WO2013097677A1 - 一种微波催化剂及其制备方法和应用 - Google Patents

一种微波催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2013097677A1
WO2013097677A1 PCT/CN2012/087347 CN2012087347W WO2013097677A1 WO 2013097677 A1 WO2013097677 A1 WO 2013097677A1 CN 2012087347 W CN2012087347 W CN 2012087347W WO 2013097677 A1 WO2013097677 A1 WO 2013097677A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
catalyst
zsm
component
mass
Prior art date
Application number
PCT/CN2012/087347
Other languages
English (en)
French (fr)
Inventor
周继承
王哲
王宏礼
王蒙
毛桂月
蒋尊芳
高令飞
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011104511924A external-priority patent/CN102407114A/zh
Priority claimed from CN2011104511182A external-priority patent/CN102407113A/zh
Application filed by 湘潭大学 filed Critical 湘潭大学
Priority to US14/369,242 priority Critical patent/US9168514B2/en
Publication of WO2013097677A1 publication Critical patent/WO2013097677A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/806Microwaves

Definitions

  • the invention relates to the field of catalytic technology, in particular to a microwave catalyst and an application thereof.
  • the N3 ⁇ 4-SCR method is one of the most mature methods in the existing nitrogen oxide treatment technology, which can reduce the nitrogen oxides by 80-90% at lower temperatures. Large consumption, easy poisoning of catalysts, high requirements for pipeline equipment, and low denitration efficiency.
  • microwaves can directly interact with chemical systems to promote various chemical reactions. Microwave effect not only has “heating effect” but also special "non-thermal effect". Since Harweii laboratory successfully processed nuclear waste using microwave technology, microwave technology has been widely used in organic chemistry > inorganic material chemistry, analytical chemistry and other fields. Application, and gradually opened up a new field of microwave chemistry. A large number of literatures have reported the application of microwave technology in chemical reactions, so research in this field is currently a hot topic.
  • the surface bonding ability of the solid catalyst is the ability to adsorb and activate the reaction molecule, which depends on the surface and its morphology.
  • Cu species distributed on the outer surface of the molecular sieve may be more beneficial to NO activation.
  • Previous experimental results show that a considerable portion of the Qi species migrated into the molecular sieve pores after the catalyst prepared by the ion exchange method was calcined at a high temperature.
  • the catalyst was prepared by a microwave solid phase method and a solid phase dispersion method.
  • the solid phase dispersion method is based on the principle of spontaneous dispersion of metal salts or metal oxides on a large specific surface area support. Due to the influence of metal ion migration and other factors, after mechanical mixing, the solid ion exchange reaction is initiated by heating.
  • the heating temperature is high and the reaction time is long, so the distribution of the metal component on the inner and outer surfaces of the molecular sieve is difficult to be effectively controlled.
  • Microwave is a kind of non-ionizing electromagnetic energy. Microwave heating has the characteristics of rapid and special electromagnetic effect and no damage to the heated material. Therefore, microwave heating can increase the heating rate and control the distribution of the active component on the inner and outer surfaces of the molecular sieve.
  • scientists from various countries have conducted a lot of research on Cu/ZSM-5 catalysts. There are also reports on the influence of the distribution of Cu species on Cu/ZSM-5 catalysts on the catalytic activity of NO. However, the conversion rate of NO by Cu/ZSM-5 catalyst is 70%, and the disadvantages are as follows: Cu/ZSM-5 catalyst has low conversion rate and low denitration efficiency, which does not meet emission requirements.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a microwave catalyst and the microwave catalyst provided by the invention in the denitration reaction, which can be applied to the denitration reaction with high conversion rate, energy saving, environmental protection and low cost.
  • a microwave catalyst including
  • a catalyst active component including a metal and/or metal vapor
  • microwave components including at least one of CuO, ferrite spinel or activated carbon
  • the composition of the ferrite spinel is MgFe0 4 .
  • component i) is a catalyst reactive center
  • component ii) is a microwave absorbing component, and its function is to absorb microwave heating, and to reduce the activation energy of the reaction after the action of microwave, so that the catalytic reaction is The low temperature achieves a good catalytic effect
  • component iii) is a carrier which also functions to partially absorb 3 ⁇ 4 waves.
  • the metal is selected from at least one selected from the group consisting of Cu. Mil, Ce»Ti, V, Mg or Fe, preferably Cu; the metal oxide is selected from the group consisting of Cu, Mn, Ce, At least one of oxides of Ti, V, Mg or Fe is preferably Cu(:).
  • the support has a porous structure capable of absorbing microwaves, preferably activated carbon and/or molecular sieves.
  • the molecular sieve is a ZSM type molecular sieve, a Y type molecular sieve or a ⁇ type molecular sieve, preferably a ZSM-5 molecular sieve.
  • the catalytic ruthenium preferably contains a catalyst of Cu-ZSM-5 or Cu-Y.
  • the mass content of Cu in Cu-ZS-5 is 2-12% of the mass of the ZSM-5 molecular sieve.
  • the mass content of Cu in the Cu-Y is the mass of the Y-type molecular sieve 2 ⁇
  • the mass content of component i) in the microwave catalyst is 10-70%
  • the mass content of CuO as component ii) in the catalyst is preferably from 1 to 35%, preferably from 30 to 45%, and the mass of activated carbon as component ii in the microwave catalyst is from 5 to 35%. Preferably, it is 5 to 30%.
  • the invention also provides a method for preparing the microwave catalyst, which comprises preparing the components i) and iii) by an ion exchange method, a solid phase dispersion method or a microwave solid phase reaction method to prepare an active component.
  • the carrier is prepared by subjecting the carrier carrying the active component to component ii) by precipitation or coprecipitation.
  • the invention also provides a method for performing microwave catalytic removal of nitrogen oxides by using the microwave catalyst, comprising: filling the microwave catalyst in a microwave reactor of a microwave device to form a microwave catalytic reaction bed, which will be processed Passing the gas through the microwave catalytic reaction bed for 0, 2 to 5 seconds, preferably 1.5 to 4 seconds, and controlling the reaction temperature to be 150 - 6001; causing a gas-solid reaction between the gas to be treated and the microwave catalyst to cause nitrogen The oxide is converted to N 2 ; as such, the nitrogen oxides in the gas to be treated are removed.
  • the metal Cu is Cu-ZSM-5 composed in an ionic state, and the mass of the active component Cu accounts for 5% of the Cu-ZSM-5 mass, and CuO accounts for 40% of the mass of the microwave catalyst.
  • the microwave catalyst of the present embodiment is prepared by preparing the components i) and i) by ion exchange to the carrier Cu-ZSM-5 carrying the active component, and the active group is The carrier of the fraction is uniformly mixed with the component iU to prepare the microwave.
  • the catalyst CuO-Cu-ZSM 5 is obtained.
  • the microwave catalyst of the present embodiment is prepared by preparing the components Mn-AC by carrying out the components i) and iii) by solid phase dispersion method, and carrying the active component
  • the carrier is uniformly mixed with component ii) to prepare the microwave catalyst Mil-AC.
  • Example 3 The microwave catalyst of the embodiment includes
  • the metal C is Cu-ZSM-5 composed of an ion state
  • the mass of the Cu accounts for 5% of the mass of the Cu-ZSM-5
  • the mass of the activated carbon is 30% of the mass of the microwave catalyst.
  • the microwave catalyst of the present embodiment is prepared by preparing the components Cu and ZSM-5 carrying the active component by microwave solid phase reaction through the components i) and iii),
  • the microwave catalyst AC-Cu-ZSM-5 is prepared by uniformly mixing the carrier of the active component with component ii).
  • the 1st wave catalyst of the embodiment includes
  • ferrite spinel as both a catalyst active component and a catalyst support
  • activated carbon as an absorption component
  • the mass of the ferrite spinel accounts for 70% of the mass of the microwave.
  • the mass of the activated carbon is 30% of the mass of the microwave catalyst.
  • the microwave catalyst of the present embodiment is prepared by preparing the components U and m) by ion exchange to a carrier carrying the active component, and the carrier and component ii carrying the active component
  • the mixed catalyst is prepared to obtain the microwave catalyst.
  • the metal Cu is Cu-ZSM-5 composed of an ion state
  • Cu of the catalyst active component accounts for 5% of the mass of Cu-ZSM-5
  • the mass of CuO accounts for 25% of the mass of the microwave catalyst.
  • the activated carbon has a mass content of 30% by mass of the microwave catalyst.
  • the microwave catalyst according to the embodiment is prepared by the method of ion exchange by using the components i) and
  • the carrier Cu-ZSM-5 carrying the active component is prepared by uniformly mixing the carrier carrying the active component with the component ⁇ ) to obtain the microwave catalyzed ruthenium.
  • the copper content is 2 to 12%, preferably 3 8%, based on the total mass of Cu-ZSM-5.
  • the ZSM molecular sieve is a molecular sieve having a porous structure capable of absorbing microwaves.
  • the 4r is Cu-Y composed of Cu in an ionic state, and the mass of the Cu accounts for 5% of the mass of the Y-type molecular sieve, and the mass content of the activated carbon is 30% of the mass of the microwave catalyst.
  • the microwave catalyst of the present embodiment is prepared by preparing the components Cu and Y carrying the active component by the solid phase reaction method of the components U and iii), and the carrier is active.
  • the carrier of the component and the component ii) are uniformly mixed to prepare the microwave catalyst AC-Cu-Y.
  • the 1st wave catalyst of the embodiment includes
  • the metal Cu is Cu- ⁇ composed of an ionic state, and the mass of the Cu accounts for 10% of the mass of the ⁇ -type molecular sieve,
  • CuO accounts for 35% of the mass of the microwave catalyst.
  • the microwave catalyst of the present embodiment is prepared by preparing the components i) and) by ion exchange to the carrier Cu- ⁇ carrying the active component, and the carrier carrying the active component
  • the microwave catalyst CuO-Cu- ⁇ was prepared by mixing with component ii).
  • the microwave reaction tube of the microwave device is filled with a catalyst to form a microwave catalytic reaction bed.
  • the reaction temperature is 150 - 600 ⁇
  • the reaction time is 0.2 to 5 seconds
  • the treated gas is treated.
  • the gas-solid reaction occurs in the body and microwave catalysis, and the nitrogen oxides in the gas to be treated are removed by microwave.
  • the exhaust gas of the present invention is a mixed gas of N 2 and NO provided by Dalian Dante Gas Co., Ltd., and the NO concentration is l () 00 ppm.
  • the gas analyzer was a 42C O-N0 2 -NO x Analyzer manufactured in the United States.
  • the power of the microwave field is continuously adjustable from 0 - lOOOOw, the frequency is 2400 - 2500MHz, and the quartz tube reactor is WG 1/2.45- ⁇ 5, 4 ⁇ 54.
  • the quartz tube used in this embodiment has a length of 535 ⁇ and an inner diameter of 10 legs.
  • Example 8 The catalyst was charged in an amount of 5 g of CuO-Cu-ZSM-5, wherein Cu-ZSM-5 was 3 g and C O was 2 g. Among them, the mass fraction of Cu in Cu-ZSM-5 is 5%, and the mass fraction of Cu in CuO-Cu-ZSM-5 is 40%.
  • the catalyst bed temperature is 180 -, 300 respectively.
  • C, 380 u the reaction pressure is normal pressure.
  • the NO content is lOOOppm, and the conversion rates are 87.60%, 97.95%, and 98.93%, respectively.
  • the flue gas/exhaust gas can reach
  • the metal manganese is supported on the activated carbon to obtain a catalyst Mn-AC, and the catalyst is filled in a quartz glass reaction tube, and the quartz glass reaction tube is subjected to a gas-solid reaction under the action of microwave energy.
  • the flue gas/exhaust gas passes through the microwave catalyst bed packed with the catalyst Mn-AC in the quartz glass reaction tube, and the microwave catalytic reduction reaction is used to catalytically reduce NO to N 2 to achieve the purpose of removing NO.
  • Table 2 Effect of reaction bed temperature on NO conversion rate
  • This method of denitration microwave catalytic reduction may be catalytic reduction of NO removal of NO within a certain range, the purpose of removal of NO x.
  • the NO content is 1000 ppm, and the conversion rate is up to 99%.
  • the AC-Cu-ZSM-5 catalyst was packed in a microwave catalytic reactor, and the Cu-ZSM-5 catalyst with a copper content of 5% was mixed with 30% AC. Both of them simultaneously catalyzed the conversion reaction of NO under the action of microwave.
  • the Cu-ZSM-5 catalyst was used for microwave catalytic decomposition of NO to denitrification.
  • the AC was used as a catalyst and also used as a reducing agent to carry out microwave catalytic reduction of NO to denitrification. Two types of microwave catalyzed denitrification were simultaneously carried out in the reactor. The denitration efficiency is high, and the removal rate of NO can reach more than 99%.
  • Reaction conditions catalyst loading 10 ml, gas flow rate 160 ml/min, NO content lOOOppm, oxygen content
  • the NO conversion rate increases with increasing microwave power.
  • the denitration method for removing NO by microwave catalytic reduction reaction can catalytically reduce NO in a certain temperature range to achieve the purpose of removing ruthenium.
  • the temperature in the reaction bed is 300 ⁇ 580TJ, NO content lOOOOppm, conversion rate up to 97%.
  • Example 13 The difference is that the packed catalyst is 5 g of CuO-Cu-ZSM-5, the mass fraction of Cu in Qi-ZSM-5 is 5%, and the mass fraction of CuO in CuO-Cu-ZS-5 is 40%. .
  • the catalyst bed temperature is 180 respectively.
  • C, 300"C, 380, the reaction pressure is normal pressure.
  • the experiment of microwave catalytic removal of NO, the reaction results of changing different temperatures are shown in Table 7:
  • Example 14 The charged catalyst was 5 g of CuO-Cu-ZS-11, the Cu mass fraction in Cu-ZSM-11 was 5%, and the CuO mass fraction in CuO-Cu-ZSM-11 was 40%.
  • the catalyst bed temperature is maintained at ⁇ 80' : C, 300, respectively.
  • C, 380 the reaction pressure is normal pressure.
  • Table 8 The experiment of microwave catalytic removal of NO, the reaction results of changing different temperatures are shown in Table 8:
  • Example 15 The charged catalyst was 5 g of CuO-Cu-Y, the Cu mass fraction in Cu-Y was 5%, and the CuO mass fraction in CuO-Cu-Y was 40%.
  • the temperature of the catalyst bed is maintained at ⁇ 80 °C, 300;, 3SQV, respectively.
  • the pressure is normal pressure. Perform microwave-catalyzed removal of O to change the reaction at different temperatures The results are shown in Table 9:
  • Example 16 The charged catalyst was 5 g of CuO-Cu- ⁇ , the Cu mass fraction in Cu- ⁇ was 5%, and the CuO mass fraction in CuO-Cu- ⁇ was 40%.
  • the catalyst bed temperature is maintained at ⁇ 801 ⁇ 300. C, 380 ° C, the reaction pressure is normal pressure.
  • Table 10 The experiment of performing microwave catalytic removal of NO and changing the reaction at different temperatures are shown in Table 10:
  • Example 17 Filled 30% activated carbon (AC) + Cu content of 5% Cu-ZS-5 catalyst, packed with 10 ml of 30% activated carbon (AC) + Cu content of 5% Cu-ZSM-5 catalyzed, gas flow rate 160mi /min, the inlet NO content is 1000 ppm, the oxygen flow rate is 12 ml/min, and the oxygen content is 5.88%.
  • the catalyst was tested and the results are shown in Table 13. Table 13 Effect of microwave power on NO removal activity of 30% AC+5% Cu-ZSM-5
  • MgFe0 4 as component i) and component iii) catalyst [excluding component ii)] has a packing amount of 4g, an intake NO concentration of 1000ppm, a flow rate of i5.8mi/mi oxygen content of 5.88%, reaction pressure It is atmospheric pressure.
  • the catalytic efficiency of the catalyst containing no microwave absorbing component is lower than that of the catalytic component containing the four-wave absorbing component.
  • the conversion rate of NO can only reach 81. 7%, much lower than the conversion rate when using the catalyst of the present invention
  • the catalyst was Cu-ZSM-5, the catalyst was charged in an amount of 4 g, and the mass fraction of Cu was 5%.
  • the intake NO concentration is iOOOppm, the flow rate is controlled at 160ml/min, and the oxygen content is 5.88%.
  • the microwave power is automatically controlled to maintain the catalyst bed temperature at 120. C, 150. C, 180 ° C, the reaction pressure is normal pressure nieth.
  • Cu-ZSM-5 exhibited better performance in decomposing NO under conventional heating conditions, but in the absence of microwave absorbing components, the catalyst in Comparative Example 3 could not reach the microwave catalytic reaction by convection heating.
  • the conversion of NO obtained was 86% or more, and the effect was significantly better than the present comparative example.
  • the present invention uses a microwave absorbing component as one of the catalyst components, which not only increases the catalytic reaction temperature by absorbing microwave energy, but also lowers the activation energy of the catalytic reaction by interaction with microwaves.
  • the catalytic activation energy for catalytic decomposition of nitrogen oxides is 80-100 kJ/mol, and the use of the catalyst of the present invention can reduce the reverse activation energy of catalytic decomposition of nitrogen oxides to 20-25 kj/mol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

提供了一种微波催化剂。所述微波催化剂包括i)催化剂活性组分,包括金属和/或金属氧化物;ii)吸收微波组分,包括CuO、铁酸盐尖晶石或活性炭中的至少一种;以及iii)载体。所述微波催化剂可用于微波催化脱硝反应,具有脱硝效率高,耗能低,节能环保且成本低廉的优点。还提供了一种微波催化剂的制备方法及其应用。

Description

—种微波催化剂及其制备方法和应用
技术领域
本发明涉及催化技术领域, 具体涉及一种微波催化剂及其应用。
背景技术 随着我国经济的发展, 能源消耗量, 特别是化石能源销量大幅增加 与此相应, 大 气的污染程度也日益加剧, 以煤为主的能源结构是影响我国大气环境质量的主要因素。 目前, 我国 95%以上的火电厂是以燃煤为主, 短期内难以改变。 燃煤过程中排放的二氧 化硫、 二氧化碳 氮氧化物和粉尘分别占我国排放量的 87%, 71%, 67%和 60%„ 在我 国, 粉尘已经得到了很好的控制和治理; 烟气脱硫技术也已日趋成熟, 烟气脱硫项目已 经在有序的进行; 唯有氮氧化物的污染尚未得到有效的控制。 "十二五"是我国经济发展 的重要时期, 也是氮氧化物控制的关键时期, 如何采取高效脱硝措施, 消除氮氧化物的 污染已成为环境保护中的重要课题。 目前工业上应用的技术是以氨为还原剂的选择性催 化还原技术的 NH3- SC:R_法, N¾- SCR法是现有氮氧化物处理技术中最成熟的方法之一, 该方法可在较低的温度下使氮氧化物脱除率达到 80 ~ 90%。 但其不足之处为还原剂消耗 量大、 催化剂易中毒、 管路设备要求高以及脱硝效率不高等。 在化学反应中, 微波可以直接与化学体系发生作用促进各类化学反应的进行 微波 作用不但具有"致热效应", 还有特殊的"非热效应"。 自从 Harweii实验室使用微波技术成 功处理了核废料以来, 微波技术在有机化学> 无机材料化学、 分析化学等学科领域已得 到广泛应用, 并逐渐开辟了微波化学这一崭新的领域。 大量文献报道了微波技术在化学 反应中的应用, 因此该领域的研究目前是一个热点。 近年来, 许多研究者又尝试将微波 加热应用于非均相催化反应过程, 微波技术应用也表现出了较好的效果。 另外, 自铜离子交换型 ZSM- 5分子筛催化 能直接催化分解 N(:)x以来, Cu/ZSM - 5催 化剂以良好的催化活性及稳定性, 被认为是最具工业应用前景的脱硝催化剂。 通常认 为, 在以 Cu/ZSM- 5为催化剂的直接催化分解 NO反应中, NO的活化主要在 Cu物种上 进行, 活化后形成的中间产物在催化剂酸性位的共同作用下生成氮气和氧气等产物。 根 据气固催化反应机理, 固体催化剂的表面键合能力即吸附活化反应分子能力, 强^依赖 于表面及其形貌特征, 分布于分子筛外表面的 Cu物种可能对 NO 活化更为有利。 以往实验结果表明, 用离子交换法制备的催化剂经高温焙烧后有相当部分的 Qi物种 迁移进入分子筛孔道内。 为了进一步考察分子筛外表面的 Cu物种对 NO催化分解反应的 作用, 以及催化剂表面微观结构 化学性盾与催化反应性能的构效关系, 并使 Cu物种更 多地分散在分子筛外表面, 我门釆用微波固相法和固相分散法来制备催化剂。 固相分散 法是基于金属盐类或金属氧化物在大比表面积载体上自发分散原理来制备催化剂的。 由 于受金属离子迁移等因素的影响, 机械混合后, 要通过加热来引发固态离子交换反应 , 通常需要的加热温度高, 反应时间长, 故金属组分在分子筛内外表面的分布难以得到有 效控制。 而微波作为.一种非电离电磁能, 微波加热具有快速及特殊的电磁效应, 以及对 被加热的物质不具有破坏作用等特点。 因此, 用微波加热方式可提高加热速度并控制活 性组分在分子筛内外表面的分布。 近 20年来 , 各国科学家对 Cu/ZSM-5催化剂进行了大 量的研究。 关于 Cu/ZSM- 5催化劑上 Cu物种的落位分布状态及存在形态不同对其催化分 解 NO活性影响的研究也有报道。 但用 Cu/ZSM- 5催化剂分解 NO的转化率最高位 70%, 其不足之处为: Cu/ZSM- 5催化剂转化率低、 脱硝效率低, 达不到排放要求。
发明内容
本发明目的在于克服现有技术的不足, 提供了一种微波催化剂及其在脱硝反应中的 本发明提供的微波催化剂可以高转化率、 节能环保、 低成本地应用于脱硝反应。
一种微波催化剂, 包括
i )催化剂活性组分, 包括金属和 /或金属氣化物;
ii )吸收微波组分, 包括 CuO、 铁酸盐尖晶石或活性炭中的至少一种; 以及
iii )载体。
通常的, 所述的铁酸盐尖晶石的成分为 MgFe04
在本发明的组分中, 组份 i ) 为催化剂反应活性中心, 组份 ii ) 为吸收微波组份, 其 功能为吸收微波升温, 并与微波作用后降低反应活化能, 使得催化反应在较低的温度达 到较好的催化效果, 组份 iii ) 为载体, 其也能起到部分吸收 ¾波的功能。
在本发明的微波催化剂中, 所述金属选自选自 Cu. Mil, Ce» Ti、 V、 Mg或 Fe中的至少一种, 优选为 Cu; 所 述金属氧化物选自金'属氧化物选自 Cu、 Mn, Ce、 Ti、 V、 Mg或 Fe的氧化物中的至少一 种, 优选为 Cu(:)。
所述载体具有能吸收微波的多孔结构, 优选活性炭和 /或分子筛。
所述分子筛为 ZSM型分子筛、 Y型分子筛或 β型分子筛, 优选为 ZSM-5分子筛。 所述催化躬优选含有 Cu- ZSM- 5或 Cu- Y的催化剂。
其中, 当所述催化剂含有 Cu-ZSM-5时, Cu-ZS -5中的 Cu的质量含量为 ZSM-5分 子筛质量的 2 ~ 12%。
当所述催化剂含有 Cu- Y时,所述 Cu-Y中的 Cu的质量含量为 Y型分子筛质量的 2 ~
15%。
所述微波催化剂中的组分 i ) 的质量含量为 10- 70%„
所述催化剂中的作为组分 ii ) 的 CuO的质量含量的 1 ~ 35%, 优选为 30 ~ 45%, 所述微波催化剂中的作为组分 ii ) 的活性炭的质量含量为 5 ~ 35%, 优选为 :5 ~ 30%。
本发明还拔.供了一种所述微波催化剂的制备方法, 包括将所述组分 i )和 iii )通过离 子交换法、 固相分散法或微波固相反应法制备到载有活性组分的载体, 在将所述载有活 性组分的载体与组分 ii ) 经沉淀法或共沉淀法制备得到所述微波催化剂。
本发明还提供了一种利用所述的微波催化剂进行微波催化脱除氮氧化物的方法, 包 括: 在微波装置的微波反应器中填充所述微波催化剂, 组成微波催化反应床层, 将被处 理气体通过所述微波催化反应床层, 停留 0,2 ~ 5 秒, 优选 1.5 ~ 4 秒, 控制反应温度为 150 - 6001; , 使被处理气体与所述微波催化剂发生气-固反应, 使得氮氧化物转化为 N2; 如此, 将被处理气体中的氮氧化物脱除。
本发明的有益效果:
本发明提供了一种微波催化 , 其具有以下优点:
1 )使用了吸收微波的组分, 降银了反应活化能, 使得微波催化反应可在较低的温度 发挥较高的催化效率。
2 )将其作为脱除氮氧化物的催化剂应用时, 其脱除率可达 99%以上, 相对于现有技 术具有转化率高, 耗能小, 节能环保且成本低等优点。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式、 借此对本发明如何应用技 术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实施。 需要说明 的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中的各个特征可以相互结 合, 所形成的技术方案均在本发明的保护范围之内。
分子筛催化剂及其制备方法 实施例 1
本实施例的微波催化剂, 包括
i )金属 Cu作为催化劑活性组分;
ii ) CuO作为吸收微波组分; 以及 iii ) ZSM-5分子筛作为载体。
其中, 所述金属 Cu以离子状态组成的 Cu- ZSM- 5 , 且所述作为活性组分 Cu的质量占 Cu-ZSM-5质量的 5% CuO占所述微波催化剂质量的 40%
本实施例所述的微波催化剂的制备方法为, 将所述组分 i )和 i )通过离子交换法制 备到载有活性组分的载体 Cu- ZSM- 5 , 在将所述载有活性组分的载体与组分 iU 混合均匀 制备得到所述微波.催化剂 CuO- Cu- ZSM 5。
实施例 2
本实施例的微波催化剂, 包括
i )金属 Mil作为催化剂活性组分;
11 )活性炭作为吸收微波组分; 以及
且, 所述 Mil的廣量占所述微波催化剂盾量的 3%。 本实施例所述的微波催化剂的制备方法为, 将所述组分 i )和 iii )通过固相分散法制 备到载有活性组分的载体 Mn-AC, 在将所述载有活性组分的载体与组分 ii ) 混合均匀制 备得到所述微波催化剂 Mil- AC。
实施例 3 本实施例的微波催化剂, 包括
i )金属 Cu作为催化剂活性组分;
ii )活性炭作为吸收微波组分; 以及 iii ) ZSM- 5分子筛作为载体。
其中 , 所述金属 C 以离子状态组成的 Cu-ZSM-5, 且所述 Cu的质量占 Cu-ZSM-5质 量的 5% , 所迷活性炭的质量含 为所述微波催化劑质量的 30%。
本实施例所述的微波催化剂的制备方法为, 将所述组分 i )和 iii )通过微波固相反应 法制备到载有活性组分的载体 Cu- ZSM- 5 , 在将所述载有活性组分的载体与组分 ii ) 混合 均匀制备得到所述微波催化剂 AC- Cu- ZSM- 5。
实施例 4
本实施例的^ 1波催化剂, 包括
i )铁酸盐尖晶石 (成分为 MgFe04 ) 同时作为催化剂活性组分和催化剂载体; ii )活性炭作为吸收^ ¾波组分; 以及
且 所述铁酸盐尖晶石的质量占所述微波.催化剂质量的 70%, 所述活性炭的质量含 量为所述微波催化剂质量的 30%。
本实施例所述的微波催化剂的制备方法为, 将所述组分 U和 m )通过离子交换法制 备到载有活性组分的载体 在将所述载有活性组分的载体与组分 ii )混合均勾制备得到所 述微波催化剂。
实施例 5
本实施例的微波催化剂, 包括
I )金属 Cu和 CuO作为催化剂活性组分;
Ii )活性炭作为吸收微波组分; 以及
Iii ) ZSM 5分子筛作为载体。
其中, 所述金属 Cu以离子状态组成的 Cu-ZSM-5, 且所述催化剂活性组分的 Cu 占 Cu- ZSM- 5质量的 5%, CuO的质量占所述微波催化剂质量的 25% , 所述活性炭的质量含 量为所述微波催化剂质量的 30%。
本实施例所述的微波催化剂的制备方法为, 将所述组分 i )和 )通过离子交换法制 备到载有活性組分的载体 Cu-ZSM-5, 在将所述载有活性组分的栽体与组分 ϋ )混合均匀 制备得到所述微波催化躬。
所述铜含量为 Cu- ZSM- 5总质量的 2 ~ 12%, 优选 3 8%。 其中, 所述 ZSM分子筛 为能够吸收微波的具有多孔结构的分子筛。
实施例 6
本实施例的微波催化剂, 包括
i )金属 Cu作为催化剂活性組分;
ii )活性炭作为吸收微波组分; 以及
iii ) Y型分子筛作为载体。
其中, 所述 4r属 Cu以离子状态组成的 Cu- Y , 且所述 Cu的质量占 Y型分子筛质量 的 5%, 所述活性炭的质量含量为所述微波催化剂质量的 30%„
本实施例所述的微波催化剂的制备方法为, 将所述组分 U和 iii )通过^ ¾波固相反应 法制备到载有活性组分的载体 Cu-Y, 在将所述载有活性组分的载体与组分 ii ) 混合均匀 制备得到所述微波催化剂 AC- Cu- Y。
实施例 7
本实施例的^ 1波催化剂, 包括
i )金属 Cu作为催化剂活性组分;
ii ) CuO作为吸收微波组分; 以及
in ) β型分子筛作为载体
其中金属 Cu以离子状态组成的 Cu-β, 且所述 Cu的质量占 β型分子筛质量的 10%,
CuO占所述微波催化剂质量的 35%。
本实施例所述的微波催化剂的制备方法为, 将所述组分 i )和 )通过离子交换法制 备到载有活性组分的载体 Cu- β, 在将所述载有活性组分的载体与组分 ii ) 混合均勾制备 得到所述微波催化剂 CuO- Cu- β。
本发明催化剂在脱除氮氧化物中的应用
在微波装置的微波反应管中填充催化剂, 组成微波催化反应床层, 当被处理气体通 过微波催化反应床层时, 反应温度为 150 - 600Ό , 反应时间为提留 0.2 ~ 5秒, 被处理气 体与微波催化 发生气—固反应, 微波 .化 将被处理气体中的氮氧化物脱除。 本发明所述废气为大连大特气体有限公司提供的 N2和 NO组成的混合气体, NO浓 度为 l()00ppm。
气体分析仪为美国制造的 42C O-N02-NOx Analyzer。
微波场的功率为 0 - lOOOw连续可调, 频率为 2400 - 2500MHz, 石英管反应器为 WG 1/2.45- Φ5,4χ54。 本实施例中使用的石英管长 535誦, 内径 10腿。
实施例 8 催化剂的填装量为 5g的 CuO-Cu-ZSM-5 , 其中 Cu-ZSM-5为 3g, C O为 2g。 其中 Cu-ZSM-5中 Cu的质量分数为 5%, CuO-Cu-ZSM-5中 Cu的质量分数为 40%。 对微波功 率自动挡控制, 使催化剂床层温度分别在 180 -, 300。C、 380 u , 反应压力为常压。 NO 含量为 lOOOppm, 转化率分别为 87.60%、 97.95%、 98.93%. 处理后烟气 /废气可以达到
表 1 反应床层温度对 O转化率的影响
Figure imgf000008_0001
实施例 9 ( AC代表活性炭)
将金属锰负载在活性炭上的得到催化剂 Mn- AC , 将催化剂填装在石英玻璃反应 管内, 石英玻璃反应管在微波场合^ ¾波能作用下进行气-固反应。 烟气 /废气通过此石英 玻璃反应管中装填有催化剂 Mn- AC的微波催化剂床层, 进行微波催化还原反应使 NO催 化还原为 N2, 达到脱除 NO 目的。 Mn/Ac催化剂微波催化还原 NO结果参见表 2 表 2反应床层温度对 NO转化率的影响
条件: 催化剂填装量〗 Oml, NO浓度画 Oppm, 流量励 ml/min, 空速 1020h , 氧气 流量 lOml/min, 氧含量 5.88%。
这种微波催化还原反应脱除 NO的脱硝方法可在一定范围内催化还原 NO, 达到 脱除 NOx的目的。 在反应床层温度 380 ~ 400°C , NO含量为 lOOOppm, 转化率最高可达 99%以上。
实施例 12
在微波催化反应器中填装了 AC-Cu-ZSM-5催化剂, 铜含量 5%的 Cu-ZSM-5催化剂 和 30%AC混合, 两者同时在微波作用下催化 NO的转化反应。 以 Cu- ZSM- 5催化剂进行 微波催化分解 NO反应脱硝; 以 AC为催化剂同时也作为还原剂进,行微波催化还原 NO反 应脱硝。 在反应器中同时进行两类微波摧化反应脱硝。 脱硝效率高, NO 的脱除率可达 到 99%以上。
反应条件: 催化剂填装量 10ml, 气体流量 160ml/min, NO含量 lOOOppm, 氧含量
— 12mi/min。 表 3 改变微波功率对 30% AC+5%Cu-ZSM-5脱除 NO的影响
Figure imgf000009_0002
结论: 随着微波功率的增加 NO转化率上升。 这种微波催化还原反应脱除 NO的脱硝 方法可在一定温度范围内催化还原 NO, 达到脱除 ΝΟχ的目的. 在反应床层温度 300 ~ 580TJ , NO含量 lOOOppm, 转化率最高可达 97%以上。
实施例 13 不同的是填装的催化剂为 5g的 CuO-Cu-ZSM-5, Qi-ZSM-5中的 Cu质量分数为 5%, CuO-Cu-ZS -5中 CuO的质量分数为 40%。 对微波功率自动挡控制, 是催化剂床层温度 分别在 180。C、 300"C、 380 , 反应压力为常压。 进行微波催化脱除 NO的实验, 改变不 同温度的反应结果如表 7:
表 7 不同催化劑床层温度的反.应结果 催化剂 催化剂床层温度 /Γ N0转化率 /(¾>
CuO-Cu-ZSM-5 180 87. 60
300 97. 95
380 98. 93 当催化剂床层温度为 380Ό时, CuO-Cu/ZSM-5在微波催化反应器具内具有神奇的分 解 NO效果, NO的转化率达到 98.93%。
实施例 14 填装的催化剂为 5g 的 CuO-Cu-ZS -11 , Cu-ZSM-11 中的 Cu质量分数为 5%, CuO-Cu-ZSM-11中 CuO的质量分数为 40%。 对微波功率自动挡控制 , 是催化剂床层温度 分别维持在〗80':C、 300。C、 380 , 反应压力为常压。 进行微波催化脱除 NO的实验, 改 变不同温度的反应结果如表 8:
表 8不同催化剂床层温度的反应结果
催化剂 催化剂床层温度 /Γ N0转化率
CuO-Cu-ZSM-11 180 88. 10
300 97, 98
380 99. 13 当催化剂床层温度为 380Ό时, CuO-Cu-ZSM-11 在微波催化反应器具内具有神奇的 分解 NO效果, O的转化率达到 99.13%。
实施例 15 填装的催化剂为 5g的 CuO-Cu-Y, Cu-Y中的 Cu质量分数为 5%, CuO-Cu-Y中 CuO 的质量分数为 40%。 对微波功率自动挡控制, 是催化剂床层温度分别维持在 〗80°C、 300 ;、 3SQV , 反.应压力为常压。 进行微波催化脱除 O 的实验, 改变不同温度的反应 结果如表 9:
表 9 不同催化剂床层温度的反应结果 催化剂 催化細床层温度(Ό ) NO转化率 (%)
CuO-Cu-Y 180 86, 10
300 96' 78
380 98, 76 当催化剂床层温度为 380 °C时, CuO-Cu-Y在微波催化反应器具内具有神奇的分解 NO效果, NO的转化率达到 98.76%。
实施例 16 填装的催化剂为 5g的 CuO-Cu-β, Cu-β中的 Cu质量分数为 5%, CuO-Cu-β中 CuO 的质量分数为 40%。 对微波功率自动挡控制, 是催化剂床层温度分別维持在 〗801^ 300。C、 380°C , 反应压力为常压。 进行微波催化脱除 NO 的实验、 改变不同温度的反应 结果如表 10:
表 10 不同催化劑床层温度的反.应结果 催化剂 催化 床层温度 rc) NO转化率 (%)
CuO Cu-β 180 87, 12
300 97. 38
380 98. 96 当催化剂床层温度为 380Ό时, CuO-Cu-β在微波催化反应器可高效分解 NO, NO的 转化率达到 98.96%。
实施例 17 填装的 30%活性炭 ( AC ) +铜含量 5%的 Cu-ZS -5催化剂, 填装 10ml 30%活性炭 ( AC )+铜含量 5%的 Cu- ZSM- 5催化 , 气体流量 160mi/min, 进口 NO含量 lOOOppm, 氧气流量 12ml/min, 氧含量 5.88%。 对该催化剂进行检测, 结果如表 13所示。 表 13 微波功率对 30%AC+5%的 Cu- ZSM- 5脱除 NO活性的影响
Figure imgf000012_0001
结论: 随^ ¾波功率的增加 NO转化率上升。
对比例 1
MgFe04作为组分 i )和组分 iii )的催化剂〖不含组分 ii ) ]的填装量为 4g, 进气 NO浓 度为 lOOOppm, 流量控制在 i60mi/mi 氧含量为 5.88%, 反应压力为常压。
MgFe04催化剂直接催化分解反应试验数据参见表 4:
表 4反应床层温度对 NO转化率的影响
Figure imgf000012_0002
由对比例的结果可以看出, 不含微波吸收组分的催化劑的催化效率低于含有 4 波吸收组分的催化效率, 当反应床温度达到 42CTC时, NO的转化率也只能达到 81,7%, 远低于使用本发明的催化剂时的转化率
对比例 2
直接使用 CuO 催化剂的填装量为 4g, 进气 NO 浓度为 lOOOppm, 流量控制在 160ml/min, 氧含量为 5.88%, 反应压力为常压。 参见表 5。 表 5 反应床层温度对 NO转化率的影响
Figure imgf000013_0001
由对比例 2的结果可以看出, CuO不仅如前所述具有吸收微波的作用, 但是在常规 加热条件下几乎没有催化分解氮氧化物的催化活性; 虽然在微波辐照下表现出具有催化 分解氮氧化物的活性, 但其单独作为微波辐照条件下的催化剂使用时, CuO 不是一种性 能优异的微波催化剂, 因此 NO的转化率最好也仅为 69.3%, 远低于使用本发明的定义的 微波催化剂时的 NO的转化率。
对比例 3
催化剂为 Cu- ZSM- 5 , 所述催化剂的填装量为 4g, Cu的质量分数为 5%。 进气 NO浓 度为 iOOOppm, 流量控制在 160ml/min, 氧含量为 5.88%, 对微波功率自动挡控制, 使催 化剂床层温度分别维持在 120。C、 150。C、 180°C , 反应压力为常压„ 进行微波催化脱除 NO的实验, 改变不同温度的反应结果如表 6:
表 6 不同催化剂床层温度的反应结果 催化剂 催化剂床层温度 /'C N0转化率 / (%)
Cu ZSM- 5 120 73. 0
150 79. 0
180 82. 4
Cu-ZSM- 5在常规加热条件下表现出较好 .化分解 NO的性能、 但是在没有微波吸收 组分存在的条件下, 对比例 3 中的催化劑无法通过徵波加热达到微波催化反应的最,佳催 化剂床层温度, 催化剂床层最高也只能加热到 180'Ό , 且在此催化剂床层温度 180'Ό下, 使用对比例所述的催化剂时, 所述 NO的转化率为 82.4%, 而使用实施例 13-15中任意一 个催化剂, 其得到的 NO的转化率均为 86%以上, 效果要明显好于本对比例。
结论: 由实施例:卜 17以及对比例 :卜 3中可以看出, 本发明的微波催化剂的性能要好 于现有技术中常用的催化剂。 具体原因如下:
本发明使用了微波吸收组分作为催化剂组分之一, 其不仅可通过吸收微波能量提高 催化反应温度, 而且还可以通过与微波的相互作用使所述催化反应的活化能降低。 一般 催化分解氮氧化物的反应活化能为 80-100kJ/mol, 而使用本发明的催化剂, 可将催化分 解氮氧化物的反.应活化能降低至 20-25 kj/mol。

Claims

权利要求书
1 . 一种微波催化剂, 包括
ί )催化 活性组分, 包括金属和 /或金属氧化物;
ϋ )吸收微波组分, 包括 CuO、 铁酸盐尖晶石或活性炭中的至少一种; 以及 iii )载体。
2. 根据权利要求 1所述的微波催化^ , 其特征在于, 所述金属选自选自 Cu Mn . Ce、 Ti、 V、 Mg或 Fe中的至少一种, 优选为 Cu; 所述金属氧化物选自金属氧化物选自 Cu、 Mti、 Ce、 Ti、 V、 Mg或 Fe的氧化物中的至少一种 , 优选为 Cu()。
3. 裉据权 要求 1或 2所迷的微波催化剂, 其特征在于, 所述载体具有能吸收微波 的多孔结构, 优选活性炭和 /或分子筛。
4. 根据权利要求 3 所述的微波催化剂, 其特征在于, 所述分子筛为 ZSM 型分子 筛、 Y型分子筛或 β型分子筛, 优选为 ZSM 5分子筛。
5. 裉据权 要求 1 -3 中任一项所述的微波催化剂, 其特征在于, 所述催化剂为含有 Cu-ZSM-5或 Cu- Y的催化剂 ,
6. 裉据权 要求 5所述的微波催化剂, 其特征在于, 所述 Cu-ZSM-5中的 Cu的质 量含量为 Cu-ZSM-5质量的 2 ~ 12%,
7. 裉据权 要求 5所述的微波催化剂, 其特征在于, 所述 Cu-Y中的 Cu的质量含量 为 Cu- Y质量的 2 ~ 15%。
8. 裉据杈刮要求 1 -7中任一项所述的微波催化剂, 其特征在于, 所述微波催化剂中 的组分 i ) 的廣量含量 1-35%。
9. 裉据杈刮要求 1 -8 中任一项所述的微波催化剂, 其特征在于, 所述微波催化剂中 的作为组分 ϋ ) 的 CuO质量含量为 10 " 70%, 优选 30 - 45%。
10. 根据权利要求 1-9 中任一项所述的微波催化剂, 其特征在于, 所述催化剂中作 为组分 ii ) 的活性炭的质量的 5 ·· 35%, 优选 15 ~ 30%。
I I . 一种根据权利要求 1-10中任一项所述的微波催化剂的制备方法, 包括将所述组 分 i )和 iii )通过离子交换法、 固相分散法、 微波固相反应法或直接混合制备到载有活性 組分的栽体, 在将所述载有活性組分的载体与組分 ii )经沉淀法 , 共沉淀法或直接混合制
12. 一种利用根据权剩要求 1-1】 中任一项所述的微波催化剂进行微波催化脱除氮氧 化物的方法, 包括: 在微波装置的微波反应器中填充所述微波催化劑, 组成微波催化反 应床层, 将被处理气体通过所述微波催化反应床层, 停留 0.2 5秒, 优选 1.5 ~ 4秒, 控 制反应温度为 150 600Ό , 使被处理气体与所述微波催化剂发生气-固反.应, 使得氮氧化 物转化为 N2; 如此, 将被处理气体中的氮氧化物脱除„
PCT/CN2012/087347 2011-12-30 2012-12-24 一种微波催化剂及其制备方法和应用 WO2013097677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/369,242 US9168514B2 (en) 2011-12-30 2012-12-24 Microwave catalyst and preparation process and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011104511924A CN102407114A (zh) 2011-12-30 2011-12-30 一种铜分子筛微波催化剂及其微波催化脱硝方法
CN201110451192.4 2011-12-30
CN2011104511182A CN102407113A (zh) 2011-12-30 2011-12-30 一种微波催化剂及其应用方法
CN201110451118.2 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013097677A1 true WO2013097677A1 (zh) 2013-07-04

Family

ID=48696333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087347 WO2013097677A1 (zh) 2011-12-30 2012-12-24 一种微波催化剂及其制备方法和应用

Country Status (2)

Country Link
US (1) US9168514B2 (zh)
WO (1) WO2013097677A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849708A (zh) * 2022-06-10 2022-08-05 苏州大学 一种三维大孔碳锚定的单原子铁催化剂及其制备方法与应用
CN117299195A (zh) * 2023-11-28 2023-12-29 中汽研汽车检验中心(天津)有限公司 一种宽温窗scr催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330975A (zh) * 2000-06-28 2002-01-16 中国科学院大连化学物理研究所 一种微波放电催化还原脱除氮氧化合物的方法
CN1441153A (zh) * 2003-03-30 2003-09-10 吉林大学 应用微波技术的发动机尾气处理器及其催化剂和制备方法
JP2005127245A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 排気浄化装置
CN1824371A (zh) * 2005-11-11 2006-08-30 华东理工大学 一种微波辅助催化脱除二氧化硫和氮氧化物的方法
CN101972603A (zh) * 2010-10-25 2011-02-16 湘潭大学 一种脱除废气中氮氧化物的方法
CN102029178A (zh) * 2010-10-18 2011-04-27 清华大学 铜基分子筛催化剂及其制备方法
CN102407114A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种铜分子筛微波催化剂及其微波催化脱硝方法
CN102407113A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种微波催化剂及其应用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962075A (en) * 1988-12-05 1990-10-09 Mobil Oil Corp. Zeolitic copper catalyst
US5583081A (en) * 1993-08-31 1996-12-10 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Copper-containing zeolite catalysts
US6284202B1 (en) * 1997-10-03 2001-09-04 Cha Corporation Device for microwave removal of NOx from exhaust gas
US6830662B2 (en) * 1999-02-12 2004-12-14 Chang Yul Cha Process for microwave destruction of harmful agents and waste
DE60111040T2 (de) * 2000-04-11 2005-10-20 Accentus Plc, Didcot Plasmaunterstützte gasbehandlung
US7468171B2 (en) * 2005-01-31 2008-12-23 Toyota Motor Corporation Process using microwave energy and a catalyst to decompose nitrogen oxides
EP2771111A1 (en) * 2011-10-24 2014-09-03 Haldor Topsøe A/S Catalyst composition and method for use in selective catalytic reduction of nitrogen oxides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330975A (zh) * 2000-06-28 2002-01-16 中国科学院大连化学物理研究所 一种微波放电催化还原脱除氮氧化合物的方法
CN1441153A (zh) * 2003-03-30 2003-09-10 吉林大学 应用微波技术的发动机尾气处理器及其催化剂和制备方法
JP2005127245A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 排気浄化装置
CN1824371A (zh) * 2005-11-11 2006-08-30 华东理工大学 一种微波辅助催化脱除二氧化硫和氮氧化物的方法
CN102029178A (zh) * 2010-10-18 2011-04-27 清华大学 铜基分子筛催化剂及其制备方法
CN101972603A (zh) * 2010-10-25 2011-02-16 湘潭大学 一种脱除废气中氮氧化物的方法
CN102407114A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种铜分子筛微波催化剂及其微波催化脱硝方法
CN102407113A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种微波催化剂及其应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, BINTAI ET AL.: "Mechanism and Advance of Ferrite Absorber", BULLETIN OF THE CHINESE CERAMIC SOCIETY, vol. 5, 28 October 2004 (2004-10-28), pages 66 - 69 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849708A (zh) * 2022-06-10 2022-08-05 苏州大学 一种三维大孔碳锚定的单原子铁催化剂及其制备方法与应用
CN114849708B (zh) * 2022-06-10 2023-11-03 苏州大学 一种三维大孔碳锚定的单原子铁催化剂及其制备方法与应用
CN117299195A (zh) * 2023-11-28 2023-12-29 中汽研汽车检验中心(天津)有限公司 一种宽温窗scr催化剂及其制备方法和应用
CN117299195B (zh) * 2023-11-28 2024-02-13 中汽研汽车检验中心(天津)有限公司 一种宽温窗scr催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US20150010455A1 (en) 2015-01-08
US9168514B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
US20200197922A1 (en) METHOD OF PREPARING CATALYST FOR LOW-TEMPERATURE SYNERGISTIC CATALYTIC PURIFICATION OF NOx AND HCN IN FLUE GAS, AND USE THEREOF
Zhu et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers
CN102407113A (zh) 一种微波催化剂及其应用方法
CN105597817B (zh) 一种MnOx/SAPO-11低温SCR烟气脱硝催化剂及制法与应用
CN102151585B (zh) 一种担载三聚氰胺的脱硝催化剂及其制备方法
CN101972603A (zh) 一种脱除废气中氮氧化物的方法
CN107008323B (zh) 一种用于烟气脱硫脱硝的活性炭催化剂制备方法
CN101108304A (zh) 一种吸波催化剂的制备及其在净化烟气中的应用
CN104474890A (zh) 一种负载型金属氧化物催化剂催化直接分解no脱硝的方法
CN109966853A (zh) 一种用于烟气脱硫脱硝的复合固废基活性炭及其制备方法
CN109876591A (zh) 一种用于烟气脱硫脱硝的复合固废基生物质活性炭及其制备方法
CN109772265A (zh) 一种用于烟气脱硫脱硝的烧结法赤泥改性活性炭及其制备方法
CN102489152B (zh) 一种微波催化直接分解no反应脱硝方法
CN102949930A (zh) 常温下等离子体协同催化剂氧化no脱除氮氧化物的方法
CN103611563B (zh) 一种scr催化剂及其制备方法
CN105195170A (zh) 一种scr脱硝催化剂及其制备方法以及用途
Zhao et al. Effect of preparation and reaction conditions on the performance of In/H-Beta for selective catalytic reduction of NOx with CH4
CN102407114A (zh) 一种铜分子筛微波催化剂及其微波催化脱硝方法
CN1824371A (zh) 一种微波辅助催化脱除二氧化硫和氮氧化物的方法
WO2013097677A1 (zh) 一种微波催化剂及其制备方法和应用
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
CN109939561A (zh) 一种用于烟气脱硫脱硝的烧结法赤泥改性生物质活性炭及其制备方法
CN110841653A (zh) 一种低温脱硝催化剂的制备方法
CN105056950A (zh) 一种基于煤基炭的微波脱NOx催化剂及其制备方法
CN106362727B (zh) 一种提高铈基脱硝催化剂催化性能的方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863378

Country of ref document: EP

Kind code of ref document: A1