトリウムイオンの濃度と、を出力する。学習済みモデル421の教師データの詳細は後述する。
 本実施形態の濃度算出部420は、色情報取得部410により取得した色情報を学習済みモデル421に入力し、学習済みモデル421から出力される測定対象物の濃度を、測定結果として取得する。
 なお、本実施形態では、濃度算出部420は、学習済みモデル421を用いて測定対象物の濃度を測定した結果を得るものしたが、濃度算出部420は、他の方法で測定対象物の濃度を測定した結果を取得してもよい。具体的には、濃度算出部420は、試薬の色と濃度との関係が単純な回帰式で表される場合には、この回帰式を用いればよく、学習済みモデル421を用いなくてもよい。
 出力部430は、濃度算出部420により算出された測定対象物の濃度を出力する。
 以下に、図6を参照して、本実施形態の学習済みモデル421について、さらに説明する。図6は、学習済みデータを生成する際の教師データの一例を示す図である。
 図6に示す教師データ60は、検出部210の色情報と、検出部220の色情報とを入力データとし、検体のpH値と、ナトリウムイオンの濃度とを出力データとするデータセットである。
 なお、検出部210の色情報とは、検出部210に含まれる試薬の色を示す色情報であり、検出部220の色情報とは、検出部220に含まれる試薬の色を示す色情報である。検出部210の色情報と検出部220の色情報は、RGB値が含まれる。
 本実施形態の学習済みモデル421は、図6に示す教師データを用いた機械学習によって生成された学習済みモデルであり、検出部210の色情報と検出部220の色情報とを入力すると、色情報の組み合わせに応じたナトリウムイオンの濃度とpH値とを出力する。
 本実施形態の学習済みモデル421は、分析装置400において生成されてもよいし、分析装置400以外の装置で行われてもよい。
 分析装置400において、学習済みモデル421を生成する場合には、分析装置400に学習部を設け、後述する処理の事前処理として、教師データ60を用いた機械学習を行い、学習済みモデル421を生成しておけばよい。
 なお、図6の例では、教師データ60は、2種類の試薬の色情報と、2種類の試薬と対応する2種類の値とが対応付けられたデータセットとしたが、これに限定されない。例えば、教師データ60は、3種類以上の試薬の色情報と、3種類以上の試薬のそれぞれと対応する3種類以上の値とが対応付けられたデータセットであってもよい。
 このような教師データを用いた機械学習によって学習済みモデル421が生成された場合には、センサ200に3以上の検出部が含まれる場合であっても、各検出部に含まれる試薬の色情報を学習済みモデル421に入力することで、各検出部に含まれる試薬のそれぞれと対応する値を得ることができる。
 次に、図7を参照して、本実施形態の分析装置400の処理について説明する。図7は、第一の実施形態の分析装置の処理を説明する第一のフローチャートである。
 本実施形態の分析装置400は、色情報取得部410により、検出器300が抽出したセンサ200の各検出部の色情報を取得する(ステップS701)。なお、分析装置400と検出器300とは、例えば、無線通信等によって接続されていてもよく、色情報は、通信によって分析装置400に取得されてよい。
 続いて、分析装置400は、濃度算出部420により、ステップS701で取得した色情報を用いて、測定対象物の濃度を算出する(ステップS702)。
 続いて、分析装置400は、出力部430により、濃度算出部420が取得した測定対象物の濃度を出力する(ステップS703)。
 以下に、図7の処理を具体的に説明する。以下の説明では、検出器300を撮像装置として説明する。
 センサ200において、検出部210、220、230のそれぞれに検体が到達すると、各検出部に含まれる試薬の色が変化する。検出器300は、検出部210、220、230に含まれる試薬の色が変化した後のセンサ200の画像データを撮像する。
 分析装置400の色情報取得部410は、検出器300から画像データを取得し、取得した画像データが示す画像の中から、検出部210、220、230の画像を特定する。具体的には、例えば、色情報取得部410は、センサ200の画像に含まれる円形の画像を各検出部の画像に特定してもよい。
 続いて、色情報取得部410は、特定した画像から色情報を抽出する。具体的には、色情報取得部410は、特定した画像のRGB値、輝度、色差等を色情報として抽出してよい。
 分析装置400は、色情報取得部410が検出部210、220、230の色情報を取得すると、濃度算出部420により、これらの色情報を学習済みモデル421に入力し、学習済みモデル421から出力されるpH値とナトリウムイオンの濃度とを取得する。
 なお、このとき、学習済みモデル421に入力する色情報に、検出部230の色情報は含まれなくてもよい。本実施形態では、検出部210の色情報と、検出部220の色情報とが、学習済みモデル421へ入力されればよい。
 また、本実施形態では、学習済みモデル421は、測定対象物の値として、ナトリウムイオンの濃度のみを出力されればよく、pH値は出力されなくてもよい。この場合、例えば、色情報を学習済みモデル421に入力する際に、色情報と共に、測定対象物を指定する情報が学習済みモデル421に入力されてもよい。
 また、上述した説明では、検出器300から画像データを取得し、分析装置400において、検出部210、220、230の色情報を抽出するものとしたが、これに限定されない。色情報の抽出は、検出器300において行われてもよい。
 また、上述した説明では、センサ200の画像データに基づき、検出部210、220、230の色情報を抽出し、抽出された色情報を学習済みモデル421に入力するものと
したが、これに限定されない。
 本実施形態では、検出器300により撮像された画像データが、そのまま学習済みモデル421に入力されてもよい。この場合、学習済みモデル421において、入力された画像データからの色情報を抽出を行ってもよい。
 このように、本実施形態では、検体に含まれる測定対象物の濃度を測定する際に、検体に含まれる測定対象物に反応した後の試薬の色情報と、検体に含まれる測定対象物以外の物質や検体の特性に反応した試薬の色情報とを用いて、測定対象物の濃度を得る。
 より具体的には、本実施形態では、センサ200を用いて検体に含まれるナトリウムイオンの濃度を測定する際に、ナトリウムイオンに反応する試薬の色情報と、検体のpH値に反応する試薬の色情報とを用いて、ナトリウムイオンの濃度を測定する。
 このため、本実施形態によれば、ナトリウムイオンに反応する試薬の色に対して、検体のpH値が及ぼす影響を除外することができ、測定結果として出力されるナトリウムイオンの濃度の測定精度を向上させることができる。
 <変形例>
 以下に、図8を参照して、本実施形態の変形例について説明する。変形例では、検出器300が撮像装置である場合に、検出器300が撮像した画像データから色情報を抽出する前に、画像データから外部環境による影響を低減させるための補正を行う。
 以下に、図8を参照して、本実施形態の変形例について説明する。図8は、第一の実施形態の分析装置の処理を説明する第二のフローチャートである。
 本実施形態の分析装置400は、色情報取得部410により、検出器300から、センサ200に含まれる検出部210、220、230の色情報を取得する(ステップS801)。具体的には、色情報取得部410は、検出器300から取得した画像データに基づき、検出部210、220、230色情報を抽出する。
 続いて、分析装置400は、濃度算出部420により、抽出した色情報を補正する(ステップS802)。ここで行われる補正は、例えば、濃度算出部420は、画像が撮像されたときの環境による色への影響を抑制するための補正であり、予め決められた基準色を用いた補正であってよい。
 画像が撮像されたときの環境とは、例えば、画像を撮像するときの検出器300の角度や、センサ200から検出器300までの距離、画像を撮像するときの周囲の照明や外光の照度や色温度等を示す。
 続いて、濃度算出部420は、補正後の色情報を用いて、測定対象物の濃度を算出する(ステップS803)。具体的には、濃度算出部420は、補正後の色情報を学習済みモデル421に入力し、学習済みモデル421から出力される測定対象物の濃度を測定結果として取得する。続いて、分析装置400は、出力部430により、測定対象物の濃度を出力する(ステップS804)。
 このように、変形例では、色情報を学習済みモデル421に入力する前に補正することで、センサ200に含まれる検出部の画像データを取得したときの環境が、検出部210、220、230の色情報に与える影響を除外することができ、測定結果の精度を向上させることができる。
 なお、上述した例では、色情報の補正は分析装置400で行われるものとしたが、これに限定されない、色情報の補正は、検出器300において行われてもよい。その場合、色情報取得部410は、補正後の色情報を検出器300から取得するため、分析装置400において、色情報の補正は行われなくてもよい。
 (第二の実施形態)
 以下に、図面を参照して、第二の実施形態について説明する。第二の実施形態では、検出器300の代わりに端末装置を用いる点と、測定結果に応じて得られる情報を端末装置に対して出力する点と、が第一の実施形態と相違する。よって、以下の第二の実施形態の説明では、第一の実施形態との相違点について説明し、第一の実施形態と同様の機能構成には、第一の実施形態の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図9は、第二の実施形態の分析システムのシステム構成の一例を示す図である。
 本実施形態の分析システム100Aは、センサ200、端末装置500、分析装置400Aを含む。
 本実施形態の分析システム100Aにおいて、端末装置500と、分析装置400Aとは、インターネット等のネットワークを介して接続される。また、本実施形態の分析装置400Aは、例えば、インターネット上に設けられたサーバ装置であってよい。
 本実施形態の端末装置500は、撮像装置を有する可搬型のコンピュータであり、具体的には、スマートフォンや、タブレット型の端末装置である。
 本実施形態では、センサ200は、例えば、端末装置500の利用者の皮膚等に貼り付けられていてよい。また、本実施形態では、端末装置500の有する撮像装置によって、人体に貼り付けられた状態のセンサ200の画像が撮像されてよい。端末装置500の利用者とは、言い換えれば、分析システム100Aの利用者である。
 次に、図10を参照して、本実施形態の分析装置400Aの機能について説明する。図10は、第二の実施形態の分析装置の機能構成を説明する図である。
 本実施形態の分析装置400Aは、色情報取得部410、濃度算出部420、状態判定部450、表示制御部460を有する。
 状態判定部450は、濃度算出部420により算出された測定対象物の濃度を用いて、端末装置500の利用者の状態を判定する。具体的には、状態判定部450は、例えば、端末装置500の利用者の状態を示す項目の1つである水分量に関する判定を行ってもよい。言い換えれば、状態判定部450は、端末装置500の利用者が、水分不足の状態であるか否かを判定してよい。
 また、本実施形態の状態判定部450は、端末装置500の利用者の状態を示す項目のうち、センサ200が有する検出部に含まれる試薬によって検出される検体の特性や濃度等を用いた状態の判定が可能な項目について、判定を行えばよい。つまり、状態判定部450は、センサ200が有する検出部に含まれる試薬によって検出される検体の特性や濃度等を用いて、検体の採取元の状態を判定できる。
 表示制御部460は、状態判定部450による判定の結果に応じた画面を端末装置500に表示させる。
 以下に、図11を参照して、端末装置500の表示例について説明する。図11A、図11B、図11Cは、端末装置の表示例を示す図である。
 図11Aに示す画面501は、センサ200の画像を撮像するための案内画面の一例であり、図11Bに示す画面502は、状態判定部450による判定結果の表示例を示す第一の図であり、図11Cに示す画面503は、状態判定部450による判定結果の表示例を示す第二の図である。
 画面501は、表示領域501a、501bと、操作ボタン501eとを含む。表示領域501aには、端末装置500の利用者に対し、センサ200の撮像を促すメッセージが表示される。表示領域501bには、センサ200の画像を撮像するためのガイド画像501cが表示されている。また、図11Aの例では、表示領域501bにおいて、ガイド画像501cが示す領域内にセンサ200の画像501dが入る状態とされている。
 操作ボタン501eは、表示領域501bに表示された画像の画像データを撮像を指示するための操作ボタンである。
 端末装置500は、図11Aに示す状態で、操作ボタン501eが操作されると、表示領域501bに表示されている画像を撮像し、画像データとして分析装置400Aに送信する。
 図11Bに示す画面502は、表示領域502a、操作ボタン502bを含む。表示領域502aには、状態判定部450による判定結果が表示される。操作ボタン502bは、状態判定部450による判定結果の詳細画面を表示させるための操作ボタンである。
 図11Bの例では、表示領域502aには、端末装置500の利用者の状態が、水分量が不足した状態であるか否かを判定した結果が表示されている。具体的には、表示領域502aには、水分量が不足した状態であることを示すメッセージが表示されている。
 また、表示領域502aには、センサ200が有する検出部によって検体から検出された物質の値が表示されてよい。
 図11Bの例では、表示領域502aに、センサ200によって検出された物質の値として、タンパク質の濃度、糖分の濃度等が表示されている。
 画面502において、操作ボタン502bが操作されると、端末装置500に表示された画面502は、図11Cに示す画面503に遷移する。
 図11Cに示す画面503は、表示領域503a、503b、503cを含む。表示領域503a、503bには、過去にセンサ200を用いて測定された値の履歴や、センサ200の有する検出部によって検出される値の一覧等が表示される。また、表示領域503a、503bには、センサ200によって測定された値が適正であるか否かの判定結果が表示されてもよい。
 表示領域503cには、表示領域503a、503bに表示された値から判定された、端末装置500の利用者の状態を示すメッセージが表示される。
 図11Cの例では、表示領域503aには、過去に検出されたアミノ酸の濃度の推移等が表示されている。また、表示領域503bには、センサ200によって濃度が測定される物質、測定結果である物質の濃度とを対応付けた一覧が表示されている。さらに、図11Cの例では、表示領域503bにおいて、濃度が測定された各物質について、それぞれの濃度が人体から採取された検体(汗)における濃度として、適正であるか否かを判定した判定結果が表示されている。
 この判定結果は、例えば、状態判定部450に予め設定された物質毎の濃度の閾値に基づき、適正か否かが判定された結果であってよい。
 また、図11Cに示す表示領域503cには、端末装置500の利用者に対し、免疫力が低下した状態であることを知らせるメッセージが表示されている。このような利用者の状態は、表示領域503a、503bに表示された物質の濃度や、過去から現在までの物質の濃度の推移等に応じて判定されてよい。
 このように、本実施形態では、端末装置500の利用者にセンサ200を貼り付けるだけで、利用者から検体を採取することができる。また、本実施形態では、利用者から採取した検体を用いて、そのときの利用者の状態を判定し、判定結果を利用者に通知することができ、簡単に利用者に対して自身の状態を把握させることができる。
 なお、本実施形態では、検体の採取元を人体としたが、これに限定されない、検体の採取元は、センサ200の検出部に到達することが可能な検体を採取することができるものであれば、どのようなものであってもよい。
 なお、上述した各実施形態では、濃度算出部420は、色情報取得部410が取得した複数の検出部の色情報を、学習済みモデル421に入力することで、測定対象物の濃度を算出するものとしたが、これに限定されない。
 濃度算出部420は、例えば、色情報取得部410が取得した複数の検出部の色情報に基づき、学習済みモデル421を用いる方法以外の方法で、測定対象物の濃度を算出してもよい。
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 また、本国際出願は、2022年9月6日に出願された日本国特許出願2022-141145に基づく優先権を主張するものであり、日本国特許出願2022-141145の全内容を本国際出願に援用する。
 100、100A 分析システム
 200 センサ
 210、220、230 検出部
 300 検出器
 400、400A 分析装置
 410 色情報取得部
 420 濃度算出部
 421 学習済みモデル
 430 出力部
 450 状態判定部
 460 表示制御部
 500 端末装置

Claims (6)

  1.  比色試薬を含む検出部を複数有し、同一の検体から複数種類の物質を検出するセンサと、前記複数種類の物質のうちの、少なくとも何れか一の物質の濃度を測定する分析装置と、を有する分析システムであって、
     前記分析装置は、
     複数の前記検出部のそれぞれに含まれる比色試薬の色を示す色情報を取得する色情報取得部と、
     複数の前記検出部のうち、前記一の物質を検出する検出部に含まれる比色試薬の色を示す色情報と、前記一の物質を検出する検出部以外の検出部に含まれる比色試薬の色を示す色情報と、を用いて、前記一の物質の濃度を算出する濃度算出部と、を有する、分析システム。
  2.  前記色情報取得部は、
     前記センサの画像を撮像した撮像装置から前記センサの画像データを取得し、前記画像データから、複数の前記検出部毎の色情報を抽出する、請求項1記載の分析システム。
  3.  前記濃度算出部は、
     前記色情報取得部が取得した、複数の前記検出部毎の色情報を入力データとして、前記一の物質の濃度を出力データとする学習済みモデルである、請求項2記載の分析システム。
  4.  複数の前記検出部は、前記検体のpH値を検出する検出部を含む、請求項3記載の分析システム。
  5.  前記入力データは、前記検体のpHを検出する検出部の色情報と、前記一の物質を検出する検出部の色情報とを含む、請求項4記載の分析システム。
  6.  比色試薬を含む検出部を複数有し、同一の検体から複数種類の物質を検出するセンサと、前記複数種類の物質のうちの、少なくとも何れか一の物質の濃度を測定する分析装置と、を有する分析システムによる分析方法であって、
     前記分析装置が、
     複数の前記検出部のそれぞれに含まれる比色試薬の色を示す色情報を取得し、
     複数の前記検出部のうち、前記一の物質を検出する検出部に含まれる比色試薬の色を示す色情報と、前記一の物質を検出する検出部以外の検出部に含まれる比色試薬の色を示す色情報と、を用いて、前記一の物質の濃度を算出する、分析方法。
PCT/JP2023/031024 2022-09-06 2023-08-28 分析システム、分析方法 WO2024053464A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-141145 2022-09-06
JP2022141145 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053464A1 true WO2024053464A1 (ja) 2024-03-14

Family

ID=90191189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031024 WO2024053464A1 (ja) 2022-09-06 2023-08-28 分析システム、分析方法

Country Status (1)

Country Link
WO (1) WO2024053464A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531375A (ja) * 2000-04-14 2003-10-21 ライフポイント インコーポレイテッド サンプルpHに関連した検体の検出装置
JP2013101102A (ja) * 2011-10-17 2013-05-23 Arkray Inc 蛋白質濃度評価方法、分析用具、及び分析装置
JP2021530671A (ja) * 2018-06-28 2021-11-11 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 正確な測色に基づく試験片リーダ・システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531375A (ja) * 2000-04-14 2003-10-21 ライフポイント インコーポレイテッド サンプルpHに関連した検体の検出装置
JP2013101102A (ja) * 2011-10-17 2013-05-23 Arkray Inc 蛋白質濃度評価方法、分析用具、及び分析装置
JP2021530671A (ja) * 2018-06-28 2021-11-11 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 正確な測色に基づく試験片リーダ・システム

Similar Documents

Publication Publication Date Title
JP5267617B2 (ja) 分析装置および分析方法
JP7228585B2 (ja) 分析測定を行うための方法および装置
RU2012112814A (ru) Устройство, способ и система для количественного изменения аналита с использованием камеры
CN107862350B (zh) 试纸检测方法、装置、系统及程序产品
US11333658B2 (en) Urine test strip comprising timer, and method for detecting and analyzing urine test strip
US10395091B2 (en) Image processing apparatus, image processing method, and storage medium identifying cell candidate area
JP6787076B2 (ja) 呈色反応検出システム、呈色反応検出方法及びプログラム
JP5482721B2 (ja) 分析装置
US20210065369A1 (en) Skin condition measuring module
CN104198695A (zh) 一种对胶体金试纸条显色结果分析的方法
BR112021008435A2 (pt) Métodos para avaliar a adequação de um dispositivo móvel, para calibrar um dispositivo móvel, para realizar uma medição analítica, programas de computador de adequação, de calibração, de medição, dispositivo móvel e kit
WO2019069957A1 (ja) サーバ装置、ニオイセンサデータ解析方法、及びコンピュータ読み取り可能な記録媒体
WO2020022038A1 (ja) 情報処理装置、情報処理方法、情報処理システム、およびプログラム
US20220283148A1 (en) Method of determining a concentration of an analyte in a bodily fluid
JPH0921802A (ja) 検体検査方法及びその装置
US20140100794A1 (en) System and method of increasing sample throughput by estimation of a sensor endpoint
JP2019095328A (ja) 呈色反応検出システム、呈色反応検出方法及びプログラム
WO2024053464A1 (ja) 分析システム、分析方法
JP5039520B2 (ja) 電子画像比色による観測対象の状態量計測方法およびそのシステム
JP5938764B2 (ja) Dna二本鎖切断損傷の解析装置及び解析方法
JP2023503863A (ja) 分析測定を実行する方法
CN115128061A (zh) 一种电化学发光分析仪
JP2004004006A (ja) 微生物検査システム
JP2006071355A (ja) 自動滴定装置
CN110836705A (zh) 一种液位视频分析方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863003

Country of ref document: EP

Kind code of ref document: A1