WO2024053153A1 - Processing device - Google Patents

Processing device Download PDF

Info

Publication number
WO2024053153A1
WO2024053153A1 PCT/JP2023/016095 JP2023016095W WO2024053153A1 WO 2024053153 A1 WO2024053153 A1 WO 2024053153A1 JP 2023016095 W JP2023016095 W JP 2023016095W WO 2024053153 A1 WO2024053153 A1 WO 2024053153A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
supply device
soil
supply
material soil
Prior art date
Application number
PCT/JP2023/016095
Other languages
French (fr)
Japanese (ja)
Inventor
関口政一
小幡博志
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Publication of WO2024053153A1 publication Critical patent/WO2024053153A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material

Definitions

  • the present invention relates to a processing device.
  • Patent Document 1 A rotary crushing (mixing) method for improving and effectively utilizing construction soil and the like and a device used in the method are known (see Patent Document 1). It has also been proposed to prevent sediment from adhering to surfaces such as truck beds, belt conveyors, and continuous improvement machines that come in contact with soil by supplying dispersion or emulsion polymer electrolytes to these surfaces. (See Patent Document 2).
  • Patent Document 2 does not provide any specific proposal on how to supply the polymer electrolyte to the continuous improvement machine.
  • an object of the present invention is to provide a treatment device that can suppress the adhesion of raw material soil.
  • the treatment device includes: a first member having a wall surface with which the raw material soil contacts; and a second member provided below or inside the wall surface and contacting the raw material soil to treat the raw material soil. and a first supply device that supplies an anti-stick agent to the first member and the second member to prevent the raw soil from sticking.
  • the first supply device supplies the anti-adhesive agent that prevents the raw soil from sticking to the first member and the second member, it is possible to realize a treatment device that can suppress the adhesion of the raw soil. be able to.
  • FIG. 1 is a diagram showing a self-propelled processing system including a rotary crusher according to a first embodiment.
  • 2 is a sectional view showing the configuration of the rotary crushing device of the first embodiment
  • FIG. 2(a) is a diagram showing a state in which the rotating shaft is stopped
  • FIG. 2C is a diagram showing a state in which the member has begun to levitate
  • FIG. 2(c) is a diagram showing a state in which the impact member is horizontally levitating due to rotation of the rotating shaft.
  • FIG.3 (a) is a top view
  • FIG.3(b) is a front view
  • FIG.3(c) is a side view.
  • the rotary crushing device according to the first embodiment will be described in detail based on FIGS. 1 to 7.
  • the excavated material is clayey soil, and this clayey soil is suppressed from adhering to the main parts of the self-propelled processing system 1000.
  • FIG. 1 schematically shows the configuration of a self-propelled processing system 1000 including a rotary crusher 100 according to the first embodiment.
  • the vertical direction is shown as the Z-axis direction
  • two axial directions perpendicular to each other in the horizontal plane are shown as the X-axis direction and the Y-axis direction.
  • the treatment system 1000 can be moved to a desired installation position via a traveling device 102, and at the installed position crushes the raw soil, mixes the raw soil and additives, and discharges the mixture to the outside as improved soil. can do.
  • Improved soil can be used, for example, for backfilling structures, backfilling buildings, backfilling civil engineering structures, embankments for river embankments, embankments for roads, embankments for land development, railway embankments, airport embankments, water surface reclamation, etc. Can be used.
  • the processing system 1000 will be described below based on FIG. 1.
  • the processing system 1000 has a traveling device 102, and on the traveling device 102, a rotary crushing device 100, a motor 104, and a raw soil supplying device 108 are mounted via a frame 106. , an additive supply device 110, and a discharge device 112 are provided.
  • the raw material soil supply device 108 is on the upstream side, and the raw material soil supplied to the raw material soil supply device 108 is conveyed toward the rotary crushing device 100 on the downstream side.
  • the traveling device 102 is an endless track or the like, and travels around a construction site, a construction site, etc. in response to a remote control operation by a worker.
  • FIG. 2 is a sectional view showing the configuration of the rotary crushing device 100 according to the first embodiment. The detailed configuration of the rotary crushing device 100 will be described later using FIG. 2.
  • various motors, electrical components, and various parts of the processing system 1000, such as the control unit 150, are powered by a generator (not shown).
  • the raw material soil supply device 108 has a hopper device 50, a fixed quantity supply device 60, and a belt conveyor 122, and is used to supply the raw material soil input into the hopper device 50 in a fixed quantity from the input port member 20 into the fixed drum 12. This is the device.
  • FIG. 3 is a diagram showing the configuration of the raw material soil supply device 108 according to the first embodiment, in which FIG. 3(a) is a top view, FIG. 3(b) is a front view, and FIG. 3(c) is a top view. is a side view. The detailed configuration of the raw material soil supply device 108 will be described later using FIG. 3.
  • the additive supply device 110 has an additive storage section 130, and supplies the additive stored in the additive storage section 130 into the fixed drum 12 (see FIG. 2) via the belt conveyor 122 and the input port member 20. It is a device for
  • the belt conveyor 122 is a device that sends the treatment target (improved soil) crushed and mixed by the rotary crusher 100 to the +X side of the treatment system 1000.
  • Belt conveyor 122 constitutes a part of raw material soil supply device 108.
  • the crushing status of the raw material soil may be checked by the operator, or the operator may control the rotation speed of the rotating shaft 30 and the conveyance speed of the belt conveyor 122 from a remote control, an operation panel, etc. Instead, the control unit 150 may automatically control the rotation speed of the rotating shaft 30 and the conveyance speed of the belt conveyor 122.
  • the rotary crushing device 100 of this embodiment is a device used to improve and effectively utilize raw material soil such as construction soil.
  • the rotary crushing device 100 crushes and pulverizes the raw material soil to finely and homogeneously disperse the raw material soil.
  • the rotary crushing device 100 may also contain additives (lime-based solidifying agents such as quicklime and slaked lime, cement-based solidifying agents such as ordinary cement and blast furnace cement, or soil improvement materials made of polymeric materials), as needed. , natural fibers, chemical fibers made of resin, etc.) are also introduced.
  • additives are added, the rotary crusher 100 mixes the raw material soil and the additives to produce improved soil, thereby adjusting the properties, strength, etc. of the improved soil.
  • FIG. 2 the details of the configuration of the rotary crushing device 100 will be explained using FIG. 2.
  • FIG. 2(a) shows a state in which the rotating shaft 30 is stopped
  • FIG. 2(b) shows a state in which the impact member 34 has begun to levitate due to the rotation of the rotating shaft 30
  • FIG. ) is a diagram showing a state in which the impact member 34 is horizontally floating due to the rotation of the rotating shaft 30.
  • the rotary crushing device 100 includes a pedestal 10, a fixed drum 12, a rotating drum 14, and a rotating mechanism 16.
  • the pedestal 10 holds each part of the rotary crushing device 100, and has a top plate part 10a and leg parts 10b.
  • the top plate portion 10a is, for example, a plate-like member made of iron, and has a function as a lid that closes the upper opening of the fixed drum 12 fixed to the lower surface (-Z side surface).
  • the top plate portion 10a is provided with an inlet member 20 for charging raw soil and additives (hereinafter, the raw soil and additives will be referred to as processing objects) into the fixed drum 12.
  • the top plate portion 10a includes a first tank 11 for supplying liquid polymer electrolyte to the wall surface of the rotating drum 14 and the impact member 34, and a first tank 11 for supplying liquid polymer electrolyte to the wall surface of the rotating drum 14 and the impact member 34.
  • a second tank 13 for supplying water (for example, water) is provided. Note that the location where the first tank 11 and the second tank 13 are provided is not limited to the top plate portion 10a, and may be provided on the frame 106, for example.
  • the fixed drum 12 is a cylindrical container, and is fixed to the lower surface (-Z side surface) of the top plate portion 10a.
  • the object to be processed is charged into the fixed drum 12 via the input port member 20, and the fixed drum 12 guides the object to be processed into the rotating drum 14 provided below the fixed drum 12 (-Z side).
  • the fixed drum 12, the rotating drum 14, and the top plate 10a function as a container into which objects to be processed are placed.
  • the rotating drum 14 is a cylindrical container, and rotates (rotates) around the central axis of the cylinder (around the Z axis) by a motor (not shown). Since the rotating drum 14 is supported by the pedestal 10 via a plurality of support rollers 24, it can be smoothly rotated by receiving the rotational force of this motor (not shown). Note that the rotation direction of the rotary drum 14 and the rotation direction of the impact member 34 may be the same rotation direction or may be opposite rotation directions.
  • One or more scraping rods are provided inside the rotating drum 14.
  • the scraping rod (not shown) is in contact with the inner circumferential surface of the rotary drum 14, and scrapes off the object to be treated that has adhered to the wall surface, which is the inner circumferential surface of the rotary drum 14, as the rotary drum 14 rotates.
  • the rotating drum 14 rotates at several rpm (for example, 1 rpm)
  • the rotating shaft 30 rotates at 300 rpm to 1200 rpm. For this reason, when the raw material soil is clayey soil, the clayey soil adhering to the wall surface of the rotating drum 14 may not be removed with a scraping rod (not shown).
  • the clay adhering to the wall surface of the rotating drum 14 may come into contact with the rotating impact member 34 and provide resistance to the impact member 34.
  • adhesion of cohesive soil is suppressed by supplying a liquid anti-stick agent to the wall surface of the rotating drum 14.
  • the rotation mechanism 16 includes a rotation shaft 30 arranged at the center of the fixed drum 12 and the rotation drum 14 and extending in the vertical direction (Z-axis direction), a pulley 32 provided at the upper end of the rotation shaft 30, and a rotation shaft 30 disposed at the center of the fixed drum 12 and the rotation drum 14.
  • Two impact members 34 are provided in upper and lower stages near the lower end.
  • the rotating shaft 30 is a cylindrical member that extends through the top plate 10a of the pedestal 10 and is rotatable via a ball bearing (not shown) provided on the top surface of the top plate 10a. , is held on the top plate portion 10a.
  • the lower end of the rotating shaft 30 is located inside the rotating drum 14 and is a free end. That is, the rotating shaft 30 is supported in a cantilevered manner.
  • the pulley 32 is connected to the motor 104 via a belt 113.
  • the motor 104 rotates, the pulley 32 and rotating shaft 30 rotate.
  • Each of the two stages of impact members 34 is provided with a thick steel plate.
  • the impact member 34 may be configured by a combination of a thick plate and a chain.
  • the impact member 34 is centrifugally rotated by the rotation of the rotating shaft 30, and the thick plate moves near the inner peripheral surface of the rotating drum 14 at high speed, thereby crushing or mixing the object to be processed.
  • the rotary crushing device 100 can also be called a rotary crushing and mixing device. Note that the number and number of stages of the thick plates of the impact member 34 can be adjusted depending on the type and properties of the raw soil, the amount of treatment, the type and amount of additives, the target quality of the improved soil, and the like.
  • the processing target input into the fixed drum 12 through the input port member 20 is crushed and mixed by the impact member 34 in the rotary drum 14, and It is designed to be discharged downward.
  • the downstream side supplies liquid polymer electrolyte and water to the wall surface of the rotating drum 14, which is a main part of the rotary crushing device 100, and the impact member 34.
  • a supply device 25 is provided. This polyelectrolyte acts as an antiblocking agent.
  • FIG. 5 is a diagram showing an outline of the configuration of the downstream supply device 25.
  • the downstream supply device 25 includes the first tank 11, the second tank 13, two on-off valves 26 (26a, 26b), a pressure regulating valve 27, and a nozzle 28. have. Note that each component of the downstream supply device 25 is connected by piping.
  • a part of the rotating shaft 30 is made into a hollow structure (a hole is made from one end of the rotating shaft 30 in the Z direction, and the other end in the Z direction is not penetrated), and this hollow structure is connected to one of the piping of the downstream supply device 25. It can also be used as a section.
  • the hollow structure of the rotating shaft 30 as a pipe, it is possible to prevent the pipe from becoming entangled with the rotating shaft 30 due to rotation of the rotating shaft 30.
  • the anti-blocking agent stored in the first tank 11 and the water stored in the second tank 13 are each supplied to the nozzle 28 by a pump (not shown).
  • the on-off valve 26 a is connected to the first tank 11 , and when the anti-stick agent stored in the first tank 11 is supplied to the nozzle 28 , it is in an open state, and the anti-adhesive agent stored in the first tank 11 is supplied to the nozzle 28 . When nozzle 28 is not supplied, it is in a closed state.
  • the on-off valve 26b is connected to the second tank 13 and is in an open state when supplying the water stored in the second tank 13 to the nozzle 28, and supplies the water stored in the second tank 13 to the nozzle 28. If not, it is considered closed.
  • the control section 150 controls the opening and closing of the on-off valve 26a and the on-off valve 26b. Although the details will be described later, the control unit 150 opens the on-off valve 26a and discharges the anti-stick agent from the nozzle 28, and then closes the on-off valve 26a and opens the on-off valve 26b to discharge water from the nozzle 28. Discharge.
  • the pressure regulating valve 27 is provided between the on-off valve 26 and the nozzle 28 to adjust the pressure of the liquid supplied when the on-off valve 26 is in the open state, and supplies the liquid to the nozzle 28. Pressure control by the pressure regulating valve 27 is performed by a control section 150.
  • the nozzle 28 includes a nozzle 28a that mainly supplies an anti-adhesive agent and water to the wall surface of the rotating drum 14, and a nozzle 28b that mainly supplies an anti-adhesive agent and water to the impact member 34.
  • the nozzle 28a is provided horizontally along the X direction, and the nozzle 28b is provided at an angle such that it is inclined in the -Z direction. Note that in the first embodiment, the nozzle 28 is connected to the rotating shaft 30 via the pressure regulating valve 27.
  • the impact member 34 is located along the Z direction, which is the vertical direction, so the liquid supplied from the nozzle 28b hits the impact member 34. Hardly supplied.
  • the impact member 34 when the rotating shaft 30 rotates and the impact member 34 starts to levitate from -30 degrees to -60 degrees, preferably about -45 degrees from the X direction, the impact member 34 is supplied from the nozzle 28b. This makes it easier for liquid to be supplied to the impact member 34.
  • the rotation of the rotating shaft 30 reaches several tens of rpm (for example, 10 rpm)
  • the impact member 34 changes from -30 degrees to -60 degrees from the X direction.
  • the time required for the rotation of the rotating shaft 30 to reach several tens of rpm is approximately several seconds from the start of rotation of the rotating shaft 30.
  • the rotary crushing device 100 crushes and mixes the raw material soil by setting the rotating shaft 30 in the range of 300 rpm to 1200 rpm. Note that when the rotating shaft 30 is at 300 rpm, the impact member 34 is at -80 degrees to -85 degrees from the X direction. However, the raw material soil can be crushed and mixed even if the impact member 34 is not horizontally floating, and crushing and mixing at 300 rpm is possible.
  • FIG. 3 is a diagram showing the configuration of the raw material soil supply device 108 according to the first embodiment, in which FIG. 3(a) is a top view, FIG. 3(b) is a front view, and FIG. 3(c) is a top view.
  • FIG. 3(c) is a partial cross-sectional view.
  • FIG. 3(c) is a partial cross-sectional view.
  • the raw soil supply device 108 includes the hopper device 50, the quantitative supply device 60, and the belt conveyor 122.
  • the hopper device 50 and quantitative supply device 60 will be described in detail below.
  • the hopper device 50 includes a hopper 51 and a loosening device 52.
  • the hopper 51 has an input port and a discharge port, and receives raw material soil discharged from, for example, a backhoe from the input port, and discharges the raw material soil to the quantitative supply device 60 from the discharge port. Since the cross-sectional area of the input port of the hopper 51 is larger than the cross-sectional area of the discharge port, the hopper 51 can temporarily store excavated material, which is raw material soil.
  • the loosening device 52 loosens the input raw material soil, and includes a shaft 53, a metal rotating blade 54 provided on the shaft 53, and a motor 55 that rotates the shaft 53.
  • the loosening device 52 is provided with a part of the upstream supply device 70.
  • the upstream supply device 70 is a device that supplies liquid polymer electrolyte and water to the inner wall surface of the hopper 51 and a part of the quantitative supply device 60 (for example, the pair of rotating rolls 62 and the scraping blade 63). This polyelectrolyte acts as an antiblocking agent.
  • the configuration of the upstream supply device 70 is substantially the same as the configuration of the downstream supply device 25.
  • FIG. 6 is a diagram showing an outline of the configuration of the upstream supply device 70.
  • the upstream supply device 70 includes a third tank 71 that stores a polymer electrolyte that is an anti-blocking agent, a fourth tank 72 that stores water, and two on-off valves 73 (73a). , 73b), a pressure regulating valve 74, and a nozzle 75. Note that each component of the upstream supply device 70 is connected by piping.
  • the shaft 53 has a hollow structure, an on-off valve 73a is provided at one end, an on-off valve 73b is provided at the other end, and this hollow structure is used as a part of the piping of the upstream supply device 70. Can be done.
  • the hollow structure of the shaft 53 as a pipe, it is possible to prevent the pipe from becoming entangled with the shaft 53 due to rotation of the shaft 53.
  • the nozzle 75 can be connected to the shaft 53 or the rotating blade 54 via the pressure regulating valve 74. Note that the anti-blocking agent stored in the third tank 71 and the water stored in the fourth tank 72 are each supplied to the nozzle 75 by a pump (not shown).
  • the on-off valve 73a is connected to the third tank 71, and when the anti-stick agent stored in the third tank 71 is supplied to the nozzle 75, it is in an open state, and the anti-adhesive agent stored in the third tank 71 is supplied to the nozzle 75. When nozzle 75 is not supplied, it is in a closed state.
  • the on-off valve 73b is connected to the fourth tank 72 and is in an open state when the water stored in the fourth tank 72 is supplied to the nozzle 75, and the water stored in the fourth tank 72 is supplied to the nozzle 75. If not, it is considered closed.
  • the control section 150 controls the opening and closing of the on-off valve 73a and the on-off valve 73b. Although the details will be described later, the control unit 150 opens the on-off valve 73a and discharges the anti-stick agent from the nozzle 75, and then closes the on-off valve 73a and opens the on-off valve 73b to discharge water from the nozzle 75. Discharge.
  • the pressure regulating valve 74 is provided between the on-off valve 73 and the nozzle 75, and supplies the liquid to the nozzle 75 by adjusting the pressure of the liquid supplied when the on-off valve 73 is in the open state. Pressure control by the pressure regulating valve 74 is performed by the control section 150.
  • the quantitative supply device 60 is provided below the hopper device 50, and continuously supplies a certain amount (predetermined amount) of the raw material soil crushed in the hopper device 50 to the rotary crushing device 100 via the belt conveyor 122. supply. Thereby, the rotary crushing device 100 can stably crush and mix raw material soil that is continuously supplied in a constant amount.
  • the quantitative supply device 60 includes a casing 61, a pair of rotating rolls 62, a scraping blade 63, a pair of rotating shafts 64, a pair of motors 65, and a speed reducer 66.
  • the casing 61 is into which the raw material soil loosened by the hopper device 50 is carried, and a pair of rotating rolls 62 are provided inside the casing 61 so as to be rotatable about a pair of rotating shafts 64 . Further, the casing 61 is provided with a third tank 71 and a fourth tank 72 on the outside. Note that the third tank 71 and the fourth tank 72 may be provided at a location other than the casing 61.
  • the pair of rotating rolls 62 have a cylindrical shape, and are arranged along the X direction and spaced apart from each other in the Y direction, as shown in FIG. 3(a). Thereby, a passage P is formed in the pair of rotating rolls 62 through which the raw material soil is discharged.
  • the pair of rotating shafts 64 are rotated around the X-axis by the driving force of the pair of motors 65, and thereby the pair of rotating rolls 62 are rotated around the X-axis.
  • one rotating shaft 64 is rotated clockwise by one motor 65, and the other rotating shaft is rotated counterclockwise by the other motor 65.
  • one of the pair of rotating rolls 62 rotates clockwise and the other rotating roll 62 rotates counterclockwise.
  • the speed reducer 66 reduces the power of the pair of motors 65 in order to rotate the pair of rotary rolls 62 at a predetermined rotation speed.
  • the reducer 66 has a chain and a sprocket, but a mechanical element such as a gear may also be used as the reducer 66.
  • a plurality of scraping blades 63 are metal plate-like members provided around the outer periphery of the pair of rotating rolls 62.
  • the scraping blade 63 rotates together with the pair of rotating rolls 62 to crush the raw material soil carried into the casing 61 into a predetermined size, and removes the crushed raw material soil from the passage P of the pair of rotating rolls 62. discharge.
  • the plurality of scraping blades 63 provided on the pair of rotating rolls 62 are provided so that the scraping blades 63 do not interfere with each other.
  • FIG. 4 is a block diagram showing the control system of the self-propelled processing system 1000.
  • the communication device 152 is a wireless communication unit that accesses a wide area network such as the Internet. In the first embodiment, the communication device 152 communicates with a host computer located far from the construction site.
  • the control unit 150 is a control device that controls the entire self-propelled processing system 1000, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control unit 150 is connected to the traveling device 102, the rotary crushing device 100, the raw soil supply device 108, the additive supply device 110, the discharge device 112, and the communication device 152.
  • the rotary crushing device 100, the raw material soil supply device 108, the additive material supply device 110, the discharge device 112, and the communication device 152 may be referred to as units in the description.
  • FIG. 7 is a flowchart executed by the control unit 150 of the first embodiment. Note that this flowchart is executed after the self-propelled processing system 1000 arrives at the raw material soil processing site using the traveling device 102.
  • step S1 The control unit 150 starts driving each unit (step S1). As each unit is driven, rotation of the rotating shaft 30 and the shaft 53 starts. Note that in step S1, it is assumed that raw soil is not supplied to the raw soil supply device 108.
  • the control unit 150 controls the downstream supply device 25 and the upstream supply device 70 to supply the anti-blocking agent (Step S2).
  • the control unit 150 opens the on-off valve 26a of the downstream supply device 25 and closes the on-off valve 26b. Further, the control unit 150 adjusts the pressure of the pressure regulating valve 27 so that the anti-blocking agent can be supplied from the nozzle 28.
  • control unit 150 controls the application of the anti-adhesive agent to the wall surface of the rotating drum 14 and the impact member 34 by the downstream supply device 25. supply.
  • control unit 150 opens the on-off valve 73a of the upstream supply device 70 and closes the on-off valve 73b. Further, the control unit 150 adjusts the pressure of the pressure regulating valve 74 so that the anti-blocking agent can be supplied from the nozzle 75.
  • control unit 150 prevents the upstream supply device 70 from supplying the anti-stick agent to the wall surface of the hopper 51, the pair of rotating rolls 62, and the scraping blade 63. conduct.
  • the supply amount of the anti-blocking agent may be determined depending on the properties of the raw soil (for example, water content and particle size), may be determined through trial construction, or may be determined empirically.
  • control unit 150 controls the downstream supply device 25 and the upstream supply device 70 to supply water (step S3).
  • the control unit 150 closes the on-off valve 26a of the downstream supply device 25 and opens the on-off valve 26b. Further, the control unit 150 closes the on-off valve 73a of the upstream supply device 70 and opens the on-off valve 73b.
  • the control unit 150 supplies water to the wall surface of the rotating drum 14 and the impact member 34 by the downstream supply device 25, and supplies water to the wall surface of the hopper 51, the pair of rotating rolls 62, and the scraping by the upstream supply device 70. Water is supplied to the blade 63.
  • the control unit 150 finishes supplying water, it closes the on-off valve 26b of the downstream supply device 25 and closes the on-off valve 73b of the upstream supply device 70.
  • step S3 of this flowchart water is supplied to increase the effect of preventing adhesion, adhesion, or fixation of the raw material soil, by supplying water to swell the polymer electrolyte contained in the anti-blocking agent. This is to make it happen.
  • the supply of water may be performed prior to the supply of the anti-blocking agent, may be performed simultaneously with the supply of the anti-blocking agent, or may be omitted.
  • the control unit 150 may open the on-off valve 26b and the on-off valve 73b in step S2.
  • a rotary crushing device 100 is arranged downstream of the raw material soil supply device 108. For this reason, it is preferable that the control unit 150 supplies the anti-blocking agent using the upstream supply device 70 and then supplies the anti-blocking agent using the downstream supply device 25.
  • the control unit 150 sends a signal or display to the remote control, operation panel, host computer, etc. that crushing and mixing are possible (step S4).
  • a signal or display from the control unit 150 that crushing and mixing are possible raw material soil excavated by, for example, a backhoe, which is a construction machine with a bucket, is supplied to the hopper device 50. Note that this backhoe may be manned, unmanned, or remotely operated.
  • Control unit 150 detects load currents on motor 65 and motor 104 (step S5). Using the start of the crushing/mixing process as a trigger, the control unit 150 detects the load current of the motor 65 when the quantitative supply device 60 is supplying the raw material soil in a fixed amount, and also detects the load current of the motor 65 when the quantitative supply device 60 is supplying the raw material soil in a fixed amount. The load current of the motor 104 during crushing and mixing is detected. In addition, in step S5, the control unit 150 may detect the load current of the motor 55 when the loosening device 52 is loosening the raw material soil, or may detect the load current of another motor. .
  • the control unit 150 detects the load currents of the motor 65 and the motor 104 at predetermined intervals for a certain period of time (for example, about 5 to 10 minutes), and sets the average value as the load current of the motor 65 and the motor 104. is preferred.
  • the control unit 150 determines whether it is necessary to supply an anti-tack agent (step S6).
  • Motor 65 and motor 104 are normally driven at about 80% of the rated current. However, there are cases where the clay soil cannot pass through the passage P formed in the pair of rotating rolls 62 of the metering supply device 60, or when the clay soil adhering to the wall surface of the rotating drum 14 comes into contact with the rotating impact member 34 and causes an impact. If the resistance of the member 34 is applied, the motor 65 and the motor 104 may be driven at 85% or more of the rated current.
  • step S6 if the motor 65 is driven at 85% or more of the rated current for a certain period of time, the control unit 150 determines that it is necessary to supply the anti-blocking agent to the raw soil supply device 108, and 104 is driven at 85% or more of the rated current for a certain period of time, it is determined that it is necessary to supply the anti-blocking agent to the rotary crushing device 100.
  • step S5 when the load current detected for a certain period of time in step S5 is monotonically increasing with respect to the rated current, for example every 5 minutes (for example, 82% ⁇ 83% ⁇ 84%), the control unit 150 If it is predicted that the load current will be 85% or more of the rated current for 5 minutes, it may be determined that the anti-blocking agent needs to be supplied.
  • step S6 may use an image instead of or in combination with the detection of the load current.
  • an imaging device may be provided at or near the belt conveyor 122 to image the raw soil discharged from the raw soil supply device 108.
  • the control unit 150 determines that it is necessary to supply the anti-blocking agent to the raw material soil supplying device 108.
  • this imaging device is preferably provided upstream of the additive supply device 110 (raw material supply device 108).
  • an imaging device may be provided at or near the discharge device 112 to image the raw material soil discharged from the rotary crushing device 100. If the amount of raw material soil discharged from the rotary crushing device 100 is small based on the image taken by the imaging device, the control unit 150 determines that it is necessary to supply the anti-blocking agent to the rotary crushing device 100.
  • the host computer determines whether or not the anti-blocking agent needs to be supplied based on the imaging of the raw soil discharged from the raw soil supply device 108 and the image of the raw soil discharged from the rotary crushing device 100. You can do it like this. In this case, the control unit 150 may transmit the captured image data to the host computer via the communication device 152.
  • control unit 150 determines in step S6 that it is necessary to supply an anti-blocking agent, it performs the processes of steps S7 and S8, and if it determines that it is not necessary to supply an anti-blocking agent in step S6, The process advances to step S9. Note that the process in step S7 is the same as the process in step S2, and the process in step S8 is the same as the process in step S3, so a description thereof will be omitted.
  • the control unit 150 determines whether the crushing/mixing process is finished (step S9). The control unit 150 ends this flowchart if the raw material soil from the backhoe has been crushed and mixed, and if the raw material soil from the backhoe is currently being crushed and mixed, the crushing and mixing process is completed. The processes from step S5 to step S9 are repeated until.
  • the anti-blocking agent was supplied by the downstream supply device 25 before the raw material soil is fed into the rotary crushing device 100. It's okay.
  • step S7 of the flowchart of the first embodiment when the upstream side supply device 70 supplies the anti-blocking agent, there is a possibility that the opening at the tip of the nozzle 75 may be blocked by the raw material soil.
  • the anti-blocking agent and water are supplied to the main parts of the raw material soil supply device 108 by an unmanned aerial vehicle (UAV (Unmanned Aerial Vehicle, hereinafter referred to as the drone 200)).
  • UAV Unmanned Aerial Vehicle
  • FIG. 8 is a diagram showing a self-propelled processing system according to the second embodiment
  • FIG. 9 is a block diagram showing a control system of the self-propelled processing system according to the second embodiment.
  • the drone 200 of this embodiment includes a flight device 201, an imaging device 202, a sensor group 203, a battery 204, a second communication device 205, a memory 206, a drone-side supply device 207, and a UAV control device 208. , is equipped with. These components are provided in the main body of the drone 200.
  • the flight device 201 includes a motor (not shown) and a plurality of propellers, and generates thrust to cause the drone 200 to levitate in the air and move in the air. Note that the number of drones 200 can be set arbitrarily.
  • the imaging device 202 is a digital camera that includes a lens, an image sensor, an image processing engine, etc., and captures moving images and still images.
  • the imaging device 202 images the hopper 51 and the loosening device 52 from above the raw material soil supply device 108, or images the raw material soil being conveyed by the belt conveyor 122 from above the belt conveyor 122. are doing.
  • the lens of the imaging device 202 is attached to the side (front) of the drone 200
  • the lens of the imaging device 202 may be attached to the bottom surface of the drone 200, or a plurality of lenses may be provided on the drone 200.
  • a moving mechanism may be provided to move the lens attached to the side surface toward the bottom surface.
  • a mechanism for rotating the imaging device 202 around the Z-axis may be provided to position the lens of the imaging device 202 at an arbitrary position around the Z-axis.
  • an omnidirectional camera 360-degree camera
  • a three-dimensional scanner may be used instead of the imaging device 202.
  • the sensor group 203 includes GNSS, an infrared sensor for avoiding collision between the drone 200 and other devices (for example, the self-propelled processing system 1000), an atmospheric pressure sensor for measuring altitude, a magnetic sensor for detecting direction, and , a gyro sensor that detects the attitude of the drone 200, an acceleration sensor that detects acceleration acting on the drone 200, and the like.
  • the battery 204 is a secondary battery connected to the power receiving device 103, and can be a lithium ion secondary battery, a lithium polymer secondary battery, or the like, but is not limited thereto.
  • the battery 204 is capable of supplying power to the flight device 201 , the imaging device 202 , the sensor group 203 , the second communication device 205 , the memory 206 , and the UAV controller 208 .
  • the second communication device 205 has a wireless communication unit, and accesses a wide area network such as the Internet and communicates with the communication device 152.
  • the second communication device 205 transmits image data captured by the imaging device 202 and detection results detected by the sensor group 203 to the communication device 152, and sends flight commands from the communication device 152 to UAV control. The data may be sent to the device 208.
  • the second communication device 205 may communicate with a host computer located away from the construction site.
  • the memory 206 is a nonvolatile memory (for example, a flash memory), and stores various data and programs for flying the drone 200, image data captured by the imaging device 202, detection results detected by the sensor group 203, etc. It is used to remember things.
  • the configuration of the drone-side supply device 207 is substantially the same as the upstream-side supply device 70, although there are some differences in size and the like.
  • FIG. 10 is a diagram showing an outline of the configuration of the drone-side supply device 207.
  • the drone-side supply device 207 includes a fifth tank 161 that stores a polymer electrolyte that is an anti-stick agent, a sixth tank 162 that stores water, and two on-off valves 163 (163a, 163b). ), a pressure regulating valve 164, and a nozzle (not shown). Note that each component of the upstream supply device 70 is connected by piping.
  • the on-off valve 163a is connected to the fifth tank 161, and is opened when the anti-stick agent stored in the fifth tank 161 is supplied to a nozzle (not shown). When the agent is not supplied to a nozzle (not shown), the nozzle is in a closed state.
  • the on-off valve 163b is connected to the sixth tank 162, and is opened when the water stored in the sixth tank 162 is supplied to a nozzle (not shown), and the water stored in the sixth tank 162 is supplied to a nozzle (not shown). When the nozzle is not supplied, it is closed.
  • the opening/closing control of the on-off valve 163a and the on-off valve 163b is performed by cooperative control between the control unit 150 and the UAV control device 208.
  • the pressure regulating valve 164 is provided between the on-off valve 163 and a nozzle (not shown), and adjusts the pressure of the liquid supplied when the on-off valve 163 is in the open state, and supplies the liquid to the nozzle (not shown). It is something. Pressure control by the pressure regulating valve 164 is performed through cooperative control between the control unit 150 and the UAV control device 208.
  • the UAV control device 208 includes a CPU, an attitude control circuit, a flight control circuit, and the like, and controls the entire drone 200. Further, the UAV control device 208 determines the timing of charging based on the remaining amount of the battery 204, and controls the imaging position, angle of view, frame rate, etc. of the imaging device 202. Further, the UAV control device 208 performs various controls of the drone 200 based on instructions from the control unit 150, and in the second embodiment, controls the drone-side supply device 207.
  • the drone-side supply device 207 attaches to the hopper 51, which is a main part of the raw soil supply device 108, the pair of rotating rolls 62, and the scraping blade 63 from above the raw soil supply device 108. Since the antiblocking agent and water are supplied, the antiblocking agent and water can be supplied without coming into contact with the raw soil.
  • the upstream supply device 70 may be omitted, or the upstream supply device 70 and the drone supply device 207 may be used together.
  • the rotary crushing apparatus 100 of the first and second embodiments is not limited to a self-propelled processing system, but also a plant-type processing system installed on site, and an on-track type processing system installed on the bed of a truck. It can also be applied to processing systems, etc.
  • the self-propelled treatment systems of the first and second embodiments are capable of reducing the adhesion of cohesive soil to the raw soil supply device 108 and the rotary crushing device 100. can.
  • the embodiments described above are examples of preferred implementations of the present invention. However, it is not limited to this, and various modifications are possible.
  • the anti-stick agent piping after passing through the on-off valve 26 and the water piping are made common;
  • the piping may be provided as independent piping.
  • the anti-blocking agent pipe and the water pipe after passing through the on-off valve 73 and the on-off valve 163 may be independent pipes.

Abstract

In order to prevent raw material soil from adhering to a processing device for processing raw material soil, this processing device comprises: a first member having a wall surface with which raw material soil makes contact; a second member that is provided below or on the inside of the wall surface, and that makes contact with the raw material soil and processes the raw material soil; and a supply device for supplying to the first member and the second member an adhesion prevention agent for preventing adhesion of the raw material soil. 

Description

処理装置processing equipment
 本発明は、処理装置に関する。 The present invention relates to a processing device.
 建設発生土などを改良して有効利用するための回転式破砕(混合)工法及びその工法に用いられる装置が知られている(特許文献1参照)。また、トラックの荷台や、ベルトコンベアや、連続改良機などの土砂と接する面にディスパージョンまたはエマルジョンの高分子電解質を供給することにより、この面への土砂の付着を防止することが提案されている(特許文献2参照)。 A rotary crushing (mixing) method for improving and effectively utilizing construction soil and the like and a device used in the method are known (see Patent Document 1). It has also been proposed to prevent sediment from adhering to surfaces such as truck beds, belt conveyors, and continuous improvement machines that come in contact with soil by supplying dispersion or emulsion polymer electrolytes to these surfaces. (See Patent Document 2).
国際公開第2019/016859International Publication No. 2019/016859 特許第6513272号Patent No. 6513272
 しかしながら、特許文献2では、高分子電解質をどのように連続改良機に供給するかの具体的な提案はなされていなかった。 However, Patent Document 2 does not provide any specific proposal on how to supply the polymer electrolyte to the continuous improvement machine.
 そこで、本発明では、原料土の付着を抑制することができる処理装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a treatment device that can suppress the adhesion of raw material soil.
 本発明に係る処理装置は、原料土が接触する壁面を有した第1部材と、前記壁面の下方もしくは内側に設けられ、前記原料土に接触して前記原料土の処理を行う第2部材と、前記第1部材と前記第2部材とに前記原料土の粘着を防止する粘着防止剤を供給する第1供給装置と、を備えている。 The treatment device according to the present invention includes: a first member having a wall surface with which the raw material soil contacts; and a second member provided below or inside the wall surface and contacting the raw material soil to treat the raw material soil. and a first supply device that supplies an anti-stick agent to the first member and the second member to prevent the raw soil from sticking.
 本発明によれば、第1供給装置が第1部材と第2部材とに原料土の粘着を防止する粘着防止剤を供給するので、原料土の付着を抑制することのできる処理装置を実現することができる。 According to the present invention, since the first supply device supplies the anti-adhesive agent that prevents the raw soil from sticking to the first member and the second member, it is possible to realize a treatment device that can suppress the adhesion of the raw soil. be able to.
第1実施形態の回転式破砕装置を備えた自走式の処理システムを示す図である。FIG. 1 is a diagram showing a self-propelled processing system including a rotary crusher according to a first embodiment. 第1実施形態の回転式破砕装置の構成を示す断面図であり、図2(a)は回転軸が停止している状態を示す図であり、図2(b)は回転軸の回転によりインパクト部材が浮揚し始めた状態を示す図であり、図2(c)は回転軸の回転によりインパクト部材が水平浮揚している状態を示す図である。2 is a sectional view showing the configuration of the rotary crushing device of the first embodiment, FIG. 2(a) is a diagram showing a state in which the rotating shaft is stopped, and FIG. FIG. 2C is a diagram showing a state in which the member has begun to levitate, and FIG. 2(c) is a diagram showing a state in which the impact member is horizontally levitating due to rotation of the rotating shaft. 第1実施形態の原料土供給装置の構成を示す図であり、図3(a)は上面図であり、図3(b)は正面図であり、図3(c)は側面図である。It is a figure which shows the structure of the raw material soil supply apparatus of 1st Embodiment, Fig.3 (a) is a top view, FIG.3(b) is a front view, and FIG.3(c) is a side view. 第1実施形態の自走式の処理システムの制御系を示すブロック図である。It is a block diagram showing a control system of a self-propelled processing system of a 1st embodiment. 下流側供給装置の構成の概要を示す図である。It is a figure showing an outline of composition of a downstream supply device. 上流側供給装置の構成の概要を示す図である。It is a figure showing an outline of composition of an upstream supply device. 第1実施形態の制御部により実行されるフローチャートである。It is a flowchart performed by the control part of 1st Embodiment. 第2実施形態に係る自走式の処理システムを示す図である。It is a figure showing a self-propelled processing system concerning a 2nd embodiment. 第2実施形態の自走式の処理システムの制御系を示すブロック図である。It is a block diagram showing a control system of a self-propelled processing system of a 2nd embodiment. ドローン側供給装置の構成の概要を示す図である。It is a figure showing an outline of composition of a drone side supply device.
(第1実施形態)
 以下、第1実施形態に係る回転式破砕装置について、図1~図7に基づいて詳細に説明する。なお、本実施形態は、掘削された掘削物が粘性土であり、この粘性土が自走式の処理システム1000の要部に付着してしまうのを抑制するものである。
(First embodiment)
Hereinafter, the rotary crushing device according to the first embodiment will be described in detail based on FIGS. 1 to 7. In addition, in this embodiment, the excavated material is clayey soil, and this clayey soil is suppressed from adhering to the main parts of the self-propelled processing system 1000.
 図1には、第1実施形態に係る回転式破砕装置100を備えた自走式の処理システム1000の構成が概略的に示されている。図1では、説明の便宜上、鉛直方向をZ軸方向、水平面内において直交する二軸方向をX軸方向及びY軸方向として図示している。 FIG. 1 schematically shows the configuration of a self-propelled processing system 1000 including a rotary crusher 100 according to the first embodiment. In FIG. 1, for convenience of explanation, the vertical direction is shown as the Z-axis direction, and two axial directions perpendicular to each other in the horizontal plane are shown as the X-axis direction and the Y-axis direction.
 処理システム1000は、走行装置102を介して、設置すべき位置に移動でき、設置された位置で、原料土を破砕したり、原料土と添加材を混合し、改良土として外部に排出したりすることができる。改良土は、例えば工作物の埋戻し、建築物の埋戻し、土木構造物の裏込め、河川築堤用盛土、道路用盛土、土地造成用盛土、鉄道盛土、空港盛土、水面埋立等の用途として用いることができる。 The treatment system 1000 can be moved to a desired installation position via a traveling device 102, and at the installed position crushes the raw soil, mixes the raw soil and additives, and discharges the mixture to the outside as improved soil. can do. Improved soil can be used, for example, for backfilling structures, backfilling buildings, backfilling civil engineering structures, embankments for river embankments, embankments for roads, embankments for land development, railway embankments, airport embankments, water surface reclamation, etc. Can be used.
(自走式の処理システム)
 以下、図1に基づいて、処理システム1000について説明する。処理システム1000は、図1に示すように、走行装置102を有しており、走行装置102上には、フレーム106を介して、回転式破砕装置100と、モータ104と、原料土供給装置108と、添加材供給装置110と、排出装置112と、が設けられている。なお、処理システム1000は、原料土供給装置108が上流側となり、原料土供給装置108に供給された原料土が下流側の回転式破砕装置100へ向けて搬送されていくものである。
(Self-propelled processing system)
The processing system 1000 will be described below based on FIG. 1. As shown in FIG. 1, the processing system 1000 has a traveling device 102, and on the traveling device 102, a rotary crushing device 100, a motor 104, and a raw soil supplying device 108 are mounted via a frame 106. , an additive supply device 110, and a discharge device 112 are provided. In addition, in the processing system 1000, the raw material soil supply device 108 is on the upstream side, and the raw material soil supplied to the raw material soil supply device 108 is conveyed toward the rotary crushing device 100 on the downstream side.
 走行装置102は、無限軌道などであり、作業者のリモコン操作等に応じて建設現場や工事現場等を走行する。 The traveling device 102 is an endless track or the like, and travels around a construction site, a construction site, etc. in response to a remote control operation by a worker.
 モータ104は、ベルト113を介して、回転式破砕装置100の回転軸30上端に設けられたプーリ32と接続されている。モータ104の回転力はベルト113を介してプーリ32に伝達され、回転軸30及びインパクト部材34を回転させる。図2は、第1実施形態に係る回転式破砕装置100の構成を示す断面図である。回転式破砕装置100の詳細な構成については、図2を用いて後述するものとする。 The motor 104 is connected via a belt 113 to a pulley 32 provided at the upper end of the rotating shaft 30 of the rotary crushing device 100. The rotational force of the motor 104 is transmitted to the pulley 32 via the belt 113 and rotates the rotating shaft 30 and the impact member 34. FIG. 2 is a sectional view showing the configuration of the rotary crushing device 100 according to the first embodiment. The detailed configuration of the rotary crushing device 100 will be described later using FIG. 2.
 このモータ104に加えて各種モータや、電気部品や、制御部150など処理システム1000の各部に対しての給電は、不図示の発電機により供給される。 In addition to this motor 104, various motors, electrical components, and various parts of the processing system 1000, such as the control unit 150, are powered by a generator (not shown).
 原料土供給装置108は、ホッパ装置50と、定量供給装置60と、ベルトコンベア122とを有し、ホッパ装置50に投入された原料土を投入口部材20から固定ドラム12内に定量供給するための装置である。図3は、第1実施形態に係る原料土供給装置108の構成を示す図であり、図3(a)は上面図であり、図3(b)は正面図であり、図3(c)は側面図である。原料土供給装置108の詳細な構成は図3を用いて後述するものとする。 The raw material soil supply device 108 has a hopper device 50, a fixed quantity supply device 60, and a belt conveyor 122, and is used to supply the raw material soil input into the hopper device 50 in a fixed quantity from the input port member 20 into the fixed drum 12. This is the device. FIG. 3 is a diagram showing the configuration of the raw material soil supply device 108 according to the first embodiment, in which FIG. 3(a) is a top view, FIG. 3(b) is a front view, and FIG. 3(c) is a top view. is a side view. The detailed configuration of the raw material soil supply device 108 will be described later using FIG. 3.
 添加材供給装置110は、添加材格納部130を有し、添加材格納部130に格納された添加材をベルトコンベア122および投入口部材20を介して固定ドラム12(図2参照)内に供給するための装置である。 The additive supply device 110 has an additive storage section 130, and supplies the additive stored in the additive storage section 130 into the fixed drum 12 (see FIG. 2) via the belt conveyor 122 and the input port member 20. It is a device for
 ベルトコンベア122は、回転式破砕装置100で破砕・混合された処理対象(改良土)を処理システム1000の+X側に送る装置である。ベルトコンベア122は、原料土供給装置108の一部を構成している。 The belt conveyor 122 is a device that sends the treatment target (improved soil) crushed and mixed by the rotary crusher 100 to the +X side of the treatment system 1000. Belt conveyor 122 constitutes a part of raw material soil supply device 108.
 なお、原料土の破砕状況の確認は作業者が行ってもよく、作業者が回転軸30の回転数やベルトコンベア122の搬送速度をリモコンや操作パネルなどから制御するようにしてもよい。これに代えて、制御部150により、回転軸30の回転数やベルトコンベア122の搬送速度を自動制御するようにしてもよい。 Note that the crushing status of the raw material soil may be checked by the operator, or the operator may control the rotation speed of the rotating shaft 30 and the conveyance speed of the belt conveyor 122 from a remote control, an operation panel, etc. Instead, the control unit 150 may automatically control the rotation speed of the rotating shaft 30 and the conveyance speed of the belt conveyor 122.
 本実施形態の回転式破砕装置100は、建設発生土などの原料土を改良して有効利用するために用いられる装置である。回転式破砕装置100は、原料土の破砕、細粒化を行い、原料土を細かく均質に分散させる。また、回転式破砕装置100には、必要に応じて、添加材(生石灰、消石灰などの石灰系固化材や、普通セメント、高炉セメントなどのセメント系固化材、あるいは高分子材料からなる土質改良材、天然繊維、樹脂からなる化学繊維など)も投入される。添加材が投入された場合、回転式破砕装置100は、原料土と添加材を混合して改良土とすることで、改良土の性状や強度などを調整する。以下、図2を用いて、回転式破砕装置100の構成の詳細につき説明を行う。 The rotary crushing device 100 of this embodiment is a device used to improve and effectively utilize raw material soil such as construction soil. The rotary crushing device 100 crushes and pulverizes the raw material soil to finely and homogeneously disperse the raw material soil. The rotary crushing device 100 may also contain additives (lime-based solidifying agents such as quicklime and slaked lime, cement-based solidifying agents such as ordinary cement and blast furnace cement, or soil improvement materials made of polymeric materials), as needed. , natural fibers, chemical fibers made of resin, etc.) are also introduced. When additives are added, the rotary crusher 100 mixes the raw material soil and the additives to produce improved soil, thereby adjusting the properties, strength, etc. of the improved soil. Hereinafter, the details of the configuration of the rotary crushing device 100 will be explained using FIG. 2.
(回転式破砕装置100)
 図2(a)は回転軸30が停止している状態を示すであり、図2(b)は回転軸30の回転によりインパクト部材34が浮揚し始めた状態を示すであり、図2(c)は回転軸30の回転によりインパクト部材34が水平浮揚している状態を示す図である。
 回転式破砕装置100は、図2に示すように、架台10と、固定ドラム12と、回転ドラム14と、回転機構16と、を備える。
(Rotary crusher 100)
2(a) shows a state in which the rotating shaft 30 is stopped, FIG. 2(b) shows a state in which the impact member 34 has begun to levitate due to the rotation of the rotating shaft 30, and FIG. ) is a diagram showing a state in which the impact member 34 is horizontally floating due to the rotation of the rotating shaft 30.
As shown in FIG. 2, the rotary crushing device 100 includes a pedestal 10, a fixed drum 12, a rotating drum 14, and a rotating mechanism 16.
 架台10は、回転式破砕装置100の各部を保持するものであり、天板部10aと、脚部10bと、を有する。天板部10aは、例えば鉄製の板状部材であり、下面(-Z側の面)に固定される固定ドラム12の上部開口を閉塞する蓋としての機能を有している。天板部10aには、固定ドラム12内に原料土や添加材(以下、原料土と添加材とを処理対象と呼ぶ)を投入するための投入口部材20が設けられている。また、天板部10aには、回転ドラム14の壁面と、インパクト部材34とに液体の高分子電解質を供給するための第1タンク11と、回転ドラム14の壁面と、インパクト部材34とに液体(例えば水)を供給するための第2タンク13とが設けられている。なお、第1タンク11および第2タンク13を設ける場所は、天板部10aに限定されず、例えばフレーム106に設けるようにしてもよい。 The pedestal 10 holds each part of the rotary crushing device 100, and has a top plate part 10a and leg parts 10b. The top plate portion 10a is, for example, a plate-like member made of iron, and has a function as a lid that closes the upper opening of the fixed drum 12 fixed to the lower surface (-Z side surface). The top plate portion 10a is provided with an inlet member 20 for charging raw soil and additives (hereinafter, the raw soil and additives will be referred to as processing objects) into the fixed drum 12. Further, the top plate portion 10a includes a first tank 11 for supplying liquid polymer electrolyte to the wall surface of the rotating drum 14 and the impact member 34, and a first tank 11 for supplying liquid polymer electrolyte to the wall surface of the rotating drum 14 and the impact member 34. A second tank 13 for supplying water (for example, water) is provided. Note that the location where the first tank 11 and the second tank 13 are provided is not limited to the top plate portion 10a, and may be provided on the frame 106, for example.
 固定ドラム12は、円筒状の容器であり、天板部10aの下面(-Z側の面)に固定されている。固定ドラム12内には、投入口部材20を介して処理対象が投入され、固定ドラム12は、固定ドラム12の下側(-Z側)に設けられた回転ドラム14内に処理対象を導く。なお、固定ドラム12、回転ドラム14、及び天板部10aを含んで、内部に処理対象が投入される容器としての機能が実現されている。 The fixed drum 12 is a cylindrical container, and is fixed to the lower surface (-Z side surface) of the top plate portion 10a. The object to be processed is charged into the fixed drum 12 via the input port member 20, and the fixed drum 12 guides the object to be processed into the rotating drum 14 provided below the fixed drum 12 (-Z side). The fixed drum 12, the rotating drum 14, and the top plate 10a function as a container into which objects to be processed are placed.
 回転ドラム14は、円筒状の容器であり、円筒の中心軸回り(Z軸回り)に、不図示のモータにより回転(自転)する。回転ドラム14は、複数の支持ローラ24を介して架台10により支持されているため、この不図示のモータの回転力を受けてスムーズに回転するようになっている。なお、回転ドラム14の回転方向と、インパクト部材34との回転方向とは、同じ回転方向でもよく逆向きの回転方向でもよい。 The rotating drum 14 is a cylindrical container, and rotates (rotates) around the central axis of the cylinder (around the Z axis) by a motor (not shown). Since the rotating drum 14 is supported by the pedestal 10 via a plurality of support rollers 24, it can be smoothly rotated by receiving the rotational force of this motor (not shown). Note that the rotation direction of the rotary drum 14 and the rotation direction of the impact member 34 may be the same rotation direction or may be opposite rotation directions.
 回転ドラム14の内側には、不図示の掻取棒が1又は複数設けられている。不図示の掻取棒は、回転ドラム14の内周面に接しており、回転ドラム14の回転に応じて、回転ドラム14の内周面である壁面に付着した処理対象を掻き取っている。なお、回転ドラム14の回転数が数rpm(例えば1rpm)であるのに対して、回転軸30は300rpmから1200rpmで回転する。このため、原料土が粘性土の場合には、回転ドラム14の壁面に付着した粘性土を不図示の掻取棒では除去できない場合がある。このため、回転ドラム14の壁面に付着した粘性土が回転しているインパクト部材34に接触してインパクト部材34の抵抗を与えてしまうことがある。詳細は後述するものの、本第1実施形態では、液体の粘着防止剤を回転ドラム14の壁面に供給することにより、粘性土の付着を抑制している。 One or more scraping rods (not shown) are provided inside the rotating drum 14. The scraping rod (not shown) is in contact with the inner circumferential surface of the rotary drum 14, and scrapes off the object to be treated that has adhered to the wall surface, which is the inner circumferential surface of the rotary drum 14, as the rotary drum 14 rotates. Note that while the rotating drum 14 rotates at several rpm (for example, 1 rpm), the rotating shaft 30 rotates at 300 rpm to 1200 rpm. For this reason, when the raw material soil is clayey soil, the clayey soil adhering to the wall surface of the rotating drum 14 may not be removed with a scraping rod (not shown). Therefore, the clay adhering to the wall surface of the rotating drum 14 may come into contact with the rotating impact member 34 and provide resistance to the impact member 34. Although the details will be described later, in the first embodiment, adhesion of cohesive soil is suppressed by supplying a liquid anti-stick agent to the wall surface of the rotating drum 14.
 回転機構16は、固定ドラム12及び回転ドラム14の中心に配置された鉛直方向(Z軸方向)に延びる回転軸30と、回転軸30の上端部に設けられたプーリ32と、回転軸30の下端部近傍において上下2段に設けられた2つのインパクト部材34と、を有する。 The rotation mechanism 16 includes a rotation shaft 30 arranged at the center of the fixed drum 12 and the rotation drum 14 and extending in the vertical direction (Z-axis direction), a pulley 32 provided at the upper end of the rotation shaft 30, and a rotation shaft 30 disposed at the center of the fixed drum 12 and the rotation drum 14. Two impact members 34 are provided in upper and lower stages near the lower end.
 回転軸30は、円柱状の部材であり、架台10の天板部10aを貫通した状態、かつ、天板部10aの上面側に設けられた不図示のボールベアリングを介して回転自在な状態で、天板部10aに保持されている。回転軸30の下端部は、回転ドラム14の内部に位置しており、自由端となっている。すなわち、回転軸30は、片持ち支持されている。 The rotating shaft 30 is a cylindrical member that extends through the top plate 10a of the pedestal 10 and is rotatable via a ball bearing (not shown) provided on the top surface of the top plate 10a. , is held on the top plate portion 10a. The lower end of the rotating shaft 30 is located inside the rotating drum 14 and is a free end. That is, the rotating shaft 30 is supported in a cantilevered manner.
 プーリ32は、ベルト113を介してモータ104と接続されている。モータ104が回転すると、プーリ32及び回転軸30が回転する。 The pulley 32 is connected to the motor 104 via a belt 113. When the motor 104 rotates, the pulley 32 and rotating shaft 30 rotate.
 2段のインパクト部材34それぞれは、鋼製の厚板が設けられている。なお、インパクト部材34は、厚板とチェーンとの組み合わせにより構成するようにしてもよい。 Each of the two stages of impact members 34 is provided with a thick steel plate. Note that the impact member 34 may be configured by a combination of a thick plate and a chain.
 インパクト部材34は、回転軸30の回転により遠心回転し、厚板が回転ドラム14の内周面近傍を高速移動することにより、処理対象を破砕したり混合したりする。このため、回転式破砕装置100は、回転式破砕混合装置と呼ぶこともできる。なお、インパクト部材34の厚板の段数や数は、原料土の種類や性状、処理量、添加材の種類、量、改良土の目標品質などに応じて調整することができる。 The impact member 34 is centrifugally rotated by the rotation of the rotating shaft 30, and the thick plate moves near the inner peripheral surface of the rotating drum 14 at high speed, thereby crushing or mixing the object to be processed. For this reason, the rotary crushing device 100 can also be called a rotary crushing and mixing device. Note that the number and number of stages of the thick plates of the impact member 34 can be adjusted depending on the type and properties of the raw soil, the amount of treatment, the type and amount of additives, the target quality of the improved soil, and the like.
 本第1実施形態の回転式破砕装置100によると、投入口部材20を介して固定ドラム12内に投入された処理対象は、回転ドラム14内においてインパクト部材34により破砕、混合され、回転ドラム14の下方に排出されるようになっている。 According to the rotary crushing device 100 of the first embodiment, the processing target input into the fixed drum 12 through the input port member 20 is crushed and mixed by the impact member 34 in the rotary drum 14, and It is designed to be discharged downward.
 本第1実施形態では、原料土が粘性土の場合に、回転式破砕装置100の要部である回転ドラム14の壁面と、インパクト部材34とに液体の高分子電解質および水を供給する下流側供給装置25を設けている。この高分子電解質は、粘着防止剤として作用する。 In the first embodiment, when the raw material soil is clayey soil, the downstream side supplies liquid polymer electrolyte and water to the wall surface of the rotating drum 14, which is a main part of the rotary crushing device 100, and the impact member 34. A supply device 25 is provided. This polyelectrolyte acts as an antiblocking agent.
 図5は、下流側供給装置25の構成の概要を示す図である。図5に示してあるように、下流側供給装置25は、前述した第1タンク11と、第2タンク13と、2つの開閉弁26(26a、26b)と、調圧弁27と、ノズル28とを有している。なお、下流側供給装置25の各構成は、配管により接続されている。 FIG. 5 is a diagram showing an outline of the configuration of the downstream supply device 25. As shown in FIG. 5, the downstream supply device 25 includes the first tank 11, the second tank 13, two on-off valves 26 (26a, 26b), a pressure regulating valve 27, and a nozzle 28. have. Note that each component of the downstream supply device 25 is connected by piping.
 回転軸30の一部を中空構造として(回転軸30のZ方向の一端側から孔を開け、Z方向の他端側には貫通させない)、この中空構造を下流側供給装置25の配管の一部として利用することもできる。回転軸30の中空構造を配管として利用することにより、回転軸30の回転により配管が回転軸30に絡まってしまうことを防止することができる。なお、第1タンク11に貯蔵された粘着防止剤と、第2タンク13に貯蔵された水とのそれぞれは、不図示のポンプによりノズル28に供給される。 A part of the rotating shaft 30 is made into a hollow structure (a hole is made from one end of the rotating shaft 30 in the Z direction, and the other end in the Z direction is not penetrated), and this hollow structure is connected to one of the piping of the downstream supply device 25. It can also be used as a section. By using the hollow structure of the rotating shaft 30 as a pipe, it is possible to prevent the pipe from becoming entangled with the rotating shaft 30 due to rotation of the rotating shaft 30. Note that the anti-blocking agent stored in the first tank 11 and the water stored in the second tank 13 are each supplied to the nozzle 28 by a pump (not shown).
 開閉弁26aは、第1タンク11に接続され、第1タンク11に貯蔵されている粘着防止剤をノズル28へ供給する場合は開状態となり、第1タンク11に貯蔵されている粘着防止剤をノズル28へ供給しない場合は閉状態とされる。 The on-off valve 26 a is connected to the first tank 11 , and when the anti-stick agent stored in the first tank 11 is supplied to the nozzle 28 , it is in an open state, and the anti-adhesive agent stored in the first tank 11 is supplied to the nozzle 28 . When nozzle 28 is not supplied, it is in a closed state.
 開閉弁26bは、第2タンク13に接続され、第2タンク13に貯蔵されている水をノズル28へ供給する場合は開状態となり、第2タンク13に貯蔵されている水をノズル28へ供給しない場合は閉状態とされる。なお、本第1実施形態において、開閉弁26aおよび開閉弁26bの開閉制御は、制御部150により行われている。詳細は後述するものの、制御部150は、開閉弁26aを開状態としてノズル28から粘着防止剤を吐出した後に、開閉弁26aを閉状態とするとともに、開閉弁26bを開状態としてノズル28から水を吐出する。 The on-off valve 26b is connected to the second tank 13 and is in an open state when supplying the water stored in the second tank 13 to the nozzle 28, and supplies the water stored in the second tank 13 to the nozzle 28. If not, it is considered closed. In the first embodiment, the control section 150 controls the opening and closing of the on-off valve 26a and the on-off valve 26b. Although the details will be described later, the control unit 150 opens the on-off valve 26a and discharges the anti-stick agent from the nozzle 28, and then closes the on-off valve 26a and opens the on-off valve 26b to discharge water from the nozzle 28. Discharge.
 調圧弁27は、開閉弁26とノズル28との間に設けられ、開閉弁26が開状態のときに供給される液体の圧力を調節して、ノズル28へと液体を供給するものである。調圧弁27による圧力制御は、制御部150により行われている。 The pressure regulating valve 27 is provided between the on-off valve 26 and the nozzle 28 to adjust the pressure of the liquid supplied when the on-off valve 26 is in the open state, and supplies the liquid to the nozzle 28. Pressure control by the pressure regulating valve 27 is performed by a control section 150.
 ノズル28は、主に回転ドラム14の壁面に粘着防止剤および水を供給するノズル28aと、主にインパクト部材34に粘着防止剤および水を供給するノズル28bとを有している。
 図2に示してあるように、ノズル28aはX方向に沿って水平に設けられており、ノズル28bは-Z方向に傾斜するような角度を持って設けられている。なお、本第1実施形態においては、ノズル28は、調圧弁27を介して回転軸30に接続されている。
The nozzle 28 includes a nozzle 28a that mainly supplies an anti-adhesive agent and water to the wall surface of the rotating drum 14, and a nozzle 28b that mainly supplies an anti-adhesive agent and water to the impact member 34.
As shown in FIG. 2, the nozzle 28a is provided horizontally along the X direction, and the nozzle 28b is provided at an angle such that it is inclined in the -Z direction. Note that in the first embodiment, the nozzle 28 is connected to the rotating shaft 30 via the pressure regulating valve 27.
 図2(a)に示すように回転軸30が停止していると、インパクト部材34が鉛直方向であるZ方向に沿って位置しているため、ノズル28bから供給される液体がインパクト部材34に供給されにくい。 When the rotating shaft 30 is stopped as shown in FIG. 2(a), the impact member 34 is located along the Z direction, which is the vertical direction, so the liquid supplied from the nozzle 28b hits the impact member 34. Hardly supplied.
 一方、図2(b)に示すように回転軸30が回転し、インパクト部材34が浮揚し始めてX方向から-30度から-60度、好ましくは-45度くらいになると、ノズル28bから供給される液体がインパクト部材34に供給されやすくなる。なお、回転軸の30の回転が数十rpm(例えば10rpm)になると、インパクト部材34がX方向から-30度から-60度になる。また、回転軸の30の回転が数十rpmになるまでにかかる時間は、回転軸30の回転開始から数秒程度である。 On the other hand, as shown in FIG. 2(b), when the rotating shaft 30 rotates and the impact member 34 starts to levitate from -30 degrees to -60 degrees, preferably about -45 degrees from the X direction, the impact member 34 is supplied from the nozzle 28b. This makes it easier for liquid to be supplied to the impact member 34. Note that when the rotation of the rotating shaft 30 reaches several tens of rpm (for example, 10 rpm), the impact member 34 changes from -30 degrees to -60 degrees from the X direction. Further, the time required for the rotation of the rotating shaft 30 to reach several tens of rpm is approximately several seconds from the start of rotation of the rotating shaft 30.
 また、図2(c)に示すように回転軸30の回転により、インパクト部材34がX方向とほぼ水平となるまで水平浮揚すると、ノズル28bから供給される液体がインパクト部材34に供給されやすくなる。なお、回転軸の30の回転が350rpm以上になると、インパクト部材34が水平浮揚する。また、回転軸30の回転が350rpmになるまでにかかる時間は、回転軸30の回転開始から5~8秒程度である。 Further, as shown in FIG. 2(c), when the impact member 34 is horizontally levitated until it becomes almost parallel to the X direction due to the rotation of the rotating shaft 30, the liquid supplied from the nozzle 28b becomes easier to be supplied to the impact member 34. . Note that when the rotation of the rotating shaft 30 reaches 350 rpm or more, the impact member 34 floats horizontally. Further, the time required for the rotation of the rotating shaft 30 to reach 350 rpm is about 5 to 8 seconds from the start of rotation of the rotating shaft 30.
 本第1実施形態において、回転式破砕装置100は、回転軸30を300rpm~1200rpmの範囲に設定して、原料土の破砕・混合を行う。なお、回転軸30が300rpmの場合は、インパクト部材34がX方向から-80度から-85度になる。しかしながら、原料土の破砕・混合は、インパクト部材34が水平浮揚していなくても可能であり、300rpmでの破砕・混合は可能である。 In the first embodiment, the rotary crushing device 100 crushes and mixes the raw material soil by setting the rotating shaft 30 in the range of 300 rpm to 1200 rpm. Note that when the rotating shaft 30 is at 300 rpm, the impact member 34 is at -80 degrees to -85 degrees from the X direction. However, the raw material soil can be crushed and mixed even if the impact member 34 is not horizontally floating, and crushing and mixing at 300 rpm is possible.
(原料土供給装置108)
 図3は第1実施形態に係る原料土供給装置108の構成を示す図であり、図3(a)は上面図であり、図3(b)は正面図であり、図3(c)は側面図である。なお、原料土供給装置108の構成を分かりやすくするために、図3(c)は部分断面図としている。以下、図3を用いて原料土供給装置108の構成につき説明を行う。
(Raw material soil supply device 108)
FIG. 3 is a diagram showing the configuration of the raw material soil supply device 108 according to the first embodiment, in which FIG. 3(a) is a top view, FIG. 3(b) is a front view, and FIG. 3(c) is a top view. FIG. Note that, in order to make the configuration of the raw material soil supply device 108 easier to understand, FIG. 3(c) is a partial cross-sectional view. Hereinafter, the configuration of the raw material soil supply device 108 will be explained using FIG. 3.
 原料土供給装置108は、前述したようにホッパ装置50と、定量供給装置60と、ベルトコンベア122とを有している。以下、ホッパ装置50と、定量供給装置60とについて詳述していく。 As described above, the raw soil supply device 108 includes the hopper device 50, the quantitative supply device 60, and the belt conveyor 122. The hopper device 50 and quantitative supply device 60 will be described in detail below.
 ホッパ装置50は、ホッパ51と、ほぐし装置52とを有している。ホッパ51は、投入口と排出口とを有し、例えばバックホウから放出された原料土を投入口から受け入れ、排出口から原料土を定量供給装置60に排出するものである。ホッパ51は、投入口の断面積が排出口の断面積よりも大きいため、原料土である掘削物を一時的に貯留することができる。 The hopper device 50 includes a hopper 51 and a loosening device 52. The hopper 51 has an input port and a discharge port, and receives raw material soil discharged from, for example, a backhoe from the input port, and discharges the raw material soil to the quantitative supply device 60 from the discharge port. Since the cross-sectional area of the input port of the hopper 51 is larger than the cross-sectional area of the discharge port, the hopper 51 can temporarily store excavated material, which is raw material soil.
 ほぐし装置52は、投入された原料土を解すものであり、シャフト53と、このシャフト53に設けられた金属製の回転羽根54と、シャフト53を回転させるモータ55とを有している。 The loosening device 52 loosens the input raw material soil, and includes a shaft 53, a metal rotating blade 54 provided on the shaft 53, and a motor 55 that rotates the shaft 53.
 原料土が粘性土であった場合でも、回転羽根54の回転動作により原料土を切り裂いて、原料土を定量供給装置60に向けて移動させるので、ホッパ装置50内でのアーチアクションの発生を抑制することができる。 Even when the raw material soil is clayey soil, the raw material soil is torn apart by the rotational action of the rotary blade 54 and the raw material soil is moved toward the quantitative supply device 60, thereby suppressing the occurrence of arch action within the hopper device 50. can do.
 また、ほぐし装置52には、上流側供給装置70の一部が設けられている。上流側供給装置70は、ホッパ51の内側壁面と、定量供給装置60の一部(例えば、一対の回転ロール62や掻き出し刃63)とに液体の高分子電解質および水を供給する装置である。この高分子電解質は、粘着防止剤として作用する。 Further, the loosening device 52 is provided with a part of the upstream supply device 70. The upstream supply device 70 is a device that supplies liquid polymer electrolyte and water to the inner wall surface of the hopper 51 and a part of the quantitative supply device 60 (for example, the pair of rotating rolls 62 and the scraping blade 63). This polyelectrolyte acts as an antiblocking agent.
 上流側供給装置70の構成は、下流側供給装置25の構成と実質的に同じである。図6は上流側供給装置70の構成の概要を示す図である。図6に示してあるように、上流側供給装置70は、粘着防止剤である高分子電解質を貯蔵する第3タンク71と、水を貯蔵する第4タンク72と、2つの開閉弁73(73a、73b)と、調圧弁74と、ノズル75とを有している。なお、上流側供給装置70の各構成は、配管により接続されている。 The configuration of the upstream supply device 70 is substantially the same as the configuration of the downstream supply device 25. FIG. 6 is a diagram showing an outline of the configuration of the upstream supply device 70. As shown in FIG. 6, the upstream supply device 70 includes a third tank 71 that stores a polymer electrolyte that is an anti-blocking agent, a fourth tank 72 that stores water, and two on-off valves 73 (73a). , 73b), a pressure regulating valve 74, and a nozzle 75. Note that each component of the upstream supply device 70 is connected by piping.
 本第1実施形態では、シャフト53を中空構造として、一端に開閉弁73aを設け、他端に開閉弁73bを設けて、この中空構造を上流側供給装置70の配管の一部として利用することができる。シャフト53の中空構造を配管として利用することにより、シャフト53の回転により配管がシャフト53に絡まってしまうことを防止することができる。また、ノズル75は、調圧弁74を介してシャフト53もしくは回転羽根54に接続することができる。なお、第3タンク71に貯蔵された粘着防止剤と、第4タンク72に貯蔵された水とのそれぞれは、不図示のポンプによりノズル75に供給される。 In the first embodiment, the shaft 53 has a hollow structure, an on-off valve 73a is provided at one end, an on-off valve 73b is provided at the other end, and this hollow structure is used as a part of the piping of the upstream supply device 70. Can be done. By utilizing the hollow structure of the shaft 53 as a pipe, it is possible to prevent the pipe from becoming entangled with the shaft 53 due to rotation of the shaft 53. Further, the nozzle 75 can be connected to the shaft 53 or the rotating blade 54 via the pressure regulating valve 74. Note that the anti-blocking agent stored in the third tank 71 and the water stored in the fourth tank 72 are each supplied to the nozzle 75 by a pump (not shown).
 開閉弁73aは、第3タンク71に接続され、第3タンク71に貯蔵されている粘着防止剤をノズル75へ供給する場合は開状態となり、第3タンク71に貯蔵されている粘着防止剤をノズル75へ供給しない場合は閉状態とされる。 The on-off valve 73a is connected to the third tank 71, and when the anti-stick agent stored in the third tank 71 is supplied to the nozzle 75, it is in an open state, and the anti-adhesive agent stored in the third tank 71 is supplied to the nozzle 75. When nozzle 75 is not supplied, it is in a closed state.
 開閉弁73bは、第4タンク72に接続され、第4タンク72に貯蔵されている水をノズル75へ供給する場合は開状態となり、第4タンク72に貯蔵されている水をノズル75へ供給しない場合は閉状態とされる。なお、本第1実施形態において、開閉弁73aおよび開閉弁73bの開閉制御は、制御部150により行われている。詳細は後述するものの、制御部150は、開閉弁73aを開状態としてノズル75から粘着防止剤を吐出した後に、開閉弁73aを閉状態とするとともに、開閉弁73bを開状態としてノズル75から水を吐出する。 The on-off valve 73b is connected to the fourth tank 72 and is in an open state when the water stored in the fourth tank 72 is supplied to the nozzle 75, and the water stored in the fourth tank 72 is supplied to the nozzle 75. If not, it is considered closed. In the first embodiment, the control section 150 controls the opening and closing of the on-off valve 73a and the on-off valve 73b. Although the details will be described later, the control unit 150 opens the on-off valve 73a and discharges the anti-stick agent from the nozzle 75, and then closes the on-off valve 73a and opens the on-off valve 73b to discharge water from the nozzle 75. Discharge.
 調圧弁74は、開閉弁73とノズル75との間に設けられ、開閉弁73が開状態のときに供給される液体の圧力を調節して、ノズル75へと液体を供給するものである。調圧弁74による圧力制御は、制御部150により行われている。 The pressure regulating valve 74 is provided between the on-off valve 73 and the nozzle 75, and supplies the liquid to the nozzle 75 by adjusting the pressure of the liquid supplied when the on-off valve 73 is in the open state. Pressure control by the pressure regulating valve 74 is performed by the control section 150.
 定量供給装置60は、ホッパ装置50の下方に設けられ、ホッパ装置50にて解された原料土を連続的にある一定量(所定量)でベルトコンベア122を介して、回転式破砕装置100に供給するものである。これにより、回転式破砕装置100は、連続的に一定量で供給される原料土を安定して破砕および混合することができる。 The quantitative supply device 60 is provided below the hopper device 50, and continuously supplies a certain amount (predetermined amount) of the raw material soil crushed in the hopper device 50 to the rotary crushing device 100 via the belt conveyor 122. supply. Thereby, the rotary crushing device 100 can stably crush and mix raw material soil that is continuously supplied in a constant amount.
 定量供給装置60は、ケーシング61と、一対の回転ロール62と、掻き出し刃63と、一対の回転軸64と、一対のモータ65と、減速機66とを備えている。 The quantitative supply device 60 includes a casing 61, a pair of rotating rolls 62, a scraping blade 63, a pair of rotating shafts 64, a pair of motors 65, and a speed reducer 66.
 ケーシング61は、ホッパ装置50にて解された原料土が搬入されるものであり、内部には一対の回転ロール62が一対の回転軸64に対して回転可能に設けられている。また、ケーシング61には、外側に第3タンク71と第4タンク72とが設けられている。なお、第3タンク71と第4タンク72とは、ケーシング61以外の所に設けるようにしてもよい。 The casing 61 is into which the raw material soil loosened by the hopper device 50 is carried, and a pair of rotating rolls 62 are provided inside the casing 61 so as to be rotatable about a pair of rotating shafts 64 . Further, the casing 61 is provided with a third tank 71 and a fourth tank 72 on the outside. Note that the third tank 71 and the fourth tank 72 may be provided at a location other than the casing 61.
 一対の回転ロール62は、円筒形状をしており、図3(a)に示してあるように、X方向に沿って配置されるとともに、Y方向に離隔して設けられている。これにより、一対の回転ロール62には、原料土が排出される通路Pが形成される。一対の回転軸64は一対モータ65の駆動力によりX軸回りに回転し、これにより、一対の回転ロール62はX軸回りに回転する。一対の回転軸64のうち、一方の回転軸64が一方のモータ65により時計回りに回転し、他方の回転軸が他方のモータ65により反時計回りに回転する。これにより、一対の回転ロール62のうち、一方の回転ロール62が時計回りに回転し他方の回転ロール62が反時計回りに回転する。 The pair of rotating rolls 62 have a cylindrical shape, and are arranged along the X direction and spaced apart from each other in the Y direction, as shown in FIG. 3(a). Thereby, a passage P is formed in the pair of rotating rolls 62 through which the raw material soil is discharged. The pair of rotating shafts 64 are rotated around the X-axis by the driving force of the pair of motors 65, and thereby the pair of rotating rolls 62 are rotated around the X-axis. Of the pair of rotating shafts 64, one rotating shaft 64 is rotated clockwise by one motor 65, and the other rotating shaft is rotated counterclockwise by the other motor 65. As a result, one of the pair of rotating rolls 62 rotates clockwise and the other rotating roll 62 rotates counterclockwise.
 減速機66は、一対の回転ロール62を所定の回転数で回転させるために、一対のモータ65の動力を減速するものである。本第1実施形態において、減速機66はチェーンとスプロケットとを有しているが、減速機66としては歯車などの機械要素を適用してもよい。 The speed reducer 66 reduces the power of the pair of motors 65 in order to rotate the pair of rotary rolls 62 at a predetermined rotation speed. In the first embodiment, the reducer 66 has a chain and a sprocket, but a mechanical element such as a gear may also be used as the reducer 66.
 掻き出し刃63は、一対の回転ロール62の外周に複数設けられている金属製の板状部材である。掻き出し刃63は、一対の回転ロール62とともに回転することにより、ケーシング61に搬入された原料土を所定の大きさに解砕して、一対の回転ロール62の通路Pから解砕された原料土を排出する。なお、一対の回転ロール62に複数設けられる掻き出し刃63は、掻き出し刃63同士が干渉しないように設けられている。 A plurality of scraping blades 63 are metal plate-like members provided around the outer periphery of the pair of rotating rolls 62. The scraping blade 63 rotates together with the pair of rotating rolls 62 to crush the raw material soil carried into the casing 61 into a predetermined size, and removes the crushed raw material soil from the passage P of the pair of rotating rolls 62. discharge. Note that the plurality of scraping blades 63 provided on the pair of rotating rolls 62 are provided so that the scraping blades 63 do not interfere with each other.
 図4は、自走式の処理システム1000の制御系を示すブロック図である。通信装置152は、インターネット等の広域ネットワークにアクセスする無線通信ユニットである。本第1実施形態において、通信装置152は、工事現場から離れた場所にあるホストコンピュータとの間で通信を行うものである。 FIG. 4 is a block diagram showing the control system of the self-propelled processing system 1000. The communication device 152 is a wireless communication unit that accesses a wide area network such as the Internet. In the first embodiment, the communication device 152 communicates with a host computer located far from the construction site.
 制御部150は、自走式の処理システム1000全体を制御する制御装置であり、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えている。 The control unit 150 is a control device that controls the entire self-propelled processing system 1000, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 制御部150は、走行装置102と、回転式破砕装置100と、原料土供給装置108と、添加材供給装置110と、排出装置112と、通信装置152と、に接続されている。なお、回転式破砕装置100と、原料土供給装置108と、添加材供給装置110と、排出装置112と、通信装置152とを各ユニットと称して説明する場合がある。 The control unit 150 is connected to the traveling device 102, the rotary crushing device 100, the raw soil supply device 108, the additive supply device 110, the discharge device 112, and the communication device 152. Note that the rotary crushing device 100, the raw material soil supply device 108, the additive material supply device 110, the discharge device 112, and the communication device 152 may be referred to as units in the description.
 以上のように構成された本第1実施形態の自走式の処理システム1000による動作につき、以下説明を続ける。図7は、本第1実施形態の制御部150により実行されるフローチャートである。なお、本フローチャートは、自走式の処理システム1000が走行装置102により原料土の処理現場に到着した後に実施されるものである。 The operation of the self-propelled processing system 1000 of the first embodiment configured as above will be explained below. FIG. 7 is a flowchart executed by the control unit 150 of the first embodiment. Note that this flowchart is executed after the self-propelled processing system 1000 arrives at the raw material soil processing site using the traveling device 102.
(フローチャート)
 制御部150は、各ユニットの駆動を開始する(ステップS1)。各ユニットの駆動により、回転軸30およびシャフト53の回転が開始する。なお、ステップS1では、原料土供給装置108への原料土の供給はされていないものとする。
(flowchart)
The control unit 150 starts driving each unit (step S1). As each unit is driven, rotation of the rotating shaft 30 and the shaft 53 starts. Note that in step S1, it is assumed that raw soil is not supplied to the raw soil supply device 108.
 制御部150は、下流側供給装置25および上流側供給装置70を制御して、粘着防止剤の供給を行う(ステップS2)。 The control unit 150 controls the downstream supply device 25 and the upstream supply device 70 to supply the anti-blocking agent (Step S2).
 制御部150は、下流側供給装置25の開閉弁26aを開状態とするとともに、開閉弁26bを閉状態とする。また、制御部150は、ノズル28から粘着防止剤が供給可能なように調圧弁27の圧力を調節する。 The control unit 150 opens the on-off valve 26a of the downstream supply device 25 and closes the on-off valve 26b. Further, the control unit 150 adjusts the pressure of the pressure regulating valve 27 so that the anti-blocking agent can be supplied from the nozzle 28.
 ステップS1により回転軸30が回転を開始しておりインパクト部材34が水平浮揚しているので、制御部150は、下流側供給装置25による回転ドラム14の壁面とインパクト部材34とへの粘着防止剤の供給を行う。 Since the rotating shaft 30 has started rotating in step S1 and the impact member 34 is floating horizontally, the control unit 150 controls the application of the anti-adhesive agent to the wall surface of the rotating drum 14 and the impact member 34 by the downstream supply device 25. supply.
 また、制御部150は、上流側供給装置70の開閉弁73aを開状態とするとともに、開閉弁73bを閉状態とする。また、制御部150は、ノズル75から粘着防止剤が供給可能なように調圧弁74の圧力を調節する。 Further, the control unit 150 opens the on-off valve 73a of the upstream supply device 70 and closes the on-off valve 73b. Further, the control unit 150 adjusts the pressure of the pressure regulating valve 74 so that the anti-blocking agent can be supplied from the nozzle 75.
 ステップS1によりシャフト53が回転を開始しているので、制御部150は、上流側供給装置70によるホッパ51の壁面と、一対の回転ロール62と、掻き出し刃63とへの粘着防止剤の供給を行う。 Since the shaft 53 has started rotating in step S1, the control unit 150 prevents the upstream supply device 70 from supplying the anti-stick agent to the wall surface of the hopper 51, the pair of rotating rolls 62, and the scraping blade 63. conduct.
 粘着防止剤の供給量は、原料土の性状(例えば、含水率や粒径)に応じて決定してもよく、試験的な施工により決定してもよく、経験的に決定してもよい。 The supply amount of the anti-blocking agent may be determined depending on the properties of the raw soil (for example, water content and particle size), may be determined through trial construction, or may be determined empirically.
 粘着防止剤の供給が終了すると、制御部150は、下流側供給装置25および上流側供給装置70を制御して、水の供給を行う(ステップS3)。 When the supply of the anti-blocking agent is completed, the control unit 150 controls the downstream supply device 25 and the upstream supply device 70 to supply water (step S3).
 制御部150は、下流側供給装置25の開閉弁26aを閉状態とするとともに、開閉弁26bを開状態とする。また、制御部150は、上流側供給装置70の開閉弁73aを閉状態とするとともに、開閉弁73bを開状態とする。 The control unit 150 closes the on-off valve 26a of the downstream supply device 25 and opens the on-off valve 26b. Further, the control unit 150 closes the on-off valve 73a of the upstream supply device 70 and opens the on-off valve 73b.
 制御部150は、下流側供給装置25による回転ドラム14の壁面とインパクト部材34とへの水の供給を行うとともに、上流側供給装置70によるホッパ51の壁面と、一対の回転ロール62と、掻き出し刃63とへの水の供給を行う。制御部150は、水の供給を終了すると、下流側供給装置25の開閉弁26bを閉状態とするとともに、上流側供給装置70の開閉弁73bを閉状態とする。 The control unit 150 supplies water to the wall surface of the rotating drum 14 and the impact member 34 by the downstream supply device 25, and supplies water to the wall surface of the hopper 51, the pair of rotating rolls 62, and the scraping by the upstream supply device 70. Water is supplied to the blade 63. When the control unit 150 finishes supplying water, it closes the on-off valve 26b of the downstream supply device 25 and closes the on-off valve 73b of the upstream supply device 70.
 本フローチャートのステップS3において、水の供給を行うのは、原料土の粘着、密着、または固着の防止効果を高めるために、水を供給することで、粘着防止剤に含まれる高分子電解質を膨潤させるためである。なお、水の供給は、粘着防止剤の供給に先立って行ってもよく、粘着防止剤と同時に行ってもよく、省略してもよい。粘着防止剤と水とを同時に供給する場合には、制御部150は、ステップS2において、開閉弁26bと開閉弁73bとを開状態とすればよい。 In step S3 of this flowchart, water is supplied to increase the effect of preventing adhesion, adhesion, or fixation of the raw material soil, by supplying water to swell the polymer electrolyte contained in the anti-blocking agent. This is to make it happen. Note that the supply of water may be performed prior to the supply of the anti-blocking agent, may be performed simultaneously with the supply of the anti-blocking agent, or may be omitted. When supplying the anti-stick agent and water at the same time, the control unit 150 may open the on-off valve 26b and the on-off valve 73b in step S2.
 自走式の処理システム1000は、原料土供給装置108の下流側に回転式破砕装置100が配置されている。このため、制御部150は、上流側供給装置70による粘着防止剤の供給を行ってから、下流側供給装置25による粘着防止剤の供給を行うことが好ましい。 In the self-propelled processing system 1000, a rotary crushing device 100 is arranged downstream of the raw material soil supply device 108. For this reason, it is preferable that the control unit 150 supplies the anti-blocking agent using the upstream supply device 70 and then supplies the anti-blocking agent using the downstream supply device 25.
 制御部150は、リモコンや操作パネルやホストコンピュータなどに対して、破砕・混合が可能であることを信号や表示を行う(ステップS4)。制御部150から破砕・混合が可能であることを信号や表示を受けると、例えば、バケットを有した建設機械であるバックホウにより掘削された原料土がホッパ装置50に供給される。なお、このバックホウは、有人運転のものでも、無人運転のものでも、遠隔操作によるもののいずれでもよい。 The control unit 150 sends a signal or display to the remote control, operation panel, host computer, etc. that crushing and mixing are possible (step S4). When receiving a signal or display from the control unit 150 that crushing and mixing are possible, raw material soil excavated by, for example, a backhoe, which is a construction machine with a bucket, is supplied to the hopper device 50. Note that this backhoe may be manned, unmanned, or remotely operated.
 制御部150は、モータ65およびモータ104に負荷電流を検出する(ステップS5)。
 制御部150は、破砕・混合処理の開始をトリガーとして、定量供給装置60が原料土の定量供給を行っている際のモータ65の負荷電流を検出するとともに、回転式破砕装置100が原料土の破砕・混合を行っている際のモータ104の負荷電流を検出する。なお、制御部150は、ステップS5において、ほぐし装置52が原料土を解している際のモータ55の負荷電流を検出してもよく、他のモータの負荷電流を検出するようにしてもよい。
Control unit 150 detects load currents on motor 65 and motor 104 (step S5).
Using the start of the crushing/mixing process as a trigger, the control unit 150 detects the load current of the motor 65 when the quantitative supply device 60 is supplying the raw material soil in a fixed amount, and also detects the load current of the motor 65 when the quantitative supply device 60 is supplying the raw material soil in a fixed amount. The load current of the motor 104 during crushing and mixing is detected. In addition, in step S5, the control unit 150 may detect the load current of the motor 55 when the loosening device 52 is loosening the raw material soil, or may detect the load current of another motor. .
 モータ65およびモータ104に負荷電流の検出は、瞬間的に大きな電流値(例えば、定格電流の85%を超えるの電流値)を検出する場合がある。このため、制御部150は、一定時間(例えば5分から10分程度)モータ65およびモータ104の負荷電流を所定のインターバルで検出して、その平均値をモータ65およびモータ104の負荷電流とすることが好ましい。 When detecting the load current on the motor 65 and the motor 104, a large current value (for example, a current value exceeding 85% of the rated current) may be detected momentarily. Therefore, the control unit 150 detects the load currents of the motor 65 and the motor 104 at predetermined intervals for a certain period of time (for example, about 5 to 10 minutes), and sets the average value as the load current of the motor 65 and the motor 104. is preferred.
 制御部150は、粘着防止剤の供給が必要かどうかの判断を行う(ステップS6)。モータ65およびモータ104は、通常は定格電流の80%程度で駆動している。ところが、粘性土が定量供給装置60の一対の回転ロール62に形成される通路Pを通過できない場合や、回転ドラム14の壁面に付着した粘性土が回転しているインパクト部材34に接触してインパクト部材34の抵抗を与えてしまう場合に、モータ65およびモータ104は、定格電流の85%以上で駆動してしまうことがある。 The control unit 150 determines whether it is necessary to supply an anti-tack agent (step S6). Motor 65 and motor 104 are normally driven at about 80% of the rated current. However, there are cases where the clay soil cannot pass through the passage P formed in the pair of rotating rolls 62 of the metering supply device 60, or when the clay soil adhering to the wall surface of the rotating drum 14 comes into contact with the rotating impact member 34 and causes an impact. If the resistance of the member 34 is applied, the motor 65 and the motor 104 may be driven at 85% or more of the rated current.
 このため、制御部150は、ステップS6において、モータ65が定格電流の85%以上で一定時間駆動している場合には原料土供給装置108への粘着防止剤の供給が必要と判断し、モータ104が定格電流の85%以上で一定時間駆動している場合には回転式破砕装置100への粘着防止剤の供給が必要と判断する。 Therefore, in step S6, if the motor 65 is driven at 85% or more of the rated current for a certain period of time, the control unit 150 determines that it is necessary to supply the anti-blocking agent to the raw soil supply device 108, and 104 is driven at 85% or more of the rated current for a certain period of time, it is determined that it is necessary to supply the anti-blocking agent to the rotary crushing device 100.
 なお、制御部150は、ステップS5にて一定時間検出した負荷電流が定格電流に対して、例えば5分毎に単調増加している場合(例えば82%→83%→84%)に、これからの5分間では負荷電流が定格電流の85%以上になると予測できる場合に粘着防止剤の供給が必要と判断してもよい。 Note that, when the load current detected for a certain period of time in step S5 is monotonically increasing with respect to the rated current, for example every 5 minutes (for example, 82% → 83% → 84%), the control unit 150 If it is predicted that the load current will be 85% or more of the rated current for 5 minutes, it may be determined that the anti-blocking agent needs to be supplied.
 なお、ステップS6の判断は、負荷電流の検出に代えて、もしくは、負荷電流の検出と併用して画像を用いるものでもよい。具体的には、ベルトコンベア122もしくはベルトコンベア122の近傍に撮像装置を設けて、原料土供給装置108から排出された原料土を撮像するようにすればよい。この撮像装置の撮像により、原料土供給装置108から排出される原料土の量が少ない場合には、制御部150は原料土供給装置108への粘着防止剤の供給が必要と判断する。なお、この撮像装置は、添加材供給装置110よりも上流側(原料土供給装置108)に設けることが好ましい。 Note that the determination in step S6 may use an image instead of or in combination with the detection of the load current. Specifically, an imaging device may be provided at or near the belt conveyor 122 to image the raw soil discharged from the raw soil supply device 108. When the amount of raw material soil discharged from the raw material soil supplying device 108 is small based on the image taken by this imaging device, the control unit 150 determines that it is necessary to supply the anti-blocking agent to the raw material soil supplying device 108. Note that this imaging device is preferably provided upstream of the additive supply device 110 (raw material supply device 108).
 また、排出装置112もしくは排出装置112の近傍に撮像装置を設けて、回転式破砕装置100から排出された原料土を撮像するようにすればよい。この撮像装置の撮像により、回転式破砕装置100から排出される原料土の量が少ない場合には、制御部150は回転式破砕装置100への粘着防止剤の供給が必要と判断する。 Additionally, an imaging device may be provided at or near the discharge device 112 to image the raw material soil discharged from the rotary crushing device 100. If the amount of raw material soil discharged from the rotary crushing device 100 is small based on the image taken by the imaging device, the control unit 150 determines that it is necessary to supply the anti-blocking agent to the rotary crushing device 100.
 原料土供給装置108から排出された原料土の撮像および回転式破砕装置100から排出された原料土の撮像に基づく粘着防止剤の供給の要否判断は、制御部150ではなく、ホストコンピュータにより行うようにしてもよい。この場合、制御部150は、撮像した画像データを通信装置152によりホストコンピュータに送信するようにすればよい。 The host computer, not the control unit 150, determines whether or not the anti-blocking agent needs to be supplied based on the imaging of the raw soil discharged from the raw soil supply device 108 and the image of the raw soil discharged from the rotary crushing device 100. You can do it like this. In this case, the control unit 150 may transmit the captured image data to the host computer via the communication device 152.
 制御部150は、ステップS6で粘着防止剤の供給が必要と判断した場合には、ステップS7およびステップS8の処理を行い、ステップS6で粘着防止剤の供給が必要ないと判断した場合には、ステップS9へと進む。なお、ステップS7の処理はステップS2の処理と同じであり、ステップS8の処理はステップS3の処理と同じであるので、その説明は省略する。 If the control unit 150 determines in step S6 that it is necessary to supply an anti-blocking agent, it performs the processes of steps S7 and S8, and if it determines that it is not necessary to supply an anti-blocking agent in step S6, The process advances to step S9. Note that the process in step S7 is the same as the process in step S2, and the process in step S8 is the same as the process in step S3, so a description thereof will be omitted.
 制御部150は、破砕・混合処理が終了したかどうかを判断する(ステップS9)。制御部150は、バックホウからの原料土を破砕・混合処理が済みであれは、本フローチャートを終了し、バックホウからの原料土の破砕・混合処理が進行中であれば、破砕・混合処理が済むまでステップS5からステップS9までの処理を繰り返す。 The control unit 150 determines whether the crushing/mixing process is finished (step S9). The control unit 150 ends this flowchart if the raw material soil from the backhoe has been crushed and mixed, and if the raw material soil from the backhoe is currently being crushed and mixed, the crushing and mixing process is completed. The processes from step S5 to step S9 are repeated until.
 本フローチャートにおいては、バックホウが掘削した原料土をホッパ装置50に供給される前に、下流側供給装置25による粘着防止剤の供給を行った。しかしながら、バックホウが掘削した原料土をホッパ装置50に供給した後であっても、この原料土が回転式破砕装置100に投入するまでに下流側供給装置25による粘着防止剤の供給を行うようにしてもよい。 In this flowchart, before the raw material soil excavated by the backhoe was supplied to the hopper device 50, the anti-blocking agent was supplied by the downstream supply device 25. However, even after the raw material soil excavated by the backhoe is supplied to the hopper device 50, the anti-blocking agent is supplied by the downstream supply device 25 before the raw material soil is fed into the rotary crushing device 100. It's okay.
(第2実施形態)
 以下、図8から図10を用いて第2実施形態につき説明するが、第1実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。第1実施形態のフローチャートのステップS7において、上流側供給装置70による粘着防止剤の供給する際に、ノズル75の先端の開口が原料土により塞がれてしまう虞があった。
(Second embodiment)
The second embodiment will be described below with reference to FIGS. 8 to 10, and the same components as in the first embodiment will be denoted by the same reference numerals, and the explanation thereof will be omitted or simplified. In step S7 of the flowchart of the first embodiment, when the upstream side supply device 70 supplies the anti-blocking agent, there is a possibility that the opening at the tip of the nozzle 75 may be blocked by the raw material soil.
 そこで、本第2実施形態では、原料土供給装置108の要部への粘着防止剤および水の供給を無人航空機であるUAV(Unmanned Aerial Vehicle、以下ドローン200という)により行うものとする。 Therefore, in the second embodiment, the anti-blocking agent and water are supplied to the main parts of the raw material soil supply device 108 by an unmanned aerial vehicle (UAV (Unmanned Aerial Vehicle, hereinafter referred to as the drone 200)).
 図8は第2実施形態に係る自走式の処理システムを示す図であり、図9は第2実施形態の自走式の処理システムの制御系を示すブロック図である。
 本実施形態のドローン200は、飛行装置201と、撮像装置202と、センサ群203と、バッテリー204と、第2通信装置205と、メモリ206と、ドローン側供給装置207と、UAV制御装置208と、を備えている。これらの構成要素はドローン200の本体部に設けられている。
FIG. 8 is a diagram showing a self-propelled processing system according to the second embodiment, and FIG. 9 is a block diagram showing a control system of the self-propelled processing system according to the second embodiment.
The drone 200 of this embodiment includes a flight device 201, an imaging device 202, a sensor group 203, a battery 204, a second communication device 205, a memory 206, a drone-side supply device 207, and a UAV control device 208. , is equipped with. These components are provided in the main body of the drone 200.
 飛行装置201は、不図示のモータと、複数のプロペラと、を有しており、ドローン200を空中に浮上させるとともに、空中での移動を行う推力を発生させるものである。なお、ドローン200の機数は任意に設定することができる。 The flight device 201 includes a motor (not shown) and a plurality of propellers, and generates thrust to cause the drone 200 to levitate in the air and move in the air. Note that the number of drones 200 can be set arbitrarily.
 撮像装置202は、レンズや撮像素子や画像処理エンジンなどを有し、動画や静止画を撮像するデジタルカメラである。本実施形態において、撮像装置202は、原料土供給装置108の上方からホッパ51やほぐし装置52を撮像したり、ベルトコンベア122の上方からベルトコンベア122にて搬送されている原料土を撮像したりしている。 The imaging device 202 is a digital camera that includes a lens, an image sensor, an image processing engine, etc., and captures moving images and still images. In this embodiment, the imaging device 202 images the hopper 51 and the loosening device 52 from above the raw material soil supply device 108, or images the raw material soil being conveyed by the belt conveyor 122 from above the belt conveyor 122. are doing.
 撮像装置202のレンズはドローン200の側面(正面)に取り付けられているが、撮像装置202のレンズをドローン200の下面に取り付けてもよく、複数のレンズをドローン200に設けてもよい。また、側面に取り付けたれたレンズを下面に向けて移動させる移動機構を設けるようにしてもよい。また、撮像装置202をZ軸回りに回転する機構を設けて撮像装置202のレンズをZ軸回りの任意の位置に位置決めするようにしてもよい。なお、撮像装置202として全方位型カメラ(360度カメラ)を用いてもよく、撮像装置202の代わりに3次元スキャナを用いてもよい。 Although the lens of the imaging device 202 is attached to the side (front) of the drone 200, the lens of the imaging device 202 may be attached to the bottom surface of the drone 200, or a plurality of lenses may be provided on the drone 200. Further, a moving mechanism may be provided to move the lens attached to the side surface toward the bottom surface. Further, a mechanism for rotating the imaging device 202 around the Z-axis may be provided to position the lens of the imaging device 202 at an arbitrary position around the Z-axis. Note that an omnidirectional camera (360-degree camera) may be used as the imaging device 202, and a three-dimensional scanner may be used instead of the imaging device 202.
 センサ群203は、GNSSや、ドローン200と他の装置(例えば自走式の処理システム1000)との衝突回避するための赤外線センサや、高度を測定する気圧センサや、方位を検出する磁気センサや、ドローン200の姿勢を検出するジャイロセンサや、ドローン200に作用する加速度を検出する加速度センサなどである。 The sensor group 203 includes GNSS, an infrared sensor for avoiding collision between the drone 200 and other devices (for example, the self-propelled processing system 1000), an atmospheric pressure sensor for measuring altitude, a magnetic sensor for detecting direction, and , a gyro sensor that detects the attitude of the drone 200, an acceleration sensor that detects acceleration acting on the drone 200, and the like.
 バッテリー204は、受電装置103に接続された二次電池であり、リチウムイオン二次電池やリチウムポリマー二次電池などを用いることができるがこれに限定されるものではない。バッテリー204は、飛行装置201と、撮像装置202と、センサ群203と、第2通信装置205と、メモリ206と、UAV制御装置208とに電力を供給することが可能である。 The battery 204 is a secondary battery connected to the power receiving device 103, and can be a lithium ion secondary battery, a lithium polymer secondary battery, or the like, but is not limited thereto. The battery 204 is capable of supplying power to the flight device 201 , the imaging device 202 , the sensor group 203 , the second communication device 205 , the memory 206 , and the UAV controller 208 .
 第2通信装置205は、無線通信ユニットを有しており、インターネット等の広域ネットワークにアクセスしたり、通信装置152と通信したりするものである。本第2実施形態において、第2通信装置205は、撮像装置202が撮像した画像データやセンサ群203が検出した検出結果を通信装置152に送信したり、通信装置152からの飛行指令をUAV制御装置208に送信したりするものである。なお、第2通信装置205は、工事現場から離れた場所にあるホストコンピュータとの間で通信を行ってもよい。 The second communication device 205 has a wireless communication unit, and accesses a wide area network such as the Internet and communicates with the communication device 152. In the second embodiment, the second communication device 205 transmits image data captured by the imaging device 202 and detection results detected by the sensor group 203 to the communication device 152, and sends flight commands from the communication device 152 to UAV control. The data may be sent to the device 208. Note that the second communication device 205 may communicate with a host computer located away from the construction site.
 メモリ206は、不揮発性のメモリ(例えばフラッシュメモリ)であり、ドローン200を飛行させるための各種データやプログラムを記憶したり、撮像装置202が撮像した画像データやセンサ群203が検出した検出結果などを記憶したりするものである。 The memory 206 is a nonvolatile memory (for example, a flash memory), and stores various data and programs for flying the drone 200, image data captured by the imaging device 202, detection results detected by the sensor group 203, etc. It is used to remember things.
 ドローン側供給装置207の構成は、サイズなどが異なる部分があるものの、上流側供給装置70と、実質的に同じである。図10は、ドローン側供給装置207の構成の概要を示す図である。図10に示すように、ドローン側供給装置207は、粘着防止剤である高分子電解質を貯蔵する第5タンク161と、水を貯蔵する第6タンク162と、2つの開閉弁163(163a、163b)と、調圧弁164と、不図示のノズルとを有している。なお、上流側供給装置70の各構成は、配管により接続されている。 The configuration of the drone-side supply device 207 is substantially the same as the upstream-side supply device 70, although there are some differences in size and the like. FIG. 10 is a diagram showing an outline of the configuration of the drone-side supply device 207. As shown in FIG. 10, the drone-side supply device 207 includes a fifth tank 161 that stores a polymer electrolyte that is an anti-stick agent, a sixth tank 162 that stores water, and two on-off valves 163 (163a, 163b). ), a pressure regulating valve 164, and a nozzle (not shown). Note that each component of the upstream supply device 70 is connected by piping.
 開閉弁163aは、第5タンク161に接続され、第5タンク161に貯蔵されている粘着防止剤を不図示のノズルへ供給する場合は開状態となり、第5タンク161に貯蔵されている粘着防止剤を不図示のノズルへ供給しない場合は閉状態とされる。 The on-off valve 163a is connected to the fifth tank 161, and is opened when the anti-stick agent stored in the fifth tank 161 is supplied to a nozzle (not shown). When the agent is not supplied to a nozzle (not shown), the nozzle is in a closed state.
 開閉弁163bは、第6タンク162に接続され、第6タンク162に貯蔵されている水を不図示のノズルへ供給する場合は開状態となり、第6タンク162に貯蔵されている水を不図示のノズルへ供給しない場合は閉状態とされる。なお、本第2実施形態において、開閉弁163aおよび開閉弁163bの開閉制御は、制御部150とUAV制御装置208との協調制御により行われている。 The on-off valve 163b is connected to the sixth tank 162, and is opened when the water stored in the sixth tank 162 is supplied to a nozzle (not shown), and the water stored in the sixth tank 162 is supplied to a nozzle (not shown). When the nozzle is not supplied, it is closed. In the second embodiment, the opening/closing control of the on-off valve 163a and the on-off valve 163b is performed by cooperative control between the control unit 150 and the UAV control device 208.
 調圧弁164は、開閉弁163と不図示のノズルとの間に設けられ、開閉弁163が開状態のときに供給される液体の圧力を調節して、不図示のノズルへと液体を供給するものである。調圧弁164による圧力制御は、制御部150とUAV制御装置208との協調制御により行われている。 The pressure regulating valve 164 is provided between the on-off valve 163 and a nozzle (not shown), and adjusts the pressure of the liquid supplied when the on-off valve 163 is in the open state, and supplies the liquid to the nozzle (not shown). It is something. Pressure control by the pressure regulating valve 164 is performed through cooperative control between the control unit 150 and the UAV control device 208.
 UAV制御装置208は、CPUや、姿勢制御回路や、飛行制御回路などを備えており、ドローン200全体を制御するものである。また、UAV制御装置208は、バッテリー204の残量から充電のタイミングを判断したり、撮像装置202の撮像位置や画角やフレームレートなどを制御したりするものである。
 また、UAV制御装置208は、制御部150からの指示に基づいて、ドローン200の各種制御を行うものであり、第2実施形態においては、ドローン側供給装置207の制御を行っている。
The UAV control device 208 includes a CPU, an attitude control circuit, a flight control circuit, and the like, and controls the entire drone 200. Further, the UAV control device 208 determines the timing of charging based on the remaining amount of the battery 204, and controls the imaging position, angle of view, frame rate, etc. of the imaging device 202.
Further, the UAV control device 208 performs various controls of the drone 200 based on instructions from the control unit 150, and in the second embodiment, controls the drone-side supply device 207.
 本第2実施形態においては、ドローン側供給装置207が、原料土供給装置108の上方から原料土供給装置108の要部であるホッパ51と、一対の回転ロール62と、掻き出し刃63とに粘着防止剤および水を供給するので、原料土と接触することなく粘着防止剤および水を供給することができる。 In the second embodiment, the drone-side supply device 207 attaches to the hopper 51, which is a main part of the raw soil supply device 108, the pair of rotating rolls 62, and the scraping blade 63 from above the raw soil supply device 108. Since the antiblocking agent and water are supplied, the antiblocking agent and water can be supplied without coming into contact with the raw soil.
 本第2実施形態においては、上流側供給装置70を省略してもよく、上流側供給装置70とドローン側供給装置207とを併用するようにしてもよい。 In the second embodiment, the upstream supply device 70 may be omitted, or the upstream supply device 70 and the drone supply device 207 may be used together.
 なお、本第1実施形態および第2実施形態の回転式破砕装置100は、自走式の処理システムに限らず、現場に設置するプラント型の処理システム、トラックの荷台に設置するオントラック型の処理システムなどにも適用することが可能である。 Note that the rotary crushing apparatus 100 of the first and second embodiments is not limited to a self-propelled processing system, but also a plant-type processing system installed on site, and an on-track type processing system installed on the bed of a truck. It can also be applied to processing systems, etc.
 以上、詳細に説明したように、本第1実施形態および第2実施形態の自走式の処理システムは、原料土供給装置108および回転式破砕装置100への粘性土の付着を低減することができる。 As described above in detail, the self-propelled treatment systems of the first and second embodiments are capable of reducing the adhesion of cohesive soil to the raw soil supply device 108 and the rotary crushing device 100. can.
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、各種の変形が可能である。本第1実施形態および第2実施形態では、開閉弁26を通過後の粘着防止剤の配管と水の配管とを共通化させたが、開閉弁26を通過後の粘着防止剤の配管と水の配管とをそれぞれ独立した配管としてもよい。同様に、開閉弁73および開閉弁163を通過後の粘着防止剤の配管と水の配管とをそれぞれ独立した配管としてもよい。 The embodiments described above are examples of preferred implementations of the present invention. However, it is not limited to this, and various modifications are possible. In the first and second embodiments, the anti-stick agent piping after passing through the on-off valve 26 and the water piping are made common; The piping may be provided as independent piping. Similarly, the anti-blocking agent pipe and the water pipe after passing through the on-off valve 73 and the on-off valve 163 may be independent pipes.
  14 回転ドラム  25 下流側供給装置  26 開閉弁
  27 調圧弁  28 ノズル  30 回転軸  34 インパクト部材
  50 ホッパ装置  51 ホッパ  52 ほぐし装置  53シャフト
  60 定量供給装置  61 ケーシング  62 一対の回転ロール
  63 掻き出し刃  64 一対の回転軸  70 上流側供給装置
  100 回転式破砕装置  108 原料土供給装置
  110 添加材供給装置  150 制御部  200 ドローン
  207 ドローン側供給装置  208 UAV制御装置
 
14 Rotating drum 25 Downstream supply device 26 Opening/closing valve 27 Pressure regulating valve 28 Nozzle 30 Rotating shaft 34 Impact member 50 Hopper device 51 Hopper 52 Loosening device 53 Shaft 60 Quantitative supply device 61 Casing 62 Pair of rotating rolls 63 Scraping blade 64 Pair of rotation Axis 70 Upstream supply device 100 Rotary crushing device 108 Raw soil supply device 110 Additive supply device 150 Control section 200 Drone 207 Drone side supply device 208 UAV control device

Claims (12)

  1.  原料土が接触する壁面を有した第1部材と、
     前記壁面の下方もしくは内側に設けられ、前記原料土に接触して前記原料土の処理を行う第2部材と、
     前記第1部材と前記第2部材とに前記原料土の粘着を防止する粘着防止剤を供給する第1供給装置と、を備えた処理装置。
    a first member having a wall surface with which the raw soil contacts;
    a second member provided below or inside the wall surface and in contact with the raw material soil to treat the raw material soil;
    A processing device comprising: a first supply device that supplies an anti-stick agent for preventing the raw soil from sticking to the first member and the second member.
  2.  前記第1供給装置は、前記第2部材を駆動可能な駆動部に設けられている請求項1記載の処理装置。 The processing apparatus according to claim 1, wherein the first supply device is provided in a drive section that can drive the second member.
  3.  前記駆動部は、前記第2部材を回転させるモータを備えている請求項2記載の処理装置。 The processing device according to claim 2, wherein the drive unit includes a motor that rotates the second member.
  4.  前記粘着防止剤とは異なる物質を前記第1部材と前記第2部材とに供給する第2供給装置を備えた請求項1記載の処理装置。 The processing apparatus according to claim 1, further comprising a second supply device that supplies a substance different from the anti-blocking agent to the first member and the second member.
  5.  前記第2供給装置は、前記第2部材を駆動可能な駆動部に設けられている請求項4記載の処理装置。 The processing apparatus according to claim 4, wherein the second supply device is provided in a drive section that can drive the second member.
  6.  前記第2部材の駆動に応じて、前記第1供給装置による前記粘着防止剤の供給を行う制御装置を備えた請求項1記載の処理装置。 The processing apparatus according to claim 1, further comprising a control device that causes the first supply device to supply the anti-blocking agent in accordance with the drive of the second member.
  7.  前記制御装置は、前記第2部材による前記原料土の処理を行う前に、前記第2部材に前記第1供給装置による前記粘着防止剤の供給を行う請求項6記載の処理装置。 7. The processing device according to claim 6, wherein the control device supplies the anti-blocking agent to the second member by the first supply device before processing the raw material soil by the second member.
  8.  前記制御装置は、前記原料土の粘着を防止する粘着防止剤を供給する供給装置を備えた無人飛行体に、前記第1部材と前記第2部材とへの前記粘着防止剤の供給を指示する請求項6記載の処理装置。 The control device instructs an unmanned flying vehicle equipped with a supply device that supplies an anti-stick agent that prevents the raw soil from sticking to the first member and the second member to supply the anti-stick agent to the first member and the second member. The processing device according to claim 6.
  9.  前記第1供給装置は、前記第1部材に前記粘着防止剤を供給する第1供給部と、前記第2部材に前記粘着防止剤を供給する第2供給部と、を備えている請求項1記載の処理装置。 1 . The first supply device includes a first supply unit that supplies the anti-blocking agent to the first member, and a second supply unit that supplies the anti-blocking agent to the second member. Processing equipment as described.
  10.  前記第1供給部が前記第1部材に前記粘着防止剤を供給する第1供給角度と、前記第2供給部が前記第2部材に前記粘着防止剤を供給する第2供給角度と、は異なっている請求項9記載の処理装置。 A first supply angle at which the first supply unit supplies the anti-blocking agent to the first member is different from a second supply angle at which the second supply unit supplies the anti-blocking agent to the second member. 10. The processing device according to claim 9.
  11.  前記第1部材は前記原料土が供給されるホッパであり、
     前記第2部材は、前記ホッパを通過した前記原料土を解砕する解砕装置である請求項1から請求項10のいずれか一項記載の処理装置。
    The first member is a hopper to which the raw material soil is supplied,
    The processing device according to any one of claims 1 to 10, wherein the second member is a crushing device that crushes the raw material soil that has passed through the hopper.
  12.  前記第1部材は前記第2部材を収容する収容部であり、
     前記第2部材は、前記原料土を破砕する破砕装置である請求項1から請求項10のいずれか一項記載の処理装置。
     
    The first member is a accommodating part that accommodates the second member,
    The processing device according to any one of claims 1 to 10, wherein the second member is a crushing device that crushes the raw material soil.
PCT/JP2023/016095 2022-09-09 2023-04-24 Processing device WO2024053153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263405003P 2022-09-09 2022-09-09
US63/405,003 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053153A1 true WO2024053153A1 (en) 2024-03-14

Family

ID=90192219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016095 WO2024053153A1 (en) 2022-09-09 2023-04-24 Processing device

Country Status (1)

Country Link
WO (1) WO2024053153A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334291A (en) * 1999-05-25 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Feeding device for viscous material and method for feeding the same
JP2000355954A (en) * 1999-06-15 2000-12-26 Komatsu Ltd Self-propelled soil improvement machine
JP2001329564A (en) * 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2002097663A (en) * 2000-09-25 2002-04-02 Hitachi Constr Mach Co Ltd Self-traveling soil improving machine and preliminary crushing apparatus
JP2007090323A (en) * 2005-09-05 2007-04-12 Nakaken:Kk Pulverizing apparatus and pulverizing method
JP2015003292A (en) * 2013-06-20 2015-01-08 日本国土開発株式会社 Method and apparatus for adding water to sediment
JP2015093977A (en) * 2013-11-14 2015-05-18 栗田工業株式会社 Method of forming friction-reducing coat, formation agent and method of treating water-containing particle/muddy matter
WO2017109888A1 (en) * 2015-12-24 2017-06-29 新西工業株式会社 Rotary sieve-type sorting machine and rotary sieve clogging prevention system
JP2020033437A (en) * 2018-08-29 2020-03-05 テクニカ合同株式会社 Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil
WO2021251066A1 (en) * 2020-06-11 2021-12-16 日本国土開発株式会社 Mixing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334291A (en) * 1999-05-25 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Feeding device for viscous material and method for feeding the same
JP2000355954A (en) * 1999-06-15 2000-12-26 Komatsu Ltd Self-propelled soil improvement machine
JP2001329564A (en) * 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2002097663A (en) * 2000-09-25 2002-04-02 Hitachi Constr Mach Co Ltd Self-traveling soil improving machine and preliminary crushing apparatus
JP2007090323A (en) * 2005-09-05 2007-04-12 Nakaken:Kk Pulverizing apparatus and pulverizing method
JP2015003292A (en) * 2013-06-20 2015-01-08 日本国土開発株式会社 Method and apparatus for adding water to sediment
JP2015093977A (en) * 2013-11-14 2015-05-18 栗田工業株式会社 Method of forming friction-reducing coat, formation agent and method of treating water-containing particle/muddy matter
WO2017109888A1 (en) * 2015-12-24 2017-06-29 新西工業株式会社 Rotary sieve-type sorting machine and rotary sieve clogging prevention system
JP2020033437A (en) * 2018-08-29 2020-03-05 テクニカ合同株式会社 Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil
WO2021251066A1 (en) * 2020-06-11 2021-12-16 日本国土開発株式会社 Mixing device

Similar Documents

Publication Publication Date Title
TR201815795T4 (en) Method for producing a mixture of materials and liquids in powder or granular form.
WO2024053153A1 (en) Processing device
JP6387572B2 (en) Method and apparatus for hydrating earth and sand
JP2003126894A (en) Method and apparatus for treating generated earth and method for producing granular material
US20230227266A1 (en) Mixing Device
JP2000355954A (en) Self-propelled soil improvement machine
JP3962864B2 (en) Soil mixing machine
WO2020245505A2 (en) Mixer and mixing unit for mixing a paste
US20230037242A1 (en) Rotary Crushing Apparatus
JP2007307457A (en) Kneading and crushing apparatus
JP2017029915A (en) Crushing device
KR100727652B1 (en) A mixing device of material for water cut-off
JP3626876B2 (en) Crushing and granulating device and generated soil treatment device
JP2003126895A (en) Method and apparatus for treating generated earth
JP3631195B2 (en) Mobile soil conditioner
KR101556673B1 (en) Hydrogen ion concentration reduction apparatus of Recycled Aggregates
JP2004243192A (en) Method and system for treating contaminated soil and contaminated soil treatment machine
JP7074934B2 (en) Rotary crusher and rotary crushing method
JP2005138071A (en) Method and apparatus for stabilizing waste
CN115055111A (en) Monitoring and feedback device of planetary mixing granulation equipment
JP3370643B2 (en) Self-propelled soil improvement machine
JPH09208276A (en) Method and device for stabilizing coal ash
JP2002302966A (en) Self-traveling soil improving machine
JP3668279B2 (en) Stabilizing liquid properties adjusting device used for ground excavation work, etc.
JP2881374B2 (en) Construction sludge treatment method