JP2020152626A - 高アスペクト比複合金属水酸化物及びその製造方法 - Google Patents

高アスペクト比複合金属水酸化物及びその製造方法 Download PDF

Info

Publication number
JP2020152626A
JP2020152626A JP2019073813A JP2019073813A JP2020152626A JP 2020152626 A JP2020152626 A JP 2020152626A JP 2019073813 A JP2019073813 A JP 2019073813A JP 2019073813 A JP2019073813 A JP 2019073813A JP 2020152626 A JP2020152626 A JP 2020152626A
Authority
JP
Japan
Prior art keywords
aspect ratio
acid
composite metal
metal hydroxide
high aspect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019073813A
Other languages
English (en)
Inventor
茂男 宮田
Shigeo Miyata
茂男 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Original Assignee
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAISUI KAGAKU KENKYUSHO KK, Sea Water Chemical Institute Inc filed Critical KAISUI KAGAKU KENKYUSHO KK
Priority to JP2019073813A priority Critical patent/JP2020152626A/ja
Publication of JP2020152626A publication Critical patent/JP2020152626A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】水酸化マグネシウム系高アスペクト比複合金属水酸化物の従来の製造方法は、共沈反応、濾過洗浄、乾燥、焼成、粉砕、水和反応、濾過洗浄、乾燥と工程が長く、生産コストが高くなる欠点がある。また、1次粒子の横幅が1μm未満の微細な結晶を製造が難しい。【解決手段】水溶性マグネシウム塩の水溶液と、複合させる金属の金属錯体水溶液を、アルカリ水溶液とともに共沈反応後、モノカルボン酸イオンの共存下に80〜300℃で加熱熟成、濾過洗浄、乾燥する。

Description

本発明は、高アスペクト比(1次粒子の厚さに対する横幅の比)複合金属水酸化物及び製造方法に関する。
複合金属水酸化物とは、本発明者が発明した、水酸化マグネシウムにMn,Fe,Co,Ni,Cu及びZnの少なくとも一種以上が固溶した下記式(1)
Figure 2020152626
(式中、M2+はMn,Fe,Co,Ni、CuおよびZnから選ばれた2価金属イオンの少なくとも一種以上を示し、xは0.001<x<0.5の範囲を示す)で表される固溶体である。(特許文献1及び2)
上記複合金属水酸化物をアスペクト比が10以上に高アスペクト比化することにより、樹脂の補強材、化粧品基材、紫外線吸収剤、パール顔料基材、難燃剤等として新規な機能を発揮することが本発明者等によって見出されている。(特許文献3)
上記高アスペクト比複合金属水酸化物の製造方法は、最初にMg2+塩とM2+塩の混合水溶液に、NaOH,Ca(OH)等のアルカリを加え共沈させて、複合金属水酸化物を得る。次いで、この複合金属水酸化物を水洗、乾燥後、約1000℃〜2000℃、好ましくは約1100℃〜1500℃で焼成して、平均1次粒子径(結晶子径)が1μm〜10μmの範囲にある下記式(2)
Figure 2020152626
(式中、M2+はMn2+,Fe2+,Co2+,Ni2+,Cu2+及びZn2+から選ばれた少なくとも一種の二価金属イオンを示し、xは0.01<x<0.5、好ましくは0.01<x<0.3の範囲の数を示す]で表される金属酸化物固溶体が得られる。
この金属酸化物固溶体を2次粒子径が10μm以下になるように粉砕後、水媒体中、攪拌下、モノカルボン酸および/またはオキシカルボン酸、より好ましくはオキシカルボン酸の共存下に、好ましくは100℃以下で水和反応させることにより、1次粒子の平均厚さが約0.01〜0.5μmの範囲で、平均直径(横幅)が約1〜10μmで、式1のxの範囲が0.01<x<0.5である高アスペクト比の複合金属水酸化物が得られる。
上記製造方法で用いるモノカルボン酸および/またはオキシカルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、アクリル酸、クロトン酸、グリコール酸、乳酸、ヒドロアクリル酸、α―オキシ酪酸、グリセリン酸、サリチル酸、安息香酸、没食子酸が例示されている。(第007段)
特開平5−209084 特開平6−41441 特開平8−259235
高アスペクト比複合金属水酸化物の従来の製造方法には、主として下記2つの問題がある。
▲1▼工程が長く、コストが高い。
共沈→固液分離→水洗→乾燥→粉砕→焼成→粉砕→水和反応→固液分離→水洗→乾燥→粉砕と約12の工程を必要とする。
従って生産性が悪く、コストが高くなる問題がある。
▲2▼微細な1次粒子(結晶)の製造が困難。
共沈物を焼成する工程で、焼成温度が高くなるほど複合金属水酸化物より大きな複合酸化物(酸化マグネシウムと同じ結晶構造)が生成する傾向がある。しかも、酸化マグネシウムは対称性が立方晶体であるため、等法的に結晶が成長する傾向がある。 そのため、複合金属水酸化物の1次粒子の厚さ方向の成長が横幅方向より早くなり、その結果複合金属酸化物の1次粒子の厚さが焼成前の複合水酸化物の厚さより大きくなる。したがって、この後の水和反応でできる複合金属水酸化物は、1次粒子の厚さが焼成前の複合水酸化物より厚くなり、アスペクト比が小さくなる傾向にある。
本発明は、第一工程:(A)マグネシウムの水溶性塩と、(B)二価金属(M2+)の水溶性塩または金属錯体と、(C)水酸化ナトリウム等のアルカリ水溶液を、(D)モノカルボン酸イオンの存在下/または非存在下に40℃以下で共沈反応させ、
第二工程:共沈物をモノカルボン酸イオンと(E)塩化ナトリウム等の金属塩化物の共存下、60℃〜300℃で加熱熟成する、簡略化された高アスペクト比複合金属水酸化物の製造方法を提供する。
発明の詳細な説明
本発明は、水酸化マグネシウムと同じ六方晶系に属し、結晶外形が六角板状に近い複合金属水酸化物を高アスペクト比にするためには、結晶の横幅方向(a軸方向)の成長に比べ、厚さ方向(c軸方向)の成長を抑制すれば可能であるとの発想に基づく。その具体的な方法として、プラスに荷電しているa軸に平行な結晶面にOHと競争的にモノカルボ酸イオンを化学吸着させることにより結晶の厚さを薄くできる。この化学吸着が2価金属イオンとOHとの結合を阻害する。その結果1次粒子の厚さ方向の成長は抑制され小さくなるが、横幅方向はモノカルボン酸イオンの影響がないので、本来の成長が可能となる。その結果アスペクト比は大きくなる。そして、結晶成長が大きくなるほどアスペクト比も拡大すると考えられるため、加熱処理が必要である。
加熱熟成時に存在させるモノカルボン酸イオン以外のイオン、例えばジカルボン酸イオン、トリカルボン酸イオン等の多価カルボン酸イオン類、モノ及び多価スルホン酸(SO3−)類、硫酸イオン、ケイ酸イオン等の多価無機イオン類は、1次粒子の厚さ方向だけでなく横幅方向の成長も阻害し、且つ凝集を促進する。したがって、アスペクト比が高くならない傾向があるので好ましくない。
本発明の高アスペクト比複合金属水酸化物の製造方法は、以下の通りである。
1.第一工程(共沈反応)
(A)Mg塩の水溶液と(B)2価金属M2+(Mn2+,Fe2+,Co2+,Ni2+,Cu2+およびZn2+から選ばれた少なくとも一種以上の二価金属イオンを示し)塩の水溶液、または2価金属M2+の金属錯体の水溶液と(C)水酸化ナトリウム等のアルカリを用い、(D)モノカルボン酸イオンの存在下/または非存在下に、反応温度40℃以下で共沈させる。反応pHは8以上である。Mgと2価金属の水溶性塩としては、例えば塩化物、臭化物、硝酸塩、酢酸塩等の無機酸及び有機酸との水溶性塩類を、好ましくは塩化物を挙げることができる。
2価金属M2+の錯体の配位子としては、例えば、グリコール酸、乳酸、グリセリン酸、ヒドロキシ酪酸、パントイン酸、キナ酸等の脂肪族ヒドロキシル酸類、サリチル酸、バニリン酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸等の芳香族ヒドロキシル酸類、グリシン、エチレンジアミン、ジエチレンテトラミン、プロリン、アラニン等のアミノカルボン酸類、アンモニア、エチレンジアミン、トリエタノールアミン等のアミン類等が挙げられる。錯体の製造は、前記配位子をM2+イオンの約2倍モル以上含有する水溶液に、M2+の水溶性塩の水溶液を撹拌下に添加することにより行うことができる。
Mg(OH)と比較して、Mg(OH)にM2+が固溶した複合金属水酸化物は、共沈反応物も、その加熱熟成物も1次粒子の成長が悪く、アスペクト比も劣る。1μm以上の大きな1次粒子が得難く、且つ10以上のアスペクト比もできにくい。その原因を研究した結果、M2+が塩基性塩を生成しやすいのが重要な理由の1つであることを発見した。この問題を解決したのが、本発明のM2+を錯体にしてからアルカリを加える方法である。そうすることにより、M2+の塩基性塩の生成を防いで、水酸化物だけを生成させることができる。その結果、Mg(OH)に容易に固溶することができ、1次粒子(結晶)の発達が改善される。
2.第二工程(モノカルボン酸イオン共存下の加熱熟成)
共沈反応物に、(C)モノカルボン酸イオンと(E)金属塩化物を、50℃〜300℃、好ましくは60℃〜250℃、特に好ましくは100℃〜220℃で、1時間以上、好ましくは4時間〜20時間熟成する。熟成は、オートクレーブを使用するのが好ましい。モノカルボン酸イオンとしては、モノカルボン酸のアルカリ金属塩および/またはアンモニウム塩の使用が好ましい。モノカルボン酸イオンは、第一工程の共沈反応時に酸および/または塩の形で添加することもできる。
モノカルボン酸としては、例えば酢酸、プロピオン酸、ブタン酸(酪酸)、ペンタン酸(吉草酸)ヘキサン酸(カプロン酸)、ヘプタン酸(エナント酸)、オクタン酸(カプリル酸)、2−エチルヘキサン酸(オクチル酸)及び、乳酸、安息香酸、α―オキシ酪酸等のオキシカルボン酸である。この中で、好ましいのは、酢酸、プロピオン酸、ブタン酸、オクチル酸、および安息香酸である。モノカルボン酸イオンの使用量は、好ましくは、複合金属水酸化物1モルに対し、0.01〜1.0モル、特に好ましくは0.1〜0.6モルである。
加熱熟成時に、モノカルボン酸とは別に、金属塩化物を添加する。金属塩化物とは塩化ナトリム、塩化カリウム,塩化アンモニウム、塩化マグネシウム、塩化カルシウムから選ばれた少なくとも一種以上、特に好ましくは塩化カルシウムおよび塩化アンモニウムである。これら金属塩化物は、その添加量が多いほど複合金属水酸化物の1次粒子の成長に寄与する。したがって、より高いアスペクト比にも貢献する。その理由は水への複合水酸化物の溶解度を高くするためと推定される。
加熱熟成で得られた高アスペクト比複合金属水酸化物は、この後、濾過、水洗、表面処理、乾燥、粉砕、分級、包装等の慣用の手段を適宜選択して用い製品とすることができる。
本発明の製造方法で得られる高アスペクト比の複合金属水酸化物の1次粒子の厚さは、0.001〜0.5μm、好ましくは0.005〜0.2μm、さらに好ましくは0.01〜0.15μmの範囲である。結晶の平均横幅は0.1〜10μm、好ましくは0.2〜10μm、特に好ましくは0.5〜10μmの範囲である。アスペクト比(結晶の厚さに対する横幅の比)は、10以上、好ましくは20以上、特に好ましくは30以上である。
高アスペクト比複合金属水酸化物は、その優れた光沢を嫌う用途に対して、つや消し効果を出すために、シリカ、酸化亜鉛、酸化チタン等の水酸化マグネシウムより屈折率の高い物質で、且つ光散乱性を増す2次粒子径が0.02〜0.6μmのもので、表面の一部または全部を被覆すると良い。この後さらにアニオン系界面活性剤、カチオン系界面活性剤、シランカップリング剤等の、従来公知の種々の表面処理剤を適宜選択しで表面処理することにより、樹脂に対する親和性、耐酸性等の機能を付与できる。
(表面処理)
表面処理によって、高アスペクト比複合水酸化物に種々の機能を付加できる。例えば、樹脂との相溶性と耐酸性を高めるためには、ステアリン酸とかステアリン酸ソーダ等の高級脂肪酸またはそのアルカリ金属塩等のアニオン系界面活性剤、ステアリルアシッドフオスフェート等のリン酸エステル類、ポリアクリル酸ナトリウムおよび/またはポリメタクリル酸、ポリイタコン酸等のポリカルボン酸類、ポリスチレンスルホン酸ナトリウム等のポリスルホン酸類、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤等のカップリング剤類、ソルビタンモノステアレート等の多価アルコールの脂肪酸エステル類等を使用できる。耐酸性を特に高めるためには、水ガラスの化学吸着及びそれに続く酸添加によるシリカコーティング、メチルシリケート、エチルシリケートの加水分解によるシリカコーティング、シリコーンオイルとかポリフルオロアルキルリン酸エステル等による表面処理をする。更に好ましくは、前記シリカコーティングおよび/またはポリカルボン酸類および/またはポリスルホン酸類によるコーティング後に、ポリジアリルアミン塩酸塩、ポリメチルジアリルアミン、ポリクオタニウムー11、4級化ポリ(ビニルピリジン)、ポリリジン等のポリカチオン類でコーティングする。紫外線吸収および/または散乱を強化するために、酸化チタン、酸化亜鉛等の微粒子による被覆を使用できる。パール顔料を製造するには、高アスペクト比複合水酸化物を水に分散した状態で、酸化チタン、酸化鉄等の金属酸化物微粒子添加により、均一表面被覆する方法等で製造できる。
表面処理方法は、従来公地の湿式法、乾式法を適宜選択して使用できる。湿式法では、例えば、水に撹拌機でよく分散させた高アスペクト比複合金属水酸化物に、高級脂肪酸ナトリウム塩の水溶液を、撹拌下に約70℃以上で添加する。乾式法では、例えばヘンシエルミキサーに高アスペクト比複合金属水酸化物粉末を入れ、高速撹拌下に、シランカップリング剤のアルコール希釈溶液を添加する。
表面処理剤の高アスペクト比複合金属水酸化物に対する添加量は、目的により適宜選択して決定されるが、一般にその好ましい範囲は0.1〜10重量%である。
(樹脂組成物)
本発明の樹脂組成物は、樹脂100重量部に対し、高アスペクト比複合金属水酸化物を0.01〜200重量部、好ましは0.5〜150重量部、特に好ましくは1〜120重量部配合する。最適な配合量は、目的によって異なる。例えば、樹脂の曲げ弾性率、曲げ強度、アイゾット衝撃強度等の強化が目的の場合は、1〜40重量部。ゴムの受酸剤としては、1〜10重量部。樹脂の難燃剤とかガスバリヤー剤としては50〜200重量部、樹脂の受散剤としては、0.01〜5重量部である。
樹脂との混合、混錬方法には特別の制約は無く、両者は均一に混合できる方法であれば良い。例えば、1軸または2軸押出機、オープンロール、バンバリーミキサー等により混合、混錬する。
成型方法にも特別の制約は無く、樹脂およびゴムの種類、所望成型品の種類等に応じてそれ自体公知の成型手段を任意に採用できる。成型手段としては、例えば、射出成型、押出成型、ブロー成型、プレス成型、回転成型、カレンダー成型、シートフォーミング成型、トランスファー成型積層成型、真空成型等があげられる。
本発明で用いる樹脂とは、樹脂および/またはゴムを意味し、例えばポリエチレン、エチレンと他のα−オレフィンとの共重合体、エチレンと酢酸ビニル、アクリル酸エチル又はアクリル酸メチルとの共重合体、ポリプロピレン、プロピレンと他のα−オレフィンとの共重合体、ポリブテン−1、ポリ4−メチルペンテン−1、ポリスチレン、スチレンとアクリロニトリル、エチレンとプロピレンジエンゴム又はブタジエンとの共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ABS、オリカーボネート、ポリフェニレンサルファイド等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂等の熱硬化性樹脂、EPDM、SBR、NBR、ブチルゴム、クロロプレンゴム、イソプレンゴム、クロロスルホン化ポリエチレンゴム、シリコンゴム、フッ素ゴム、塩素化ブチルゴム、エピクロルヒドリンゴム、塩素化ポリエチレンゴム等が例示される。好ましいのはポリプロピレン、ポリプロピレンとオレフィン系ゴムとの混合物、ポリエチレン、ポリアミド、EPDM、ブチルゴム及びクロロプレンゴムである。
本発明の樹脂組成物は、複合金属水酸化物以外に、タルク、マイカ、ガラス繊維、塩基性硫酸マグネシウム繊維等の従来公知の強化剤を併用しても良い。これら強化剤の配合量は樹脂100重量部に対し1〜50重量部、好ましくは1〜20重量部である。
強化剤以外に、慣用の他の添加剤、例えば酸化防止剤、紫外線吸収剤、滑材、カーボンブラック等の顔料、臭素系若しくはリン酸エステル系の難燃剤、スズ酸亜鉛、スズ酸アルカリ金属塩、炭素粉末等の難燃助剤、炭酸カルシウム、ゼオライト、カオリン、マイカ等の充填剤を適宜選択して配合することができる。
酸化防止剤、紫外線吸収剤、顔料、難燃剤、難燃助剤及び充填剤の配合量は、樹脂100重量部に対し、好ましくは、それぞれ0.01〜5重量部、0.01〜5重量部、0.1〜5重量部、0.1〜50重量部、0.01〜10重量部、1〜50重量部である。
本発明の製造方法で製造された高アスペクト比の複合金属水酸化物を約400℃以上で焼成することにより、高アスペクト比の複合金属酸化物を製造できる。この酸化物はハロゲン含有ゴムの受散剤、加硫または加硫促進剤、樹脂の耐熱性及び耐酸化性の改善等の用途に利用できる。
以下実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(A)試薬1級の塩化マグネシウム水溶液と(D)試薬1級の酢酸ナトリウムの混合水溶液(Mg=2.0モル/L,酢酸=0.8モル/L)と(B)試薬1級の塩化亜鉛水溶液に試薬1級の乳酸ナトリウムをモル比1:4で混合した亜鉛の乳酸錯体水溶液(Zn=0.2モル/L,乳酸=0.8モル/L)と、(C)試薬1級の水酸化ナトリウム水溶液(10モル/L)を調製した。これら水溶液を、それぞれ毎分200mL,40mL,75mLの供給速度で、計量ポンプを用いて、ケミスターラーで撹拌しながら、容量500mLの反応槽に連続的に供給し、共沈反応させた。反応槽はオーバーフローできる構造になっており、且つ反応前に、水200mLを予め加えて撹拌しておいてから共沈反応させ、温度は約25℃で行った。共沈反応物から1Lを採取し、(E)塩化カルシウムを0.5モル添加後、オートクレーブを使用し、200℃で8時間水熱処理した。約90℃以下に冷却後、減圧濾過,水洗、乾燥した。
FE−SEMで結晶(1次粒子)の横幅と厚さを測定した。1次粒子5個の平均横幅は3.6μm、厚さは0.09μm、アスペクト比は40であった。X線回折パターンは水酸化マグネシウムとほぼ同じであるが、わずかに低角度側にシフトしているので、Znが水酸化マグネシウムに固溶していることがわかる。液体窒素の物理吸着法で測定したBET比表面積は6m/gであった。化学組成は乾燥物を塩酸に溶解後、キレート滴定法でMgとZnを定量して調べた結果、次の通りであった。Mg0.97Zn0.03(OH)
[比較例1]
実施例1において、(D)の酢酸ナトリウムを削除し、且つ(B)の亜鉛錯体水溶液の代わりに塩化亜鉛だけの水溶液を用いる以外は実施例1と同様にして、共沈反応を行った。共沈反応で得られたスラリーを濾過、水洗、乾燥後乳鉢で粉砕した後、カンタル炉を用い、1200℃で2時間焼成した。焼成物を乳鉢で粉砕し、60メッシュで篩過した粉末60gを0.05モル/リットルの酢酸水溶液4リットルに添加し、撹拌下90℃で8時間水和反応させた。この反応物を減圧濾過、水洗、乾燥した。乾燥物のX線回折パターンは、少し低角度側にシフトしているが水酸化マグネシウムとほぼ同じであるので、Znが水酸化マグネシウムに固溶体していることが分かる。FE−SEM測定の結果、1次粒子の横幅は0.8μm、厚さは0.2μm、アスペクト比は4であった。BET比表面積は2m/gであった。
[比較例2]
実施例1において、(B)の亜鉛錯体水溶液の代わりに塩化亜鉛だけの水溶液を用い、且つ水熱処理前に添加する塩化カルシウムを省略する以外は、実施例1と同様に行った。得られた粉末のX線回折パターンは実施例1とほぼ同じ結果であった。したがって、Znが水酸化マグネシウムに固溶していることがわかる。FE−SEM測定の結果1次粒子の横幅は0.9μm、厚さは0.12μm、アスペクト比は8であった。BET比表面積は5m/gであった。
実施例1において、(B)塩化亜鉛錯体の代わりに塩化亜鉛の水溶液(Zn=0.2モル/L)を用いる以外以外は、実施例1と同様に行った。 得られた粉末のX線回折パターンは、実施例1とほぼ同じ結果であった。従って、実施例1と同様、水酸化マグネシウムにZnが固溶していることがわかる。FE−SEM測定の結果、1次粒子の横幅は2.7μm、厚さは0.08μm、アスペクト比は34であった。BET比表面積は8m/gであった。
実施例1において、オートクレーブを使用して熟成する温度を100℃に変更する以外は実施例1と同様に行った。得られた粉末のX線回折パターンは実施例1とほぼ同じであるため、Znが水酸化マグネシウムに固溶していることが分かる。FE−SEM測定の結果、1次粒子の横幅は0.26μm、厚さは0.02μm、アスペクト比は13であった。BET比表面積は、20m/gであった。
実施例1において、(A)酢酸ナトリウムの代わりにプロピオン酸ナトリウム(0.4モル/L)用い、(B)亜鉛錯体の代わりに、塩化ニッケルのアンミン錯体水溶液(Ni=0.25モル/L,NH=2.0モル/L)を用い、(A)と(B)と(C)の流量をそれぞれ200mL,80mL,55mL供給する以外は実施例1と同様に共沈反応を行った。共沈反応物の熟成は、塩化カルシウムの代わりに塩化アンモニウムを添加し水熱処理する以外は実施例1と同様に行った。得られた粉末のX線回折パターンは、水酸化マグネシウムとほぼ同じであった。したがって、Niは水酸化マグネシウムに固溶していることが分かる。FE−SEM測定の結果、1次粒子の横幅は2.6μm、厚さは0.08μm、アスペクト比は33であった。BET比表面積は7m/gであった。化学組成は、試料を塩酸に溶解後、キレート滴定法でMgとNiを定量して調べた結果、Mg0.95Ni0.05(OH)であった。
実施例4で得られた共沈反応物を、オートクレーブに入れ、120℃で6時間水熱処理を行う以外は、実施例1と同様に行った。得られた粉末のX線回折パターンは、水酸化マグネシウムとほぼ同じであった。したがって、Niは水酸化マグネシウムに固溶していることが分かる。FE−SEMの測定結果、1次粒子の横幅は0.56μm、厚さは0.04μm、アスペクト比は14であった。BET比表面積は14m/gであった。
[比較例3]
実施例4において、(B)塩化ニッケルのアンミン錯体の代わりに、塩化ニッケル水溶液(Ni=0.25モル/L)だけを用い、加熱熟成時に添加する塩化アンモニウムを省略する以外は、実施例4と同様に行った。得られた粉末のX線回折パターンは水酸化マグネシウムと同様であった。したがって、Niは水酸化マアグネシウムに固溶していることが分かる。Fe−SEMの測定結果、1次粒子の横幅は0.7μm、厚さは0.14μm、アスペクト比は5であった。BET比表面積は8m/gであった。
[樹脂強化剤]
実施例1の方法で作製した高アスペクト比複合金属水酸化物の粉末500gを、5Lの水に加え、ケミスターラーで分散させた後、温度を約60℃に加温し、撹拌下にポリカルボン酸(マリアリム SC−1−015F)5gをカセイソーダで中和後、添加し表面処理した。その後濾過、水洗し、120℃で乾燥した。この乾燥物をポリプロピレン、エチレンとα−オレフィンの共重合ゴム、および酸化防止剤(IRGANOX1010)と共に、それぞれ、20:70:10:0.2の重量比で混合した。この混合物を2軸の押出機を使用して約190℃で混錬し、ペレットを作成した。このペレットを真空乾燥後、射出成型機により約230℃で射出成型し、試験片を作成した。この試験片を用い、曲げ弾性率とアイゾット衝撃強度(23℃)及びMFR(メルトフローインデックス)を測定した結果を表1に示す。
[比較例4]
自動車用樹脂強化剤としてよく使われているタルク(1次粒子の横幅が5μm、厚さが0.25μm、アスペクト比が20)を、実施例6の高アスペクト比複合金属水酸化物の代わりに使用し、評価した結果を表1に示す。
Figure 2020152626
表1から明らかなごとく、高アスペクト比複合水酸化物は代表的な自動車用樹脂の強化剤タルクよりも、曲げ弾性率、アイゾット衝撃強度および溶融時の流動性(メルトフローインデクッス)が優れていることが分かる。また、射出成型板には繊維状強化剤の欠点である反りがみられなかった。
[難燃剤]
実施例4の方法で作製したオートクレーブ処理後のスラリーを濾過、水洗後、再スラリー化し(約40℃)、撹拌下、メタクリロキシシラン(KBM−502)を10倍量のエチルアルコールに希釈し、高アスペクト比複合金属水酸化物に対し1重量%添加した。約20分撹拌後、スプレードライヤーで噴霧乾燥した。乾燥物をポリプロピレン100重量部に対し、100〜160重量部を10重量部毎変えて配合し、(各配合は0.2重量部の酸化防止剤:IRGANOX1010を添加)実施例6と同様に行い射出成型し、燃焼試験片を作成した。この試験片(厚さ:3.2mm)を用い、UL−94VE法で、燃焼試験を行い、規格V−0に合格する最小配合量を調べた。その結果を表2に示す。(実施例7−1)
実施例5の方法で作製したオートクレーブ処理後のスラリーについても、上記方法と同様にして表面処理、乾燥後、樹脂試験片を作成し、燃焼試験を行い、最小配合量を調べた結果を表2に示す。(実施例7−2)
[比較例5]
実施例7において、高アスペクト比複合水酸化物の代わりに、難燃剤用水酸化マグネシウム(1次粒子の横幅が0.8μm、厚さが0.2μm、アスペクト比が4)を用い実施例7と同様に表面処理、樹脂試験片作成後、燃焼性評価を行った。その結果を表2に示す。
Figure 2020152626
表2から、高アスペクト比複合金属水酸化物は水酸化マグネシウムよりも難燃性が格段に優れていることが分かる。

Claims (7)

  1. 第一工程(共沈反応)
    (A)水溶性Mg塩の水溶液と(B)水溶性二価金属(M2+)(M2+はMn,Fe,Co,Ni,CuおよびZnから選ばれた少なくとも一種の二価金属イオンを示す)塩の水溶液と(C)水酸化ナトリウム等のアルカリの水溶液を、(D)モノカルボン酸イオンの存在下または非存在下に、40℃以下で共沈させ、
    第二工程(加熱熟成)
    共沈物を(D)モノカルボン酸イオンと(E)塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化マグネシウム及び塩化カルシウムの中から選ばれた金属塩化物の一種以上の共存下に、60℃〜300℃で加熱熟成することを特徴とする下記式(1)
    Figure 2020152626
    (式中M2+はMn,Fe,Co,Ni,Cu及びZnイオンから選ばれた2価金属イオンの少なくとも一種以上を示し、xは0<x<0.5の範囲の正の数を示す)で表され、1次粒子の平均横幅が0.1μm〜10μm、平均厚さが0.005μm〜0.5μmであり、且つアスペクト比が10以上である高アスペクト比複合金属水酸化物の製造方法。
  2. 請求項1において、(B)水溶性二価金属(M2+)(M2+はMn,Fe,Co,Ni,CuおよびZnから選ばれた少なくとも一種の二価金属イオンを示す)塩の代わりにそれらの金属錯体を用いる特許請求項1記載の高アスペクト比複合金属水酸化物の製造方法。
  3. 下記式(1)
    Figure 2020152626
    (但し、式中M2+はFe,Co,Ni,Mn,Cu及びZnの中から選ばれた少なくとも一種以上を示し、xは0<x<0.05範囲の正の数を示す)で表され、1次粒子の横幅と厚さが、それぞれ0.1μm〜1μm未満、0.005μm〜0.1μm、の範囲にあり、且つアスペクト比が10以上である高アスペクト比複合金属水酸化物。
  4. 請求項1記載の高アスペクト比複合金属水酸化物の表面が、シリカ、酸化亜鉛及び酸化チタンの少なくとも一種で、その一部または全部が被覆されている、表面光沢が低減された請求項1の式1記載の高アスペクト比複合金属水酸化物。
  5. ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリスチレンスルホン酸等のポリアニオンで表面被覆された、或いはポリアニオン上に更にポリアリルアミン、4級化ポリ(ビニルピリジン)等のポリカチオンで被覆された請求項1記載の高アスペクト比複合金属水酸化物。
  6. 水ガラスで表面処理後ポリカチオン、陽イオン界面活性剤及びシラン系カップリング剤の少なくとも1種以上で表面被覆されている請求項1記載の高アスペクト比複合金属水酸化物。
  7. 請求項4,5及び6記載の高アスペクト比複合金属水酸化物を樹脂100重量部に対し、0.1〜200重量部含有する樹脂組成物。
JP2019073813A 2019-03-20 2019-03-20 高アスペクト比複合金属水酸化物及びその製造方法 Pending JP2020152626A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019073813A JP2020152626A (ja) 2019-03-20 2019-03-20 高アスペクト比複合金属水酸化物及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073813A JP2020152626A (ja) 2019-03-20 2019-03-20 高アスペクト比複合金属水酸化物及びその製造方法

Publications (1)

Publication Number Publication Date
JP2020152626A true JP2020152626A (ja) 2020-09-24

Family

ID=72557725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073813A Pending JP2020152626A (ja) 2019-03-20 2019-03-20 高アスペクト比複合金属水酸化物及びその製造方法

Country Status (1)

Country Link
JP (1) JP2020152626A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053091A1 (ja) * 2022-09-09 2024-03-14 株式会社海水化学研究所 高配向性金属複合塩

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053091A1 (ja) * 2022-09-09 2024-03-14 株式会社海水化学研究所 高配向性金属複合塩

Similar Documents

Publication Publication Date Title
JP5839602B2 (ja) 高アスペクト比水酸化マグネシウム
JP6474457B2 (ja) 熱伝導性複合酸化物、その製造方法、及び熱伝導性複合酸化物含有組成物
JP6951022B2 (ja) 成長速度が遅くアスペクト比が低い水酸化マグネシウム粒子およびその製造方法
JP6866002B2 (ja) 優れた分散性を有するアルミノシリケートナノ粒子の製造方法、前記アルミノシリケートナノ粒子を含むゴム補強材およびこれを含むタイヤ用ゴム組成物
JP5128882B2 (ja) 水酸化マグネシウム微粒子及びその製造方法
TW201702182A (zh) 氫氧化鎂粒子及其製造方法
WO2013151188A1 (ja) 樹脂組成物
US10233305B2 (en) Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP5394380B2 (ja) 難燃性樹脂組成物
JP2020152626A (ja) 高アスペクト比複合金属水酸化物及びその製造方法
JP7148772B2 (ja) 高配向性金属複合塩
JP3107926B2 (ja) 難燃剤および難燃性樹脂組成物
JP6598271B2 (ja) 高アスペクト比板状ハイドロタルサイト、その製造方法及びその樹脂組成物
JP6593942B2 (ja) 微粒子複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物
CN108602994B (zh) 包含硅铝酸盐颗粒的橡胶用增强材料以及包含其的轮胎用橡胶组合物
JP2002053722A (ja) 塩素含有樹脂組成物
EP3572457B1 (en) Inorganic composite for rubber reinforcement, method for preparing the same, and rubber composition for tires comprising the same
WO2024053091A1 (ja) 高配向性金属複合塩
JPH04325412A (ja) 複合金属塩基性硫酸塩繊維およびその使用
JPH07144919A (ja) 水酸化マグネシウム系固溶体、その製造法および使用
JP2005089598A (ja) 安定化された含ハロゲン樹脂組成物