WO2022161375A1 - 转子磁极调制型感应混合励磁无刷电机及发电系统 - Google Patents

转子磁极调制型感应混合励磁无刷电机及发电系统 Download PDF

Info

Publication number
WO2022161375A1
WO2022161375A1 PCT/CN2022/073899 CN2022073899W WO2022161375A1 WO 2022161375 A1 WO2022161375 A1 WO 2022161375A1 CN 2022073899 W CN2022073899 W CN 2022073899W WO 2022161375 A1 WO2022161375 A1 WO 2022161375A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction
winding
magnetic pole
rotor
excitation
Prior art date
Application number
PCT/CN2022/073899
Other languages
English (en)
French (fr)
Inventor
李健
王凯
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2022161375A1 publication Critical patent/WO2022161375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the invention relates to the field of motor design and manufacture, in particular to a rotor magnetic pole modulation type induction hybrid excitation brushless motor and a power generation system.
  • Permanent magnet motors have the advantages of high torque/power density, high efficiency and high power factor, and have been used in many occasions.
  • the field weakening of permanent magnet motors is achieved by controlling the direct-axis current component ( -id ) in the armature winding, the permanent magnets have the risk of irreversible demagnetization, and the field weakening ability is limited.
  • the permanent magnet motor In the case of constant voltage power generation, the permanent magnet motor needs a full-power controllable converter to achieve the stability of the output voltage. The weight and cost of the system are too high. The voltage regulation requires position information and the control is complicated.
  • Hybrid excitation motor has two sources of magnetomotive force (excitation winding and permanent magnet), which not only has the advantages of convenient magnetic field adjustment of electric excitation motor, but also has the advantages of high power density and high efficiency of permanent magnet motor.
  • the hybrid excitation motor using DC excitation does not require position information and has a simple control method.
  • the air-gap magnetic field can be effectively adjusted by adjusting the current of the excitation winding through a low-power converter. Therefore, the hybrid excitation motor has great application potential in the occasion of constant voltage power generation.
  • the existing rotor permanent magnet type (permanent magnet is located in the rotor) hybrid excitation motor also introduces an additional magnetic circuit while realizing the parallel relationship between the permanent magnet and the electric excitation magnetic potential.
  • the permanent magnetic flux is short-circuited through the additional magnetic circuit, forming magnetic leakage, which reduces the utilization rate of the permanent magnetic material.
  • most of the additional magnetic circuits are solid magnetic conductive parts, which increase the eddy current loss.
  • the technical problem to be solved by the present invention is to aim at the deficiencies of the above-mentioned prior art, and to provide a rotor magnetic pole modulation type induction hybrid excitation brushless motor and a power generation system, the rotor magnetic pole modulation type induction hybrid excitation brushless motor and power generation system adopt magnetic poles Modulated rotor, a single main excitation winding can adjust the magnetic flux of p 0i core poles at the same time, and the magnetic regulation efficiency is high.
  • the combination of the induction winding and the rotating rectifier realizes the brushless power supply of the main excitation winding on the rotor, and the iron core pole with high magnetic permeability also provides a low reluctance path for the magnetic flux generated by the induction excitation winding, which improves the induction efficiency.
  • the power generation system formed by it can output the initial voltage; the initial voltage can supply power to the stator induction excitation winding through the DC converter, so as to realize the self-excitation of the motor without external power supply.
  • the technical scheme adopted in the present invention is:
  • a rotor magnetic pole modulation type induction hybrid excitation brushless motor includes a stator, a magnetic pole modulation type rotor, an armature winding, an induction excitation winding, a main excitation winding, an induction armature winding and a rotating rectifier.
  • stator and the magnetic pole modulated rotor are coaxially sleeved, and there is an air gap between them.
  • Both the armature winding and the induction excitation winding are wound in the stator slots of the stator.
  • the induction excitation winding is a DC winding.
  • the main excitation winding and the induction armature winding are both wound in the rotor slot of the magnetic pole modulated rotor.
  • the main excitation winding is a DC winding, which is connected with the induction armature winding through a rotating rectifier. And the winding directions of the two adjacent main excitation windings are opposite.
  • the magnetic pole modulated rotor includes k repeated magnetic pole units in the circumferential direction, where k is a positive integer.
  • the number of pole pairs of each magnetic pole unit is p 0 , then the number of pole pairs p of the magnetic pole modulated rotor satisfies the following calculation formula:
  • n is a positive integer
  • the rotor slots include large slots and small slots.
  • the small slots are arranged on the rotor iron core on the side of the permanent magnet pole and/or the iron core pole facing the air gap.
  • each pole unit 2p 0m permanent magnet poles are not connected.
  • the 2p 0i iron core poles there are two groups of connected iron core poles, and a large slot is arranged between each group of connected iron core poles.
  • the main excitation winding is wound in two adjacent large slots, and the induction armature winding is wound in the small slot and the adjacent large slot or only in the small slot.
  • a small slot is provided on the central d-axis of each permanent magnet pole.
  • the permanent magnets are surface-mounted permanent magnets or built-in permanent magnets.
  • the built-in permanent magnet is a one-layer or multi-layer hybrid type.
  • the shape of each built-in permanent magnet is a "one" shape, a V shape, a W shape or a U shape.
  • a rotor magnetic pole modulation type induction hybrid excitation power generation system includes a hybrid excitation brushless motor, a rectifier, a load and a DC converter.
  • the structure of the hybrid excitation brushless motor is as described above.
  • the armature winding is connected to the AC side of the rectifier, and the DC side of the rectifier is connected to the load.
  • the induction excitation winding is connected to the output end of the DC converter, and the input end of the DC converter is connected in parallel with the load.
  • the permanent magnetic field generated by the permanent magnet will induce a back electromotive force in the armature winding, thereby outputting the initial voltage.
  • the initial voltage supplies power to the induction excitation winding through the DC converter, and the current in the induction excitation winding is adjusted through the voltage pulse width modulation in the DC converter.
  • a current is passed into the induction field winding, an induced field with a fixed spatial position will be generated in the air gap, and the induced armature winding rotating with the magnetic pole modulated rotor will cut the induced field to generate an induced electromotive force, which will induce the armature winding.
  • the electromotive force is converted into direct current by the rotating rectifier and then supplied to the main excitation winding.
  • the magnetic flux generated by a single main excitation winding is closed through p 0i core poles. Therefore, a single main excitation winding can adjust the magnetic flux of p 0i core poles at the same time. , the magnetization efficiency is high.
  • the magnetic flux generated on the iron core pole by the main excitation winding which is fed with DC current is opposite to the magnetic flux generated by the adjacent permanent magnets on the permanent magnet poles in the radial direction. Therefore, 2p 0m permanent magnet poles and 2p 0i iron core poles can generate an air gap magnetic field of p 0 pair of poles. Therefore, by controlling the magnitude of the induced excitation winding current through the DC converter, the magnitude of the DC current in the main excitation winding can be adjusted, and then the air gap magnetic field of the iron core pole can be adjusted to realize the adjustment of the armature winding flux linkage and the output voltage.
  • the number of phases of the induction armature winding is single-phase, three-phase, five-phase or two-phase.
  • the rotor of the hybrid excitation brushless motor of the present invention is a magnetic pole modulation type rotor, and a single main excitation winding can adjust the magnetic flux of p 0i core poles at the same time, and the magnetic regulation efficiency is high.
  • the iron core pole with high magnetic permeability also provides a low reluctance path for the magnetic flux generated by the induction field winding, which improves the induction efficiency.
  • the power generation system constituted by the motor of the present invention can realize self-excitation and does not require an external power source.
  • FIG. 1 shows a schematic structural diagram of the rotor magnetic pole modulation type induction hybrid excitation brushless motor of the present invention.
  • FIG. 2 shows a schematic structural diagram of the rotor magnetic pole modulation type induction hybrid excitation power generation system of the present invention.
  • FIG. 3 shows a schematic diagram of the structure of the magnetic pole modulated rotor in the present invention.
  • Figure 5 shows the air-gap flux density profile produced by the permanent magnets.
  • Figure 6 shows the air-gap magnetomotive force, permeance and magnetic density distributions generated by the main excitation winding in the boosting mode.
  • Figure 7 shows the air-gap flux density distribution generated by the permanent magnet and the main field winding in the boost mode.
  • Figure 8 shows a graph of the current-time buildup in the main field winding when a DC current is applied to the induced field winding.
  • Figure 9 shows a plot of armature winding flux linkage versus rotor position for different excitation modes.
  • Figure 10 shows the rectified output voltage-time curves of the armature winding for different excitation modes.
  • a rotor magnetic pole modulation type induction hybrid excitation power generation system includes a hybrid excitation brushless motor, a rectifier, a load and a DC converter.
  • the above hybrid excitation brushless motor is also a rotor magnetic pole modulation type induction hybrid excitation brushless motor of the present invention.
  • a rotor magnetic pole modulation type induction hybrid excitation brushless motor includes a stator 10, a magnetic pole modulation type rotor 20, an armature winding 11, an induction excitation winding 12, a main excitation winding 21, an induction armature winding 22 and Rotary rectifier.
  • stator and the magnetic pole modulated rotor are coaxially sleeved, and there is an air gap between them.
  • stator core and the rotor core are magnetically conductive materials.
  • the above-mentioned armature winding, main excitation winding and stator and rotor core constitute the main motor; the induction excitation winding and the induction armature winding are auxiliary excitation parts, which share the stator and rotor core with the main motor.
  • Both the armature winding and the induction excitation winding are wound in the stator slots of the stator.
  • the induction excitation winding is a DC winding.
  • the discharge positions of the armature windings and the induction field windings in the stator slots can be flexibly changed according to the pole-slot fit and slot type.
  • the armature winding is connected to the AC side of the rectifier, and the DC side of the rectifier is connected in series with the load.
  • the induction excitation winding is connected in series with the output end of the DC converter, and the input end of the DC converter is connected in parallel with the load.
  • the main excitation winding and the induction armature winding are both wound in the rotor slot of the magnetic pole modulated rotor.
  • the main excitation winding is a DC winding, which is connected to the induction armature winding through a rotating rectifier.
  • the number of phases of the above-mentioned induction armature windings can be single-phase, three-phase, or multi-phase such as five-phase, double-three-phase, etc.
  • the winding directions of two adjacent main excitation windings are opposite.
  • the magnetic pole modulated rotor includes k repeated magnetic pole units in the circumferential direction, where k is a positive integer.
  • the number of pole pairs of each magnetic pole unit is p 0 , then the number of pole pairs p of the magnetic pole modulated rotor satisfies the following calculation formula:
  • n is a positive integer
  • each magnetic pole unit has 2 permanent magnet poles and 4 iron core poles, as shown in FIG. 4 .
  • each magnetic pole unit has 4 permanent magnet poles and 6 iron core poles, as shown in FIG. 11 .
  • Rotor permanent magnets can be surface-mounted or built-in.
  • the built-in permanent magnets can be of "one" shape, V-shaped, W-shaped, U-shaped, etc., or multi-layer mixed type.
  • Figures 1 and 3 use built-in V-shaped permanent magnets, and
  • Figures 4 and 11 use surface-mounted permanent magnets.
  • the rotor slot includes a large slot and a small slot; wherein, the small slot is arranged on the rotor iron core with the permanent magnet poles and/or iron core poles facing the air gap side.
  • the small groove on the permanent magnet pole is preferably located on the center line (ie, the d axis) of the permanent magnet pole.
  • each pole unit 2p 0m permanent magnet poles are not connected.
  • the 2p 0i iron core poles there are two groups of connected iron core poles, and a large slot is arranged between each group of connected iron core poles.
  • a main excitation winding is wound in two adjacent large slots, and an induction armature winding is wound in the small slot and the adjacent large slot or only in the adjacent small slot.
  • the present invention has the functions of power self-excitation, magnetic regulation and voltage regulation, and the specific analysis is as follows.
  • the power generation system formed by the motor of the present invention can realize self-excitation without external power supply, as shown in FIG. 2 .
  • the permanent magnetic field will induce a back electromotive force in the armature winding, thereby outputting the initial voltage
  • the initial voltage supplies power to the stator induction excitation winding through the DC converter
  • the voltage pulse Modulation can adjust the magnitude of the induction field winding current
  • the induction field winding is fed with current, a fixed (static) induced field magnetic field will be generated in the air gap, and the induction armature winding rotating with the rotor will cut the magnetic field.
  • the induced electromotive force is generated, and the electromotive force in the induced armature winding is converted into direct current by the rotating rectifier and then supplied to the main excitation winding to realize the brushless excitation.
  • each magnetic pole unit 2p 0m permanent magnet poles are not connected; among the 2p 0i core poles, there are two sets of connected core poles, and a large slot is set between each set of connected core poles.
  • the winding directions of two adjacent main excitation windings are opposite (that is, the winding directions of E1 and E3 are the same, and opposite to those of E2 and E4).
  • the magnetic regulation efficiency is high.
  • the magnetic flux generated on the pole of the iron core by the main excitation winding fed with the DC current is opposite to the magnetic flux generated by the adjacent permanent magnets on the permanent poles in the radial direction.
  • the air-gap flux density produced by the permanent magnet alone is shown in Figure 5.
  • is the circumferential position of the air gap
  • B g is the distribution of the air gap magnetic density along the circumferential position
  • B gm is the magnetic density amplitude generated by the permanent magnet alone in the air gap corresponding to the permanent magnetic pole
  • p 0m produces p for the permanent magnetic pole.
  • 0m is the air gap flux density of opposite polarity.
  • fe is the air-gap magnetomotive force generated by the main excitation winding, and the positive and negative polarities are opposite
  • Pg is the equivalent air-gap permeance considering the reluctance of the permanent magnet
  • B gi is the air gap corresponding to the core pole of the main excitation winding alone. The magnitude of the magnetic density generated by the gap.
  • the current established in the main field winding is shown in Figure 8, which is close to direct current in steady state.
  • the DC current in the main excitation winding can be adjusted, and then the air-gap magnetic field of the core pole can be effectively adjusted, so as to realize the effective adjustment of the armature winding flux linkage and the output voltage. , as shown in Figures 9 and 10, respectively.

Abstract

本发明公开了一种转子磁极调制型感应混合励磁无刷电机及发电系统,包括定子、磁极调制型转子、电枢绕组、感应励磁绕组、主励磁绕组、感应电枢绕组和旋转整流器;电枢绕组和感应励磁绕组均设在定子中;主励磁绕组和感应电枢绕组均设在磁极调制型转子内;主励磁绕组通过旋转整流器与感应电枢绕组相连接;磁极调制型转子沿周向包括k个重复的磁极单元,其中,k为正整数;每个磁极单元的极对数均为p0,则磁极调制型转子极对数p=k×p0,p0m=n,p0i=n+1,n为正整数。本发明采用磁极调制型转子,单个主励磁线圈能同时调节p0i个铁心极的磁通,调磁效率高。同时,能实现转子上主励磁绕组的无刷化供电,并提高感应效率。此外,还能实现电机的自励,不需要外部电源。

Description

转子磁极调制型感应混合励磁无刷电机及发电系统 技术领域
本发明涉及电机设计和制造领域,特别是一种转子磁极调制型感应混合励磁无刷电机及发电系统。
背景技术
永磁电机具有高转矩/功率密度、高效率和高功率因素等优点,已在许多场合得到应用。然而,永磁电机的弱磁是通过控制电枢绕组中的直轴电流分量(-i d)来实现,永磁体有着不可逆退磁的风险,且弱磁能力有限。
在恒压发电场合,永磁电机需要全功率的可控变换器来实现输出电压的稳定,系统重量和成本均过高,稳压需要位置信息且控制复杂。
混合励磁电机具有两个磁势源(励磁绕组和永磁体),即具备电励磁电机磁场调节方便的优点,又具有永磁电机的高功率密度和高效率等优点。采用直流励磁的混合励磁电机不需要位置信息、控制方式简单,通过小功率的变换器调节励磁绕组的电流大小,就可以实现气隙磁场的有效调节。因此,混合励磁电机在恒压发电场合具有很大的应用潜力。
然而,现有的转子永磁型(永磁体位于转子)混合励磁电机在实现永磁和电励磁磁势呈并联关系的同时也引入了附加磁路。永磁磁通经过附加磁路短路,形成了漏磁,降低了永磁材料的利用率。而且,附加磁路大多为实心的导磁部件,增加了涡流损耗。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种转子磁极调制型感应混合励磁无刷电机及发电系统,该转子磁极调制型感应混合励磁无刷电机及发电系统采用磁极调制型转子,单个主励磁绕组可以同时调节p 0i个铁心极的磁通,调磁效率高。同时,结合感应绕组和旋转整流器来实现了转子上主励磁绕组的无刷化供电,而高磁导的铁心极也为感应励磁绕组产生的磁通提供低磁阻路径,提高了感应效率。此外,由于永磁体磁通的存在,其构成的发电系统可以输出初始电压;初始电压可以通过直流变换器为定子感应励磁绕组供电,从而实现电机的自励,不需要外部电源。
为解决上述技术问题,本发明采用的技术方案是:
一种转子磁极调制型感应混合励磁无刷电机,包括定子、磁极调制型转子、电枢绕组、感应励磁绕组、主励磁绕组、感应电枢绕组和旋转整流器。
定子和磁极调制型转子同轴套设,且两者间具有气隙。
电枢绕组和感应励磁绕组均绕设在定子的定子槽中。其中,感应励磁绕组为直流绕组。
主励磁绕组和感应电枢绕组均绕设在磁极调制型转子的转子槽内。其中,主励磁绕组为直流绕组,通过旋转整流器与感应电枢绕组相连接。且相邻两个主励磁绕组的绕线方向相反。
磁极调制型转子沿周向包括k个重复的磁极单元,其中,k为正整数。每个磁极单元 的极对数均为p 0,则磁极调制型转子极对数p满足如下计算公式:
p=k×p 0         (1)
在每个磁极单元中,假设永磁极对数为p 0m,铁心极对数为p 0i,则:
p 0m=n         (2)
p 0i=n+1        (3)
p 0=p 0m+p 0i=2n+1       (4)
其中,n为正整数。
转子槽包括大槽和小槽。其中,小槽设置在永磁极和/或铁心极面向气隙侧的转子铁心上。
在每个磁极单元中,2p 0m个永磁极不相接。在2p 0i个铁心极中,存在两组相接的铁心极,每组相接铁心极之间均设置一个大槽。
主励磁绕组绕制在相邻两个大槽中,感应电枢绕组绕制在小槽和相邻的大槽中或仅绕制在小槽中。
小槽设置在每个永磁极的中心d轴上。
永磁体为表贴式永磁体或内置式永磁体。
内置式永磁体为一层或多层混合型。每个内置式永磁体的形状均呈“一”字型、V型、W型或U型。
一种转子磁极调制型感应混合励磁发电系统,包括混合励磁无刷电机、整流器、负载和直流变换器。
混合励磁无刷电机的结构,如上所述。
电枢绕组连接在整流器的交流侧,整流器的直流侧与负载相连。
感应励磁绕组连接在直流变换器的输出端,直流变换器的输入端与负载相并联。
在原动机或机械能带着磁极调制型转子转动时,永磁体产生的永磁磁场,会在电枢绕组中感应出反电动势,从而输出初始电压。初始电压经过直流变换器为感应励磁绕组供电,且通过直流变换器中的电压脉宽调制,调节感应励磁绕组中的电流大小。当感应励磁绕组中通入电流时,会在气隙中产生空间位置固定的感应励磁磁场,随磁极调制型转子旋转的感应电枢绕组,将切割感应励磁磁场而产生感应电动势,感应电枢绕组中的电动势经过旋转整流器变换成直流电后供给主励磁绕组。
由于铁心极的磁导率远大于永磁体的磁导率,单个主励磁绕组产生的磁通经过p 0i个铁心极进行闭合,因而,单个主励磁绕组能够同时调节p 0i个铁心极的磁通,调磁效率高。
增磁时,通入直流电流的主励磁绕组在铁心极上产生的磁通与相邻永磁体在永磁极上产生的磁通沿径向上方向相反。从而,2p 0m个永磁极和2p 0i个铁心极能够产生p 0对极的气隙磁场。因而,通过直流变换器控制感应励磁绕组电流的大小,就能调节主励磁绕组中的直流电流大小,进而就能调节铁心极的气隙磁场,实现电枢绕组磁链和输出电压的调节。
感应电枢绕组的相数为单相、三相、五相或双三相。
本发明具有如下有益效果:
1、本发明混合励磁无刷电机的转子为磁极调制型转子,单个主励磁绕组可以同时调节p 0i个铁心极的磁通,调磁效率高。
2、高磁导的铁心极也为感应励磁绕组产生的磁通提供低磁阻路径,提高了感应效 率。
3、本发明电机构成的发电系统可以实现自励,不需要外部电源。
4、主励磁绕组和感应励磁绕组产生的磁通不经过永磁体,降低了退磁风险。
5、无附加磁路,永磁极产生的磁通经过气隙和定子齿闭合(即为有效磁通),无附加漏磁,永磁材料利用率高。
6、无实心导磁部件,涡流损耗小。
附图说明
图1显示了本发明转子磁极调制型感应混合励磁无刷电机的结构示意图。
图2显示了本发明转子磁极调制型感应混合励磁发电系统的结构示意图。
图3显示了本发明中磁极调制型转子的结构示意图。
图4显示了p 0=3且增磁时,主励磁绕组产生的磁通路径示意图。
图5显示了永磁体产生的气隙磁密分布图。
图6显示了增磁模式时,主励磁绕组产生的气隙磁动势、磁导和磁密分布图。
图7显示了增磁模式时,永磁体和主励磁绕组共同产生的气隙磁密分布图。
图8显示了感应励磁绕组中通入直流电流时,主励磁绕组中建立的电流-时间曲线图。
图9显示了不同励磁模式下,电枢绕组磁链-转子位置的曲线图。
图10显示了不同励磁模式下,电枢绕组的整流输出电压-时间曲线图。
图11显示了p 0=5且增磁时,主励磁绕组产生的磁通路径示意图。
其中有:
10.定子;11.电枢绕组;12.感应励磁绕组;
20.磁极调制型转子;
21.主励磁绕组;22.感应电枢绕组;23.永磁体;24.大槽;25.小槽。
具体实施方式
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
本发明的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本发明的保护范围。
本发明中的电机以p 0=3,定子槽数N s=36,转子极对数p=6,三相电枢绕组(A相、B相、C相)为例,进行详细说明。
如图2所示,一种转子磁极调制型感应混合励磁发电系统,包括混合励磁无刷电机、整流器、负载和直流变换器。
上述混合励磁无刷电机,也即本发明的一种转子磁极调制型感应混合励磁无刷电机。
如图1所示,一种转子磁极调制型感应混合励磁无刷电机,包括定子10、磁极调制 型转子20、电枢绕组11、感应励磁绕组12、主励磁绕组21、感应电枢绕组22和旋转整流器。
定子和磁极调制型转子同轴套设,且两者间具有气隙。
进一步,定子铁心和转子铁心均为导磁材料。
上述电枢绕组、主励磁绕组以及定转子铁心构成了主电机;感应励磁绕组和感应电枢绕组为辅助励磁部分,与主电机共用定转子铁心。
电枢绕组和感应励磁绕组均绕设在定子的定子槽中。其中,感应励磁绕组为直流绕组。电枢绕组和感应励磁绕组在定子槽中的排放位置可根据极槽配合和槽型灵活改变。
如图2所示,电枢绕组连接在整流器的交流侧,整流器的直流侧与负载相串联。
感应励磁绕组串联在直流变换器的输出端,直流变换器的输入端与负载相并联。
主励磁绕组和感应电枢绕组均绕设在磁极调制型转子的转子槽内。
如图1和图2所示,主励磁绕组为直流绕组,通过旋转整流器与感应电枢绕组相连接。
上述感应电枢绕组的相数可为单相,也可为三相,或五相、双三相等多相。
相邻两个主励磁绕组的绕线方向相反。
磁极调制型转子沿周向包括k个重复的磁极单元,其中,k为正整数。每个磁极单元的极对数均为p 0,则磁极调制型转子极对数p满足如下计算公式:
p=k×p 0         (1)
在每个磁极单元中,假设永磁极对数为p 0m,铁心极对数为p 0i,则:
p 0m=n        (2)
p 0i=n+1        (3)
p 0=p 0m+p 0i=2n+1        (4)
其中,n为正整数。
当p 0=3时,p 0m=n=1,p 0i=n+1=2,也即每个磁极单元,具有2个永磁极和4个铁心极,如图4所示。
当p 0=5时,p 0m=n=2,p 0i=n+1=3,也即每个磁极单元,具有4个永磁极和6个铁心极,如图11所示。
转子永磁体可以为表贴式,也可以为内置式。内置式永磁体可以为“一”字型、V型、W型和U型等,也可以为多层混合型。图1和图3采用的为内置V型永磁体,图4和图11采用的为表贴式永磁体。
转子槽包括大槽和小槽;其中,小槽设置在永磁极和/或铁心极面向气隙侧的转子铁心上。为避免小槽对永磁极的磁路产生影响,永磁极上的小槽优选位于永磁极的中心线(即d轴)上。
在每个磁极单元中,2p 0m个永磁极不相接。在2p 0i个铁心极中,存在两组相接的铁心极,每组相接铁心极之间均设置一个大槽。
相邻两个大槽中绕制一个主励磁绕组,小槽和相邻的大槽中或仅在相邻小槽中绕组一个感应电枢绕组。
本发明具有电源自激励、调磁和调压等功能,具体分析如下。
一、电源自激励
本发明电机构成的发电系统在没有外部电源的情况下可实现自励,如图2所示。具 体地,在原动机或机械能带着转子转动时,永磁磁场会在电枢绕组中感应出反电动势,从而输出初始电压;初始电压经过直流变换器为定子感应励磁绕组供电,且通过电压脉宽调制可调节感应励磁绕组电流的大小;当感应励磁绕组中通入电流时,会在气隙中产生空间位置固定(静止)的感应励磁磁场,随转子旋转的感应电枢绕组会切割该磁场而产生感应电动势,感应电枢绕组中的电动势经过旋转整流器变换成直流电后供给主励磁绕组,实现了无刷励磁。
二、调磁
在图3中,磁极调制型转子的极对数p=6,其中,k=2,p 0=3,p 0i=2,p 0m=1。
对于每个磁极单元,2p 0m个永磁极不相接;2p 0i个铁心极中,存在两组相接的铁心极,每组相接的铁心极之间设置大槽。相邻两个主励磁绕组的绕线方向相反(即E1和E3的绕线方向相同,与E2和E4的相反)。
由于铁心极的磁导率远大于永磁体的磁导率,单个主励磁线圈产生的磁通经过p 0i个铁心极进行闭合,即单个主励磁线圈可以同时调节p 0i(本实例p 0i=2)个铁心极的磁通,如图4所示,调磁效率高。
增磁时,通入直流电流的主励磁绕组在铁心极上产生的磁通与相邻永磁体在永磁极上产生的磁通沿径向上方向相反。
永磁体单独产生的气隙磁密,如图5所示。其中,θ为气隙圆周位置,B g为气隙磁密沿圆周位置的分布,B gm为永磁体单独在永磁极所对应的气隙产生的磁密幅值,p 0m对永磁极产生p 0m对极性正负相反的气隙磁密。
主励磁绕组单独产生的气隙磁动势、磁导和磁密分布,如图6所示。其中,fe为主励磁绕组产生的气隙磁动势,正负极性相反;Pg为考虑永磁体磁阻的等效气隙磁导;B gi为主励磁绕组单独在铁心极所对应的气隙产生的磁密幅值。
从图6中可以看出,铁心极上的气隙磁密极性与相邻永磁极上的气隙磁密极性相反。从而,2p 0m个永磁极和2p 0i个铁心极可以产生p 0对极的气隙磁场,如图7所示。
三、调压
感应励磁绕组通入直流电时,主励磁绕组中建立的电流如图8所示,稳态时接近直流电。通过直流变换器控制感应励磁绕组电流的大小,就可以调节主励磁绕组中的直流电流大小,进而就可以有效地调节铁心极的气隙磁场,从而实现电枢绕组磁链和输出电压的有效调节,分别如图9和10所示。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (9)

  1. 一种转子磁极调制型感应混合励磁无刷电机,其特征在于:包括定子、磁极调制型转子、电枢绕组、感应励磁绕组、主励磁绕组、感应电枢绕组和旋转整流器;
    定子和磁极调制型转子同轴套设,且两者间具有气隙;
    电枢绕组和感应励磁绕组均绕设在定子的定子槽中;其中,感应励磁绕组为直流绕组;
    主励磁绕组和感应电枢绕组均绕设在磁极调制型转子的转子槽内;其中,主励磁绕组为直流绕组,通过旋转整流器与感应电枢绕组相连接;且相邻两个主励磁绕组的绕线方向相反;
    磁极调制型转子沿周向包括k个重复的磁极单元,其中,k为正整数;每个磁极单元的极对数均为p 0,则磁极调制型转子极对数p满足如下计算公式:
    p=k×p 0    (1)
    在每个磁极单元中,假设永磁极对数为p 0m,铁心极对数为p 0i,则:
    p 0m=n    (2)
    p 0i=n+1    (3)
    p 0=p 0m+p 0i=2n+1    (4)
    其中,n为正整数。
  2. 根据权利要求1所述的转子磁极调制型感应混合励磁无刷电机,其特征在于:转子槽包括大槽和小槽;其中,小槽设置在永磁极和/或铁心极面向气隙侧的转子铁心上;
    在每个磁极单元中,2p 0m个永磁极不相接;在2p 0i个铁心极中,存在两组相接的铁心极,每组相接铁心极之间均设置一个大槽;
    主励磁绕组绕制在相邻两个大槽中,感应电枢绕组绕制在小槽和相邻的大槽中或仅绕制在小槽中。
  3. 根据权利要求2所述的转子磁极调制型感应混合励磁无刷电机,其特征在于:小槽设置在每个永磁极的中心d轴上。
  4. 根据权利要求1所述的转子磁极调制型感应混合励磁无刷电机,其特征在于:永磁体为表贴式永磁体或内置式永磁体。
  5. 根据权利要求4所述的转子磁极调制型感应混合励磁无刷电机,其特征在于:内置式永磁体为一层或多层混合型;每个内置式永磁体的形状均呈“一”字型、V型、W型或U型。
  6. 一种转子磁极调制型感应混合励磁发电系统,其特征在于:包括混合励磁无刷电机、整流器、负载和直流变换器;
    混合励磁无刷电机的结构,如权利要求1至5的任一项所述;
    电枢绕组连接在整流器的交流侧,整流器的直流侧与负载相连;
    感应励磁绕组连接在直流变换器的输出端,直流变换器的输入端与负载相并联;
    在原动机或机械能带着磁极调制型转子转动时,永磁体产生的永磁磁场,会在电枢绕组中感应出反电动势,从而输出初始电压;初始电压经过直流变换器为感应励磁绕组供电,且通过直流变换器中的电压脉宽调制,调节感应励磁绕组中的电流大小;当感应励磁绕组中通入电流时,会在气隙中产生空间位置固定的感应励磁磁场,随磁极调制型转子旋转的感应电枢绕组,将切割感应励磁磁场而产生感应电动势,感应电枢绕组中的电动势经过旋转整流器变换成直流电后供给主励磁绕组。
  7. 根据权利要求6所述的转子磁极调制型感应混合励磁发电系统,其特征在于:由于铁 心极的磁导率远大于永磁体的磁导率,单个主励磁绕组产生的磁通经过p 0i个铁心极进行闭合,因而,单个主励磁绕组能够同时调节p 0i个铁心极的磁通,调磁效率高。
  8. 根据权利要求7所述的转子磁极调制型感应混合励磁发电系统,其特征在于:增磁时,通入直流电流的主励磁绕组在铁心极上产生的磁通与相邻永磁体在永磁极上产生的磁通沿径向上方向相反;从而,2p 0m个永磁极和2p 0i个铁心极能够产生p 0对极的气隙磁场;因而,通过直流变换器控制感应励磁绕组电流的大小,就能调节主励磁绕组中的直流电流大小,进而就能调节铁心极的气隙磁场,实现电枢绕组磁链和输出电压的调节。
  9. 根据权利要求6所述的转子磁极调制型感应混合励磁发电系统,其特征在于:感应电枢绕组的相数为单相、三相、五相或双三相。
PCT/CN2022/073899 2021-01-28 2022-01-26 转子磁极调制型感应混合励磁无刷电机及发电系统 WO2022161375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110119097.8A CN112910123B (zh) 2021-01-28 2021-01-28 转子磁极调制型感应混合励磁无刷电机及发电系统
CN202110119097.8 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022161375A1 true WO2022161375A1 (zh) 2022-08-04

Family

ID=76119770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073899 WO2022161375A1 (zh) 2021-01-28 2022-01-26 转子磁极调制型感应混合励磁无刷电机及发电系统

Country Status (2)

Country Link
CN (1) CN112910123B (zh)
WO (1) WO2022161375A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116255395A (zh) * 2022-12-30 2023-06-13 淮阴工学院 一种恒流源励磁六极主动电磁轴承及设计方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910123B (zh) * 2021-01-28 2022-03-25 南京航空航天大学 转子磁极调制型感应混合励磁无刷电机及发电系统
CN113507176B (zh) * 2021-06-08 2022-11-25 南京航空航天大学 一种转子多槽型感应励磁式混合励磁电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295249A1 (en) * 2008-06-02 2009-12-03 Denso Corporation Hybrid-type synchronous machine
CN101662197A (zh) * 2009-09-17 2010-03-03 苏州工业园区美能新能源有限公司 电动汽车用复合励磁永磁同步发电机
CN104753279A (zh) * 2013-12-28 2015-07-01 黄劭刚 交流变频感应无刷励磁的单电枢同步电机
CN111082626A (zh) * 2020-01-09 2020-04-28 东华大学 一种漏磁可调式无刷混合励磁同步发电机
CN112910123A (zh) * 2021-01-28 2021-06-04 南京航空航天大学 转子磁极调制型感应混合励磁无刷电机及发电系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589624B2 (ja) * 2015-12-24 2019-10-16 株式会社デンソー モータ
CN108964396B (zh) * 2018-08-13 2020-02-18 南京航空航天大学 定子分区式交替极混合励磁电机
CN109951038B (zh) * 2019-03-05 2020-07-24 南京航空航天大学 双边励磁型切向磁钢混合励磁无刷电机
CN112087085A (zh) * 2020-09-04 2020-12-15 东南大学 一种基于n-s交替极转子的无刷混合励磁电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295249A1 (en) * 2008-06-02 2009-12-03 Denso Corporation Hybrid-type synchronous machine
CN101662197A (zh) * 2009-09-17 2010-03-03 苏州工业园区美能新能源有限公司 电动汽车用复合励磁永磁同步发电机
CN104753279A (zh) * 2013-12-28 2015-07-01 黄劭刚 交流变频感应无刷励磁的单电枢同步电机
CN111082626A (zh) * 2020-01-09 2020-04-28 东华大学 一种漏磁可调式无刷混合励磁同步发电机
CN112910123A (zh) * 2021-01-28 2021-06-04 南京航空航天大学 转子磁极调制型感应混合励磁无刷电机及发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116255395A (zh) * 2022-12-30 2023-06-13 淮阴工学院 一种恒流源励磁六极主动电磁轴承及设计方法
CN116255395B (zh) * 2022-12-30 2024-01-05 淮阴工学院 一种恒流源励磁六极主动电磁轴承及设计方法

Also Published As

Publication number Publication date
CN112910123A (zh) 2021-06-04
CN112910123B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021189594A1 (zh) 一种磁场调制混合励磁电机及其多工作波设计方法
Gao et al. A novel hybrid excitation flux reversal machine for electric vehicle propulsion
WO2022161375A1 (zh) 转子磁极调制型感应混合励磁无刷电机及发电系统
Zhao et al. Design of a novel parallel-hybrid-excited vernier reluctance machine with improved utilization of redundant winding harmonics
CN110829662B (zh) 一种并列结构混合励磁无刷电机及其发电系统
CN108964396B (zh) 定子分区式交替极混合励磁电机
CN109951038B (zh) 双边励磁型切向磁钢混合励磁无刷电机
Wei et al. A novel dual-stator hybrid excited permanent magnet Vernier machine with Halbach-array PMs
CN111082548A (zh) 一种定子模块化混合励磁交替极磁通反向电机
CN110739891B (zh) 一种电励磁同步磁阻无刷发电系统
CN110112878A (zh) 一种交替极切向励磁游标永磁电机
Wang et al. General topology derivation methods and control strategies of field winding-based flux adjustable PM machines for generator system in more electric aircraft
CN101262160A (zh) 混合励磁磁通切换型电机
CN113489178B (zh) 广域运行的交替极型永磁辅助同步磁阻电机
CN111262411A (zh) 具有宽电压调节范围的双谐波绕组无刷励磁直流发电机
CN111224477A (zh) 基于谐波绕组励磁的并列结构无刷混合励磁同步发电机
CN112787476B (zh) 基于交替极转子的集成式直流感应混合励磁无刷电机
CN114172335B (zh) 一种定子分区混合励磁定转子双永磁游标电机
Yang et al. A novel stator-consequent-pole memory machine
CN110808649B (zh) 一种双工作谐波转子及交流励磁无刷电机
CN113078789B (zh) 一种具有内置调磁环结构的定子分区式混合励磁电机
CN213602457U (zh) 一种新型混合励磁电机定子结构
CN110808648B (zh) 一种混合磁钢交流励磁记忆电机
KR20030039945A (ko) 유도전류를 이용한 회전기의 자기회로
CN209748381U (zh) 一种并联式混合励磁无刷同步发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745249

Country of ref document: EP

Kind code of ref document: A1