WO2023284283A1 - 广域运行的交替极型永磁辅助同步磁阻电机 - Google Patents

广域运行的交替极型永磁辅助同步磁阻电机 Download PDF

Info

Publication number
WO2023284283A1
WO2023284283A1 PCT/CN2022/073898 CN2022073898W WO2023284283A1 WO 2023284283 A1 WO2023284283 A1 WO 2023284283A1 CN 2022073898 W CN2022073898 W CN 2022073898W WO 2023284283 A1 WO2023284283 A1 WO 2023284283A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
reluctance
permanent magnet
poles
axis
Prior art date
Application number
PCT/CN2022/073898
Other languages
English (en)
French (fr)
Inventor
王凯
李健
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2023284283A1 publication Critical patent/WO2023284283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the field of motor design and manufacture, in particular to an alternating pole permanent magnet auxiliary synchronous reluctance motor operating in a wide area.
  • Permanent magnet motors have the advantages of high torque/power density, high efficiency and high power factor, and have been applied in many fields. According to the installation method of permanent magnets on the rotor, rotor permanent magnet motors can be divided into surface-mounted permanent magnet motors and built-in permanent magnet motors. In applications such as electric vehicles that require wide-range speed regulation (wide-area) operation, built-in permanent magnet motors are often used.
  • p is the number of pole pairs of the motor
  • ⁇ pm is the permanent magnet flux linkage
  • L d and L q are the direct axis inductance and quadrature axis inductance respectively
  • i d and i q are the direct axis of the armature winding Current (excitation component) and quadrature axis current.
  • I a is the peak value of the sinusoidal phase current
  • is the current phase angle (abbreviated as the current angle).
  • T pm is the permanent magnet torque component
  • T r is the reluctance torque component produced by the salient pole effect.
  • the traditional interior permanent magnet motor uses the reluctance torque to improve the torque output capability when running below the base speed (low speed region) through the positive salient pole (L q is greater than L d ) design. And they usually use field weakening control (ie, control the direct axis current of the armature winding to be negative, -i d ) to achieve speed expansion (high speed zone) operation.
  • the traditional positive salient pole internal permanent magnet motor has problems of high power density, wide speed range, anti-demagnetization ability, high reliability and low cost.
  • the specific performance is as follows:
  • the thickness of the permanent magnet must be increased, thereby increasing the cost of permanent magnet materials (Note: Rare earth permanent magnet materials are non-renewable natural resources and strategic resources).
  • the no-load counter electromotive force of the built-in permanent magnet motor with positive salient poles is large. If a fault occurs during high-speed operation, it may not only generate a large short-circuit current (easy to damage the motor), but may also cause weak magnetic field failure and generate feedback power generation. (easy to damage power devices in the control system, etc.), reducing reliability.
  • the technical problem to be solved by the present invention is to provide an alternating pole permanent magnet assisted synchronous reluctance motor operating in a wide area in view of the above-mentioned deficiencies in the prior art. It has anti-saliency characteristics, adopts positive i d to utilize reluctance torque, and can avoid irreversible demagnetization of permanent magnets.
  • An alternating pole permanent magnet assisted synchronous reluctance motor operating in a wide area comprises a stator and an alternating pole synchronous reluctance rotor arranged coaxially in sequence from outside to inside or from inside to outside.
  • the stator includes a stator core and an armature winding wound in the stator slot of the stator core; the number of pole pairs of the armature winding is equal to the number of pole pairs of the alternating pole type synchronous reluctance rotor, both of which are p.
  • the direct-axis magnetic circuit of the reluctance pole is closed by the rotor core, and the reluctance of the direct-axis magnetic circuit of the reluctance pole is smaller than that of the quadrature-axis magnetic circuit. Therefore, the alternating pole permanent magnet assisted synchronous reluctance motor can obtain the reverse salient pole characteristic , at this time, the quadrature-axis inductance L q of the armature winding ⁇ the direct-axis inductance L d .
  • the reluctance poles and permanent magnet poles are distributed symmetrically over the entire mechanical circumference of the rotor core.
  • the centerline of the direct axis of the reluctance poles and the centerline of the permanent magnet poles differ by one pole pitch.
  • the reluctance pole is one or a combination of a magnetic barrier and a salient pole.
  • the magnetic barrier is arranged on the quadrature axis magnetic circuit, which can increase the reluctance of the quadrature axis magnetic circuit.
  • the direct axis is the center line of the salient pole
  • the magnetic barrier is arranged on the quadrature axis magnetic circuit, and the direct axis is the center line of the salient pole.
  • the magnetic barriers in each reluctance pole are distributed symmetrically.
  • a magnetic barrier is also set in the quadrature-axis magnetic circuit of the permanent magnet poles, so that the reluctance of the direct-axis magnetic circuit of the permanent magnet poles is also smaller than that of the quadrature-axis magnetic circuit of the permanent magnet poles, which further enhances the feedback of the alternating pole permanent magnet assisted synchronous reluctance motor. salient features.
  • the permanent magnet pole has an offset angle relative to the reluctance pole, and the offset angle is less than or equal to 1/4 pole pitch, so that the current angle at which the permanent magnet torque obtains the maximum torque approaches the current angle at which the reluctance torque obtains the maximum torque, Thereby improving the utilization rate of permanent magnet torque and reluctance torque.
  • the offset gap between the permanent magnet pole and the magnetoresistance pole is filled with a magnetic barrier or non-magnetic conductive material.
  • the stator slot of the stator core is also wound with an AC field winding, and the number of pole pairs of the AC field winding is also equal to the number of rotor pole pairs p; among them, the armature winding is connected to the DC load through a controllable rectifier; the AC field winding is connected through an inverter The inverter is connected with the DC power supply; by controlling the controllable rectifier, the AC current and the direct axis current in the armature winding can be adjusted, thereby realizing voltage regulation; by adjusting the magnitude and direction of the direct axis current in the AC excitation winding, the gas can be adjusted. Gap magnetic field, armature winding flux linkage and load voltage; through cooperative control of AC field winding current and armature winding end controllable rectifier, the voltage regulation characteristics are further improved.
  • the present invention has anti-saliency characteristics (that is, L q ⁇ L d ).
  • positive i d is used to utilize the reluctance torque.
  • the positive i d is the magnetizing current, which avoids irreversible demagnetization of the permanent magnet.
  • the present invention can obtain a larger direct-axis inductance, and has a stronger ability to expand the speed of weak magnetic field.
  • the current angle adjustment range of the present invention is wide (i d transitions from a positive value to a secondary value), so the present invention can widen the constant power speed regulation range.
  • the no-load counter electromotive force of the present invention is low, and has stronger short-circuit current suppression ability and higher reliability.
  • the present invention adopts permanent magnet pole offset, makes the current angle that permanent magnet torque obtains maximum torque approach reluctance torque obtains the current angle of maximum torque (abbreviation: moment angle approaches), thereby improves permanent magnet torque and magnetic Combination rate of resistance torque, increase output torque.
  • the armature winding of the present invention can be split into two sets of windings (namely, the armature winding and the AC field winding), and the current of the AC field winding and the controllable rectifier at the end of the armature winding can be further improved by cooperatively controlling the current of the AC field winding. Regulating characteristics.
  • FIG. 1 shows a schematic diagram of the structure of the magnetoresistance pole in Embodiment 1 when it is a magnetic barrier.
  • FIG. 2 shows a schematic structural diagram of the synchronous reluctance motor in Embodiment 1 when it is a 24-slot 8-pole motor.
  • FIG. 3 shows a schematic diagram of the variation relationship of torque with current angle (abbreviated as torque-angle characteristic) in Embodiment 1.
  • FIG. 4 shows a schematic diagram of the permanent magnet pole offset in the alternating pole type synchronous reluctance rotor in the second embodiment.
  • FIG. 5 shows a schematic diagram of the comparison of the moment-angle characteristics of Example 1 and Example 2.
  • FIG. 8 shows a schematic structural view of the synchronous reluctance motor in Embodiment 5 when it is a motor with 18 slots and 6 poles.
  • FIG. 10 shows a schematic diagram of the combination of the magnetoresistive extremely salient pole and the magnetic barrier in Embodiment 7.
  • Fig. 11 shows a schematic structural diagram of the constant voltage power generation system in Embodiment 8.
  • an alternating pole permanent magnet assisted synchronous reluctance motor operating in a wide area includes a stator and an alternating pole synchronous reluctance rotor arranged coaxially from the outside to the inside.
  • the alternating pole synchronous reluctance rotor can also be coaxially sleeved on the outer periphery of the stator, that is, the outer rotor.
  • the stator includes a stator core 1 and an armature winding 11 wound in a stator slot of the stator core.
  • the alternating pole type synchronous reluctance rotor includes a rotor core 2 , and reluctance poles 23 and permanent magnet poles 21 arranged on the rotor core along the circumferential direction.
  • Both the stator core and the rotor core are made of magnetically permeable materials.
  • Embodiment 1 in order to avoid introducing unbalanced magnetic pull, the reluctance poles and permanent magnet poles are symmetrically distributed on the entire mechanical circumference of the rotor core.
  • magnetic barriers are used for the reluctance poles, and surface-mounted permanent magnets are used for the permanent magnet poles.
  • the centerline of the direct axis of the magnetoresistance poles and the centerline of the permanent magnet poles differ by 0.9 to 1.1 times the pole pitch.
  • the centerline of the straight axis of the reluctance pole and the centerline of the permanent magnet pole preferably differ by one pole pitch.
  • the magnetic barrier in the reluctance pole is arranged on the quadrature-axis magnetic circuit to increase the reluctance of the quadrature-axis magnetic circuit.
  • the magnetic barriers of each reluctance pole are distributed symmetrically.
  • the magnetic barrier arranged on the quadrature-axis magnetic circuit is called the quadrature-axis magnetic barrier 24 for short, and the following are similar.
  • mechanical connecting bridges 25 are provided on both sides of each quadrature-axis magnetic barrier.
  • the direct-axis magnetic circuit of the reluctance pole is closed by the rotor core, and the reluctance of the direct-axis magnetic circuit of the reluctance pole is smaller than that of the quadrature-axis magnetic circuit. Therefore, the alternating pole permanent magnet assisted synchronous reluctance motor can obtain the reverse salient pole characteristic , at this time, the quadrature-axis inductance L q of the armature winding ⁇ the direct-axis inductance L d .
  • positive reluctance torque can be obtained by using positive i d ; that is, the present invention can utilize reluctance torque through positive i d .
  • the permanent magnetic poles of this example are also provided with a quadrature-axis magnetic barrier, so that the direct-axis magnetic circuit reluctance of the permanent magnetic poles is also smaller than the quadrature-axis magnetic circuit reluctance of the permanent magnetic poles, further enhancing the anti-saliency characteristics of the motor of the present invention.
  • Example 2 Permanent magnet pole offset in Example 1
  • the permanent magnet torque achieves the maximum value when the current angle is 0 degrees, while the reluctance torque achieves the maximum value when the current angle is -45 degrees; this results in that the maximum value of the combined torque of the two is not their The sum of the maximum values; the torque synthesis rate is low. Therefore, in the second embodiment, on the basis of the first embodiment, the permanent magnetic poles are shifted by a certain angle, as shown in FIG. 4 .
  • the offset angle of the permanent magnet pole relative to the reluctance pole is preferably less than or equal to 1/4 pole pitch, preferably 1/8 of the pole pitch in this embodiment, so that the current angle at which the permanent magnet torque obtains the maximum torque approaches the reluctance rotation
  • the torque obtains the current angle of the maximum torque (abbreviation: moment angle approximation), thereby increasing the synthesis rate of the permanent magnet torque and the reluctance torque, and increasing the output torque. It can be seen from Figure 5 that the current angle for obtaining the maximum torque increases negatively after the moment angle approaches, and the maximum torque obtained is greater than that of Example 1.
  • the offset gap of the permanent magnet pole relative to the reluctance pole (also called the permanent magnet pole offset gap 22) is filled with a magnetic barrier or a magnetically non-permeable material.
  • the built-in permanent magnet can be "one" shape, V shape, C shape, W shape and U shape, etc., and also can be multi-layer mixed type.
  • FIG 10 it shows the combination of the magnetic resistance extremely salient pole and the magnetic barrier.
  • the magnetic barrier is arranged on the quadrature axis magnetic circuit, and the direct axis is the center line of the salient pole.
  • the direct axis is the center line of the salient pole.
  • its quadrature-axis magnetic circuit passes through the thicker air gap region of the non-uniform air gap, which also increases the cross-axis magnetic circuit. reluctance.
  • the armature winding of the present invention when applied to constant voltage power generation occasions, can be split into two sets of windings, namely the armature winding and the AC field winding, and the number of pole pairs of the AC field winding is also equal to the number of rotor pole pairs p .
  • the armature winding is connected to the DC load through the controllable rectifier, and the AC excitation winding is connected to the DC power supply through the inverter. Therefore, one or a combination of the following methods can be used for pressure regulation:
  • the quadrature axis current and the direct axis current in the armature winding can be adjusted, thereby realizing voltage regulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明公开了一种广域运行的交替极型永磁辅助同步磁阻电机,包括定子和交替极型同步磁阻转子;定子包括定子铁心和电枢绕组;电枢绕组的极对数与交替极型同步磁阻转子的极对数相等;交替极型同步磁阻转子包括转子铁心、以及沿周向布设在转子铁心上的磁阻极和永磁极;磁阻极极对数大于或等于永磁极极对数;磁阻极的直轴磁路经过铁心闭合,磁阻极的直轴磁路磁阻小于其交轴磁路磁阻,因而能够获得反凸极特性。本发明具有反凸极特性,采用正的id利用磁阻转矩,能避免永磁体发生不可逆退磁。同时磁阻极的直轴磁路经过铁心闭合,故能获得更大的直轴电感,弱磁扩速能力更强。在全速运行范围内,本发明的电流角调节范围宽,因而能拓宽恒功率调速范围。

Description

广域运行的交替极型永磁辅助同步磁阻电机 技术领域
本发明涉及电机设计和制造领域,特别是一种广域运行的交替极型永磁辅助同步磁阻电机。
背景技术
永磁电机具有高转矩/功率密度、高效率和高功率因素等优点,已在多个领域得到应用。根据永磁体的在转子上的安装方式分类,转子永磁型电机可分为表贴式永磁电机和内置式永磁电机。在电动汽车等需要宽范围调速(广域)运行的应用中,常采用内置式永磁电机。
永磁电机的电磁转矩T e表达式,如式(1)所示。
Figure PCTCN2022073898-appb-000001
式(1)中,p为电机的极对数,ψ pm为永磁磁链,L d和L q分别为直轴电感和交轴电感,i d和i q分别为电枢绕组的直轴电流(励磁分量)和交轴电流。I a是正弦相电流的峰值,β是电流相位角(简称为电流角)。T pm是永磁转矩分量;T r是由凸极效应产生的磁阻转矩分量。
传统的内置式永磁电机通过正凸极(L q大于L d)设计利用磁阻转矩来提高基速以下(低速区)运行时的转矩输出能力。而且它们通常采用弱磁控制(即控制电枢绕组的直轴电流为负,-i d)以实现扩速(高速区)运行。
然而,传统正凸极内置式永磁电机存在难以兼顾高功率密度、宽转速运行范围、抗退磁能力、高可靠性和低成本的问题,具体表现如下:
1)、由于L q>L d(直轴磁阻大于交轴磁阻),正凸极内置永磁电机在低速区利用磁阻转矩时,必须采用负的直轴电流(即-i d),永磁体的不可逆退磁风险增加。
2)、若要降低其不可逆退磁风险,必须增加永磁体的厚度,进而增加了永磁材料成本(注:稀土永磁材料是不可再生的自然资源,也是战略资源)。
3)、正凸极内置永磁电机的直轴磁路经过永磁体,直轴电感小(直轴磁阻大)。增加的永磁体厚度又进一步降低了直轴电感(注:弱磁能力与直轴电感密切相关),从而降低了弱磁能力,限制了扩速运行范围。
4)、正凸极内置永磁电机的空载反电动势大,若高速运行时出现故障,不仅可能会产生大的短路电流(容易损坏电机),还可能会出现弱磁失效而产生回馈发电状况(容易损坏控制系统中的功率器件等),降低可靠性。
此外,在航空电源、船舰电源等需要宽转速范围内恒压发电的应用场合,传统表贴式永磁电机和正凸极内置式永磁电机仍然面临着上述问题,其中最为突出的是由于调磁困 难所带来的恒压发电范围窄以及故障灭磁困难,进一步限制了它们应用于要求广域运行的场合。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种广域运行的交替极型永磁辅助同步磁阻电机,该广域运行的交替极型永磁辅助同步磁阻电机具有反凸极特性,采用正的i d利用磁阻转矩,能避免永磁体发生不可逆退磁。
为解决上述技术问题,本发明采用的技术方案是:
一种广域运行的交替极型永磁辅助同步磁阻电机,包括从外至内或从内至外依次同轴设置的定子和交替极型同步磁阻转子。
定子包括定子铁心和绕设在定子铁心定子槽中的电枢绕组;电枢绕组的极对数与交替极型同步磁阻转子的极对数相等,均为p。
交替极型同步磁阻转子包括转子铁心、以及沿周向布设在转子铁心上的磁阻极和永磁极;磁阻极的极对数p r大于或等于永磁极的极对数p m,且p r+p m=p。
磁阻极的直轴磁路经过转子铁心闭合,磁阻极的直轴磁路磁阻小于其交轴磁路磁阻,因而,交替极型永磁辅助同步磁阻电机能够获得反凸极特性,此时,电枢绕组的交轴电感L q<直轴电感L d
磁阻极和永磁极在转子铁心的整个机械圆周上均对称分布。
对于圆周相接的永磁极和磁阻极,磁阻极的直轴中心线与永磁极的中心线相差一个极距。
磁阻极为磁障和凸极中的一种或组合。
当磁阻极为磁障时,磁障设置在交轴磁路上,能增加交轴磁路的磁阻。
当磁阻极为凸极时,直轴为凸极的中心线;
当磁阻极为磁障和凸极的结合时,磁障设置在交轴磁路上,直轴为凸极的中心线。
当磁阻极为磁障时,每个磁阻极中的磁障均对称分布。
永磁极的交轴磁路中也设置有磁障,使得永磁极的直轴磁路磁阻也小于永磁极的交轴磁路磁阻,进一步增强交替极型永磁辅助同步磁阻电机的反凸极特性。
永磁极相对磁阻极具有一个偏移角,且偏移角小于或等于1/4极距,使得永磁转矩取得最大转矩的电流角逼近磁阻转矩取得最大转矩的电流角,从而提高永磁转矩与磁阻转矩的利用率。
永磁极相对磁阻极的偏移空隙内填充有磁障或不导磁材料。
定子铁心的定子槽中还绕设有交流励磁绕组,交流励磁绕组的极对数也等于转子极对数p;其中,电枢绕组通过可控整流器与直流负载相连接;交流励磁绕组通过逆变器与直流电源相连接;通过控制可控整流器,能调节电枢绕组中的交轴电流和直轴电流,从而实现调压;通过调节交流励磁绕组中的直轴电流大小和方向,能够调节气隙磁场以及电枢绕组磁链和负载电压;通过协同控制交流励磁绕组电流和电枢绕组端可控整流器,从而进一步提升调压特性。
本发明具有如下有益效果:
1、本发明具有反凸极特性(即L q<L d)。在基速以下(低速区)运行时,采用正的i d利 用磁阻转矩。正的i d为增磁电流,避免了永磁体发生不可逆退磁。
2、由于本发明的磁阻极的直轴磁路经过铁心闭合,故本发明可以获得更大的直轴电感,弱磁扩速能力更强。
3、在全速运行范围内,本发明的电流角调节范围宽(i d由正值过渡到副值),因而本发明可以拓宽恒功率调速范围。
4、本发明的空载反电动势低,具有更强的短路电流抑制能力及更高的可靠性。
5、本发明采用永磁极偏移,使得永磁转矩取得最大转矩的电流角逼近磁阻转矩取得最大转矩的电流角(简称:矩角逼近),从而提高永磁转矩与磁阻转矩的合成率,提高输出转矩。
6、做恒压发电运行时,本发明电枢绕组可以分裂成两套绕组(即电枢绕组和交流励磁绕组),通过协同控制交流励磁绕组电流和电枢绕组端可控整流器,可以进一步提升调压特性。
附图说明
图1显示了实施例1中磁阻极为磁障时的结构示意图。
图2显示了实施例1中同步磁阻电机为24槽8极电机时的结构示意图。
图3显示了实施例1中转矩随电流角的变化关系(简称矩角特性)示意图。
图4显示了实施例2中交替极型同步磁阻转子中的永磁极偏移示意图。
图5显示了实施例1和实施例2的矩角特性对比示意图。
图6显示了实施例3中p=4且p r=2,p m=2时的结构示意图。
图7显示了实施例4中p=4且p r=2,p m=2时的结构示意图。
图8显示了实施例5中同步磁阻电机为18槽6极电机时的结构示意图。
图9显示了实施例6中p=3且p r=2,p m=1时的结构示意图。
图10显示了实施例7中磁阻极为凸极和磁障相结合时的示意图。
图11显示了实施例8中恒压发电系统的结构示意图。
其中有:
1.定子铁心;11.电枢绕组;
2.转子铁心;
21.永磁极;22.永磁极偏移空隙;23.磁阻极;24.交轴磁障;25.机械连接桥;26.凸极边缘;27.内置永磁体。
具体实施方式
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
本发明的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本发明的保护范围。
实施例1
以三相m=3,Ns=24,p=4,p r=3,p m=1为例;如图2所示)
如图2所示,一种广域运行的交替极型永磁辅助同步磁阻电机,包括从外至内依次同轴设置的定子和交替极型同步磁阻转子。
作为替换,交替极型同步磁阻转子也可同轴套设在定子外周,也即外转子。
定子包括定子铁心1和绕设在定子铁心定子槽中的电枢绕组11。
上述定子槽数优选为Ns=24,电枢绕组优选包括A、B、C三相绕组,其中A相可由A1、A2、A3、A4线圈串联而成,也可由A1-A2、A3-A4分别串联后再并联;B相和C相以此类推。
电枢绕组的极对数与交替极型同步磁阻转子的极对数相等,均优选为p=4。
交替极型同步磁阻转子包括转子铁心2、以及沿周向布设在转子铁心上的磁阻极23和永磁极21。
上述定子铁心和转子铁心均采用导磁材料。
磁阻极的极对数p r大于或等于永磁极的极对数p m,且p r+p m=p。本实施例1中,优选p r=3,p m=1。根据不同应用场合和要求,可灵活选取磁阻极和永磁极的极对数,以及每个磁极的具体结构形式。
在本实施例1中,为避免引入不平衡磁拉力,磁阻极和永磁极在转子铁心的整个机械圆周上均对称分布。
如图1所示,磁阻极采用磁障,永磁极采用表贴式永磁体。
对于圆周相接的永磁极和磁阻极,磁阻极的直轴中心线与永磁极的中心线相差0.9~1.1倍极距。本实施例中,磁阻极的直轴中心线与永磁极的中心线优选相差一个极距。
磁阻极中的磁障设置在交轴磁路上,增加交轴磁路的磁阻。每个磁阻极的磁障对称分布。
设置在交轴磁路上的磁障,简称交轴磁障24,以下类同。如图1所示,每条交轴磁障的两侧均设置有机械连接桥25。
磁阻极的直轴磁路经过转子铁心闭合,磁阻极的直轴磁路磁阻小于其交轴磁路磁阻,因而,交替极型永磁辅助同步磁阻电机能够获得反凸极特性,此时,电枢绕组的交轴电感L q<直轴电感L d
如图3所示,采用正的i d可获得正的磁阻转矩;即本发明可以通过正的i d利用磁阻转矩。
本实例的永磁极也设置了交轴磁障,从而永磁极的直轴磁路磁阻也小于永磁极的交轴磁路磁阻,进一步增强本发明电机的反凸极特性。
实例2:实例1中的永磁极偏移
由图3可见,永磁转矩在电流角为0度时取得最大值,而磁阻转矩在电流角为-45度时取得最大值;这导致两者合成的转矩最大值不是它们的最大值之和;转矩合成率低。故而,本实施例2在实施例1的基础上,对永磁极进行了一定角度的偏移,具体如图4所示。
永磁极相对磁阻极的偏移角,优选小于或等于1/4极距,本实施例中优选为极距的1/8,使得永磁转矩取得最大转矩的电流角逼近磁阻转矩取得最大转矩的电流角(简称:矩角逼近),从而提高永磁转矩与磁阻转矩的合成率,提高输出转矩。由图5可见,矩角逼近后取得最大转矩的电流角负向增大,且取得的最大转矩大于实例1的最大转矩。
进一步,永磁极相对磁阻极的偏移空隙(也称永磁极偏移空隙22)内填充有磁障或 不导磁材料。
实例3:p=4、p r=2、p m=2
如图6所示,存在两个相接的永磁极,也存在两个相接的磁阻极。
实例4:p=4、p r=2、p m=2
如图7所示,相接的永磁极之间不设置交轴磁障。
实施例5
如图8所示,显示了电枢绕组相数m=3,定子槽数Ns=18,电机极对数p=3,p r=2、p m=1时的同步磁阻电机的结构示意图。
实施例6
如图9所示,显示了p=3、p r=2、p m=1,且永磁极采用内置永磁体27时的同步磁阻电机的结构示意图。内置永磁体可以为“一”字型、V型、C型、W型和U型等,也可以为多层混合型。
实施例7
如图10所示,显示了磁阻极为凸极和磁障相结合的方式。此时,磁障设置在交轴磁路上,直轴为凸极的中心线。在凸极边缘26处,为非均匀气隙的较厚气隙区域。作为替换,磁阻极也可仅为凸极,此时,直轴为凸极的中心线,其交轴磁路经过非均匀气隙的较厚气隙区域,也增加了交轴磁路的磁阻。
实施例8
如图11所示,应用于恒压发电场合时,本发明电枢绕组可以分裂成两套绕绕组,即电枢绕组和交流励磁绕组,交流励磁绕组的极对数也等于转子极对数p。
电枢绕组通过可控整流器与直流负载相连接,交流励磁绕组通过逆变器与直流电源相连接。故而,可采用如下方式的一种或组合进行调压:
1、通过控制电枢绕组端的可控整流器,可以调节电枢绕组中的交轴电流和直轴电流,从而实现调压。
2、调节交流励磁绕组中的直轴电流大小和方向,可以调节气隙磁场以及电枢绕组磁链和负载电压。
3、协同控制交流励磁绕组电流和电枢绕组端可控整流器,从而进一步提升调压特性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (10)

  1. 一种广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:包括从外至内或从内至外依次同轴设置的定子和交替极型同步磁阻转子;
    定子包括定子铁心和绕设在定子铁心定子槽中的电枢绕组;电枢绕组的极对数与交替极型同步磁阻转子的极对数相等,均为p;
    交替极型同步磁阻转子包括转子铁心、以及沿周向布设在转子铁心上的磁阻极和永磁极;磁阻极的极对数p r大于或等于永磁极的极对数p m,且p r+p m=p;
    磁阻极的直轴磁路经过转子铁心闭合,磁阻极的直轴磁路磁阻小于其交轴磁路磁阻,因而,交替极型永磁辅助同步磁阻电机能够获得反凸极特性,此时,电枢绕组的交轴电感L q<直轴电感L d
  2. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:磁阻极和永磁极在转子铁心的整个机械圆周上均对称分布。
  3. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:对于圆周相接的永磁极和磁阻极,磁阻极的直轴中心线与永磁极的中心线相差一个极距。
  4. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:磁阻极为磁障和凸极中的一种或组合。
  5. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:当磁阻极为磁障时,磁障设置在交轴磁路上,能增加交轴磁路的磁阻;
    当磁阻极为凸极时,直轴为凸极的中心线;
    当磁阻极为磁障和凸极的结合时,磁障设置在交轴磁路上,直轴为凸极的中心线。
  6. 根据权利要求5所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:当磁阻极为磁障时,每个磁阻极中的磁障均对称分布。
  7. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:永磁极的交轴磁路中也设置有磁障,使得永磁极的直轴磁路磁阻也小于永磁极的交轴磁路磁阻,进一步增强交替极型永磁辅助同步磁阻电机的反凸极特性。
  8. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:永磁极相对磁阻极具有一个偏移角,且偏移角小于或等于1/4极距,使得永磁转矩取得最大转矩的电流角逼近磁阻转矩取得最大转矩的电流角,从而提高永磁转矩与磁阻转矩的利用率。
  9. 根据权利要求8所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:永磁极相对磁阻极的偏移空隙内填充有磁障或不导磁材料。
  10. 根据权利要求1所述的广域运行的交替极型永磁辅助同步磁阻电机,其特征在于:定子铁心的定子槽中还绕设有交流励磁绕组,交流励磁绕组的极对数也等于转子极对数p;其中,电枢绕组通过可控整流器与直流负载相连接;交流励磁绕组通过逆变器与直流电源相连接;通过控制可控整流器,能调节电枢绕组中的交轴电流和直轴电流,从而实现调压;通过调节交流励磁绕组中的直轴电流大小和方向,能够调节气隙磁场以及电枢绕组磁链和负载电压;通过协同控制交流励磁绕组电流和电枢绕组端可控整流器,从而进一步提升调压特性。
PCT/CN2022/073898 2021-07-12 2022-01-26 广域运行的交替极型永磁辅助同步磁阻电机 WO2023284283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110784593.5A CN113489178B (zh) 2021-07-12 2021-07-12 广域运行的交替极型永磁辅助同步磁阻电机
CN202110784593.5 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284283A1 true WO2023284283A1 (zh) 2023-01-19

Family

ID=77938678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073898 WO2023284283A1 (zh) 2021-07-12 2022-01-26 广域运行的交替极型永磁辅助同步磁阻电机

Country Status (2)

Country Link
CN (1) CN113489178B (zh)
WO (1) WO2023284283A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489178B (zh) * 2021-07-12 2022-04-15 南京航空航天大学 广域运行的交替极型永磁辅助同步磁阻电机
CN114204710B (zh) * 2021-12-31 2023-09-26 江苏大学 一种多变凸极率永磁电机及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102198A (ja) * 1998-09-21 2000-04-07 Fujitsu General Ltd 永久磁石電動機
CN104488171A (zh) * 2012-06-26 2015-04-01 日产自动车株式会社 可变磁动势旋转电机以及用于可变磁动势旋转电机的控制装置
CN106026597A (zh) * 2016-07-11 2016-10-12 江苏大学 内置磁障式磁场增强型永磁无刷电机
CN111082560A (zh) * 2019-11-28 2020-04-28 珠海格力节能环保制冷技术研究中心有限公司 电机转子和电机
CN113489178A (zh) * 2021-07-12 2021-10-08 南京航空航天大学 广域运行的交替极型永磁辅助同步磁阻电机
CN113541430A (zh) * 2021-07-12 2021-10-22 南京航空航天大学 裂极型永磁辅助同步磁阻电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787565A (zh) * 2017-01-23 2017-05-31 徐州中矿大传动与自动化有限公司 反凸极永磁磁阻电机
CN107579636A (zh) * 2017-08-10 2018-01-12 东南大学 一种轴向并列式混合转子电机
CN109873511B (zh) * 2019-03-04 2021-03-02 哈尔滨工业大学 反凸极式切向充磁型多相永磁容错电机
CN110474507A (zh) * 2019-07-25 2019-11-19 江苏大学 一种多工况漏磁可控式宽调速高效率永磁无刷电机
CN110994834B (zh) * 2019-11-28 2021-12-21 江苏大学 一种交直轴电感可变式永磁无刷电机及其广域高效优化设计方法
CN111682667A (zh) * 2020-05-26 2020-09-18 江苏大学 一种48/8无轴承交替极永磁同步电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102198A (ja) * 1998-09-21 2000-04-07 Fujitsu General Ltd 永久磁石電動機
CN104488171A (zh) * 2012-06-26 2015-04-01 日产自动车株式会社 可变磁动势旋转电机以及用于可变磁动势旋转电机的控制装置
CN106026597A (zh) * 2016-07-11 2016-10-12 江苏大学 内置磁障式磁场增强型永磁无刷电机
CN111082560A (zh) * 2019-11-28 2020-04-28 珠海格力节能环保制冷技术研究中心有限公司 电机转子和电机
CN113489178A (zh) * 2021-07-12 2021-10-08 南京航空航天大学 广域运行的交替极型永磁辅助同步磁阻电机
CN113541430A (zh) * 2021-07-12 2021-10-22 南京航空航天大学 裂极型永磁辅助同步磁阻电机

Also Published As

Publication number Publication date
CN113489178A (zh) 2021-10-08
CN113489178B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Gao et al. A novel hybrid excitation flux reversal machine for electric vehicle propulsion
Zhao et al. Design of a novel parallel-hybrid-excited vernier reluctance machine with improved utilization of redundant winding harmonics
WO2023284283A1 (zh) 广域运行的交替极型永磁辅助同步磁阻电机
Chai et al. Double-stator permanent magnet synchronous in-wheel motor for hybrid electric drive system
CN106026583A (zh) 一种基于磁场调制双定子混合励磁电动机
WO2022161375A1 (zh) 转子磁极调制型感应混合励磁无刷电机及发电系统
Zheng et al. Improvement torque performances of interior permanent-magnet machines
Du et al. Interior permanent magnet machines with rare earth and ferrite permanent magnets
Wang et al. General topology derivation methods and control strategies of field winding-based flux adjustable PM machines for generator system in more electric aircraft
Zhao et al. Comparative study of modular-stator and conventional outer-rotor flux-switching permanent-magnet motors
CN109038990A (zh) 高转矩密度容错型混合磁通永磁电机
Sun et al. Analysis of reactive power compensation effect of a new hybrid excitation brushless DC generator
CN109873511B (zh) 反凸极式切向充磁型多相永磁容错电机
CN109713868B (zh) 轴向并列型多相永磁容错电机
Zhang et al. Comparative research for a novel dual-stator synchronous machine with permanent magnet-reluctance composite rotor
CN113541430B (zh) 裂极型永磁辅助同步磁阻电机
Shen et al. Design of a permanent magnet synchronous motor and performance analysis for subway
CN110808649B (zh) 一种双工作谐波转子及交流励磁无刷电机
CN110808648B (zh) 一种混合磁钢交流励磁记忆电机
CN114665625A (zh) 一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法
Ishii et al. Novel flux barrier type outer rotor IPM motor with rare-earth and ferrite magnets
Bala et al. Performance analysis of different rotor configuration of LSPMSM for Electric Vehicles
CN110289707A (zh) 一种ltl型双凸极混合励磁发电机
CN110233530A (zh) U型复合永磁电机
Imoto et al. Study on rotor structure suitable for improving power density and efficiency in IPMSMs for automotive applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE