WO2024050671A1 - 一种扭矩调节方法、装置和车辆 - Google Patents

一种扭矩调节方法、装置和车辆 Download PDF

Info

Publication number
WO2024050671A1
WO2024050671A1 PCT/CN2022/117108 CN2022117108W WO2024050671A1 WO 2024050671 A1 WO2024050671 A1 WO 2024050671A1 CN 2022117108 W CN2022117108 W CN 2022117108W WO 2024050671 A1 WO2024050671 A1 WO 2024050671A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque value
vehicle
intervention
energy recovery
intervention torque
Prior art date
Application number
PCT/CN2022/117108
Other languages
English (en)
French (fr)
Inventor
徐严
郭振华
孙龙
李宇昊
王卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/117108 priority Critical patent/WO2024050671A1/zh
Publication of WO2024050671A1 publication Critical patent/WO2024050671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • Embodiments of the present application relate to the field of intelligent driving, and more specifically, to a torque adjustment method, device and vehicle.
  • the driving wheels When the vehicle is in the energy recovery state and passes through an abnormally paved road, the driving wheels may be off the ground or slipping. At this time, the driving wheels are affected by the recuperation torque, which will cause the wheel speed and speed deviation to expand, causing the slip rate to exceed a certain threshold, thereby triggering the anti-lock brake system (ABS) or dynamic traction control (dynamic traction control) , DTC).
  • ABS anti-lock brake system
  • DTC dynamic traction control
  • the vehicle will exit the energy recovery state, causing the driver to be unable to use energy recovery for a period of time, resulting in a poor user experience.
  • Embodiments of the present application provide a torque adjustment method, device and vehicle. Torque intervention during the energy recovery process of the vehicle helps to avoid the expansion of the wheel slip rate, thereby reducing the probability of triggering ABS or DTC; at the same time, it can also This keeps the vehicle in an energy recovery state, helping to improve the user's driving experience.
  • the vehicle in this application is a vehicle in a broad sense, which can be a means of transportation (such as commercial vehicles, passenger cars, motorcycles, flying cars, trains, etc.), industrial vehicles (such as forklifts, trailers, tractors, etc.), engineering vehicles Vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • the embodiments of this application do not specifically limit the types of vehicles.
  • a torque adjustment method includes: obtaining a requested torque value; determining a first intervention torque value based on the vehicle's wheel acceleration and vehicle acceleration; and determining a first intervention torque value based on the requested torque value and the first intervention torque value to control the vehicle to perform energy recovery.
  • the vehicle is controlled to perform energy recovery through the requested torque and the intervention torque determined by the wheel acceleration and the vehicle acceleration, which helps to avoid the expansion of the wheel slip rate and reduce the probability of triggering ABS or DTC; at the same time, it also It can keep the vehicle in an energy recovery state, helping to improve the user's driving experience.
  • obtaining the requested torque value includes: obtaining the requested torque value when the vehicle is in an energy recovery state.
  • determining the first intervention torque value based on the vehicle's wheel acceleration and the vehicle's acceleration includes: determining the first intervention torque value based on the difference between the vehicle's wheel acceleration and the vehicle's acceleration.
  • the wheel status can be obtained through the difference between the wheel acceleration and the vehicle acceleration, so that it can be judged whether the slip rate of the vehicle has a tendency to continue to expand.
  • the mapping relationship between the difference between wheel acceleration and vehicle acceleration and the intervention torque value is stored in the vehicle.
  • the difference between wheel acceleration and vehicle acceleration is a functional relationship with the intervention torque value.
  • controlling the vehicle to perform energy recovery based on the requested torque value and the first intervention torque value includes: controlling based on the difference between the requested torque value and the first intervention torque value. The vehicle performs energy recovery.
  • the method further includes: obtaining a road surface type; determining a second intervention torque value according to the road surface type; wherein, based on the requested torque value and the first intervention The torque value, controlling the vehicle to perform energy recovery includes: controlling the vehicle to perform energy recovery according to the requested torque value, the first intervention torque value and the second intervention torque value.
  • the vehicle can perform torque intervention according to the type of road surface, which can avoid the expansion of wheel slip rate and reduce the probability of triggering ABS or DTC; at the same time, it can also keep the vehicle in the energy recovery state, which helps to improve user driving experience.
  • the above road surface type may be the type of road surface on which the vehicle is currently located.
  • a mapping relationship between road surface type and intervention torque value is stored in the vehicle.
  • obtaining the road surface type includes: determining the road surface type based on data collected by a sensor outside the vehicle cabin.
  • obtaining the road surface type includes: obtaining the road surface type based on map information.
  • obtaining the road surface type includes: obtaining the wheel speed fluctuation frequency of the vehicle; and determining the road surface type based on the wheel speed fluctuation frequency.
  • the wheel speed fluctuation frequency is different when the vehicle is traveling on a normal paved road and an abnormal paved road.
  • the frequency of wheel speed fluctuations can also be taken into account when performing torque intervention.
  • the road surface on which the vehicle is currently located is identified as a normal paved road or an abnormal paved road through the frequency of wheel speed fluctuations.
  • torque intervention is used to suppress wheel speed fluctuations, which can prevent the wheel slip rate from expanding and reduce the probability of triggering ABS or DTC.
  • it can also keep the vehicle in an energy recovery state, helping to improve the user's driving experience. .
  • a mapping relationship between wheel speed fluctuation frequency, road surface type and intervention torque value is stored in the vehicle.
  • the method further includes: obtaining the wheel speed fluctuation frequency of the vehicle; and determining the second intervention torque value based on the wheel speed fluctuation frequency.
  • the above torque intervention can also be understood as the absolute value of the torque value output by the vehicle to the motor when recuperating energy is less than one of the current driving parameters of the vehicle (for example, the opening of the accelerator pedal, the opening of the brake pedal, and the vehicle speed, or The absolute value of the requested torque value determined by multiple).
  • a mapping relationship between wheel speed fluctuation frequency and intervention torque value is stored in the vehicle.
  • the wheel speed fluctuation frequency and the intervention torque value are functional relationships.
  • determining the second intervention torque value based on the wheel speed fluctuation frequency includes: determining the type of road surface the vehicle is currently on based on the wheel speed fluctuation frequency; based on the type of road surface the vehicle is currently on, The second intervention torque value is determined.
  • the mapping relationship between the type of road surface and the intervention torque value is stored in the vehicle.
  • controlling the vehicle to perform energy recovery according to the requested torque value, the first intervention torque value and the second intervention torque value includes: according to the first intervention torque value The intervention torque value and the second intervention torque value determine the third intervention torque value; according to the request torque value and the third intervention torque value, the vehicle is controlled to perform energy recovery.
  • the vehicle can determine the third intervention torque value based on the first intervention torque value and the second intervention torque value, and then control the vehicle to perform energy recovery based on the requested torque value and the third intervention torque value.
  • the wheel slip rate can be prevented from expanding and the probability of triggering ABS or DTC can be reduced.
  • the vehicle can also be kept in an energy recovery state, helping to improve the user's driving experience.
  • determining the third intervention torque value according to the first intervention torque value and the second intervention torque value includes: combining the first intervention torque value and the second intervention torque value. The lowest torque value among the second intervention torque values is determined as the third intervention torque value.
  • the lowest torque value among the first intervention torque value and the second intervention torque value may be determined as the third intervention torque value. In this way, while avoiding triggering ABS or DTC due to the expansion of the wheel slip rate, it can also improve the efficiency of the vehicle's energy recovery.
  • the method further includes: obtaining a slip rate of the vehicle; determining a correction coefficient according to the slip rate; wherein the method is based on the requested torque value and the third Three intervention torque values, controlling the vehicle to perform energy recovery include: determining a fourth intervention torque value according to the third intervention torque value and the correction coefficient; controlling the vehicle to perform energy recovery according to the request torque value and the fourth intervention torque value. Energy recovery.
  • the slip rate of the vehicle may also be considered when performing torque intervention.
  • the third intervention torque value is corrected by the correction coefficient calculated by the slip ratio.
  • torque intervention by comprehensively considering factors such as wheel acceleration, vehicle acceleration, wheel speed fluctuation frequency and slip rate can avoid the expansion of the wheel slip rate and reduce the probability of triggering ABS or DTC; at the same time, it can also keep the vehicle In the energy recovery state, it helps improve the user's driving experience.
  • the mapping relationship between slip rate and correction coefficient is stored in the vehicle.
  • the slip rate and the correction coefficient are functional relationships.
  • the method further includes: obtaining a slip rate of the vehicle; determining a correction coefficient according to the slip rate; wherein the method is based on the requested torque value and the third An intervention torque value, controlling the vehicle to perform energy recovery, including: determining a fifth intervention torque value based on the first intervention torque value and the correction coefficient; controlling the vehicle to perform energy recovery based on the request torque value and the fifth intervention torque value. Energy recovery.
  • the slip rate of the vehicle may also be considered when performing torque intervention.
  • the first intervention torque value is corrected by the correction coefficient calculated from the slip ratio.
  • torque intervention by comprehensively considering factors such as wheel acceleration, vehicle acceleration and slip rate can avoid the expansion of wheel slip rate and reduce the probability of triggering ABS or DTC; at the same time, it can also keep the vehicle in an energy recovery state. Helps improve users’ driving experience.
  • the method further includes: when the number of torque interventions when controlling the vehicle to perform energy recovery is greater than or equal to the preset number of times, controlling the vehicle according to the historical torque intervention value Perform energy recovery; or, when the duration of torque intervention when controlling the vehicle to perform energy recovery is greater than or equal to the preset time period, control the vehicle to perform energy recovery based on the historical torque intervention value.
  • the vehicle when the number or duration of torque intervention when controlling the vehicle to perform energy recovery meets the conditions, the vehicle can be controlled to perform energy recovery based on the historical torque intervention value. In this way, the vehicle's computing resources can be saved; at the same time, it can also reduce the probability of the vehicle triggering ABS or DTC during subsequent driving.
  • the method further includes: when controlling the vehicle to perform energy recovery, increasing the braking torque of the braking system of the vehicle, and/or activating a wind resistance increasing device .
  • the braking torque of the vehicle's braking system when performing torque intervention, can be increased and/or the wind resistance lifting device can be activated, which helps to avoid the vehicle's braking distance becoming longer due to continuous torque intervention, and has It helps to improve the safety of the vehicle; at the same time, it can also avoid giving the user the feeling of forward movement during torque intervention, which helps to improve the user's driving experience.
  • obtaining the requested torque value includes: based on the speed of the vehicle, the opening of the accelerator pedal of the vehicle, and the opening of the brake pedal of the vehicle. At least one item determines the requested torque value.
  • a torque adjustment device which device includes: an acquisition unit, used to acquire a requested torque value; a determination unit, used to determine a first intervention torque value based on wheel acceleration and vehicle acceleration of the vehicle; and control A unit configured to control the vehicle to perform energy recovery according to the requested torque value and the first intervention torque value.
  • the obtaining unit is also used to obtain the wheel speed fluctuation frequency of the vehicle; the determining unit is also used to determine the road surface type based on the wheel speed fluctuation frequency.
  • the determination unit is configured to: determine a third intervention torque value according to the first intervention torque value and the second intervention torque value; the control unit is configured to: Based on the requested torque value and the third intervention torque value, the vehicle is controlled to perform energy recovery.
  • the determining unit is configured to: determine the lowest torque value of the first intervention torque value and the second intervention torque value as the third intervention torque value .
  • the obtaining unit is also used to obtain the slip rate of the vehicle; the determining unit is also used to determine a correction coefficient according to the slip rate; wherein, The control unit is configured to: determine a fourth intervention torque value based on the third intervention torque value and the correction coefficient; and control the vehicle to perform energy recovery based on the request torque value and the fourth intervention torque value.
  • the obtaining unit is also used to obtain the slip rate of the vehicle; the determining unit is also used to determine a correction coefficient according to the slip rate; wherein, The control unit is configured to: determine a fifth intervention torque value based on the first intervention torque value and the correction coefficient; and control the vehicle to perform energy recovery based on the requested torque value and the fifth intervention torque value.
  • control unit is also used to control the vehicle according to the historical torque intervention value when the number of torque interventions is greater than or equal to the preset number of times when controlling the vehicle to perform energy recovery.
  • the vehicle performs energy recovery; or, when the duration of torque intervention when controlling the vehicle to perform energy recovery is greater than or equal to the preset duration, the vehicle is controlled to perform energy recovery based on the historical torque intervention value.
  • control unit is also used to increase the braking torque of the vehicle's braking system when controlling the vehicle to perform energy recovery, and/or to initiate wind resistance. Lifting device.
  • the acquisition unit is configured to: based on at least one of the vehicle speed of the vehicle, the opening of the accelerator pedal of the vehicle, and the opening of the brake pedal of the vehicle. One item to determine the requested torque value.
  • a torque adjustment device in a third aspect, includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device performs any one of the first aspects. possible methods.
  • a fourth aspect provides a torque adjustment system, which includes a motor and the torque adjustment device described in any one of the above second or third aspects.
  • a fifth aspect provides a vehicle, which includes the torque adjustment device according to any one of the second or third aspects, or the torque adjustment system according to the fourth aspect.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to perform any of the possible methods in the first aspect.
  • the above computer program code can be stored in whole or in part on the first storage medium, where the first storage medium can be packaged together with the processor, or can be packaged separately from the processor. This is not the case in the embodiments of this application. Specific limitations.
  • a computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to perform any of the possible methods in the first aspect. .
  • inventions of the present application provide a chip system.
  • the chip system includes a processor for calling a computer program or computer instructions stored in a memory, so that the processor executes any of the possibilities in the first aspect. Methods.
  • the processor is coupled to the memory through an interface.
  • the chip system further includes a memory, and a computer program or computer instructions are stored in the memory.
  • Figure 1 is a schematic functional block diagram of a vehicle provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of the torque adjustment method provided by the embodiment of the present application.
  • Figure 3 is a set of graphical user interface GUI provided by an embodiment of the present application.
  • Figure 4 is another schematic flow chart of the torque adjustment method provided by the embodiment of the present application.
  • Figure 5 is another schematic flow chart of the torque adjustment method provided by the embodiment of the present application.
  • Figure 6 is another schematic flow chart of the torque adjustment method provided by the embodiment of the present application.
  • Figure 7 is a schematic block diagram of a torque adjustment device provided by an embodiment of the present application.
  • Prefixes such as “first” and “second” are used in the embodiments of this application only to distinguish different description objects, and have no limiting effect on the position, order, priority, quantity or content of the described objects.
  • the use of ordinal words and other prefixes used to distinguish the described objects does not limit the described objects.
  • Words constitute redundant restrictions.
  • plural means two or more.
  • the driving wheels may be off the ground or slipping.
  • the driving wheel is affected by the recuperation torque, which will cause the wheel speed and speed deviation to expand, causing the slip rate to exceed a certain threshold, thus triggering ABS or DTC.
  • ABS or DTC is triggered, the vehicle will exit the energy recovery state, causing the driver to be unable to use energy recovery for a period of time, resulting in a poor user experience.
  • Embodiments of the present application provide a torque adjustment method, device and vehicle.
  • the vehicle is controlled to recover energy, which helps to avoid the expansion of the wheel slip rate, thereby reducing the probability of triggering ABS or DTC; at the same time, it also It can keep the vehicle in an energy recovery state, helping to improve the user's driving experience.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • Vehicle 100 may include a perception system 120 , a display device 130 , and a computing platform 150 , where perception system 120 may include one or more sensors that sense information about the environment surrounding vehicle 100 .
  • the sensing system 120 may include a positioning system, and the positioning system may be a global positioning system (GPS), Beidou system, or other positioning systems.
  • the sensing system 120 may also include one or more of an inertial measurement unit (IMU), laser radar, millimeter wave radar, ultrasonic radar, and camera device.
  • IMU inertial measurement unit
  • the computing platform 150 may include one or more processors, such as processors 151 to 15n (n is a positive integer).
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instructions. Circuits with read and run capabilities, such as central processing unit (CPU), microprocessor, graphics processing unit (GPU) (can be understood as a microprocessor), or digital signal processor (digital signal processor, DSP), etc.; in another implementation, the processor can achieve certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is a dedicated integrated Hardware circuits implemented by application-specific integrated circuit (ASIC) or programmable logic device (PLD), such as field programmable gate array (FPGA).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • the processor can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), tensor processing unit (TPU), depth Learning processing unit (deep learning processing unit, DPU), etc.
  • the computing platform 150 may also include a memory, which is used to store instructions. Some or all of the processors 151 to 15n may call instructions in the memory to implement corresponding functions.
  • the display device 130 in the cockpit is mainly divided into two categories.
  • the first category is a vehicle-mounted display screen;
  • the second category is a projection display screen, such as a HUD.
  • the vehicle display screen is a physical display screen and an important part of the vehicle infotainment system.
  • There can be multiple displays in the cockpit such as digital instrument display, central control screen, passenger in the co-pilot seat (also known as The display in front of the front passenger), the display in front of the left rear passenger, the display in front of the right rear passenger, and even the car window can be used as a display.
  • Head-up display also known as head-up display system. It is mainly used to display driving information such as speed and navigation on the display device in front of the driver (such as the windshield).
  • HUD includes, for example, combined head-up display (combiner-HUD, C-HUD) system, windshield-type head-up display (windshield-HUD, W-HUD) system, and augmented reality head-up display system (augmented reality HUD, AR-HUD).
  • HUD may also include other types of systems as technology evolves, which is not limited in this application.
  • FIG. 2 shows a schematic flow chart of a torque adjustment method 200 provided by an embodiment of the present application.
  • the method 200 can be executed by a vehicle, or the method 200 can also be executed by the above-mentioned computing platform, or the method 200 can also be executed by a system-on-a-chip (SoC) in the computing platform, or,
  • SoC system-on-a-chip
  • the method 200 can also be executed by a processor in the computing platform, or the method 200 can also be executed by a vehicle control unit (VCU), or the method 200 can also be executed by a motor control unit (motor control unit).
  • VCU vehicle control unit
  • motor control unit motor control unit
  • the method 200 can also be executed by a system composed of a vehicle controller and an electronic stability control system (electronic stability control, ESC), or the method 200 can also be executed by a system composed of a VCU and an MCU.
  • the method 200 includes:
  • One possible implementation is to obtain the requested torque value when the vehicle is in the energy recovery state.
  • a vehicle When a vehicle is in an energy recovery state, it can be understood that the vehicle's drive motor is generating electricity, or that the drive motor is converting mechanical energy into electrical energy.
  • the fact that the vehicle is in an energy recovery state can also be understood to mean that the vehicle determines that the energy recovery function is turned on.
  • the vehicle can default to energy recovery being on.
  • the energy recovery function can be turned off when the user's operation to turn off the energy recovery function through the control on the vehicle display is detected. After turning off the energy recovery function, the vehicle is in a non-energy recovery state.
  • the steering wheel of a vehicle includes buttons for the energy recovery function.
  • the vehicle can be in an energy recovery state.
  • obtaining the requested torque value includes: determining the requested torque value based on at least one of the vehicle speed, the opening of the accelerator pedal of the vehicle, and the opening of the brake pedal of the vehicle.
  • the vehicle may determine the current energy recovery request torque value based on the current opening of the accelerator pedal and the current vehicle speed.
  • the mapping relationship between the accelerator pedal opening, vehicle speed, and energy recovery request torque value may be stored in the vehicle.
  • the vehicle can determine the requested torque value based on the current accelerator pedal opening, the current vehicle speed, and the mapping relationship.
  • S220 Determine the first intervention torque value based on the wheel acceleration and vehicle acceleration of the vehicle.
  • determining the first intervention torque value based on the vehicle's wheel acceleration and the vehicle's acceleration includes: determining the first intervention torque value based on the difference between the vehicle's wheel acceleration and the vehicle's acceleration.
  • determining the first intervention torque value based on the vehicle's wheel acceleration and the vehicle's acceleration includes: based on the difference between the vehicle's wheel acceleration and the vehicle's acceleration, as well as the difference between the wheel acceleration and the vehicle's acceleration and the intervention
  • the mapping relationship of torque values determines the first intervention torque value.
  • Table 1 shows a mapping relationship between the difference between wheel acceleration and vehicle acceleration and the intervention torque value.
  • the first intervention torque value can be determined to be the requested torque value multiplied by 10%. If the requested torque value is 1000N ⁇ m, then the first intervention torque value is 100N ⁇ m.
  • mapping relationship between the difference between wheel acceleration and vehicle acceleration and the intervention torque value shown in the above Table 1 is only schematic, and the embodiment of the present application does not specifically limit this.
  • the difference between wheel acceleration and vehicle acceleration and the intervention torque value may also be a functional relationship.
  • the vehicle can determine the first intervention torque value based on the difference between wheel acceleration and vehicle acceleration and the functional relationship.
  • S230 Control the vehicle to perform energy recovery according to the requested torque value and the first intervention torque value.
  • controlling the vehicle to perform energy recovery based on the requested torque value and the first intervention torque value includes: controlling the vehicle to perform energy recovery based on a difference between the requested torque value and the first intervention torque value.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the first intervention torque value to be 100N ⁇ m based on wheel acceleration and vehicle acceleration. Then the VCU can output the difference between the requested torque value and the first intervention torque value (900N ⁇ m) to the motor used for energy recovery. The motor can recover energy based on this difference.
  • the torque intervention when the vehicle is in the energy recovery state can be understood as the absolute value of the torque value output by the vehicle to the motor when the vehicle is in the energy recovery state is less than the current driving parameters of the vehicle (for example, the opening of the accelerator pedal, The absolute value of the requested torque value determined by one or more of the brake pedal opening and vehicle speed.
  • the method 200 further includes: obtaining the wheel speed fluctuation frequency of the vehicle; determining a second intervention torque value based on the wheel speed fluctuation frequency; wherein, based on the requested torque value and the first intervention torque value, Controlling the vehicle to perform energy recovery includes: controlling the vehicle to perform energy recovery according to the requested torque value, the first intervention torque value and the second intervention torque value.
  • determining the second intervention torque value based on the wheel speed fluctuation frequency includes: determining the second intervention torque value based on the wheel speed fluctuation frequency and a mapping relationship between the wheel speed fluctuation frequency and the intervention torque value.
  • Table 2 shows a mapping relationship between wheel speed fluctuation frequency and intervention torque value.
  • Wheel speed fluctuation frequency Intervention torque value [10Hz, 14Hz) 0 [6Hz, 10Hz) Requested torque value ⁇ 20% [2Hz, 6Hz) Requested torque value ⁇ 30% [0,2Hz] Requested torque value ⁇ 40% ... ...
  • the second intervention torque value can be determined according to the mapping relationship shown in Table 2 as the requested torque value multiplied by 20%. If the requested torque value is 1000N ⁇ m, then the second intervention torque value is 200N ⁇ m.
  • determining the second intervention torque value based on the wheel speed fluctuation frequency includes: determining the type of road surface the vehicle is currently on based on the wheel speed fluctuation frequency; determining the second intervention torque value based on the type of road surface the vehicle is currently on. Intervention torque value.
  • Table 3 shows a mapping relationship between wheel speed fluctuation frequency, road surface type and intervention torque value.
  • Wheel speed fluctuation frequency Type of road surface Intervention torque value [10Hz, 14Hz) Normal paved road 0 [7Hz, 8Hz) bumpy road Requested torque value ⁇ 20% [4Hz, 6Hz) slippery road Requested torque value ⁇ 30% ... ... ...
  • the second intervention torque value is the requested torque value multiplied by 20%. If the requested torque value is 1000N ⁇ m, then the second intervention torque value is 200N ⁇ m.
  • mapping relationship between wheel speed fluctuation frequency, road surface type and intervention torque value shown in the above Table 3 is only schematic, and the embodiment of the present application does not specifically limit this.
  • the type of the current road surface can also be determined based on data collected by a sensor (eg, camera) outside the vehicle cabin, so that the intervention torque value can be determined based on the type of road surface.
  • the type of the current road surface can also be obtained based on the map information, so as to determine the intervention torque value based on the type of road surface.
  • controlling the vehicle to perform energy recovery according to the requested torque value, the first intervention torque value and the second intervention torque value includes: according to the first intervention torque value and the second intervention torque value, Determine a third intervention torque value; control the vehicle to perform energy recovery based on the requested torque value and the third intervention torque value.
  • the third intervention torque value is an average of the first intervention torque value and the second intervention torque value.
  • the third intervention torque value is 150 N ⁇ m.
  • the third intervention torque value is a torque value obtained by performing a weighted average of the first intervention torque value and the second intervention torque value.
  • the formula for obtaining the third intervention torque value based on the weighted average of the first intervention torque value and the second intervention torque value may be:
  • Third intervention torque value first intervention torque value ⁇ first weighting coefficient + second intervention torque value ⁇ second weighting coefficient
  • the sum of the first weighting coefficient and the second weighting coefficient is 1.
  • the first weighting coefficient is greater than the second weighting coefficient. For example, if the first intervention torque value is 100 N ⁇ m, the second intervention torque value is 200 N ⁇ m, the first weighting coefficient is 0.6, and the second weighting coefficient is 0.4, then the third intervention torque value is 140 N ⁇ m.
  • determining the third intervention torque value according to the first intervention torque value and the second intervention torque value includes: determining the lowest torque value among the first intervention torque value and the second intervention torque value. is the third intervention torque value.
  • the first intervention torque value is 100 N ⁇ m
  • the second intervention torque value is 200 N ⁇ m
  • the third intervention torque value is 100 N ⁇ m.
  • the method 200 further includes: obtaining the slip rate of the vehicle; determining a correction coefficient based on the slip rate; wherein, controlling the vehicle to perform energy based on the requested torque value and the third intervention torque value.
  • Recovery includes: determining a fourth intervention torque value based on the third intervention torque value and the correction coefficient; and controlling the vehicle to perform energy recovery based on the requested torque value and the fourth intervention torque value.
  • determining the correction coefficient based on the slip rate includes: determining the correction coefficient based on the slip rate and the mapping relationship between the slip rate and the correction coefficient.
  • Table 4 shows a mapping relationship between slip rate and correction coefficient.
  • slip rate Correction factor [0,10%) 0 [10%, 15%) 1.1 [15%, 20%) 1.5 ... ...
  • the correction coefficient can be determined to be 1.1 according to the mapping relationship shown in Table 4.
  • mapping relationship between the slip rate and the correction coefficient shown in the above Table 4 is only schematic, and the embodiment of the present application does not specifically limit this.
  • the slip rate and the correction coefficient may also have a functional relationship.
  • the fourth intervention torque value is the third intervention torque value multiplied by the correction coefficient. For example, if the correction coefficient is 1.1 and the third intervention torque value is 100 N ⁇ m, then the fourth intervention torque value is 110 N ⁇ m.
  • controlling the vehicle to perform energy recovery based on the requested torque value and the fourth intervention torque value includes: controlling the vehicle to perform energy recovery based on the difference between the requested torque value and the fourth intervention torque value. .
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the first intervention torque value to be 100N ⁇ m based on wheel acceleration and vehicle acceleration.
  • the VCU determines the second intervention torque value to be 200N ⁇ m based on the wheel speed fluctuation frequency.
  • the third intervention torque value may be the minimum value between the first intervention torque value and the second intervention torque value.
  • the VCU determines the correction coefficient to be 1.1 based on the current slip rate of the vehicle.
  • the VCU may determine a fourth intervention torque value (for example, 110 N ⁇ m) based on the correction coefficient and the third intervention torque value.
  • the VCU can output the difference between the requested torque value and the fourth intervention torque value (890N ⁇ m) to the motor used for energy recovery.
  • the motor can recover energy based on this difference.
  • the above method can also be executed by a motor controller or other controller.
  • the above description takes the correction coefficient determined by the slip rate as an example.
  • the embodiments of the present application are not limited to this.
  • the fifth intervention torque value may also be determined based on the current slip rate of the vehicle.
  • determining the fifth intervention torque value based on the current slip rate of the vehicle includes: determining the fifth intervention torque value based on the current slip rate of the vehicle and the mapping relationship between the slip rate and the intervention torque value. .
  • Table 5 shows a mapping relationship between slip rate and intervention torque value.
  • the fifth intervention torque value can be determined to be 300 N ⁇ m according to the mapping relationship shown in Table 5.
  • the vehicle can be controlled to perform energy recovery based on the requested torque value, the first intervention torque value, the second intervention torque value, and the fifth intervention torque value.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the first intervention torque value to be 100N ⁇ m based on wheel acceleration and vehicle acceleration.
  • the VCU determines the second intervention torque value to be 200N ⁇ m based on the wheel speed fluctuation frequency.
  • the VCU determines the fifth intervention torque value to be 300N ⁇ m based on the current slip rate of the vehicle. Then the VCU can output the difference (800N ⁇ m) between the requested torque value and the average value (200N ⁇ m) of the first intervention torque value, the second intervention torque value and the fifth intervention torque value to the motor, so that the motor can This difference is used for energy recovery.
  • the torque output to the motor can also be calculated using a weighted average.
  • the weighting coefficient of the first intervention torque value is 0.3
  • the weighting coefficient of the second intervention torque value is 0.5
  • the weighting coefficient of the fifth intervention torque value is 0.2.
  • the VCU can output the difference (810N ⁇ m) between the requested torque value and the weighted average (190N ⁇ m) of the first intervention torque value, the second intervention torque value and the fifth intervention torque value (190N ⁇ m) to the motor, so that the motor can This difference controls the vehicle's energy recovery.
  • mapping relationship between the slip rate and the intervention torque value shown in the above Table 5 is only schematic, and the embodiment of the present application does not specifically limit this.
  • the method 200 further includes: obtaining the slip rate of the vehicle; determining a correction coefficient according to the slip rate; wherein, controlling the vehicle to perform energy operation according to the requested torque value and the first intervention torque value.
  • Recovery includes: determining a fifth intervention torque value based on the first intervention torque value and the correction coefficient; and controlling the vehicle to perform energy recovery based on the request torque value and the fifth intervention torque value.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the first intervention torque value to be 100N ⁇ m based on wheel acceleration and vehicle acceleration.
  • the VCU determines the correction coefficient to be 1.1 based on the current slip rate of the vehicle. Then the VCU can output the difference between the requested torque value and the product of the first intervention torque value and the correction coefficient (890N ⁇ m) to the motor for energy recovery.
  • the motor can perform energy recovery based on the difference between the requested torque value and the first intervention torque value.
  • the fifth intervention torque value may also be determined based on the current slip rate of the vehicle. Thereby, the vehicle is controlled to perform energy recovery according to the requested torque value, the first intervention torque value and the fifth intervention torque value.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the first intervention torque value to be 100N ⁇ m based on wheel acceleration and vehicle acceleration.
  • the VCU determines the fifth intervention torque value to be 300N ⁇ m based on the current slip rate of the vehicle.
  • the average value of the first intervention torque value and the fifth intervention torque value is 200 N ⁇ m.
  • the VCU can output the difference between the requested torque value and the average value (800N ⁇ m) to the motor for energy recovery.
  • the motor can recuperate energy based on the difference between the requested torque value and the average value.
  • a difference between the requested torque value and the minimum value between the first intervention torque value and the fifth intervention torque value may be output to the motor.
  • the motor can recover energy based on this difference.
  • the method 200 further includes: when the number of torque interventions when controlling the vehicle to perform energy recovery is greater than or equal to a preset number of times, controlling the vehicle to perform energy recovery according to the historical torque intervention value; or, when controlling the vehicle, When the duration of torque intervention during energy recovery is greater than or equal to the preset time, the vehicle is controlled to perform energy recovery based on the historical torque intervention value.
  • the number of torque interventions is greater than or equal to 3 times.
  • the requested torque value is 1000N ⁇ m and The intervention torque value is 200N ⁇ m
  • the motor can perform energy recovery based on the difference between the request torque value and the intervention torque value (800N ⁇ m); for another example, at time T 2 -T 3 , the request torque value is 800N ⁇ m.
  • the motor can perform energy recovery based on the difference between the request torque value and the intervention torque value (600N ⁇ m); for another example, at time T 3 -T 4 , the request torque value is 500N ⁇ m and the intervention torque value is 100N ⁇ m, then the motor can perform energy recovery based on the difference between the requested torque value and the intervention torque value (400N ⁇ m).
  • the vehicle After the vehicle has performed three torque interventions, it can use the average value of the torque applied by the motor in the first three times (for example, 600N ⁇ m) after the T 4 time to control the vehicle to perform energy recovery.
  • the vehicle when the vehicle is in the energy recovery state and is driving on a certain road section, and the torque intervention duration is greater than or equal to 30 seconds (second), the vehicle can perform energy recovery based on the average value of the torque used by the motor within 30 seconds.
  • the historical torque intervention value may also include intervention torque values determined while driving on other road sections before traveling on the first road section.
  • the historical torque intervention value may also include an intervention torque value determined the last time the vehicle was driven on the first road section.
  • the vehicle when the number or duration of torque intervention when controlling the vehicle to perform energy recovery meets the conditions, the vehicle can be controlled to perform energy recovery based on the historical torque intervention value. In this way, the vehicle's computing resources can be saved; at the same time, it can also prevent the vehicle from triggering ABS or DTC during subsequent driving.
  • the method 200 further includes: when controlling the vehicle to perform energy recovery, increasing the braking torque of the vehicle's braking system, and/or activating a wind resistance increasing device.
  • the wind resistance improving device includes but is not limited to spoilers, tail wings, etc.
  • increasing the braking torque of the vehicle's braking system includes: supplementing the hydraulic braking torque through the chassis hydraulic braking system.
  • the braking torque of the vehicle's braking system when performing torque intervention, can be increased and/or the wind resistance lifting device can be activated, which helps to avoid the vehicle's braking distance becoming longer due to continuous torque intervention, and has It helps to improve the safety of the vehicle; at the same time, it can also avoid giving the user the feeling of forward movement during torque intervention, which helps to improve the user's driving experience.
  • the user When controlling the vehicle for energy recovery, the user will feel that the vehicle's deceleration effect is reduced due to torque intervention.
  • the user when performing torque intervention, the user can be reminded that the vehicle's deceleration effect is reduced through instrument screen prompts and voice prompts.
  • Figure 3 shows a set of graphical user interfaces (graphical user interface, GUI) provided by the embodiment of the present application.
  • GUI graphical user interface
  • the above description takes the vehicle display screen and voice prompts as an example, and the embodiments of the present application are not limited thereto.
  • the user can also be prompted through changes in the color of the ambient light, vibration of the steering wheel, etc.
  • FIG. 4 shows a schematic flow chart of a torque adjustment method 400 provided by an embodiment of the present application.
  • the method 400 can be executed by a vehicle, or the method 400 can also be executed by the above-mentioned computing platform, or the method 400 can also be executed by a SOC in the computing platform, or the method 400 can also be executed by a processor in the computing platform Executed, or the method 400 can also be executed by a VCU, or the method 400 can also be executed by an MCU, or the method 400 can also be executed by a system composed of a VCU and an ESC, or the method 400 can also be executed by a VCU and an ESC.
  • the system composed of MCU executes.
  • the method 400 includes:
  • obtaining the torque value includes: obtaining the requested torque value when the vehicle is in an energy recovery state.
  • the above process of S410 can refer to the above process of S210, and will not be described again here.
  • S420 Determine the second intervention torque value according to the wheel speed fluctuation frequency of the vehicle.
  • the above process of determining the second intervention torque value based on the wheel speed fluctuation frequency may refer to the description in the above embodiment, and will not be described again here.
  • determining the second intervention torque value according to the wheel speed fluctuation frequency of the vehicle includes: determining the road surface type according to the wheel speed fluctuation frequency; and determining the second intervention torque value according to the road surface type.
  • S430 Control the vehicle to perform energy recovery according to the requested torque value and the second intervention torque value.
  • controlling the vehicle to perform energy recovery based on the requested torque value and the second intervention torque value includes: controlling the vehicle to perform energy recovery based on the difference between the requested torque value and the second intervention torque value. Recycle.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the second intervention torque value to be 200N ⁇ m based on the current wheel speed fluctuation frequency and the mapping relationship shown in Table 2 above. Then the VCU can output the difference between the requested torque value and the first intervention torque value (800N ⁇ m) to the motor used for energy recovery.
  • the motor can perform energy recovery based on the difference between the requested torque value and the second intervention torque value.
  • the wheel speed fluctuation frequency is different when the vehicle is traveling on a normal paved road and an abnormal paved road.
  • the frequency of wheel speed fluctuations can also be taken into account when performing torque intervention.
  • the road surface on which the vehicle is currently located is identified as a normal paved road or an abnormal paved road through the frequency of wheel speed fluctuations.
  • torque intervention is used to suppress wheel speed fluctuations, which can prevent the wheel slip rate from expanding and reduce the probability of triggering ABS or DTC.
  • it can also keep the vehicle in an energy recovery state, helping to improve the user's driving experience. .
  • the embodiment of the present application provides a torque adjustment method, which method includes: obtaining a requested torque value; determining a second intervention torque value based on the type of road surface on which the vehicle is located; and determining a second intervention torque value based on the requested torque value and the The second intervention torque value controls the vehicle to perform energy recovery.
  • the method before determining the second intervention torque value according to the type of road surface on which the vehicle is located, the method further includes: determining the type of road surface according to the wheel speed fluctuation frequency of the vehicle; or, according to the frequency of wheel speed fluctuations outside the vehicle cabin; Determine the type of road surface based on data collected by sensors; or obtain the type of road surface based on map information.
  • the vehicle stores a mapping relationship between road surface types and intervention torque values.
  • FIG. 5 shows a schematic flow chart of a torque adjustment method 500 provided by an embodiment of the present application.
  • the method 500 can be executed by a vehicle, or the method 500 can also be executed by the above-mentioned computing platform, or the method 500 can also be executed by a SOC in the computing platform, or the method 500 can also be executed by a processor in the computing platform Executed, or the method 500 can also be executed by a VCU, or the method 500 can also be executed by an MCU, or the method 500 can also be executed by a system composed of a VCU and an ESC, or the method 500 can also be executed by a VCU and an ESC. System execution composed of MCU. As shown in Figure 5, the method 500 includes:
  • obtaining the torque value includes: obtaining the requested torque value when the vehicle is in an energy recovery state.
  • the above process of S510 can refer to the above process of S210, and will not be described again here.
  • the above process of determining the fifth intervention torque value based on the slip rate of the vehicle may refer to the description in the above embodiment, and will not be described again here.
  • S530 Control the vehicle to perform energy recovery based on the requested torque value and the fifth intervention torque value.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current opening of the accelerator pedal and the current vehicle speed.
  • the VCU determines the fifth intervention torque value to be 300N ⁇ m based on the current slip rate and the mapping relationship shown in Table 5 above. Then the VCU can output the difference between the requested torque value and the first intervention torque value (700N ⁇ m) to the motor for energy recovery.
  • the motor can perform energy recovery based on the difference between the requested torque value and the fifth intervention torque value.
  • the method 500 includes: determining a correction coefficient based on the slip rate of the vehicle.
  • Table 6 shows another mapping relationship between slip rate and correction coefficient.
  • slip rate Correction factor [0,10%) 1 [10%, 15%) 0.7 [15%, 20%) 0.5 ... ...
  • the correction coefficient can be determined to be 0.7 according to the mapping relationship shown in Table 6. Then the vehicle can obtain the final intervention torque value (for example, 700N ⁇ m) based on the product of the requested torque value and the correction coefficient, so that the motor can perform energy recovery based on the intervention torque value.
  • mapping relationship between the slip rate and the intervention torque value shown in the above Table 6 is only schematic, and the embodiment of the present application does not specifically limit this.
  • the slip rate of the vehicle may be considered when performing torque intervention.
  • the slip rate can be used to determine the fifth intervention torque value, thereby controlling the vehicle to perform energy recovery based on the requested torque value and the fifth intervention torque value.
  • the wheel slip rate can be prevented from expanding and the probability of triggering ABS or DTC can be reduced.
  • the vehicle can also be kept in an energy recovery state, helping to improve the user's driving experience.
  • the VCU determines the requested torque value to be 1000N ⁇ m based on the current accelerator pedal opening and the current vehicle speed.
  • the VCU determines the second intervention torque value to be 200N ⁇ m based on the current wheel speed fluctuation frequency and the mapping relationship shown in Table 2 above.
  • the VCU determines the fifth intervention torque value to be 300N ⁇ m based on the current slip rate and the mapping relationship shown in Table 5 above.
  • the VCU can output the difference (750N ⁇ m) between the average value of the requested torque value, the second intervention torque value and the fifth intervention torque value to the motor for energy recovery.
  • the motor can recover energy based on this difference.
  • the VCU determines the requested torque value to be 1000 N ⁇ m based on the current accelerator pedal opening and the current vehicle speed.
  • the VCU determines the second intervention torque value to be 200N ⁇ m based on the current wheel speed fluctuation frequency and the mapping relationship shown in Table 2 above.
  • the VCU determines the correction coefficient to be 1.1 based on the current slip rate and the mapping relationship shown in Table 4 above. Then the VCU can output the difference between the product of the requested torque value, the second intervention torque value and the correction coefficient (780N ⁇ m) to the motor for energy recovery.
  • the motor can recover energy based on this difference.
  • FIG. 6 shows a schematic flowchart of a torque adjustment method 600 provided by an embodiment of the present application. This method can be executed by a system composed of VCU, MCU, ESC and motor.
  • the method 600 includes:
  • VCU obtains the requested torque value T0.
  • the requested torque T0 may be the above requested torque value.
  • the VCU may determine the requested torque value T0 based on the opening of the accelerator pedal of the current vehicle and the speed of the current vehicle.
  • VCU obtains the wheel information sent by ESC.
  • the wheel information includes the number of periodic fluctuations of the wheel speed.
  • the VCU determines the wheel speed fluctuation frequency based on the information of the wheel.
  • the VCU determines the intervention torque value T1 based on the wheel speed fluctuation frequency.
  • the above intervention torque value T1 may be the above-mentioned second intervention torque value.
  • the VCU can also determine the intervention magnitude based on the wheel speed fluctuation frequency, and then determine T1 based on the intervention magnitude and T0.
  • the intervention magnitude ranges from [0, 1).
  • the intervention torque value T1 may be T0 multiplied by the intervention magnitude.
  • Different road surface types are distinguished according to different wheel speed fluctuation frequencies, and the torque intervention level can be selected in real time.
  • the method 600 includes: the VCU determines the intervention torque value T1 according to the type of road surface the vehicle is currently on.
  • VCU can determine the type of road surface based on map information, or VCU can determine the type of road surface based on data collected by sensors outside the vehicle cabin, or VCU can determine the type of road surface based on the frequency of wheel speed fluctuations. .
  • VCU obtains the wheel acceleration and vehicle acceleration information sent by ESC.
  • VCU determines the intervention torque value T2 based on wheel acceleration and vehicle acceleration.
  • the above intervention torque value T2 may be the above-mentioned first intervention torque value.
  • ABS or DTC In the scenario of ABS or DTC being accidentally triggered, the wheel acceleration of the axis where the energy recovery is located is often greater than the acceleration of the entire vehicle. After the difference between wheel acceleration and vehicle acceleration exceeds a certain threshold, ABS or DTC will be triggered subsequently. Based on the difference, the torque intervention value is calculated, which can effectively prevent the triggering of ABS or DTC.
  • the above energy recovery shaft may be a shaft equipped with a drive motor and performs energy recovery.
  • the rear axle of some electric vehicles is equipped with a drive motor, and some electric vehicles are equipped with a drive motor on both the front axle and the rear axle.
  • VCU obtains the wheel speed and vehicle speed information sent by ESC.
  • VCU determines the current slip rate of the vehicle based on wheel speed and vehicle speed.
  • the VCU determines the correction coefficient a based on the slip rate.
  • ABS The triggering of ABS is closely related to the slip rate.
  • the slip rate is introduced to calculate the correction coefficient a and correct the torque intervention value. It not only prevents ABS from triggering, but also controls the vehicle to utilize the extreme slip rate to obtain maximum grip and effectively decelerate.
  • VCU controls the vehicle to perform energy recovery based on T0, T1, T2 and a.
  • the VCU controls the vehicle to perform energy recovery based on T0, T1, T2, and a, including: the VCU determines the energy recovery torque T3 based on T0, T1, T2, and a.
  • the VCU outputs T3 to the MCU, so that the MCU controls the motor to recover energy based on T3.
  • the calculation process of T0, T1, T2 and a in the above method 200 can be implemented in the VCU or in the MCU, which is not limited in the embodiment of the present application.
  • T3 T0-min(T1,T2) ⁇ a (1)
  • FIG. 7 shows a schematic block diagram of a torque adjustment device 700 provided by an embodiment of the present application.
  • the device 700 includes: an acquisition unit 710, used to obtain the requested torque value; a determination unit 720, used to determine the first intervention torque value according to the wheel acceleration and vehicle acceleration of the vehicle; the control unit 730, For controlling the vehicle to perform energy recovery according to the requested torque value and the first intervention torque value.
  • the obtaining unit 710 is also used to obtain the road surface type; the determining unit 720 is also used to determine the second intervention torque value according to the road surface type; wherein the control unit 730 is used to: according to the requested torque value, the first intervention torque value and the second intervention torque value to control the vehicle to perform energy recovery.
  • the obtaining unit 710 is used to obtain the wheel speed fluctuation frequency of the vehicle; and determine the road surface type according to the wheel speed fluctuation frequency.
  • the obtaining unit 710 is also used to obtain the wheel speed fluctuation frequency of the vehicle; the determining unit 720 is also used to determine the second intervention torque value according to the wheel speed fluctuation frequency.
  • the determining unit 720 is configured to: determine a third intervention torque value based on the first intervention torque value and the second intervention torque value; the control unit 730 is configured to determine a third intervention torque value based on the requested torque value and the third intervention torque value. Intervene the torque value to control the vehicle for energy recovery.
  • the determining unit 720 is configured to determine the lowest torque value among the first intervention torque value and the second intervention torque value as the third intervention torque value.
  • the obtaining unit 710 is also used to obtain the slip rate of the vehicle; the determining unit 720 is also used to determine a correction coefficient according to the slip rate; wherein the control unit 730 is used to: according to the slip rate
  • the third intervention torque value and the correction coefficient determine the fourth intervention torque value; according to the request torque value and the fourth intervention torque value, the vehicle is controlled to perform energy recovery.
  • the obtaining unit 710 is also used to obtain the slip rate of the vehicle; the determining unit 720 is also used to determine a correction coefficient according to the slip rate; wherein the control unit 730 is used to: according to the slip rate The first intervention torque value and the correction coefficient determine the fifth intervention torque value; based on the request torque value and the fifth intervention torque value, the vehicle is controlled to perform energy recovery.
  • control unit 730 is also configured to control the vehicle to perform energy recovery according to the historical torque intervention value when the number of torque interventions when controlling the vehicle to perform energy recovery is greater than or equal to the preset number of times; or, when controlling the vehicle to perform energy recovery, When the duration of torque intervention when the vehicle performs energy recovery is greater than or equal to the preset time, the vehicle is controlled to perform energy recovery based on the historical torque intervention value.
  • control unit 730 is also used to increase the braking torque of the vehicle's braking system and/or activate the wind resistance increasing device when controlling the vehicle to perform energy recovery.
  • the obtaining unit 710 is configured to determine the requested torque value according to at least one of the vehicle speed of the vehicle, the opening of the accelerator pedal of the vehicle, and the opening of the brake pedal of the vehicle.
  • the obtaining unit 710 is used to obtain the requested torque value when the vehicle is in the energy recovery state; the determining unit 720 is used to determine the second intervention torque value according to the wheel fluctuation frequency of the vehicle; the control unit 730 is used to The vehicle is controlled to perform energy recovery according to the requested torque value and the second intervention torque value.
  • the obtaining unit 710 is used to obtain the requested torque value when the vehicle is in the energy recovery state; the determining unit 720 is used to determine the fifth intervention torque value according to the slip rate of the vehicle; the control unit 730 is used to The vehicle is controlled to perform energy recovery according to the requested torque value and the fifth intervention torque value.
  • the acquisition unit 710 may be the computing platform in FIG. 1 or a processing circuit, processor or controller in the computing platform. Taking the acquisition unit 710 as the processor 151 in the computing platform as an example, the processor 151 can determine the requested torque value according to the opening and speed of the accelerator pedal of the current vehicle.
  • the determining unit 720 may be the computing platform in FIG. 1 or a processing circuit, processor or controller in the computing platform. Taking the determination unit 720 as the processor 152 in the computing platform as an example, the processor 152 can obtain the wheel acceleration and vehicle acceleration of the vehicle from the ESC, thereby determining the first intervention torque value based on the wheel acceleration and vehicle acceleration. Alternatively, the processor 152 may obtain wheel information from the ESC, thereby determining the wheel speed fluctuation frequency based on the wheel information. Therefore, the second intervention torque value can be determined based on the wheel speed fluctuation frequency. Alternatively, the processor 152 may obtain the current vehicle speed and wheel speed information of the vehicle from the ESC, thereby determining the slip rate of the vehicle linkage based on the vehicle speed and wheel speed. Thus, the correction coefficient or the fifth intervention torque value is determined based on the slip rate.
  • control unit 730 can be implemented by the computing platform in Figure 1 or a processing circuit, processor or controller in the computing platform.
  • the processor 153 can obtain the requested torque value from the processor 151 and the first intervention torque value from the processor 152, so that the requested torque value and The first intervention torque value controls the vehicle to perform energy recovery.
  • the processor 153 may output the difference between the requested torque value and the first intervention torque value to the motor, so that the motor can perform energy recovery based on the difference.
  • the above functions implemented by the acquisition unit 710, the function implemented by the determining unit 720, and the function implemented by the control unit 730 may be implemented by different processors, or part of the functions may be implemented by the same processor, or also All functions may be implemented by the same processor, which is not limited in the embodiments of the present application.
  • each unit in the above device is only a division of logical functions. In actual implementation, all or part of the units may be integrated into a physical entity or physically separated.
  • the units in the device can be implemented in the form of the processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods. Or realize the functions of each unit of the device, where the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor, and the memory is a memory within the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
  • the hardware circuit is an ASIC, which realizes the functions of some or all of the above units through the design of the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be implemented through PLD, taking FPGA as an example. It can include a large number of logic gate circuits, and the connection relationships between the logic gate circuits can be configured through configuration files to realize the functions of some or all of the above units. All units of the above device may be fully implemented by the processor calling software, or may be fully implemented by hardware circuits, or part of the units may be implemented by the processor calling software, and the remaining part may be implemented by hardware circuits.
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities, such as a CPU, a microprocessor, a GPU, or DSP, etc.; in another implementation, the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is a hardware circuit implemented by ASIC or PLD. For example, FPGA.
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as NPU, TPU, DPU, etc.
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
  • processors or processing circuits
  • each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a SOC.
  • the SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
  • Embodiments of the present application also provide a device, which includes a processing unit and a storage unit, where the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device performs the method performed in the above embodiments or step.
  • the above-mentioned processing unit may be the processor 151-15n shown in Figure 1.
  • An embodiment of the present application also provides a vehicle, which may include the above device 600, device 700 or device 800.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the above method.
  • Embodiments of the present application also provide a computer-readable medium.
  • the computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to perform the above method.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or power-on erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be implemented in this application.
  • the implementation of the examples does not constitute any limitations.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请实施例提供了一种扭矩调节方法、装置和车辆,该方法包括:获取请求扭矩值;根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值;根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收。本申请实施例可以应用于智能汽车或者电动汽车,通过在能量回收过程中进行扭矩干预,有助于避免车轮的滑移率扩大;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。

Description

一种扭矩调节方法、装置和车辆 技术领域
本申请实施例涉及智能驾驶领域,并且更具体地,涉及一种扭矩调节方法、装置和车辆。
背景技术
在车辆处于能量回收状态下通过非正常铺装路面时,驱动轮可能处于脱离地面或者滑转状态。这时驱动轮受到回收扭矩作用,会导致轮速和速度偏差扩大,导致滑移率突破某个阈值,从而触发防抱死制动系统(antilock brake system,ABS)或者动态牵引力控制(dynamic tractive control,DTC)。在触发ABS或者DTC时,车辆将退出能量回收状态,导致驾驶员在一段时间内无法使用能量回收,从而导致用户的体验不好。
发明内容
本申请实施例提供一种扭矩调节方法、装置和车辆,在车辆进行能量回收过程中通过扭矩干预,有助于避免车轮的滑移率扩大,从而降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
本申请中的车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。
第一方面,提供了一种扭矩调节方法,该方法包括:获取请求扭矩值;根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值;根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收。
本申请实施例中,通过请求扭矩以及由车轮加速度和整车加速度确定的干预扭矩,控制车辆进行能量回收,有助于避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
在一些可能的实现方式中,该获取请求扭矩值,包括:在该车辆处于能量回收状态时,获取该请求扭矩值。
在一些可能的实现方式中,根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值,包括:根据该车辆的车轮加速度和整车加速度的差值,确定第一干预扭矩值。
本申请实施例中,通过车轮加速度和整车加速度的差值可以获取车轮状态,从而可以判断车辆的滑移率是否有继续扩大的趋势。
在一些可能的实现方式中,车辆中保存有车轮加速度和整车加速度的差值与干预扭矩值的映射关系。
在一些可能的实现方式中,车轮加速度和整车加速度的差值与干预扭矩值之间为函数 关系。
在一些可能的实现方式中,该根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据所述请求扭矩值和所述第一干预扭矩值的差值,控制车辆进行能量回收。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取路面类型;根据该路面类型,确定第二干预扭矩值;其中,该根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
本申请实施例中,车辆可以根据路面类型进行扭矩干预,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
以上路面类型可以为车辆当前所处的路面的类型。
在一些可能的实现方式中,车辆中保存有路面类型和干预扭矩值的映射关系。
在一些可能的实现方式中,该获取路面类型,包括:根据该车辆座舱外的传感器采集的数据,确定该路面类型。
在一些可能的实现方式中,该获取路面类型,包括:根据地图信息获取该路面类型。
结合第一方面,在第一方面的某些实现方式中,该获取路面类型,包括:获取该车辆的轮速波动频率;根据该轮速波动频率,确定该路面类型。
本申请实施例中,由于车辆在正常铺装路面和非正常铺装路面上行驶时的轮速波动频率不同。在进行扭矩干预时还可以考虑轮速波动频率。从而通过轮速波动频率识别车辆当前所处的路面为正常铺装路面或者非正常铺装路面。这样,通过扭矩干预来抑制轮速波动,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
在一些可能的实现方式中,车辆中保存有轮速波动频率、路面类型和干预扭矩值的映射关系。
在一些可能的实现方式中,该方法还包括:获取该车辆的轮速波动频率;根据该轮速波动频率,确定该第二干预扭矩值。
以上扭矩干预也可以理解为车辆在进行能量回收时向电机输出的扭矩值的绝对值小于由车辆当前的行驶参数(例如,加速踏板的开度、制动踏板的开度以及车速中的一个或者多个)确定的请求扭矩值的绝对值。
在一些可能的实现方式中,车辆中保存有轮速波动频率和干预扭矩值的映射关系。
在一些可能的实现方式中,轮速波动频率和干预扭矩值为函数关系。
在一些可能的实现方式中,该根据该轮速波动频率,确定第二干预扭矩值,包括:根据该轮速波动频率,确定车辆当前所处路面的类型;根据车辆当前所处路面的类型,确定该第二干预扭矩值。
在一些可能的实现方式中,车辆中保存由路面的类型与干预扭矩值的映射关系。
结合第一方面,在第一方面的某些实现方式中,该根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收,包括:根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值;根据该请求扭矩值和该第三干预扭矩值,控制该 车辆进行能量回收。
本申请实施例中,车辆可以根据第一干预扭矩值和第二干预扭矩值确定第三干预扭矩值,进而根据请求扭矩值和第三干预扭矩值,控制车辆进行能量回收。这样,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值,包括:将该第一干预扭矩值和该第二干预扭矩值中最低的扭矩值确定为该第三干预扭矩值。
本申请实施例中,可以将第一干预扭矩值和第二干预扭矩值中最低的扭矩值确定为第三干预扭矩值。这样,在避免因为车轮的滑移率扩大而触发ABS或者DTC的同时,还可以提升车辆进行能量回收时的效率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取该车辆的滑移率;根据该滑移率,确定修正系数;其中,该根据该请求扭矩值和该第三干预扭矩值,控制该车辆进行能量回收,包括:根据该第三干预扭矩值和该修正系数,确定第四干预扭矩值;根据该请求扭矩值和该第四干预扭矩值,控制该车辆进行能量回收。
本申请实施例中,在进行扭矩干预时还可以考虑车辆的滑移率。通过滑移率计算得到的修正系数对第三干预扭矩值进行修正。这样,综合考虑车轮加速度、整车加速度、轮速波动频率和滑移率等因素进行扭矩干预,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
在一些可能的实现方式中,滑移率越大,该修正系数越大。
在一些可能的实现方式中,车辆中保存有滑移率和修正系数的映射关系。
在一些可能的实现方式中,该滑移率和修正系数为函数关系。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取该车辆的滑移率;根据该滑移率,确定修正系数;其中,该根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据该第一干预扭矩值和该修正系数,确定第五干预扭矩值;根据该请求扭矩值和该第五干预扭矩值,控制该车辆进行能量回收。
本申请实施例中,在进行扭矩干预时还可以考虑车辆的滑移率。通过滑移率计算得到的修正系数对第一干预扭矩值进行修正。这样,综合考虑车轮加速度、整车加速度和滑移率等因素进行扭矩干预,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在控制该车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制该车辆进行能量回收;或者,在控制该车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制该车辆进行能量回收。
本申请实施例中,在控制车辆进行能量回收时扭矩干预的次数或者时长满足条件时,可以根据历史扭矩干预值,控制车辆进行能量回收。这样,可以节省车辆的计算资源;同时,也可以降低车辆在后续的行驶过程中触发ABS或者DTC的概率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在控制该车辆进行能 量回收时,增加该车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
本申请实施例中,在进行扭矩干预时可以增加车辆的制动系统的制动力矩和/或启动风阻提升装置,有助于避免因为连续的扭矩干预而导致车辆的制动距离变长,有助于提升车辆的安全性;同时,也可以避免在扭矩干预时给用户带来前窜的感觉,有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该获取请求扭矩值,包括:根据该车辆的车速、该车辆的加速踏板的开度和该车辆的制动踏板的开度中的至少一项,确定该请求扭矩值。
第二方面,提供了一种扭矩调节装置,该装置包括:获取单元,用于获取请求扭矩值;确定单元,用于根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值;控制单元,用于根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取路面类型;该确定单元,还用于根据该路面类型,确定第二干预扭矩值;其中,该控制单元,用于:根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取该车辆的轮速波动频率;该确定单元,还用于根据该轮速波动频率,确定该路面类型。
结合第二方面,在第二方面的某些实现方式中,该确定单元,用于:根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值;该控制单元,用于根据该请求扭矩值和该第三干预扭矩值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该确定单元,用于:将该第一干预扭矩值和该第二干预扭矩值中最低的扭矩值确定为该第三干预扭矩值。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取该车辆的滑移率;该确定单元,还用于根据该滑移率,确定修正系数;其中,该控制单元,用于:根据该第三干预扭矩值和该修正系数,确定第四干预扭矩值;根据该请求扭矩值和该第四干预扭矩值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取该车辆的滑移率;该确定单元,还用于根据该滑移率,确定修正系数;其中,该控制单元,用于:根据该第一干预扭矩值和该修正系数,确定第五干预扭矩值;根据该请求扭矩值和该第五干预扭矩值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该控制单元,还用于在控制该车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制该车辆进行能量回收;或者,在控制该车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制该车辆进行能量回收。
结合第二方面,在第二方面的某些实现方式中,该控制单元,还用于在控制该车辆进行能量回收时,增加该车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
结合第二方面,在第二方面的某些实现方式中,该获取单元,用于:根据该车辆的车速、该车辆的加速踏板的开度和该车辆的制动踏板的开度中的至少一项,确定该请求扭矩值。
第三方面,提供了一种扭矩调节装置,该装置包括处理单元和存储单元,其中存储单 元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行第一方面中任一种可能的方法。
第四方面,提供了一种扭矩调节系统,该系统包括电机和上述第二方面或者第三方面中任一项所述的扭矩调节装置。
第五方面,提供了一种车辆,该车辆包括上述第二方面或者第三方面中任一项所述的扭矩调节装置,或者,包括上述第四方面所述的扭矩调节系统。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面中任一种可能的方法。
结合第八方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第八方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
附图说明
图1是本申请实施例提供的车辆的一个功能框图示意。
图2是本申请实施例提供的扭矩调节方法的示意性流程图。
图3是本申请实施例提供的一组图形用户界面GUI。
图4是本申请实施例提供的扭矩调节方法的另一示意性流程图。
图5是本申请实施例提供的扭矩调节方法的另一示意性流程图。
图6是本申请实施例提供的扭矩调节方法的另一示意性流程图。
图7是本申请实施例提供的扭矩调节装置的示意性框图。
具体实施方式
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限 制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如前所述,在车辆处于能量回收状态下通过非正常铺装路面时,驱动轮可能处于脱离地面或者滑转状态。这时驱动轮受到回收扭矩作用,会导致轮速和速度偏差扩大,导致滑移率突破某个阈值,从而触发ABS或者DTC。在触发ABS或者DTC时,车辆将退出能量回收状态,导致驾驶员在一段时间内无法使用能量回收,从而导致用户的体验不好。
本申请实施例提供一种扭矩调节方法、装置和运载工具,通过进行扭矩干预,控制车辆进行能量回收,有助于避免车轮的滑移率扩大,从而降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例提供的车辆100的一个功能框图示意。车辆100可以包括感知系统120、显示装置130和计算平台150,其中,感知系统120可以包括感测关于车辆100周边的环境的信息的一种或多种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统。感知系统120还可以包括惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达以及摄像装置中的一种或者多种。
车辆100的部分或所有功能可以由计算平台150控制。计算平台150可包括一个或多个处理器,例如处理器151至15n(n为正整数),处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(field programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,处理器还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。此外,计算平台150还可以包括存储器,存储器用于存储指令,处理器151至15n中的部分或全部处理器可以调用存储器中的指令,以实现相应的功能。
座舱内的显示装置130主要分为两类,第一类是车载显示屏;第二类是投影显示屏,例如HUD。车载显示屏是一种物理显示屏,是车载信息娱乐系统的重要组成部分,座舱内可以设置有多块显示屏,如数字仪表显示屏,中控屏,副驾驶位上的乘客(也称为前排乘客)面前的显示屏,左侧后排乘客面前的显示屏以及右侧后排乘客面前的显示屏,甚至是车窗也可以作为显示屏进行显示。抬头显示,也称平视显示系统。主要用于在驾驶员前方的显示设备(例如挡风玻璃)上显示例如时速、导航等驾驶信息。以降低驾驶员视线转移时间,避免因驾驶员视线转移而导致的瞳孔变化,提升行驶安全性和舒适性。HUD例如包括组合型抬头显示(combiner-HUD,C-HUD)系统、风挡型抬头显示(windshield-HUD,W-HUD)系统、增强现实型抬头显示系统(augmented reality HUD,AR-HUD)。HUD 也可以随着技术演进出现其他类型的系统,本申请对此不作限定。
图2示出了本申请实施例提供的一种扭矩调节方法200的示意性流程图。该方法200可以由车辆执行,或者,该方法200也可以有上述计算平台执行,或者,该方法200还可以由计算平台中的片上系统(system-on-a-chip,SoC)执行,或者,该方法200还可以由计算平台中的处理器执行,或者,该方法200还可以由整车控制器(vehicle control unit,VCU)执行,或者,该方法200还可以由电机控制器(motor control unit,MCU)执行,或者,该方法200还可以由整车控制器和车身稳定控制系统(electronic stability control,ESC)组成的系统执行,或者,该方法200还可以由VCU和MCU组成的系统执行。如图2所示,该方法200包括:
S210,获取请求扭矩值。
一种可能的实施方式,在车辆处于能量回收状态时,获取请求扭矩值。车辆处于能量回收状态可以理解为车辆的驱动电机正处于发电状态,或者,驱动电机正在将机械能转换为电能。
车辆处于能量回收状态也可以理解为车辆确定能量回收功能开启。
例如,车辆可以默认能量回收功能是开启的。在检测到用户通过车载显示屏上控件关闭能量回收功能的操作时,可以关闭能量回收功能。在关闭能量回收功能后,车辆处于非能量回收状态。
又例如,车辆的方向盘上包括能量回收功能的按键。在检测到用户长按该按键的操作时,车辆可以处于能量回收状态。
一个实施例中,该获取请求扭矩值,包括:根据该车辆的车速、该车辆的加速踏板的开度和该车辆的制动踏板的开度中的至少一项,确定该请求扭矩值。
示例性的,车辆可以根据当前加速踏板的开度以及当前的车速,确定当前能量回收请求扭矩值。
可选地,车辆中可以保存有加速踏板的开度、车速以及能量回收请求扭矩值之间的映射关系。车辆可以根据当前加速踏板的开度、当前的车速以及该映射关系,确定该请求扭矩值。
S220,根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值。
一个实施例中,根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值,包括:根据该车辆的车轮加速度和整车加速度的差值,确定第一干预扭矩值。
一个实施例中,根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值,包括:根据该车辆的车轮加速度和整车加速度的差值以及车轮加速度和整车加速度的差值与干预扭矩值的映射关系,确定该第一干预扭矩值。
示例性的,表1示出了一种车轮加速度和整车加速度的差值与干预扭矩值的映射关系。
表1
车轮加速度和整车加速度的差值 干预扭矩值
[0,1m/s 2) 0
[1m/s 2,2m/s 2) 请求扭矩值×10%
[2m/s 2,3m/s 2) 请求扭矩值×20%
示例性的,若车轮加速度和整车加速度之间的差值为1.5m/s 2,则可以确定第一干预扭矩值为请求扭矩值乘以10%。如请求扭矩值为1000N·m,那么第一干预扭矩值为100N·m。
上述表1所示的车轮加速度和整车加速度的差值与干预扭矩值的映射关系仅仅是示意性的,本申请实施例对此并不作具体限定。
一个实施例中,车轮加速度和整车加速度的差值与干预扭矩值之间还可以为函数关系。车辆可以根据车轮加速度和整车加速度的差值与该函数关系,确定第一干预扭矩值。
S230,根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收。
一个实施例中,根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据该请求扭矩值和该第一干预扭矩值的差值,控制该车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据车轮加速度和整车加速度确定第一干预扭矩值为100N·m。那么VCU可以向用于能量回收的电机输出请求扭矩值和第一干预扭矩值的差值(900N·m)。电机可以根据该差值,进行能量回收。
本申请实施例中,车辆在处于能量回收状态时进行扭矩干预可以理解为车辆在进行能量回收时向电机输出的扭矩值的绝对值小于根据车辆当前的行使参数(例如,加速踏板的开度、制动踏板的开度以及车速中的一个或者多个)确定的请求扭矩值的绝对值。
一个实施例中,该方法200还包括:获取该车辆的轮速波动频率;根据该轮速波动频率,确定第二干预扭矩值;其中,该根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
一个实施例中,根据该轮速波动频率,确定第二干预扭矩值,包括:根据该轮速波动频率和轮速波动频率与干预扭矩值之间的映射关系,确定第二干预扭矩值。
示例性的,表2示出了一种轮速波动频率与干预扭矩值之间的映射关系。
表2
轮速波动频率 干预扭矩值
[10Hz,14Hz) 0
[6Hz,10Hz) 请求扭矩值×20%
[2Hz,6Hz) 请求扭矩值×30%
[0,2Hz] 请求扭矩值×40%
例如,在车辆当前的轮速波动频率为7Hz时,可以根据表2所示的映射关系确定第二干预扭矩值为请求扭矩值乘以20%。如请求扭矩值为1000N·m,那么第二干预扭矩值为200N·m。
上述表2所示的轮速波动频率与干预扭矩值的对应关系仅仅是示意性的,本申请实施例对此并不作具体限定。
一个实施例中,该轮速波动频率和该干预扭矩值之间也可以为函数关系。
一个实施例中,根据该轮速波动频率,确定第二干预扭矩值,包括:根据该轮速波动 频率,确定车辆当前所处路面的类型;根据车辆当前所处路面的类型,确定该第二干预扭矩值。
示例性的,表3示出了一种轮速波动频率、路面的类型与干预扭矩值之间的映射关系。
表3
轮速波动频率 路面的类型 干预扭矩值
[10Hz,14Hz) 正常铺装路面 0
[7Hz,8Hz) 颠簸路面 请求扭矩值×20%
[4Hz,6Hz) 湿滑路面 请求扭矩值×30%
例如,在车辆当前的轮速波动频率为7.5Hz时,可以根据表3所示的映射关系可以车辆当前处于颠簸路面。进而根据表3所示的映射关系可以确定第二干预扭矩值为请求扭矩值乘以20%。如请求扭矩值为1000N·m,那么第二干预扭矩值为200N·m。
上述表3所示的轮速波动频率、路面的类型与干预扭矩值之间的映射关系仅仅是示意性的,本申请实施例对此并不作具体限定。
以上介绍了通过轮速波动频率确定路面的类型,进而通过路面的类型确定干预扭矩值的过程,本申请实施例并不限于此。示例性的,还可以根据车辆座舱外的传感器(例如,摄像头)采集的数据确定当前路面的类型,从而根据路面的类型确定干预扭矩值。一个实施例中,还可以根据地图信息获得当前路面的类型,从而根据路面的类型确定干预扭矩值。
一个实施例中,该根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收,包括:根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值;根据该请求扭矩值和该第三干预扭矩值,控制该车辆进行能量回收。
一个实施例中,该第三干预扭矩值为第一干预扭矩值和第二干预扭矩值的均值。
示例性的,该第一干预扭矩值为100N·m,该第二干预扭矩值为200N·m,那么该第三干预扭矩值为150N·m。
一个实施例中,该第三干预扭矩值为对该第一干预扭矩值和该第二干预扭矩值进行加权平均后的扭矩值。
示例性的,根据第一干预扭矩值和第二干预扭矩值进行加权平均得到第三干预扭矩值的公式可以为:
第三干预扭矩值=第一干预扭矩值×第一加权系数+第二干预扭矩值×第二加权系数
其中,第一加权系数和第二加权系数的和为1。
一个实施例中,该第一加权系数大于该第二加权系数。例如,该第一干预扭矩值为100N·m,该第二干预扭矩值为200N·m,第一加权系数为0.6,第二加权系数为0.4,那么该第三干预扭矩值为140N·m。
一个实施例中,该根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值,包括:将该第一干预扭矩值和该第二干预扭矩值中最低的扭矩值确定为该第三干预扭矩值。
示例性的,该第一干预扭矩值为100N·m,该第二干预扭矩值为200N·m,那么该第三干预扭矩值为100N·m。
一个实施例中,该方法200还包括:获取该车辆的滑移率;根据该滑移率,确定修正 系数;其中,该根据该请求扭矩值和该第三干预扭矩值,控制该车辆进行能量回收,包括:根据该第三干预扭矩值和该修正系数,确定第四干预扭矩值;根据该请求扭矩值和该第四干预扭矩值,控制该车辆进行能量回收。
一个实施例中,根据该滑移率,确定修正系数,包括:根据该滑移率以及滑移率与修正系数之间的映射关系,确定该修正系数。
示例性的,表4示出了一种滑移率和修正系数之间的映射关系。
表4
滑移率 修正系数
[0,10%) 0
[10%,15%) 1.1
[15%,20%) 1.5
例如,在车辆当前的滑移率为12%时,可以根据表4所示的映射关系确定修正系数为1.1。
上述表4所示的滑移率和修正系数之间的映射关系仅仅是示意性的,本申请实施例对此并不作具体限定。
一个实施例中,该滑移率和修正系数之间还可以为函数关系。
一个实施例中,该第四干预扭矩值为第三干预扭矩值乘以该修正系数。例如,该修正系数为1.1且该第三干预扭矩值为100N·m,那么该第四干预扭矩值为110N·m。
一个实施例中,根据该请求扭矩值和该第四干预扭矩值,控制该车辆进行能量回收,包括:根据该请求扭矩值和该第四干预扭矩值之间的差值,控制车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据车轮加速度和整车加速度确定第一干预扭矩值为100N·m。VCU根据轮速波动频率,确定第二干预扭矩值为200N·m。第三干预扭矩值可以为第一干预扭矩值和第二干预扭矩值之间的最小值。VCU根据车辆当前的滑移率,确定修正系数为1.1。VCU可以根据该修正系数和该第三干预扭矩值,确定第四干预扭矩值(例如,110N·m)。那么VCU可以向用于能量回收的电机输出请求扭矩值和第四干预扭矩值的差值(890N·m)。电机可以根据该差值,进行能量回收。一个实施例中,上述方法还可以由电机控制器或其他控制器执行。
以上以通过滑移率确定修正系数为例进行说明,本申请实施例并不限于此。例如,还可以根据车辆当前的滑移率,确定第五干预扭矩值。
一个实施例中,根据车辆当前的滑移率,确定第五干预扭矩值,包括:根据车辆当前的滑移率和滑移率与干预扭矩值之间的映射关系,确定该第五干预扭矩值。
示例性的,表5示出了一种滑移率与干预扭矩值之间的映射关系。
表5
滑移率 干预扭矩值
[0,10%) 0
[10%,15%) 请求扭矩值×30%
[15%,20%) 请求扭矩值×50%
例如,在车辆当前的滑移率为12%且请求扭矩值为1000N·m时,可以根据表5所示的映射关系确定该第五干预扭矩值为300N·m。
一个实施例中,可以根据该请求扭矩值、第一干预扭矩值、该第二干预扭矩值和该第五干预扭矩值,控制车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据车轮加速度和整车加速度确定第一干预扭矩值为100N·m。VCU根据轮速波动频率,确定第二干预扭矩值为200N·m。VCU根据车辆当前的滑移率,确定第五干预扭矩值为300N·m。则VCU可以向电机输出请求扭矩值与第一干预扭矩值、第二干预扭矩值和第五干预扭矩值的平均值(200N·m)之间的差值(800N·m),从而电机可以根据该差值,进行能量回收。
或者,也可以通过加权平均的方式计算向电机输出的扭矩。例如,第一干预扭矩值的加权系数为0.3,该第二干预扭矩值的加权系数为0.5,该第五干预扭矩值的加权系数为0.2。VCU可以向电机输出请求扭矩值与第一干预扭矩值、第二干预扭矩值和第五干预扭矩值的加权平均值(190N·m)之间的差值(810N·m),从而电机可以根据该差值控制车辆进行能量回收。
上述表5所示的滑移率和干预扭矩值之间的映射关系仅仅是示意性的,本申请实施例对此并不作具体限定。
一个实施例中,该方法200还包括:获取该车辆的滑移率;根据该滑移率,确定修正系数;其中,该根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收,包括:根据该第一干预扭矩值和该修正系数,确定第五干预扭矩值;根据该请求扭矩值和该第五干预扭矩值,控制该车辆进行能量回收。
以上通过滑移率确定修正系数的过程可以参考上述实施例中的描述,此处不再赘述。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据车轮加速度和整车加速度确定第一干预扭矩值为100N·m。VCU根据车辆当前的滑移率确定修正系数为1.1。那么VCU可以向用于能量回收的电机输出请求扭矩值和第一干预扭矩值与该修正系数乘积的差值(890N·m)。电机可以根据该请求扭矩值和第一干预扭矩值的差值,进行能量回收。
以上是以根据滑移率确定修正系数为例进行说明的,本申请实施例并不限于此。例如,还可以根据当前车辆的滑移率确定第五干预扭矩值。从而根据请求扭矩值、第一干预扭矩值和第五干预扭矩值,控制车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据车轮加速度和整车加速度确定第一干预扭矩值为100N·m。VCU根据车辆当前的滑移率确定第五干预扭矩值为300N·m。该第一干预扭矩值和该第五干预扭矩值的平均值为200N·m。那么VCU可以向用于能量回收的电机输出请求扭矩值与该平均值之间的差值(800N·m)。电机可以根据该请求扭矩值和该平均值之间的差值,进行能量回收。
或者,可以向电机输出请求扭矩值与第一干预扭矩值和该第五干预扭矩值之间的最小值之间的差值(例如,900N·m)。电机可以根据该差值,进行能量回收。
一个实施例中,该方法200还包括:在控制该车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制该车辆进行能量回收;或者,在控制该车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制该车辆进行能量回收。
示例性的,车辆处于能量回收状态且在某个路段上行驶的过程中,进行扭矩干预的次数大于或者等于3次,例如,在T 1-T 2时刻中,请求扭矩值为1000N·m且干预扭矩值为200N·m,则电机可以根据请求扭矩值和干预扭矩值的差值(800N·m),进行能量回收;又例如,在T 2-T 3时刻中,请求扭矩值为800N·m且干预扭矩值为200N·m,则电机可以根据请求扭矩值和干预扭矩值的差值(600N·m),进行能量回收;又例如,在T 3-T 4时刻中,请求扭矩值为500N·m且干预扭矩值为100N·m,则电机可以根据请求扭矩值和干预扭矩值的差值(400N·m),进行能量回收。车辆在进行了3次扭矩干预后,可以在T 4时刻之后,采用前3次电机采用的扭矩的平均值(例如,600N·m),控制车辆进行能量回收。
示例性的,车辆处于能量回收状态且在某个路段上行驶的过程中,扭矩干预的时长大于或者等于30秒(second)时车辆可以根据30s内电机采用的扭矩的平均值,进行能量回收。
一个实施例中,该历史扭矩干预值还可以包括在该第一路段上行驶之前,在其他路段上行驶时确定的干预扭矩值。或者,该历史扭矩干预值还可以包括上一次在该第一路段上行驶时确定的干预扭矩值。
本申请实施例中,在控制车辆进行能量回收时扭矩干预的次数或者时长满足条件时,可以根据历史扭矩干预值,控制车辆进行能量回收。这样,可以节省车辆的计算资源;同时,也可以防止车辆在后续的行驶过程中触发ABS或者DTC。
一个实施例中,该方法200还包括:在控制该车辆进行能量回收时,增加该车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
示例性的,该风阻提升装置包括但不限于扰流板、尾翼等。
示例性的,增加该车辆的制动系统的制动力矩,包括:通过底盘液压制动系统补充液压制动力矩。
本申请实施例中,在进行扭矩干预时可以增加车辆的制动系统的制动力矩和/或启动风阻提升装置,有助于避免因为连续的扭矩干预而导致车辆的制动距离变长,有助于提升车辆的安全性;同时,也可以避免在扭矩干预时给用户带来前窜的感觉,有助于提升用户的驾乘体验。
以上在控制车辆进行能量回收时,由于进行了扭矩干预,导致用户会感觉到车辆的减速效果下降。本申请实施例中,还可以在进行扭矩干预时,通过仪表屏提示以及语音提示的方式,提示用户车辆的减速效果下降。
图3示出了本申请实施例提供的一组图形用户界面(graphical user interface,GUI)。在车辆处于能量回收状态且车辆正在进行扭矩干预时,通过仪表屏显示提示信息“车辆处于能量回收状态且车辆正在进行扭矩干预,减速效果下降,请注意跟车距离”。同时,还可以通过语音提示用户“请注意跟车距离”。
以上是以车载显示屏和语音提示为例进行说明的,本申请实施例并不限于此。例如, 还可以通过氛围灯颜色的变化、方向盘震动等方式提示用户。
图4示出了本申请实施例提供的一种扭矩调节方法400的示意性流程图。该方法400可以由车辆执行,或者,该方法400也可以有上述计算平台执行,或者,该方法400还可以由计算平台中的SOC执行,或者,该方法400还可以由计算平台中的处理器执行,或者,该方法400还可以由VCU执行,或者,该方法400还可以由MCU执行,或者,该方法400还可以由VCU和ESC组成的系统执行,或者,该方法400还可以由VCU和MCU组成的系统执行。如图4所示,该方法400包括:
S410,获取请求扭矩值。
一个实施例中,该获取扭矩值,包括:在车辆处于能量回收状态时,获取请求扭矩值。
以上S410的过程可以参考上述S210的过程,此处不再赘述。
S420,根据所述车辆的轮速波动频率,确定第二干预扭矩值。
以上通过轮速波动频率,确定第二干预扭矩值的过程可以参考上述实施例中的描述,此处不再赘述。
一个实施例中,该根据所述车辆的轮速波动频率,确定第二干预扭矩值,包括:根据该轮速波动频率,确定路面类型;根据该路面类型,确定该第二干预扭矩值。
S430,根据该请求扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
一个实施例中,根据该请求扭矩值和该第二干预扭矩值,控制该车辆进行能量回收,包括:根据该请求扭矩值和该第二干预扭矩值之间的差值,控制该车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据当前轮速波动频率和上述表2所示的映射关系确定第二干预扭矩值为200N·m。那么VCU可以向用于能量回收的电机输出请求扭矩值和第一干预扭矩值的差值(800N·m)。电机可以根据该请求扭矩值和第二干预扭矩值的差值,进行能量回收。
本申请实施例中,由于车辆在正常铺装路面和非正常铺装路面上行驶时的轮速波动频率不同。在进行扭矩干预时还可以考虑轮速波动频率。从而通过轮速波动频率识别车辆当前所处的路面为正常铺装路面或者非正常铺装路面。这样,通过扭矩干预来抑制轮速波动,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
一个实施例中,本申请实施例提供的一种扭矩调节方法,该方法包括:获取请求扭矩值;根据该车辆所处的路面的类型,确定第二干预扭矩值;根据该请求扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
一个实施例中,根据该车辆所处的路面的类型,确定第二干预扭矩值之前,该方法还包括:根据该车辆的轮速波动频率,确定该路面的类型;或者,根据该车辆座舱外的传感器采集的数据,确定该路面的类型;或者,根据地图信息获得该路面的类型。
一个实施例中,该车辆中保存有路面的类型与干预扭矩值的映射关系。
图5示出了本申请实施例提供的一种扭矩调节方法500的示意性流程图。该方法500可以由车辆执行,或者,该方法500也可以有上述计算平台执行,或者,该方法500还可以由计算平台中的SOC执行,或者,该方法500还可以由计算平台中的处理器执行,或者,该方法500还可以由VCU执行,或者,该方法500还可以由MCU执行,或者,该方法500还可以由VCU和ESC组成的系统执行,或者,该方法500还可以由VCU和MCU 组成的系统执行。如图5所示,该方法500包括:
S510,获取请求扭矩值。
一个实施例中,该获取扭矩值,包括:在车辆处于能量回收状态时,获取请求扭矩值。
以上S510的过程可以参考上述S210的过程,此处不再赘述。
S520,根据该车辆的滑移率,确定第五干预扭矩值。
以上根据该车辆的滑移率,确定第五干预扭矩值的过程可以参考上述实施例中的描述,此处不再赘述。
S530,根据该请求扭矩值和该第五干预扭矩值,控制车辆进行能量回收。
示例性的,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据当前滑移率和上述表5所示的映射关系确定第五干预扭矩值为300N·m。那么VCU可以向用于能量回收的电机输出请求扭矩值和第一干预扭矩值的差值(700N·m)。电机可以根据该请求扭矩值和第五干预扭矩值的差值,进行能量回收。
一个实施例中,该方法500包括:根据该车辆的滑移率,确定修正系数。
示例性的,表6示出了另一种滑移率与修正系数之间的映射关系。
表6
滑移率 修正系数
[0,10%) 1
[10%,15%) 0.7
[15%,20%) 0.5
示例性的,在车辆的滑移率为12%,那么根据表6所示的映射关系可以确定修正系数为0.7。那么车辆可以根据请求扭矩值和该修正系数的乘积得到最终的干预扭矩值(例如,700N·m),从而电机可以根据该干预扭矩值进行能量回收。
上述表6所示的滑移率和干预扭矩值之间的映射关系仅仅是示意性的,本申请实施例对此并不作具体限定。
本申请实施例中,在进行扭矩干预时可以考虑车辆的滑移率。这样,通过滑移率可以确定第五干预扭矩值,从而根据请求扭矩值和第五干预扭矩值,控制车辆进行能量回收。这样,可以避免车轮的滑移率扩大,降低触发ABS或者DTC的概率;同时,也可以使得车辆一直保持在能量回收状态,有助于提升用户的驾乘体验。
以上各个实施例之间可以相互结合。示例性的,方法400和方法500之间可以相互结合。例如,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据当前轮速波动频率和上述表2所示的映射关系确定第二干预扭矩值为200N·m。VCU根据当前滑移率率和上述表5所示的映射关系确定第五干预扭矩值为300N·m。那么VCU可以向用于能量回收的电机输出请求扭矩值、第二干预扭矩值和第五干预扭矩值的平均值之间的差值(750N·m)。电机可以根据该差值,进行能量回收。
又例如,VCU根据当前加速踏板的开度和车辆当前的车速确定请求扭矩值为1000N·m。VCU根据当前轮速波动频率和上述表2所示的映射关系确定第二干预扭矩值为200N·m。VCU根据当前滑移率率和上述表4所示的映射关系确定修正系数为1.1。那么VCU可以向用于能量回收的电机输出请求扭矩值、第二干预扭矩值和修正系数的乘积之间的差 值(780N·m)。电机可以根据该差值,进行能量回收。
图6示出了本申请实施例提供的一种扭矩调节方法600的示意性流程图。该方法可以VCU、MCU、ESC和电机组成的系统执行。该方法600包括:
S601,VCU获取请求扭矩值T0。
该请求扭矩T0可以为上述请求扭矩值。
示例性的,VCU可以根据当前车辆的加速踏板的开度以及当前车辆的速度,确定该请求扭矩值T0。
S602,VCU获取ESC发送的车轮的信息。
示例性的,车轮的信息中包括轮速周期性的波动次数。
S603,VCU根据该车轮的信息,确定轮速波动频率。
S604,VCU根据该轮速波动频率,确定干预扭矩值T1。
以上干预扭矩值T1可以为上述第二干预扭矩值。
一个实施例中,VCU还可以根据轮速波动频率确定干预量级,进而根据该干预量级和T0确定T1。示例性的,该干预量级的取值范围为[0,1)。干预扭矩值T1可以为T0乘以干预量级。
根据不同的轮速波动频率区分路面类型,可以实时选择扭矩干预量级。
一个实施例中,该方法600包括:VCU根据当前车辆所处路面的类型,确定干预扭矩值T1。
示例性的,VCU可以根据地图信息确定该路面的类型,或者,VCU可以根据车辆座舱外的传感器采集的数据,确定该路面的类型,或者,VCU可以根据轮速波动频率,确定该路面的类型。
S605,VCU获取ESC发送的车轮加速度和整车加速度的信息。
S606,VCU根据车轮加速度和整车加速度,确定干预扭矩值T2。
以上干预扭矩值T2可以为上述第一干预扭矩值。
以上VCU根据车轮加速度和整车加速度,确定干预扭矩值T2的过程可以参考上述实施例中的描述,此处不再赘述。
在ABS或者DTC误触发场景,能量回收所在轴,车轮加速度往往会大于整车加速度。在车轮加速度和整车加速度的差值超过一定阈值后,后续会触发ABS或者DTC,在该差值基础上计算扭矩干预值,可有效防止ABS或者DTC的触发。
以上能量回收轴可以为搭载驱动电机并进行能量回收的轴。例如,某些电动车的后轮轴搭载驱动电机,某些电动车的前轮轴和后轮轴均搭载驱动电机。
S607,VCU获取ESC发送的轮速和车速的信息。
S608,VCU根据轮速和车速,确定车辆当前的滑移率。
S609,VCU根据该滑移率,确定修正系数a。
以上VCU根据该滑移率,确定修正系数a可以参考上述实施例中的描述,此处不再赘述。
ABS的触发与滑移率密切相关,引入滑移率计算修正系数a,修正扭矩干预值。不仅可以防止ABS触发,还可以控制车辆利用极限滑移率,获得最大抓地力,有效减速。
以上S601、S602-S604、S605-S606、S607-S609之间并没有实际的先后顺序。
S610,VCU根据T0、T1、T2和a,控制车辆进行能量回收。
一个实施例中,VCU根据T0、T1、T2和a,控制车辆进行能量回收,包括:VCU根据T0、T1、T2和a,确定能量回收扭矩T3。VCU向MCU输出T3,从而使得MCU根据T3,控制电机进行能量回收。
以上方法200中T0、T1、T2和a的计算过程可以在VCU中实现,也可以在MCU中实现,本申请实施例对此不作限定。
示例性的,T3的计算公式如公式(1)所示:
T3=T0-min(T1,T2)×a       (1)
图7示出了本申请实施例提供的一种扭矩调节装置700的示意性框图。如图7所示,该装置700包括:获取单元710,用于获取请求扭矩值;确定单元720,用于根据该车辆的车轮加速度和整车加速度,确定第一干预扭矩值;控制单元730,用于根据该请求扭矩值和该第一干预扭矩值,控制该车辆进行能量回收。
可选地,该获取单元710,还用于获取路面类型;该确定单元720,还用于根据该路面类型,确定第二干预扭矩值;其中,该控制单元730,用于:根据该请求扭矩值、该第一干预扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
可选地,该获取单元710,用于获取该车辆的轮速波动频率;根据该轮速波动频率,确定该路面类型。
可选地,该获取单元710,还用于获取该车辆的轮速波动频率;该确定单元720,还用于根据该轮速波动频率,确定该第二干预扭矩值。
可选地,该确定单元720,用于:根据该第一干预扭矩值和该第二干预扭矩值,确定第三干预扭矩值;该控制单元730,用于根据该请求扭矩值和该第三干预扭矩值,控制该车辆进行能量回收。
可选地,该确定单元720,用于:将该第一干预扭矩值和该第二干预扭矩值中最低的扭矩值确定为该第三干预扭矩值。
可选地,该获取单元710,还用于获取该车辆的滑移率;该确定单元720,还用于根据该滑移率,确定修正系数;其中,该控制单元730,用于:根据该第三干预扭矩值和该修正系数,确定第四干预扭矩值;根据该请求扭矩值和该第四干预扭矩值,控制该车辆进行能量回收。
可选地,该获取单元710,还用于获取该车辆的滑移率;该确定单元720,还用于根据该滑移率,确定修正系数;其中,该控制单元730,用于:根据该第一干预扭矩值和该修正系数,确定第五干预扭矩值;根据该请求扭矩值和该第五干预扭矩值,控制该车辆进行能量回收。
可选地,该控制单元730,还用于在控制该车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制该车辆进行能量回收;或者,在控制该车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制该车辆进行能量回收。
可选地,该控制单元730,还用于在控制该车辆进行能量回收时,增加该车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
可选地,该获取单元710,用于:根据该车辆的车速、该车辆的加速踏板的开度和该 车辆的制动踏板的开度中的至少一项,确定该请求扭矩值。
一个实施例中,获取单元710,用于在车辆处于能量回收状态时,获取请求扭矩值;确定单元720,用于根据该车辆的车轮波动频率,确定第二干预扭矩值;控制单元730,用于根据该请求扭矩值和该第二干预扭矩值,控制该车辆进行能量回收。
一个实施例中,获取单元710,用于在车辆处于能量回收状态时,获取请求扭矩值;确定单元720,用于根据该车辆的滑移率,确定第五干预扭矩值;控制单元730,用于根据该请求扭矩值和该第五干预扭矩值,控制该车辆进行能量回收。
例如,获取单元710可以是图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以获取单元710为计算平台中的处理器151为例,处理器151可以根据当前车辆的加速踏板的开度和速度,确定该请求扭矩值。
又例如,确定单元720可以是图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以确定单元720为计算平台中的处理器152为例,处理器152可以从ESC获取车辆的车轮加速度和整车加速度,从而根据车轮加速度和整车加速度,确定该第一干预扭矩值。或者,处理器152可以从ESC获取车轮的信息,从而根据车轮的信息确定轮速波动频率。从而可以根据该轮速波动频率确定该第二干预扭矩值。或者,处理器152可以从ESC获取车辆当前的车速和轮速的信息,从而根据车速和轮速确定车联的滑移率。从而根据该滑移率,确定修正系数或者第五干预扭矩值。
又例如,以上控制单元730所实现的功能可以由图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以控制单元730为计算平台中的处理器153为例,处理器153可以从处理器151获取该请求扭矩值且从该处理器152获取该第一干预扭矩值,从而可以根据该请求扭矩值和该第一干预扭矩值,控制车辆进行能量回收。示例性的,处理器153可以向电机输出该请求扭矩值和该第一干预扭矩值之间的差值,从而电机可以根据该差值进行能量回收。
以上获取单元710所实现的功能、确定单元720所实现的功能和控制单元730所实现的功能可以分别由不同的处理器实现,或者,也可以是部分功能由相同的处理器实现,或者,还可以所有功能均由相同的处理器实现,本申请实施例对此不作限定。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以SOC的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
本申请实施例还提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行上述实施例执行的方法或者步骤。
可选地,若该装置位于车辆中,上述处理单元可以是图1所示的处理器151-15n。
本申请实施例还提供了一种车辆,该车辆可以包括上述装置600、装置700或者装置800。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者上电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种扭矩调节方法,其特征在于,包括:
    获取请求扭矩值;
    根据车辆的车轮加速度和整车加速度,确定第一干预扭矩值;
    根据所述请求扭矩值和所述第一干预扭矩值,控制所述车辆进行能量回收。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取路面类型;
    根据所述路面类型,确定第二干预扭矩值;
    其中,所述根据所述请求扭矩值和所述第一干预扭矩值,控制所述车辆进行能量回收,包括:
    根据所述请求扭矩值、所述第一干预扭矩值和所述第二干预扭矩值,控制所述车辆进行能量回收。
  3. 根据权利要求2所述的方法,其特征在于,所述获取路面类型,包括:
    获取所述车辆的轮速波动频率;
    根据所述轮速波动频率,确定所述路面类型。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述请求扭矩值、所述第一干预扭矩值和所述第二干预扭矩值,控制所述车辆进行能量回收,包括:
    根据所述第一干预扭矩值和所述第二干预扭矩值,确定第三干预扭矩值;
    根据所述请求扭矩值和所述第三干预扭矩值,控制所述车辆进行能量回收。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一干预扭矩值和所述第二干预扭矩值,确定第三干预扭矩值,包括:
    将所述第一干预扭矩值和所述第二干预扭矩值中最低的扭矩值确定为所述第三干预扭矩值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    获取所述车辆的滑移率;
    根据所述滑移率,确定修正系数;
    其中,所述根据所述请求扭矩值和所述第三干预扭矩值,控制所述车辆进行能量回收,包括:
    根据所述第三干预扭矩值和所述修正系数,确定第四干预扭矩值;
    根据所述请求扭矩值和所述第四干预扭矩值,控制所述车辆进行能量回收。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述车辆的滑移率;
    根据所述滑移率,确定修正系数;
    其中,所述根据所述请求扭矩值和所述第一干预扭矩值,控制所述车辆进行能量回收,包括:
    根据所述第一干预扭矩值和所述修正系数,确定第五干预扭矩值;
    根据所述请求扭矩值和所述第五干预扭矩值,控制所述车辆进行能量回收。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    在控制所述车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制所述车辆进行能量回收;或者,
    在控制所述车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制所述车辆进行能量回收。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    在控制所述车辆进行能量回收时,增加所述车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述获取请求扭矩值,包括:
    根据所述车辆的车速、所述车辆的加速踏板的开度和所述车辆的制动踏板的开度中的至少一项,确定所述请求扭矩值。
  11. 一种扭矩调节装置,其特征在于,包括:
    获取单元,用于获取请求扭矩值;
    确定单元,用于根据车辆的车轮加速度和整车加速度,确定第一干预扭矩值;
    控制单元,用于根据所述请求扭矩值和所述第一干预扭矩值,控制所述车辆进行能量回收。
  12. 根据权利要求11所述的装置,其特征在于,所述获取单元,还用于获取路面类型;
    所述确定单元,还用于根据所述路面类型,确定第二干预扭矩值;
    其中,所述控制单元,用于:
    根据所述请求扭矩值、所述第一干预扭矩值和所述第二干预扭矩值,控制所述车辆进行能量回收。
  13. 根据权利要求12所述的装置,其特征在于,所述获取单元,还用于:
    获取所述车辆的轮速波动频率;
    根据所述轮速波动频率,确定所述路面类型。
  14. 根据权利要求12或13所述的装置,其特征在于,所述确定单元,用于:根据所述第一干预扭矩值和所述第二干预扭矩值,确定第三干预扭矩值;
    所述控制单元,用于根据所述请求扭矩值和所述第三干预扭矩值,控制所述车辆进行能量回收。
  15. 根据权利要求14所述的装置,其特征在于,所述确定单元,用于:将所述第一干预扭矩值和所述第二干预扭矩值中最低的扭矩值确定为所述第三干预扭矩值。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述获取单元,还用于获取所述车辆的滑移率;
    所述确定单元,还用于根据所述滑移率,确定修正系数;
    其中,所述控制单元,用于:根据所述第三干预扭矩值和所述修正系数,确定第四干预扭矩值;
    根据所述请求扭矩值和所述第四干预扭矩值,控制所述车辆进行能量回收。
  17. 根据权利要求11所述的装置,其特征在于,
    所述获取单元,还用于获取所述车辆的滑移率;
    所述确定单元,还用于根据所述滑移率,确定修正系数;
    其中,所述控制单元,用于:根据所述第一干预扭矩值和所述修正系数,确定第五干预扭矩值;
    根据所述请求扭矩值和所述第五干预扭矩值,控制所述车辆进行能量回收。
  18. 根据权利要求11至17中任一项所述的装置,其特征在于,
    所述控制单元,还用于在控制所述车辆进行能量回收时扭矩干预的次数大于或者等于预设次数时,根据历史扭矩干预值,控制所述车辆进行能量回收;或者,
    在控制所述车辆进行能量回收时扭矩干预的时长大于或者等于预设时长时,根据历史扭矩干预值,控制所述车辆进行能量回收。
  19. 根据权利要求11至18中任一项所述的装置,其特征在于,
    所述控制单元,还用于在控制所述车辆进行能量回收时,增加所述车辆的制动系统的制动力矩,和/或,启动风阻提升装置。
  20. 根据权利要求11至19中任一项所述的装置,其特征在于,所述获取单元,用于:
    根据所述车辆的车速、所述车辆的加速踏板的开度和所述车辆的制动踏板的开度中的至少一项,确定所述请求扭矩值。
  21. 一种装置,其特征在于,所述装置包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法。
  22. 一种车辆,其特征在于,包括如权利要求11至21中任一项所述的装置。
  23. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至10中任一项所述的方法。
  24. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至10中任一项所述的方法。
PCT/CN2022/117108 2022-09-05 2022-09-05 一种扭矩调节方法、装置和车辆 WO2024050671A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117108 WO2024050671A1 (zh) 2022-09-05 2022-09-05 一种扭矩调节方法、装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117108 WO2024050671A1 (zh) 2022-09-05 2022-09-05 一种扭矩调节方法、装置和车辆

Publications (1)

Publication Number Publication Date
WO2024050671A1 true WO2024050671A1 (zh) 2024-03-14

Family

ID=90192643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117108 WO2024050671A1 (zh) 2022-09-05 2022-09-05 一种扭矩调节方法、装置和车辆

Country Status (1)

Country Link
WO (1) WO2024050671A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083777A1 (zh) * 2010-12-20 2012-06-28 奇瑞汽车股份有限公司 一种纯电动汽车能量回收方法和装置
CN112895911A (zh) * 2020-11-10 2021-06-04 长城汽车股份有限公司 湿滑路面扭矩控制的方法、装置及终端设备
CN113547934A (zh) * 2021-08-30 2021-10-26 重庆金康赛力斯新能源汽车设计院有限公司 一种能量回收方法、装置、存储介质和整车控制器
CN113734171A (zh) * 2021-08-20 2021-12-03 合众新能源汽车有限公司 一种基于整车控制器的防打滑控制方法、装置及电子设备
CN114407676A (zh) * 2022-01-29 2022-04-29 重庆长安新能源汽车科技有限公司 用于强滑行能量回收的扭矩控制方法及其系统、车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083777A1 (zh) * 2010-12-20 2012-06-28 奇瑞汽车股份有限公司 一种纯电动汽车能量回收方法和装置
CN112895911A (zh) * 2020-11-10 2021-06-04 长城汽车股份有限公司 湿滑路面扭矩控制的方法、装置及终端设备
CN113734171A (zh) * 2021-08-20 2021-12-03 合众新能源汽车有限公司 一种基于整车控制器的防打滑控制方法、装置及电子设备
CN113547934A (zh) * 2021-08-30 2021-10-26 重庆金康赛力斯新能源汽车设计院有限公司 一种能量回收方法、装置、存储介质和整车控制器
CN114407676A (zh) * 2022-01-29 2022-04-29 重庆长安新能源汽车科技有限公司 用于强滑行能量回收的扭矩控制方法及其系统、车辆

Similar Documents

Publication Publication Date Title
JP5195672B2 (ja) 車両制御装置、車両および車両制御方法
US9669840B2 (en) Control system and method
US20150336587A1 (en) Driving assist device
JP2005178626A (ja) 車両の統合制御システム
US11225245B2 (en) Vehicle and method for controlling the same
JP2005178628A (ja) 車両の統合制御システム
JP2013539572A (ja) 運転者インタフェースタスクを管理する方法、及び、車両
JP2005186831A (ja) 車両の統合制御システム
US11987151B2 (en) Control system and method for controlling an electric motor
US20210229667A1 (en) Vehicle control apparatus and vehicle control method
JP2019502596A (ja) ホイールスリップ及び車両加速を独立的に制御するためのシステム及び方法
JP2018053901A (ja) パワートレイン制御システム
CN109863060A (zh) 用于控制布置在座椅内的按摩设备的按摩单元的方法、用于车辆或者车辆中的座椅布置
CN114074547A (zh) 用于车辆的越野驾驶辅助的系统和方法
WO2024050671A1 (zh) 一种扭矩调节方法、装置和车辆
CN113928328A (zh) 受损驾驶辅助
US20230014274A1 (en) Vehicle travel assistance system
CN111645683A (zh) Acc系统请求esc动态驻车方法、系统、车辆及存储介质
CN112896158B (zh) 基于分层状态机的紧急车道保持功能的控制方法及系统
CN111770863A (zh) 车辆控制方法及设备
US11685407B2 (en) Vehicle and control apparatus and control method of the same
KR20230045384A (ko) 전기차 드리프트 제어 시스템 및 그 방법
WO2024059988A1 (zh) 一种车辆控制方法及装置
US20230419751A1 (en) Vehicle display device, vehicle display system, and vehicle display method
US20240046782A1 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957645

Country of ref document: EP

Kind code of ref document: A1