WO2022160828A1 - 电动汽车驱动与充电一体化电路及其转矩消除控制方法 - Google Patents

电动汽车驱动与充电一体化电路及其转矩消除控制方法 Download PDF

Info

Publication number
WO2022160828A1
WO2022160828A1 PCT/CN2021/127364 CN2021127364W WO2022160828A1 WO 2022160828 A1 WO2022160828 A1 WO 2022160828A1 CN 2021127364 W CN2021127364 W CN 2021127364W WO 2022160828 A1 WO2022160828 A1 WO 2022160828A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
converter
contact switch
arm
phase motor
Prior art date
Application number
PCT/CN2021/127364
Other languages
English (en)
French (fr)
Inventor
杜贵平
雷雁雄
李土焕
陈思强
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022160828A1 publication Critical patent/WO2022160828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the invention relates to the technical field of new energy vehicle charging, in particular to an electric vehicle driving and charging integrated circuit and a torque elimination control method thereof.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and propose an electric vehicle driving and charging integrated circuit and its torque elimination control method with simple and reliable control, no modification to the motor structure, and higher power density.
  • an electric vehicle driving and charging integrated circuit including a power battery, a bidirectional DC/DC converter, a four-arm DC/AC converter, a three-phase motor, an auxiliary inductor, a first changeover contact switch, a second changeover contact switch, a first single-contact switch, a second single-contact switch, an AC interface and a control unit;
  • the four bridge arms of the four-bridge DC/AC converter are the first, second, third and fourth bridge arms respectively, and each bridge arm includes two switch tubes;
  • the three-phase motor includes three stator windings, which are respectively are the first, second and third stator windings, and each stator winding has two terminals;
  • the first changeover contact switch includes a common contact and two changeover contacts, which are the first and second contacts respectively;
  • the second changeover contact switch includes a common contact and two changeover contacts, which are the third and fourth contacts, respectively;
  • the AC interface has three terminals, which are the first, the second, and the third, respectively;
  • the positive and negative electrodes of the low-voltage side of the bidirectional DC/DC converter are respectively connected to the positive and negative electrodes of the power battery, and the positive and negative electrodes of the high-voltage side of the bidirectional DC/DC converter are respectively connected to the positive and negative electrodes of the four-arm DC/AC converter. Positive and negative poles are connected;
  • the midpoint of the first bridge arm of the four-arm DC/AC converter is respectively connected with the common contact of the first changeover contact switch and the third contact of the second changeover contact switch, and the four bridge arm DC
  • the middle point of the second bridge arm of the /AC converter is respectively connected with the first contact of the first changeover contact switch and one end of the auxiliary inductor;
  • Both ends of the first stator winding of the three-phase motor are respectively connected with the common contact of the second change-over contact switch and the second contact of the first change-over contact switch, and the second stator of the three-phase motor
  • the two ends of the winding are respectively connected with the midpoint of the third bridge arm of the four-bridge arm DC/AC converter and the second connection terminal of the AC interface
  • the two ends of the third stator winding of the three-phase motor are respectively connected with the fourth bridge arm
  • the midpoint of the fourth bridge arm of the DC/AC converter is connected with the third connection terminal of the AC interface; wherein, the three-phase motor is connected to the second contact of the first changeover contact switch and the second connection terminal of the AC interface,
  • the three terminals connected to the third terminal are one group of terminals with the same name, and the other three terminals of the three-phase motor are another group of terminals with the same name;
  • the fourth contact of the second change-over contact switch is respectively connected with the other end of the auxiliary inductor and the first connection terminal of the AC interface;
  • the two ends of the first single-contact switch are respectively connected with the second contact of the first changeover contact switch and the second connection terminal of the AC interface; the two ends of the second single-contact switch are respectively connected with the AC interface The second terminal and the third terminal are connected;
  • the AC interface is connected to the AC power grid
  • the control unit samples the current i' a of the auxiliary inductor, the three stator winding currents i a , ib , and ic of the three-phase motor, the phase voltages u ga , u gb , and u gc of the AC grid, and the four-arm DC/AC
  • the DC terminal voltage U dc of the converter and the rotational speed n of the three-phase motor, and the control signals S1-S6, S1', S2' of the eight switch tubes of the four-arm DC/AC converter are generated through the control algorithm; among them, the auxiliary The current direction of the inductor is from one end to the other, and the current direction of the three stator windings of the three-phase motor is from one set of the same name to another set of the same name.
  • the second contact and the fourth contact are both open, and the first and second single contacts are closed.
  • the circuit works in the motor drive mode; when the first contact of the first changeover contact switch and the third contact of the second changeover contact switch are both open, the second contact and the fourth contact are both open.
  • the circuit works in the battery charging mode.
  • first and second bridge arms of the four-bridge-arm DC/AC converter are used in parallel, and the current capacity of the switch tubes of the four-bridge arm DC/AC converter is half of the current capacity of the switch tubes of the other bridge arms.
  • the three-phase motor is a three-phase permanent magnet synchronous motor or a three-phase induction motor with wires drawn from both ends of the winding.
  • the present invention also provides the torque elimination control method of the above-mentioned electric vehicle driving and charging integrated circuit, which is applied in the battery charging mode and includes the following steps:
  • the current amplitude reference is obtained through the PI regulator; the AC grid phase voltages u ga , u gb , u gc is divided by its amplitude U m , multiplied with the current amplitude reference to obtain three reference currents i * ga , i * gb , i * gc ;
  • the reference current i * ga is multiplied by -1/2 as the reference current of the auxiliary inductance and the first winding of the three-phase motor;
  • the reference currents i * gb and i * gc are the reference currents of the other two windings of the three-phase motor respectively ;
  • the present invention has the following advantages and beneficial effects:
  • the present invention constructs an integrated charging circuit based on a three-phase motor drive system, the drive circuit remains unchanged, and the traditional three-phase motor drive control can be used instead of complex multi-phase motors, and the control is simple.
  • the three-phase motor used in the present invention only needs to open the star-shaped neutral point of the traditional three-phase motor winding, and does not need to modify the internal structure, and many motors have already led out wiring at both ends of the winding when they leave the factory, which is convenient for delta connection, so the present invention does not require Redesign the motor structure.
  • the present invention only needs to connect an auxiliary inductor to realize three-phase AC fast charging, and the effective value of the current flowing through the auxiliary inductor is half of the grid current. The density is greatly improved.
  • the invention controls the switching signals of the two bridge arms respectively to control the current of the auxiliary inductance and the motor winding connected in parallel with it, so as to realize the current sharing control of the two branches, thereby realizing the elimination of the motor torque, and the inductance value of the auxiliary inductance does not need to follow It is consistent with the inductance value of the motor winding in parallel with it, and has strong robustness and high reliability.
  • FIG. 1 is a schematic circuit diagram of an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of an embodiment of the present invention working in a motor drive mode.
  • FIG. 3 is a control block diagram of an equivalent circuit and a torque elimination method when working in a charging mode according to an embodiment of the present invention.
  • FIG. 4 is a diagram of the DC terminal voltage, the power battery voltage and the power battery charging current of the four-arm DC/AC converter when the embodiment of the present invention works in the charging mode.
  • FIG. 5 is a three-phase input current and a-phase voltage diagram when the embodiment of the present invention works in the charging mode.
  • FIG. 6 is a diagram of a current flowing through a stator winding of a three-phase motor when an embodiment of the present invention operates in a charging mode.
  • FIG. 7 is an electromagnetic torque diagram of a three-phase motor when the embodiment of the present invention operates in a charging mode.
  • the electric vehicle driving and charging integrated circuit includes a power battery 1, a bidirectional DC/DC converter 2, a four-arm DC/AC converter 3, a three-phase motor 4, an auxiliary Inductor 5, first changeover contact switch 6A, second changeover contact switch 6B, first single contact switch 7A, second single contact switch 7B, AC interface 8 and control unit 9; the four-bridge arm DC/
  • the four bridge arms of the AC converter 3 are the first, second, third and fourth bridge arms respectively, and each bridge arm includes two switching tubes;
  • the three-phase motor 4 includes three stator windings, the first and second respectively.
  • the first changeover contact switch 6A includes a common contact and two changeover contacts, which are the first and second contacts c1, c2 respectively;
  • the second changeover contact switch 6B includes a common contact and two changeover contacts, which are respectively the third and fourth contacts d1 and d2;
  • the AC interface 8 has three terminals, which are the first, second, and third Terminals b1, b2, b3;
  • the positive and negative electrodes of the low-voltage side of the bidirectional DC/DC converter 2 are respectively connected to the positive and negative electrodes of the power battery 1, and the positive and negative electrodes of the high-voltage side of the bidirectional DC/DC converter 2 are respectively connected They are respectively connected with the positive and negative poles of the four-bridge-arm DC/AC converter 3;
  • the midpoint a1 of the first bridge arm of the four-bridge-arm DC/AC converter 3 is respectively connected with the common contact of the first changeover contact switch 6A and the third contact d1 of the second change
  • the point c1 is connected with one end of the auxiliary inductance 5; the two ends of the first stator winding of the three-phase motor 4 are respectively connected with the common contact of the second changeover contact switch 6B and the second changeover contact switch 6A.
  • the contact c2 is connected, and the two ends of the second stator winding of the three-phase motor 4 are respectively in phase with the middle point a2 of the third bridge arm of the four-bridge DC/AC converter 3 and the second connection terminal b2 of the AC interface 8.
  • the two ends of the third stator winding of the three-phase motor 4 are respectively connected with the midpoint a3 of the fourth bridge arm of the four-arm DC/AC converter 3 and the third connection terminal b3 of the AC interface 8; wherein,
  • the three terminals connected to the three-phase motor 4 and the second contact c2 of the first changeover contact switch 6A and the second terminal b2 and the third terminal b3 of the AC interface 8 are a group of terminals with the same name.
  • connection terminals of the phase motor 4 are another group of terminals with the same name; the fourth contact d2 of the second changeover contact switch 6B is respectively connected with the other end of the auxiliary inductor 5 and the first connection terminal b1 of the AC interface 8 ; Both ends of the first single-contact switch 7A are respectively connected with the second contact c2 of the first changeover contact switch 6A and the second terminal b2 of the AC interface 8; the second single-contact switch 7B The two ends of the AC interface are respectively connected with the second terminal b2 and the third terminal b3 of the AC interface 8; the AC interface 8 is connected with the AC power grid;
  • the control unit 9 samples the current i' a of the auxiliary inductor 5 , the three stator winding currents i a , ib , and ic of the three-phase motor 4 , the phase voltages u ga , u gb , and u gc of the AC grid, and the four bridge arms
  • the DC terminal voltage U dc of the DC/AC converter 3 and the rotational speed n of the three-phase motor 4 generate the control signals S1-S6, S1', S2'; wherein, the current direction of the auxiliary inductor 5 is from one end to the other end, and the current direction of the three stator windings of the three-phase motor 4 is from one set of the same name end to another set of the same name end.
  • the first and second bridge arms of the four-arm DC/AC converter 3 are used in parallel, and the current capacity of the switch tubes of the four-arm DC/AC converter 3 is half of the current capacity of the other bridge arms.
  • the three-phase motor 4 is a three-phase permanent magnet synchronous motor or a three-phase induction motor with wires drawn from both ends of the winding.
  • This embodiment also provides the above-mentioned torque elimination control method of the electric vehicle driving and charging integrated circuit, which is applied in the battery charging mode.
  • the control block diagram is shown in FIG. 3 and includes the following steps:
  • the amplitude reference of the current is obtained through the PI regulator; the AC grid phase voltage u ga , u After gb and u gc are divided by their amplitude U m , they are multiplied with the current amplitude reference to obtain three reference currents i * ga , i * gb , i * gc ;
  • the reference current i * ga is multiplied by -1/2 as the reference current of the first winding of the auxiliary inductor 5 and the three-phase motor 4; the reference currents i * gb and i * gc are the other two windings of the three-phase motor 4 respectively the reference current;
  • the three-phase grid current is:
  • Im is the grid current amplitude
  • ⁇ t is the grid current phase
  • the currents of the three stator windings of the three-phase motor 4 can be obtained as:
  • the stator winding current only has a ⁇ -direction component, which can only generate a unidirectional pulsating magnetic field, and cannot generate a rotating magnetic field to make the rotor rotate, so the electric vehicle can stop at a fixed position for static charging.
  • a ⁇ -direction component which can only generate a unidirectional pulsating magnetic field, and cannot generate a rotating magnetic field to make the rotor rotate, so the electric vehicle can stop at a fixed position for static charging.
  • n p is the number of pole pairs of the rotor
  • ⁇ f is the rotor flux linkage
  • i q is the q-axis current after Park transformation
  • ⁇ r is the angle between the d-axis of the rotor and the d-axis of the stator, when ⁇ r is ⁇ /2
  • Te 0, no starting torque is produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种电动汽车驱动与充电一体化电路及其转矩消除控制方法,包括动力电池、双向DC/DC变换器、四桥臂DC/AC变换器、三相电机、辅助电感、第一转换触点开关、第二转换触点开关、第一单触点开关、第二单触点开关、交流接口和控制单元;该电路只增加一个辅助电感实现三相输入充电,具有电机驱动控制简单,无需重新设计电机,功率密度高的优点。本发明还提出该电路的转矩消除控制方法,通过桥臂并联控制实现充电时的电机转矩消除,辅助电感的感值不需与电机定子绕组等效电感设计成一致,具有鲁棒性强的优点。

Description

电动汽车驱动与充电一体化电路及其转矩消除控制方法 技术领域
本发明涉及新能源汽车充电的技术领域,尤其是指一种电动汽车驱动与充电一体化电路及其转矩消除控制方法。
背景技术
业内习知,由于动力电池续航时间有限,电动汽车的发展离不开电池充电系统。但目前车外大功率充电桩依赖场地、建设成本高,而车内充电器受空间、重量的限制,功率较低。另一方面,目前电动汽车驱动系统的功率越来越高。有学者提出将电机驱动系统的逆变器复用为电池充电系统的整流器、将电机绕组复用为充电滤波电感,构造驱动与充电一体化电路,大幅度减少车载充电机的体积、重量和成本,从而大大提高车载充电器的功率等级和功率密度。
为保持电动汽车静止充电,将电机绕组复用为充电滤波电感时需解决电机绕组的转矩消除问题,现有方案主要有三种:(1)采用多相电机,该方案电机成本高,且驱动控制复杂;(2)采用分裂式绕组,该方案需从绕组中间引出线,需重新设计电机结构,对电机驱动的性能产生影响;(3)外接三相或两相电感,该方案对电机驱动影响较小,但集成度不高,功率密度待提升。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种控制简单可靠、不修改电机结构且功率密度更高的电动汽车驱动与充电一体化电路及其转矩消除控制方法。
为实现上述目的,本发明所提供的技术方案为:电动汽车驱动与充电一体化电路,包括动力电池、双向DC/DC变换器、四桥臂DC/AC变换器、三相电机、辅助电感、第一转换触点开关、第二转换触点开关、第一单触点开关、第二单触点开关、交流接口和控制单元;
所述四桥臂DC/AC变换器的四个桥臂分别为第一、二、三、四桥臂,每个桥臂包含两个开关管;所述三相电机包含三个定子绕组,分别为第一、二、三定子绕组,每个定子绕组均有两个接线端子;所述第一转换触点开关包含一个公共触点和两个转换触点,分别为第一、二触点;所述第二转换触点开关包含一个公共触点和两个转换触点,分别为第三、四触点;所述交流接口有三个接线端子,分别为第一、二、三接线端子;
所述双向DC/DC变换器的低压侧正、负极分别与动力电池的正、负极相连接,所述双向DC/DC变换器的高压侧正、负极分别与四桥臂DC/AC变换器的正、负极相连接;
所述四桥臂DC/AC变换器的第一桥臂中点分别与第一转换触点开关的公共触点及第二转换触点开关的第三触点相连接,所述四桥臂DC/AC变换器的第二桥臂中点分别与第一转换触点开关的第一触点及辅助电感的一端相连接;
所述三相电机的第一定子绕组的两端分别与第二转换触点开关的公共触点和第一转换触点开关的第二触点相连接,所述三相电机的第二定子绕组的两端分别与四桥臂DC/AC变换器的第三桥臂中点和交流接口的第二接线端子相连接,所述三相电机的第三定子绕组的两端分别与四桥臂DC/AC变换器的第四桥臂中点和交流接口的第三接线端子相连接;其中,该三相电机与第一转换触点开关的第二触点及交流接口的第二接线端子、第三接线端子相连接的三个接线端子为一组同名端,该三相电机其余三个接线端子为另一组同名端;
所述第二转换触点开关的第四触点分别与辅助电感的另一端及交流接口的第一接线端子相连接;
所述第一单触点开关的两端分别与第一转换触点开关的第二触点和交流接口的第二接线端子相连接;所述第二单触点开关的两端分别与交流接口的第二 接线端子、第三接线端子相连接;
所述交流接口与交流电网相连接;
所述控制单元采样辅助电感的电流i’ a,三相电机的三个定子绕组电流i a、i b、i c,交流电网相电压u ga、u gb、u gc,四桥臂DC/AC变换器的直流端电压U dc以及三相电机的转速n,并通过控制算法产生四桥臂DC/AC变换器的八个开关管的控制信号S1~S6、S1’、S2’;其中,辅助电感的电流方向为从其一端流向另一端,三相电机的三个定子绕组的电流方向为从一组同名端流向另一组同名端。
进一步,当第一转换触点开关的第一触点和第二转换触点开关的第三触点均闭合,第二触点和第四触点均断开,且第一、二单触点开关均闭合时,电路工作在电机驱动模式;当第一转换触点开关的第一触点和第二转换触点开关的第三触点均断开,第二触点和第四触点均闭合,且第一、二单触点开关均断开时,电路工作在电池充电模式。
进一步,所述四桥臂DC/AC变换器的第一、二桥臂并联使用,其开关管的电流容量为其余桥臂开关管电流容量的一半。
进一步,所述三相电机为绕组两端均引出接线的三相永磁同步电动机或三相感应电动机。
本发明也提供了上述电动汽车驱动与充电一体化电路的转矩消除控制方法,应用在电池充电模式中,包含以下步骤:
1)将四桥臂DC/AC变换器的直流端电压的参考值U * dc与其实际值U dc电压作差后经PI调节器得到电流的幅值参考;交流电网相电压u ga,u gb,u gc除以其幅值U m后,与电流的幅值参考相乘得到三个参考电流i * ga、i * gb、i * gc
2)参考电流i * ga乘以-1/2后作为辅助电感和三相电机的第一绕组参考电流;参考电流i * gb、i * gc分别为三相电机的另两个绕组的参考电流;
3)辅助电感和三相电机的三个绕组的参考电流值与对应的电流采样值i’ a、i a、i b、i c作差后经过四个PR调节器,对PR调节器的输出进行SPWM调制,得到驱动信号S1~S6、S1’、S2’控制四桥臂DC/AC变换器的八个开关管,实现转矩消除控制。
本发明与现有技术相比,具有如下优点与有益效果:
1、电机驱动控制简单
本发明基于三相电机驱动系统构造集成充电电路,驱动电路保持不变,采用传统的三相电机驱动控制即可,未使用复杂的多相电机,控制简单。
2、无需重新设计电机
本发明使用的三相电机只需将传统三相电机绕组的星型中性点打开,不需修改内部结构,而很多电机出厂时绕组两端已经引出接线,便于进行三角连接,因此本发明无需重新设计电机结构。
3、功率密度高
本发明只需外接一个辅助电感即可实现三相交流快充,且辅助电感流过电流的有效值为电网电流的一半,相比于外接三相或两相电感方案,外接电感体积小,功率密度大大提高。
4、鲁棒性强
本发明分别控制两个桥臂的开关信号来控制辅助电感和与之并联的电机绕组的电流,实现两条支路的均流控制,进而实现电机转矩消除,辅助电感的感值不需跟与其并联的电机绕组的感值一致,鲁棒性强、可靠性高。
附图说明
图1为本发明实施例的电路原理图。
图2为本发明实施例工作在电机驱动模式时的等效电路图。
图3为本发明实施例工作在充电模式时的等效电路及转矩消除方法控制框图。
图4为本发明实施例工作在充电模式时的四桥臂DC/AC变换器直流端电压、动力电池电压及动力电池充电电流图。
图5为本发明实施例工作在充电模式时的三相输入电流以及a相电压图。
图6为本发明实施例工作在充电模式时流过三相电机定子绕组的电流图。
图7为本发明实施例工作在充电模式时三相电机的电磁转矩图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,本实施例所提供的电动汽车驱动与充电一体化电路,包括动力电池1、双向DC/DC变换器2、四桥臂DC/AC变换器3、三相电机4、辅助电感5、第一转换触点开关6A、第二转换触点开关6B、第一单触点开关7A、第二单触点开关7B、交流接口8和控制单元9;所述四桥臂DC/AC变换器3的四个桥臂分别为第一、二、三、四桥臂,每个桥臂包含两个开关管;所述三相电机4包含三个定子绕组,分别为第一、二、三定子绕组,每个定子绕组均有两个接线端子;所述第一转换触点开关6A包含一个公共触点和两个转换触点,分别为第一、二触点c1、c2;所述第二转换触点开关6B包含一个公共触点和两个转换触点,分别为第三、四触点d1、d2;所述交流接口8有三个接线端子,分别为第一、二、三接线端子b1、b2、b3;所述双向DC/DC变换器2的低压侧正、负极分别与动力电池1的正、负极相连接,所述双向DC/DC变换器2的高压侧正、负极分别与四桥臂DC/AC变换器3的正、负极相连接;所述四桥臂DC/AC变换器3的第一桥臂中点a1分别与第一转换触点开关6A的公共触点及 第二转换触点开关6B的第三触点d1相连接,所述四桥臂DC/AC变换器3的第二桥臂中点a1’分别与第一转换触点开关6A的第一触点c1及辅助电感5的一端相连接;所述三相电机4的第一定子绕组的两端分别与第二转换触点开关6B的公共触点和第一转换触点开关6A的第二触点c2相连接,所述三相电机4的第二定子绕组的两端分别与四桥臂DC/AC变换器3的第三桥臂中点a2和交流接口8的第二接线端子b2相连接,所述三相电机4的第三定子绕组的两端分别与四桥臂DC/AC变换器3的第四桥臂中点a3和交流接口8的第三接线端子b3相连接;其中,该三相电机4与第一转换触点开关6A的第二触点c2及交流接口8的第二接线端子b2、第三接线端子b3相连接的三个接线端子为一组同名端,该三相电机4其余三个接线端子为另一组同名端;所述第二转换触点开关6B的第四触点d2分别与辅助电感5的另一端及交流接口8的第一接线端子b1相连接;所述第一单触点开关7A的两端分别与第一转换触点开关6A的第二触点c2和交流接口8的第二接线端子b2相连接;所述第二单触点开关7B的两端分别与交流接口8的第二接线端子b2、第三接线端子b3相连接;所述交流接口8与交流电网相连接;
所述控制单元9采样辅助电感5的电流i’ a,三相电机4的三个定子绕组电流i a、i b、i c,交流电网相电压u ga、u gb、u gc,四桥臂DC/AC变换器3的直流端电压U dc以及三相电机4的转速n,并通过控制算法产生四桥臂DC/AC变换器3的八个开关管的控制信号S1~S6、S1’、S2’;其中,辅助电感5的电流方向为从其一端流向另一端,三相电机4的三个定子绕组的电流方向为从一组同名端流向另一组同名端。
当第一转换触点开关6A的第一触点c1和第二转换触点开关6B的第三触点d1均闭合,第二触点c2和第四触点d2均断开,且第一、二单触点开关7A、 7B均闭合时,电路工作在电机驱动模式,等效电路如图2所示,其原理与传统三相电机一致,本实施例不再具体分析;当第一转换触点开关6A的第一触点c1和第二转换触点开关6B的第三触点d1均断开,第二触点c2和第四触点d2均闭合,且第一、二单触点开关7A、7B均断开时,电路工作在电池充电模式。
所述四桥臂DC/AC变换器3的第一、二桥臂并联使用,其开关管的电流容量为其余桥臂开关管电流容量的一半。
所述三相电机4为绕组两端均引出接线的三相永磁同步电动机或三相感应电动机。
本实施例也提供了上述电动汽车驱动与充电一体化电路的转矩消除控制方法,应用在电池充电模式中,控制框图如图3所示,包含以下步骤:
1)将四桥臂DC/AC变换器3的直流端电压的参考值U * dc与其实际值U dc电压作差后经PI调节器得到电流的幅值参考;交流电网相电压u ga,u gb,u gc除以其幅值U m后,与电流的幅值参考相乘得到三个参考电流i * ga、i * gb、i * gc
2)参考电流i * ga乘以-1/2后作为辅助电感5和三相电机4的第一绕组参考电流;参考电流i * gb、i * gc分别为三相电机4的另两个绕组的参考电流;
3)辅助电感5和三相电机4的三个绕组的参考电流值与对应的电流采样值i’ a、i a、i b、i c作差后经过四个PR调节器,对PR调节器的输出进行SPWM调制,得到驱动信号S1~S6、S1’、S2’控制四桥臂DC/AC变换器3的八个开关管,实现转矩消除控制。
下面我们分析转矩消除原理:
在充电模式中,三相电网电流为:
Figure PCTCN2021127364-appb-000001
其中,I m为电网电流幅值,ωt为电网电流相位。
由控制方法可得三相电机4的三个定子绕组的电流为:
Figure PCTCN2021127364-appb-000002
对式(2)进行clark等功率变换,可得:
Figure PCTCN2021127364-appb-000003
其中,
Figure PCTCN2021127364-appb-000004
定子绕组电流只有β方向分量,只能产生单方向脉动磁场,无法产生旋转磁场让转子转动,因此电动汽车可以停在固定位置静止充电。以表贴式永磁同步电机为例,其转矩为:
T e=n pψ fi q=n pψ f(-sinθ ri α+cosθ ri β)     (4)
其中,n p为转子极对数,ψ f为转子磁链,i q为Park变换后的q轴电流,θ r为转子d轴与定子d轴的夹角,当θ r为π/2时,T e=0,没有启动转矩产生。
在MATLAB/Simulink中进行仿真测试,结果如图4~图7所示。设置四桥臂DC/AC变换器3的直流端电压为800V,动力电池1的电压为400V,动力电池1的充电电流为100A,从图4可以看出实际四桥臂DC/AC变换器3的直流端电 压U dc稳定在800V,动力电池1的电压U b稳定在400V,动力电池1的充电电流I b稳定在100A,跟踪效果良好;从图5可以看出电路实现了单位功率因数,且三相电流畸变小;从图6可以看出三相电机4的三个绕组电流的幅值和相位与式(2)理论分析一致;从图7可以看出充电过程中三相电机4的电磁转矩基本为0,实现了转矩消除。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

  1. 电动汽车驱动与充电一体化电路,其特征在于:包括动力电池(1)、双向DC/DC变换器(2)、四桥臂DC/AC变换器(3)、三相电机(4)、辅助电感(5)、第一转换触点开关(6A)、第二转换触点开关(6B)、第一单触点开关(7A)、第二单触点开关(7B)、交流接口(8)和控制单元(9);
    所述四桥臂DC/AC变换器(3)的四个桥臂分别为第一、二、三、四桥臂,每个桥臂包含两个开关管;所述三相电机(4)包含三个定子绕组,分别为第一、二、三定子绕组,每个定子绕组均有两个接线端子;所述第一转换触点开关(6A)包含一个公共触点和两个转换触点,分别为第一、二触点(c1)、(c2);所述第二转换触点开关(6B)包含一个公共触点和两个转换触点,分别为第三、四触点(d1)、(d2);所述交流接口(8)有三个接线端子,分别为第一、二、三接线端子(b1)、(b2)、(b3);
    所述双向DC/DC变换器(2)的低压侧正、负极分别与动力电池(1)的正、负极相连接,所述双向DC/DC变换器(2)的高压侧正、负极分别与四桥臂DC/AC变换器(3)的正、负极相连接;
    所述四桥臂DC/AC变换器(3)的第一桥臂中点(a1)分别与第一转换触点开关(6A)的公共触点及第二转换触点开关(6B)的第三触点(d1)相连接,所述四桥臂DC/AC变换器(3)的第二桥臂中点(a1’)分别与第一转换触点开关(6A)的第一触点(c1)及辅助电感(5)的一端相连接;
    所述三相电机(4)的第一定子绕组的两端分别与第二转换触点开关(6B)的公共触点和第一转换触点开关(6A)的第二触点(c2)相连接,所述三相电机(4)的第二定子绕组的两端分别与四桥臂DC/AC变换器(3)的第三桥臂中点(a2)和交流接口(8)的第二接线端子(b2)相连接,所述三相电机(4)的第三定子绕组的两端分别与四桥臂DC/AC变换器(3)的第四桥臂中点(a3) 和交流接口(8)的第三接线端子(b3)相连接;其中,该三相电机(4)与第一转换触点开关(6A)的第二触点(c2)及交流接口(8)的第二接线端子(b2)、第三接线端子(b3)相连接的三个接线端子为一组同名端,该三相电机(4)其余三个接线端子为另一组同名端;
    所述第二转换触点开关(6B)的第四触点(d2)分别与辅助电感(5)的另一端及交流接口(8)的第一接线端子(b1)相连接;
    所述第一单触点开关(7A)的两端分别与第一转换触点开关(6A)的第二触点(c2)和交流接口(8)的第二接线端子(b2)相连接;所述第二单触点开关(7B)的两端分别与交流接口(8)的第二接线端子(b2)、第三接线端子(b3)相连接;
    所述交流接口(8)与交流电网相连接;
    所述控制单元(9)采样辅助电感(5)的电流i’ a,三相电机(4)的三个定子绕组电流i a、i b、i c,交流电网相电压u ga、u gb、u gc,四桥臂DC/AC变换器(3)的直流端电压U dc以及三相电机(4)的转速n,并通过控制算法产生四桥臂DC/AC变换器(3)的八个开关管的控制信号S1~S6、S1’、S2’;其中,辅助电感(5)的电流方向为从其一端流向另一端,三相电机(4)的三个定子绕组的电流方向为从一组同名端流向另一组同名端。
  2. 根据权利要求1所述的电动汽车驱动与充电一体化电路,其特征在于,当第一转换触点开关(6A)的第一触点(c1)和第二转换触点开关(6B)的第三触点(d1)均闭合,第二触点(c2)和第四触点(d2)均断开,且第一、二单触点开关(7A)、(7B)均闭合时,电路工作在电机驱动模式;当第一转换触点开关(6A)的第一触点(c1)和第二转换触点开关(6B)的第三触点(d1)均断开,第二触点(c2)和第四触点(d2)均闭合,且第一、二单触点开关(7A)、 (7B)均断开时,电路工作在电池充电模式。
  3. 根据权利要求1所述的电动汽车驱动与充电一体化电路,其特征在于,所述四桥臂DC/AC变换器(3)的第一、二桥臂并联使用,其开关管的电流容量为其余桥臂开关管电流容量的一半。
  4. 根据权利要求1所述的电动汽车驱动与充电一体化电路,其特征在于,所述三相电机(4)为绕组两端均引出接线的三相永磁同步电动机或三相感应电动机。
  5. 权利要求1至4任意一项所述电动汽车驱动与充电一体化电路的转矩消除控制方法,其特征在于,应用在电池充电模式中,包含以下步骤:
    1)将四桥臂DC/AC变换器(3)的直流端电压的参考值U * dc与其实际值U dc电压作差后经PI调节器得到电流的幅值参考;交流电网相电压u ga,u gb,u gc除以其幅值U m后,与电流的幅值参考相乘得到三个参考电流i * ga、i * gb、i * gc
    2)参考电流i * ga乘以-1/2后作为辅助电感(5)和三相电机(4)的第一绕组参考电流;参考电流i * gb、i * gc分别为三相电机(4)的另两个绕组的参考电流;
    3)辅助电感(5)和三相电机(4)的三个绕组的参考电流值与对应的电流采样值i’ a、i a、i b、i c作差后经过四个PR调节器,对PR调节器的输出进行SPWM调制,得到驱动信号S1~S6、S1’、S2’控制四桥臂DC/AC变换器(3)的八个开关管,实现转矩消除控制。
PCT/CN2021/127364 2021-01-27 2021-10-29 电动汽车驱动与充电一体化电路及其转矩消除控制方法 WO2022160828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110108896.5A CN112787390B (zh) 2021-01-27 2021-01-27 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN202110108896.5 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022160828A1 true WO2022160828A1 (zh) 2022-08-04

Family

ID=75758164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127364 WO2022160828A1 (zh) 2021-01-27 2021-10-29 电动汽车驱动与充电一体化电路及其转矩消除控制方法

Country Status (2)

Country Link
CN (1) CN112787390B (zh)
WO (1) WO2022160828A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549529A (zh) * 2022-09-15 2022-12-30 华南理工大学 应用于电动工程机械的双三相电机并联式驱充一体化电路
CN117498512A (zh) * 2023-11-13 2024-02-02 山东艾诺智能仪器有限公司 一种共用功率器件的交直流一体充电系统及控制方法
WO2024093801A1 (zh) * 2022-10-31 2024-05-10 比亚迪股份有限公司 能量转换装置及车辆

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787390B (zh) * 2021-01-27 2022-04-22 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN113602115B (zh) * 2021-08-31 2024-02-06 南通大学 一种计及二次功率纹波抑制的电动汽车集成充电系统
CN114274797A (zh) * 2021-12-28 2022-04-05 华为数字能源技术有限公司 电机的堵转扭矩控制方法及堵转扭矩控制装置、电动车辆
CN114336763B (zh) * 2022-01-13 2023-09-29 华中科技大学 三相串联绕组的单相并网零转矩集成充电结构及充电方法
CN117360277B (zh) * 2022-01-30 2024-06-11 华为数字能源技术有限公司 一种用于供电电路的控制方法、装置以及电动汽车
CN115378103B (zh) * 2022-08-15 2024-06-28 华南理工大学 基于双三相电机的工程机械驱动与充电一体化电路
CN116605074B (zh) * 2023-07-20 2023-09-22 广汽埃安新能源汽车股份有限公司 汽车驱动和充电集成系统、控制方法、车辆和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255743A (ja) * 2009-04-24 2010-11-11 Mitsubishi Electric Corp 車両の変速機制御装置
CN103476627A (zh) * 2010-09-17 2013-12-25 西门子公司 针对电动运行的车辆的运行结构
CN108123491A (zh) * 2017-11-24 2018-06-05 南京航空航天大学 一种高度集成的电机驱动和充放电器一体化拓扑
CN109687722A (zh) * 2019-02-01 2019-04-26 华南理工大学 一种电动汽车用集成多模式功率转换器及其控制方法
CN112787390A (zh) * 2021-01-27 2021-05-11 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN112803561A (zh) * 2021-01-27 2021-05-14 华南理工大学 基于辅助电感和三相电机驱动的电动汽车集成充电电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134439B2 (ja) * 1999-04-30 2008-08-20 トヨタ自動車株式会社 電力変換システム
CN109361255B (zh) * 2018-10-19 2021-02-05 南京航空航天大学 一种基于电机绕组开路的充放电电路拓扑
CN111347887B (zh) * 2018-12-21 2021-06-18 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN110971173B (zh) * 2018-12-21 2021-01-19 比亚迪股份有限公司 动力电池的充电方法、电机控制电路及车辆
CN110391707B (zh) * 2019-07-23 2020-07-10 华中科技大学 一种三相并网集成充电器电机绕组构建方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255743A (ja) * 2009-04-24 2010-11-11 Mitsubishi Electric Corp 車両の変速機制御装置
CN103476627A (zh) * 2010-09-17 2013-12-25 西门子公司 针对电动运行的车辆的运行结构
CN108123491A (zh) * 2017-11-24 2018-06-05 南京航空航天大学 一种高度集成的电机驱动和充放电器一体化拓扑
CN109687722A (zh) * 2019-02-01 2019-04-26 华南理工大学 一种电动汽车用集成多模式功率转换器及其控制方法
CN112787390A (zh) * 2021-01-27 2021-05-11 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN112803561A (zh) * 2021-01-27 2021-05-14 华南理工大学 基于辅助电感和三相电机驱动的电动汽车集成充电电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549529A (zh) * 2022-09-15 2022-12-30 华南理工大学 应用于电动工程机械的双三相电机并联式驱充一体化电路
CN115549529B (zh) * 2022-09-15 2024-04-02 华南理工大学 应用于电动工程机械的双三相电机并联式驱充一体化电路
WO2024093801A1 (zh) * 2022-10-31 2024-05-10 比亚迪股份有限公司 能量转换装置及车辆
CN117498512A (zh) * 2023-11-13 2024-02-02 山东艾诺智能仪器有限公司 一种共用功率器件的交直流一体充电系统及控制方法
CN117498512B (zh) * 2023-11-13 2024-06-07 山东艾诺智能仪器有限公司 一种共用功率器件的交直流一体充电系统及控制方法

Also Published As

Publication number Publication date
CN112787390A (zh) 2021-05-11
CN112787390B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2022160828A1 (zh) 电动汽车驱动与充电一体化电路及其转矩消除控制方法
Xiao et al. An integrated on-board EV charger with safe charging operation for three-phase IPM motor
Hu et al. Split converter-fed SRM drive for flexible charging in EV/HEV applications
Tong et al. An on-board two-stage integrated fast battery charger for EVs based on a five-phase hybrid-excitation flux-switching machine
CN112803561B (zh) 基于辅助电感和三相电机驱动的电动汽车集成充电电路
CN112757919B (zh) 基于单相滤波电感的电动汽车驱动与充电一体化电路
CN105896856B (zh) 间接矩阵变换型多相多电平永磁电机系统及其控制方法
CN110667418B (zh) 一种单相并网零转矩集成充电器及其电流控制方法
CN109921708A (zh) 基于双三相永磁电机分布式转矩调节的定子绕组非平衡功率控制方法
CN106655936A (zh) 一种少稀土永磁电机零序电流抑制控制系统及方法
CN113541564B (zh) 一种双开绕组永磁同步电机驱动系统集成化充电控制方法
CN105244982A (zh) 一种低成本的电机驱动-电池充电一体化装置及控制方法
Pescetto et al. Integrated isolated obc for evs with 6-phase traction motor drives
Hegazy et al. Control, analysis and comparison of different control strategies of electric motor for battery electric vehicles applications
CN114435163B (zh) 一种电动汽车双电池集成化充电拓扑电路及其交错控制策略方法
CN110838750B (zh) 一种基于六相开绕组电机驱动系统的车载集成充电机
Zhang et al. The Torque Elimination Control Strategy for Integrated Dual-Battery Charger of Electric Vehicle based on Open-End Winding Permanent Magnet Synchronous Motor
Jiang et al. An integrated charger with central-tapped winding switched reluctance motor drive
CN114389486B (zh) 一种用于混合励磁双凸极电机的换相误差补偿方法
Wang et al. A review on fault-tolerant control of PMSM
Lu et al. Zero sequence current suppression strategy for open winding permanent magnet synchronous motor with common DC bus
Gao et al. Review of Torque Cancellation Methods for Integrated Motor Drive and Charger System
CN115378103B (zh) 基于双三相电机的工程机械驱动与充电一体化电路
CN115549529B (zh) 应用于电动工程机械的双三相电机并联式驱充一体化电路
CN114336763B (zh) 三相串联绕组的单相并网零转矩集成充电结构及充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21922419

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.02.2024)