WO2024051091A1 - 一种吸收溶剂废液的回收方法以及co2捕集方法 - Google Patents

一种吸收溶剂废液的回收方法以及co2捕集方法 Download PDF

Info

Publication number
WO2024051091A1
WO2024051091A1 PCT/CN2023/076675 CN2023076675W WO2024051091A1 WO 2024051091 A1 WO2024051091 A1 WO 2024051091A1 CN 2023076675 W CN2023076675 W CN 2023076675W WO 2024051091 A1 WO2024051091 A1 WO 2024051091A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed slurry
waste
adsorbent
solid
waste liquid
Prior art date
Application number
PCT/CN2023/076675
Other languages
English (en)
French (fr)
Inventor
刘蓉
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024051091A1 publication Critical patent/WO2024051091A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • This application relates to the technical field of CO 2 capture, specifically to a recovery method for absorbing solvent waste liquid and a CO 2 capture method.
  • the chemical absorption CO2 capture method utilizes the acidic characteristics of CO2 , uses alkaline solvents to absorb acid-base chemical reactions, and then uses reverse reactions to regenerate the solvent.
  • the main absorption solvent is alcoholamine, which uses an alcoholamine aqueous solution with hydroxyl and amine groups as the absorption solvent, and uses an absorption tower and a regeneration tower to form a system to achieve CO 2 capture.
  • the pollutants emitted by the chemical absorption CO 2 capture device are mainly the absorption solvent waste liquid that exits the absorption tower and absorbs SO 2 , CO 2 and other impurities in the flue gas/tail gas.
  • the main component of the absorption solvent waste liquid is organic amines, which is ineffective.
  • the treatment of organic amine solvent waste liquid has become a problem that plagues technological development. Direct discharge will cause an increase in COD indicators and cause water pollution.
  • long-term use of organic amine solvent waste liquid will self-polymerize to form toxic and carcinogenic substances. Diethylene glycol and other harmful substances.
  • the technical problem to be solved by this application is to overcome the shortcoming of the existing technology that cannot effectively recycle and utilize the waste solvent absorption liquid, thereby providing a recycling method for the waste solvent absorption liquid.
  • a recycling method for absorbing solvent waste liquid including:
  • the mixed slurry is reacted at 60-150°C;
  • the adsorbent is solid waste containing alkaline substances.
  • the absorption solvent waste liquid refers to CO 2 capture using the chemical absorption method using alcoholamine as the absorption solvent, and the pollutants emitted are mainly flue gases absorbed by the absorption tower. / Absorption solvent waste liquid for SO 2 , CO 2 and other impurities in the tail gas.
  • the main component of the absorption solvent waste liquid is organic amines.
  • the reaction is performed at 60-150°C, such as 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C or 150°C, if the temperature is lower than If the temperature is 60°C, the reaction rate of the adsorbent to absorb harmful substances in the solvent waste liquid is too slow. If the temperature is higher than 150°C, it is not conducive for the adsorbent to absorb the harmful substances in the solvent waste liquid. From the perspective of increasing the adsorption reaction rate, the reaction temperature is preferably 70-90°C, and most preferably 80°C.
  • reaction time is 2-5h.
  • the adsorbent is selected from carbide slag, fly ash, At least one or a combination of at least one of steel slag, slag or waste cement, and the combination can be a physical mixture of at least one of the above solid wastes.
  • the solid waste is modified, and the modification method includes:
  • step (b) Calcining the solid waste obtained in step (a) at 500-800°C for 1-5 hours;
  • step (c) dispersing the calcined product of step (b) in a strong alkaline solution, soaking it, and then drying;
  • step (d) Calculate the product obtained in step (c) at 500-800°C for 1-3 hours.
  • this treatment method can greatly improve the performance of solid waste.
  • the promotion effect of water is reflected in that the presence of water promotes the generation of hydroxides in solid waste, thereby promoting the enhancement of mineralization properties; on the other hand, the water's The pore-forming effect changes the pore structure of the solid waste and significantly improves the physical properties of the absorbent.
  • Typical but non-limiting solid waste modification methods include:
  • step (d) Place the product after step (c) in a muffle furnace and calcine it at 500-800°C for 1 hour in an air atmosphere. Modified solid waste is obtained.
  • the pH of the mixed slurry is 8 to 10, such as 8.2, 8.4, 8.6, 8.8, 9, 9.2, 9.4, 9.6, 9.8 or 10. Limiting the pH of the mixed slurry can increase the adsorption reaction rate and ensure the stability of the solvent.
  • the pH is preferably 8. Specifically, the pH of the mixed slurry can be adjusted by adjusting the dosage ratio of the adsorbent and the waste absorption solvent.
  • the solid-liquid ratio of the mixed slurry is 80-500g/L, and the solid-liquid ratio refers to the ratio of the mass g of the adsorbent to the volume L of the absorbed solvent waste liquid .
  • the solid-liquid ratio is, for example, 100g/L, 150g/L, 200g/L, 250g/L, 300g/L, 350g/L, 400g/L, 450g/L or 500g/L. Such a limit can ensure that the adsorbent adsorbs and absorbs the harmful substances in the solvent waste liquid and reacts thoroughly.
  • the solid-liquid ratio is preferably 150-250g/L; the most preferred solid-liquid ratio is 200g/L.
  • reaction vessel of the present application the reaction can be carried out in a stirred tank.
  • microwave heating is used to react the mixed slurry at 60 to 150°C.
  • the frequency of the ultrasound is 20KHz to 120KHz, such as 20KHz, 30KHz, 40KHz, 50KHz, 60KHz, 70KHz, 80KHz, 90KHz or 100KHz.
  • the ultrasonic frequency is 20-40KHz.
  • the reaction is carried out under a pressure of 1 to 5MPa.
  • the pressure is, for example, 1MPa, 1.5MPa, 2MPa, 2.5MPa, 3MPa, 3.5MPa, 4MPa, 4.5MPa. Or 5MPa. This can ensure the smooth progress of the adsorption reaction.
  • the pressure is preferably 2-4MPa.
  • a recovery method for absorbing solvent waste liquid includes include:
  • the mixed slurry is placed in a stirring tank and heated by microwave. to 60-150°C, and react under the conditions of sealing, ultrasonic frequency of 20KHz ⁇ 100KHz and pressure of 1-5MPa.
  • the present application also provides a CO 2 capture method including the recovery method of the absorption solvent waste liquid as described above.
  • the method for recycling the absorbed solvent waste liquid uses solid waste containing alkaline substances as an adsorbent to treat the absorbed solvent waste liquid, and can convert the self-polymerization in the absorbed solvent waste liquid to form toxic and carcinogenic diethylene glycol and other harmful substances. Substances are adsorbed on solid waste, and the removal rate can reach more than 88%. After this treatment, the resulting absorbed solvent waste liquid can be recycled.
  • using solid waste as an adsorbent has low production costs, and the waste can also be utilized as solid waste.
  • the recycling method for absorbing solvent waste liquid provided by this application can greatly improve the performance of solid waste by modifying the solid waste.
  • the promotion effect of water is reflected in that the presence of water promotes the generation of hydroxide in the solid waste. , thus promoting the enhancement of mineralization performance; on the other hand, the pore-forming effect of water changes the pore structure of solid waste and significantly improves the physical properties of the absorbent.
  • a recycling method for absorbing solvent waste liquid including:
  • the mixed slurry is placed in a stirring tank and heated with microwave until The reaction was carried out for 3 hours at 80°C under the conditions of sealing, ultrasonic frequency of 20KHz and pressure of 3MPa.
  • fly ash has been modified as follows:
  • a recycling method for absorbing solvent waste liquid including:
  • the mixed slurry is placed in a stirring tank and heated to 150 by microwave. °C, under conditions of sealing, ultrasonic frequency of 80KHz and pressure of 5MPa The reaction was carried out for 5 hours.
  • carbide slag is modified as follows:
  • a recycling method for absorbing solvent waste liquid including:
  • the mixed slurry is placed in a stirring tank and heated to 60°C using microwaves. , the reaction was carried out for 2h under the conditions of sealing, ultrasonic frequency of 100KHz and pressure of 1MPa.
  • Example 1 Compared with Example 1, the difference between this example and Example 1 is that the pH is adjusted to 7.
  • the difference between this embodiment and Embodiment 1 is that the ultrasonic frequency is modified to 120KHz.
  • Example 1 Compared with Example 1, the difference between this embodiment and Example 1 is that the solid-liquid ratio is modified to 80g/L.
  • Example 1 Compared with Example 1, the difference between this example and Example 1 is that the adsorbent fly ash has not been modified.
  • Example 1 Compared with Example 1, the difference between this comparative example and Example 1 is that the reaction temperature is 40°C.
  • Example 1 Compared with Example 1, the difference between this comparative example and Example 1 is that the reaction temperature is 170°C.
  • pollutants refer to harmful substances such as diethylene glycol that self-polymerize to form toxic and carcinogenic diethylene glycol in the absorbed solvent waste liquid.
  • concentration of total harmful substances is 3.18 ⁇ 10 4 mg/L. Calculate the pollutant removal rate. The higher the removal rate, the better the effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本申请涉及一种吸收溶剂废液的回收方法以及CO2捕集方法。所述回收方法包括:提供吸附剂与吸收溶剂废液的混合浆液;和在超声以及密封条件下,使混合浆液在60~150℃条件下发生反应;所述吸附剂为含有碱性物质的固体废弃物。本申请采用含有碱性物质的固体废弃物作为吸附剂处理吸收溶剂废液,可以将吸收溶剂废液中的自聚合形成有毒和致癌的二甘醇等有害物质吸附在固体废弃物上,脱除率可达到88%以上。经过该处理,得到的吸收溶剂废液可以回收利用。此外,采用固体废弃物作为吸附剂,生产成本低,而且,该废弃物还可以进行固废利用。

Description

一种吸收溶剂废液的回收方法以及CO2捕集方法
相关申请的交叉引用
本申请要求在2022年9月9日提交中国专利局、申请号为202211102344.4、发明名称为“一种吸收溶剂废液的回收方法以及CO2捕集方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及CO2捕集技术领域,具体涉及一种吸收溶剂废液的回收方法以及CO2捕集方法。
背景技术
化学吸收法CO2捕集是利用CO2的酸性特点,采用碱性溶剂进行酸碱化学反应吸收,然后借助逆反应实现溶剂的再生。目前主要的吸收溶剂是醇胺,其利用带有羟基和胺基的醇胺水溶液作为吸收溶剂,利用吸收塔和再生塔组成系统,实现CO2的捕集。
化学吸收法CO2捕集装置排放的污染物主要为出吸收塔吸收了烟气/尾气中的SO2、CO2及其它杂质的吸收溶剂废液,吸收溶剂废液主要成分是有机胺,失效的有机胺吸收溶剂废液的处理成为一个困扰技术发展的难题,直接排放会造成COD指标的升高,造成水体污染,而且长期使用的有机胺吸收溶剂废液会发生自聚合形成有毒和致癌的二甘醇等有害物质。
如何对吸收溶剂废液进行无害化处理,从而达到最大限度减少排放, 降低排放液的COD指标,减少环保压力,成了我们当前面临的一个重要问题。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中无法有效回收利用吸收溶剂废液的缺陷,从而提供一种吸收溶剂废液的回收方法。
为了上述上述问题,本申请采用了如下技术方案:
一种吸收溶剂废液的回收方法,包括:
提供吸附剂与吸收溶剂废液的混合浆液;和
在超声以及密封条件下,使混合浆液在60-150℃条件下发生反应;
所述吸附剂为含有碱性物质的固体废弃物。
需要说明的是:在本申请中,所述吸收溶剂废液指的是:采用醇胺作为吸收溶剂的化学吸收法进行CO2捕集,其排放的污染物主要为出吸收塔吸收了烟气/尾气中的SO2、CO2及其它杂质的吸收溶剂废液,吸收溶剂废液主要成分是有机胺。
在本申请中,所述反应在60-150℃反应,例如60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃或150℃,如果温度低于60℃,则吸附剂吸附吸收溶剂废液中的有害物质反应速率太慢,如果温度高于150℃,则不利于吸附剂吸附吸收溶剂废液中的有害物。从提高吸附反应速率的角度考虑,反应温度优选为70-90℃,最优选为80℃。
在本申请中,反应时间为2-5h。
在本申请一种可选的实施方式中,所述吸附剂选自电石渣、粉煤灰、 钢渣、矿渣或废旧水泥中的至少一种或几种的组合,所述组合可以是上述固体废弃物中的至少一种的物理混合。
在本申请一种可选的实施方式中,所述固体废弃物经过改性,改性方法包括:
(a)将固体废弃物分散在水中浸泡,然后干燥;
(b)将步骤(a)得到的固体废弃物在500-800℃煅烧1-5h;
(c)将步骤(b)的煅烧产物分散在强碱溶液浸泡,然后干燥;和
(d)将步骤(c)得到的产物在500-800℃煅烧1-3h。
采用该处理方法能大大改善固体废弃物的性能,水的促进作用一方面体现在,水的存在促进固体废弃物中氢氧化物的生成,从而促进了矿化性能增强;另一方面,水的造孔作用改变了固体废弃物的孔隙结构,显著改善了吸收剂的物理性能。
典型但非限制性的固体废弃物的改性方法包括:
(a)将固体废弃物分散于去离子水,液固比为1:1-10:1,置于磁力搅拌器上,25℃下搅拌2h,静置12h后,去除上层清液,并将样品至于60-100℃烘箱中干燥24h,干燥产物进行研磨;
(b)将研磨后的产物置于马弗炉中空气气氛下500-800℃煅烧1h;
(c)将煅烧后的产物分散于5-25wt.%的氢氧化钠溶液中,液固比为1:1-10:1,置于磁力搅拌器上,25℃下搅拌4h;静置12h后,去除上层清液,并用去离子水漂洗,将漂洗产物至于60-100℃烘箱中干燥24h,干燥后产物进行研磨;和
(d)将步骤(c)后的产物置于马弗炉中空气气氛下500-800℃煅烧1h, 得到改性后的固体废弃物。
在本申请一种可选的实施方式中,所述混合浆液的pH为8~10,例如8.2、8.4、8.6、8.8、9、9.2、9.4、9.6、9.8或10。混合浆液pH的限定能够提高吸附反应速率,同时保证溶剂稳定性的,pH优选为8。具体地,所述混合浆液的pH可通过调节吸附剂与吸收溶剂废液的用量配比来调节。
在本申请一种可选的实施方式中,所述混合浆液的固液比为80-500g/L,所述固液比指的是吸附剂的质量g与吸收溶剂废液的体积L的比值。所述固液比例如为100g/L、150g/L、200g/L、250g/L、300g/L、350g/L、400g/L、450g/L或500g/L。如此限定,能够保证吸附剂吸附吸收溶剂废液中的有害物质反应彻底进行,固液比优选为150-250g/L;最优选的固液比为200g/L。
作为本申请的反应容器,可以在搅拌釜中进行反应。
在本申请一种可选的实施方式中,采用微波加热的方式,使混合浆液在60~150℃条件下发生反应。
在本申请一种可选的实施方式中,所述超声的频率为20KHz~120KHz,例如20KHz、30KHz、40KHz、50KHz、60KHz、70KHz、80KHz、90KHz或100KHz。如此限定,能够保证超声效果,使吸附反应速率较快,吸附剂完全吸附有害物质,优选的,超声的频率为20-40KHz。
在本申请一种可选的实施方式中,所述反应在压力为1~5MPa的条件下进行,所述压力例如为1MPa、1.5MPa、2MPa、2.5MPa、3MPa、3.5MPa、4MPa、4.5MPa或5MPa。如此能够保证吸附反应的顺利进行,如所述压力优选为2-4MPa。
在本申请一种可选的实施方式中,一种吸收溶剂废液的回收方法,包 括:
将吸附剂与待处理吸收溶剂废液混合,得到混合浆液,混合浆液pH值为8~10,混合浆液固液比为100-500g/L,将所述混合浆液置于搅拌釜,采用微波加热到60-150℃,在密封、超声频率为20KHz~100KHz以及压力为1-5MPa的条件下进行反应。
本申请还提供了一种包括如上所述的吸收溶剂废液的回收方法的CO2捕集方法。
有益效果:
本申请提供的吸收溶剂废液的回收方法,采用含有碱性物质的固体废弃物作为吸附剂处理吸收溶剂废液,可以将吸收溶剂废液中的自聚合形成有毒和致癌的二甘醇等有害物质吸附在固体废弃物上,脱除率可达到88%以上。经过该处理,得到的吸收溶剂废液可以回收利用。此外,采用固体废弃物作为吸附剂,生产成本低,而且,该废弃物还可以进行固废利用。
本申请提供的吸收溶剂废液的回收方法,通过对固体废弃物进行改性能大大改善固体废弃物的性能,水的促进作用一方面体现在,水的存在促进固体废弃物中氢氧化物的生成,从而促进了矿化性能增强;另一方面,水的造孔作用改变了固体废弃物的孔隙结构,显著改善了吸收剂的物理性能。
具体实施方式
实施例1
一种吸收溶剂废液的回收方法,包括:
将吸附剂粉煤灰与待处理吸收溶剂废液混合,得到混合浆液,混合浆液pH值为8,混合浆液固液比为200g/L,将所述混合浆液置于搅拌釜,采用微波加热到80℃,在密封、超声频率为20KHz以及压力为3MPa的条件下进行反应3h。
其中,所述粉煤灰经过如下改性:
(1)直接水合:取100g粉煤灰加入500ml圆底烧瓶中,加入去离子水,液固比为5:1;将烧瓶置于磁力搅拌器上,25℃下搅拌2h;静置12h后,去除上层清液,并将样品至于80℃烘箱中烘24h,烘干后样品经研磨后记为H;
(2)煅烧:将直接水合后样品H,置于马弗炉中空气气氛下700℃煅烧1h,得到煅烧产物;
(3)碱洗:取适量上述步骤得到的煅烧产物于500ml圆底烧瓶中,加入25wt.%的氢氧化钠溶液,液固比为6:1;将烧瓶置于磁力搅拌器上,25℃下搅拌4h;静置12h后,去除上层清液,并用去离子水漂洗。将样品至于80℃烘箱中烘24h,烘干后样品经研磨后记为A;
(4)碱洗后煅烧:将碱洗样品A,置于马弗炉中空气气氛下600℃煅烧1h,得到改性后的粉煤灰。
实施例2
一种吸收溶剂废液的回收方法,包括:
将吸附剂电石渣与待处理吸收溶剂废液混合,得到混合浆液,混合浆液pH值为9,混合浆液固液比为100g/L,将所述混合浆液置于搅拌釜,采用微波加热到150℃,在密封、超声频率为80KHz以及压力为5MPa的条 件下进行反应5h。
其中,所述电石渣经过如下改性:
(1)直接水合:取适量电石渣加入500ml圆底烧瓶中,加入去离子水,液固比为4:1;将烧瓶置于磁力搅拌器上,25℃下搅拌2h;静置12h后,去除上层清液,并将样品至于70℃烘箱中烘24h,烘干后样品经研磨后记为H;
(2)煅烧:将直接水合后样品H,置于马弗炉中空气气氛下600℃煅烧1h,得到煅烧产物;
(3)碱洗:取适量上述步骤的煅烧产物于500ml圆底烧瓶中,加入15wt.%的氢氧化钠溶液,液固比为6:1;将烧瓶置于磁力搅拌器上,25℃下搅拌4h;静置12h后,去除上层清液,并用去离子水漂洗。将样品至于90℃烘箱中烘24h,烘干后样品经研磨后记为A;
(4)碱洗后煅烧:将碱洗样品A,置于马弗炉中空气气氛下700℃煅烧1h,得到改性后的电石渣。
实施例3
一种吸收溶剂废液的回收方法,包括:
将吸附剂钢渣与待处理吸收溶剂废液混合,得到混合浆液,混合浆液pH值为10,混合浆液固液比为500g/L,将所述混合浆液置于搅拌釜,采用微波加热到60℃,在密封、超声频率为100KHz以及压力为1MPa的条件下进行反应2h。
其中,所述钢渣经过如下改性:
(1)直接水合:取适量钢渣物加入500ml圆底烧瓶中,加入去离子水,液固比为8:1;将烧瓶置于磁力搅拌器上,25℃下搅拌2h;静置12h后,去 除上层清液,并将样品至于100℃烘箱中烘24h,烘干后样品经研磨后记为H;
(2)煅烧:将直接水合后样品H,置于马弗炉中空气气氛下650℃煅烧1h,得煅烧产物;
(3)碱洗:取适量上述步骤的煅烧产物于500ml圆底烧瓶中,加入8wt.%的氢氧化钠溶液,液固比为7:1;将烧瓶置于磁力搅拌器上,25℃下搅拌4h;静置12h后,去除上层清液,并用去离子水漂洗。将样品至于90℃烘箱中烘24h,烘干后样品经研磨后记为A;
(4)碱洗后煅烧:将碱洗样品A,置于马弗炉中空气气氛下750℃煅烧1h,得到改性后的钢渣。
实施例4
本实施例与实施例1相比,区别在于将pH调整为7。
实施例5
本实施例与实施例1相比,区别在于将超声频率修改为120KHz。
实施例6
本实施例与实施例1相比,区别在于将固液比修改为80g/L。
实施例7
本实施例与实施例1相比,区别在于吸附剂粉煤灰未经改性处理。
对比例1
本对比例与实施例1相比,区别在于反应温度为40℃。
对比例2
本对比例与实施例1相比,区别在于反应温度为170℃。
采用液相色谱分析处理前后吸收溶剂废液中的污染物质浓度(其中,污染物指吸收溶剂废液中的自聚合形成有毒和致癌的二甘醇等有害物质),处理之前吸收溶剂废液中总有害物质的浓度为3.18×104mg/L,计算污染物脱除率,脱除率越高说明效果越好。
实施例1-7和对比例1-2的脱除率如表1所示:
表1
由实验结果可知,本申请实施例1-7的污染物脱除率在83%以上,明显高于对比例,实施例4-6与实施例1之间的数据对比可知,通过调节pH、固液比和微博辐射的频率能够进一步提升吸收溶剂废液中的污染物脱除率。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种吸收溶剂废液的回收方法,其特征在于,包括:
    提供吸附剂与吸收溶剂废液的混合浆液;和
    在超声以及密封条件下,使混合浆液在60-150℃条件下发生反应;
    所述吸附剂为含有碱性物质的固体废弃物。
  2. 如权利要求1所述的方法,其特征在于,反应温度为70-90℃,反应时间为2-5h;
    和/或,所述吸附剂选自粉煤灰、电石渣、钢渣、矿渣或废旧水泥中的至少一种,优选为粉煤灰、钢渣或废旧水泥中的至少一种与电石渣的组合。
  3. 如权利要求1或2所述的方法,其特征在于,所述固体废弃物经过改性,改性方法包括:
    (a)将固体废弃物分散在水中浸泡,然后干燥;
    (b)将步骤(a)得到的固体废弃物在500-800℃煅烧1-5h;
    (c)将步骤(b)的煅烧产物分散在强碱溶液浸泡,然后干燥;和
    (d)将步骤(c)得到的产物在500-800℃煅烧1-3h。
  4. 如权利要求1或2所述的方法,其特征在于,所述混合浆液的pH为7-10,优选为8-9。
  5. 如权利要求1或2所述的方法,其特征在于,所述混合浆液的固液比为80-500g/L,优选为150-200g/L。
  6. 如权利要求1或2所述的方法,其特征在于,采用微波加热的方式,使混合浆液在60-150℃条件下发生反应。
  7. 如权利要求1或2所述的方法,其特征在于,所述超声的频率为20KHz-120KHz,优选为20KHz-40KHz。
  8. 如权利要求1或2所述的方法,其特征在于,所述反应在压力为1-5MPa的条件下进行,优选为2-4MPa。
  9. 如权利要求1或2所述的方法,其特征在于,包括:
    将吸附剂与待处理吸收溶剂废液混合,得到混合浆液,控制混合浆液pH值为8~10,混合浆液固液比为100-500g/L,将所述混合浆液置于搅拌釜,采用微波加热到60-150℃,在密封、超声频率为20KHz-100KHz以及压力为1-5MPa的条件下进行反应。
  10. 一种CO2捕集方法,其特征在于,包括如权利要求1-9任一项所述的吸收溶剂废液的回收方法。
PCT/CN2023/076675 2022-09-09 2023-02-17 一种吸收溶剂废液的回收方法以及co2捕集方法 WO2024051091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211102344.4A CN115636459A (zh) 2022-09-09 2022-09-09 一种吸收溶剂废液的回收方法以及co2捕集方法
CN202211102344.4 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024051091A1 true WO2024051091A1 (zh) 2024-03-14

Family

ID=84941472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076675 WO2024051091A1 (zh) 2022-09-09 2023-02-17 一种吸收溶剂废液的回收方法以及co2捕集方法

Country Status (2)

Country Link
CN (1) CN115636459A (zh)
WO (1) WO2024051091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636459A (zh) * 2022-09-09 2023-01-24 华能国际电力股份有限公司 一种吸收溶剂废液的回收方法以及co2捕集方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074092A (ko) * 2010-12-27 2012-07-05 재단법인 포항산업과학연구원 폐 화학약품 처리에 의한 고로 슬래그 흡착제 제조방법
CN108704445A (zh) * 2018-05-23 2018-10-26 四川大学 一种降低负载co2有机胺再生能耗耦合高炉渣矿化的方法
CN108975739A (zh) * 2018-08-10 2018-12-11 安徽省神洲建材科技有限公司 一种改性粉煤灰的制备方法
CN113713778A (zh) * 2021-10-17 2021-11-30 盐城师范学院 用于co2捕获的醇胺改性粉煤灰吸附剂的制备方法
CN113786703A (zh) * 2021-10-14 2021-12-14 辽宁科技大学 一种利用微波外场及工业废渣进行高效烟气吸附与净化的方法
CN115636459A (zh) * 2022-09-09 2023-01-24 华能国际电力股份有限公司 一种吸收溶剂废液的回收方法以及co2捕集方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528549B1 (ko) * 2013-09-10 2015-06-12 세종대학교산학협력단 이산화탄소 흡수제, 이의 제조 방법, 및 이를 포함하는 알칼리 시멘트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074092A (ko) * 2010-12-27 2012-07-05 재단법인 포항산업과학연구원 폐 화학약품 처리에 의한 고로 슬래그 흡착제 제조방법
CN108704445A (zh) * 2018-05-23 2018-10-26 四川大学 一种降低负载co2有机胺再生能耗耦合高炉渣矿化的方法
CN108975739A (zh) * 2018-08-10 2018-12-11 安徽省神洲建材科技有限公司 一种改性粉煤灰的制备方法
CN113786703A (zh) * 2021-10-14 2021-12-14 辽宁科技大学 一种利用微波外场及工业废渣进行高效烟气吸附与净化的方法
CN113713778A (zh) * 2021-10-17 2021-11-30 盐城师范学院 用于co2捕获的醇胺改性粉煤灰吸附剂的制备方法
CN115636459A (zh) * 2022-09-09 2023-01-24 华能国际电力股份有限公司 一种吸收溶剂废液的回收方法以及co2捕集方法

Also Published As

Publication number Publication date
CN115636459A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN101693162B (zh) 一种利用微波辐射下的活性炭对锅炉烟气同时脱硫脱硝的方法
WO2024051091A1 (zh) 一种吸收溶剂废液的回收方法以及co2捕集方法
CN105921139B (zh) 一种汞吸附剂及其制备方法和应用
CN113499778B (zh) 一种煤气化渣水泥窑炉高温烟气脱硝催化剂及其制备方法
CN206881480U (zh) 一种含硫废气处理装置
CN111318157A (zh) 一种改性电石渣脱硫脱硝剂的制备方法、产品及应用
CN114558449A (zh) 一种烟气脱硝剂的制备方法和应用
CN116272334B (zh) 一种耦合脱硫脱硝药剂、制备方法及其使用方法
CN116272860B (zh) 一种VOCs治理的再生活性炭及其制备方法
CN115069257A (zh) 一种利用芬顿铁泥制备脱硝催化剂的方法
CN105056950A (zh) 一种基于煤基炭的微波脱NOx催化剂及其制备方法
CN115814791A (zh) 一种负载型氧化铜/γ-氧化铝催化剂及其制备与应用
KR102349120B1 (ko) 배기가스 정화제 및 이를 이용한 배기가스 정화방법
CN104548893B (zh) 一种低温复合干式脱硫材料及其制备方法
CN108434977A (zh) 一种磷矿浆液相催化氧化同时脱硫脱硝的方法
CN114192115A (zh) 二氧化碳捕捉剂的制备方法及其应用
CN109647410B (zh) 用于处理EDTA-Cu废水的负载型膨胀石墨催化剂的制备方法
CN113210001A (zh) 一种暖贴残渣催化剂及其制备方法和其活化过二硫酸盐高效降解有机污染物的应用
CN105195153B (zh) 一种利用花生壳制备脱硫催化剂的方法
CN111617753A (zh) 一种Ce-Cu/γ-Al2O3负载型催化剂催化湿式氧化再生活性炭的方法
CN117960173B (zh) 一种负载-共混型臭氧催化剂的制备方法
WO2013097677A1 (zh) 一种微波催化剂及其制备方法和应用
CN113654362B (zh) 一种二甲苯加热炉低温余热高效回收系统
CN112588799B (zh) 一种用于干化灰渣除氯的方法
CN113322114B (zh) 一种煤矸石基型煤固硫剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861801

Country of ref document: EP

Kind code of ref document: A1