WO2024051382A1 - 钙钛矿叠层太阳能电池及其制备方法 - Google Patents

钙钛矿叠层太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2024051382A1
WO2024051382A1 PCT/CN2023/109835 CN2023109835W WO2024051382A1 WO 2024051382 A1 WO2024051382 A1 WO 2024051382A1 CN 2023109835 W CN2023109835 W CN 2023109835W WO 2024051382 A1 WO2024051382 A1 WO 2024051382A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
layer
type doped
silicon
solar cell
Prior art date
Application number
PCT/CN2023/109835
Other languages
English (en)
French (fr)
Inventor
薛建锋
王永洁
余义
苏世杰
Original Assignee
通威太阳能(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(安徽)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2024051382A1 publication Critical patent/WO2024051382A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of solar cells, specifically, to a perovskite stacked solar cell and a preparation method thereof.
  • the crystalline silicon-perovskite stacked cell uses a crystalline silicon cell as the bottom cell to absorb solar energy from 700nm to 1200nm, and a perovskite cell as the top cell to absorb solar energy from 300nm to 800nm, and the crystal Silicon cells and perovskite cells are connected through a composite layer, which connects crystalline silicon cells and perovskite cells in series.
  • the purpose of the embodiments of the present application is to provide a perovskite tandem solar cell and a preparation method thereof, which aims to improve the problem that the open circuit voltage and conversion efficiency of existing perovskite tandem solar cells cannot be effectively superimposed.
  • the present application provides a perovskite stacked solar cell, which includes a silicon bottom cell and a perovskite top cell.
  • the top surface of the silicon bottom cell is sequentially stacked with a silicon oxide layer and a P-type doped amorphous silicon layer.
  • the hole transport layer of the perovskite top cell is located on the surface of the P-type doped amorphous silicon layer; the perovskite light-absorbing layer of the perovskite top cell contains alkali metal ions.
  • the P-type doped amorphous silicon layer is a disordered silicon element with many defects, which facilitates the movement of carriers.
  • the synergy between the silicon oxide layer and the P-type doped amorphous silicon layer can increase the tunneling of carriers, which greatly
  • the tunneling efficiency of carriers between the silicon bottom cell and the perovskite top cell is increased to a certain extent, so that the open circuit voltage and conversion efficiency of the silicon bottom cell and the perovskite top cell are effectively superimposed.
  • the thickness of the silicon oxide layer is 0.5 nm to 2 nm; the thickness of the P-type doped amorphous silicon layer is 10 to 20 nm.
  • the doping concentration of the P-type doped amorphous silicon layer is 10 18 cm -3 ⁇ 10 20 cm -3 .
  • the alkali metal ion is potassium ion.
  • Alkali metal ions can eliminate the hysteresis effect in perovskite solar cells, which is of great significance for accurately measuring the conversion efficiency of the battery. Doping alkali metal ions reduces the density of defect states in the perovskite light-absorbing layer, which is also of great significance for extending carrier diffusion, improving carrier collection, and improving the conversion efficiency of solar cells.
  • This application also provides a method for preparing the above-mentioned perovskite tandem solar cell, including:
  • the perovskite top cell is formed on the surface of the P-type doped amorphous silicon layer; wherein the perovskite light-absorbing layer is prepared using raw materials containing alkali metal ion salts.
  • PECVD magnetron sputtering equipment is used to deposit the P-type doped amorphous silicon layer.
  • the deposition conditions are: the flow ratio of H 2 , SiH 4 , CO 2 and B 2 H 6 is ( 1 ⁇ 20):1:(1 ⁇ 5):(1 ⁇ 5), the air pressure range is (0.4 ⁇ 1.0)mbar, and the RF power range is (300 ⁇ 1200)W.
  • the alkali metal ion salt is a potassium salt.
  • the raw materials for preparing the perovskite light-absorbing layer include alkali metal ion salts, PbI 2 , PbBr 2 , CH 3 NH 3 Br, CH(NH 2 ) 2 I, dimethylformamide and dimethyl sulfoxide;
  • the concentration of PbI2 is 1.0-1.5mol/L
  • the concentration of PbBr 2 is 0.20-0.25mol/L;
  • the concentration of CH 3 NH 3 Br is 0.20-0.25 mol/L;
  • the concentration of CH(NH 2 ) 2 I is 1.0-1.3mol/L;
  • the molar concentration of the alkali metal ion salt is 5% to 7.5% of the sum of the molar concentrations of PbI 2 , PbBr 2 , CH 3 NH 3 Br and CH(NH 2 ) 2 I.
  • the alkali metal ion salt is a potassium salt.
  • the preparation method of the silicon bottom battery includes: manufacturing an N-type doped silicon wafer. Velvet; deposit an intrinsic amorphous silicon layer of 5nm to 10nm thick on the front and back sides of the N-type doped silicon wafer, and deposit an N-type doped layer of 10 to 20nm thick on the front side of the N-type doped silicon wafer.
  • Amorphous silicon doped layer deposit a 10-20nm thick P-type doped amorphous silicon layer on the back of the N-type doped silicon wafer.
  • Figure 1 shows a schematic structural diagram of a perovskite tandem solar cell provided by an embodiment of the present application.
  • 100-perovskite stacked solar cell 101-silicon oxide layer; 102-first P-type doped amorphous silicon layer; 201-TO conductive film layer; 202-second P-type doped amorphous silicon layer Silicon layer; 203-N-type silicon wafer; 204-intrinsic amorphous silicon layer; 205-N-type doped amorphous silicon layer; 301-hole transport layer; 302-perovskite light absorption layer; 303-electron transport layer ; 304-C60 film layer; 305-SnO 2 film layer; 306-ITO transparent conductive layer.
  • FIG 1 shows a schematic structural diagram of a perovskite tandem solar cell 100 provided in an embodiment of the present application. Please refer to Figure 1.
  • This embodiment provides a perovskite tandem solar cell 100.
  • Perovskite tandem solar cells The battery 100 mainly includes a silicon bottom battery and a perovskite top battery. There is a silicon oxide layer 101 and a first P-type doped amorphous silicon layer 102 between the silicon bottom cell and the perovskite top cell.
  • the top surface of the silicon bottom cell is provided with a silicon oxide layer 101, and the first P-type doped amorphous silicon
  • the layer 102 is disposed on the surface of the silicon oxide layer 101, and the first P-type doped amorphous silicon layer 102 is located on the bottom surface of the perovskite top cell.
  • the hole transport layer 301 of the perovskite top cell is located on the surface of the first P-type doped amorphous silicon layer 102 .
  • the silicon bottom cell includes an ITO conductive film layer 201, an intrinsic amorphous silicon layer 204, a second P-type doped amorphous silicon layer 202, an N-type silicon wafer 203, and an intrinsic amorphous silicon layer 203.
  • the perovskite top cell includes a hole transport layer 301, a perovskite light absorption layer 302, an electron transport layer 303, a C60 film layer 304, a SnO 2 film layer 305 and an ITO transparent conductive layer 306 stacked in sequence.
  • the hole transport layer 301 is disposed on the surface of the first P-type doped amorphous silicon layer 102 .
  • the perovskite light-absorbing layer 302 contains alkali metal ions; optionally, the alkali metal ions are potassium ions; or, in other embodiments, the aforementioned alkali metal ion liquid can be sodium ions, lithium ions, etc. .
  • the silicon bottom battery and the perovskite top battery can also have other structures, and are not limited to the above structures, and this application does not limit them.
  • the thickness of the silicon oxide layer 101 is 0.5nm ⁇ 2nm, for example, it can be 0.5nm, 0.6nm, 0.9nm, 1.2nm, 1.5nm, 1.8nm, 2nm, etc.
  • the thickness of the P-type doped amorphous silicon layer is 10-20 nm.
  • it can be 10nm, 12nm, 14nm, 17nm, 19nm, 20nm, etc.
  • the doping concentration of the P-type doped amorphous silicon layer is 10 18 cm -3 to 10 20 cm -3 .
  • the perovskite tandem solar cell 100 provided by the embodiment of the present application has at least the following advantages:
  • the first P-type doped amorphous silicon layer 102 is a disordered silicon element with many defects, which facilitates the movement of carriers.
  • the cooperation between the silicon oxide layer 101 and the first P-type doped amorphous silicon layer 102 can increase the current carrying capacity.
  • the tunneling of carriers greatly increases the tunneling efficiency of carriers between silicon bottom cells and perovskite top cells, effectively superimposing the open circuit voltage and conversion efficiency of silicon bottom cells and perovskite top cells.
  • the alkali metal ions can eliminate the hysteresis effect in the perovskite solar cell, which is of great significance for accurately measuring the conversion efficiency of the cell. Doping alkali metal ions reduces the density of defect states in the perovskite light-absorbing layer, which is also of great significance for extending carrier diffusion, improving carrier collection, and improving the conversion efficiency of solar cells.
  • the preparation method of the perovskite tandem solar cell 100 includes:
  • an N-type silicon wafer with a resistivity of 1.0 to 7.0 and a thickness of 100 to 200 ⁇ m is used, and the silicon wafer is textured and cleaned to form an N-type single crystal silicon-based substrate with a textured structure.
  • the second step is to use PECVD equipment to deposit intrinsic amorphous silicon layers on the front and back sides of the silicon-based substrate respectively; the thickness of the intrinsic amorphous silicon layer is 5-10nm, for example, it can be 5nm, 6nm, 7nm, 8nm, 9nm , 10nm and so on.
  • the third step is to use PECVD equipment to deposit a phosphorus-doped N-type amorphous silicon layer on the front side of the silicon substrate to form a front electric field structure; the thickness of the N-type doped amorphous silicon layer is 10 to 20 nm, for example For 10nm, 12nm, 16nm, 18nm, 20nm and so on.
  • the fourth step is to use PECVD equipment to deposit a boron-doped P-type doped amorphous silicon layer on the back of the silicon substrate to form a back electric field structure;
  • the thickness of the P-type doped amorphous silicon layer is 10 to 20 nm, for example For 10nm, 12nm, 16nm, 18nm, 20nm and so on.
  • the doping concentration is 10 18 cm -3 ⁇ 10 20 cm -3 .
  • the fifth step is to use PECVD equipment to sequentially deposit a SiO x silicon oxide layer and a boron-doped P-type doped amorphous silicon layer on the front side of the silicon-based substrate.
  • the thickness of the P-type doped amorphous silicon layer is 10 to 20 nm. For example, it can be 10nm, 12nm, 16nm, 18nm, 20nm, etc.
  • the doping concentration of the P-type doped amorphous silicon layer is 10 18 cm -3 ⁇ 10 20 cm -3 .
  • the thickness of the silicon oxide layer is 0.5nm to 2nm, for example, it can be 0.5nm, 0.6nm, 0.9nm, 1.2nm, 1.5nm, 1.8nm, 2nm, etc.
  • the conditions for depositing the P-type doped amorphous silicon layer are: the flow ratio of H 2 , SiH 4 , CO 2 , and B 2 H 6 is (1 ⁇ 20):1:(1 ⁇ 5):( 1 ⁇ 5), the air pressure range is (0.4 ⁇ 1.0)mbar, and the RF power range is (300 ⁇ 1200)W.
  • the flow ratios of H 2 , SiH 4 , CO 2 , and B 2 H 6 can be 1:1:1:1, 5:1:2:2, 10:1:3:5, 15:1:2: 5. 20:1:5:1 and so on.
  • the sixth step is to use PVD magnetron sputtering equipment to prepare a layer of ITO transparent conductive layer on the back of the silicon-based substrate; the thickness of the ITO transparent conductive layer is 80 ⁇ 100nm, for example, it can be 80nm, 85nm, 88nm, 90nm, 92nm, 96nm, 98nm, 100nm and so on.
  • the seventh step is to prepare a hole transport layer on the front side of the silicon substrate. For example, dissolve 0.2 to 0.6 mL of bis(acetylacetonate) diisopropyl titanate (titanium diisopropoxidebis(acetylacetonate)) in 3 to 6 mL of ethanol as The precursor solution is used to prepare a dense TiO 2 film with a thickness of 30 to 100 nm through a spray thermal decomposition method at a high temperature of 400 to 550°C.
  • the eighth step is to prepare a perovskite light-absorbing layer on the front side of the silicon substrate.
  • the thickness of the perovskite light-absorbing layer is 800nm to 1200nm, for example, it can be 800nm, 900nm, 1000nm, 1100nm, 1200nm, etc.
  • the perovskite light-absorbing layer contains alkali metal ions, and the preparation method is as follows:
  • PbI 2 , PbBr 2 , CH 3 NH 3 Br, CH(NH 2 ) 2 I, dimethylformamide and dimethyl sulfoxide onto the TiO 2 film layer
  • spin coating When using the two-step rotation speed of 1000rpm (10s) and 4000rpm (30s), add chlorobenzene or toluene solution dropwise 20s before the end of the rotation. Heat treatment at 160°C for 5 to 20 minutes to form a perovskite film.
  • the concentration of PbI2 in the above raw materials is 1.0-1.5mol/L, for example, it can be 1.0mol/L, 1.15mol/L, 1.2mol/L, 1.3mol/L, 1.4mol/L, 1.5mol/L etc.
  • the concentration of PbBr 2 in the above raw materials is 0.20-0.25mol/L, for example, it can be 0.20mol/L, 0.21mol/L, 0.22mol/L, 0.23mol/L, 0.24mol/L, 0.25mol/L, etc.
  • the concentration of CH 3 NH 3 Br in the above raw materials is 0.20-0.25 mol/L, for example, it can be 0.20 mol/L, 0.21 mol/L, 0.22 mol/L, 0.23 mol/L, 0.24 mol/L, 0.25 mol/L etc.
  • the concentration of CH(NH 2 ) 2 I in the above raw materials is 1.0-1.3 mol/L, for example, it can be 1.0 mol/L, 1.09 mol/L, 1.2 mol/L, 1.3 mol/L, etc.
  • the concentration of the alkali metal ion salt is 5% to 7.5% of the sum of the concentrations of PbI 2 , PbBr 2 , CH 3 NH 3 Br and CH(NH 2 ) 2 I.
  • the concentration of the alkali metal ion salt can be 5%, 6%, 7%, 7.5%, etc. of the sum of the latter concentrations; in some embodiments, the alkali metal ion is potassium ion; or, in other embodiments, the aforementioned
  • the alkali metal ion liquid can be sodium ions, lithium ions, etc.
  • the raw materials of the perovskite light-absorbing layer contain alkali metal ion salts.
  • Alkali metal ions can eliminate the hysteresis effect in perovskite solar cells, which is of great significance for accurately measuring the conversion efficiency of the battery.
  • Doping alkali metal ions reduces the density of defect states in the perovskite light-absorbing layer, which is also of great significance for extending carrier diffusion, improving carrier collection, and improving the conversion efficiency of solar cells.
  • Step 9 Prepare LiF and C60 film layers 304 on the front electron transport layer of the silicon substrate; for example, use a thermal evaporation process to form a LiF film layer and a C60 film layer on the perovskite absorption layer.
  • the thickness of the LiF film layer is 10nm ⁇ 20nm, for example, can be 10nm, 11nm, 12nm, 15nm, 18nm, 19nm, 20nm, etc.
  • the thickness of the C60 film layer 304 is 10nm ⁇ 20nm, for example, it can be 10nm, 11nm, 13nm, 15nm, 17nm, 19nm, 20nm, etc.
  • the tenth step is to use atomic layer deposition equipment (ALD) to prepare an electron transport layer on the front side of the silicon substrate. Specifically, make a SnO 2 film layer on the front side of the silicon substrate.
  • the thickness of the SnO 2 film layer is 20 to 40 nm, for example, it can be 20 nm. , 25nm, 27nm, 29nm, 32nm, 35nm, 40nm, etc.
  • Step 11 Use PVD magnetron sputtering equipment to prepare a layer of ITO transparent conductive layer on the front side of the silicon-based substrate.
  • the thickness of the ITO transparent conductive layer is 80 ⁇ 100nm, for example, it can be 80nm, 85nm, 87nm, 89nm, 92nm. , 95nm, 100nm, etc.
  • Step 12 Preparation of copper electrodes. Copper electrodes are prepared on the back side of the silicon substrate using a copper electroplating process.
  • the preparation methods of this application are just some examples.
  • the silicon bottom battery and the perovskite top battery can be manufactured using other processes, and the silicon bottom battery and the perovskite top battery are
  • the thickness of each layer does not need to refer to the above thickness, and can be selected according to performance requirements.
  • This embodiment provides a perovskite stacked solar cell, which is mainly produced through the following steps:
  • an N-type silicon wafer with a resistivity of 2.0 and a thickness of 120 ⁇ m is used, and the silicon wafer is textured and cleaned to form an N-type single crystal silicon-based substrate with a textured structure.
  • PECVD equipment is used to deposit 6 nm thick intrinsic amorphous silicon passivation layers on the front and back sides of the silicon-based substrate.
  • the third step is to use PECVD equipment to deposit a 12nm thick phosphorus-doped N-type amorphous silicon layer on the front side of the silicon substrate to form a front electric field structure.
  • the fourth step is to use PECVD equipment to deposit a 12nm thick boron-doped P-type doped amorphous silicon layer on the back of the silicon substrate to form a back electric field structure.
  • the fifth step is to use PECVD equipment to sequentially deposit a 1nm-thick SiOx silicon oxide layer and a 12nm-thick boron-doped P-type doped amorphous silicon layer on the front side of the silicon-based substrate.
  • the conditions for depositing P-type doped amorphous silicon layer are: H 2 , SiH 4 ,
  • the flow ratio of CO 2 and B 2 H 6 is 10:1:2:2, the air pressure range is 0.6mbar, and the radio frequency power range is 500W.
  • the sixth step is to use PVD magnetron sputtering equipment to prepare an ITO transparent conductive layer with a thickness of 80nm on the back of the silicon-based substrate.
  • the seventh step is to prepare a 30 nm thick hole transport layer on the front side of the silicon substrate. Specifically, dissolve 0.2 mL of bis(acetylacetonate) diisopropyl titanate (titanium diisopropoxidebis (acetylacetonate)) in 6 mL of ethanol as Precursor solution, a 30nm thick dense TiO2 film was prepared by spray thermal decomposition method at a high temperature of 450°C.
  • Step 8 Prepare a 900nm thick perovskite light-absorbing layer on the front side of the silicon substrate.
  • PbI 2 , PbBr 2 , CH 3 NH 3 Br and CH(NH 2 ) 2 I were dissolved in a mixed solvent of dimethylformamide and dimethyl sulfoxide. Control the molar concentrations of PbI 2 , PbBr 2 , CH 3 NH 3 Br and CH(NH 2 ) 2 I to 1.15M, 0.20M, 0.20M and 1.09M respectively.
  • the volume ratio of dimethylformamide to dimethyl sulfoxide is 4:1.
  • Step 9 Prepare a LiF film layer with a thickness of 10nm and a C60 film layer with a thickness of 12nm on the front electron transport layer of the silicon substrate.
  • Step 10 Use atomic layer deposition equipment (ALD) to make a SnO 2 film with a thickness of 30nm on the front side of the silicon substrate.
  • ALD atomic layer deposition equipment
  • Step 11 Use PVD magnetron sputtering equipment to prepare an ITO transparent conductive layer with a thickness of 80nm on the front side of the silicon-based substrate.
  • Step 12 Preparation of copper electrodes. Copper electrodes are prepared on the back side of the silicon substrate using a copper electroplating process.
  • Example 2 Please refer to Example 1.
  • the precursor solution of the perovskite light-absorbing layer does not contain potassium ions.
  • Example 1 Please refer to Example 1.
  • the difference between Comparative Example 1 and Example 1 is that in the fifth step, P-type doped amorphous
  • the conditions for the silicon layer are: the flow ratio of H 2 , SiH 4 , CO 2 , and B 2 H 6 is 500:1:2:2; what is obtained is a boron-doped P-type doped microcrystalline silicon layer.
  • Example 1 Please refer to Example 1.
  • the conditions for depositing the P-type doped amorphous silicon layer are: the flow ratio of H 2 , SiH 4 , CO 2 , and B 2 H 6 It is 100:1:2:2; what is obtained is a boron-doped P-type doped microcrystalline silicon layer.
  • Embodiment 1 Please refer to Embodiment 1.
  • the difference between Comparative Example 3 and Embodiment 1 is that in the fifth step, no SiO Doped amorphous silicon layer.
  • Embodiment 1 Please refer to Embodiment 1.
  • the difference between Comparative Example 4 and Embodiment 1 is that in the fifth step, the P-type doped amorphous silicon layer 102 is not deposited on the front side of the silicon-based substrate, and a 2 nm thick layer 102 is directly deposited on the front side of the bottom cell. silicon oxide layer.
  • Performance tests were performed on the perovskite tandem solar cells provided in Example 1, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4. Specifically, the BERGER online I-V test system was selected to test the conversion efficiency, open circuit voltage, short circuit current, fill factor and other electrical performance parameters of silicon/perovskite tandem solar cells under the conditions of 25°C, AM 1.5, and 1 standard sun. .
  • Comparative Example 1 is a P-type doped microcrystalline silicon layer with high crystallinity
  • Example 1 is a P-type doped amorphous silicon phase layer. It can be seen from the comparison between Comparative Example 1 and Example 1 that this shows that the high crystallinity It is not conducive to the tunneling of carriers between the bottom cell and the top cell.
  • Comparative Example 2 and Comparative Example 1 both belong to P-type doped microcrystalline silicon layers.
  • the difference is that the proportion of hydrogen and silane is inconsistent. That is to say, there is a difference in the crystallinity of the deposited film layer.
  • the difference between the two comparative examples is mainly FF; it proves that the lower the crystallinity, the better the tunnel string effect, that is, the P-type doped layer is completely amorphous. In the silicon state, carrier tunneling is easier, so there is no FF loss.
  • Example 1 has an intermediate silicon dioxide layer
  • Comparative Example 3 does not have an intermediate silicon dioxide layer.
  • the FF performance of the two shows differences in electrical parameters, which indicates that there is no tunneling effect between the silicon dioxide bottom cell and the top cell. becomes worse, that is, carriers cannot go from the lower layer to the upper layer, or from the upper layer to the lower layer, so it can be seen that the silicon dioxide layer plays a very important role in the tunneling process, and the silicon dioxide layer itself has better tunneling effect.
  • Example 1 has intermediate P-type doped amorphous silicon, and Comparative Example 4 does not have intermediate P-type differentially doped amorphous silicon.
  • the difference in electrical parameters is first reflected in FF, and combined with Comparative Example 3, it shows that the silicon dioxide layer
  • the tunneling effect is better than that of P-type doped amorphous silicon, and the optimal tunneling effect can be achieved by superimposing the two.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及太阳能电池领域,具体而言,涉及一种钙钛矿叠层太阳能电池及其制备方法。钙钛矿叠层太阳能电池,包括硅底电池和钙钛矿顶电池,所述硅底电池的顶面依次叠层设置有氧化硅层和P型掺杂非晶硅层,所述P型掺杂非晶硅层位于所述钙钛矿顶电池的底面;所述钙钛矿顶电池的钙钛矿吸光层内含有碱金属离子。P型掺杂非晶硅层为无序的硅单质,缺陷多,方便载流子的移动,氧化硅层和P型掺杂非晶硅层的协同可以增加载流子的隧穿,极大程度增加硅底电池和钙钛矿顶电池之间载流子的隧穿效率,使得硅底电池和钙钛矿顶电池的开路电压和转化效率有效叠加。

Description

钙钛矿叠层太阳能电池及其制备方法
本申请要求于2022年09月07日提交中国专利局、申请号为202211100154.9、申请名称为“一种钙钛矿叠层太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池领域,具体而言,涉及一种钙钛矿叠层太阳能电池及其制备方法。
背景技术
晶体硅-钙钛矿叠层电池是以晶体硅电池作为底电池,用以吸收700nm-1200nm的太阳光能量,以钙钛矿电池作为顶电池,用以吸收300nm-800nm太阳光能量,并且晶体硅电池和钙钛矿电池之间通过复合层连接,将晶体硅电池和钙钛矿电池串联在一起。
底电池和顶电池堆叠时易出现晶格不匹配隧穿不易的问题,导致开路电压和转化效率无法做到有效的叠加。
发明内容
本申请实施例的目的在于提供一种钙钛矿叠层太阳能电池及其制备方法,其旨在改善现有的钙钛矿叠层太阳能电池开路电压和转化效率无法做到有效的叠加的问题。
本申请提供一种钙钛矿叠层太阳能电池,包括硅底电池和钙钛矿顶电池,所述硅底电池的顶面依次叠层设置有氧化硅层和P型掺杂非晶硅层,所述钙钛矿顶电池的空穴传输层位于所述P型掺杂非晶硅层的表面;所述钙钛矿顶电池的钙钛矿吸光层内含有碱金属离子。
P型掺杂非晶硅层为无序的硅单质,缺陷多,方便载流子的移动,氧化硅层和P型掺杂非晶硅层的协同可以增加载流子的隧穿,极大程度增加硅底电池和钙钛矿顶电池之间载流子的隧穿效率,使得硅底电池和钙钛矿顶电池的开路电压和转化效率有效叠加。
在本申请的一些实施例中,氧化硅层的厚度为0.5nm~2nm;所述P型掺杂非晶硅层的厚度为10~20nm。
在本申请的一些实施例中,P型掺杂非晶硅层的掺杂浓度为1018cm-3~1020cm-3
在本申请的一些实施例中,所述碱金属离子为钾离子。
碱金属离子可以消除钙钛矿太阳电池中的迟滞效应,对精确测定电池的转换效率有重要的意义。掺杂碱金属离子减小钙钛矿光吸收层中的缺陷态密度,对延长载流子的扩散、提高载流子的收集以及提高太阳电池的转换效率也有重要的意义。
本申请还提供一种如上述的钙钛矿叠层太阳能电池的制备方法,包括:
提供所述硅底电池;
在所述硅底电池的顶面沉积所述氧化硅层;
在所述氧化硅层的表面沉积所述P型掺杂非晶硅层;
在所述P型掺杂非晶硅层表面形成所述钙钛矿顶电池;其中,采用含有碱金属离子盐的原料制备钙钛矿吸光层。
在本申请的一些实施例中,采用PECVD磁控溅射设备沉积所述P型掺杂非晶硅层,沉积条件为:H2、SiH4、CO2和B2H6的流量比为(1~20):1:(1~5):(1~5),气压范围为(0.4~1.0)mbar,射频功率范围为(300~1200)W。
在本申请的一些实施例中,所述碱金属离子盐为钾盐。
在本申请的一些实施例中,在所述P型掺杂非晶硅层表面形成所述钙钛矿顶电池的步骤中:制备钙钛矿吸光层的原料包括碱金属离子盐、PbI2、PbBr2、CH3NH3Br、CH(NH2)2I、二甲基甲酰胺和二甲基亚砜;
其中,所述PbI2的浓度为1.0-1.5mol/L;
所述PbBr2的浓度为0.20-0.25mol/L;
所述CH3NH3Br的浓度为0.20-0.25mol/L;
所述CH(NH2)2I的浓度为1.0-1.3mol/L;
所述碱金属离子盐的摩尔浓度为所述PbI2、PbBr2、CH3NH3Br和CH(NH2)2I摩尔浓度之和的5%~7.5%。
在本申请的一些实施例中,所述碱金属离子盐为钾盐。
在本申请的一些实施例中,所述硅底电池的制备方法包括:对N型掺杂硅片进行制 绒;在所述N型掺杂硅片的正面和背面分别沉积5nm~10nm厚的本征非晶硅层,在所述N型掺杂硅片的正面沉积10~20nm厚的N型掺杂非晶硅掺杂层;在所述N型掺杂硅片的背面沉积10~20nm厚的P型掺杂非晶硅层。
附图说明
为了更清楚地说明本申请的技术方案,下面将对本申请中所使用的附图作简单介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例提供的钙钛矿叠层太阳能电池的结构示意图。
附图说明:100-钙钛矿叠层太阳能电池;101-氧化硅层;102-第一P型掺杂非晶硅层;201-TO导电膜层;202-第二P型掺杂非晶硅层;203-N型硅片;204-本征非晶硅层;205-N型掺杂非晶硅层;301-空穴传输层;302-钙钛矿吸光层;303-电子传输层;304-C60膜层;305-SnO2膜层;306-ITO透明导电层。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1示出了本申请实施例提供的钙钛矿叠层太阳能电池100的结构示意图,请参阅图1,本实施例提供了一种钙钛矿叠层太阳能电池100,钙钛矿叠层太阳能电池100主要包括硅底电池和钙钛矿顶电池。硅底电池和钙钛矿顶电池之间具有氧化硅层101和第一P型掺杂非晶硅层102。具体地,硅底电池的顶面设置有氧化硅层101,第一P型掺杂非晶硅 层102设置于氧化硅层101表面,第一P型掺杂非晶硅层102位于钙钛矿顶电池的底面。钙钛矿顶电池的空穴传输层301位于第一P型掺杂非晶硅层102的表面。
在本实施例中,硅底电池包括依次叠层设置的ITO导电膜层201、本征非晶硅层204、第二P型掺杂非晶硅层202、N型硅片203、本征非晶硅层204和N型掺杂非晶硅层205;氧化硅层101位于N型掺杂非晶硅层205表面。
钙钛矿顶电池包括依次叠层设置的空穴传输层301、钙钛矿吸光层302、电子传输层303、C60膜层304、SnO2膜层305以及ITO透明导电层306。空穴传输层301设置于第一P型掺杂非晶硅层102表面。
在本申请中,钙钛矿吸光层302内含有碱金属离子;可选地,碱金属离子为钾离子;或者,在其他实施例中,前述的碱金属离子液可以为钠离子、锂离子等。
需要说明的是,在本申请的其他实施例中,硅底电池和钙钛矿顶电池也可以为其他结构,不限于上述结构,本申请不对其进行限制。
作为示例性地,氧化硅层101的厚度为0.5nm~2nm,例如可以为0.5nm、0.6nm、0.9nm、1.2nm、1.5nm、1.8nm、2nm等等。
作为示例性地,P型掺杂非晶硅层的厚度为10~20nm。例如可以为10nm、12nm、14nm、17nm、19nm、20nm等等。
作为示例性地,P型掺杂非晶硅层的掺杂浓度为1018cm-3~1020cm-3
本申请实施例提供的钙钛矿叠层太阳能电池100至少具有以下优点:
第一P型掺杂非晶硅层102为无序的硅单质,缺陷多,方便载流子的移动,氧化硅层101和第一P型掺杂非晶硅层102的协同可以增加载流子的隧穿,极大程度增加硅底电池和钙钛矿顶电池之间载流子的隧穿效率,使得硅底电池和钙钛矿顶电池的开路电压和转化效率有效叠加。
对于钙钛矿吸光层302内含有碱金属离子的实施例而言,碱金属离子可以消除钙钛矿太阳电池中的迟滞效应,对精确测定电池的转换效率有重要的意义。掺杂碱金属离子减小钙钛矿光吸收层中的缺陷态密度,对延长载流子的扩散、提高载流子的收集以及提高太阳电池的转换效率也有重要的意义。
以下就钙钛矿叠层太阳能电池100的制备方法做出一些示例,具体地,钙钛矿叠层太阳能电池100的制备方法包括:
第一步、采用电阻率为1.0~7.0、厚度为100~200μm的N型硅片,对该硅片进行制绒清洗处理,形成具有绒面结构的N型单晶硅基衬底。
第二步、利用PECVD设备在硅基衬底的正面、背面分别沉积本征非晶硅层;本征非晶硅层的厚度为5-10nm,例如可以为5nm、6nm、7nm、8nm、9nm、10nm等等。
第三步、利用PECVD设备在硅衬底的正面沉积磷掺杂的N型掺杂非晶硅层,以形成前电场结构;N型掺杂非晶硅层的厚度为10~20nm,例如可以为10nm、12nm、16nm、18nm、20nm等等。
第四步、利用PECVD设备在硅衬底的背面沉积硼掺杂的P型掺杂非晶硅层,以形成背电场结构;P型掺杂非晶硅层的厚度为10~20nm,例如可以为10nm、12nm、16nm、18nm、20nm等等。掺杂浓度为1018cm-3~1020cm-3
第五步、采用PECVD设备在硅基衬底的正面依次沉积SiOx氧化硅层和硼掺杂的P型掺杂非晶硅层,P型掺杂非晶硅层的厚度为10~20nm,例如可以为10nm、12nm、16nm、18nm、20nm等等。P型掺杂非晶硅层的掺杂浓度为1018cm-3~1020cm-3。氧化硅层的厚度为0.5nm~2nm,例如可以为0.5nm、0.6nm、0.9nm、1.2nm、1.5nm、1.8nm、2nm等等。
作为示例性地,沉积P型掺杂非晶硅层的条件为:H2、SiH4、CO2、B2H6的流量比为(1~20):1:(1~5):(1~5),气压范围为(0.4~1.0)mbar,射频功率范围为(300~1200)W。
例如,H2、SiH4、CO2、B2H6的流量比可以为1:1:1:1、5:1:2:2、10:1:3:5、15:1:2:5、20:1:5:1等等。
第六步、采用PVD磁控溅射设备在硅基衬底的背面制备一层ITO透明导电层;ITO透明导电层的厚度为80~100nm,例如可以为80nm、85nm、88nm、90nm、92nm、96nm、98nm、100nm等等。
第七步、在硅基体的正面制备空穴传输层。例如,将0.2~0.6mL双(乙酰丙酮基)二异丙基钛酸酯(titanium diisopropoxidebis(acetylacetonate))溶于3~6mL乙醇中作为 前驱体溶液,在400~550℃的高温下通过喷雾热分解法制备30~100nm厚的致密TiO2薄膜。
第八步、在硅基体的正面制备钙钛矿吸光层,钙钛矿吸光层的厚度为800nm~1200nm,例如可以为800nm、900nm、1000nm、1100nm、1200nm等等。
在一些实施例中,钙钛矿吸光层中含有碱金属离子,其制备方法如下:
将含有碱金属离子盐、PbI2、PbBr2、CH3NH3Br、CH(NH2)2I、二甲基甲酰胺和二甲基亚砜的原料涂到TiO2膜层上,旋涂时采用二步转速1000rpm(10s)和4000rpm(30s),在旋转结束前20s滴加氯苯或甲苯溶液。在160℃下热处理5~20min形成钙钛矿薄膜。
其中,上述原料中,PbI2的浓度为1.0-1.5mol/L,例如可以为1.0mol/L、1.15mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L等等。
上述原料中PbBr2的浓度为0.20-0.25mol/L,例如可以为0.20mol/L、0.21mol/L、0.22mol/L、0.23mol/L、0.24mol/L、0.25mol/L等等。
上述原料中CH3NH3Br的浓度为0.20-0.25mol/L,例如可以为0.20mol/L、0.21mol/L、0.22mol/L、0.23mol/L、0.24mol/L、0.25mol/L等等。
上述原料中CH(NH2)2I的浓度为1.0-1.3mol/L,例如可以为1.0mol/L、1.09mol/L、1.2mol/L、1.3mol/L等等。
碱金属离子盐的浓度为PbI2、PbBr2、CH3NH3Br和CH(NH2)2I浓度之和的5%~7.5%。碱金属离子盐的浓度可以为后者浓度之和的5%、6%、7%、7.5%等等;在一些实施例中,碱金属离子为钾离子;或者,在其他实施例中,前述的碱金属离子液可以为钠离子、锂离子等。
承上所述,钙钛矿吸光层的原料中含有碱金属离子盐,碱金属离子可以消除钙钛矿太阳电池中的迟滞效应,对精确测定电池的转换效率有重要的意义。掺杂碱金属离子减小钙钛矿光吸收层中的缺陷态密度,对延长载流子的扩散、提高载流子的收集以及提高太阳电池的转换效率也有重要的意义。
第九步、在硅基体的正面电子传输层制备LiF和C60膜层304;例如,采用热蒸镀工艺在钙钛矿吸收层上形成LiF薄膜层和C60薄膜层。LiF薄膜层厚度为10nm~ 20nm,例如可以为10nm、11nm、12nm、15nm、18nm、19nm、20nm等等。C60膜层304厚度为10nm~20nm,例如可以为10nm、11nm、13nm、15nm、17nm、19nm、20nm等等。
第十步、采用原子层沉积设备(ALD)在硅基体的正面制备电子传输层,具体地,在硅基体的正面制作SnO2膜层,SnO2膜层厚度为20~40nm,例如可以为20nm、25nm、27nm、29nm、32nm、35nm、40nm等等。
第十一步、采用PVD磁控溅射设备在硅基衬底的正面制备一层ITO透明导电层,ITO透明导电层的厚度为80~100nm,例如可以为80nm、85nm、87nm、89nm、92nm、95nm、100nm等等。
第十二步、铜电极制备,在硅基体的背面分别采用铜电镀工艺制备铜电极。
需要说明的是,本申请的制备方法仅仅是一些示例,在本申请的其他实施例中,硅底电池和钙钛矿顶电池可以采用其他工艺制得,且硅底电池和钙钛矿顶电池中各个层的厚度也可以不参照上述的厚度,可以根据性能需求进行选择。
以下结合实施例和对比例对本申请的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种钙钛矿叠层太阳能电池,主要通过以下步骤制得:
第一步、采用电阻率为2.0、厚度为120μm的N型硅片,对该硅片进行制绒清洗处理,形成具有绒面结构的N型单晶硅基衬底。
第二步、利用PECVD设备在硅基衬底的正面、背面分别沉积6nm厚的本征非晶硅钝化层。
第三步、利用PECVD设备在硅衬底的正面沉积12nm厚的磷掺杂的N型掺杂非晶硅层,以形成前电场结构。
第四步、利用PECVD设备在硅衬底的背面沉积12nm厚的硼掺杂的P型掺杂非晶硅层,以形成背电场结构。
第五步、采用PECVD设备在硅基衬底的正面依次沉积1nm厚的SiOx氧化硅层和12nm厚的硼掺杂的P型掺杂非晶硅层。沉积P型掺杂非晶硅层的条件为:H2、SiH4、 CO2、B2H6的流量比为10:1:2:2,气压范围为0.6mbar,射频功率范围为500W。
第六步、采用PVD磁控溅射设备在硅基衬底的背面制备一层厚度为80nm的ITO透明导电层。
第七步、在硅基体的正面制备30nm厚的空穴传输层,具体地,将0.2mL双(乙酰丙酮基)二异丙基钛酸酯(titanium diisopropoxidebis(acetylacetonate))溶于6mL乙醇中作为前驱体溶液,在450℃的高温下通过喷雾热分解法制备30nm厚的致密TiO2薄膜。
第八步、在硅基体的正面制备900nm厚的钙钛矿吸光层。具体地,将PbI2、PbBr2、CH3NH3Br和CH(NH2)2I溶于二甲基甲酰胺和二甲基亚砜混合溶剂中。控制PbI2、PbBr2、CH3NH3Br和CH(NH2)2I的摩尔浓度分别为1.15M、0.20M、0.20M和1.09M。二甲基甲酰胺和二甲基亚砜的体积比为4:1。制备1.5M的碘化钾,加入上述溶液中,使K+的终浓度为0.16M,将将制备好的前驱体溶液旋涂到TiO2膜层上,旋涂时采用二步转速1000rpm(10s)和4000rpm(30s),在旋转结束前20s滴加氯苯或甲苯溶液。在160℃下热处理10min形成钙钛矿薄膜。
第九步、在硅基体的正面电子传输层制备厚度为10nm的LiF薄膜层和厚度为12nm的C60膜层。
第十步、采用原子层沉积设备(ALD)在硅基体的正面制作厚度为30nm的SnO2膜层。
第十一步、采用PVD磁控溅射设备在硅基衬底的正面制备一层厚度为80nm的ITO透明导电层。
第十二步、铜电极制备,在硅基体的背面分别采用铜电镀工艺制备铜电极。
实施例2
请参阅实施例1,实施例2与实施例1的区别在于第八步骤中,钙钛矿吸光层的前驱体溶液不含钾离子。
对比例1
请参阅实施例1,对比例1与实施例1的区别在于第五步骤中,沉积P型掺杂非晶 硅层的条件为:H2、SiH4、CO2、B2H6的流量比为500:1:2:2;其得到的是硼掺杂的P型掺杂微晶硅层。
对比例2
请参阅实施例1,对比例1与实施例1的区别在于第五步骤中,沉积P型掺杂非晶硅层的条件为:H2、SiH4、CO2、B2H6的流量比为100:1:2:2;其得到的是硼掺杂的P型掺杂微晶硅层。
对比例3
请参阅实施例1,对比例3与实施例1的区别在于第五步骤中,底电池的正面未沉积SiOx氧化硅层101,直接于底电池的正面沉积12nm厚的硼掺杂的P型掺杂非晶硅层。
对比例4
请参阅实施例1,对比例4与实施例1的区别在于第五步骤中,硅基衬底的正面未沉积P型掺杂非晶硅层102,直接于底电池的正面沉积2nm厚的二氧化硅层。
对实施例1、对比例1、对比例2、对比例3和对比例4提供的钙钛矿叠层太阳能电池进行性能测试。具体地,选用BERGER在线I-V测试系统,在25℃、AM 1.5、1个标准太阳的条件下测试硅/钙钛矿叠层太阳能电池的转化效率、开路电压、短路电流、填充因子等电性能参数。
表1钙钛矿叠层太阳能电池的性能
对比例1是高结晶度的P型掺杂微晶硅层,实施例1是P型掺杂非晶硅相层;从对比例1与实施例1的对比可以看出,这说明高结晶度并不利于底电池与顶电池之间载流子的隧穿。
从对比例2与对比例1均属于P型掺杂微晶硅层,区别在于氢气和硅烷的比例不一致, 即沉积出来的膜层结晶度存在差异,从电参数上看,两个对比例的差异主要是FF;证明结晶度越低,隧串效果越好,即在P型掺杂层完全处于非晶硅态时,载流子隧穿更容易,这样就不存在FF损失。
实施例1有中间的二氧化硅层,对比例3没有中间的二氧化硅层,两者的FF性能表现出电参数差,这说明没有二氧化硅底电池与顶电池之间的隧穿效果变差了,既载流子不能从下层到上层,或者上层到下层,所以可以看出二氧化硅层在隧穿过程中起着很重要的作用,二氧化硅层其本身就具有较好的隧穿效果。
实施例1有中间的P型掺杂非晶硅,对比例4没有中间的P型差杂非晶硅,电参数差异首先是表现在FF上,以及结合对比例3,说明二氧化硅层的隧穿效果优于P型掺杂非晶硅,并且两者叠加可以去的最优的隧穿效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种钙钛矿叠层太阳能电池,包括硅底电池和钙钛矿顶电池,其特征在于,所述硅底电池的顶面依次叠层设置有氧化硅层和P型掺杂非晶硅层,所述钙钛矿顶电池的空穴传输层位于所述P型掺杂非晶硅层的表面;所述钙钛矿顶电池的钙钛矿吸光层内含有碱金属离子。
  2. 根据权利要求1所述的钙钛矿叠层太阳能电池,其特征在于,所述氧化硅层的厚度为0.5nm~2nm。
  3. 根据权利要求1或2所述的钙钛矿叠层太阳能电池,其特征在于,所述P型掺杂非晶硅层的厚度为10~20nm。
  4. 根据权利要求1至3中任一项所述的钙钛矿叠层太阳能电池,其特征在于,所述P型掺杂非晶硅层的掺杂浓度为1018cm-3~1020cm-3
  5. 根据权利要求1至4中任一项所述的钙钛矿叠层太阳能电池,其特征在于,所述碱金属离子为钾离子。
  6. 一种如权利要求1至5中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,包括:
    提供所述硅底电池;
    在所述硅底电池的顶面沉积所述氧化硅层;
    在所述氧化硅层的表面沉积所述P型掺杂非晶硅层;
    在所述P型掺杂非晶硅层表面形成所述钙钛矿顶电池;其中,采用含有碱金属离子盐的原料制备钙钛矿吸光层。
  7. 根据权利要求6所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,采用PECVD磁控溅射设备沉积所述P型掺杂非晶硅层,沉积条件为:H2、SiH4、CO2和B2H6的流量比为(1~20):1:(1~5):(1~5),气压范围为(0.4~1.0)mbar,射频功率范围为(300~1200)W。
  8. 根据权利要求6或7所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述碱金属离子盐为钾盐。
  9. 根据权利要求6至8中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,在所述P型掺杂非晶硅层表面形成所述钙钛矿顶电池的步骤中:制备钙钛矿吸光层的原料包括碱金属离子盐、PbI2、PbBr2、CH3NH3Br、CH(NH2)2I、二甲基甲酰胺和二甲基亚砜。
  10. 根据权利要求9所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述PbI2的浓度为1.0-1.5mol/L。
  11. 根据权利要求9或10所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述PbBr2的浓度为0.20-0.25mol/L。
  12. 根据权利要求9至11中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述CH3NH3Br的浓度为0.20-0.25mol/L。
  13. 根据权利要求9至12中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述CH(NH2)2I的浓度为1.0-1.3mol/L。
  14. 根据权利要求9至13中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述碱金属离子盐的摩尔浓度为所述PbI2、PbBr2、CH3NH3Br和CH(NH2)2I摩尔浓度之和的5%~7.5%。
  15. 根据权利要求9至14中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述碱金属离子盐为钾盐。
  16. 根据权利要求9至15中任一项所述的钙钛矿叠层太阳能电池的制备方法,其特征在于,所述硅底电池的制备方法包括:
    对N型掺杂硅片进行制绒;
    在所述N型掺杂硅片的正面和背面分别沉积5nm~10nm厚的本征非晶硅层,在所述N型掺杂硅片的正面沉积10~20nm厚的N型掺杂非晶硅掺杂层;以及
    在所述N型掺杂硅片的背面沉积10~20nm厚的P型掺杂非晶硅层。
PCT/CN2023/109835 2022-09-07 2023-07-28 钙钛矿叠层太阳能电池及其制备方法 WO2024051382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211100154.9A CN115621331A (zh) 2022-09-07 2022-09-07 一种钙钛矿叠层太阳能电池及其制备方法
CN202211100154.9 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024051382A1 true WO2024051382A1 (zh) 2024-03-14

Family

ID=84858842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109835 WO2024051382A1 (zh) 2022-09-07 2023-07-28 钙钛矿叠层太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115621331A (zh)
WO (1) WO2024051382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621331A (zh) * 2022-09-07 2023-01-17 通威太阳能(安徽)有限公司 一种钙钛矿叠层太阳能电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170077339A1 (en) * 2015-09-14 2017-03-16 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures
CN107564989A (zh) * 2017-07-20 2018-01-09 南开大学 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
CN108649122A (zh) * 2018-05-16 2018-10-12 君泰创新(北京)科技有限公司 一种吸光层材料、太阳能电池及太阳能电池的制备方法
CN111710746A (zh) * 2020-06-18 2020-09-25 浙江浙能技术研究院有限公司 一种钙钛矿/晶硅叠层太阳电池结构
CN113451434A (zh) * 2020-03-27 2021-09-28 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN114447126A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法
CN114792704A (zh) * 2022-03-29 2022-07-26 宣城先进光伏技术有限公司 一种钙钛矿/硅异质结叠层太阳能电池及其制备方法
CN115621331A (zh) * 2022-09-07 2023-01-17 通威太阳能(安徽)有限公司 一种钙钛矿叠层太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524637B1 (ko) * 2020-08-28 2023-04-21 인천대학교 산학협력단 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법
CN113594372A (zh) * 2021-07-29 2021-11-02 通威太阳能(安徽)有限公司 硅/钙钛矿叠层太阳能电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170077339A1 (en) * 2015-09-14 2017-03-16 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures
CN107564989A (zh) * 2017-07-20 2018-01-09 南开大学 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
CN108649122A (zh) * 2018-05-16 2018-10-12 君泰创新(北京)科技有限公司 一种吸光层材料、太阳能电池及太阳能电池的制备方法
CN113451434A (zh) * 2020-03-27 2021-09-28 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN111710746A (zh) * 2020-06-18 2020-09-25 浙江浙能技术研究院有限公司 一种钙钛矿/晶硅叠层太阳电池结构
CN114447126A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法
CN114792704A (zh) * 2022-03-29 2022-07-26 宣城先进光伏技术有限公司 一种钙钛矿/硅异质结叠层太阳能电池及其制备方法
CN115621331A (zh) * 2022-09-07 2023-01-17 通威太阳能(安徽)有限公司 一种钙钛矿叠层太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN115621331A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2022037653A1 (zh) 一种叠层电池
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
WO2024051382A1 (zh) 钙钛矿叠层太阳能电池及其制备方法
WO2023124046A1 (zh) 一种隧穿氧化层、n型双面太阳能晶硅电池及制备方法
CN105609643A (zh) 一种钙钛矿型太阳能电池及制备方法
CN114447126B (zh) 一种太阳能电池及其制备方法
WO2011131000A1 (zh) 实现太阳能电池背表面缓变叠层钝化薄膜的方法
CN113013277A (zh) 一种叠层太阳电池及其制备方法
CN211654823U (zh) 钙钛矿/N型TOPCon/钙钛矿叠层太阳能电池
Chan et al. High-performance perovskite solar cells based on low-temperature processed electron extraction layer
CN114497237A (zh) 一种TOPCon电池的叠层钝化结构和TOPCon电池
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
CN114975792B (zh) 一种钙钛矿太阳能电池及其制备方法
CN111640867A (zh) 空穴传输层及其制作方法、钙钛矿/硅基异质结叠层太阳能电池及其制作方法
WO2012171146A1 (zh) 包含新型减反射层的薄膜太阳能电池及其制造方法
WO2023097646A1 (zh) 钙钛矿太阳能电池、光伏组件
WO2021196606A1 (zh) 叠层光伏器件及生产方法
CN214505521U (zh) 一种叠层太阳电池
WO2022242067A1 (zh) 一种perc电池背钝化结构、perc电池及制备方法
CN113506842B (zh) 异质结太阳能电池的制备方法
CN114447127A (zh) 一种太阳能电池及其制备方法
CN104241410B (zh) 复合硅基材料及其制法和应用
Zheng et al. Hierarchically Anatase TiO2 microspheres composed of tiny octahedra used as mesoporous layer in perovskite solar cells
WO2024140473A1 (zh) 一种太阳能电池及其制备方法
CN216528903U (zh) 一种TOPCon电池的叠层钝化结构和TOPCon电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862083

Country of ref document: EP

Kind code of ref document: A1