WO2024050897A1 - 一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法 - Google Patents
一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法 Download PDFInfo
- Publication number
- WO2024050897A1 WO2024050897A1 PCT/CN2022/122525 CN2022122525W WO2024050897A1 WO 2024050897 A1 WO2024050897 A1 WO 2024050897A1 CN 2022122525 W CN2022122525 W CN 2022122525W WO 2024050897 A1 WO2024050897 A1 WO 2024050897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- tolerant
- fault
- poles
- filter
- Prior art date
Links
- 238000013461 design Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000004888 barrier function Effects 0.000 claims abstract description 63
- 238000004804 winding Methods 0.000 claims abstract description 25
- 230000001629 suppression Effects 0.000 claims abstract description 12
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000003044 adaptive effect Effects 0.000 claims description 29
- 239000010410 layer Substances 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 230000006978 adaptation Effects 0.000 claims description 6
- 230000009286 beneficial effect Effects 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 101000841267 Homo sapiens Long chain 3-hydroxyacyl-CoA dehydrogenase Proteins 0.000 claims description 5
- 102100029107 Long chain 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- JJYKJUXBWFATTE-UHFFFAOYSA-N mosher's acid Chemical compound COC(C(O)=O)(C(F)(F)F)C1=CC=CC=C1 JJYKJUXBWFATTE-UHFFFAOYSA-N 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 5
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
- H02K1/165—Shape, form or location of the slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2786—Outer rotors
- H02K1/2787—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/2789—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2786—Outer rotors
- H02K1/2787—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/2789—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/279—Magnets embedded in the magnetic core
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/50—Reduction of harmonics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the invention relates to the technical field of a motor and its intelligent control, and in particular to a permanent magnet fault-tolerant hub motor based on an active position sensorless strategy and its driving and design methods.
- the new generation of new energy electric vehicles places higher requirements on the safety and reliability of their motor drive systems.
- the permanent magnet fault-tolerant hub motor can overcome power switch faults, open circuit faults and short-circuit faults, and has good fault tolerance, effectively improving the reliability of the hub motor.
- the Chinese invention patent "An electrothermal and magnetic isolation multi-phase fault-tolerant motor” discloses an electro-thermal and magnetic isolation multi-phase fault-tolerant motor that uses multi-phase concentrated winding technology and a new type of stator structure to achieve fault conditions. Strong fault-tolerant operation of the lower motor. However, due to the use of concentrated windings, this type of fault-tolerant motor often has low salient pole ratio, resulting in a narrow motor speed range and poor operation without position sensors.
- the present invention proposes a permanent magnet fault-tolerant hub motor based on an active position sensorless strategy and its driving and design methods.
- the positionless operation capability is taken into consideration in the design stage in advance and comprehensively considered.
- the impact of motor parameters on position sensorless operating performance to meet the changing working conditions of electric vehicles such as "frequent starts and stops, acceleration and deceleration, heavy load climbing, high-speed cruising, and failures".
- the motor On the basis of satisfying "strong fault tolerance” and "wide speed regulation”, the motor has better positionless operation capability, further broadening the wide-area high-efficiency area of the electric vehicle motor drive system and improving safe and reliable operation performance.
- the present invention provides a permanent magnet fault-tolerant wheel hub motor drive system based on an active position sensorless strategy. Includes: five-phase permanent magnet fault-tolerant hub motor (1), Park conversion module (2), position sensorless control module (3), MTPA control module (4), PI controller (5), inverse Park conversion module (6) , SVPWM module (7) and inverter module (8). Specifically, it includes the following steps:
- Step 1) design a permanent magnet fault-tolerant hub motor based on the active position sensorless strategy, and obtain good positionless operation performance and fault-tolerance performance by taking the positionless operation performance into consideration during the design stage.
- Step 2 in order to give full play to the superior position sensorless operating performance of the permanent magnet fault-tolerant hub motor in step 1), a secondary harmonic suppression and position error signal extraction algorithm based on frequency band adaptation is proposed to suppress secondary salient pole harmonics.
- the influence of waves on position observation improves the dynamic response performance of position sensorless control.
- Step 3 based on the permanent magnet fault-tolerant hub motor with the new active position sensorless strategy in step 1) and the position sensorless control method in step 2), construct a five-phase permanent magnet fault-tolerant hub motor position sensorless drive control system.
- a permanent magnet fault-tolerant hub motor based on an active position sensorless strategy is characterized in that it includes a rotating shaft (11), a stator (9), and a rotor (10) in order from the inside to the outside.
- the stator (9) is composed of a stator yoke (22), armature teeth (14), stator slots (21), and tolerance teeth (13); the armature teeth (14) are evenly spaced along the outer circumferential direction of the stator (9) and fault-tolerant teeth (13).
- Armature windings (12) are wound around the armature teeth (14), and two adjacent groups of armature windings (14) are isolated by the fault-tolerant teeth (13); along the rotor ( 10)
- the main permanent magnets (15) and the iron core poles (16) are evenly spaced in the inner circumferential direction.
- the main permanent magnets (15) are surface-embedded arc-shaped permanent magnets, and the surface-embedded permanent magnet poles and adjacent iron cores are
- the poles (16) form a pair of magnetic poles; there is a q-axis magnetic barrier (17) close to the air gap side between the surface-embedded permanent magnet poles and the iron core poles (16), and the q-axis magnetic barrier (17) and the stator (9) ) forms a non-uniform air gap on the outer circle; there are multiple layers of arc-shaped magnetic barriers (19) between the surface-embedded permanent magnet poles and the core poles (16) close to the outer circle, and the arc-shaped magnetic barriers between each layer Magnetic bridge (20); a rectangular auxiliary permanent magnet (18) is provided between the q-axis magnetic barrier (17) and the arc-shaped magnetic barrier close to the air gap, and the auxiliary permanent magnet (18) and the main permanent magnet (15) A series connection is formed between them.
- the stator (9) and rotor (10) are made of laminated silicon steel sheets and other magnetic conductive materials, with a lamination coefficient of 0.96; the armature winding (12) is made of enameled copper conductor material.
- the armature winding (12) is a single-layer concentrated winding.
- the number of stator teeth is a multiple of 2m, and the difference between the number of stator teeth and the number of rotor poles is 2, where m is the number of phases of the motor.
- the sum of the number of permanent magnet poles and iron core poles (16) is P s .
- the number of poles of the rotor is P s
- the number of poles of the main permanent magnet (15) is P m
- the number of poles of the auxiliary permanent magnet (18) is P a
- the number of poles of the iron core (16) is P f
- the multi-layer arc-shaped magnetic barrier (19) is designed to be located between the magnetic poles of the main permanent magnet (15) and the iron core pole (16), evenly distributed along the circumferential direction of the rotor (10); the auxiliary permanent magnet (18) is located in the multi-layer arc-shaped magnetic barrier (19) and the q-axis magnetic barrier (17) are evenly distributed along the outer circumferential direction of the rotor (10).
- the center of the q-axis magnetic barrier (17) is O 1 and the radius is R 1 .
- the center of the multi-layer arc-shaped magnetic barrier (19) is O 2 .
- the radius of the arc-shaped magnetic barrier is R 2 and R 3 respectively.
- the thickness of the magnetic barrier is H 0 .
- the main permanent magnet (15) and the auxiliary permanent magnet (18) are both made of neodymium iron boron permanent magnet steel.
- the magnetizing direction of the main permanent magnet (15) is pointed towards the center of the circle, and the magnetizing direction of the auxiliary permanent magnet (18) is along the In the circumferential direction, two adjacent auxiliary permanent magnets (18) are magnetized in opposite directions so that the auxiliary magnetic field and the main magnetic field form a magnetic circuit in series.
- the present invention provides a permanent magnet fault-tolerant hub motor based on an active position sensorless strategy. Its specific design method is as follows:
- Step 1.1) Use the slot-pole matching design method of the traditional fault-tolerant motor to initially determine the number of teeth of the stator (9) and the number of pole pairs of the rotor (10). Based on the principle of maximizing the fundamental wave composite vector, determine the slot vector allocation.
- Step 1.2) Set up alternating table-embedded main permanent magnet poles.
- the magnetizing directions of the main permanent magnet poles are all pointing to the air gap, forming a closed magnetic circuit together with the core poles, which is beneficial to improving the utilization rate of the permanent magnets.
- Step 1.3) Set up a q-axis magnetic barrier (17) and a multi-layer arc-shaped magnetic barrier (19) between the main permanent magnet pole and the core pole (16) to increase the quadrature-axis reluctance, thereby achieving the anti-salient pole characteristics of the motor. .
- Step 1.4 Set a rectangular auxiliary permanent magnet (18) magnetized in the circumferential direction between the q-axis magnetic barrier (17) and the multi-layer arc-shaped magnetic barrier (19), so that it can provide an auxiliary magnetic field while increasing the quadrature-axis reluctance. To reduce the quadrature axis inductance and further increase the anti-saliency effect of the motor.
- Step 1.5 Optimize the parameters of the main permanent magnet (15), auxiliary permanent magnet (18), q-axis magnetic barrier (17), and multi-layer arc magnetic barrier (19) to obtain good anti-salient pole characteristics.
- the position sensorless operation performance is considered in advance during the design stage to realize the design of permanent magnet fault-tolerant wheel hub motors for active position sensorless operation.
- the design of active position sensorless operation of permanent magnet fault-tolerant hub motors can effectively improve the motor's position sensorless operation capability, but there is still the problem of secondary salient poles and the high-precision position sensorless operation performance of the motor drive system cannot be fully utilized.
- the present invention also provides a position sensorless control algorithm based on frequency band adaptive secondary harmonic suppression and signal extraction.
- step 2) the specific steps to implement the position sensorless control algorithm based on frequency band adaptive secondary harmonic suppression and signal extraction are as follows:
- An adaptive linear neuron filter based on the recursive least squares method is used, and the filter coefficients are self-tuned through an adaptive algorithm to suppress specific harmonics in the position error signal.
- the expected filter output signal y(n) is obtained, and the input signal U(n) and the filter expected output signal y(n) are
- the desired fundamental signal Y(n) can be obtained by difference.
- the formula can be obtained by the recursive least squares method:
- y 1 (n) is the harmonic estimator
- x 11 (n-1) and x 21 (n-1) are the estimated amplitudes of the harmonic components
- Y(n) is the filter output
- U(n) is the filter input
- the adjustable filter coefficients x 11 (n) and x 21 (n) are updated online based on the harmonic reference signal, and the expression is as follows:
- the gain coefficients k 11 (n) and k 21 (n) are expressed as:
- H 11 (n) and H 21 (n) can be expressed as:
- step 2.1 On the basis of step 2.1), combined with the position error signal extraction algorithm based on frequency band adaptation, the dynamic response performance of the five-phase permanent magnet fault-tolerant hub motor without position sensor control is improved.
- ⁇ m the filter bandwidth with 3dB attenuation
- T s the digital sampling period
- p cos ( ⁇ n T s )
- ⁇ n the resonant frequency point
- adaptive frequency band filtering The resonant frequency in the device is set to:
- ⁇ c is the frequency of injected high-frequency signal
- the speed of the motor is estimated, and the resonant frequency is automatically adjusted to follow the motor speed to reduce the phase delay caused by the filter.
- Set the filter bandwidth to:
- ⁇ b is the adjustable bandwidth
- ⁇ is the dynamic adjustment factor
- ⁇ * is the given speed.
- the filter bandwidth depends on ⁇ b ; when the motor is running at variable speed
- the dynamic adjustment factor acts again, and the filter bandwidth is adaptively adjusted according to the error between the actual speed and the given speed, so as to improve the dynamic response performance of positionless control.
- the modulated current can be expressed as:
- ⁇ h is the angular frequency of the injected high-frequency signal, Inject harmonic amplitude into the 2nd high frequency
- ⁇ c is set to 2 ⁇ h to obtain the position error signal
- step 3 the five-phase permanent magnet fault-tolerant hub motor drive system based on the active position sensorless strategy is characterized by:
- the five-phase permanent magnet fault-tolerant hub motor (1) serves as the drive motor module of the system and outputs electromagnetic torque Te and five-phase current i abcde ;
- the five-phase current i abcde obtains the feedback alternating and direct axis current signals i d1q1d3q3 through the Park transformation module (2);
- the position sensorless control module (3) based on the frequency band adaptive secondary harmonic suppression and position error signal extraction algorithm estimates the rotor position through the feedback current signal i q1 and speed information;
- the MTPA module (4) based on the formula method combines the given speed n and the estimated speed The difference is optimally distributed through the given torque output by the PI controller (5) to obtain the optimal alternating and direct axis given current.
- PI controller (5) is used to adjust the given current
- the deviation from the feedback current i d1q1d3q3 is used to obtain the given vertical and horizontal axis voltage signal U d1q1d3q3 ;
- the inverse Park transformation module (6) is used to inversely transform the given vertical and horizontal axis voltage signal U d1q1d3q3 to obtain the voltage signal U ⁇ 1 ⁇ 1 ⁇ 3 ⁇ 3 in the stationary coordinate system;
- the SVPWM module (7) is used to modulate the voltage signal U ⁇ 1 ⁇ 1 ⁇ 3 ⁇ 3 in a given two-phase stationary coordinate system into ten PWM pulse signals required to drive the motor;
- the inverter module (8) outputs five-phase voltage signals through ten PWM pulse signals to provide power to the five-phase permanent magnet fault-tolerant hub motor (1).
- this invention comprehensively considers the position sensorless operating performance of the motor drive system from the perspective of motor design and control, and proposes a permanent magnet fault-tolerant hub motor drive system based on an active position sensorless strategy.
- the positionless operation performance is taken into account in the motor design stage in advance, and a permanent magnet fault-tolerant hub motor based on an active positionless sensing strategy is proposed to improve the rotor estimation accuracy under dynamic steady state when the motor is controlled without a position sensor, and to simplify the motor control algorithm.
- Complexity At the same time, for this type of permanent magnet fault-tolerant hub motor, a corresponding position sensorless control algorithm is proposed to achieve high-precision detection of the rotor position to cope with complex and changeable operating conditions.
- the present invention increases the fault tolerance of the motor through phase number redundancy, and uses fractional slot concentrated winding, so that different phases of the motor can achieve magnetic isolation between phases through fault-tolerant teeth, reduce the magnetic circuit coupling between different phases, and improve the efficiency to a great extent.
- Motor reliability Different from the traditional motor design, this invention takes into account the need for high-precision detection of the rotor position in the position sensorless control layer. By cleverly arranging "alternating poles", “multi-layer magnetic barriers” and “q-axis magnetic barriers” on the rotor, While reducing the amount of permanent magnets, the motor has better anti-salient pole characteristics, creatively improving the position sensorless operation accuracy from the perspective of motor design.
- the motor of the present invention cleverly adds an auxiliary permanent magnet to the rotor.
- the auxiliary permanent magnet is located on the q-axis magnetic circuit, and the magnetizing direction of the auxiliary permanent magnet is along the circumferential direction. Forming a series connection with the main permanent magnet on the magnetic circuit can improve the torque output capability of the motor to a certain extent. also. Since the magnetic permeability of the permanent magnet is quite different from that of the silicon steel sheet, the auxiliary permanent magnet located on the q-axis magnetic path acts as an auxiliary magnetic source on the one hand, and on the other hand can increase the q-axis magnetic resistance and improve the torque output. On the basis of capacity, the anti-saliency rate of the motor is further improved, thereby ensuring that the motor has high torque output and has superior position sensorless operation capabilities.
- the present invention proposes an adaptive secondary harmonic suppression strategy to suppress harmonics caused by secondary salient poles and improve the observation accuracy of the rotor position. Moreover, in order to further improve the dynamic response performance of position sensorless control, the present invention proposes an adaptive frequency band filter based on an all-pass network to replace the fixed bandwidth filter to extract the rotor position error signal.
- the proposed control algorithm can give full play to the good position sensorless operating performance of the proposed motor structure under multiple working conditions.
- the present invention comprehensively improves the positionless operation accuracy of the motor, provides a new idea for modern positionless control theory, is conducive to promoting the development of the positionless control theory of hub motors, and is beneficial to the development of electric vehicles. It has great engineering application value.
- Figure 1 is a block diagram of the permanent magnet fault-tolerant hub motor drive system based on the active position sensorless strategy of the present invention
- Figure 2 is a schematic structural diagram of a permanent magnet fault-tolerant hub motor that meets the active position sensorless strategy of the present invention
- Figure 3 is a schematic diagram of the stator structure and armature winding distribution diagram in Figure 1;
- Figure 4 is an enlarged schematic diagram of the partial structure and geometric dimensions of the rotor in Figure 1;
- Figure 5 is a schematic diagram of the magnetization of the NdFeB permanent magnets on the rotor in Figure 1;
- Figure 6 is a schematic diagram of the direct axis and orthogonal axis of the rotor in Figure 1;
- Figure 7 is a structural block diagram of the design method of an active permanent magnet fault-tolerant hub motor with an active position sensorless strategy provided by the present invention
- Figure 8 is the back electromotive force waveform of the motor of the present invention.
- Figure 9 is the inductance waveform of the motor of the present invention.
- Figure 10 shows the d and q-axis inductance waveforms when the motor of the present invention is loaded
- Figure 11 is a diagram showing the relationship between the rotor position error angle and the q-axis current of the motor according to the present invention.
- Figure 12 is a simplified block diagram of the position sensorless control module of the present invention.
- Figure 13 is a principle block diagram of the adaptive linear neuron filter of the present invention.
- Figure 14 is a block diagram of the adaptive frequency band filtering principle of the present invention.
- FIG. 1 shows the structural block diagram of the permanent magnet fault-tolerant hub motor drive system of the present invention's new active position sensorless strategy at zero and low speeds.
- the five-phase permanent magnet fault-tolerant wheel hub motor (1) serves as the drive motor of the system; the Park transformation module (2) and the inverse Park transformation module (6) are used to decouple the mathematical model in the natural coordinate system; the wireless
- the position sensor control module (3) is used to estimate the rotor position and speed Information;
- MTPA control module (4) based on formula method, using and Calculation formula for the reference current of the axle and dc axes to allocate the optimal axle and dc axis current at a given torque
- ⁇ f is
- L d1 and L q1 are the permanent magnet flux linkage, stator current amplitude, direct axis inductance and quadrature axis inductance respectively;
- PI controller (5) is used to adjust the current given value and feedback value.
- the SVPWM module (7) is used to modulate the voltage signal under a given two-phase stationary coordinate system into the required PWM signal;
- the inverter module (8) is used to output a five-phase AC signal, Provide power to the five-phase permanent magnet fault-tolerant hub motor (1).
- the present invention proposes a permanent magnet fault-tolerant hub motor with an active position sensorless strategy.
- the motor adopts a traditional fault-tolerant motor slot-pole combination scheme, and a 20-slot/18-pole slot-pole combination is selected for the five-phase motor. From the inside to the outside, it includes the rotating shaft (11), the stator (9), and the rotor (10).
- the stator (9) is composed of a stator yoke (22), armature teeth (14), stator slots (21), and tolerance teeth (13); the armature teeth (14) are evenly spaced along the outer circumferential direction of the stator (9) and fault-tolerant teeth (13).
- Armature windings (12) are wound around the armature teeth (14), and two adjacent groups of armature windings (14) are isolated by the fault-tolerant teeth (13); along the rotor ( 10)
- the main permanent magnets (15) and the iron core poles (16) are evenly spaced in the inner circumferential direction.
- the main permanent magnets (15) are surface-embedded arc-shaped permanent magnets, and the surface-embedded permanent magnet poles and adjacent iron cores are
- the poles (16) form a pair of magnetic poles; there is a q-axis magnetic barrier (17) close to the air gap side between the surface-embedded permanent magnet poles and the iron core poles (16), and the q-axis magnetic barrier (17) and the stator (9) ) forms a non-uniform air gap on the outer circle; there are multiple layers of arc-shaped magnetic barriers (19) between the surface-embedded permanent magnet poles and the core poles (16) close to the outer circle, and the arc-shaped magnetic barriers between each layer Magnetic bridge (20); a rectangular auxiliary permanent magnet (18) is provided between the q-axis magnetic barrier (17) and the arc-shaped magnetic barrier close to the air gap, and the auxiliary permanent magnet (18) and the main permanent magnet (15) A series connection is formed between them.
- Figure 3 is a schematic structural diagram of the stator (9) and a distribution diagram of the armature winding (12).
- the number of slots in the stator (9) is 20, and the stator (9) adopts semi-closed flat-bottomed slots.
- the armature winding (12) is wound on the armature teeth (14), using single-layer concentrated winding.
- the armature winding (12) is in the order marked in Figure 2, "+” is the winding direction, and "-" is In the winding outlet direction, the armature windings (12) are isolated by fault-tolerant teeth (13).
- Figure 4 is an enlarged schematic diagram of the partial structure and geometric dimensions of the rotor (10) in Figure 1.
- the inner diameter and outer diameter of the rotor (10) are R i and R o respectively.
- the embedded arc main body is alternately distributed in the inner ring of the rotor (10).
- the permanent magnet (15), the main permanent magnet (15) and the iron core pole (16) form a pair of magnetic poles.
- the thickness of the arc-shaped magnetic barrier is H.
- Figure 5 is a schematic diagram of the magnetization of the NdFeB permanent magnets on the rotor (10) in Figure 3.
- the magnetizing directions of the alternating table-embedded main permanent magnets (15) located in the inner ring of the rotor (10) all point to the center of the circle and are in contact with the iron magnets next to them.
- the core pole (16) forms a pair of magnetic poles; the auxiliary permanent magnets (18) located on both sides of the main permanent magnet (15) are reversely magnetized along the circumferential direction and form a magnetic circuit in series with the main permanent magnet (15).
- Figure 6 is a schematic diagram of the direct axis and the quadrature axis of the rotor (10) in Figure 1.
- the center line of the magnetic pole of the main permanent magnet (15) is in the direct axis direction, and the center line between the main permanent magnet (15) and the core pole (16) It is a quadrature axis, and the direct axis and the quadrature axis differ from each other by 90 electrical degrees.
- the inductance corresponding to the quadrature axis of the motor is called quadrature-axis inductance
- the inductance corresponding to the direct axis of the motor is called direct-axis inductance.
- Figure 7 is a design method for a permanent magnet fault-tolerant hub motor with an active position sensorless strategy provided by the present invention. The specific steps are as follows:
- Step 1.1) Use the slot-pole matching design method of the traditional fault-tolerant motor to initially determine the number of teeth of the stator (9) and the number of pole pairs of the rotor (10). Based on the principle of maximizing the fundamental wave composite vector, determine the slot vector allocation.
- Step 1.2) Set up alternating table-embedded main permanent magnet poles.
- the magnetizing directions of the main permanent magnet poles are all pointing to the air gap, forming a closed magnetic circuit together with the core poles, which is beneficial to improving the utilization rate of the permanent magnets.
- Step 1.3) Set up a q-axis magnetic barrier (17) and a multi-layer arc-shaped magnetic barrier (19) between the main permanent magnet poles and the core poles (16) to increase the quadrature-axis reluctance, thereby achieving the anti-salient pole characteristics of the motor. .
- Step 1.4 Set a rectangular auxiliary permanent magnet (18) magnetized in the circumferential direction between the q-axis magnetic barrier (17) and the multi-layer arc-shaped magnetic barrier (19), so that it can provide an auxiliary magnetic field while increasing the quadrature-axis reluctance. To reduce the quadrature axis inductance and further increase the anti-saliency effect of the motor.
- Step 1.5 Optimize the parameters of the main permanent magnet (15), auxiliary permanent magnet (18), q-axis magnetic barrier (17), and multi-layer arc magnetic barrier (19) to obtain good anti-salient pole characteristics.
- the position sensorless operation performance is considered in advance during the design stage to realize the design of permanent magnet fault-tolerant wheel hub motors for active position sensorless operation.
- Figure 8 shows the back electromotive force waveform of the motor of the present invention.
- the maximum value of the back electromotive force is about 78V, and its harmonic distortion rate is 2.3%.
- the motor back electromotive force has good sinusoidality, which is beneficial to the corresponding drive control and can reduce the motor's Cogging torque.
- Figure 9 shows the inductance waveform of this motor.
- the self-inductance of the motor is high, but the mutual inductance component is low.
- the mutual inductance accounts for 2.8% of the self-inductance, and it has a certain short-circuit current suppression capability.
- the magnetic coupling between phases is small, magnetic isolation between phases can be achieved, and the fault tolerance performance of the motor is improved.
- Figure 10 shows the d and q-axis inductance waveforms of the motor of the present invention when it is loaded.
- the d-axis inductance of the motor is larger than the q-axis inductance.
- the ratio of the d-axis inductance to the q-axis inductance is about 1.3. It has good anti-salient pole characteristics and is conducive to the zero-zero resistance of the motor. Low-speed positionless operation simultaneously reduces the risk of irreversible demagnetization of the permanent magnet during high-speed field weakening, improving reliability during high-speed cruising.
- Figure 11 is a diagram showing the relationship between the rotor position error angle of the motor and the change of the q-axis current of the motor.
- the change of the rotor position error angle of the motor is small and has high stability, which can effectively improve the efficiency of the motor. Position control accuracy.
- Figure 12 is a simplified block diagram of the position sensorless control module.
- the secondary harmonic suppression and position error signal extraction algorithm based on frequency band adaptation includes an adaptive frequency band filter and an adaptive linear neuron filter.
- Figure 13 is a principle block diagram of the adaptive linear neuron filter based on the recursive least squares method of the present invention.
- the filter coefficients are self-tuned through an adaptive algorithm to suppress specific harmonics in the position error signal.
- the expected filter output signal y(n) is obtained, and the input signal U(n) and the filter expected output signal y(n) are
- the desired fundamental signal Y(n) can be obtained by difference.
- the formula can be obtained by the recursive least squares method:
- y 1 (n) is the harmonic estimator
- x 11 (n-1) and x 21 (n-1) are the estimated amplitudes of the harmonic components
- Y(n) is the filter output
- U(n) is the filter input
- the adjustable filter coefficients x 11 (n) and x 21 (n) are updated online based on the harmonic reference signal, and the expression is as follows:
- the gain coefficients k 11 (n) and k 21 (n) are expressed as:
- H 11 (n) and H 21 (n) can be expressed as:
- FIG. 14 is a block diagram of the adaptive frequency band filtering principle of the present invention.
- the all-pass network filter is used to only change the signal phase characteristics, and the signals before and after filtering are linearly operated to construct an adaptive frequency band bandpass filter and an adaptive frequency band notch filter.
- the transfer function of a typical second-order all-pass network filter is:
- ⁇ m the filter bandwidth with 3dB attenuation
- T s the digital sampling period
- p cos ( ⁇ n T s )
- ⁇ n the resonant frequency point
- adaptive frequency band filtering The resonant frequency in the device is set to:
- ⁇ c is the frequency of injected high-frequency signal
- the speed of the motor is estimated, and the resonant frequency is automatically adjusted to follow the motor speed to reduce the phase delay caused by the filter.
- Set the filter bandwidth to:
- ⁇ b is the adjustable bandwidth
- ⁇ is the dynamic adjustment factor
- ⁇ * is the given speed.
- the filter bandwidth depends on ⁇ b ; when the motor is running at variable speed
- the dynamic adjustment factor acts again, and the filter bandwidth is adaptively adjusted according to the error between the actual speed and the given speed, so as to improve the dynamic response performance of positionless control.
- the modulated current can be expressed as:
- ⁇ h is the angular frequency of the injected high-frequency signal, Inject harmonic amplitude into the 2nd high frequency
- ⁇ c is set to 2 ⁇ h to obtain the position error signal
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法。本发明在电机设计阶段,提前考虑无位置运行性能,提出一种基于主动式无位置传感器策略的永磁容错轮毂电机。通过采用分数槽集中绕组并巧妙的利用交替极、多层磁障及辅助永磁体等方式,在保证电机容错能力的基础上提高电机的无位置运行精度。在控制层面提出基于频带自适应的次级谐波抑制策略,抑制次级凸极谐波对位置观测影响,同时提升系统的动态响应性能。本发明突破传统轮毂电机无位置传感器驱动系统的技术束缚,通过基于主动式无位置传感器策略的五相永磁容错轮毂电机设计并结合高精度无位置传感器控制算法,综合提高了电机驱动系统多工况下无位置传感器运行能力。
Description
本发明涉及一种电机及其智能化控制技术领域,尤其涉及一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法。
气候变化是当今世界面临的最严峻的挑战之一,控制以二氧化碳为主体的温室气体排放迫在眉睫。新能源电动汽车因其污染小,成为节能减排的重要手段。永磁轮毂电机因其高输出转矩、高效率、小体积等优势在新能源汽车领域得到广泛关注。
新一代新能源电动汽车对其电机驱动系统安全性和可靠性提出更高要求。永磁容错轮毂电机能够克服功率开关故障、开路故障和短路故障,具备良好的容错能力,有效提高了轮毂电机的可靠性。中国发明专利《一种电热磁隔离多相容错电机》(专利号CN112510862A)公开了一种电热磁隔离多相容错电机,利用多相集中绕组技术和一种新型的定子结构,实现了故障工况下电机的强容错运行。然而,此类容错电机由于采用集中绕组,凸极率往往比较低,导致电机调速范围窄,无位置传感器运行效果差等缺点,无法满足电动汽车对其驱动电机的要求。为克服电机凸极率较低的问题,中国发明专利《一种高磁阻转矩、高凸极率的五相永磁容错电机的设计方法》(专利号CN111654124B)针对五相永磁容错电机,提出了一种改进的槽极配合关系,在实现高磁阻转矩和高凸极率的同时,能保证优越的容错性能,对获得良好的容错能力和稳态无位置传感器运行性能具有重要意义。然而,该类永磁容错电机由于凸极率大于1,导致电机在高速弱磁下的永磁体不可逆退磁风险较高;并且,该类电机的凸极特性随负载变化极易消失,从而恶化了无位置传感器动态运行性能。为此,文献“Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation”(IEEE Transactions on Industrial Electronics,2020)尝试提出一种磁场增强型永磁电机,以提高电机的无位置传感器运行能力。但是,该类电机的反凸极率不明显,同时未克服次级凸极性问题,动稳态下转子位置估算精度仍有待进一步提高。因此,为满足新一代电动汽车对良好的多工况无位置传感器运行性能的需求,如何在保证轮毂电机基本电磁性能的同时提高其无位置运行能力、抗退磁能力及调速范围尤为重要。
发明内容
发明目的:本发明针对现有技术中存在的问题,提出一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法,将无位置运行能力提前考虑到设计阶段,综合考虑电机参数对无位置传感器运行性能的影响,以满足电动汽车的“频繁启停、加减速、重载爬坡、高速巡航、故障”等多变工况需求。在满足“强容错”及“宽调速”的基础上,使得电机具有较好的无位置运行能力,进一步拓宽电动汽车电机驱动系统的广域高效区和提高安全可靠运行性能。
技术方案:为实现上述发明目的,本发明提供了一种基于主动式无位置传感器策略的永磁容错轮毂电机驱动系统。包括:五相永磁容错轮毂电机(1)、Park变换模块(2)、无位置传感器控制模块(3)、MTPA控制模块(4)、PI控制器(5)、反Park变换模块(6)、SVPWM模块(7)及逆变器模块(8)。具体包括以下步骤:
步骤1),设计一种基于主动式无位置传感器策略的永磁容错轮毂电机,通过在设计阶段统筹考虑无位置运行性能,以获取良好的无位置运行性能及容错性能。
步骤2),为充分发挥所述步骤1)中永磁容错轮毂电机优越的无位置传感器运行性能,提出基于频带自适应的次级谐波抑制与位置误差信号提取算法,抑制次级凸极谐波对位置观测的影响,提升无位置传感器控制的动态响应性能。
步骤3),基于所述步骤1)中新型主动式无位置传感器策略的永磁容错轮毂电机和步骤2)中无位置传感器控制方法,构建五相永磁容错轮毂电机无位置传感器驱动控制系统。
进一步,所述步骤1)中,一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于:由内向外依次包括转轴(11)、定子(9)、转子(10)。所述定子(9)由定子轭(22)、电枢齿(14)、定子槽(21)、容错齿(13)组成;沿定子(9)外圆周方向间隔均匀分布电枢齿(14)和容错齿(13),所述电枢齿(14)上绕有电枢绕组(12),两相邻的电枢绕(14)组之间由容错齿(13)进行隔离;沿转子(10)内圆周方向间隔均匀分布主永磁体(15)与铁芯极(16),所述主永磁体(15)采用表嵌式弧形永磁体,表嵌式永磁磁极与相邻铁芯极(16)形成一对磁极;所述表嵌式永磁磁极与铁芯极(16)之间靠近气隙侧存在q轴磁障(17),q轴磁障(17)与定子(9)外圆形成非均匀气隙;所述表嵌式永磁磁极与铁芯极(16)之间靠近外圆侧存在多层弧形磁障(19),各层弧形磁障之间形成导磁桥(20);所述q轴磁障(17)与靠近气隙的弧形磁障之间设置有矩形辅助永磁体(18),辅助永磁体(18)与主永磁体(15)之间形成串联。
所述定子(9)和转子(10)均采用硅钢片等导磁材料叠压而成,叠压系数为0.96;电枢绕组(12)采用漆包铜导体材料。
所述电枢绕组(12)为单层集中绕组。
所述定子齿的齿数是2m的倍数,且定子齿的数量与转子极数之差为2,其中m为电机的相数。
所述永磁磁极与铁芯极(16)的数量之和为P
s。
所述转子极数为P
s、所述主永磁体(15)极数为P
m、所述辅助永磁体(18)极数为P
a、所述铁芯极(16)极数为P
f,四者之间满足关系:P
m+P
f=P
s=P
a。
设计多层弧形磁障(19)位于主永磁体(15)磁极与铁芯极(16)间,沿转子(10)圆周方向均匀分布;辅助永磁体(18)位于多层弧形磁障(19)与q轴磁障(17)之间沿转子(10)外圆周方向均匀分布。
所述q轴磁障(17)圆心为O
1,半径为R
1,所述多层弧形磁障(19)圆心为O
2,弧形磁障半径分别为R
2,R
3,弧形磁障厚度为H
0。
所述主永磁体(15)与辅助永磁体(18)的均采用钕铁硼永磁磁钢,主永磁体(15)充磁方向均为指向圆心,辅助永磁体(18)充磁方向沿圆周方向,相邻两个辅助永磁体(18)充磁方向相反使得辅助磁场与主磁场形成磁路串联。
本发明提供的一种基于主动式无位置传感器策略的永磁容错轮毂电机,其具体设计方法如下:
步骤1.1)利用传统容错电机的槽极配合设计方法,初步确定定子(9)齿数和转子(10)极对数,基于基波合成矢量最大原则,确定槽矢量分配。
步骤1.2)设置交替表嵌式主永磁磁极,主永磁磁极充磁方向均指向气隙,与铁芯极共同形成闭合磁路,有利于提高永磁体利用率。
步骤1.3)在主永磁磁极与铁芯极(16)之间设置q轴磁障(17)与多层弧形磁障(19),增加交轴磁阻,从而实现电机的反凸极特性。
步骤1.4)在q轴磁障(17)与多层弧形磁障(19)之间设置沿周向充磁的矩形辅助永磁体(18),使其在提供辅助磁场的同时增加交轴磁阻,以降低交轴电感,进一步增加电机的反凸极效应。
步骤1.5)对主永磁体(15)、辅助永磁体(18)、q轴磁障(17)、多层弧形磁障(19)参数进行优化,获得良好的反凸极特性,通过在电机设计阶段提前考虑无位置传感器运行性能,以实现主动式无位置传感器运行永磁容错轮毂电机的设计。
通过主动式无位置传感器运行永磁容错轮毂电机的设计,可以有效提高电机的无位置传感器运行能力,但是仍然存在次级凸极问题,未能充分发挥电机驱动系统的高精度无位置传感器运行性能。为充分实现所述永磁容错轮毂电机优越的无位置传感器运行性能,本 发明还提供了一种基于频带自适应的次级谐波抑制与信号提取的无位置传感器控制算法。
进一步,所述步骤2)中,基于频带自适应的次级谐波抑制与信号提取的无位置传感器控制算法实现的具体步骤如下:
2.1)通过基于频带自适应的次级谐波抑制算法,以抑制次级凸极谐波对位置观测的影响。
采用基于递归最小二乘法的自适应线性神经元滤波器,通过自适应算法对滤波器系数进行自整定以抑制位置误差信号中的特定次谐波。对谐波参考信号r(n)和可调权重分量x(k)进行处理后获取滤波器期望输出信号y(n),将输入信号U(n)和滤波器期望输出信号y(n)做差便可获得期望基波信号Y(n)。由递归最小二乘法可得公式:
式中,y
1(n)为谐波估计量;x
11(n-1)、x
21(n-1)为谐波分量估计幅值;
为谐波参考信号,
为估计转子位置;Y(n)为滤波输出;U(n)为滤波输入;可调滤波系数x
11(n)和x
21(n)基于谐波参考信号在线更新,表达式如下:
其中,增益系数k
11(n)和k
21(n)表示为:
式中,μ为遗忘因子,且0<μ<1。其中,自相关矩阵H
1(n)的逆被转换成两个尺度H
11(n)和H
21(n),使递归最小二乘法算法的实现更加简单和迅速,H
11(n)和H
21(n)可以表示为:
2.2)在所述步骤2.1)的基础上,结合基于频带自适应的位置误差信号提取算法,提高五相永磁容错轮毂电机无位置传感器控制的动态响应性能。
利用全通网络滤波器只改变信号相位的特性,将滤波前后的信号进行线性运算,构造 自适应频带带通滤波器与自适应频带陷波滤波器。典型二阶全通网络滤波器的传递函数为:
其中,ω
b为可调带宽,λ为动态调节因子,ω
*为给定转速,当电机稳定运行时,动态调节因子不起作用,此时滤波器带宽取决于ω
b;当电机处于变速运行时,动态调节因子重新作用,根据实际转速与给定转速误差大小自适应调节滤波带宽,以此来改善无位置控制动态响应性能,调制后的电流可表示为:
式中,
为q
1轴高频响应电流;
ω
h为注入高频信号角频率,
为2次高频注入谐波幅值;
为位置误差函数,
为估计角位置误差;调制后的电流包含2次高频注入谐波,故将自适应频带陷波滤波器中ω
c设为2ω
h,以获取位置误差信号
进一步,所述步骤3)中,基于主动式无位置传感器策略的五相永磁容错轮毂电机驱动系统,其特征在于:
五相永磁容错轮毂电机(1)作为系统的驱动电机模块,输出电磁转矩T
e和五相电流i
abcde;
五相电流i
abcde通过所述Park变换模块(2)获取反馈交直轴电流信号i
d1q1d3q3;
反Park变换模块(6)用于反变换给定交直轴电压信号U
d1q1d3q3,获取静止坐标系下的电压信号U
α1β1α3β3;
SVPWM模块(7)用于将给定两相静止坐标系下的电压信号U
α1β1α3β3调制成驱动电机所需的十路PWM脉冲信号;
逆变器模块(8)通过十路PWM脉冲信号输出五相电压信,给所述五相永磁容错轮毂电机(1)提供电源。
本发明的有益效果:
(1)本发明首次从电机设计和控制的角度,统筹考虑电机驱动系统的无位置传感器运行性能,提出一种基于主动式无位置传感器策略的永磁容错轮毂电机驱动系统。将无位置运行性能提前考虑到电机设计阶段,提出基于主动式无位置传感策略的永磁容错轮毂电机,以提高电机无位置传感器控制时动稳态下的转子估算精度,简化电机控制算法的复杂程度。与此同时,针对此类永磁容错轮毂电机,提出相应的无位置传感器控制算法,实现转子位置的高精度检测,以应对复杂多变的运行工况。
(2)本发明通过相数冗余增加电机故障容错能力,同时采用分数槽集中绕组,使得电机不同相间可以通过容错齿实现相间磁隔离,降低不同相间磁路耦合,在很大程度上提高了电机的可靠性。与传统电机设计不同,本发明考虑到无位置传感器控制层对转子位置高精度检测的需求,通过在转子上巧妙地设置“交替极”、“多层磁障”以及“q轴磁障”,在减少永磁体用量的同时,使得电机具有较好的反凸极特性,创造性地从电机设计角度提高了无位置传感器运行精度。
(3)为进一步提高转矩输出能力和反凸极率,本发明电机巧妙地在转子上合理增设辅助永磁体,该辅助永磁体位置q轴磁路上,辅助永磁体充磁方向沿圆周方向,与主永磁体在磁路上形成串联,可以一定程度上提高电机的转矩输出能力。此外。由于永磁体磁导率与硅钢片磁导率差别较大,因此位于q轴磁路上的辅助永磁体一方面充当辅助磁源的作用,另一方面可以增加q轴磁阻,在提高转矩输出能力的基础上进一步提高电机的反凸极率,从而确保了电机高转矩输出的同时,具备优越的无位置传感器运行能力。
(4)从电机驱动控制角度,本发明提出了自适应次级谐波抑制策略,以抑制次级凸极引起的谐波,提升转子位置的观测精度。并且,为进一步提高无位置传感器控制的动态响应性能,本发明提出基于全通网络的自适应频带滤波器代替固定带宽滤波器,进行转子位置误差信号提取。所提出的控制算法能够充分发挥所提电机结构的多工况下良好的无位置传感器运行性能。
(5)本发明从电机设计和控制角度,综合提高了电机无位置运行精度,为现代无位置控制理论提供了新的思路,有利于促进轮毂电机无位置控制理论的发展,对电动汽车的发展具有重大的工程应用价值。
图1为本发明基于主动式无位置传感器策略的永磁容错轮毂电机驱动系统框图;
图2为本发明满足主动式无位置传感器策略的永磁容错轮毂电机结构示意图;
图3为图1中定子结构示意图及电枢绕组分布图;
图4为图1中转子局部结构及几何尺寸标注放大示意图;
图5为图1中转子上的钕铁硼永磁体的充磁示意图;
图6为图1中转子的直轴、交轴示意图;
图7为本发明提供的一种主动式无位置传感器策略的永磁容错轮毂电机的设计方法结构框图;
图8为本发明电机反电势波形;
图9为本发明电机电感波形;
图10为本发明电机负载时d、q轴电感波形;
图11为本发明电机转子位置误差角随q轴电流变化关系图;
图12为本发明无位置传感器控制模块简化框图;
图13为本发明自适应线性神经元滤波器原理框图;
图14为本发明自适应频带滤波原理框图;
图中:1、五相永磁容错轮毂电机;2、Park变换模块;3、无位置传感器控制模块;4、MTPA控制模块;5、PI模块;6、反Park变换模块;7、SVPWM模块;8、逆变器模块。9、定子;10、转子;11、转轴;12、电枢绕组;13、容错齿;14、电枢齿;15、主永磁体;16、铁芯极;17、q轴磁障;18、辅助永磁体;19、多层弧形磁障;20、导磁桥;21、定子槽;22、定子轭。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
图1所示为本发明零低速下新型主动式无位置传感器策略的永磁容错轮毂电机驱动系统结构框图。其中所述五相永磁容错轮毂电机(1)作为系统的驱动电机;所述Park变换模块(2)和反Park变换模块(6)用于解耦自然坐标系下的数学模型;所述无位置传感器控制模块(3)用于估测转子位置
及转速
信息;基于公式法的MTPA控制模块(4),采用
和
交直轴参考电流计算公式,以分配给定转矩下的最优交直轴电流
式中Ψ
f、i
s、L
d1和L
q1分别为永磁磁链、定子电流幅值、直轴电感和交轴电感;PI控制器(5)用于调节电流给定值与反馈值的偏差,获得给定电压控制信号;SVPWM模块(7)用于将给定两相静止坐标系下的电压信号调制成所需PWM信号;逆变器模块(8)用于输出五相交流信号,给所述五相永磁容错轮毂电机(1)提供电源。
如图2所示,本发明提出了主动式无位置传感器策略的永磁容错轮毂电机,该电机采用传统容错电机槽极组合方案,针对五相电机选取了20槽/18极槽极组合方式。由内向外依次包括转轴(11)、定子(9)、转子(10)。所述定子(9)由定子轭(22)、电枢齿(14)、定子槽(21)、容错齿(13)组成;沿定子(9)外圆周方向间隔均匀分布电枢齿(14)和容错齿(13),所述电枢齿(14)上绕有电枢绕组(12),两相邻的电枢绕(14)组之间由容错齿(13)进行隔离;沿转子(10)内圆周方向间隔均匀分布主永磁体(15)与铁芯极(16),所述主永磁体(15)采用表嵌式弧形永磁体,表嵌式永磁磁极与相邻铁芯极(16)形成一对磁极;所述表嵌式永磁磁极与铁芯极(16)之间靠近气隙侧存在q轴磁障(17),q轴磁障(17)与定子(9)外圆形成非均匀气隙;所述表嵌式永磁磁极与铁芯极(16)之间靠近外圆侧存在多层弧形磁障(19),各层弧形磁障之间形成导磁桥(20);所述q轴磁障(17)与靠近气隙的弧形磁障之间设置有矩形辅助永磁体(18),辅助永磁体(18)与主永磁体(15)之间形成串联。定子(9)和转子(10)均采用硅钢片等导磁材料叠压而成,叠压系数为0.96;电枢绕组(12)采用漆包铜导体材料。
图3为定子(9)结构示意图及电枢绕组(12)分布图,定子(9)槽数为20,采用半闭口平底槽。电枢绕组(12)绕制于电枢齿(14)上,采用单层集中绕组,电枢绕组(12)按图2中标注的顺序,“+”为绕组进线方向,“-”为绕组出线方向,电枢绕组(12)之间由容错齿(13)进行隔离。
图4为图1中转子(10)局部结构及几何尺寸标注放大示意图,转子(10)内径和外径分别为R
i和R
o,在转子(10)内圈交替分布表嵌式弧形主永磁体(15),主永磁体(15)与铁芯极(16)形成一对磁极。在主永磁体(15)与铁芯极(16)之间靠近内圈侧存在圆心为O
1,半径为R
1的q轴磁障(17),形成q轴磁障(17);在主永磁体(15)与铁芯极(16)之间靠近外圈侧存在半径为O
2,半径分别为R
2和R
3的多层弧形磁障(19),弧形磁障厚度为H
0,有效增加了q轴磁阻;多层弧形磁障(19)之间存在导磁桥(20),减少对d轴磁通的影响;在靠近气隙侧弧形磁障与q轴磁障(17)之间存在矩形辅助永磁体(18),由于永磁体磁导率较低,在提供辅助磁场的同时充当了q轴磁障(17),可以在提高转矩的同时增加反凸极效应。
图5为图3转子(10)上的钕铁硼永磁体的充磁示意图,位于转子(10)内圈的交替表嵌式主永磁体(15)充磁方向均指向圆心,与旁边的铁芯极(16)形成一对磁极;位于主永磁体(15)两侧的辅助永磁体(18)沿圆周方向反向充磁,与主永磁体(15)形成磁路串联。
图6为图1中转子(10)的直轴,交轴示意图,主永磁体(15)磁极中心线为直轴方向,主永磁体(15)与铁芯极(16)之间的中心线为交轴,直轴与交轴互差90电角度。与电机交轴对应的电感称为交轴电感,与电机直轴对应的电感称为直轴电感。
图7为本发明提供的一种主动式无位置传感器策略的永磁容错轮毂电机的设计方法,具体步骤如下:
步骤1.1)利用传统容错电机的槽极配合设计方法,初步确定定子(9)齿数和转子(10)极对数,基于基波合成矢量最大原则,确定槽矢量分配。
步骤1.2)设置交替表嵌式主永磁磁极,主永磁磁极充磁方向均指向气隙,与铁芯极共同形成闭合磁路,有利于提高永磁体利用率。
步骤1.3)在主永磁磁极与铁芯极(16)之间设置q轴磁障(17)与多层弧形磁障(19),增加交轴磁阻,从而实现电机的反凸极特性。
步骤1.4)在q轴磁障(17)与多层弧形磁障(19)之间设置沿周向充磁的矩形辅助永磁体(18),使其在提供辅助磁场的同时增加交轴磁阻,以降低交轴电感,进一步增加电机的反凸极效应。
步骤1.5)对主永磁体(15)、辅助永磁体(18)、q轴磁障(17)、多层弧形磁障(19)参数进行优化,获得良好的反凸极特性,通过在电机设计阶段提前考虑无位置传感器运行性能,以实现主动式无位置传感器运行永磁容错轮毂电机的设计。
图8为本发明电机反电势波形,其反电势最大值约为78V,其谐波畸变率为2.3%,电机反电势具有较好的正弦度,有利于相应的驱动控制,同时可降低电机的齿槽转矩。
图9为本电机电感波形,电机的自感较高,而互感成分较低,互感在自感中的占比为2.8%,有一定的短路电流抑制能力。相与相之间的磁耦合小,可以实现相间磁隔离,提高了电机的容错性能。
图10为本发明电机负载时d、q轴电感波形,电机的d轴电感大于q轴电感,d轴电感与q轴电感比值约为1.3,具有较好的反凸极特性,有利于电机零低速无位置运行,同时降低高速弱磁时的永磁体不可逆退磁的风险,提升高速巡航时的可靠性。
图11为本发明电机转子位置误差角随q轴电流变化关系图,当电机q轴电流发生变化时,电机的转子位置误差角变化幅度较小,具有较高的稳定性,可以有效提高电机无位置控制精度。
图12为无位置传感器控制模块简化框图,基于频带自适应的次级谐波抑制与位置误差信号提取算法包括,自适应频带滤波器与自适应线性神经元滤波器。
图13为本发明基于递归最小二乘法的自适应线性神经元滤波器原理框图,通过自适应算法对滤波器系数进行自整定以抑制位置误差信号中的特定次谐波。对谐波参考信号r(n)和可调权重分量x(k)进行处理后获取滤波器期望输出信号y(n),将输入信号U(n)和滤波器期望输出信号y(n)做差便可获得期望基波信号Y(n)。由递归最小二乘法可得公式:
式中,y
1(n)为谐波估计量;x
11(n-1)、x
21(n-1)为谐波分量估计幅值;
为谐波参考信号,
为估计转子位置;Y(n)为滤波输出;U(n)为滤波输入;可调滤波系数x
11(n)和x
21(n)基于谐波参考信号在线更新,表达式如下:
其中,增益系数k
11(n)和k
21(n)表示为:
式中,μ为遗忘因子,且0<μ<1。其中自相关矩阵H
1(n)的逆被转换成两个尺度H
11(n)和H
21(n),使递归最小二乘法算法的实现更加简单和迅速,H
11(n)和H
21(n)可以表示为:
图14为本发明自适应频带滤波原理框图。利用全通网络滤波器只改变信号相位的特性,将滤波前后的信号进行线性运算,构造自适应频带带通滤波器与自适应频带陷波滤波器。典型二阶全通网络滤波器的传递函数为:
其中,ω
b为可调带宽,λ为动态调节因子,ω
*为给定转速,当电机稳定运行时,动态调节因子不起作用,此时滤波器带宽取决于ω
b;当电机处于变速运行时,动态调节因子重新作用,根据实际转速与给定转速误差大小自适应调节滤波带宽,以此来改善无位置控制动态响应性能,调制后的电流可表示为:
Claims (10)
- 一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于:由内向外依次包括转轴(11)、定子(9)、转子(10);所述定子(9)由定子轭(22)、电枢齿(14)、定子槽(21)、容错齿(13)组成;沿定子(9)外圆周方向间隔均匀分布电枢齿(14)和容错齿(13),所述电枢齿(14)上绕有电枢绕组(12),两相邻的电枢齿(14)组之间由容错齿(13)进行隔离;沿转子(10)内圆周方向间隔均匀分布主永磁体(15)与铁芯极(16),所述主永磁体(15)采用表嵌式弧形永磁体,表嵌式主永磁磁极与相邻铁芯极(16)形成一对磁极;所述表嵌式主永磁磁极与铁芯极(16)之间靠近气隙侧存在q轴磁障(17),q轴磁障(17)与定子(9)外圆形成非均匀气隙;所述表嵌式主永磁磁极与铁芯极(16)之间靠近外圆侧存在多层弧形磁障(19),各层弧形磁障之间形成导磁桥(20);所述q轴磁障(17)与靠近气隙的弧形磁障之间设置有矩形辅助永磁体(18),辅助永磁体(18)与主永磁体(15)之间形成串联。
- 根据权利要求1所述的一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于,定子(9)和转子(10)均采用硅钢片等导磁材料叠压而成,叠压系数为0.96;电枢绕组(12)采用漆包铜导体材料,所述电枢绕组(12)为单层集中绕组。
- 根据权利要求1所述的一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于,所述定子齿的齿数是2m的倍数,且定子齿的数量与转子(10)极数之差为2,其中m为电机的相数;永磁磁极与铁芯极(16)的数量之和为P s;所述转子(10)极数为P s、所述主永磁体(15)极数为P m、所述辅助永磁体(18)极数为P a、所述铁芯极(16)极数为P f,四者之间满足关系:P m+P f=P s=P a。
- 根据权利要求1所述的一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于,设计多层弧形磁障(19)位于主永磁体(15)磁极与铁芯极(16)间,沿转子(10)圆周方向均匀分布;辅助永磁体(18)位于弧形磁障与q轴磁障(17)之间沿转子(10)外圆周方向均匀分布;所述q轴磁障(17)圆心为O 1半径为R 1,所述多层弧形磁障(19)圆心为O 2,弧形磁障半径分别为R 2,R 3,弧形磁障厚度为H 0。
- 根据权利要求1所述的一种基于主动式无位置传感器策略的永磁容错轮毂电机,其特征在于,所述主永磁体(15)与辅助永磁体(18)的均采用钕铁硼永磁磁钢,主永磁体(15)充磁方向均为指向圆心,辅助永磁体(18)充磁方向沿圆周方向,相邻两个辅助永磁体(18)充磁方向相反。
- 一种根据权利要求1所述的基于主动式无位置传感器策略的永磁容错轮毂电机的 设计方法,其特征在于,包括如下步骤:步骤1.1)利用容错电机的槽极配合设计方法,初步确定定子(9)齿数和转子(10)极对数,基于基波合成矢量最大原则,确定槽矢量分配;步骤1.2)设置交替表嵌式主永磁磁极,主永磁磁极充磁方向均指向气隙,与铁芯极共同形成闭合磁路,有利于提高永磁体利用率;步骤1.3)在主永磁磁极与铁芯极(16)之间设置q轴磁障(17)与多层弧形磁障(19),增加交轴磁阻,从而实现电机的反凸极特性;步骤1.4)在q轴磁障(17)与多层弧形磁障(19)之间设置沿周向充磁的矩形辅助永磁体(18),使其在提供辅助磁场的同时增加交轴磁阻,以降低交轴电感,进一步增加电机的反凸极效应;步骤1.5)对主永磁体(15)、辅助永磁体(18)、q轴磁障(17)、多层弧形磁障(19)参数进行优化,获得良好的反凸极特性,通过在电机设计阶段提前考虑无位置传感器运行性能,以实现主动式无位置传感器运行永磁容错轮毂电机的设计。
- 一种根据权利要求1所述的基于主动式无位置传感器策略的永磁容错轮毂电机的驱动方法,其特征在于,包括如下步骤:步骤1),设计根据权利要求1所述的一种基于主动式无位置传感器策略的永磁容错轮毂电机,通过在设计阶段统筹考虑无位置运行性能,以获取良好的无位置运行性能及容错性能;步骤2),为充分发挥所述步骤1)中永磁容错轮毂电机优越的无位置传感器运行性能,提出基于频带自适应的次级谐波抑制与位置误差信号提取算法,抑制次级凸极谐波对位置观测的影响,提升无位置传感器控制的动态响应性能;步骤3),基于所述步骤1)中新型主动式无位置传感器策略的永磁容错轮毂电机和步骤2)中无位置传感器控制方法,构建五相永磁容错轮毂电机无位置传感器驱动控制系统。
- 根据权利要求7所述基于主动式无位置传感器策略的永磁容错轮毂电机的驱动方法,其特征在于,提出基于频带自适应的次级谐波抑制与位置误差信号提取算法,以抑制次级凸极谐波对位置观测的影响,具体过程为:采用基于递归最小二乘法的自适应线性神经元滤波器,通过自适应算法对滤波器系数进行自整定以抑制位置误差信号中的特定次谐波,对谐波参考信号r(n)和可调权重分量x(k)进行处理后获取滤波器期望输出信号y(n),将输入信号U(n)和滤波器期望输出信号y(n)做差便可获得期望基波信号Y(n),由递归最小二乘法可得公式:式中,y 1(n)为谐波估计量;x 11(n-1)、x 21(n-1)为谐波分量估计幅值; 为谐波参考信号, 为估计转子位置;Y(n)为滤波输出;U(n)为滤波输入;可调滤波系数x 11(n)和x 21(n)基于谐波参考信号在线更新,表达式如下:其中,增益系数k 11(n)和k 21(n)表示为:式中,μ为遗忘因子,且0<μ<1,其中自相关矩阵H 1(n)的逆被转换成两个尺度H 11(n)和H 21(n),使递归最小二乘法算法的实现更加简单和迅速,H 11(n)和H 21(n)可以表示为:
- 根据权利要求8所述基于主动式无位置传感器策略的永磁容错轮毂电机的驱动方法,其特征在于,还包括,利用全通网络滤波器只改变信号相位的特性,将滤波前后的信号进行线性运算,构造自适应频带带通滤波器与自适应频带陷波滤波器,典型二阶全通网络滤波器的传递函数为:其中,ω b为可调带宽,λ为动态调节因子,ω *为给定转速,当电机稳定运行时,动态 调节因子不起作用,此时滤波器带宽取决于ω b;当电机处于变速运行时,动态调节因子重新作用,根据实际转速与给定转速误差大小自适应调节滤波带宽,以此来改善无位置控制动态响应性能,调制后的电流可表示为:
- 根据权利要求7所述基于主动式无位置传感器策略的永磁容错轮毂电机的驱动方法,其特征在于,构建五相永磁容错轮毂电机无位置传感器驱动控制系统的具体过程为:五相永磁容错轮毂电机(1)作为系统的驱动电机模块,输出电磁转矩T e和五相电流i abcde;五相电流i abcde通过Park变换模块(2)获取反馈交直轴电流信号i d1q1d3q3;反Park变换模块(6)用于反变换给定交直轴电压信号U d1q1d3q3,获取静止坐标系下的电压信号U α1β1α3β3;SVPWM模块(7)用于将给定两相静止坐标系下的电压信号U α1β1α3β3调制成驱动电机所需的十路PWM脉冲信号;逆变器模块(8)通过十路PWM脉冲信号输出五相电压信,给所述五相永磁容错轮毂电机(1)提供电源。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2305475.2A GB2618675B (en) | 2022-09-05 | 2022-09-29 | Permanent-magnet fault-tolerant in-wheel motor system and design methods thereof |
US18/031,868 US12100999B2 (en) | 2022-09-05 | 2022-09-29 | Permanent-magnet fault-tolerant in-wheel motor based on active sensorless strategy and drive and design methods thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211078130.8 | 2022-09-05 | ||
CN202211078130.8A CN115395854A (zh) | 2022-09-05 | 2022-09-05 | 一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024050897A1 true WO2024050897A1 (zh) | 2024-03-14 |
Family
ID=84123893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/122525 WO2024050897A1 (zh) | 2022-09-05 | 2022-09-29 | 一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115395854A (zh) |
WO (1) | WO2024050897A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2618675B (en) * | 2022-09-05 | 2024-07-31 | Univ Jiangsu | Permanent-magnet fault-tolerant in-wheel motor system and design methods thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104201808A (zh) * | 2014-09-12 | 2014-12-10 | 东南大学 | 一种基于位置自检测的混合励磁容错电机系统 |
CN108075587A (zh) * | 2017-12-13 | 2018-05-25 | 东南大学 | 一种基于转子互补结构的内置式交替极永磁电机 |
JP2022041331A (ja) * | 2020-09-01 | 2022-03-11 | 多摩川精機株式会社 | Ipmモータ |
CN114189181A (zh) * | 2021-11-29 | 2022-03-15 | 江苏大学 | 一种满足电动汽车多变工况的五相永磁电机无位置传感器驱动方法及装置 |
CN114337019A (zh) * | 2021-11-19 | 2022-04-12 | 中车永济电机有限公司 | 一种交替凸极转子的永磁辅助式同步磁阻电机 |
-
2022
- 2022-09-05 CN CN202211078130.8A patent/CN115395854A/zh active Pending
- 2022-09-29 WO PCT/CN2022/122525 patent/WO2024050897A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104201808A (zh) * | 2014-09-12 | 2014-12-10 | 东南大学 | 一种基于位置自检测的混合励磁容错电机系统 |
CN108075587A (zh) * | 2017-12-13 | 2018-05-25 | 东南大学 | 一种基于转子互补结构的内置式交替极永磁电机 |
JP2022041331A (ja) * | 2020-09-01 | 2022-03-11 | 多摩川精機株式会社 | Ipmモータ |
CN114337019A (zh) * | 2021-11-19 | 2022-04-12 | 中车永济电机有限公司 | 一种交替凸极转子的永磁辅助式同步磁阻电机 |
CN114189181A (zh) * | 2021-11-29 | 2022-03-15 | 江苏大学 | 一种满足电动汽车多变工况的五相永磁电机无位置传感器驱动方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115395854A (zh) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103490692B (zh) | 一种多相永磁同步电机电流波形优化控制方法 | |
WO2022160828A1 (zh) | 电动汽车驱动与充电一体化电路及其转矩消除控制方法 | |
Xu et al. | Pole optimization and thrust ripple suppression of new Halbach consequent-pole PMLSM for ropeless elevator propulsion | |
CN110829922B (zh) | 一种半控型开绕组pmsg双矢量模型预测磁链控制方法 | |
US20220014057A1 (en) | Rotor structure of interior permanent magnet motor | |
WO2018018671A1 (zh) | 电磁悬架容错永磁游标圆筒电机及相邻两相短路容错矢量控制方法 | |
WO2017063242A1 (zh) | 一种内嵌式混合磁材料容错圆筒直线电机及其短路容错矢量控制方法 | |
WO2023284283A1 (zh) | 广域运行的交替极型永磁辅助同步磁阻电机 | |
CN114189181B (zh) | 一种满足电动汽车多变工况的五相永磁电机无位置传感器驱动方法及装置 | |
WO2024050897A1 (zh) | 一种基于主动式无位置传感器策略的永磁容错轮毂电机及其驱动、设计方法 | |
CN113131816A (zh) | 混合转子双定子同步电机最大转矩电流比控制系统及方法 | |
Hua et al. | Comparative study of high torque density spoke-type pm in-wheel motors for special vehicle traction applications | |
CN113872482A (zh) | 一种轴向磁场磁通切换永磁电机单相故障容错控制方法 | |
CN107171520A (zh) | 轴向永磁辅助磁阻型复合转子高速电机及其控制方法 | |
CN111654124B (zh) | 一种高磁阻转矩、高凸极率的五相永磁容错电机的设计方法 | |
CN113255281B (zh) | 一种容错式低短路电流的双三相永磁电机绕组设计方法 | |
CN113098335A (zh) | 基于模糊qpr控制和电压补偿的永磁同步电机谐波抑制方法 | |
Zhai et al. | Speed sensorless control of axial field flux-switching permanent magnet machine based on improved adaptive sliding mode observer | |
Chai et al. | A novel fault tolerant machine with integral slot non-overlapping concentrated winding | |
Cheng et al. | Investigation of low space harmonic six-phase PMSM with FSCWS for electric vehicle applications | |
US12100999B2 (en) | Permanent-magnet fault-tolerant in-wheel motor based on active sensorless strategy and drive and design methods thereof | |
Wang et al. | Analysis of a Sinusoidal Rotor Segments Axial Flux Interior Permanent Magnet Synchronous Motor with 120-degree Phase Belt Toroidal Windings | |
Deng et al. | Design and finite element analysis of a novel permanent magnet assisted reluctance synchronous motor | |
Chen et al. | Performance Analysis and Comparison of two kinds of Double-layer Permanent Magnet Synchronous Motors | |
CN110995089B (zh) | 一种多相永磁容错电机驱动系统的智能控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202305475 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220929 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22957865 Country of ref document: EP Kind code of ref document: A1 |