WO2024053091A1 - 高配向性金属複合塩 - Google Patents

高配向性金属複合塩 Download PDF

Info

Publication number
WO2024053091A1
WO2024053091A1 PCT/JP2022/033897 JP2022033897W WO2024053091A1 WO 2024053091 A1 WO2024053091 A1 WO 2024053091A1 JP 2022033897 W JP2022033897 W JP 2022033897W WO 2024053091 A1 WO2024053091 A1 WO 2024053091A1
Authority
WO
WIPO (PCT)
Prior art keywords
highly oriented
metal composite
less
oriented metal
composite salt
Prior art date
Application number
PCT/JP2022/033897
Other languages
English (en)
French (fr)
Inventor
茂男 宮田
クオン デイン フン
Original Assignee
株式会社海水化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社海水化学研究所 filed Critical 株式会社海水化学研究所
Priority to PCT/JP2022/033897 priority Critical patent/WO2024053091A1/ja
Publication of WO2024053091A1 publication Critical patent/WO2024053091A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • C07C211/10Diaminoethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/06Glycolic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds

Definitions

  • the present invention relates to a novel highly oriented metal composite salt containing Mg as a main component. More specifically, the present invention provides novel particles in which a part of the OH of Mg(OH) 2 is replaced with an organic ligand, and the primary particles have a large width, an extremely thin thickness, and are easily oriented in the width direction. Regarding highly oriented metal composite salt.
  • Magnesium hydroxide belongs to the hexagonal Cd(OH) type 2 structure, and because the crystal growth in the c-axis direction (thickness) is slower than in the a-axis direction (width), it exhibits a plate-like crystal outline. There are many. Its characteristics include a low specific gravity of 2.37, nontoxicity, and basicity. It has a long history of use as a gastric acid neutralizer and laxative, but there are few industrial uses other than flue gas desulfurization, and demand has been low.
  • Near-monodisperse magnesium hydroxide (trade name: Kisuma 5) was developed (Patent Document 1), opening up a large market as a non-halogen flame retardant for resins.
  • magnesium hydroxide had primary particles with a width of approximately 0.2 ⁇ m or less, and had strong agglomeration, and secondary particles (particles formed by agglomeration of primary particles, measured by particle size distribution) were larger than 5 ⁇ m. Ta.
  • Mg 1-x M 2+ x (OH) 2 (2)
  • M 2+ represents at least one divalent metal selected from Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ and Zn 2+
  • x is 0.01 ⁇ x ⁇ 0.5
  • This solid solution is produced by a method in which an oxide obtained by calcining the hydroxide represented by formula (2) is subjected to a hydration reaction in an aqueous medium in the coexistence of a monocarboxylic acid and/or an oxymonocarboxylic acid.
  • Patent Document 2 By increasing the aspect ratio, new uses such as reinforcing agents for resins have opened up (Patent Document 2).
  • the present inventors have developed a method capable of producing a high aspect ratio magnesium hydroxide solid solution represented by formula (2) at reduced cost.
  • the method involves adding (A) a mixed aqueous solution of a water-soluble Mg salt, (B) a water-soluble divalent metal salt (M 2+ ) or its metal complex, and (C) an alkaline aqueous solution such as sodium hydroxide to (D) After a coprecipitation reaction in the presence or absence of monocarboxylic acid ions, (D) and (E) one or more chlorides selected from sodium chloride, potassium chloride, ammonium chloride, magnesium chloride, and calcium chloride.
  • This production method involves heating and aging at 60 to 300°C in the coexistence of (Patent Document 4).
  • This solid solution of fine particles can be produced by (A) adding an alkali equivalent to Mg to a mixed aqueous solution of a water-soluble magnesium salt and a monovalent organic acid or its salt to cause coprecipitation, followed by hydrothermal treatment; or (B) ) An aqueous alkali solution is added to an aqueous solution of a water-soluble magnesium salt for coprecipitation, a monovalent organic acid or its salt is added to the obtained magnesium hydroxide, and then a hydrothermal treatment is performed (Patent Document 5) .
  • the first object of the present invention is to provide a high aspect ratio magnesium hydroxide compound having an aspect ratio of more than 50.
  • M 2+ represents at least one type of divalent metal other than Mg
  • A represents at least one type of organic ligand
  • x and y are each in the following range, 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.1, particularly preferably 0.01 ⁇ x ⁇ 0.06, and 0 ⁇ y ⁇ 0.05, preferably 0.0001 ⁇ y ⁇ 0.02, particularly preferably 0.001 ⁇ y ⁇ 0.015
  • n is an integer ranging from 1 to 4, preferably 1, or zero
  • the above X-ray diffraction intensity ratio (orientation H) is, for example, 60% or less, preferably 30% or less, more preferably 3% or less, particularly preferably 1% or less.
  • n represents an integer in the range of 1 to 4, and the X-ray diffraction intensity ratio (orientation H) is 60% or less, preferably 30% or less, more preferably 3% or less, particularly preferably 1 % or less.
  • n zero.
  • the present inventors added (A) an aqueous solution of a water-soluble salt of a divalent metal containing at least Mg to (B) less than 10 mol %, preferably less than 10 mol %, based on the total number of moles of the divalent metal containing at least Mg. is added with 5% or less of an organic ligand, and subjected to a coprecipitation reaction with an alkali of at least 0.95 equivalent or less based on the total equivalent of the divalent metal containing at least Mg (C), and then heated at 100 ° C. or higher.
  • the highly oriented metal composite salt is manufactured by adding (A) an aqueous solution of a water-soluble magnesium salt to an aqueous solution of (B) an organic ligand capable of forming a metal complex, and (C) adding about 0.01 mol of an organic ligand with respect to Mg. After supplying at least 0.95 equivalent or less, preferably 0.9 equivalent or less with respect to Mg and causing a coprecipitation reaction, (D) hydrothermal treatment at 100 ° C. or higher is carried out, resulting in high orientation (high aspect ratio). of magnesium hydroxide can be produced with reduced production costs.
  • the amount of organic ligand required may be extremely small, corresponding to about 1/100 of the amount of monovalent organic acid or its salt required in the prior art. Even if the amount is increased or decreased from this value, the orientation (aspect ratio) will deteriorate sharply. This is a new discovery that could not be expected based on the conventional idea that increasing the amount of monovalent organic acid increases the aspect ratio.
  • the second production condition important in the present invention is the equivalent amount of alkali added to Mg, which is at least 0.95 equivalent or less, preferably 0.9 equivalent or less, particularly preferably 0.85 equivalent or less to 0.6 equivalent or more. do. By suppressing the amount of alkali added to less than an equivalent amount, the function of the organic ligand can be exerted.
  • the highly oriented composite metal salt according to the present invention allows the thickness of the primary particles (crystallite) to be thinner (minimum about 5 nm) and the width to be smaller than that of the conventional technology using a monovalent organic acid or its salt. Because they can be much larger (up to about 40 ⁇ m) and have less agglomeration, they are much more oriented and therefore have higher aspect ratios (up to about 200 in the present invention compared to up to about 40 in the prior art). Therefore, the reinforcing effect on the resin is higher than that of conventional products, and it can be reinforced with a smaller amount, which further contributes to reducing the weight of automobiles and expands the range of applications for other automobile parts such as door trims, bumpers, and instrument panels. .
  • resins can be used as flame retardants, smoke suppressants, heat conductive agents, gas barrier materials, oxygen absorbers, biodegradation accelerators, etc. Furthermore, it can be used as a rust preventive agent for paints, a dyeing agent for fibers, and a flame retardant for paper. Furthermore, by taking advantage of its characteristics such as excellent slipperiness and pearlescent gloss, it can be used as a slippery powder for cosmetics in place of mica or talc.
  • an organic ligand capable of forming a metal complex is used in place of the monovalent carboxylic acid used in the prior art, and an alkali is used in an amount of 0.95 equivalent or less, preferably 0.9 equivalent or less, particularly preferably 0.9 equivalent or less, based on Mg. discovered a new synthesis method in which a co-precipitation reaction is carried out at 0.85 equivalent or less to 0.6 equivalent or more, followed by hydrothermal treatment at 100°C or higher, preferably 120°C or higher, particularly preferably 180°C or higher.
  • the present invention was obtained as a result of intensive research based on the following ideas.
  • By creating conditions that facilitate the formation of complexes between Mg ions and organic ligands it is possible to add two new functions that are not available with conventional technology.
  • complexes with Mg have a certain degree of water solubility, which is a characteristic of metal complexes, they can be expected to improve solubility, which in turn promotes the growth of primary particles, reduces aggregation, and improves dispersibility. will improve.
  • the highly oriented metal composite salt represented by formula (1) of the present invention has the following characteristics.
  • the powder X-ray diffraction pattern has the same hexagonal Cd(OH) type 2 crystal structure as magnesium hydroxide. Although some of the OH groups of Mg(OH) 2 are substituted with organic ligands, the crystal structure is the same as Mg(OH) 2 .
  • the X-ray diffraction intensity ratio H (orientation) of the (101) plane to the (001) plane is at least 60% or less, preferably 30% or less, particularly preferably 3% or less. The higher the orientation H, the higher the aspect ratio of the primary particles and the less aggregation.
  • the H of the glycolic acid solid solution (Example 2) and the lactic acid solid solution (Example 3) was 143% and 147%, respectively, and the H content according to the present invention was 143% and 147%, respectively.
  • the difference from oriented metal composite salts is obvious.
  • the average width of the primary particles is 0.21 ⁇ m or more, more preferably 2 ⁇ m or more, more preferably 3 ⁇ m to 50 ⁇ m, even more preferably 3 ⁇ m to 20 ⁇ m, or even more preferably 4 ⁇ m to 50 ⁇ m, and even more preferably
  • the thickness is 4 ⁇ m to 20 ⁇ m, particularly preferably 4 ⁇ m to 10 ⁇ m.
  • the average thickness of the primary particles is in the range of 1 nm to 100 nm, preferably 5 nm to 100 nm, more preferably 5 nm to 70 nm, even more preferably 5 nm to 60 nm, particularly preferably 5 nm to 50 nm, or preferably is 10 nm to 100 nm, more preferably 10 nm to 70 nm, even more preferably 10 nm to 60 nm, particularly preferably 10 nm to 50 nm.
  • the aspect ratio which is the ratio of the width to the thickness of the primary particles, is 20 or more, preferably 50 or more, particularly preferably 100 or more.
  • the average secondary particle diameter is approximately the same as or slightly larger than the primary particle diameter, and therefore secondary aggregation is small.
  • the primary particles are 2 ⁇ m or more, the lubricity (low dynamic friction) and gloss (pearl color) are excellent.
  • the endothermic decomposition peak temperature varies by about 20°C at maximum.
  • the organic ligand constituting the highly oriented metal composite salt according to the present invention preferably has one carboxyl group or sulfone group, is preferably bidentate, and is suitably larger than an OH group.
  • Preferred organic ligands include (1) glycolic acid, lactic acid, glyceric acid, hydroxybutyric acid, pantoic acid, quinic acid, salicylic acid, vanillic acid, syringic acid, orceric acid, hydroxybenzoic acid, vanillic acid, gallic acid, Oxycarboxylic acids (also hydroxycarboxylic acids) such as mandelic acid and benzylic acid, preferably glycolic acid, lactic acid, glyceric acid, hydroxybutyric acid, hydroxybenzoic acid, vanillic acid, gallic acid, and mandelic acid; (2) Preferably ethylenediamine, hexamethylenediamine, diethanolamine, triethanolamine, putrescine, cataverine, ethambutol,
  • Organic ligands are the above formulas (1) and (2).
  • the amount x of organic ligands lies in the range 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.1, particularly preferably 0.01 ⁇ x ⁇ 0.06.
  • the amount y of organic ligands lies in the range 0 ⁇ y ⁇ 0.05, preferably 0.0001 ⁇ y ⁇ 0.02, particularly preferably 0.001 ⁇ y ⁇ 0.015.
  • n represents an integer in the range of 1 to 4, preferably 1 or zero.
  • the highly oriented metal composite salt according to the present invention combines a part of the Mg of Mg(OH) 2 with other divalent metals M 2+ , preferably Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ , particularly preferably Ca 2+ , Fe 2+ , Ni 2+ and Zn 2+ .
  • the solid solution range x of M 2+ is 0 ⁇ x ⁇ 0.3, preferably 0 ⁇ x ⁇ 0.2, particularly preferably 0 ⁇ x ⁇ 0.1.
  • Ca 2+ strengthens basicity, Ni 2+ and Zn 2+ improve flame retardancy by catalyzing dehydrogenation, and Ni 2+ improves acid resistance.
  • Mn 2+ , Fe 2+ , and Co 2+ have oxygen absorbing properties and oxidative decomposition effects on resins, and can be incorporated into food packaging resin films to be used as oxygen absorbers and/or biodegradation accelerators. Furthermore, Fe 2+ can be used as a therapeutic agent for iron deficiency anemia.
  • the highly oriented metal composite salt according to the present invention can also be used as a mechanical strengthening agent for resins such as polypropylene, a flame retardant, a thermal conductivity improver (heat dissipation material), a gas barrier material, a smoke suppressant, and a filler for artificial marble.
  • resins such as polypropylene, a flame retardant, a thermal conductivity improver (heat dissipation material), a gas barrier material, a smoke suppressant, and a filler for artificial marble.
  • the highly oriented metal composite salt By firing the highly oriented metal composite salt according to the present invention at 400 to 1000°C, the highly oriented metal composite salt is thin, highly oriented, and has excellent dispersibility.
  • a magnesium oxide solid solution in which a portion of Mg is replaced with M 2+ can be produced. Therefore, by taking advantage of its characteristics, it can be used as an annealing separation material for electrical steel sheets, a heat dissipation material for resins and rubber, an acid acceptor for halogen-containing rubber, a vulcanization accelerator for rubber, and the like.
  • A The total equivalent amount of divalent metals is added to a mixed aqueous solution of a water-soluble magnesium salt and an organic ligand, or a mixed solution of a water-soluble magnesium salt, a water-soluble divalent metal (M 2+ ) salt, and an organic ligand. and at least 0.95 equivalent or less, preferably 0.9 equivalent or less, particularly preferably 0.8 equivalent or less to 0.6 equivalent or more of alkali to be coprecipitated.
  • the coprecipitate obtained in the first step is hydrothermally treated at 100°C or higher, preferably 120°C or higher, particularly preferably 180°C to 250°C, for 1 hour or more, preferably 2 to 10 hours.
  • the width of the primary particles can be adjusted within the range of 0.21 to 40 ⁇ m.
  • ⁇ Surface treatment> Various functions can be added to the highly oriented metal composite salt according to the present invention by surface treatment.
  • higher fatty acids such as stearic acid and lauric acid
  • alkali metal salts of the higher fatty acids such as stearic acid and lauric acid
  • alkali metal salts of the higher fatty acids such as stearic acid and lauric acid
  • alkali metal salts of the higher fatty acids such as stearic acid and lauric acid
  • alkali metal salts of the higher fatty acids such as sodium dialkyl sulfosuccinate, Anionic surfactants such as alkyl ether sulfate, 2-ethylhexyl alkyl sulfate ester sodium salt, sodium acylmethyl taurate, sodium alkylbenzenesulfonate, oleoyl sarcosine, etc.
  • silane coupling agents such as vinyl ethoxysilane and ⁇ -aminopropyltrimethoxysilane
  • isopropyltriiso Titanate coupling agents
  • silica coating is carried out by chemical adsorption of water glass and subsequent acid addition, silica coating by hydrolysis of methyl silicate, ethyl silicate, etc., silicone coating with silicone oil, etc. Coatings with particulates such as titanium oxide, zinc oxide, cerium oxide, etc. can be used to enhance UV absorption and/or scattering.
  • particulates such as titanium oxide, zinc oxide, cerium oxide, etc.
  • fine particles of metal oxides such as titanium oxide, iron oxide, zinc oxide, etc. are dispersed in a solvent such as water with a highly oriented metal composite salt treated with or without surface treatment to improve acid resistance. By adding it, it can be manufactured by a method that uniformly coats the surface.
  • surface treatment agents used as flame retardants for paper include carboxymethyl cellulose and sodium alginate.
  • the surface treatment method is preferably performed wet or dry.
  • the wet method is a method in which a metal complex salt is dispersed in a solvent such as water or alcohol, and a surface treatment agent is added while stirring.
  • the dry method is a method in which a surface treatment agent is added to a powdered highly oriented metal composite salt that is being stirred with a high-speed stirrer such as a Henschel mixer.
  • the amount of the surface treatment agent is appropriately selected and determined depending on the purpose, but generally the preferred range is 0.5 to 20% by weight based on the weight of the highly oriented metal composite salt.
  • the resin composition according to the present invention contains 0.01 to 300 parts by weight, preferably 0.5 to 200 parts by weight, particularly preferably 1 to 100 parts by weight of a highly oriented metal composite salt per 100 parts by weight of the resin. do.
  • the optimal blending amount varies depending on the purpose. For example, if the purpose is to mechanically strengthen the flexural modulus, flexural strength, Izod strength, etc. of the resin, 1 to 40 parts by weight, 1 to 20 parts by weight as a dusting agent for halogen-containing rubber, a flame retardant for the resin, etc.
  • the amount is 50 to 200 parts by weight, and as an acid acceptor for resin such as polyamide, it is 0.01 to 5 parts by weight.
  • ⁇ Processing method> There are no particular restrictions on the mixing and kneading method with the resin, and any method that allows both to be mixed uniformly may be used. For example, mixing and kneading are carried out using a single-screw or twin-screw extruder, an open roll, a Banbury mixer, or the like. There are no particular restrictions on the molding method, and any known molding method can be used depending on the type of resin and rubber, the type of desired molded product, etc. Examples of the molding means include injection molding, rotational molding, calendar molding, sheet forming molding, transfer molding, lamination molding, vacuum molding, and the like.
  • the resin used in the present invention means a resin and/or a rubber, such as (A) polyethylene, a copolymer of ethylene and other ⁇ -olefins, a copolymer of ethylene and vinyl acetate, ethyl acrylate, or methyl acrylate.
  • Examples of preferred resins include polypropylene, a mixture of polypropylene and olefin rubber, polyethylene, polyamide, EPDM, butyl rubber, and chloroprene rubber.
  • conventionally known reinforcing agents such as talc, mica, glass fiber, basic magnesium sulfate fiber, etc. may be used in combination with the highly oriented metal composite salt.
  • the blending amount of these reinforcing agents is 1 to 50 parts by weight, preferably 1 to 20 parts by weight, per 100 parts by weight of the resin.
  • additives such as antioxidants, ultraviolet absorbers, lubricants, pigments such as carbon black, brominated or phosphate ester flame retardants, zinc stannate, alkali metal stannate, carbon Flame retardant aids such as powder, fillers such as calcium carbonate, zeolite, kaolin, etc. can be appropriately selected and blended.
  • organic ligands were determined according to spectrophotometry. i) When the organic ligand is lactic acid, glycolic acid, triethanolamine and p-toluidine-2-sulfonic acid, it was measured according to the method described in the following literature: L. N. Borshchevskaya etc., J. Analytical Chemistry, 71, No. 8, 755-758 (2016). ii) When the organic ligand is ethylenediamine, it was measured according to the method described in the following literature: Goro Hihara etc., Bull. Chem. Soc. Jpn, 54, 268-271 (1981).
  • TG-DTA measurements were performed using Rigaku Co., Ltd.'s TG-8120 under conditions of atmosphere: air and temperature increase rate: 20°C/min.
  • a mixed aqueous solution (approximately 20° C.) was placed in a 1 L container, and while stirring, 320 mL of a 4 mol/L aqueous sodium hydroxide solution (approximately 20° C.) corresponding to 0.8 equivalent to Mg was added to cause coprecipitation.
  • This coprecipitate was transferred to a 1 L autoclave and hydrothermally treated at 200° C. for 4 hours.
  • the hydrothermally treated product was filtered, washed with water, dried, and sieved (filtered through a 30-mesh sieve and then re-sieved through a 60-m mesh).
  • the sieved sample was subjected to XRD (powder X-ray diffraction) (FIG.
  • the above measurement results are shown in Table 1 below.
  • the orientation H of the sieved sample is 1%, and the orientation of the above FILE is calculated to be 111%, indicating that the product of the present invention has extremely high orientation. While the average primary particle size was 6.1 ⁇ m, the average secondary particle size was 6.2 ⁇ m, indicating that there was almost no secondary aggregation. From the TG-DTA data, the endothermic decomposition peak temperature is 419°C.
  • Example 1 was carried out in the same manner as in Example 1, except that the amount of the sodium lactate aqueous solution added to Mg was changed to 2.5 mol %.
  • the measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 1 was carried out in the same manner as in Example 1, except that the amount of the sodium lactate aqueous solution added to Mg was changed to 0.5 mol %.
  • the measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 1 was carried out in the same manner as in Example 1 except that the amount of the sodium lactate aqueous solution added to Mg was changed to 10 mol %. The measurement results are shown in Table 1 below.
  • Example 1 was carried out in the same manner as in Example 1, except that the amount of the 4 mol/L sodium hydroxide aqueous solution added was changed to 400 mL, which corresponds to 1.0 equivalent to Mg. The measurement results are shown in Table 1 below.
  • Example 1 was carried out in the same manner as in Example 1 except that the addition of sodium lactate was omitted. The measurement results are shown in Table 1 below. From the TG-DTA data, the endothermic decomposition peak temperature is 411°C.
  • Example 4 In Example 1, instead of sodium lactate, which is an organic ligand, 150 mol% of sodium acetate is added to Mg according to the conventional manufacturing method of high aspect ratio magnesium hydroxide (Patent Document 3, Example 1). Except for this, the same procedure as in Example 1 was carried out. The measurement results are shown in Table 1 below.
  • Example 1 was carried out in the same manner as in Example 1 except that the hydrothermal treatment temperature was changed from 200°C to 120°C. The measurement results are shown in Table 1 below. Moreover, XRD is shown in FIG. 1, and SEM photograph is shown in FIG. 2. The XRD pattern is the same as magnesium hydroxide.
  • Example 4 was carried out in the same manner as in Example 4, except that the amount of sodium hydroxide added was changed to 400 mL, which corresponds to 1.0 equivalent to Mg (corresponding to Patent Document 4, Example 3). The measurement results are shown in Table 1 below. The XRD is shown in FIG.
  • Example 1 was carried out in the same manner as in Example 1, except that 0.5 mol% of ethylenediamine was used as a reagent based on Mg instead of sodium lactate. The content of ethylenediamine was determined by absorptiometry after dissolving the sample in hydrochloric acid. The measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide. From the TG-DTA data, the endothermic decomposition peak temperature is 406°C.
  • Example 1 was carried out in the same manner as in Example 1, except that 1.5 mol% of glycolic acid as a reagent was added to Mg instead of sodium lactate. The content of glycolic acid was determined by the same spectrophotometric method as in Example 1. The measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide. From the TG-DTA data, the endothermic decomposition peak temperature is 428°C.
  • Example 1 was carried out in the same manner as in Example 1, except that 1 mol % of the reagent glycine was added to Mg instead of sodium lactate.
  • the glycine content was measured by absorptiometric method after dissolving the sample in hydrochloric acid. The measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 1 was carried out in the same manner as in Example 1 except that 4 mol% of triethanolamine was added as a reagent based on Mg instead of sodium lactate. The measurement results are shown in Table 1 below. However, the content of triethanolamine was determined by the same spectrophotometric method as in Example 5. The XRD pattern is the same as magnesium hydroxide. From the TG-DTA data, the endothermic decomposition peak temperature is 416°C.
  • Example 1 was carried out in the same manner as in Example 1, except that the reagent zinc chloride was mixed in an aqueous magnesium chloride solution in an amount of 2 mol % based on Mg, and the hydrothermal treatment temperature was changed to 250°C.
  • the measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 1 was carried out in the same manner as in Example 1, except that nickel chloride as a reagent was mixed in an aqueous magnesium chloride solution at 2 mol % based on Mg, and glycolic acid was added at 2 mol % based on Mg instead of sodium lactate. went.
  • the measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 1 was carried out in the same manner as in Example 1, except that industrial grade (manufactured by Naikai Salt Industry Co., Ltd., special issue) was used instead of reagent 1 grade magnesium chloride, and the hydrothermal treatment temperature was changed to 250°C.
  • industrial grade manufactured by Naikai Salt Industry Co., Ltd., special issue
  • the measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide.
  • Example 11 was carried out in the same manner as in Example 11, except that the reagent p-toluidine-2-sulfonic acid was used instead of sodium lactate. Analysis of p-toluidine-2-sulfonic acid was performed by HPLC method. The measurement results are shown in Table 1 below.
  • the XRD pattern is the same as magnesium hydroxide. From the TG-DTA data, the endothermic decomposition peak temperature is 405°C.
  • Example 1 0.05 mol of industrial ferrous chloride solution (manufactured by Taiki Yakuhin Kogyo, concentration 32% by weight) was added to 1 mol of magnesium chloride, and lactic acid (reagent grade 1, The procedure was carried out in the same manner as in Example 1, except that a 90% solution was used. The measurement results are shown in Table 1 below.
  • the product obtained was white.
  • the XRD pattern is the same as magnesium hydroxide. It can be seen that divalent iron is dissolved in solid solution.
  • the composition of this solid solution is Mg 0.95 Fe 2+ 0.05 (OH) 2 as measured by chelate titration after dissolving the sample in hydrochloric acid.
  • the obtained product can be added to a resin film for food packaging and used as an oxygen absorber, taking advantage of the fact that divalent iron is oxidized by oxygen and changes into stable trivalent iron.
  • this solid solution can be easily dissolved in gastric acid and can supply easily absorbed divalent iron, so it can be used as a therapeutic agent for iron deficiency anemia in humans.
  • Example 11 except that high aspect ratio magnesium hydroxide produced by the method of Comparative Example 4 (Patent Document 3) was used instead of the highly oriented metal composite salt produced by the method of Example 1. It was carried out in the same manner as in 11. The evaluation results are shown in Table 2 below.
  • Example 7 In Example 11, talc (primary particle size: 5 ⁇ m, thickness: 0.2 ⁇ m, aspect ratio: 20), which is often used as a resin reinforcing agent for automobiles, was mixed with the highly oriented metal composite salt of Example 11. The same procedure as in Example 11 was carried out except that the following was used instead. A control example was carried out in the same manner as in Example 11 except that no reinforcing agent was used. The evaluation results are shown in Table 2 below.
  • Static friction coefficient and dynamic friction coefficient were measured using the following equipment and conditions.
  • Equipment Static friction measuring instrument TL201Tt manufactured by Trinity Lab Co., Ltd.
  • Test piece Apply 0.5 mg/ m2 of test powder (passed through a 60 mesh sieve) onto a 5 cm x 10 cm sheet Load: 25 g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

[課題]本発明は、大量のモノカルボン酸を必要とする従来の高アスペクト比水酸化マグネシウムに代わる、低コストでよりアスペクト比の材料を開発することを目的とする。 [解決手段]本発明は、下記式(1): (Mg)1-x(M2+(OH)2-nyy  (1) (但し、式中、M2+はMg以外の2価金属の少なくとも1種以上を示し、Aは有機配位子の少なくとも1種以上を示し、x及びyはそれぞれ次の範囲、0≦x<0.2、好ましくは0≦x<0.1、特に好ましくは0.01≦x<0.06、及び0<y<0.05、好ましくは0.0001<y<0.02、特に好ましくは0.001<y<0.015、にあり、nは1~4の範囲の整数、好ましくは1、又はゼロを示す) で表され、且つ(001)面に対する(101)面のX線回折強度比(配向性H)が60%以下で、且つ六方晶系のCd(OH)型結晶構造を有する高配向性金属複合塩に関する。

Description

高配向性金属複合塩
 本発明は、Mgを主成分とする新規な高配向性金属複合塩に関する。さらに詳しくは、本発明は、Mg(OH)のOHの一部が有機配位子で置換され、且つ1次粒子の横幅が大きく、厚さが極めて薄く、横幅方向に配向しやすい新規な高配向性金属複合塩に関する。
 水酸化マグネシウムは、六方晶系のCd(OH)型構造に属し、a軸方向(横幅)に比べ、c軸方向(厚さ)の結晶成長が悪いため、板状の結晶外形を示すことが多い。特徴は、比重が2.37と小さく、無毒性で、塩基性であること等である。用途は、胃酸の中和剤及び緩下剤としての長い歴史があるが、工業用途は、排煙脱硫用以外は少なく、需要が少なかった。
 しかし、本発明者等により、1次粒子(単結晶)の横幅が約0.8~1μm、厚さが約0.2μmで、2次凝集が殆ど無い(1次粒子径=2次粒子径)単分散に近い水酸化マグネシウム(商品名:キスマ5)が開発され(特許文献1)、樹脂のノンハロゲン難燃剤として大きな市場が開けた。それ以前の水酸化マグネシウムは、1次粒子の横幅が約0.2μm以下で、且つ凝集が強く2次粒子(1次粒子が凝集してできた粒子、粒度分布で測定)が5μm以上と大きかった。
 本発明者等は水酸化マグネシウム系化合物の用途を更に拡大するために、下記式(2):
 Mg1-x2+ (OH)       (2)
(式中、M2+はMn2+,Fe2+,Co2+,Ni2+,Cu2+及びZn2+から選ばれた少なくとも1種以上の2価金属を示し、xは0.01≦x<0.5の範囲を示す)で表され、平均横幅が1~10μm、厚さが0.01~0.5μmで、アスペクト比が10以上の高アスペクト比の六角板状水酸化マグネシウム系固溶体を開発した。この固溶体は式(2)で表される水酸化物を焼成して得られる酸化物を水媒体中、モノカルボン酸及び/又はオキシモノカルボン酸の共存下、水和反応させる方法で製造する。高アスペクト比化することにより、樹脂の強化剤等の新用途が開けた(特許文献2)。
 本発明者等は、高アスペクト比の水酸化マグネシウムの研究を更に進めた結果、(A)水溶性マグネシウム塩と1価有機酸のアルカリ金属塩及び/又はアンモニウム塩との混合水溶液にアルカリを加え共沈させた後、又は(B)水溶性のマグネシウム塩の水溶液にアリカリを加え共沈させた後に、1価有機酸のアルカリ金属塩及び/又はアンモニウム塩を添加し、(C)得られた共沈物のスラリーを100℃以上で水熱処理することにより、横幅が0.5μm以上で、厚さが0.2μm以下の、アスペクト比が10以上の高アスペクト比の水酸化マグネシウムを開発した(特許文献3)。
 更に本発明者等は、式(2)で表される高アスペクト比の水酸化マグネシム系固溶体を、低減されたコストで製造できる方法を開発した。その方法は、(A)水溶性のMg塩と(B)水溶性2価金属塩(M2+)又はその金属錯体との混合水溶液と(C)水酸化ナトリウム等のアルカリ水溶液を、(D)モノカルボン酸イオンの存在下又は非存在下に共沈反応後、(D)と(E)塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化マグネシウム及び塩化カルシウムの中から選ばれた塩化物の1種以上の共存下に、60~300℃で加熱熟成する製造方法である(特許文献4)。
 他方、微粒子水酸化マグネシウムの開発を目的に、水酸基OHの一部を1価有機酸で置換した、下記式(3):
 Mg(OH)2-xRx         (3)
(但し、式中Rは1価の有機酸を、xは0<x<1の範囲を示す)で表される、平均2次粒子径が300nm以下の水酸化マグネシウム系固溶体が開発されている。この微粒子の固溶体の製造は、(A)水溶性マグネシウム塩と1価有機酸もしくはその塩との混合水溶液に、ほぼMgと当量のアルカリを加え共沈させ、その後水熱処理する方法、又は(B)水溶性マグネシウム塩の水溶液に、アルカリの水溶液を加え共沈させ、得られた水酸化マグネシウムに、1価有機酸又はその塩を添加し、その後水熱処理する方法で行われる(特許文献5)。
特開昭52-11579公報 特開平8-259235公報 国際公開第2012/050222号 特開2020-152626公報 国際公開第2016/031803号
 アスペクト比が高くなるほど樹脂に対する補強性が高くなり用途が拡大するが、従来の水酸化マグネシウム系化合物のアスペクト比は最大でも50以下である。従って本発明の第一の課題はアスペクト比が50を超える、高アスペクト比の水酸化マグネシウム系化合物を提供することである。
 従来の高アスペクト比の水酸化マグネシウムの製造方法は、Mgに対し1価の有機酸又はその塩を多く用いるほど、アスペクト比が高くなる傾向のため、Mg1モルに対し1~1.5モルと大量に使用する必要がある。Mg原料より高価な1価有機酸を多量必要とする従来の製造方法は、1価有機酸の水からの分離が困難なことと相俟って、原料代が高価になる。同時に排水が1価有機酸を多く含むため高価な排水処理設備が必要になるとともに、そのランニングコストも必要になり、製造コストが高くなる。したがって、本発明の第2の課題は安価な製造方法を提供することである。
 本発明者等は、上記課題を解決するために鋭意研究した結果、下記式(1):
(Mg)1-x(M2+(OH)2-nyy       (1)
(但し、式中、M2+はMg以外の2価金属の少なくとも1種以上を示し、Aは有機配位子の少なくとも1種以上を示し、x及びyはそれぞれ次の範囲、0≦x<0.2、好ましくは0≦x<0.1、特に好ましくは0.01≦x<0.06、及び0<y<0.05、好ましくは0.0001<y<0.02、特に好ましくは0.001<y<0.015、にあり、nは1~4の範囲の整数、好ましくは1、又はゼロを示す)
で表され、且つ(001)面に対する(101)面のX線回折強度比(配向性H)が60%以下、且つ六方晶系のCd(OH)型結晶構造を有する高配向性金属複合塩の開発に成功した。上記のX線回折強度比(配向性H)は例えば、60%以下、好ましくは30%以下、より好ましくは3%以下、特に好ましくは1%以下、である。
 一つの実施態様において、nが1~4の範囲の整数を示し、X線回折強度比(配向性H)が60%以下、好ましくは30%以下、より好ましくは3%以下、特に好ましくは1%以下、である。
 一つの実施態様において、nがゼロを示す。
 さらに、本発明者等は、(A)Mgを少なくとも含む2価金属の水溶性塩の水溶液に、(B)Mgを少なくとも含む前記2価金属の合計モル数に対し、10モル%未満、好ましくは5%以下、の有機配位子を添加し、(C)Mgを少なくとも含む前記2価金属の合計当量に対し少なくとも0.95当量以下のアルカリと共沈反応させた後、100℃以上で水熱処理することを特徴とする、上記高配向性金属複合塩の製造方法の開発に成功した。
 高配向性金属複合塩の製造は、(A)水溶性マグネシウム塩水溶液に、(B)金属錯体形成能のある有機配位子をMgに対し約0.01モル添加し、且つ(C)アルカリをMgに対し少なくとも0.95当量以下、好ましくは0.9当量以下供給し共沈反応させた後、(D)100℃以上で水熱処理することにより行われ、高配向性(高アスペクト比)の水酸化マグネシウムを低減された生産コストで製造できる。有機配位子の必要量は、従来技術で必要な1価有機酸又はその塩の量に対し、約1/100に相当する極めて少ない量で良い。これより多くしても、又は少なくしても、却って配向性(アスペクト比)は急激に低下していく。これは、1価有機酸の量を増やすほど高アスペクト比になる従来の考え方では全く想定できない新発見である。
 本発明で重要な第2の製造条件は、Mgに対するアルカリ添加当量であり、少なくとも0.95当量以下、好ましくは0.9当量以下、特に好ましくは0.85当量以下~0.6当量以上にする。アルカリ添加量を当量未満に抑制することにより、有機配位子の働きを発揮させることが出来る。
 本発明に従う高配向性複合金属塩は、1価有機酸又はその塩を使用する従来技術に比べて1次粒子(結晶子)の厚さをより薄く(最小で約5nm)、逆に横幅を大幅に大きく(最大で約40μm)且つ凝集を少なくできるため、配向性が極めて高くなり、従ってより高アスペクト比(従来技術が最大約40に対し本発明で最大約200)となる。従って樹脂に対する強化効果が従来製品より高くなり、より少ない量で強化できるため自動車の軽量化に更に貢献すると共に、ドアトリム、バンパー、インスツルメントパネル等の自動車の他の部品に応用できる範囲が広がる。
 樹脂への利用は自動車以外に、難燃剤、抑煙剤、熱伝導剤、ガスバリヤー材、酸素吸収剤、生分解促進剤等として利用できる。更に、塗料の防錆剤、繊維の染色剤、紙の難燃剤、にも利用可能である。また、その優れた滑性、パール色調光沢性等の特徴を生かして、マイカとかタルクに代わる化粧品用滑性粉末として利用できる。
 本発明に従う高配向性金属複合塩の製造に必要な有機配位子の量がMgの1モルに対し約0.01モルと極めて少ないため、従来技術に比較し、原料費を大幅に低減できる。更に、有機物を回収する設備と工程を省略でき、更なるコスト低減ができる。
実施例1、実施例4及び比較例5の生成物のXRDパターン 実施例1及び実施例4のSEM写真
 本発明は、金属錯体を形成できる有機配位子を従来の技術である1価カルボン酸の代わりに用い、且つアルカリをMgに対し0.95当量以下、好ましくは0.9当量以下、特に好ましくは0.85当量以下~0.6当量以上で共沈反応させた後に、100℃以上、好ましくは120℃以上、特に好ましくは180℃以上で水熱処理する新規な合成方法を発見した。
 本発明は、以下の考えに基づき鋭意研究した結果得られた。Mgイオンと有機配位子が錯体を形成しやすい条件をつくることにより、従来の技術には無い新しい機能を2つ付加できる。1つは有機配位子がMgイオンと2か所以上で結合するため、1か所でしか結合できない1価有機酸を使用する従来の技術に比較して、少量で効果的に1次粒子の厚さ方向の成長抑制ができるはずである。2つ目は、Mgとの錯体は金属錯体の特徴である水溶性をある程度持つため、溶解度の向上が期待でき、その結果として1次粒子の成長が促進されるとともに、凝集が少なくなり分散性が向上する。
 本発明の式(1)で表される高配向性金属複合塩は、以下の特徴を有する。
(1)粉末X線回折パターンは水酸化マグネシウムと同じ六方晶系のCd(OH)型結晶構造を有する。Mg(OH)のOH基の一部が有機配位子で置換されているが、結晶構造はMg(OH)と同じである。
(2)(001)面に対する(101)面のX線回折強度比H(配向性)が少なくとも60%以下、好ましくは30%以下、特に好ましくは3%以下、である。
 配向性Hが高いほど、1次粒子のアスペクト比が高く、且つ凝集が少ないことを意味する。本発明と同じ固溶体の特許文献5の実施例を追試した結果、グリコール酸固溶体(実施例2)及び乳酸固溶体(実施例3)のHは、それぞれ143%、147%であり、本発明に従う高配向性金属複合塩との違いは歴然としている。
(3)1次粒子の平均横幅は、0.21μm以上、より好ましくは2μm以上、より好ましくは3μm~50μm、さらにより好ましくは3μm~20μm、或いは、より好ましくは4μm~50μm、さらにより好ましくは4μm~20μm、特に好ましくは4μm~10μm、である。
(4)1次粒子の平均厚さは1nm~100nmの範囲にあり、好ましくは5nm~100nm、より好ましくは5nm~70nm、なおより好ましくは5nm~60nm、特に好ましくは5nm~50nm、或いは、好ましくは10nm~100nm、より好ましくは10nm~70nm、なおより好ましくは10nm~60nm、特に好ましくは10nm~50nmである。
(5)1次粒子の厚さに対する横幅の比であるアスペクト比は20以上、好ましくは50以上、特に好ましくは100以上、である。
(6)平均2次粒子径は1次粒子径とほぼ同じか、少し大きく、従って、2次凝集が少ない。
(7)1次粒子が2μm以上になると、滑性(動的摩擦が小さい)と光沢性(パール色調)に優れる。
(8)吸熱分解ピーク温度が水酸化マグネシムとは異なり、最大で約20℃変化する。
 本発明に従う高配向性金属複合塩を構成する有機配位子は、好ましくはカルボキシル基又はスルホン基を1個有し、好ましくは2座配位で、且つOH基より少し大きいものが適している。好ましい有機配位子としては例えば、(1)グリコール酸、乳酸、グリセリン酸、ヒドロキシ酪酸、パントイン酸、キナ酸、サリチル酸、バニリン酸、シリング酸、オルセリン酸、ヒドロキシ安息香酸、バニリン酸、没食子酸、マンデル酸及びベンジル酸等、好ましくは、グリコール酸、乳酸、グリセリン酸、ヒドロキシ酪酸、ヒドロキシ安息香酸、バニリン酸、没食子酸、及びマンデル酸、のオキシカルボン酸類(ヒドロキシカルボン酸類でもある);(2)エチレンジアミン、ヘキサメチレンジアミン、ジエタノールアミン、トリエタノールアミン、プトレシン、カタベリン、エタンブトール、フェニレンジアミン、トルイジン、ピペラジン、イミダゾール、ピリダジン、ピリミジン、ピラジン、オキサゾール及びチアゾール等、好ましくは、エチレンジアミン、ヘキサメチレンジアミン、ジエタノールアミン、トリエタノールアミン、カタベリン、トルイジン、ピペラジン、イミダゾール、ピリダジン、ピリミジン、ピラジン、オキサゾール及びチアゾール、のアミン類;(3)グリシン、トリプトフアン、ヒスチジン、グルタミン酸、アスパラギン酸、プロリン、2-アミノベンゼンカルボン酸及び4-アミノベンゼンカルボン酸等のアミノカルボン酸類;(4)アミノエタンスルホン酸、2-アミノベンゼンスルホン酸及び4-アミノベンゼンスルホン酸等のスルホン酸類;(5)エチレングリコール、プロピレングリコール及びグリセリン等の多価アルコール類;並びに、(6)アントシアニン及びカテキン等のポリフエノール類を挙げることが出来る。
 特に好ましい有機配位子としては、上記式(1)及び(2)である。
 有機配位子の量xの範囲は、0≦x<0.2、好ましくは0≦x<0.1、特に好ましくは0.01≦x<0.06、にある。
 有機配位子の量yの範囲は、0<y<0.05、好ましくは0.0001<y<0.02、特に好ましくは0.001<y<0.015、にある。
 nは1~4の範囲の整数、好ましくは1、又はゼロを示す。
 本発明に従う高配向性金属複合塩は純粋な水酸化マグネシウム以外に、Mg(OH)のMgの1部を他の2価金属M2+、好ましくはCa2+,Mn2+,Fe2+,Co2+,Ni2+,Cu2+及びZn2+、特に好ましくはCa2+,Fe2+,Ni2+及びZn2+の少なくとも1種以上で置換した固溶体を含む。M2+の固溶範囲xは、0≦x<0.3、好ましくは0≦x≦0.2、特に好ましくは0≦x≦0.1である。Ca2+は塩基性を強化し、Ni2+及びZn2+は脱水素触媒作用で難燃性を向上し、Ni2+は耐酸性を向上する。更にMn2+,Fe2+,及びCo2+は、酸素吸収性と、樹脂の酸化分解作用があり、食品包装樹脂フィルムに配合して、酸素吸収材及び/又は生分解促進剤として利用できる。より更には、Fe2+は、鉄欠乏貧血治療剤として利用できる。
 本発明に従う高配向性金属複合塩は、上記以外に、ポリプロピレン等の樹脂の機械的強化剤、難燃剤、熱伝導性改良剤(放熱材)、ガスバリヤー材、抑煙剤、人造大理石用充填剤、化粧品用滑性粉末基材(タルクとかマイカの機能代替)、パール顔料(微粒子の酸化チタン、酸化鉄等により表面被覆)用基材及び鉄欠乏性貧血治療剤、の用途等に適している。
 本発明に従う高配向性金属複合塩は、400~1000℃で焼成することにより、厚さが薄くて、高配向性で分散性に優れるため、接着性と反応性に優れた酸化マグネシウム及び/又はMgの1部がM2+で置換された酸化マグネシウム固溶体を製造できる。したがって、その特徴を生かした電磁鋼板の焼鈍分離材、樹脂及びゴムの放熱材、ハロゲン含有ゴムの受酸剤、ゴムの加硫促進剤等への利用が可能である。
 <製造方法>
第1工程(共沈反応)
(A)水溶性マグネシウム塩と有機配位子との混合水溶液、又は水溶性マグネシウム塩と水溶性2価金属(M2+)塩及び有機配位子との混合溶液に、2価金属の合計当量に対し、少なくとも0.95当量以下、好ましくは0.9当量以下、特に好ましくは0.8当量以下~0.6当量以上のアルカリを加え共沈させる。
第2工程(水熱処理)
 第1工程で得られた共沈物を100℃以上、好ましくは120℃以上、特に好ましくは180℃~250℃、で1時間以上、好ましくは2~10時間、水熱処理する。水熱処理温度を変えることによって、1次粒子の横幅を0.21~40μmの範囲に調整できる。
 <表面処理>
 本発明に従う高配向性金属複合塩は、表面処理によって種々の機能を付加できる。例えば、樹脂との相溶性と耐酸性を高めるためには、(a)ステアリン酸、ラウリン酸等の高級脂肪酸類、(b)前記高級脂肪酸のアルカリ金属塩類、(c)ジアルキルスルホ琥珀酸ナトリウム、アルキルエーテルサルフエート、2-エチルヘキシルアルキル・硫酸エステル・ナトリウム塩、アシルメチルタウリン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、オレオイルザルコシン等のアニオン系界面活性剤類(d)オルトリン酸とステアリルアルコールとのモノ又はジエステルの酸型/又はアルカリ金属塩/又はアミン塩等のリン酸エステル類、(e)ビニルエトキシシラン、γ-アミノプロピルトリメトキシシラン等のシラン系カップリング剤類、(f)イソプロピルトリイソステアロイルチタネート等のチタネート系カップリング剤類、(g)アセトアルコキシアルミニウムジイソプロピレート等のアルミニウム系カップリング剤類、(h)ソルビタンモノステアレート等の多価アルコールの脂肪酸エステル類、(i)ポリアクリル酸ソーダ、ポリスチレンスルホン酸ソーダ等のポリカルボン酸、及び(j)ポリスルホン酸のアルカリ金属塩類等を使用できる。耐酸性を高めるためには、水ガラスの化学吸着及びそれに続く酸添加によるシリカコーテイング、メチルシリケート、エチルシリケート等の加水分解によるシリカコーテイング、シリコーンオイルによるシリコーン被覆等をおこなう。紫外線吸収及び/又は散乱を強化するために、酸化チタン、酸化亜鉛、酸化セリウム等の微粒子による被覆を利用できる。パール顔料を製造するには、耐酸性改善表面処理/又は処理していない高配向性金属複合塩を水等の溶媒に分散した状態で、酸化チタン、酸化鉄、酸化亜鉛等の金属酸化物微粒子添加により、均一に表面被覆する方法で製造できる。紙の難燃剤としての表面処理剤としては、例えばカルボキシメチルセルロース、アルギン酸ソーダ等を挙げることが出来る。
 表面処理方法は、湿式又は乾式で行うことが好ましい。湿式とは、水とかアルコール等の溶媒に金属複合塩を分散し、撹拌下に表面処理剤を添加する方法である。乾式とは、ヘンシエルミキサー等の高速撹拌機で撹拌下の粉末状の高配向性金属複合塩に、表面処理剤を添加する方法である。表面処理剤量は、目的によって適宜選択して決定されるが、一般にその好ましい範囲は高配向性金属複合塩の重量に対して0.5~20重量%である。
 <樹脂組成物>
 本発明に従う樹脂組成物は、樹脂100重量部に対し、高配向性金属複合塩を0.01~300重量部、好ましくは0.5~200重量部、特に好ましくは1~100重量部、配合する。最適な配合量は目的により異なる。例えば、樹脂の曲げ弾性率、曲げ強度、アイゾット強度等の機械的強化が目的の場合は、1~40重量部、ハロゲン含有ゴムの受散剤としては、1~20重量部、樹脂の難燃剤とかガスバリヤー剤としては、50~200重量部、ポリアミド等の樹脂の受酸剤としては0.01~5重量部である。
 <加工法>
 樹脂との混合、混錬方法には特別の制約は無く、両者が均一に混合できる方法であれば良い。例えば、1軸又は2軸押出機、オープンロール、バンバリーミキサー等により混合、混錬する。成型方法にも特別の制約は無く、樹脂及びゴムの種類、所望成型品の種類等に応じて、それ自体公知の成型手段を任意に採用きる。成型手段としては、例えば、射出成型、回転成型、カレンダー成型、シートフオーミング成形、トランスフアー成型、積層成形、真空成型等が挙げられる。
 <樹脂の種類>
 本発明で用いる樹脂とは、樹脂及び/また又はゴムを意味し、(A)例えばポリエチレン、エチレンと他のα―オレフィンとの共重合体、エチレンと酢酸ビニル、アクリル酸エチル又はアクリル酸メチルとの共重合体、ポリブテンー1、ポリ4-メチルペンテンー1,ポリスチレン、スチレンとアクニロニトリル、エチレンとプロピレンジエンゴム又はブタジエンとの共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ABS,ポリカーボネート、ポリフエニレンサルフアイド等の熱可塑性樹脂類、(B)フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂等の熱硬化性樹脂類、(C)EPDM、SBR、NBR、ブチルゴム、クロロプレンゴム、イソブレンゴム、クロロスルホン化ポリエチレンゴム、シリコンゴム、フッ素ゴム、塩素化ブチルゴム、エピクロルヒドリンゴム、塩素化ポリエチレンゴム等のゴム類が挙げられる。
 好ましい樹脂の例としては、ポリプロピレン、ポリプロピレンとオレフィン系ゴムとの混合物、ポリエチレン、ポリアミド、EPDM、ブチルゴム、及びクロロプレンゴムである。
 本発明に従う樹脂組成物は、高配向性金属複合塩以外にタルク、マイカ、ガラス繊維、塩基性硫酸マグネシウム繊維等の従来公知の強化剤を併用しても良い。これら強化剤の配合量は樹脂100重量部に対し1~50重量部、好ましくは1~20重量部、である。
 強化剤以外に慣用の他の添加剤、例えば酸化防止剤、紫外線吸収剤、滑剤、カーボンブラック等の顔料、臭素系もしくはリン酸エステル系の難燃剤、スズ酸亜鉛、スズ酸アルカリ金属塩、炭素粉末等の難燃助剤、炭酸カルシウム、ゼオライト、カオリン等の充填剤を適宜選択して配合することが出来る。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 実施例中、高配向性金属複合塩の(A)XRD測定の前処理、(B)1次粒子径、及び(C)平均2次粒子径は、以下に記載する方法で行った。
(A)XRD測定
 乾燥物を30メッシュで篩過した後、更に60メッシュで篩過した粉末を使用する。
(B)1次粒子径
 上記60メッシュで篩過した粉末を、水に超音波で5分間分散処理後、走査型電子顕微鏡(SEM)で1次粒子の最大横幅と厚さを、5個測定し、その算術平均値で表す。
(C)平均2次粒子径
 (B)と同様にして分散処理した試料をレーザー回折法粒度分布測定器(堀場製LA960で測定し、50%累積2次粒子径を平均2次粒子径とする。
 有機配位子の分析は、吸光光度法に従って測定した。
 i)有機配位子が乳酸、グリコール酸、トリエタノールアミン及びp-トルイジン-2-スルホン酸である場合、下記の文献に記載の方法に従って測定した:L.N.Borshchevskaya etc.,J.Analytical Chemistry,71,No.8,755-758(2016)。
 ii)有機配位子がエチレンジアミンである場合、下記の文献に記載の方法に従って測定した:Goro Hihara etc.,Bull.Chem.Soc.Jpn,54,268-271(1981)。
 TG-DTA測定は株式会社リガクのTG-8120を使用し、雰囲気:空気、昇温速度:20℃/分の条件で行った。
 2.0モル/Lの塩化マグネシウム(試薬1級)水溶液400mLにMgに対し1モル%の有機配位子に相当する、乳酸ナトリム(試薬、70%溶液)1gを添加溶解した混合水溶液(約20℃)を容量1Lの容器に入れ、撹拌下に4モル/Lの水酸化ナトリウム水溶液(約20℃)をMgに対し0.8当量に相当する320mL添加し共沈させた。この共沈物を容量1Lのオートクレーブに移し、200℃で4時間水熱処理した。水熱処理物を濾過、水洗、乾燥、篩過(30メッシュ篩過後60mメッシュで再篩過)した。篩過した試料のXRD(粉末X線回折法)(図1)を測定し、(001)面に対する(101)面の回折強度比H(%)を測定した。
 篩過した試料を水媒体中で5分間超音波処理後に、SEMを測定し(図2)、1次粒子の横幅の最大径と厚さを5個の1次粒子で測定し、それらの平均値として求めた。また、乳酸とMgの含有量は、試料を塩酸に溶解後、吸光光度法(10~200ppmの乳酸を含有する試料溶液に、同量の、0.2%の塩化第2鉄水溶液を加えpHを=約3.1に調整して、で黄色に発色させ、波長=390nmの強度を測定し、対照は0.2%塩化第2鉄水溶液を同量の水で希釈したものを使用)とキレート滴定法でそれぞれ測定した。以上の測定結果を下記の表1に示す。XRDパターンは水酸化マグネシウムのそれと同じであり、この試料は水酸化マグネシウムと同じCd(OH)型結晶構造である。(001)面の面間隔d=4.67Åが水酸化マグネシウムのd=4.77Å(POWDER DIFFRACTION FILE 7-239)より短くなっているので、乳酸イオンがOH基の一部を置換固溶していることを支持している。
 篩過試料の配向性Hが1%であり、上記FILEの配向性を計算すると111%であり、本発明品の配向性が極めて高いことが判る。
 平均1次粒子径が6.1μmであるのに対し、平均2次粒子径が6.2μmであったことから、2次凝集が殆ど無いことを示している。
 TG-DTAデータから、吸熱分解ピーク温度は419℃である。
 実施例1において、乳酸ナトリウム水溶液のMgに対する添加量を2.5モル%に変更する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 実施例1において、乳酸ナトリウム水溶液のMgに対する添加量を0.5モル%に変更する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 [比較例1]
 実施例1において、乳酸ナトリウム水溶液のMgに対する添加量を10モル%に変更する以外は実施例1と同様にして行った。その測定結果を下記の表1に示す。
 [比較例2]
 実施例1において、4モル/Lの水酸化ナトリウム水溶液の添加量をMgに対し、1.0当量に相当する400mLに変更する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 [比較例3]
 実施例1において、乳酸ナトリウムの添加を省略する以外は実施例1と同様にして行った。その測定結果を下記の表1に示す。
 TG-DTAデータから、吸熱分解ピーク温度は411℃である。
 [比較例4]
 実施例1において、有機配位子である乳酸ナトリウムの代わりに、高アスペクト比水酸化マグネシウムの従来の製造方法(特許文献3、実施例1)に従い、酢酸ソーダをMgに対し150モル%添加する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 実施例1において、水熱処理温度を200℃から120℃に変更する以外は実施例1と同様にして行った。その測定結果を下記の表1に示す。また、XRDを図1に、SEM写真を図2にそれぞれ示す。
 XRDパターンは水酸化マグネシウムと同じである。
 [比較例5]
 実施例4において、水酸化ナトリウムの添加量をMgに対し、1.0当量に相当する400mLに変更する以外は実施例4と同様にして行った(特許文献4、実施例3に相当)。その測定結果を下記の表1に示す。
 XRDを図1に示す。
 実施例1において、乳酸ナトリウムの代わりに、試薬のエチレンジアミンをMgに対し0.5モル%使用する以外は、実施例1と同様にして行った。エチレンジアミンの含有量は、試料を塩酸で溶解後、吸光光度法で行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 TG-DTAデータから、吸熱分解ピーク温度は406℃である。
 実施例1において、乳酸ナトリウムの代わりに試薬のグリコール酸をMgに対し、1.5モル%添加する以外は、実施例1と同様にして行った。グリコール酸の含有量は、実施例1と同じ吸光光度法で行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 TG-DTAデータから、吸熱分解ピーク温度は428℃である。
 実施例1において、乳酸ナトリウムの代わりに試薬のグリシンをMgに対し、1モル%添加する以外は、実施例1と同様にして行った。グリシン含有量は、試料を塩酸に溶解後、吸光光度法で行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 実施例1において、乳酸ナトリウムの代わりに試薬のトリエタノールアミンをMgに対し4モル%添加する以外は実施例1と同様にして行った。その測定結果を下記の表1に示す。但し、トリエタノールアミンの含有量は、実施例5と同じ吸光光度法で行った。
 XRDパターンは水酸化マグネシウムと同じである。
 TG-DTAデータから、吸熱分解ピーク温度は416℃である。
 実施例1において、塩化マグネシウム水溶液に、試薬の塩化亜鉛をMgに対し2モル%混合し、水熱処理温度を250℃に変更する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 実施例1において、塩化マグネシウム水溶液に、試薬の塩化ニッケルをMgに対し2モル%混合し、乳酸ナトリムの代わりにグリコール酸をMgに対し2モル%添加する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 実施例1において、試薬1級の塩化マグネシウムの代わりに、工業用(ナイカイ塩業製、特号)を用い、水熱処理温度を250℃に変更する以外は実施例1と同様に行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 実施例11において、乳酸ナトリウムの代わりに、試薬のp-トルイジン-2-スルホン酸を使用する以外は実施例11と同様に行った。p-トルイジン-2-スルホン酸の分析は、HPLC法で行った。その測定結果を下記の表1に示す。
 XRDパターンは水酸化マグネシウムと同じである。
 TG-DTAデータから、吸熱分解ピーク温度は405℃である。
 実施例1において、塩化マグネシウム1モルに対し0.05モルの工業用塩化第一鉄溶液(タイキ薬品工業製、濃度32重量%)を添加し、且つ乳酸ナトリウムの代わりに乳酸(試薬1級、90%溶液)を使用する以外は、実施例1と同様にして行った。その測定結果を下記の表1に示す。
 得られた生成物は白色であった。XRDパターンは水酸化マグネシウムと同じである。2価の鉄が固溶していることが分かる。この固溶体の組成は、試料を塩酸に溶解後、キレート滴定法で測定した結果、Mg0.95Fe2+ 0.05(OH)2である。
 得られた生成物は2価の鉄が酸素で酸化されて安定な3価の鉄に変化することを利用して、食品包装用樹脂フィルムに添加して、酸素吸収剤に利用できる。更に、この固溶体は胃酸に容易に溶解し、吸収されやすい2価の鉄を供給できることから、人間の鉄欠乏貧血治療剤に利用出来る。既存の鉄剤は金属の味がして、拒否反応を起こし易く、鉄剤に必要な1か月以上の継続使用が難しい人が結構ある。この固溶体は、水酸化マグネシムとほぼ同じく、金属の味が無く、飲みやすいことから長期継続服用が出来るメリットもある。
1) Mg1モルに対する添加有機物のモル%
2) Mg1モルに対する添加有機配位子のモル%
3) (001)面のX線回折強度に対する(101)面のX線回折強度の比率(%)
<樹脂組成物>
 実施例1の方法で作製した高配向性金属複合塩の粉末500gを5Lの水に加え、ケミスターラーで分散させた後、80℃に加温し、撹拌下にステアリン酸ソーダ10gを添加し、表面処理した。この後、濾過、水洗、乾燥し、ポリプロピレン100重量部に対し、12重量部(全体の約20重量%に相当)を酸化防止剤(IRGANOX1010)0.2重量部とともに混合した。この混合物を2軸の押出機を使用して約190℃で混錬しペレットを作成した。このペレットを真空乾燥後、射出成型機により約230℃で射出成型し、試験片を作成した。この試験片を用い、曲げ弾性率(JIS7171に従って測定)及びアイゾット衝撃強度(JIS7110に従って測定)を、ペレットを使用しメルトフローインデクッス(MFR)(JIS7210に従って測定)をそれぞれ測定した。それらの結果を下記の表2に示す。
 [比較例6]
 実施例11において、実施例1の方法で作製した高配向性金属複合塩の代わりに、比較例4の方法(特許文献3)で作製した高アスペクト比水酸化マグネシウムを使用する以外は、実施例11と同様にして行った。評価結果を下記の表2に示す。
 [比較例7]
 実施例11において、自動車用樹脂強化剤として良く使われているタルク(1次粒子径が5μm、厚さが0.2μm、アスペクト比が20)を、実施例11の高配向性金属複合塩の代わりに使用する以外は、実施例11と同様にして行った。対照例において、強化剤を使用しない以外は、実施例11と同様にして行った。評価結果を下記の表2に示す。
<延び(滑性)に優れた化粧料>
 実施例11で得られた本発明の高配向性金属複合塩の60メシュ篩過粉末を用い、化粧料としての延び性能に対応する、静摩擦係数と動摩擦係数を測定した。その結果を下記の表3に示す。本発明品の粉末は、既存の滑性化粧料と同等以上の延び(滑性)を示すことが判る。この粉末製造における水熱処理後の濾過ケーキはパール色調の高い光沢を示す。
 [比較例8-1及び8-2]
 化粧料用滑性粉体として代表的な市販のマイカ(SERICITE JS-1)(比較例8-1)とタルク(JA-467タルク)(比較例8-2)をそれぞれ用いて、静的摩擦係数と動的摩擦係数とを測定した。その結果を下記の表3に示す。
 静的摩擦係数及び動的摩擦係数は、下記の装置及び条件を用いて測定した。
 装置:株式会社トリニテイラボ製 静動摩擦測定器 TL201Tt
 試験片:試験粉末(60メシュ篩過)を5cmx10cmのシート上に、0.5mg/m塗布
 荷重:25g
 試料移動速度:1mm/秒
 測定距離範囲:20mm
 化粧品の延び(滑り性)は、動的摩擦係数が小さいほど良いことが判っているので、実施例15(本発明品)が比較例8-1及び8-2(既存の商品)よりも、延びが同等か又は良いことが判る。

Claims (14)

  1.  下記式(1):
    (Mg)1-x(M2+(OH)2-nyy       (1)
    (但し、式中、M2+はMg以外の2価金属の少なくとも1種以上を示し、Aは有機配位子の少なくとも1種以上を示し、x及びyはそれぞれ次の範囲、0≦x<0.2、好ましくは0≦x<0.1、特に好ましくは0.01≦x<0.06、及び0<y<0.05、好ましくは0.0001<y<0.02、特に好ましくは0.001<y<0.015、にあり、nは1~4の範囲の整数、好ましくは1、又はゼロを示す)
    で表され、且つ(001)面に対する(101)面のX線回折強度比(配向性H)が60%以下である、六方晶系のCd(OH)型結晶構造を有する高配向性金属複合塩。
  2.  nが1~4の範囲の整数を示し、
     X線回折強度比(配向性H)が60%以下である、請求項1に記載の高配向性金属複合塩。
  3.  nが1~4の範囲の整数を示し、
     X線回折強度比(配向性H)が30%以下、より好ましくは3%以下、特に好ましくは1%以下、である、請求項1に記載の高配向性金属複合塩。
  4.  nが1~4の範囲の整数を示し、
     X線回折強度比(配向性H)が60%以下(但し、30%以下を除く)である、請求項1に記載の高配向性金属複合塩。
  5.  nがゼロを示す、請求項1に記載の高配向性金属複合塩。
  6.  前記高配向性金属複合塩の1次粒子の平均横幅が0.4μm以上50μm以下である、請求項1~5のいずれか1項に記載の高配向性金属複合塩。
  7.  配向性Hが6%以下で、且つ前記高配向性金属複合塩の1次粒子の平均横幅が2μm以上50μm以下である、請求項1~6のいずれか1項に記載の高配向性金属複合塩。
  8.  式(1)において、有機配位子Aが、オキシカルボン酸類、アミン類、アミノ酸類、多価アルコール類、及びポリフエノール類から選ばれた少なくとも1種以上である、請求項1~7のいずれか1項に記載の高配向性金属複合塩。
  9.  式(1)において、M2+がCa2+,Mn2+,Fe2+,Co2+,Ni2+,Cu2+及びZn2+から選ばれた少なくとも1種以上である、請求項1~8のいずれか1項に記載の高配向性金属複合塩。
  10.  式(1)において、xの範囲が0.001<x<0.02である、請求項1~9のいずれか1項記載の高配向性金属複合塩。
  11.  高級脂肪酸類、アルカリ金属塩類、アニオン系界面活性剤、リン酸エステル類、シラン系カップリング剤、チタン系カップリング剤及びアルミニウム系カップリング剤、脂肪酸エステル類、ポリカルボン酸、アルカリ金属塩類、水ガラス、メチルシリケート、エチルシリケート、シリコーンオイル、酸化チタン、酸化亜鉛及び酸化セリウム、金属酸化物微粒子、並びに、カルボキシメチルセルロース及びアルギン酸ソーダから選ばれた少なくとも1種以上で表面処理された、請求項1~10のいずれか1項記載の高配向性金属複合塩。
  12.  樹脂100重量部に対し、請求項1~11のいずれか1項記載の高配向性金属複合塩を0.01~300重量部含有する樹脂組成物。
  13.  (A)Mgを少なくとも含む2価金属の水溶性塩の水溶液に、(B)Mgを少なくとも含む2価金属の合計モル数に対し、10モル%未満の有機配位子を添加し、(C)Mgを含む2価金属の合計当量に対し少なくとも0.95当量以下のアルカリと共沈反応させた後、100℃以上で水熱処理することを特徴とする、請求項1~12のいずれか1項に記載の高配向性金属複合塩の製造方法。
  14.  Mg以外の2価金属が、Ca2+、Mn2+,Fe2+,Co2+,Ni2+,Cu2+及びZn2+から選ばれた少なくとも1種以上である、請求項13に記載の製造方法。
PCT/JP2022/033897 2022-09-09 2022-09-09 高配向性金属複合塩 WO2024053091A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033897 WO2024053091A1 (ja) 2022-09-09 2022-09-09 高配向性金属複合塩

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033897 WO2024053091A1 (ja) 2022-09-09 2022-09-09 高配向性金属複合塩

Publications (1)

Publication Number Publication Date
WO2024053091A1 true WO2024053091A1 (ja) 2024-03-14

Family

ID=90192177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033897 WO2024053091A1 (ja) 2022-09-09 2022-09-09 高配向性金属複合塩

Country Status (1)

Country Link
WO (1) WO2024053091A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108937A1 (ja) * 2012-01-20 2013-07-25 協和化学工業株式会社 熱伝導改良剤
WO2013151188A1 (ja) * 2012-04-05 2013-10-10 協和化学工業株式会社 樹脂組成物
WO2013154200A1 (ja) * 2012-04-10 2013-10-17 協和化学工業株式会社 複合難燃剤、樹脂組成物および成形品
WO2014003201A1 (ja) * 2012-06-29 2014-01-03 協和化学工業株式会社 遮熱材
JP2020152626A (ja) * 2019-03-20 2020-09-24 株式会社海水化学研究所 高アスペクト比複合金属水酸化物及びその製造方法
JP2022141558A (ja) * 2021-03-15 2022-09-29 株式会社海水化学研究所 高配向性金属複合塩

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108937A1 (ja) * 2012-01-20 2013-07-25 協和化学工業株式会社 熱伝導改良剤
WO2013151188A1 (ja) * 2012-04-05 2013-10-10 協和化学工業株式会社 樹脂組成物
WO2013154200A1 (ja) * 2012-04-10 2013-10-17 協和化学工業株式会社 複合難燃剤、樹脂組成物および成形品
WO2014003201A1 (ja) * 2012-06-29 2014-01-03 協和化学工業株式会社 遮熱材
JP2020152626A (ja) * 2019-03-20 2020-09-24 株式会社海水化学研究所 高アスペクト比複合金属水酸化物及びその製造方法
JP2022141558A (ja) * 2021-03-15 2022-09-29 株式会社海水化学研究所 高配向性金属複合塩

Similar Documents

Publication Publication Date Title
EP3210940B1 (en) Process for the preparation of high-aspect-ratio magnesium hydroxide
AU2006234598B2 (en) Alunite compound particle, process for producing the same and use thereof
KR100200082B1 (ko) 합성금속 수산화물 및 이를 함유하는 물
AU7936798A (en) Synthetic resin composition having resistance to thermal deterioration and molded articles
JP4288452B2 (ja) Mg−Al系ハイドロタルサイト型粒子粉末の製造法及び塩素含有樹脂安定剤並びに塩素含有樹脂組成物
JPWO2013147285A1 (ja) ハイドロタルサイト粒子の製造方法
KR100202750B1 (ko) 복합금속수산화물의 제조 방법 및 그에 의해 얻어진 복합금속수 산화물과 그를 사용한 난연성고분자 조성물
WO2013108937A1 (ja) 熱伝導改良剤
EP3187483B1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
EP1088853B1 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin stabilizer and process for producing the particles
JP7148772B2 (ja) 高配向性金属複合塩
JP2001164042A (ja) Mg−Al系ハイドロタルサイト型粒子粉末、塩素含有樹脂安定剤及びMg−Al系ハイドロタルサイト型粒子粉末の製造法
WO2024053091A1 (ja) 高配向性金属複合塩
JP3107926B2 (ja) 難燃剤および難燃性樹脂組成物
JP2826973B2 (ja) 複合金属水酸化物
JP6598271B2 (ja) 高アスペクト比板状ハイドロタルサイト、その製造方法及びその樹脂組成物
JP2000290451A (ja) Mg−Al系ハイドロタルサイト型粒子粉末、塩素含有樹脂安定剤及びMg−Al系ハイドロタルサイト型粒子粉末の製造法
KR20100024280A (ko) 하이드로탈사이트 합성방법 및 이에 따른 하이드로탈사이트를 이용한 안정제
JP2002053722A (ja) 塩素含有樹脂組成物
JP2020152626A (ja) 高アスペクト比複合金属水酸化物及びその製造方法
JP4106508B2 (ja) 塩素含有樹脂組成物
JP5224031B2 (ja) Mg−Al系ハイドロタルサイト型粒子粉末、塩素含有樹脂安定剤
JP2005089598A (ja) 安定化された含ハロゲン樹脂組成物
JPH07144919A (ja) 水酸化マグネシウム系固溶体、その製造法および使用
NL1025641C1 (nl) Anorganische additieven voor Polymeren.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958169

Country of ref document: EP

Kind code of ref document: A1