WO2024053111A1 - 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス - Google Patents

電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス Download PDF

Info

Publication number
WO2024053111A1
WO2024053111A1 PCT/JP2022/033954 JP2022033954W WO2024053111A1 WO 2024053111 A1 WO2024053111 A1 WO 2024053111A1 JP 2022033954 W JP2022033954 W JP 2022033954W WO 2024053111 A1 WO2024053111 A1 WO 2024053111A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrode
energy storage
composite particles
composite
Prior art date
Application number
PCT/JP2022/033954
Other languages
English (en)
French (fr)
Inventor
学 平澤
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/033954 priority Critical patent/WO2024053111A1/ja
Publication of WO2024053111A1 publication Critical patent/WO2024053111A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to electrode materials, electrodes for energy storage devices, and energy storage devices.
  • the positive and negative electrodes of such energy storage devices generally include particles of a material (active material) capable of intercalating and deintercalating alkali metal ions.
  • the volume of the active material changes as it absorbs and releases alkali metal ions, repeated charging and discharging will cause cracks in the active material and cause deterioration of the electrode. Therefore, coating the surface of the active material particles with a flexible material such as a polymer compound is considered to be an effective measure for suppressing electrode deterioration.
  • Japanese Patent Publication No. 2019-535116 describes coating active material particles with cyclized polyacrylonitrile.
  • an object of the present disclosure is to provide an electrode material, an electrode for an energy storage device, and an energy storage device that have excellent cycle characteristics.
  • Means for solving the above problems include the following embodiments.
  • An electrode material comprising composite particles including particles A containing a substance capable of occluding and releasing alkali metal ions and particles B having an aspect ratio of 10 or more.
  • the electrode material according to ⁇ 1>, wherein the composite particles have a porosity of 10% or more.
  • the composite particles further include a polymer material.
  • the polymer material includes at least one selected from polyamideimide and polyacrylonitrile.
  • the particles A contain silicon.
  • ⁇ 6> The electrode material according to ⁇ 1>, wherein the particles B include conductive particles.
  • An electrode for an energy storage device comprising the electrode material according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> An energy storage device comprising the electrode for an energy storage device according to ⁇ 7>.
  • an electrode material an electrode for an energy storage device, and an energy storage device with excellent cycle characteristics are provided.
  • 1 is a SEM image of composite particles produced in Example 1.
  • 1 is a cross-sectional SEM image of composite particles produced in Example 1.
  • 1 is a SEM image of composite particles produced in Comparative Example 1.
  • 1 is a cross-sectional SEM image of composite particles produced in Comparative Example 1.
  • step includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using “ ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • each component may contain multiple types of corresponding substances.
  • each component may include a plurality of types of particles.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
  • the term "layer" includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
  • the electrode material of the present disclosure includes composite particles including particles A containing a substance capable of occluding and releasing alkali metal ions and particles B having an aspect ratio of 10 or more.
  • an energy storage device was produced using composite particles as an electrode material, including particles A containing a substance capable of occluding and releasing alkali metal ions, and particles B having an aspect ratio of 10 or more.
  • the device was found to exhibit excellent cycling characteristics. The reason for this is thought to be, for example, as follows.
  • Particles A included in the composite particles usually undergo deterioration by repeating expansion and contraction due to occlusion and release of alkali metal ions.
  • composite particles containing particles A containing a substance capable of occluding and releasing alkali metal ions and particles B having an aspect ratio of 10 or more have voids inside. The expansion and contraction of the particles A is alleviated by the voids, and deterioration of the particles A is suppressed. As a result, it is believed that the cycle characteristics of the energy storage device are improved.
  • the aspect ratio of the particles B is preferably 15 or more, more preferably 20 or more, and even more preferably 30 or more. From the viewpoint of ease of forming a composite with particle A, the aspect ratio of particle B is preferably 500 or less, more preferably 250 or less, and even more preferably 100 or less.
  • the composite particle may include a plurality of particles B having different aspect ratios.
  • the shape of the particles B is not particularly limited, and may be fibrous, tubular, rod-shaped, columnar, or the like. From the viewpoint of improving cycle characteristics, the length of the long axis of particle B is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the composite particle may include a plurality of particles B having different shapes or major axis lengths.
  • the porosity of the composite particles is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more. From the viewpoint of ensuring the mechanical strength of the composite particles, the porosity of the composite particles is preferably 50% or less, more preferably 45% or less, and even more preferably 30% or less.
  • the porosity may be calculated using known image processing software such as ImageJ.
  • the ratio of particles A and B contained in the composite particles is not particularly limited. From the viewpoint of ensuring sufficient charge and discharge characteristics, the proportion of particles A in the total of particles A and particles B is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass. It is more preferable that it is above. From the viewpoint of ensuring sufficient voids inside the composite particles, the ratio of particles A to the total of particles A and B is preferably 99% by mass or less, more preferably 97% by mass or less, and 95% by mass or less. It is more preferable that it is less than % by mass. When a particle corresponding to particle A also corresponds to particle B, the above ratio is a value when the particle is regarded as particle A.
  • the material of particles B is not particularly limited.
  • particles B may be active material particles or conductive particles.
  • particles B include conductive particles.
  • the particles B are conductive particles, the particles A are bridged by the conductive particles B having an aspect ratio of 10 or more, and a sufficient conduction path for alkali metal ions and electrons between the particles A is ensured. Therefore, it is thought that good cycle characteristics can be obtained.
  • the active material particles and conductive particles are dispersed in a binder. Compared to conventional electrodes, more conductive particles are present near the surface of the active material particles. Therefore, it is thought that a sufficient conduction path for alkali metal ions and electrons between the active material particles is ensured, resulting in good cycle characteristics.
  • the composite particles may further include a polymeric material.
  • the polymeric material is considered to play a role, for example, in binding the particles constituting the composite particles to each other and suppressing the decomposition of the composite particles. Furthermore, it is thought that the polymer material alleviates the expansion and contraction of the particles A and suppresses the deterioration of the particles A.
  • the content of the polymeric material contained in the composite particles is not particularly limited.
  • the content of the polymer material in the composite particles is preferably 1% by mass or more, more preferably 2% by mass or more, and 5% by mass or more. % or more is more preferable.
  • the content of the polymer material in the composite particles is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less. It is even more preferable.
  • the composite particles may further include conductive particles.
  • conductive particles include carbon materials such as carbon black, carbon fibers, carbon nanotubes, carbon nanowires, fullerenes, and carbon nanohorns, oxides exhibiting conductivity, and nitrides exhibiting conductivity.
  • Examples of cases in which the composite particles include conductive particles include (1) cases in which they contain conductive particles as particles B, (2) cases in which they contain conductive particles as particles other than particles B, and (3) cases in which they contain conductive particles as particles B. Examples include cases in which conductive particles as particles other than particle B and conductive particles as particles other than particle B are included. From the perspective of improving cycle characteristics, composite particles consist of conductive particles as particles B (i.e., with an aspect ratio of 10 or more) and conductive particles as particles other than particles B (i.e., with an aspect ratio of less than 10). It is preferable to include. Conductive particles with an aspect ratio of less than 10 have better adhesion to the surface of active material particles than conductive particles with an aspect ratio of 10 or more. For example, it is preferable that the composite particles include carbon fibers as conductive particles having an aspect ratio of less than 10, and carbon black as conductive particles having an aspect ratio of less than 10.
  • the composite particles may contain components other than particles A, particles B, polymeric materials, and conductive particles.
  • Components other than particles A, particles B, polymer materials, and conductive particles include a silane coupling agent and the like. By including the silane coupling agent, for example, the binding force of the coating portion to the active material particles can be increased.
  • the composite particles contain components other than particles A, particles B, and polymeric material
  • the total proportion of particles A, particles B, and polymeric material in the entire composite particles is preferably 80% by mass or more, and 85% by mass. It is more preferably at least 90% by mass, and even more preferably at least 90% by mass.
  • the composite particles may contain only one type of particles A and particles B, or two or more types thereof.
  • the polymeric material may be one type or two or more types.
  • the volume average particle diameter (D50) of the composite particles measured by a laser scattering diffraction method is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m.
  • D50 volume average particle diameter of the composite particles measured by a laser scattering diffraction method.
  • the volume average particle diameter of the composite particles is 1 ⁇ m or more, it becomes easy to prepare a slurry for forming an electrode.
  • the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
  • the volume average particle diameter of the composite particles is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
  • the method for producing composite particles is not particularly limited. For example, by mixing predetermined amounts of particles A, particles B, and other components included as necessary with a solvent, drying the resulting mixture, performing heat treatment as necessary, and crushing, particles A and particles B can be obtained.
  • Particles A included in the composite particles are not particularly limited as long as they contain a substance (active material) that can occlude and release alkali metal ions.
  • alkali metal ions include lithium ions, potassium ions, sodium ions, and the like. Among these, lithium ions are preferred.
  • the composite particles may contain only one type of particles A or a combination of two or more types.
  • Examples of the active material of the positive electrode include lithium transition metal compounds such as lithium transition metal oxides and lithium transition metal phosphates.
  • Examples of lithium transition metal oxides include compounds containing one or more transition metals such as Mn, Ni, and Co, and a portion of the transition metals contained in these compounds in combination with one or more other transition metals. Examples include lithium transition metal oxides substituted with transition metals or metal elements (typical elements) such as Mg and Al.
  • Examples of the active material of the negative electrode include carbon materials, active materials containing silicon atoms, and the like. Examples of carbon materials include graphite, hard carbon, and soft carbon. Examples of active materials containing silicon atoms include Si (metallic silicon), silicon oxide represented by SiOx (0.8 ⁇ x ⁇ 1.5), and the like.
  • the silicon oxide may have a structure in which nanosilicon is dispersed in a silicon oxide matrix by a disproportionation reaction.
  • the active material containing silicon atoms may be doped with boron, phosphorus, or the like to become a
  • the particles A may be active material particles made of a carbon material with silicon present on the surface.
  • Examples of methods for causing silicon to be present on the surface of active material particles made of a carbon material include vapor deposition, plasma CVD (Chemical Vapor Deposition), and the like.
  • the plasma CVD method may be performed by decomposing raw materials such as silane and chlorosilane.
  • active materials containing silicon atoms have a large theoretical capacity and are expected to contribute to increasing the capacity of energy storage devices, they undergo large volume changes during charging and discharging and are susceptible to deterioration. Furthermore, active materials containing silicon atoms do not themselves have electronic conductivity.
  • conductive particles As particles B that form composite particles together with particles A, electron conductivity can be imparted to particles A. Therefore, when particles A contain silicon atoms, it is preferable that at least some of particles B are conductive particles.
  • the shape of particles A is not particularly limited.
  • they may be spherical particles, scaly particles, lumpy particles, secondary particles composed of a plurality of primary particles, or the like.
  • the particle size of particles A is not particularly limited.
  • the volume average particle diameter (D50) of particles A is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m.
  • D50 volume average particle diameter
  • the volume average particle diameter of the particles A is 1 ⁇ m or more, it becomes easy to prepare a slurry for forming an electrode.
  • the volume average particle diameter of the particles A is 50 ⁇ m or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
  • the volume average particle diameter of particles A is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
  • the volume average particle diameter is the volume average particle diameter of the secondary particles.
  • a “secondary particle” refers to a particle that is formed by agglomeration of a plurality of primary particles and is the smallest unit in normal behavior
  • a “primary particle” refers to a particle that cannot exist alone. It means the smallest possible particle.
  • the particle diameter of the primary particles constituting the secondary particles is not particularly limited.
  • the average primary particle diameter is preferably 10 nm to 50 ⁇ m. More preferably, the thickness is 30 nm to 10 ⁇ m.
  • the average primary particle diameter of particles A is 10 nm or more, the influence of a natural oxide film formed on the surface can be suppressed.
  • the average primary particle diameter of particles A is 50 ⁇ m or less, deterioration due to charging and discharging is suppressed.
  • the primary particle diameter of particles A means the major diameter of the primary particles observed with a scanning electron microscope. Specifically, when the primary particle is spherical, it means its maximum diameter, and when the primary particle is plate-like, it means the maximum diameter or maximum diagonal length in a projected image of the particle observed from the thickness direction.
  • the "average primary particle diameter” is the arithmetic mean value of the measured values of the major diameters of 300 or more primary particles observed with a scanning electron microscope.
  • the method for adjusting the particle size of particles A is not particularly limited. Examples include a method of selecting raw materials, a method of adjusting grinding conditions, a method of vapor deposition, a plasma method, a method of surface treatment with silane, etc.
  • the BET specific surface area of the particles A is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of the particles A is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of Particle A can be calculated from the nitrogen adsorption isotherm at -196°C.
  • the electrode material may include composite particles including particles A and particles B, and active material particles other than the composite particles.
  • the electrode material is composed of composite particles including particles A, which are active material particles containing silicon atoms, and particles B, which are conductive particles, and a carbon material, and active material particles that do not form a composite particle with the conductive particles. It may also include.
  • polymer material When the composite particles include a polymer material, the polymer material is not particularly limited. Specific examples of polymeric materials include polyamideimide (PAI), polyacrylonitrile, cyclized polyacrylonitrile, polyamide, polyimide, polyacrylic acid, polymethacrylic acid, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylate, and polymethacrylate.
  • PAI polyamideimide
  • PAI polyacrylonitrile
  • cyclized polyacrylonitrile polyamide
  • polyimide polyacrylic acid
  • polymethacrylic acid polystyrene
  • polyvinyl chloride polyvinylidene chloride
  • polyacrylate polymethacrylate
  • polyamideimide polyacrylonitrile
  • cyclized polyacrylonitrile are preferable as the polymer material.
  • Cyclized polyacrylonitrile is obtained by cyclizing polyacrylonitrile as a raw material.
  • cyclizing polyacrylonitrile as a raw material it is possible to impart electronic conductivity to polyacrylonitrile.
  • Cyclized polyacrylonitrile can be said to have properties intermediate between those of carbon and polymers, and the greater the degree of ring closure of the nitrile group, the closer the cyclized polyacrylonitrile can be said to have properties to those of carbon.
  • Infrared spectroscopy may be a transmission method or a reflection method.
  • the -C ⁇ N (nitrile) group shows a peak at 2240 cm -1 to 2243 cm -1
  • -CH 2 - before becoming a double bond can be confirmed as a peak at 2939 cm -1
  • the attribution of the above peak is The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage (Fibers and Polymers 2012, Vol.13, No.3, 295-302), Structural transformation of polyacrylonitrile fibers during st abilization and low temperature carbonization (Polymer Degradation and Stability, Volume 128, June 2016, 39-45).
  • Polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and a polymerization component other than acrylonitrile.
  • Polymerization components other than acrylonitrile include acrylic acid, vinyl acetate, styrene, vinylidene chloride, vinyl chloride, methacrylic acid, and the like.
  • polyacrylonitrile is a copolymer of acrylonitrile and a polymerization component other than acrylonitrile
  • the proportion of acrylonitrile in the total polymerization component is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. More preferably, it is at least % by mass.
  • the electrode for an energy storage device includes the electrode material of the present disclosure described above. If necessary, the electrode may further contain a binder, a conductive aid, and the like.
  • the type of binder is not particularly limited, and may be selected from the polymer materials used in the electrode material of the present disclosure described above.
  • the type of the conductive additive is not particularly limited, and may be selected from the conductive particles used in the electrode material of the present disclosure described above.
  • the electrode includes a binder and a conductive aid (excluding components contained in the composite particles), the proportion of the conductive aid in the total of the binder and the conductive aid is not particularly limited, and for example, 1 mass % to 20% by mass.
  • the electrode material of the present disclosure includes conductive particles, the electrode may not further include a conductive aid.
  • the content of the electrode material of the present disclosure contained in the electrode is preferably 50% by mass or more of the entire electrode (excluding the current collector), and preferably 55% by mass or more. More preferably, it is 60% by mass or more.
  • the content of the electrode material of the present disclosure contained in the electrode is preferably 95% by mass or less of the entire electrode (excluding the current collector), and preferably 90% by mass or less. It is more preferable that the amount is 80% by mass or less.
  • the electrode may be in a state in which a layer containing an electrode material is formed on the current collector.
  • the type of current collector is not particularly limited, and examples include metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • the current collector may be carbon coated, surface roughened, or the like.
  • the energy storage device of the present disclosure comprises the electrode of the present disclosure described above.
  • the type of energy storage device is not particularly limited. Examples include devices that utilize movement of alkali metal ions between electrodes for charging and discharging, such as lithium ion batteries, sodium ion batteries, and potassium ion batteries.
  • the energy storage device of the present disclosure is comprised of a positive electrode, a negative electrode, an electrolyte, and the like.
  • the above-mentioned electrode for an energy storage device may be a positive electrode or a negative electrode, but is preferably a negative electrode.
  • an organic solvent in which an electrolyte is dissolved an ionic liquid, etc.
  • the ionic liquid include ionic liquids that are liquid at a temperature of less than 170°C, solvated ionic liquids, and the like.
  • the electrolyte salts include LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN( Examples include lithium salts that generate anions that are difficult to solvate, such as C 2 F 5 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCl, and LiI.
  • the electrolyte salt may be used alone or in combination of two or more.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 0.3 mol or more, more preferably 0.5 mol or more, and still more preferably 0.8 mol or more per liter of electrolytic solution.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 5 mol or less, more preferably 3 mol or less, and still more preferably 1.5 mol or less per liter of electrolytic solution.
  • the organic solvents include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones ( ⁇ -butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, diglyme, triglyme, tetraglyme, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, etc.) , benzonitrile, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), and polyoxyalkylene glycols (diethylene glycol, etc.).
  • the organic solvent may be used
  • the electrolyte may contain additives.
  • the additive include fluoroethylene carbonate, propane sultone, vinylene carbonate, methanesulfonic acid, cyclohexylbenzene, tert-amylbenzene, adiponitrile, and succinonitrile.
  • the amount of the additive in the electrolytic solution is, for example, preferably 0.1% by mass to 30% by mass, and preferably 0.5% by mass to 10% by mass, based on the total electrolytic solution.
  • the energy storage device may further include commonly used members such as a separator, gasket, sealing plate, and case.
  • the separator used in the energy storage device is not particularly limited, and includes polyolefin-based porous membranes such as porous polypropylene nonwoven fabric and porous polyethylene nonwoven fabric.
  • the shape of the energy storage device can be any shape such as a cylindrical shape, a square shape, a button shape, etc.
  • the use of the energy storage device is not particularly limited.
  • it can be used as a power source or auxiliary power source for electronic devices, electric devices, automobiles, power storage devices, etc.
  • Example 1 A dispersion liquid in which carbon black (CB) was dispersed in NMP and a dispersion liquid in which VGCF was dispersed in NMP were kneaded to obtain a conductive additive slurry.
  • a conductive additive slurry was added to a SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI), and the mixture was kneaded.
  • the resulting mixture was poured into an alumina container and dried at 120°C under air to remove the solvent. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere.
  • the obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles.
  • FIG. 1 A SEM image of the produced composite particles is shown in Figure 1. As shown in Figure 1, multiple SiO particles as particles A, VGCF with an aspect ratio of 10 or more as particles B, and carbon black that does not fall under particles B aggregate to form composite particles. was observed.
  • FIG. 2 A SEM image of the cross section of the composite particles produced is shown in Figure 2. As shown in FIG. 2, voids (parts with relatively low brightness) were observed inside the composite particles. The porosity of the composite particles calculated by an image analysis method using ImageJ was 15%.
  • a slurry for a positive electrode containing a positive electrode active material (NMC811), carbon black (CB), and polyvinylidene fluoride (PVDF) was obtained using NMP.
  • the obtained slurry was coated on the surface of the current collector using a coater and dried to obtain a positive electrode with the desired coating weight (195 g/m 2 ).
  • the density was set at 2.3 g/cm 3 using a press.
  • a laminate type battery was obtained using the produced negative and positive electrodes and a separator (polypropylene porous membrane).
  • the capacity ratio (N/P) between the negative electrode (N) and the positive electrode (P) was designed to be 1.05.
  • 1M LiPF 6 was dissolved in a mixed solvent containing EC, EMC, and DEC in a ratio of 1:1:1 (volume ratio), and further containing VC (1% by mass) and FEC (2% by mass). I used the one I made.
  • Carbon black...Acetylene black with an average primary particle size of 48 nm (DENKA BLACK Li-400, manufactured by DENKA CORPORATION)
  • VGCF...Carbon fiber with an average fiber diameter of 150 nm, an average fiber length of 15.0 ⁇ m, and a carbon content of 99.99% by mass Showa Denko K.K., VGCF-H
  • SiO particles ...SiO particles with a volume average particle diameter of 8.0 ⁇ m
  • Graphite particles ...Graphite particles with a volume average particle diameter of 10.0 ⁇ m
  • FIG. 3 A SEM image of the produced composite particles is shown in FIG. As shown in FIG. 3, it was observed that a plurality of SiO particles as particles A and carbon black that does not correspond to particles B aggregated to form composite particles.
  • FIG. 4 shows a SEM image of the cross section of the composite particles produced. As shown in FIG. 4, no voids were observed inside the secondary particles formed by aggregation of a plurality of SiO particles.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • Discharge capacity maintenance rate (%) Discharge capacity (after 300 cycles) / Discharge capacity (after 3 cycles) x 100
  • the battery of Example 1 in which the electrode material contains composite particles containing particles A and particles B is different from the batteries of Comparative Examples 1 to 4 in which the electrode material does not contain composite particles containing particles A and particles B.
  • the discharge capacity retention rate after 300 cycles was higher than that of the previous example, and the cycle characteristics were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子を含む、電極材料。

Description

電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
 本開示は、電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスに関する。
 正極と負極との間をリチウムイオン等のアルカリ金属イオンが移動することによって充放電が行われるエネルギー貯蔵デバイスが広く用いられている。このようなエネルギー貯蔵デバイスの正極及び負極は一般に、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)の粒子を含んでいる。
 活物質はアルカリ金属イオンの吸蔵及び放出に伴って体積が変化するため、充放電を繰り返すと活物質の割れ等が生じて電極の劣化の原因となる。そこで、高分子化合物のような柔軟性を有する材料で活物質粒子の表面を被覆することが電極の劣化を抑制する有効な方策として考えられる。
 高分子材料で表面が被覆された活物質粒子としては、例えば、特表2019-535116号公報に活物質粒子を環化ポリアクリロニトリルでコーティングすることが記載されている。
 本発明者らの検討の結果、高分子材料で被覆された活物質粒子を含む電極を用いて製造されたエネルギー貯蔵デバイスはサイクル特性に改善の余地があることが分かった。
 上記事情に鑑み、本開示はサイクル特性に優れる電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスを提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子を含む、電極材料。
<2>前記複合粒子の空隙率は10%以上である、<1>に記載の電極材料。
<3>前記複合粒子は高分子材料をさらに含む、<1>に記載の電極材料。
<4>前記高分子材料はポリアミドイミド及びポリアクリロニトリルから選択される少なくとも1種を含む、<3>に記載の電極材料。
<5>前記粒子Aはケイ素を含む、<1>に記載の電極材料。
<6>前記粒子Bは導電性粒子を含む、<1>に記載の電極材料。
<7><1>~<6>のいずれか1項に記載の電極材料を含む、エネルギー貯蔵デバイス用電極。
<8><7>に記載のエネルギー貯蔵デバイス用電極を含む、エネルギー貯蔵デバイス。
 本発明によれば、サイクル特性に優れる電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスが提供される。
実施例1で作製した複合粒子のSEM画像である。 実施例1で作製した複合粒子の断面SEM画像である。 比較例1で作製した複合粒子のSEM画像である。 比較例1で作製した複合粒子の断面SEM画像である。
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<電極材料>
 本開示の電極材料は、アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子を含む、電極材料である。
 本発明者らの検討の結果、アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子を電極材料として用いて作製したエネルギー貯蔵デバイスは、優れたサイクル特性を示すことがわかった。その理由は、例えば、以下のように考えられる。
 複合粒子に含まれる粒子Aは通常、アルカリ金属イオンの吸蔵及び放出に伴う膨張収縮を繰り返すことによって劣化が進行する。
 これに対してアルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子は、内部に空隙が存在する。この空隙によって粒子Aの膨張収縮が緩和されて粒子Aの劣化が抑制される。その結果、エネルギー貯蔵デバイスのサイクル特性が向上すると考えられる。
 複合粒子の内部に充分な空隙を確保する観点からは、粒子Bのアスペクト比は15以上であることが好ましく、20以上であることがより好ましく、30以上であることがより好ましい。
 粒子Aとの複合化しやすさの観点からは、粒子Bのアスペクト比は500以下であることが好ましく、250以下であることがより好ましく、100以下であることがさらに好ましい。
 複合粒子は、アスペクト比の異なる複数の粒子Bを含んでいてもよい。
 粒子Bの形状は特に制限されず、繊維状、チューブ状、棒状、柱状などであってよい。
 サイクル特性向上の観点からは、粒子Bの長軸の長さは3μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがより好ましい。
 複合粒子は、形状又は長軸の長さの異なる複数の粒子Bを含んでいてもよい。
 サイクル特性向上の観点からは、複合粒子の空隙率は10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。
 複合粒子の機械的極度を確保する観点から、複合粒子の空隙率は50%以下であることが好ましく、45%以下であることがより好ましく、30%以下であることがさらに好ましい。
 本開示において複合粒子の空隙率は、画像解析法により測定される値である。具体的には、複合粒子の断面の画像を取得し、下記式により空隙率を算出する。
 空隙率(%)=(断面のうち空隙に相当する領域の合計面積/断面の面積)×100
 個々の複合粒子について算出される空隙率の値が異なる場合は、100個の粒子について算出した値の平均値を複合粒子の空隙率とする。
 空隙率の算出は、ImageJなどの公知の画像処理ソフトを用いて行ってもよい。
 複合粒子に含まれる粒子Aと粒子Bの比率は、特に制限されない。
 充分な充放電特性を確保する観点からは、粒子Aと粒子Bの合計に占める粒子Aの割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 複合粒子内部の空隙を充分に確保する観点からは、粒子Aと粒子Bの合計に占める粒子Aの割合は99質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることがさらに好ましい。
 粒子Aに該当する粒子が粒子Bにも該当する場合、上記比率は当該粒子を粒子Aとみなしたときの値である。
 粒子Bの材質は特に制限されない。例えば、粒子Bは活物質粒子であっても、導電性粒子であってもよい。
 サイクル特性向上の観点からは、粒子Bは導電性粒子を含むことが好ましい。粒子Bが導電性粒子であると、粒子Aの間がアスペクト比が10以上の導電性粒子である粒子Bによって橋掛けされ、粒子A間のアルカリ金属イオン及び電子の伝導パスが充分に確保されて、良好なサイクル特性が得られると考えられる。
 さらに、導電性粒子としての粒子Bと活物質粒子としての粒子Aとを含む複合粒子を用いて作製される電極中では、活物質粒子と導電性粒子を結着材中に分散させて作製される従来の電極に比べ、より多くの導電性粒子が活物質粒子の表面付近に存在する。このため、活物質粒子間のアルカリ金属イオン及び電子の伝導パスが充分に確保されて、良好なサイクル特性が得られると考えられる。
 複合粒子は、高分子材料をさらに含んでもよい。高分子材料は、例えば、複合粒子を構成する粒子同士を結着し、複合粒子の分解を抑制する役割を果たすと考えられる。
 さらに、高分子材料は粒子Aの膨張収縮を緩和し、粒子Aの劣化を抑制すると考えられる。
 複合粒子が高分子材料を含む場合、複合粒子に含まれる高分子材料の含有率は、特に制限されない。
 活物質粒子の膨張収縮に伴う劣化を抑制する観点からは、複合粒子中の高分子材料の含有率は1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。
 充分な充放電特性を確保する観点からは、複合粒子中の高分子材料の含有率は20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
(導電性粒子)
 複合粒子は、導電性粒子をさらに含んでもよい。
 導電性粒子として具体的には、カーボンブラック、カーボンファイバー、カーボンナノチューブ、カーボンナノワイヤー、フラーレン、カーボンナノホーン等の炭素材料、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
 複合粒子が導電性粒子を含む場合としては、(1)粒子Bとしての導電性粒子を含む場合、(2)粒子B以外の粒子としての導電性粒子を含む場合、及び(3)粒子Bとしての導電性粒子と粒子B以外の粒子としての導電性粒子を含む場合が挙げられる。
 サイクル特性向上の観点からは、複合粒子は粒子Bとしての(すなわち、アスペクト比が10以上の)導電性粒子と粒子B以外の粒子としての(すなわち、アスペクト比が10未満の)導電性粒子を含むことが好ましい。
 アスペクト比が10未満の導電性粒子は、アスペクト比が10以上の導電性粒子に比べて活物質粒子の表面への付着性に優れている。
 例えば、複合粒子はアスペクト比が10未満の導電粒子としてのカーボンファイバーと、アスペクト比が10未満の導電粒子としてのカーボンブラックとを含むことが好ましい。
 複合粒子は、粒子A、粒子B、高分子材料以外及び導電性粒子以外の成分を含んでいてもよい。
 粒子A、粒子B、高分子材料以外及び導電性粒子以外の成分としては、シランカップリング剤などが挙げられる。シランカップリング剤を含むことで、例えば、活物質粒子に対する被覆部の結着力を増強させることができる。
 複合粒子が粒子A、粒子B及び高分子材料以外の成分を含む場合、複合粒子全体に占める粒子A、粒子B及び高分子材料の合計割合は80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 複合粒子に含まれる粒子A及び粒子Bは、それぞれ1種のみでも2種以上であってもよい。
 複合粒子が高分子材料を含む場合、高分子材料は1種のみでも2種以上であってもよい。
 複合粒子のレーザー散乱回折法によって測定される体積平均粒子径(D50)は1μm~50μmであることが好ましく、3μm~30μmであることがより好ましい。
 複合粒子の体積平均粒子径が1μm以上であると、電極を形成するためのスラリーの調製が容易になる。複合粒子の体積平均粒子径が50μm以下であると、電極の薄膜化がしやすく、エネルギー貯蔵デバイスの入出力特性を向上させやすい。
 複合粒子の体積平均粒子径は、レーザー散乱回折法によって測定される。具体的には、レーザー散乱回折法によって得られる体積基準の粒子径分布において小径側からの累積が50%となるときの粒子径を体積平均粒子径とする。
(複合粒子の製造方法)
 複合粒子を製造する方法は、特に制限されない。例えば、所定量の粒子A、粒子B及び必要に応じて含まれる他の成分を溶剤とともに混合し、得られた混合物を乾燥し、必要に応じて熱処理を行い、解砕することで、粒子Aと粒子Bとを含む複合粒子を得ることができる。
(粒子A)
 複合粒子に含まれる粒子Aは、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)を含む粒子であれば特に制限されない。
 アルカリ金属イオンとしては、リチウムイオン、カリウムイオン、ナトリウムイオン等が挙げられる。これらの中でもリチウムイオンが好ましい。
 複合粒子に含まれる粒子Aは、1種のみでも2種以上の組み合わせであってもよい。
 正極の活物質としては、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物が挙げられる。
 リチウム遷移金属酸化物としては、Mn、Ni、Co等の遷移金属の1種又は2種以上を含む化合物、及びこれらの化合物に含まれる遷移金属の一部を、1種若しくは2種以上の他の遷移金属又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物が挙げられる。
 負極の活物質としては、炭素材料、ケイ素原子を含む活物質等が挙げられる。
 炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等が挙げられる。
 ケイ素原子を含む活物質としては、Si(金属シリコン)、SiOx(0.8≦x≦1.5)で表されるケイ素酸化物等が挙げられる。
 ケイ素酸化物は、不均化反応によりナノシリコンが酸化ケイ素マトリックスに分散された構造であってもよい。
 ケイ素原子を含む活物質は、ホウ素、リン等がドープされて半導体化されていてもよい。
 粒子Aは、炭素材料からなる活物質粒子の表面にケイ素が存在する状態であってもよい。
 炭素材料からなる活物質粒子の表面にケイ素を存在させる方法としては、蒸着法、プラズマCVD(Chemical Vapor Deposition)法等が挙げられる。プラズマCVD法はシラン、クロロシラン等の原料を分解して行ってもよい。
 ケイ素原子を含む活物質は理論容量が大きく、エネルギー貯蔵デバイスの高容量化への寄与が期待される一方で、充放電の際の体積変化が大きく、劣化しやすい。さらに、ケイ素原子を含む活物質はそれ自体に電子伝導性がない。
 粒子Aとともに複合粒子を形成する粒子Bとして導電性粒子を用いることで、粒子Aに電子伝導性を付与することができる。
 したがって、粒子Aがケイ素原子を含む場合には粒子Bの少なくとも一部が導電性粒子であることが好ましい。
 粒子Aの形状は、特に制限されない。例えば、球状粒子、鱗片状粒子、塊状粒子、複数の一次粒子からなる二次粒子等であってよい。
 粒子Aの粒子径は、特に制限されない。
 例えば、粒子Aの体積平均粒子径(D50)は1μm~50μmであることが好ましく、3μm~30μmであることがより好ましい。粒子Aの体積平均粒子径が1μm以上であると、電極を形成するためのスラリーの調製が容易になる。粒子Aの体積平均粒子径が50μm以下であると、電極の薄膜化がしやすく、エネルギー貯蔵デバイスの入出力特性を向上させやすい。
 粒子Aの体積平均粒子径は、レーザー散乱回折法によって測定される。具体的には、レーザー散乱回折法によって得られる体積基準の粒子径分布において小径側からの累積が50%となるときの粒子径を体積平均粒子径とする。
 粒子Aが二次粒子である場合、上記体積平均粒子径は二次粒子の体積平均粒子径である。
 本開示において「二次粒子」とは、複数個の一次粒子が凝集して形成された通常挙動する上での最小単位の粒子を意味し、「一次粒子」とは、単独で存在することができる最小単位の粒子を意味する。
 粒子Aが二次粒子である場合、二次粒子を構成する一次粒子の粒子径は、特に制限されない。例えば、平均一次粒子径は10nm~50μmであることが好ましく。30nm~10μmであることがより好ましい。粒子Aの平均一次粒子径が10nm以上であると、表面に形成される自然酸化膜の影響を抑えることができる。粒子Aの平均一次粒子径が50μm以下であると、充放電に伴う劣化が抑制される。
 本開示において粒子Aの一次粒子径は、走査型電子顕微鏡で観察される一次粒子の長径を意味する。具体的には、一次粒子が球状である場合はその最大直径を意味し、一次粒子が板状である場合はその厚み方向から観察した粒子の投影像における最大直径または最大対角線長を意味する。「平均一次粒子径」は、走査型電子顕微鏡で観察される300個以上の一次粒子の長径の測定値の算術平均値である。
 粒子Aの粒子径を調節する方法は、特に制限されない。例えば、原料を選択する方法、粉砕条件を調節する方法、蒸着、プラズマ法、シラン等の表面処理を行う方法などが挙げられる。
 粒子AのBET比表面積は、0.5m/g~100m/gであることが好ましく、1m/g~30m/gであることがより好ましい。粒子AのBET比表面積が0.5m/g以上であると、十分な放電容量が得られやすくなる。粒子AのBET比表面積が100m/g以下であると、電極作製の際のハンドリング性に優れる。
 粒子AのBET比表面積は、-196℃における窒素の吸着等温線から算出できる。
 電極材料は、粒子Aと粒子Bとを含む複合粒子と、複合粒子以外の活物質粒子とを含んでもよい。
 例えば、電極材料はケイ素原子を含む活物質粒子である粒子Aと導電性粒子である粒子Bとを含む複合粒子と、炭素材料からなり、導電性粒子と複合粒子を形成していない活物質粒子と、を含んでもよい。
(高分子材料)
 複合粒子が高分子材料を含む場合、高分子材料は、特に制限されない。
 高分子材料として具体的には、ポリアミドイミド(PAI)、ポリアクリロニトリル、環化ポリアクリロニトリル、ポリアミド、ポリイミド、ポリアクリル酸、ポリメタクリル酸、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリレート、ポリメタクリレート、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;イオン伝導性を有する高分子などが挙げられる。
 耐電解液性及び力学的強度の観点からは、高分子材料としてはポリアミドイミド、ポリアクリロニトリル及び環化ポリアクリロニトリルが好ましい。
 環化ポリアクリロニトリルは、原料となるポリアクリロニトリルを環化処理して得られる。具体的には、環化ポリアクリロニトリルは少なくとも一部のニトリル基(-C≡N)が閉環して-C=N-基になった構造を有する。原料となるポリアクリロニトリルを環化処理することで、ポリアクリロニトリルに電子伝導性を付与することができる。
 環化ポリアクリロニトリルは、炭素とポリマーの中間の性質を有するということができ、ニトリル基の閉環の度合いが大きいほど、その環化ポリアクリロニトリルは炭素に近い性質を有するということができる。
 環化ポリアクリロニトリルは、原料となるポリアクリロニトリルの環化処理工程において、-C≡N(ニトリル)基が閉環して-C=N-基になるだけでなく、脱水素化反応により、たとえば主鎖を構成する-CH-CH-基が-CH=C-基等に変化して二重結合を形成することが好ましい。環化反応と脱水素化反応の双方が生じることで、共役系の二重結合が形成され、電子伝導性が向上する傾向にある。
 環化ポリアクリロニトリルにおけるニトリル基が閉環して形成される-C=N-基などの存在は、例えば、赤外分光法で確認することができる。赤外分光法は透過法であっても反射法であってもよい。
 赤外分光法において、-C≡N(ニトリル)基は2240cm-1~2243cm-1におけるピークとして、閉環した-C=N-基は1577cm-1~1604cm-1におけるピークとして、脱水素化により二重結合になる前の-CH-は2939cm-1におけるピークとして、脱水素化により二重結合になった後の-CH=C-基は806cm-1におけるピークとして、それぞれ確認できる。
 閉環した-C=N-基は、1577cm-1~1604cm-1の範囲で、形成される六員環の構造によってシフトする。具体的には、六員環構造に含まれる二重結合の数が多いほど、-C=N-の結合距離が短くなり、低波数側にシフトする傾向にある。
 上記ピークの帰属は、The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage(Fibers and Polymers 2012, Vol.13, No.3, 295-302)、Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization(Polymer Degradation and Stability,Volume 128, June 2016, 39-45)等を参考にできる。
 ポリアクリロニトリルはアクリロニトリルの単独重合体であっても、アクリロニトリルとアクリロニトリル以外の重合成分との共重合体であってもよい。アクリロニトリル以外の重合成分としては、アクリル酸、酢酸ビニル、スチレン、塩化ビニリデン、塩化ビニル、メタクリル酸等が挙げられる。
 ポリアクリロニトリルがアクリロニトリルとアクリロニトリル以外の重合成分との共重合体である場合、重合成分全体に占めるアクリロニトリルの割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
<エネルギー貯蔵デバイス用電極>
 本開示のエネルギー貯蔵デバイス用電極(以下、電極とも称する)は、上述した本開示の電極材料を含む。
 必要に応じ、電極は結着材、導電助剤等をさらに含んでもよい。
 電極が結着材を含む場合、結着材の種類は特に制限されず、上述した本開示の電極材料に使用する高分子材料から選択してもよい。
 電極が導電助剤を含む場合、導電助剤の種類は特に制限されず、上述した本開示の電極材料に使用する導電性粒子から選択してもよい。
 電極が結着材と導電助剤(複合粒子に含まれる成分を除く)とを含む場合、結着材と導電助剤の合計に占める導電助剤の割合は特に制限されず、例えば、1質量%~20質量%の範囲から選択してもよい。
 本開示の電極材料が導電性粒子を含む場合、電極はさらに導電助剤を含まなくてもよい。
 エネルギー貯蔵デバイスの高容量化の観点からは、電極に含まれる本開示の電極材料の含有率は、電極全体(集電体を除く)の50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。
 電極の強度維持効果の観点からは、電極に含まれる本開示の電極材料の含有率は、電極全体(集電体を除く)の95質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
 電極は、集電体の上に電極材料を含む層が形成された状態であってもよい。
 集電体の種類は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金が挙げられる。集電体はカーボンコート、表面粗化等が施された状態であってもよい。
<エネルギー貯蔵デバイス>
 本開示のエネルギー貯蔵デバイスは、上述した本開示の電極を備える。
 エネルギー貯蔵デバイスの種類は特に制限されない。例えば、リチウムイオン電池、ナトリウムイオン電池、カリウムイオン電池等の、アルカリ金属イオンの電極間の移動を充放電に利用するデバイスが挙げられる。
 本開示のエネルギー貯蔵デバイスは、正極、負極、電解液等から構成される。上述したエネルギー貯蔵デバイス用電極は正極であっても負極であってもよいが、負極であることが好ましい。
 エネルギー貯蔵デバイスに使用される電解液としては、電解質を溶解させた有機溶媒、イオン液体等を使用できる。イオン液体としては、170℃未満の温度で液状のイオン液体、溶媒和イオン液体等が挙げられる。
 電解質塩として具体的には、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(FSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等の溶媒和しにくいアニオンを生成するリチウム塩が挙げられる。
 電解質塩は、1種のみを用いても2種以上を用いてもよい。
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは0.3モル以上、より好ましくは0.5モル以上、さらに好ましくは0.8モル以上である。
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは5モル以下、より好ましくは3モル以下、さらに好ましくは1.5モル以下である。
 有機溶媒として具体的には、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等)、ラクトン類(γ-ブチロラクトン等)、鎖状エーテル類(1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等)、環状エーテル類(テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソラン、ジグライム、トリグライム、テトラグライム等)、スルホラン類(スルホラン等)、スルホキシド類(ジメチルスルホキシド等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ポリオキシアルキレングリコール類(ジエチレングリコール等)などの非プロトン性溶媒が挙げられる。
 有機溶媒は、1種のみを用いても2種以上を用いてもよい。
 電解液は、添加剤を含んでもよい。添加剤として具体的には、フルオロエチレンカーボネート、プロパンスルトン、ビニレンカーボネート、メタンスルホン酸、シクロヘキシルベンゼン、tert-アミルベンゼン、アジポニトリル、スクシノニトリル等が挙げられる。
 電解液中の添加剤の量は、例えば、電解液全体の0.1質量%~30質量%であることが好ましく、0.5質量%~10質量%であることが好ましい。
 エネルギー貯蔵デバイスは、電極及び電解液に加え、通常使用されるセパレータ、ガスケット、封口板、ケース等の部材をさらに備えていてもよい。
 エネルギー貯蔵デバイスに使用されるセパレータは特に制限されず、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布等のポリオレフィン系の多孔質膜などが挙げられる。
 エネルギー貯蔵デバイスの形状は、円筒型、角型、ボタン型等の任意の形状とすることができる。
 エネルギー貯蔵デバイスの用途は特に制限されない。例えば、電子機器、電気機器、自動車、電力貯蔵装置等の電源又は補助電源として利用できる。
 以下、実施例に基づいて本開示をより具体的に説明するが、本開示は下記の実施例に制限されるものではない。
<実施例1>
 カーボンブラック(CB)をNMPに分散させた分散液と、VGCFをNMPに分散させた分散液とを混錬して、導電助剤スラリーを得た。
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリーに導電助剤スラリーを添加し、混錬して混合物を得た。得られた混合物をアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI:CB:VGCF=90:5:4:1
 作製した複合粒子のSEM画像を図1に示す。図1に示すように、粒子Aとしての複数のSiO粒子と、粒子Bとしてのアスペクト比が10以上のVGCFと、粒子Bに該当しないカーボンブラックとが集合して複合粒子を形成している様子が観察された。
 作製した複合粒子の断面のSEM画像を図2に示す。図2に示すように、複合粒子の内部に空隙(明度が相対的に低い部分)が観察された。ImageJを用いた画像解析法により算出した複合粒子の空隙率は、15%であった。
(評価用電池の作製)
 得られた複合粒子と、黒鉛粒子と、1%カルボキシメチルセルロース(CMC)の水溶液とを均一に混合し、スチレンブタジエンゴム(SBR)の水分散液を滴下して、負極用のスラリを得た。スラリに含まれる複合粒子と黒鉛粒子の質量比(SiO:黒鉛)は12:88とした。得られたスラリを集電体の表面にコーターを用いて塗工し、乾燥することで目的の塗工量(80g/m)の負極を得た。プレス機にて密度を1.6g/cmに設定した。負極に含まれる活物質(複合粒子及び黒鉛粒子)、SBR及びCMCの質量比を下記式に示す。
 活物質:SBR:CMC=97:1.5:1.5
 正極活物質(NMC811)、カーボンブラック(CB)及びポリフッ化ビニリデン(PVDF)を含む正極用のスラリをNMPを用いて得た。得られたスラリを集電体の表面にコーターを用いて塗工し、乾燥することで目的の塗工量(195g/m)の正極を得た。プレス機にて密度を2.3g/cmに設定した。正極に含まれる各成分の質量比を下記式に示す。
 NMC811:CB:PVDF=94:3:3
 作製した負極及び正極と、セパレータ(ポリプロピレン多孔質膜)とを用いてラミネート型の電池を得た。
 負極(N)および正極(P)の容量比(N/P)は1.05となるように設計した。
 電解液としては、1MのLiPFをEC、EMC及びDECを1:1:1(体積比)の割合で含み、VC(1質量%)及びFEC(2質量%)をさらに含む混合溶媒に溶解したものを用いた。
 複合粒子及び電池の作製に使用した材料の詳細は、下記の通りである。
 カーボンブラック…平均一次粒子径が48nmのアセチレンブラック(デンカ株式会社、DENKA BLACK Li-400)
 VGCF…平均繊維径が150nm、平均繊維長が15.0μm、炭素含有率が99.99質量%のカーボンファイバー(昭和電工株式会社、VGCF-H)
 SiO粒子…体積平均粒子径が8.0μmのSiO粒子
 黒鉛粒子…体積平均粒子径が10.0μmの黒鉛粒子
<比較例1>
 カーボンブラック(CB)をNMPに分散させた分散液を混錬して、導電助剤スラリを得た。
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリに導電助剤スラリを添加し、混錬して混合物を得た。得られた混合物をアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI:CB=90:5:5
 作製した複合粒子のSEM画像を図3に示す。図3に示すように、粒子Aとしての複数のSiO粒子と、粒子Bに該当しないカーボンブラックとが集合して複合粒子を形成している様子が観察された。
 作製した複合粒子の断面のSEM画像を図4に示す。図4に示すように、複数のSiO粒子が集合して形成された二次粒子の内部に空隙が観察されなかった。
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。
<比較例2>
 実施例1の複合粒子の原料として使用したSiO粒子を複合粒子の代わりに用いて、実施例1と同様にして評価用の電池を作製した。
<比較例3>
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリをアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI=95:5(質量比)
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。
<比較例4>
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリをアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI=90:10(質量比)
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。
<サイクル特性の評価>
 作製した評価用の電池を用いて、サイクル特性の評価試験を25℃の条件下で行った。
 最初に、上限電圧:4.2V、電流:1/10C-CC(Constant Current)の条件で電池の充電を行った。その後、下限電圧:2.7V、電流:1/10C-CCCV、カットオフ電流:1/100Cの条件で電池の放電を行った。この工程を3サイクル繰り返した後に電池の放電容量(3サイクル後)を測定した。
 次いで、上限電圧:4.2V、電流:1C-CCの条件で電池の充電を行った。その後、下限電圧:2.75V、電流:1C-CCCV、カットオフ電流:1/50Cの条件で電池の放電を行った。この工程を300サイクル繰り返した後に電池の放電容量(300サイクル後)を測定した。
 下記式により、セルの放電容量維持率(%)を算出した。結果を表1に示す。
 放電容量維持率(%)=放電容量(300サイクル後)/放電容量(3サイクル後)×100

 
 表1に示すように、電極材料が粒子A及び粒子Bを含む複合粒子を含む実施例1の電池は、電極材料が粒子A及び粒子Bを含む複合粒子を含まない比較例1~4の電池に比べて300サイクル後の放電容量維持率が大きく、サイクル特性に優れていた。

Claims (8)

  1.  アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子Aと、アスペクト比が10以上である粒子Bと、を含む複合粒子を含む、電極材料。
  2.  前記複合粒子の空隙率は10%以上である、請求項1に記載の電極材料。
  3.  前記複合粒子は高分子材料をさらに含む、請求項1に記載の電極材料。
  4.  前記高分子材料はポリアミドイミド及びポリアクリロニトリルから選択される少なくとも1種を含む、請求項3に記載の電極材料。
  5.  前記粒子Aはケイ素を含む、請求項1に記載の電極材料。
  6.  前記粒子Bは導電性粒子を含む、請求項1に記載の電極材料。
  7.  請求項1~請求項6のいずれか1項に記載の電極材料を含む、エネルギー貯蔵デバイス用電極。
  8.  請求項7に記載のエネルギー貯蔵デバイス用電極を含む、エネルギー貯蔵デバイス。
PCT/JP2022/033954 2022-09-09 2022-09-09 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス WO2024053111A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033954 WO2024053111A1 (ja) 2022-09-09 2022-09-09 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033954 WO2024053111A1 (ja) 2022-09-09 2022-09-09 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス

Publications (1)

Publication Number Publication Date
WO2024053111A1 true WO2024053111A1 (ja) 2024-03-14

Family

ID=90192215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033954 WO2024053111A1 (ja) 2022-09-09 2022-09-09 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス

Country Status (1)

Country Link
WO (1) WO2024053111A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2013235682A (ja) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料およびその製造方法、並びにそれを用いたリチウムイオン二次電池
JP2019528227A (ja) * 2016-08-11 2019-10-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Si/C複合粒子の製造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2013235682A (ja) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料およびその製造方法、並びにそれを用いたリチウムイオン二次電池
JP2019528227A (ja) * 2016-08-11 2019-10-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Si/C複合粒子の製造

Similar Documents

Publication Publication Date Title
CN111213262A (zh) 负极和包含所述负极的二次电池
KR20150067049A (ko) 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
JP2008112710A (ja) リチウム二次電池用負極材料、これを用いたリチウム二次電池用負極及びリチウム二次電池
WO2012176873A1 (ja) リチウム二次電池
CN113097444B (zh) 非水电解质二次电池用负极及非水电解质二次电池
US11631857B2 (en) Secondary battery
JP7228786B2 (ja) 非水電解質二次電池用負極および非水電解質二次電池
KR20190095835A (ko) 양극 및 상기 양극을 포함하는 이차 전지
CN115498146A (zh) 阴极活性材料、含其的阴极组合物及含其的锂二次电池
CN113950759A (zh) 负极、其制造方法以及包含其的二次电池
KR102590425B1 (ko) 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
KR20230010172A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
JP7466982B2 (ja) 負極および前記負極を含む二次電池
KR102376217B1 (ko) 다층 구조의 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN116670850A (zh) 负极和包含其的二次电池
CN115336040A (zh) 负极和包含所述负极的二次电池
US20230104135A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
JP7224787B2 (ja) 特定添加剤を含んだ二次電池用非水系電解質及びこれを用いた二次電池
WO2024053111A1 (ja) 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
WO2021172105A1 (ja) 電気化学素子用複合粒子及びその製造方法、並びに、電気化学素子用電極及び電気化学素子
WO2024053110A1 (ja) 電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
US20230343942A1 (en) Negative electrode for secondary battery, and secondary battery
WO2021153398A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
US20230216022A1 (en) Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery
CN116438677A (zh) 制造锂二次电池用正极的方法和由此制造的锂二次电池用正极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958189

Country of ref document: EP

Kind code of ref document: A1