WO2024049033A1 - 이소시아네이트 조성물 - Google Patents

이소시아네이트 조성물 Download PDF

Info

Publication number
WO2024049033A1
WO2024049033A1 PCT/KR2023/011389 KR2023011389W WO2024049033A1 WO 2024049033 A1 WO2024049033 A1 WO 2024049033A1 KR 2023011389 W KR2023011389 W KR 2023011389W WO 2024049033 A1 WO2024049033 A1 WO 2024049033A1
Authority
WO
WIPO (PCT)
Prior art keywords
tert
butyl
isocyanate
bis
based compound
Prior art date
Application number
PCT/KR2023/011389
Other languages
English (en)
French (fr)
Inventor
김지연
우은지
심유진
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230101106A external-priority patent/KR20240031040A/ko
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2024049033A1 publication Critical patent/WO2024049033A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to an isocyanate composition that has improved storage stability, suppresses discoloration and cloudiness, and can exhibit improved workability such as shortened filter time.
  • Isocyanate-based compounds are compounds with high utility not only in the chemical industry and resin industry, but also in fine chemical products including optical materials.
  • Demand for xylylene diisocyanate (XDI) is increasing as a high-value chemical material as a raw material for advanced optical lenses.
  • isocyanate-based compounds exhibit high reactivity, they tend to react with moisture in the air during the storage process, causing discoloration or white clouding.
  • discoloration or white turbidity occurs as oligomers larger than dimers are formed through self-polymerization.
  • Isocyanate-based compounds are raw materials for polyurethane and are used in a variety of applications such as coatings, adhesives/adhesives, paints, foams, and optical materials.
  • Polyurethane lenses are manufactured using isocyanate-based compounds that cause discoloration or white clouding.
  • the rapid increase in the molecular weight of the polymer solution causes a decrease in stirring power, an increase in filter time, and filter clogging, which reduces workability, and also causes problems such as decreased transparency and discoloration of the manufactured lens.
  • the purpose of the present invention is to provide an isocyanate composition that improves storage stability, suppresses discoloration and cloudiness, improves transparency when applied to the resulting product, and improves workability, such as reducing filter time.
  • an isocyanate composition comprising an isocyanate-based compound and a phosphonic acid-based compound represented by the following formula (1):
  • R is C 1-20 alkyl, C 6-20 aryl, C 7-30 alkylaryl, or C 7-30 arylalkyl.
  • the isocyanate composition and at least one of a polythiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound.
  • a composition for polymerization containing a is provided.
  • an article particularly an optical lens, which includes a polymer obtained by polymerizing the isocyanate composition and at least one of a polyhydric thiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound.
  • the isocyanate composition according to the present invention has improved storage stability, suppresses discoloration and white cloudiness, and can improve transparency when applied to the resulting product.
  • the isocyanate composition can exhibit improved workability, such as shortening the filter time.
  • the polymer prepared by polymerizing the isocyanate composition with any one or more of polyhydric thiol-based compounds, polyhydric alcohol-based compounds, and polyhydric episulfide-based compounds also exhibits excellent transparency and can be used as optical adhesives, optical adhesives, optical lenses, etc. It is useful in the manufacture of articles, especially optical lenses.
  • ordinary temperature means 23 ⁇ 5°C, which is a typical laboratory temperature
  • ordinary pressure means 1 ⁇ 0.05 atm, which is a typical laboratory pressure.
  • a nitrogen atmosphere means the presence of nitrogen in the atmospheric gas. Specifically, the nitrogen concentration in the atmospheric gas is greater than 0% by volume and less than 100% by volume.
  • the present inventors studied an isocyanate composition that can suppress the rate of increase in oligomers generated by self-polymerization of isocyanate-based compounds during long-term storage of isocyanate-based compounds and can show improved workability during lens manufacturing.
  • isocyanate-based compounds When a phosphonic acid-based compound is used together with a phosphonic acid-based compound, the oligomerization rate of the isocyanate-based compound can be reduced, and as a result, discoloration and clouding caused by the oligomer can be suppressed, and it can also be used in lens manufacturing.
  • the present invention was completed after confirming that workability could be improved by shortening the filter time.
  • the isocyanate composition according to the present invention includes an isocyanate-based compound and a phosphonic acid-based compound represented by the following formula (1):
  • R is C 1-20 alkyl, C 6-20 aryl, C 7-30 alkylaryl, or C 7-30 arylalkyl.
  • the phosphonic acid-based compound does not include phosphonic acid where R is H in Formula 1.
  • the phosphonic acid-based compound may be a compound in which, in Formula 1, R is C 1-18 alkyl, C 6-18 aryl, C 7-18 alkylaryl, or C 7-18 arylalkyl. , more specifically, it may be a compound in which R is C 1 or more, or C 4 or more, and is C 18 or less, or C 10 or less, or C 6 or less alkyl.
  • the phosphonic acid-based compound examples include butylphosphonic acid, hexylphosphonic acid, methylphosphonic acid, or octadecylphosphonic acid, and these Any one or a mixture of two or more may be used.
  • the reaction rate of the isocyanate decreases, and as a result, oligomerization of the isocyanate may be delayed or suppressed.
  • the phosphonic acid-based compound reacts with alcohol to provide a free acid component. Accordingly, the acidity of the isocyanate composition can be increased, and as a result, the reaction rate and oligomerization of the isocyanate can be delayed or suppressed, and discoloration and clouding caused by the oligomer can be suppressed.
  • the phosphonic acid-based compound can suppress an increase in viscosity of the isocyanate composition, thereby shortening the filter time when manufacturing a lens.
  • the phosphonic acid-based compound can exhibit a better effect in terms of storage stability due to the difference in reactivity. there is.
  • phosphoric acid H 3 PO 4 (or PO(OH) 3 )
  • H 3 PO 4 or PO(OH) 3
  • the phosphonic acid-based The compound exhibits an appropriate level of reactivity, so there is no concern about the formation of precipitates.
  • phosphoric acid ester may have some effect of increasing the acidity of the isocyanate composition, but has the problem of increasing the viscosity of the polymerization composition and resulting in filter clogging during lens manufacturing.
  • the phosphonic acid-based compound has no risk of increasing viscosity.
  • the phosphonic acid-based compound has a high boiling point of 250°C or higher, more specifically 250 to 400°C, or 260 to 350°C. Accordingly, production yield and product quality can be improved by increasing the stability of isocyanate-based compounds.
  • the acidity (as HCl) (ppm) of the isocyanate composition is calculated by converting the amount of acid component liberated by reaction with alcohol at room temperature (23 ⁇ 5°C) into HCl and then calculating it based on the total weight of the isocyanate-based compound. This value is expressed as a relative weight ratio.
  • the acidity in the isocyanate composition according to the present invention is determined depending on the acidic group content derived from the phosphonic acid-based compound. Accordingly, the acidity can be adjusted by controlling the type and/or input amount of the phosphonic acid-based compound, and the effect of using the phosphonic acid-based compound can be further improved by optimizing the acidity range.
  • the isocyanate composition according to the present invention may have an acidity of 500 ppm or less.
  • the reaction rate of the isocyanate decreases, and as a result, the oligomerization of the isocyanate may be delayed or suppressed.
  • the acidity is too high, the reaction rate of the isocyanate becomes too slow, which is used for the polymerization of polyisocyanate and the manufacture of products such as lenses. It can be difficult to use.
  • the phosphonic acid-based compound may be added in an amount such that the acidity of the isocyanate composition is 500 ppm or less, and more specifically, 500 ppm or less, or 450 ppm or less, or 400 ppm or less, or 350 ppm or less, or 320 ppm or less. there is.
  • the acidity of the isocyanate composition of the phosphonic acid-based compound must be 100 ppm or more, or 150 ppm or more, or 180 ppm or more, or 185 ppm or more, or 200 ppm or more, or It can be added to 270ppm or more, or 300ppm or more.
  • the acidity was specifically calculated by performing potentiometric titration on the isocyanate composition with a 0.01N potassium hydroxide (KOH) methanol solution and using the resulting measured value according to Equation 1 below.
  • KOH potassium hydroxide
  • f When the normal concentration of the KOH methanol solution used during measurement changes, it is a correction factor to be the same as a 0.01N KOH methanol solution, and is measured according to ASTM D-1638, TOLOCHIMIE 04-01-68. For 0.01N KOH methanol solution the f value is 1
  • the phosphonic acid-based compound may be included in an amount of 100 to 3,000 ppm based on the total weight of the isocyanate-based compound under conditions that meet the above-mentioned acidity range.
  • the isocyanate composition exhibits an acidity within the above-described range, thereby realizing the effect of delaying the oligomerization rate within the optimal range.
  • the phosphonic acid-based compound is 100ppm or more, or 500ppm or more, or 800ppm or more, or 1000ppm or more, and 3,000ppm or less, or 2500ppm or less, or 2000ppm or less, or 1500ppm or less, based on the total weight of the isocyanate-based compound. Can be included in quantity.
  • the isocyanate-based compound is a monomer containing one or more, two or more, or two to four isocyanate groups in the molecule. More specifically, the isocyanate-based compound is a diisocyanate compound containing two isocyanates in the molecule.
  • diisocyanate compound examples include 1,5-pentamethylene diisocyanate, toluene diisocyanate, methylene diphenyl diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,4- Cyclohexylene diisocyanate, isophorone diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, or p-xylylene diisocyanate may be used, and any one or a mixture of two or more of these may be used. .
  • o-xylylene diisocyanate m-xylylene diisocyanate, p-xylylene diisocyanate, or mixtures thereof may be used as the isocyanate-based compound.
  • the isocyanate composition may further include a phenol-based stabilizer.
  • discoloration and white turbidity in isocyanate compositions are caused not only by oligomerization of isocyanate, but also by quinoidization of the benzene ring within the molecule, or by adducts generated by oxygen, moisture, or high heat during synthesis and purification.
  • the phenol-based stabilizer can prevent coloring and whitening of the isocyanate composition by suppressing the above-mentioned side reactions through radical capture reaction.
  • the isocyanate composition according to the present invention includes the phenol-based stabilizer in an amount of 5 to 1000 ppm based on the total weight of the isocyanate-based compound.
  • a sufficient effect of preventing discoloration or clouding can be achieved. More specifically, it is 5 ppm or more, or 8 ppm or more, or 10 ppm or more, and 1000 ppm or less, or 500 ppm or less, or 200 ppm or less, or 100 ppm or less, or 50 ppm or less, or 30 ppm or less, based on the total weight of the isocyanate-based compound.
  • a more enhanced coloring and whitening inhibition effect can be realized.
  • the phenol-based stabilizer is specifically phenol or a derivative thereof containing a phenol structure in the molecule.
  • Specific examples include phenol; Or dibutylhydroxytoluene (BHT), t-Butylhydroquinone (TBHQ), butylhydroxyanisol (BHA), pentaerythritol tetrakis[3-(3,5-di-tert- Butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by BASF), thiodiethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Irganox 1035, manufactured by BASF), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (Irganox 1076, manufactured by BASF), N,N'-hexane-1,6- Diylbis[3-(3,5-di
  • phenol, dibutylhydroxytoluene, 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4, 6-di-tert-pentylphenyl acrylate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 6-[3-(3-tert-butyl-4) -hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepine or mixtures thereof may be used.
  • the isocyanate composition may further include an oligomer in which two or more of the above-described isocyanate-based compounds are bonded as a by-product.
  • the oligomer of the isocyanate-based compound may be a dimer in which two isocyanate-based compounds are bonded, a trimer in which three isocyanate-based compounds are bonded, 4 or more, or 4 to 10 isocyanate-based compounds bonded together.
  • the oligomer may be produced by a side reaction during the synthesis of an isocyanate-based compound by reacting an amine compound with a phosgene compound, or may be a result of a synthesized isocyanate compound forming its own polymer with high reactivity. These oligomers cause problems not only in the transparency of the isocyanate composition itself, but also in discoloration and cloudiness of the polymerization composition in which the isocyanate composition is used.
  • the isocyanate composition according to the present invention may further include the oligomers that are inevitably generated, but the transparency and color characteristics of the product can be improved while maintaining fairness by controlling the content through the manufacturing process and the use of phosphonic acid. there is.
  • the isocyanate composition may contain 1% by weight or less of the oligomer based on the total weight of the composition.
  • the isocyanate composition contains a phosphonic acid-based compound that retards the oligomerization reaction rate of isocyanate as described above, the oligomer content and the rate of increase in oligomer content are low even after passage of time compared to the conventional method.
  • the isocyanate composition has an oligomer content increase rate of 500% or less calculated according to Equation 2 below. More specifically, it is 350% or less, or 346% or less, or 320% or less.
  • the lower limit of the increase rate of oligomer content is not particularly limited, but may be, for example, 100% or more, or 200% or more, or 250% or more, or 300% or more.
  • Oligomer content increase rate (%) [(C f -C i )/C i ] ⁇ 100
  • Ci is the oligomer content (%) in the isocyanate composition immediately after production
  • C f is the content (%) of oligomers in the isocyanate composition after storage for 12 weeks at 5°C under a nitrogen atmosphere, specifically, 100% by volume of nitrogen in the atmosphere through nitrogen filling,
  • Ci and C f are calculated values calculated according to Equation 3 below.
  • D is the total area under the curve in the molecular weight distribution curve (GPC curve) obtained through gel permeation chromatography (GPC) analysis of the isocyanate composition
  • E is the area of the peak corresponding to the oligomer in the molecular weight distribution curve for the isocyanate composition.
  • the total area under the curve of the GPC curve for the isocyanate composition and the area of the fraction corresponding to the oligomer can each be obtained through integration.
  • the oligomer refers to a polymer with a weight average molecular weight (Mw) of 600 to 2000 g/mol, and the fraction corresponding to the oligomer in the GPC curve is 19.42 ⁇ logMw ⁇ 22.18.
  • the isocyanate composition is stored at 5°C for 12 weeks under a nitrogen atmosphere, specifically, 100% by volume of nitrogen in the atmosphere through nitrogen filling, and then the oligomer content calculated through GPC analysis, that is, GPC oligomer
  • the area ratio may be 1.5% or less, or 1.2% or less, or 1.16% or less, or 1.15% or less, or 1.1% or less. Since a lower oligomer content means superior discoloration resistance, the lower limit is not particularly limited, but may be greater than 0% or greater than 0.1%. In the present invention, nitrogen with a purity of 99.999% was used when filling the nitrogen.
  • the content of oligomers in the isocyanate composition is determined through GPC analysis of the isocyanate composition, with the log value (log M) of the weight average molecular weight (M) as the x-axis, and the molecular weight distribution for the log value.
  • GPC curve molecular weight distribution curve
  • the isocyanate composition exhibits a low APHA value.
  • the isocyanate composition has an APHA value of 9 or less as measured according to ASTM D1209 after being refrigerated and stored at 5°C for 12 weeks under a nitrogen atmosphere, specifically in an atmosphere of 100% by volume nitrogen through nitrogen filling. Since a lower APHA value means better discoloration resistance, the lower limit is not limited, but may be greater than 0 or greater than 1. Meanwhile, in the present invention, nitrogen with a purity of 99.999% was used when filling the nitrogen.
  • the above isocyanate composition can be prepared by mixing an isocyanate-based compound and a phosphonic acid-based compound represented by Formula 1.
  • the isocyanate composition includes the steps of reacting an amine or a salt thereof with phosgene to produce an isocyanate-based compound; and mixing the isocyanate-based compound with the phosphonic acid-based compound represented by Formula 1.
  • the amine is an aromatic, alicyclic, or aliphatic diamine containing two amine groups in the molecule.
  • the amine is 1,3-xylylene diamine (m-xylylene diamine, m-XDA), 1,4-xylylene diamine (p-xylylene diamine, p-XDA), 1,3-bis ( It may be aminomethyl)cyclohexane, or 1,4-bis(aminomethyl)cyclohexane, and depending on the structure of the desired diisocyanate, any one or a mixture of two or more of these may be used.
  • the salt of the amine refers to a salt produced by the reaction of the amine and an acid, and may be, for example, a hydrochloride salt produced by the reaction of an amine and anhydrous hydrochloric acid, a carbonate produced by the reaction of an amine and carbonic acid, etc. While amines react rapidly with phosgene, the reaction rate can be slowed when converted to a solid salt.
  • salts of the amine include 1,3-xylylene diamine hydrochloride, 1,4-xylylene diamine hydrochloride, 1,3-bis(aminomethyl)cyclohexane hydrochloride, and 1,4-bis(aminomethyl)cyclo.
  • the preparation of the amine salt by reaction between the amine and acid can be performed in a solvent.
  • the solvent includes aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; Chlorinated aromatic hydrocarbon solvents such as monochlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene; Chlorinated hydrocarbon solvents such as dichloromethane, chloroform, and carbon tetrachloride can be used, and two or more of these can be used in combination.
  • these solvents can also be used as solvents for the phosgenation reaction, so after obtaining an amine salt by reacting an amine with an acid in the solvent, phosgene can be added to perform the phosgenation reaction without a separate purification process.
  • the amine salt preparation may be performed at a temperature of 40°C or lower, more specifically, 5 to 30°C. Additionally, the temperature may increase during the reaction due to the heat of reaction, but it is preferable that the maximum temperature in the reactor is maintained at 90°C or lower.
  • the reaction between the amine or its salt and phosgene may be performed at a temperature range of 80°C or higher, or 90°C or higher, and 140°C or lower, or 130°C or lower. If the reaction temperature is too low, problems such as plugging may occur due to precipitation of solids, and if the temperature is too high, there may be side reaction problems such as phosgene decomposition, so it is preferable to carry out the reaction in the above temperature range.
  • reaction between the amine or its salt and phosgene may be carried out in an organic solvent.
  • the organic solvent may include at least one of an aromatic hydrocarbon-based organic solvent and an ester-based organic solvent.
  • the aromatic hydrocarbon-based organic solvent may specifically be a halogenated aromatic hydrocarbon-based organic solvent such as monochlorobenzene, 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene.
  • ester-based organic solvent specifically includes amyl formate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, methylisoamyl acetate, methoxybutyl acetate, sec-hexyl acetate, 2 -Ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, ethyl acetate, butyl stearate, butyl lac.
  • fatty acid esters such as tate or amyl lactate
  • aromatic carboxylic acid esters such as metal salicylate, dimethyl phthalate, or methyl benzoate.
  • the organic solvent includes at least one of aromatic hydrocarbon-based organic solvents and ester-based organic solvents having a boiling point of 100°C or higher, or 100 to 200°C, among the aromatic hydrocarbon-based organic solvents and ester-based organic solvents. It may be.
  • the amine or its salt may be used at a concentration of 20% by volume or less, for example, 1 to 20% by volume, or 5 to 20% by volume.
  • concentration of amine or its salt exceeds 20% by volume, there is a risk that a large amount of amine salt may precipitate.
  • R 1 to R 4 are each independently a substituted or unsubstituted C 1-12 alkyl group, a substituted or unsubstituted C 3-12 cycloalkyl group, or a substituted or unsubstituted C 6-12 aryl group,
  • X is hydrogen, hydroxy or acetamido
  • Y is oxyl, substituted or unsubstituted C 1-12 alkoxy, or substituted or unsubstituted C 6-12 aryloxy.
  • the compound represented by Formula 2 promotes the forward reaction by eliminating hydrogen from carbamoyl chloride, an amine or intermediate product during the phosgenation reaction, and suppresses side reactions, thereby producing by-products ethylbenzyl isocyanate (EBI) and chloromethylbenzyl isocyanate (CMBI). It plays a role in suppressing the generation of monoisocyanates such as
  • R 1 to R 4 are each independently C 1-12 alkyl
  • X is hydrogen, hydroxy group or acetamido group
  • Y is oxyl It may be a (O ⁇ ) compound.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4- Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl; hereinafter referred to as 4-hydroxy TEMPO)
  • 4-acetamido-2,2,6,6-tetramethylpiperidin 1-oxyl etc. Any one or a mixture of two or more of these may be used.
  • the compound represented by Formula 2 may be used in an amount of 0.05 to 2 moles based on 100 moles of the amine or its salt. More specifically, it may be used in a ratio of 0.05 mol or more, or 0.1 mol or more, or 0.15 mol or more, and 2 mol or less, or 1 mol or less, or 0.8 mol or less. When used in the above content range, it is preferable because the generation of oligomers of diisocyanate is minimized and diisocyanate can be synthesized with high purity and high yield.
  • Isocyanate formed as a result of the above-described phosgenation reaction is obtained as a mixture of solvent, unreacted phosgene, and by-product hydrogen chloride. Accordingly, one or more of a purification process for separating the isocyanate compound from the reaction mixture with high purity, a solvent removal process through distillation, a removal process through nitrogen bubbling for unreacted phosgene and hydrogen chloride gas, etc. may be performed.
  • the purification step may be performed by a conventional method used for purifying isocyanate compounds, for example, by reduced pressure distillation and/or thin film distillation.
  • the purification step is preferably performed at a temperature of 100 to 170° C. for 5 to 16 hours. If the maximum temperature of the purification step exceeds 170°C or the residence time of the purification step exceeds 16 hours, the prepared isocyanate may absorb excessive heat and reduce stability.
  • the obtained isocyanate compound is mixed with the phosphonic acid-based compound represented by Formula 1 above to prepare an isocyanate composition.
  • the mixing process may be performed according to a conventional method, and the type and amount of the phosphonic acid-based compound to be mixed are as described above.
  • additional additives used in the isocyanate composition may be added.
  • a phenol-based stabilizer may be further added to improve the storage stability of the isocyanate composition.
  • the type and amount of the phenolic stabilizer used are the same as previously described.
  • the isocyanate composition prepared by the production method of the present invention described above has excellent storage stability and high transparency, it can be suitably used as a polymerization composition for manufacturing optical articles.
  • a composition for polymerization containing the above-described isocyanate composition and at least one of a polyhydric thiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound is provided.
  • the composition for polymerization includes the isocyanate composition; Any one or more of a polythiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound may be included in a mixed state, or may be included separately from each other. That is, in the polymerization composition, the isocyanate composition and the polyhydric thiol-based compound, polyhydric alcohol-based compound, or polyhydric episulfide-based compound may be blended in contact with each other, or may be separated so as not to contact each other.
  • the polyvalent thiol-based compound is a compound containing two or more thiol groups (-SH) in one molecule, specifically, two or more, three or more, eight or less, or It may be a compound having 5 or less thiol groups.
  • the polyvalent thiol-based compound is, for example, 2,3-bis(2-sulfanylethylsulfanyl)propane-1-thiol, 1,9-dimercapto-3,7-dithianonane (1,9-dimercapto-3,7-dithianonane), 1,13-dimercapto-3,7,11-trithiatridecane (1, 13-dimercapto-3,7,11-trithiatridecane), glycol di(3-mercaptopropionate), 1,4-dithiane-2,5-diylmethanethiol ( 1,4-Dithiane-2,5-diyldimethanethiol), 2-mercaptomethyl-1,5-dimercapto-3-thiapentane (2-mercaptomethyl-1,5-dimercapto-3-thiapentane), trimethylolpropane tri(3-mercaptopropionate) (trimethylolprop
  • the polyhydric alcohol-based compound is a compound containing two or more hydroxy groups in one molecule, and specifically, it is a compound having two or more, or three or more, eight or fewer, or four or fewer hydroxy groups in the molecule.
  • You can. Specific examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 2-methyl-2,3-butanediol, and 1,6-hexanediol.
  • dihydric alcohols such as , 1,2-hexanediol, etc.
  • Trihydric alcohols such as glycerol, trimethylolethane, and trimethylolpropane (TMP); tetrahydric alcohols such as diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, etc.
  • Pentahydric alcohols such as L-arabinitol, ribitol, and xylitol
  • Hexahydric alcohols such as D-glucitol, D-mannitol, and galactitol, and heptahydric alcohols such as trehalose
  • Examples include octahydric alcohols such as sucrose and maltose, or low molecular weight polyols, and any one or a mixture of two or more of these can be used.
  • polyhydric episulfide-based compound may be a compound containing two or more episulfides, that is, a thioepoxy group, in the molecule, and may have an aliphatic, alicyclic, or aromatic skeleton.
  • the polyhydric episulfide compound is bis( ⁇ -epithiopropylthio)methane, 1,2-bis( ⁇ -epithiopropylthio)ethane, 1,3-bis( ⁇ -epithiopropylthio) ) Propane, 1,2-bis( ⁇ -epithiopropylthio)propane, 1-( ⁇ -epithiopropylthio)-2-( ⁇ -epithiopropylthiomethyl)propane, 1,4-bis( ⁇ - Epithiopropylthio)butane, 1,3-bis( ⁇ -epithiopropylthio)butane, 1-( ⁇ -epithiopropylthio)-3-( ⁇ -epithiopropylthiomethyl)butane, 1,5- Bis( ⁇ -epithiopropylthio)pentane, 1-( ⁇ -epithiopropylthio)-4-(
  • polythiourethane is produced through a thiourethaneization reaction between the isocyanate compound in the isocyanate composition and the thiol group in the polyvalent thiol-based compound. Accordingly, it may be desirable to appropriately determine the amount of the polyvalent thiol in consideration of the physical properties and uses to be implemented in the polythiourethane produced, such as the thiourethaneization reaction with the isocyanate compound and viscosity.
  • the polyhydric thiol-based compound may be added in an amount such that the molar ratio of the thiol group in the polyhydric thiol-based compound to 1 mole of the isocyanate group in the isocyanate compound is 0.8 or more, or 0.9 or more, and 1.1 or less, or 1.0. there is.
  • the molar ratio of the thiol group in the polyhydric thiol-based compound to 1 mole of the isocyanate group in the isocyanate compound is 0.8 or more, or 0.9 or more, and 1.1 or less, or 1.0. there is.
  • the polymerization composition may further include additives such as an internal mold release agent, ultraviolet absorber, urethane reaction catalyst, polymerization initiator, heat stabilizer, color corrector, chain extender, cross-linking agent, light stabilizer, filler, and photosensitizer, if necessary.
  • additives such as an internal mold release agent, ultraviolet absorber, urethane reaction catalyst, polymerization initiator, heat stabilizer, color corrector, chain extender, cross-linking agent, light stabilizer, filler, and photosensitizer, if necessary.
  • the content can be appropriately determined within a range that does not impair the discoloration and discoloration inhibition properties of the composition.
  • the polymerization composition may further include an internal mold release agent to improve release properties from the mold during subsequent product molding.
  • the internal release agent specifically includes a phosphate release agent, an alkyl phosphate release agent, a fatty acid ester release agent, etc., and any one or a mixture of two or more of these may be used.
  • a phosphoric acid ester-based mold release agent may be preferably used.
  • phosphoric acid ester-based mold release agent products such as ZELECTM UN (manufactured by Stepan Company) may be commercially available and used.
  • the internal release agent may be included in an amount of 0.01% by weight or more, or 0.05% by weight or more, and 10% by weight or less, or 5% by weight or less, based on the total weight of the polymerization composition.
  • the polymerization composition may further include an ultraviolet absorber.
  • the UV absorber specifically includes a benzotriazole-based UV absorber and a formamidine-based UV absorber, and any one or a mixture of two or more of these may be used. Among these, a formamidine-based ultraviolet absorber can be preferably used.
  • the formamidine-based ultraviolet absorbers include Zikasorb RTM, Zikasorb BSTM, ZIKA-FA02TM, ZIKA-FUATM, ZIKA-FLS'TM, ZIKA-UVS3TM, or ZIKA-UVS4TM manufactured by ZIKO; Alternatively, products such as BiosorbTM 583 manufactured by Sakai Chemical industries Co., Ltd. may be obtained and used commercially.
  • the ultraviolet absorber may be included in an amount of 0.01% by weight or more, or 0.05% by weight or more, and 5% by weight or less, or 1% by weight or less, based on the total weight of the polymerization composition.
  • the urethane reaction catalyst includes dialkyl tin halide compounds such as dibutyltin dichloride and dimethyltin dichloride; dialkyltin dicarboxylate compounds such as dimethyltin diacetate, dibutyltin dioctanoate, and dibutyltin dilaurate; Dialkyl tin dialkoxide-based compounds such as dibutyltin dibutoxide and dioctyltin dibutoxide; dialkyltin dithioalkoxide-based compounds such as dibutyltin di(thiobutoxide); dialkyl tin oxide-based compounds such as di(2-ethylhexyl)tin oxide, dioctyltin oxide, and bis(butoxydibutyltin) oxide; Alternatively, dialkyl tin sulfide-based compounds may be used, and any one or a mixture of two or more of these may be used.
  • the urethane reaction catalyst is present in an amount of 0.001% by weight or more, or 0.002% by weight, or 0.004% by weight, or 0.1% by weight or less, or 0.05% by weight or less, or 0.01% by weight or less, or 0.008% by weight, based on the total weight of the polymerization composition. It may be included in an amount of less than %.
  • the polymerization composition described above can exhibit excellent discoloration resistance by delaying or suppressing the reaction rate and oligomerization of isocyanate due to the phosphonic acid-based compound contained in the isocyanate composition, and the increase in viscosity is suppressed, thereby reducing the filter time during product manufacturing. This can show improved workability.
  • the polymerization composition can be used in a wide range of fields due to its excellent physical properties, and can be used as optical materials that require excellent appearance properties, especially transparency, such as spectacle lenses, camera lenses, plastic lenses, and prisms.
  • an article containing a polymer polymerized by the above-mentioned isocyanate composition in the composition for polymerization; and at least one of a polyhydric thiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound.
  • the polymerization reaction consists of a urethanization reaction between the isocyanate group in the isocyanate compound and the thiol group in the polyvalent thiol-based compound.
  • polyurethane produced by reaction with a polyvalent thiol-based compound exhibits excellent transparency and is therefore particularly useful in the production of optical products, especially optical lenses such as spectacle lenses and camera lenses.
  • the polymerization reaction consists of a urethanation reaction (or condensation polymerization reaction) between an isocyanate in an aromatic diisocyanate and a hydroxy group in the polyhydric alcohol.
  • a urethanation reaction or condensation polymerization reaction
  • polyurethane produced by reaction with a polyhydric alcohol-based compound exhibits excellent transparency and excellent adhesive/adhesive properties, so it can be useful as an optical adhesive or optical adhesive.
  • the polymerization reaction may be performed under normal pressure conditions and an inert gas atmosphere such as nitrogen or argon.
  • the polymerization reaction is carried out at a temperature range of -15°C or higher, or 0°C or higher, and 150°C or lower, or 120°C or lower, so that the reaction rate can be easily controlled without concern about discoloration, and reaction efficiency It is also desirable because it can be increased.
  • the polymerization reaction may be performed under catalyst-free conditions or in the presence of a urethane reaction catalyst.
  • the catalyst can be added when mixing polyvalent thiol with the isocyanate composition, and the urethane reaction catalyst is as described above.
  • the progress of the polymerization reaction can be predicted by measuring the concentration of isocyanate groups in the polymerization reaction product by the n-dibutyl amine method using a potentiometric titration device, or by measuring the refractive index.
  • the polymerization reaction can be performed until the concentration of the isocyanate group in the reaction product reaches the calculated value of the isocyanate group remaining after reaction with the polyvalent thiol.
  • the isocyanate composition; and at least one of a polyhydric thiol-based compound, a polyhydric alcohol-based compound, and a polyhydric episulfide-based compound; and articles containing the polymerized polymer include, specifically, paints such as paints for plastics or paints for automobiles; Coating agents such as film coating agents; various inks; adhesive; glue; Sealing material; various microcapsules; Artificial leather, such as artificial and synthetic leather; Reaction injection molding (RIM) products; slush powder; Elastic molded articles (spandex); urethane foam; Alternatively, it may be an optical product such as a spectacle lens, camera lens, plastic lens, or prism. Considering the excellent transparency of the polymerization composition, it may be an optical article, especially an optical lens such as a spectacle lens or a camera lens.
  • the article may be manufactured by performing a molding process after the polymerization reaction in the polymerization composition described above, or may be manufactured through a molding process using the polymerization composition. In the latter case, the polymerization reaction occurs simultaneously during the molding process.
  • the polymerization composition is injected into a lens mold, and then the temperature of the mold is raised to perform a polymerization reaction between the isocyanate-based compound and the polyvalent thiol-based compound or polyhydric episulfide-based compound. At this time, the mold is heated to the temperature range where the urethane polymerization reaction occurs, as described above. After the polymerization reaction is completed, the prepared polymer can be separated from the mold to obtain an optical lens.
  • the polymer prepared from the composition for polymerization according to the present invention exhibits excellent transparency and improved workability, and is therefore particularly useful for the production of optical articles, especially optical adhesives, optical adhesives, or optical lenses. do.
  • an optical lens containing a polymer prepared from the composition for polymerization according to the present invention exhibits a YI value of 1.6 or less, or 1.5 or less, when measured according to ASTM E313. Since a lower YI value means superior discoloration resistance, the lower limit is not particularly limited, but may specifically be greater than 0 or greater than 0.1.
  • the reactor temperature was maintained at 125-135°C for 2 hours to ensure that the reaction solution became transparent.
  • the inside of the reactor was cooled to 80°C, nitrogen was blown in, and phosgene was discharged and removed.
  • the reaction solution from which phosgene was removed was subjected to vacuum distillation to remove the solvent, and the product was purified under reduced pressure at a high temperature of 160°C to obtain m-xylylene diisocyanate (m-XDI).
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that 1000 ppm of hexylphosphonic acid (boiling point: 299.7°C) was added instead of butylphosphonic acid.
  • Example 1-1 an isocyanate composition was prepared in the same manner as in Example 1-1, except that phenol was not added and only 1000 ppm of hexylphosphonic acid was added.
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that butylphosphonic acid was not added and only 10 ppm of phenol was added.
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that neither phenol nor butylphosphonic acid was added to m-XDI in Example 1-1.
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that 1000 ppm of ZELECTM UN (manufactured by Stepan Company), a phosphoric acid ester compound, was added instead of butylphosphonic acid. did.
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that 1000 ppm of Bis(2-ethylhexyl) phosphate, a phosphoric acid ester compound, was added instead of butylphosphonic acid. .
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that 1000 ppm of phosphoric acid was added instead of butylphosphonic acid.
  • An isocyanate composition was prepared in the same manner as in Example 1-1, except that 1000 ppm of Ethyl Phosphate (mono and di ester mixture) (DEP) was added instead of butylphosphonic acid. .
  • Ethyl Phosphate mono and di ester mixture
  • the polymerization composition prepared above was filtered through a 1 ⁇ m PTFE filter and then injected into a mold consisting of a glass mold and tape. This mold was placed in an oven and the temperature was gradually raised from 10°C to 120°C, and a polymerization reaction was performed for 20 hours. After completion of polymerization, the mold was taken out of the oven and released to obtain a plastic lens. The obtained lens was annealed at 120°C for 6 hours.
  • a composition for polymerization was prepared in the same manner as in Example 2-1, except that the isocyanate compositions prepared in Examples 1-2, 1-3, and Comparative Examples 1-1 to 1-6 were used, respectively. and lenses were manufactured.
  • the acidity of the isocyanate compositions prepared in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-6 was measured by the following method.
  • 1.2 n-Propyl Alcohol Use diluted hydrochloric acid solution by first adjusting the pH to 4 ⁇ 4.5.
  • Apparent acidity occurs between pH 5.5 and 7.0.
  • f When the normal concentration of the KOH methanol solution used during measurement changes, it is a correction factor to be the same as a 0.01N KOH methanol solution, and is measured according to ASTM D-1638, TOLOCHIMIE 04-01-68. For 0.01N KOH methanol solution, the f value is 1.
  • Comparative Examples 1-3 in which a commercially available phosphoric acid ester compound was added at the same level as in the Examples when preparing the isocyanate composition, also showed low acidity.
  • Example 1-1 the phosphonic acid-based compound was added in the same amount as in Example 1-2, except that the type of the phosphonic acid-based compound added was different, but the acidity was higher.
  • the reason for this higher acidity is that the butylphosphonic acid added in Example 1-1 has a shorter chain length than the hexylphosphonic acid added in Example 1-2, so even if added in the same amount, it is acidic at a relatively higher molar ratio compared to XDI. This is because energy is provided.
  • the oligomer content in the isocyanate composition was determined by performing gel permeation chromatography (GPC) analysis on the isocyanate composition according to the following conditions to obtain a molecular weight distribution curve (GPC curve) for the isocyanate composition (x-axis: weight average molecular weight (M ) logarithmic value (log M), Y-axis: molecular weight distribution (dwt/dlog M) for the logarithmic value) was obtained, and the area ratio of the fraction corresponding to the oligomer was expressed as a percentage compared to the total area of the GPC curve. . oligomer content (%) was calculated according to Equation 3 below.
  • D is the total area under the curve in the molecular weight distribution curve (GPC curve) obtained through gel permeation chromatography analysis of the isocyanate composition
  • E is the area of the peak corresponding to the oligomer in the molecular weight distribution curve for the isocyanate composition.
  • the total area of the GPC curve and the area of the fraction corresponding to the oligomer are each obtained through integration.
  • the oligomer refers to a polymer with a weight average molecular weight (Mw) of 600 to 2000 g/mol, and the fraction corresponding to the oligomer in the GPC curve is 19.42 ⁇ logMw ⁇ 22.18.
  • Oligomer content increase rate (%) [(C f -Ci)/Ci] ⁇ 100
  • Ci is the oligomer content (%) in the isocyanate composition immediately after production
  • C f is the content (%) of oligomers in the isocyanate composition after storage at 5°C for 12 weeks in a nitrogen atmosphere, specifically, an atmosphere of 100% by volume nitrogen filled with nitrogen with a purity of 99.999%, and the Ci and C f are Each is a calculated value according to Equation 3 above.
  • Example 2 In Experimental Example 2, Examples 1-1 to 1-3 and Comparative Example 1 were refrigerated for 12 weeks at a temperature of 5°C under a nitrogen atmosphere, specifically an atmosphere of 100% by volume nitrogen filled with 99.999% purity nitrogen.
  • APHA was measured under the following measurement conditions according to the method of ASTM D1209 using HunterLab's Ultrascan Pro. The results are shown in Table 3 below. The smaller the APHA value, the better the discoloration resistance.
  • the isocyanate composition of the example showed excellent discoloration resistance at a level equivalent to or higher than that of the comparative example.
  • a PTFE filter 25 mm Diameter Syringe Filter, manufactured by Whatman
  • the time (min) required for filtration was measured using and the effect of improving workability was evaluated from the results.
  • Filtration time refers to the time from when 200 g of the polymerization composition passes through the filter until the passage is completed.
  • isocyanate composition of Comparative Example 1-5 was not suitable for producing a composition for polymerization due to the generation of precipitates, so it was not processed.
  • YI Yellowness Index
  • the isocyanate composition of Comparative Example 1-3 had an increased viscosity, making it difficult to manufacture a composition for polymerization, and as a result, a lens could not be manufactured.
  • the isocyanate composition of Comparative Example 1-5 was not suitable for producing a composition for polymerization due to the generation of precipitates, so lens production was not carried out.
  • the lens manufactured using the polymerization composition of the example showed a lower YI value compared to the comparative example, and thus had a better discoloration inhibition effect.
  • the lenses of Comparative Examples 2-4 and 2-6 using phosphate-based compounds showed high YI, and in particular, the lenses of Comparative Example 2-4 using Bis(2-ethylhexyl) phosphate showed white lines. A defect occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명에서는 이소시아네이트계 화합물과 함께 특정 구조의 포스폰산계 화합물을 포함함으로써, 보관 안정성이 향상되어 변색 및 백탁 발생이 억제되고, 또 필터 시간 단축 등 개선된 작업성을 나타낼 수 있으며, 제품 적용시 투명성을 개선시킬 수 있는 이소시아네이트 조성물이 제공된다.

Description

이소시아네이트 조성물
관련 출원(들)과의 상호 인용
본 출원은 2022년 8월 31일자 한국 특허 출원 제10-2022-0109625호 및 2023년 8월 2일자 한국 특허 출원 제10-2023-0101106호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 보관 안정성이 향상되어 변색 및 백탁 발생이 억제되고, 또 필터 시간 단축 등 개선된 작업성을 나타낼 수 있는 이소시아네이트 조성물에 관한 것이다.
이소시아네이트계 화합물은 화학 공업, 수지 공업 분야뿐만 아니라, 광학 재료를 비롯한 정밀 화학 제품으로 활용 가치가 높은 화합물이다. 이소시아네이트계 화합물의 대표적인 예인 자일릴렌 디이소시아네이트(xylylene diisocyanate, 이하 XDI)는 고급 광학 렌즈의 원료로서 고부가 가치 화학 소재로 수요가 증가하고 있다.
그러나, 이소시아네이트계 화합물은 높은 반응성을 나타내기 때문에, 저장 과정에서 대기 중의 수분과 반응하여 변색되거나 또는 백탁이 발생되기 쉽다. 또 이소시아네이트계 화합물을 장기 보관할 경우에는 자기 중합에 의해 다이머(dimer) 이상의 올리고머(oligomer)를 형성함으로써, 변색 또는 백탁이 발생된다.
이소시아네이트계 화합물은 폴리우레탄의 원료로서, 코팅, 점/접착제, 도료, 폼, 및 광학 재료 등으로 다양하게 사용되고 있는데, 이와 같이 변색 또는 백탁 현상이 발생된 이소시아네이트계 화합물을 이용하여 폴리우레탄 렌즈를 제조할 경우, 중합액 분자량의 급격한 증가로 인해 교반력 저하, 필터 시간 증가, 필터 막힘 등이 발생하여 작업성이 저하되고, 또 제조된 렌즈의 투명성 저하 및 변색이 발생하는 문제가 있다.
이를 해결하기 위하여, 질소 가스로 충진 또는 시일(seal)하여 공기와 차단하여 제조하고 보관하는 방법이 이용되고 있지만, 이소시아네이트계 화합물을 완전 소진할 때 까지는 여전히 변색 및 백탁의 우려가 있다.
또 이소시아네이트계 화합물에 대해 안정제를 처방하는 방법도 제안되었으나, 첨가된 안정제가 이후 제품 제조시 착색의 원인이 되거나 또는 이소시아네이트계 화합물의 안정성을 저하시키는 문제가 있었다.
이에, 보관 안정성의 개선으로 장기 보관 시에도 변색 또는 백탁 발생의 우려가 없고, 또 제품 제조시 개선된 작업성을 나타낼 수 있는 이소시아네이트 조성물의 제조에 대한 연구가 필요하다.
본 발명은 보관 안정성이 향상되어 변색 및 백탁 발생이 억제되고, 결과 제품 적용시 투명성을 향상시킬 수 있으며, 또 필터 시간 단축 등 개선된 작업성을 나타낼 수 있는 이소시아네이트 조성물을 제공하는 것을 목적으로 한다.
이에, 본 발명에 따르면, 이소시아네이트계 화합물 및 하기 화학식 1로 표시되는 포스폰산계 화합물을 포함하는, 이소시아네이트 조성물을 제공한다:
[화학식 1]
Figure PCTKR2023011389-appb-img-000001
상기 화학식 1에서,
R은 C1-20 알킬, C6-20 아릴, C7-30 알킬아릴, 또는 C7-30 아릴알킬이다.
또 본 발명에 따르면 상기 이소시아네이트 조성물; 및 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;을 포함하는 중합용 조성물이 제공된다.
또한, 본 발명에 따르면, 상기 이소시아네이트 조성물;과 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;이 중합된 중합체를 포함하는 물품, 특히 광학 렌즈가 제공된다.
본 발명에 따른 이소시아네이트 조성물은, 보관 안정성이 향상되어 변색 및 백탁 발생이 억제되고, 결과 제품 적용시 투명성을 개선시킬 수 있다.
또 상기 이소시아네이트 조성물은 필터 시간 단축 등 개선된 작업성을 나타낼 수 있다.
또, 상기 이소시아네이트 조성물을, 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상과 중합 반응시켜 제조한 중합체 또한 우수한 투명성을 나타내어, 광학용 점착제, 광학용 접착제, 광학 렌즈 등의 물품, 특히 광학 렌즈의 제조에 유용하다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 별도로 언급하지 않는 한, 상온(ordinary temperature)은 통상 실험실 온도인 23±5℃를 의미하고, 상압은 통상 실험실 압력인 1±0.05atm을 의미한다.
또, 본 명세서에서 별도로 언급하지 않는 한, 질소 분위기는 분위기 가스 내 질소가 포함되어 존재함을 의미하며, 구체적으로는 분위기 가스 중 질소 농도가 0부피% 초과이고 100부피% 이하인 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 상세히 설명한다.
본 발명자들은 이소시아네이트계 화합물의 장기 보관 시 이소시아네이트계 화합물의 자기 중합에 의해 발생되는 올리고머의 증가 속도를 억제하고, 또 렌즈 제조시 개선된 작업성을 나타낼 수 있는 이소시아네이트 조성물에 대하여 연구하였으며, 그 결과 이소시아네이트계 화합물과 함께 포스폰산계 화합물(phosphonic acid-based compound)을 사용할 경우 이소시아네이트계 화합물의 올리고머화 속도를 감소시킬 수 있고, 결과 상기 올리고머에 의해 초래되는 변색 및 백탁을 억제할 수 있으며, 또 렌즈 제조시 필터 시간을 단축하여 작업성을 개선시킬 수 있음을 확인하고 본 발명을 완성하였다.
구체적으로, 본 발명에 따른 이소시아네이트 조성물은, 이소시아네이트계 화합물, 및 하기 화학식 1로 표시되는 포스폰산계 화합물을 포함한다:
[화학식 1]
Figure PCTKR2023011389-appb-img-000002
상기 화학식 1에서,
R은 C1-20 알킬, C6-20 아릴, C7-30 알킬아릴, 또는 C7-30 아릴알킬이다.
본 발명에 있어서, 상기 포스폰산계 화합물은 상기 화학식 1에서 R이 H인 포스폰산(phosphonic acid)은 포함하지 않는다.
구체적으로 본 발명에 있어서 포스폰산계 화합물은, 상기 화학식 1에서, R이 C1-18 알킬, C6-18 아릴, C7-18 알킬아릴, 또는 C7-18 아릴알킬인 화합물일 수 있으며, 보다 더 구체적으로는 R이 C1 이상, 또는 C4 이상이고, C18 이하, 또는 C10 이하, 또는 C6 이하의 알킬인 화합물일 수 있다.
상기 포스폰산계 화합물의 구체적인 예로는, 부틸 포스폰산(Butylphosphonic acid), 헥실 포스폰산(Hexylphosphonic acid), 메틸 포스폰산(Methylphosphonic acid), 또는 옥타데실 포스폰산(Octadecylphosphonic acid) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
이소시아네이트 조성물의 산도가 높을수록 이소시아네이트의 반응 속도가 감소하고, 결과로서 이소시아네이트의 올리고머화가 지연 또는 억제될 수 있다.
상기 포스폰산계 화합물은 이소시아네이트 조성물의 제조시, 알코올과 반응하여 유리하는 산 성분을 제공한다. 이에 따라 이소시아네이트 조성물의 산도를 증가시키고, 결과로서, 이소시아네이트의 반응 속도 및 올리고머화를 지연 또는 억제하고, 또 올리고머에 의해 초래되는 변색 및 백탁을 억제할 수 있다.
또, 상기 포스폰산계 화합물은 이소시아네이트 조성물의 점도 증가를 억제하여, 렌즈 제조시 필터 시간을 단축할 수 있다.
상기 포스폰산계 화합물은, 포스폰산(phosphonic acid, HPO(OH)2) 및 아인산(phosphorous acid, P(OH)3)와 비교하여, 반응성의 차이로 인해 보관 안정성 면에서 보다 우수한 효과를 나타낼 수 있다.
또, 인산(phosphoric acid, H3PO4(또는 PO(OH)3))은 지나치게 높은 반응성으로 인해 이소시아네이트 조성물 제조시 석출물을 발생시키고, 결과로서 이를 이용한 폴리이소시아네이트의 제조가 어렵지만, 상기 포스폰산계 화합물은 적정 수준의 반응성을 나타내어 석출물 발생의 우려가 없다.
또, 인산 에스테르(phosphoric acid ester)는 이소시아네이트 조성물에 대해 산도 증가의 효과를 일부 나타낼 수 있으나, 중합용 조성물의 점도를 증가시키고, 결과 렌즈 제조시 필터 막힘을 초래하는 문제가 있다. 반면, 상기 포스폰산계 화합물은 점도 증가의 우려가 없다.
또 상기 포스폰산계 화합물은 250℃ 이상, 보다 구체적으로는 250 내지 400℃, 또는 260 내지 350℃의 높은 비점을 갖는다. 이에 따라, 이소시아네이트계 화합물의 안정성을 높여 생산 수율 및 제품 품질을 향상시킬 수 있다.
한편, 이소시아네이트 조성물의 산도(Acidity)(as HCl)(ppm)는 실온(23±5℃)에서 알코올과 반응해 유리하는 산 성분의 양을 HCl로 환산한 후, 이소시아네이트계 화합물의 총 중량에 대한 상대적인 중량비로 나타낸 값이다. 본 발명에 따른 이소시아네이트 조성물에서의 산도는 포스폰산계 화합물 유래의 산성기 함량에 따라 결정된다. 이에 따라 포스폰산계 화합물의 종류 및/또는 투입량 제어를 통해 산도를 조절할 수 있으며, 산도 범위의 최적화를 통해 상기 포스폰산계 화합물 사용에 따른 효과를 더욱 증진시킬 수 있다.
구체적으로, 본 발명에 따른 이소시아네이트 조성물은 산도가 500ppm 이하일 수 있다.
이소시아네이트 조성물의 산도가 높을수록 이소시아네이트의 반응 속도가 감소하고, 결과 이소시아네이트의 올리고머화가 지연 또는 억제될 수 있지만, 산도가 지나치게 높으면 오히려 이소시아네이트의 반응 속도가 지나치게 느려져 폴리이소시아네이트의 중합 및 렌즈 등의 제품 제조시 사용이 어려울 수 있다. 또, 과량의 포스폰산계 화합물 사용에 따른 이소시아네이트 반응 속도 지연을 보완하기 위해 과량의 촉매 사용이 필요한데, 이 경우 과량의 촉매로 인한 반응 효율성 감소, 물성 저하, 그리고 이소시아네이트 조성물의 변색 및 백탁에 따른 제품 품질의 저하가 발생할 수 있다.
이에 상기 포스폰산계 화합물은 이소시아네이트 조성물의 산도가 500ppm 이하가 되도록 하는 양으로 투입될 수 있으며, 보다 구체적으로는 500ppm 이하 또는 450ppm 이하, 또는 400ppm 이하, 또는 350ppm 이하, 또는 320ppm 이하가 되도록 투입될 수 있다. 한편, 포스폰산계 화합물 투입에 따른 산도 증가 등의 효과를 충분히 구현하기 위해서는 상기 포스폰산계 화합물은 이소시아네이트 조성물의 산도가 100ppm 이상, 또는 150ppm 이상, 또는 180ppm 이상, 또는 185ppm 이상, 또는 200ppm 이상, 또는 270ppm 이상, 또는 300ppm 이상이 되도록 투입될 수 있다.
본 발명에 있어서 산도는, 구체적으로, 이소시아네이트 조성물에 대해 0.01N 수산화칼륨(KOH) 메탄올 용액으로 전위차 적정을 수행하고, 결과로 수득한 측정값을 이용하여 이하 수학식 1에 따라 산출하였다. 측정 방법이 조건은 이하 실험예에서 상세히 설명한다.
[수학식 1]
산도(as HCl)(ppm)=[(A-B)×N×f×36.5×106]/(C×103)
상기 수학식 1에서,
A: 이소시아네이트 조성물 시료의 적정에 소모된 KOH 메탄올 용액의 부피(㎖)
B: 공시험 적정에 소모된 KOH 메탄올 용액의 부피(㎖)
C: 이소시아네이트 조성물 시료의 중량(g)
N: KOH 메탄올 용액의 노르말 농도
f: 측정시 사용하는 KOH 메탄올 용액의 노르말 농도가 변화될 경우 0.01N KOH 메탄올 용액과 동일하도록 보정하는 factor로서, ASTM D-1638, TOLOCHIMIE 04-01-68 에 따라 측정한다. 0.01N KOH 메탄올 용액의 경우 f 값은 1이다
보다 구체적으로, 본 발명에 따른 이소시아네이트 조성물에 있어서, 상기 포스폰산계 화합물은 상기한 산도 범위를 충족하는 조건 하에, 이소시아네이트계 화합물 총 중량에 대하여 100 내지 3,000ppm의 양으로 포함될 수 있다. 상기한 함량 범위 내일 때, 이소시아네이트 조성물이 상기한 범위 내의 산도를 나타내어 최적 범위로 올리고머화 속도 지연의 효과를 구현할 수 있다. 보다 더 구체적으로는 상기 포스폰산계 화합물은 이소시아네이트계 화합물 총 중량에 대하여 100ppm 이상, 또는 500ppm 이상, 또는 800ppm 이상, 또는 1000ppm 이상이고, 3,000ppm 이하, 또는 2500ppm 이하, 또는 2000ppm 이하, 또는 1500ppm 이하의 양으로 포함될 수 있다.
한편, 상기 이소시아네이트 조성물에 있어서, 이소시아네이트계 화합물은 분자내 이소시아네이트기를 1개 이상, 또는 2개 이상, 또는 2개 내지 4개 포함하는 단체 화합물(monomer)이다. 보다 구체적으로는 상기 이소시아네이트계 화합물은 분자내 이소시아네이트를 2개 포함하는 디이소시아네이트 화합물이다.
상기 디이소시아네이트 화합물의 구체예로는 1,5-펜타메틸렌 디이소시아네이트, 톨루엔 디이소시아네이트, 메틸렌 디페닐 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트, 1,4-사이클로헥실렌 디이소시아네이트, 이소포론 디이소시아네이트, o-자일릴렌 디이소시아네이트, m-자일릴렌 디이소시아네이트, 또는 p-자일릴렌 디이소시아네이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 화합물들 중에서도 상기 이소시아네이트계 화합물로는 o-자일릴렌 디이소시아네이트, m-자일릴렌 디이소시아네이트, p-자일릴렌 디이소시아네이트 또는 이들의 혼합물이 사용될 수 있다.
한편, 상기 이소시아네이트 조성물은, 페놀계 안정제를 더 포함할 수 있다.
일반적으로 이소시아네이트 조성물에서의 변색 및 백탁은 이소시아네이트의 올리고머화 외에도, 분자내 벤젠 고리의 퀴노이드(Quinoid)화, 또는 합성 및 정제 과정에서 산소나 수분, 또는 고열로 인해 생성된 부가 생성물로 인해 발생한다. 상기 페놀계 안정제는 라디칼 포착 반응에 의해 상기한 부반응들을 억제함으로써, 이소시아네이트 조성물의 착색과 백탁을 방지할 수 있다.
본 발명에 따른 이소시아네이트 조성물은 상기 페놀계 안정제를 이소시아네이트계 화합물 총 중량에 대하여 5 내지 1000ppm의 양으로 포함한다. 상기한 함량 범위로 포함할 경우, 충분한 변색 또는 백탁 방지 효과를 구현할 수 있다. 보다 구체적으로는 이소시아네이트계 화합물 총 중량에 대하여 5ppm 이상, 또는 8ppm 이상, 또는 10ppm 이상이고, 1000ppm 이하, 또는 500 ppm 이하, 또는 200 ppm 이하, 또는 100 ppm 이하, 또는 50ppm 이하, 또는 30ppm 이하, 또는 20ppm 이하의 양으로 포함함으로써 보다 증진된 착색 및 백탁 억제 효과를 구현할 수 있다.
상기 페놀계 안정제는 구체적으로 분자내 페놀 구조를 포함하는 페놀 또는 그 유도체이다. 구체적인 예로는 페놀; 또는 디부틸하이드록시톨루엔(BHT), t-부틸하이드로퀴논(t-Butylhydroquinone; TBHQ) 부틸하이드록시아니솔(Butylhydroxyanisol; BHA), 펜타에리트리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트](Irganox 1010, BASF 사제), 티오디에틸렌 비스[3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트](Irganox 1035, BASF 사제), 옥타데실-3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트(Irganox 1076, BASF 사제), N,N'-헥산-1,6-디일비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드](Irganox 1098, BASF 사제), 벤젠 프로판산 3,5-비스(1,1-디메틸에틸)-4-하이드록시 C7-C9 곁사슬 알킬 에스테르(Irganox 1135, BASF 사제), 3,3',3",5,5',5"-헥사-tert-부틸-a,a',a"-(메시틸렌-2,4,6-트리일) 트리p-크레졸(Irganox 1330, BASF 사제), 에틸렌 비스(옥시에틸렌) 비스[3-(5-tert-부틸-4-하이드록시-m-톨릴)프로피오네이트](Irganox 245, BASF 사제), 헥사메틸렌 비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트](Irganox 259, BASF 사제), 1,3,5-트리스(3,5-디-tert-부틸-4-하이드록시벤질)-1,3,5-트리아진-2,4,6-(1H,3H,5H)-트리온(Irganox 3114, BASF 사제), 2-[1-(2-하이드록시-3,5-디-tert-펜틸페닐)에틸]-4,6-디-tert-펜틸페닐 아크릴레이트, 2,6-디-tert-부틸-p-크레졸, 2,6-디페닐-4-옥타데실옥시페놀, 스테아릴(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트, 디스테아릴(3,5-디-tert-부틸-4-하이드록시벤질)포스페이트, 티오디에틸렌글리콜 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트], 1,6-헥사메틸렌 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트], 1,6-헥사메틸렌 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드], 4,4'-티오비스(6-tert-부틸-m-크레졸), 2,2'-메틸렌 비스(4-메틸-6-tert-부틸페놀), 2,2'-메틸렌비스(4-에틸-6-tert-부틸페놀), 비스[3,3-비스(4-하이드록시-3-tert-부틸페닐)부티르산]글리콜에스테르, 4,4'-부틸리덴비스(6-tert-부틸-m-크레졸), 2,2'-에틸리덴비스(4,6-디-tert-부틸페놀), 2,2'-에틸리덴 비스(4-sec-부틸-6-tert-부틸페놀), 1,1,3-트리스(2-메틸-4-하이드록시-5-tert-부틸페닐)부탄, 비스[2-tert-부틸-4-메틸-6-(2-하이드록시-3-tert-부틸-5-메틸벤질)페닐]테레프탈레이트, 1,3,5-트리스(3,5-디-tert-부틸-4-하이드록시벤질)-2,4,6-트리메틸벤젠, 테트라키스[메틸렌-3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트]메탄, 2-tert-부틸-4-메틸-6(2-아크릴로일옥시-3-tert-부틸-5-메틸벤질)페놀, 3,9-비스{2-[3-(3-tert-부틸-4-히드록시-5-메틸페닐)프로피오닐옥시]-1,1-디메틸에틸}-2,4,8,10-테트라옥사스피로[5.5]운데칸, 트리에틸렌글리콜 비스[(3-tert-부틸-4-하이드록시-5-메틸페닐)프로피오네이트], 또는 6-[3-(3-tert-부틸-4-하이드록시-5-메틸페닐)프로폭시]-2,4,8,10-테트라-tert-부틸디벤조[d,f][1,3,2]디옥사포스페핀(6-[3-(3-tert-Butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin, SUMILIZER GP, Sumitomo 사제) 등과 같은 입체 장애형 페놀(hindered phenol); 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
이중에서도, 착색 및 백탁 방지를 통한 투명성 개선의 효과 면에서 페놀, 디부틸하이드록시톨루엔, 2-[1-(2-하이드록시-3,5-디-tert-펜틸페닐)에틸]-4,6-디-tert-펜틸페닐 아크릴레이트, 옥타데실-3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트, 6-[3-(3-tert-부틸-4-하이드록시-5-메틸페닐)프로폭시]-2,4,8,10-테트라-tert-부틸디벤조[d,f][1,3,2]디옥사포스페핀 또는 이들의 혼합물이 사용될 수 있다.
또, 상기 이소시아네이트 조성물은, 상기한 이소시아네이트계 화합물이 두 개 이상 결합된 올리고머를 부산물로서 더 포함할 수 있다.
상기 이소시아네이트계 화합물의 올리고머는, 이소시아네이트계 화합물이 두개 결합된 다이머, 세개 결합된 트라이머, 4개 이상, 또는 4개 내지 10개 결합된 것일 수 있다. 상기 올리고머는, 아민 화합물과 포스겐 화합물의 반응에 의한 이소시아네이트계 화합물의 합성 중 부반응에 의해 생성되거나, 또는 합성이 완료된 이소시아네이트 화합물이 높은 반응성으로 자체 중합체를 형성한 것일 수 있다. 이들 올리고머는 이소시아네이트 조성물 자체의 투명도뿐만 아니라, 이소시아네이트 조성물이 사용된 중합용 조성물의 변색 및 백탁을 일으키는 문제가 있으므로, 광학 분야에 사용되는 이소시아네이트 조성물의 경우에는 상기 올리고머의 함량을 저감시킬 필요가 있다. 그러나 상업적 공정에서 올리고머의 함량을 극도로 제어하는 것은 공정 효율 및 비용측면에서 어려움이 있다. 이에 본 발명에 따른 이소시아네이트 조성물은 필연적으로 발생되는 상기 올리고머를 더 포함할 수 있으며, 다만 제조 공정 및 포스폰산의 사용을 통해 그 함량을 제어함으로써 공정성을 유지하면서도 제품의 투명성 및 색 특성을 개선시킬 수 있다.
구체적으로, 상기 이소시아네이트 조성물은 조성물 총 중량 기준 상기 올리고머를 1중량% 이하로 포함할 수 있다.
또, 상기 이소시아네이트 조성물을 전술한 바와 같이 이소시아네이트의 올리고머화 반응 속도를 지연시키는 포스폰산계 화합물을 포함함에 따라 종래 대비 시간의 경과 후에도 올리고머의 함량 및 올리고머의 함량 증가율이 낮다.
구체적으로 상기 이소시아네이트 조성물은 하기 수학식 2에 따라 계산한 올리고머의 함량 증가율이 500% 이하이다. 보다 구체적으로는 350% 이하, 또는 346% 이하, 또는 320% 이하이다. 올리고머의 함량 증가율의 하한은 특별히 한정되지 않지만, 일례로, 100% 이상, 또는 200% 이상, 또는 250% 이상, 또는 300% 이상일 수 있다.
[수학식 2]
올리고머의 함량 증가율(%)=[(Cf-Ci)/Ci]×100
상기 수학식 2에서,
Ci는 제조 직후 이소시아네이트 조성물 내 올리고머 함량(%)이고,
Cf는 질소 분위기, 구체적으로는 질소 충진을 통한 대기 중 질소 100부피%의 조건 하에 5℃에서 12주간 보관한 후, 이소시아네이트 조성물 내 올리고머의 함량(%)이며,
상기 Ci 및 Cf는 하기 수학식 3에 따라 계산한 계산값이다.
한편, 본 발명에서는 상기 질소 충진시 순도 99.999%의 질소를 사용하였다.
[수학식 3]
올리고머 함량 (%) = [E/D] ×100
상기 수학식 3에서,
D는 이소시아네이트 조성물에 대한 겔 투과 크로마토그래피(GPC, Gel Permeation Chromatography) 분석을 통해 수득한 분자량 분포 곡선(GPC curve)에서의 곡선 하 전체 면적이고,
E는 상기 이소시아네이트 조성물에 대한 분자량 분포 곡선에서 올리고머에 해당하는 피크의 면적이다.
상기 겔 투과 크로마토그래피 분석 조건은 후술되는 실험예에 따른다.
또, 상기 이소시아네이트 조성물에 대한 GPC curve의 곡선 하 전체 면적 및 상기 올리고머에 해당하는 분획의 면적은 각각 적분을 통해 구할 수 있다. 이때 상기 올리고머는 중량평균 분자량(Mw)이 600 내지 2000 g/mol인 중합체를 의미이며, 상기 GPC curve에서 올리고머에 해당하는 분획은 19.42 ≤ logMw ≤ 22.18 이다.
보다 구체적으로, 상기 이소시아네이트 조성물은, 질소 분위기, 구체적으로는 질소 충진을 통한 대기 중 질소 100부피%의 조건 하에 5℃에서 12주간 보관한 후, GPC 분석을 통해 산출한 올리고머의 함량, 즉 GPC 올리고머 면적 비율이 1.5% 이하, 또는 1.2% 이하, 또는 1.16% 이하, 또는 1.15% 이하, 또는 1.1% 이하일 수 있다. 올리고머의 함량이 낮을수록 우수한 내변색성을 나타냄을 의미하기 때문에 하한은 특별히 한정되지 않지만, 0% 초과, 또는 0.1% 이상일 수 있다. 본 발명에서는 상기 질소 충진시 순도 99.999%의 질소를 사용하였다.
한편, 본 발명에 있어서, 이소시아네이트 조성물 내 올리고머의 함량은, 상기 이소시아네이트 조성물에 대한 GPC 분석을 통해 중량평균분자량(M)의 로그값(log M)을 x축으로 하고, 상기 로그값에 대한 분자량 분포(dwt/dlog M)를 y축으로 하는 분자량 분포 곡선(GPC curve)을 얻고, 상기 GPC curve의 전체 면적 대비 올리고머에 해당하는 분획의 면적 비율을 백분율로 나타낸 값으로, 상기 수학식 3에 따라 산출할 수 있다. 구체적인 GPC 분석 방법 및 조건은 이하 실험예에서 상세히 설명한다.
이와 같이 이소시아네이트 조성물의 제조 직후 및 제조 이후에도 올리고머의 함량 증가율 및 올리고머의 함량이 낮기 때문에, 이소시아네이트 조성물의 변색 및 백탁 발생을 효과적으로 제어할 수 있다.
상기와 같은 낮은 올리고머 함량으로 인해 상기 이소시아네이트 조성물은 낮은 APHA 값을 나타낸다.
구체적으로, 상기 이소시아네이트 조성물은, 질소 분위기 하에, 구체적으로는 질소 충진을 통한 질소 100부피%의 분위기 하에 5℃에서 12주간 냉장 보관한 후, ASTM D1209에 따라 측정한 APHA값이 9 이하이다. APHA값은 낮을수록 내변색성이 우수함을 의미하기 때문에 하한 값은 한정되지 않지만, 0초과 또는 1 이상일 수 있다. 한편, 본 발명에서는 상기 질소 충진시 순도 99.999%의 질소를 사용하였다.
상기한 이소시아네이트 조성물은, 이소시아네이트계 화합물과 상기 화학식 1로 표시되는 포스폰산계 화합물을 혼합함으로써 제조될 수 있다.
보다 구체적으로 상기 이소시아네이트 조성물은, 아민 또는 그 염을 포스겐과 반응시켜 이소시아네이트계 화합물을 제조하는 단계; 및 상기 이소시아네이트계 화합물을 상기 화학식 1로 표시되는 포스폰산계 화합물과 혼합하는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
상기 아민은 분자 내 아민기를 2개 포함하는 방향족, 지환족, 또는 지방족 디아민이다.
보다 구체적으로 상기 아민은 1,3-자일릴렌 디아민(m-자일릴렌 디아민, m-XDA), 1,4-자일릴렌 디아민(p-자일릴렌 디아민, p-XDA), 1,3-비스(아미노메틸)사이클로헥산, 또는 1,4-비스(아미노메틸)사이클로헥산 등일 수 있으며, 목적하는 디이소시아네이트의 구조에 따라, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 아민의 염은 상기 아민과 산의 반응으로 생성된 염을 의미하며, 예를 들어 아민과 무수 염산의 반응으로 제조된 염산염, 아민과 탄산의 반응으로 제조된 탄산염 등일 수 있다. 아민은 포스겐과 급격히 반응하는 반면, 고체 상태의 염으로 전환시켜 사용하는 경우 반응 속도를 완화시킬 수 있다.
구체적으로, 상기 아민의 염으로는 1,3-자일릴렌 디아민 염산염, 1,4-자일릴렌 디아민 염산염, 1,3-비스(아미노메틸)사이클로헥산 염산염, 1,4-비스(아미노메틸)사이클로헥산 염산염, 1,3-자일릴렌 디아민 탄산염, 및 1,4-자일릴렌 디아민 탄산염, 1,3-비스(아미노메틸)사이클로헥산 탄산염, 또는 1,4-비스(아미노메틸)사이클로헥산 탄산염 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 아민과 산의 반응에 의한 아민 염의 제조는 용매 중에서 수행될 수 있다. 이때 용매로는 벤젠, 톨루엔, 자일렌, 에틸벤젠 등의 방향족 탄화수소 용매; 모노클로로벤젠, 1,2-디클로로벤젠, 1,4-디클로로벤젠 등의 염소화 방향족 탄화수소 용매; 디클로로메탄, 클로로포름, 사염화탄소 등 염소화 탄화수소 용매 등을 사용할 수 있으며, 이들 중 2종 이상을 혼합하여 사용할 수도 있다. 또, 이들 용매는 포스겐화 반응의 용매로도 사용할 수 있으므로, 상기 용매 중에서 아민과 산을 반응시켜 아민 염을 얻은 후, 별도의 정제 과정 없이 포스겐을 투입하여 포스겐화 반응을 수행할 수 있다.
상기 아민 염 제조는 40℃ 이하, 보다 구체적으로는 5 내지 30℃의 온도에서 수행될 수 있다. 또 상기 반응 중 반응열로 인하여 온도가 상승할 수 있으나, 반응기 내 최대 온도가 90 ℃ 이하로 유지되는 것이 바람직하다.
다음으로, 상기 아민 또는 그 염과, 포스겐과의 반응은, 80℃ 이상, 또는 90℃ 이상이면서, 140℃ 이하, 또는 130℃ 이하의 온도 범위에서 수행될 수 있다. 반응 온도가 지나치게 낮으면 고형분이 석출되어 배관이 막히는 등(Plugging)의 문제가 발생할 수 있고, 온도가 지나치게 높으면 포스겐 분해 등의 부반응 문제가 있을 수 있으므로, 상기 온도 범위에서 수행하는 것이 바람직하다.
또, 상기 아민 또는 그 염과, 포스겐과의 반응은 유기 용매 중에서 수행될 수 있다.
상기 유기 용매는 방향족 탄화수소계 유기 용매 및 에스테르계 유기 용매 중 적어도 하나를 포함하는 것일 수 있다.
상기 방향족 탄화수소계 유기 용매는 구체적으로, 모노클로로벤젠, 1,2-디클로로벤젠, 또는 1,2,4-트리클로로벤젠 등과 같은 할로겐화 방향족 탄화수소계 유기 용매일 수 있다.
또, 상기 에스테르계 유기 용매는 구체적으로, 아밀 포르메이트, n-부틸 아세테이트, 이소부틸 아세테이트, n-아밀 아세테이트, 이소아밀 아세테이트, 메틸이소아밀 아세테이트, 메톡시부틸 아세테이트, sec-헥실 아세테이트, 2-에틸부틸 아세테이트, 2-에틸헥실 아세테이트, 시클로헥실 아세테이트, 메틸시클로헥실 아세테이트, 벤질 아세테이트, 에틸 프로피오네이트, n-부틸 프로피오네이트, 이소아밀 프로피오네이트, 에틸 아세테이트, 부틸 스테아레이트, 부틸 락테이트 또는 아밀 락테이트 등과 같은 지방산 에스테르; 및 메탈살리실레이트, 디메틸 프탈레이트 또는 메틸 벤조에이트 등과 같은 방향족 카르복실산 에스테르일 수 있다.
보다 구체적으로, 상기 유기 용매는 상기한 방향족 탄화수소계 유기 용매 및 에스테르계 유기 용매 중에서도 100℃ 이상, 혹은 100 내지 200℃의 비점을 갖는 방향족 탄화수소계 유기 용매 및 에스테르계 유기 용매 중 적어도 하나를 포함하는 것일 수 있다.
이와 같이 유기 용매 중에서 포스겐화 반응이 수행되는 경우, 상기 아민 또는 그 염은 20 부피% 이하의 농도, 예를 들어 1 내지 20 부피%, 또는 5 내지 20 부피%의 농도로 사용될 수 있다. 아민 또는 그 염의 농도가 20 부피%를 초과할 경우, 다량의 아민 염이 석출될 우려가 있다.
또 상기 아민 또는 그 염과 포스겐과의 반응시, 하기 화학식 2로 표시되는 화합물이 선택적으로 더 투입될 수 있다.
[화학식 2]
Figure PCTKR2023011389-appb-img-000003
상기 화학식 2에서
R1 내지 R4는 각각 독립적으로, 치환 또는 비치환된 C1-12 알킬기, 치환 또는 비치환된 C3-12 사이클로알킬기, 또는 치환 또는 비치환된 C6-12 아릴기이고,
X는 수소, 히드록시 또는 아세트아미도이고,
Y는 옥실, 치환 또는 비치환된 C1-12 알콕시, 또는 치환 또는 비치환된 C6-12 아릴옥시이다.
상기 화학식 2로 표시되는 화합물은 포스겐화 반응 중 아민 또는 중간 생성물인 카바모일 클로라이드의 수소를 탈락시켜 정반응을 촉진하고 부반응을 억제함으로써, 부산물인 에틸벤질이소시아네이트(EBI), 클로로메틸벤질이소시아네이트(CMBI)와 같은 모노이소시아네이트의 발생을 억제하는 역할을 한다.
보다 구체적으로, 상기 화학식 2로 표시되는 화합물은, 상기 화학식 2에서 R1 내지 R4가 각각 독립적으로, C1-12 알킬이고, X는 수소, 히드록시 기 또는 아세트아미도기며, Y는 옥실(O·)인 화합물일 수 있다.
구체예로는, 2,2,6,6-테트라메틸피페리딘-1-옥실(TEMPO), 4-히드록시-2,2,6,6-테트라메틸피페리딘 1-옥실(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl; 이하 4-hydroxy TEMPO라함), 또는 4-아세트아미도-2,2,6,6-테트라메틸피페리딘 1-옥실 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 화학식 2로 표시되는 화합물은, 아민 또는 그 염 100몰 기준 0.05 내지 2몰의 비로 사용될 수 있다. 보다 구체적으로는 0.05몰 이상, 또는 0.1몰 이상, 또는 0.15몰 이상이고, 2몰 이하, 또는 1몰 이하, 또는 0.8몰 이하의 비로 사용될 수 있다. 상기 함량 범위로 사용되는 경우, 디이소시아네이트의 올리고머 발생을 최소화하고, 디이소시아네이트를 고순도, 고수율로 합성할 수 있어 바람직하다.
상기한 포스겐화 반응의 결과로 형성되는 이소시아네이트는, 용매, 미반응 포스겐 및 부산물이 염화수소가 함께 혼합된 혼합물 상태로 수득된다. 이에 따라 상기 반응 혼합물로부터 이소시아네이트 화합물을 고순도로 분리하기 위한 정제 공정, 증류를 통한 용매 제거 공정, 미반응된 포스겐과 염화수소 가스에 대한 질소 버블링 등을 통한 제거 공정 중 1 이상이 수행될 수 있다.
상기 정제 단계는 이소시아네이트 화합물의 정제에 사용되는 통상의 방법으로 수행될 수 있으며, 일례로 감압 증류 및/또는 박막 증류에 의해 수행될 수 있다.
다만, 이소시아네이트 화합물의 정제 공정시 지나치게 고온 조건에서 이루어지거나, 정제 단계의 시간이 증가하는 경우, 이소시아네이트 화합물의 안정성이 크게 저하될 수 있고, 또 지나치게 저온에서 수행될 경우 공정 효율이 저하될 수 있다. 이에 따라 상기 정제 단계는 100 내지 170 ℃의 온도에서, 5 시간 내지 16시간 동안 수행되는 것이 바람직하다. 정제 단계의 최고 온도가 170℃를 초과하거나, 정제 단계의 체류 시간이 16시간을 초과하는 경우, 제조된 이소시아네이트가 과도한 열을 흡수하여 안정성이 낮아질 수 있다.
다음으로 수득한 이소시아네이트 화합물을 상기 화학식 1로 표시되는 포스폰산계 화합물과 혼합하여 이소시아네이트 조성물을 제조한다.
상기 혼합 공정은 통상의 방법에 따라 수행될 수 있으며, 혼합되는 상기 포스폰산계 화합물의 종류 및 사용량은 앞서 설명한 바와 같다.
또 상기 혼합 공정시 이소시아네이트 조성물에 사용되는 첨가제가 더 투입될 수 있다. 일례로 앞서 설명한 바와 같이 이소시아네이트 조성물의 보관 안정성 개선을 위한 페놀계 안정제가 더 첨가될 수 있다. 상기 페놀계 안정제의 종류 및 사용량은 앞서 설명한 바와 같다.
상술한 본 발명의 제조방법에 의하여 제조된 이소시아네이트 조성물은 보관 안정성이 우수하고 투명도가 높기 때문에, 광학 물품을 제조하기 위한 중합용 조성물에 적합하게 사용될 수 있다.
이에 본 발명에 따르면, 상기한 이소시아네이트 조성물과 함께, 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;을 포함하는 중합용 조성물이 제공된다.
상기 중합용 조성물은, 상기 이소시아네이트 조성물과; 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;을 혼합한 상태로 포함할 수도 있고, 서로 분리된 상태로 포함할 수도 있다. 즉, 상기 중합용 조성물 내에서, 상기 이소시아네이트 조성물과, 다가 싸이올계 화합물, 다가 알코올계 화합물 또는 다가 에피설파이드계 화합물은 서로 접촉하여 배합된 상태이거나, 또는 서로 접촉하지 않도록 분리된 상태일 수 있다.
상기 중합용 조성물에 있어서, 다가 싸이올계 화합물은 1 분자 중에 싸이올기(-SH)를 2개 이상 함유하는 화합물로서, 구체적으로는 분자내 2개 이상, 혹은 3개 이상이고, 8개 이하, 혹은 5개 이하의 싸이올기를 갖는 화합물일 수 있다.
상기 다가 싸이올계 화합물 화합물은, 예를 들어, 2,3-비스(2-설파닐에틸설파닐)프로판-1-싸이올(2,3-bis(2-sulfanylethylsulfanyl)propane-1-thiol), 1,9-디메르캅토-3,7-디티아노난(1,9-dimercapto-3,7-dithianonane), 1,13-디메르캅토-3,7,11-트리티아트리데칸(1,13-dimercapto-3,7,11-trithiatridecane), 글리콜 디(3-메르캅토 프로피오네이트)(glycol di(3-mercaptopropionate)), 1,4-디티안-2,5-디일메탄싸이올(1,4-Dithiane-2,5-diyldimethanethiol), 2-메르캅토메틸-1,5-디메르캅토-3-티아펜탄(2-mercaptomethyl-1,5-dimercapto-3-thiapentane), 트리메틸올프로판 트리(3-메르캅토프로피오네이트) (trimethylolpropane tri(3-mercaptopropionate)), 4,8-디 (메르캅토메틸)-1,11-디메르캅토-3,6,9-트리티아운데칸(4,8-di(mercaptomethyl)-1,11-dimercapto-3,6,9-trithiaundecane), 5,9-디(메르캅토에틸)-1,12-디메르캅토-3,7,10-트리티아도데칸(5,9-di(mercaptoethyl)-1,12-dimercapto-3,7,10-trithiadodecane), 펜타에리트리톨 테트라(3-메르캅토프로피오네이트)(pentaerythritol tetra(3-mercaptopropionate)), 펜타에리트리톨 테트라(메르캅토아세테이트)(pentaerythritol tetra(mercaptoacetate)), 3,6,9,12-테트라티아테트라데칸-1,14-디싸이올(3,6,9,12-Tetrathiatetradecane-1,14-dithiol), 3,6,10,13-테트라티아펜타에칸-1,8,15-트리싸이올(3,6,10,13-Tetrathiapentadecane-1,8,15-trithiol)로 이루어진 군으로부터 선택되는 1종 이상 일 수 있다.
또, 상기 다가 알코올계 화합물은 1 분자 중에 히드록시기를 2개 이상 포함하는 화합물로서, 구체적으로는 분자내 2개 이상, 혹은 3개 이상이고, 8개 이하, 혹은 4개 이하의 히드록시기를 갖는 화합물일 수 있다. 구체적인 예로는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,2-프로판디올, 1,3-프로판디올, 1,2-부탄디올, 2-메틸-2,3-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 등의 2가 알코올; 글리세롤, 트리메틸올에탄, 트리메틸올프로판(TMP) 등의 3가 알코올; 디글리세린, 디트리메틸올프로판, 펜타에리스리톨, 디펜타에리스리톨, 등의 4가 알코올; L-아라비니톨, 리비톨, 자일리톨 등의 5가 알코올; D-글루시톨, D-만니톨, 갈락티톨 등의 6가 알코올, 트레할로스 등의 7가 알코올; 슈크로스, 말토스 등의 8가 알코올, 또는 저분자량 폴리올 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 다가 에피설파이드계 화합물은 분자 내 2 이상의 에피설파이드, 즉 티오에폭시 기를 포함하는 화합물일 수 있고, 지방족, 지환족, 또는 방향족 골격을 가질 수 있다. 일 예에 따르면, 상기 다가 에피설파이드계 화합물은 비스(β-에피티오프로필티오)메탄, 1,2-비스(β-에피티오프로필티오)에탄, 1,3-비스(β-에피티오프로필티오)프로판, 1,2-비스(β-에피티오프로필티오)프로판, 1-(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)프로판, 1,4-비스(β-에피티오프로필티오)부탄, 1,3-비스(β-에피티오프로필티오)부탄, 1-(β-에피티오프로필티오)-3-(β-에피티오프로필티오메틸)부탄, 1,5-비스(β-에피티오프로필티오)펜탄, 1-(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)펜탄, 1,6-비스(β-에피티오프로필티오)헥산, 1-(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)헥산, 1-(β-에피티오프로필티오)-2-[(2-β-에피티오프로필티오에틸)티오]에탄, 1-(β-에피티오프로필티오)-2-[[2-(2-β-에피티오프로필티오에틸)티오에틸]티오]에탄, 테트라키스(β-에피티오프로필티오메틸)메탄, 1,1,1-트리스(β-에피티오프로필티오메틸)프로판, 1,5-비스(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)-3-티아펜탄, 1,5-비스(β-에피티오프로필티오)-2,4-비스(β-에피티오프로필티오메틸)-3-티아펜탄, 1-(β-에피티오프로필티오)-2,2-비스(β-에피티오프로필티오메틸)-4-티아헥산, 1,5,6-트리스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3-티아헥산, 1,8-비스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,4-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,4,5-트리스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,9-비스(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)-5-[(2-β-에피티오프로필티오에틸)티오메틸]-3,7-디티아노난, 1,10-비스(β-에피티오프로필티오)-5,6-비스[(2-β-에피티오프로필티오에틸)티오]-3,6,9-트리티아데칸, 1,11-비스(β-에피티오프로필티오)-4,8-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-[(2-β-에피티오프로필티오에틸)티오메틸]-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-4,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,3-비스(β-에피티오프로필티오)시클로헥산, 1,4-비스(β-에피티오프로필티오)시클로헥산, 1,3-비스(β-에피티오프로필티오메틸)시클로헥산, 1,4-비스(β-에피티오프로필티오메틸)시클로헥산, 비스[4-(β-에피티오프로필티오)시클로헥실]메탄, 2,2-비스[4-(β-에피티오프로필티오)시클로헥실]프로판, 비스[4-(β-에피티오프로필티오)시클로헥실] 설피드, 2,5-비스(β-에피티오프로필티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸티오메틸)-1,4-디티안, 1,3-비스(β-에피티오프로필티오)벤젠, 1,4-비스(β-에피티오프로필티오)벤젠, 1,3-비스(β-에피티오프로필티오메틸)벤젠, 1,4-비스(β-에피티오프로필티오메틸)벤젠, 비스[4-(β-에피티오프로필티오)페닐]메탄, 2,2-비스[4-(β-에피티오프로필티오)페닐]프로판, 비스[4-(β-에피티오프로필티오)페닐] 설피드, 비스[4-(β-에피티오프로필티오)페닐] 술폰, 및 4,4'-비스(β-에피티오프로필티오)비페닐에서 선택되는 1종 이상을 포함할 수 있다.
상기 중합용 조성물에 있어서, 상기 이소시아네이트 조성물 내의 이소시아네이트 화합물과 다가 싸이올계 화합물 내 싸이올기 간의 티오우레탄화 반응으로 폴리티오우레탄이 제조된다. 이에 따라, 상기 다가 싸이올은 이소시아네이트 화합물과의 티오우레탄화 반응, 그리고 점도 등 제조되는 폴리티오우레탄에서 구현하고자 하는 물성과 용도 등을 고려하여 그 사용량을 적절히 결정하는 것이 바람직할 수 있다. 일례로 상기 다가 싸이올계 화합물은, 이소시아네이트 화합물에서의 이소시아네이트기 1몰에 대하여 다가 싸이올계 화합물 내 싸이올기의 몰비가 0.8 이상, 혹은 0.9 이상이고, 1.1 이하, 혹은 1.0이 되도록 하는 양으로 투입될 수 있다. 상기 몰비 범위로 사용될 경우, 과잉의 이소시아네이트기로 인한 중합체의 점도 및 이에 따른 가공성 저하를 방지할 수 있고, 또 과잉의 싸이올기로 인한 중합체의 변색 발생을 방지할 수 있다.
또, 상기 중합용 조성물은 필요에 따라, 내부 이형제, 자외선 흡수제, 우레탄 반응 촉매, 중합개시제, 열안정제, 색상보정제, 사슬연장제, 가교제, 광안정제, 충전제, 감광제 등의 첨가제를 더 포함할 수 있으며, 그 함량은 조성물의 변색 및 변색 억제 특성을 저해하지 않는 범위 내에서 적절히 결정될 수 있다.
일례로 상기 중합용 조성물은, 이후 제품 성형시 몰드와의 이형성 개선을 위하여 내부 이형제를 더 포함할 수 있다.
상기 내부 이형제로는 구체적으로 인산 에스테르(phosphate )계 이형제, 알킬 인산에스테르(alkyl phosphate release )계 이형제, 지방산 에스테르(fatty acid ester )계 이형제 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 인산 에스테르계 이형제가 바람직하게 사용될 수 있다.
상기 인산 에스테르계 이형제로는 ZELEC™ UN (Stepan Company 사제)와 같은 제품을 상업적으로 입수하여 사용할 수도 있다.
상기 내부 이형제는 중합용 조성물 총 중량에 대하여 0.01중량% 이상, 또는 0.05중량% 이상이고, 10중량% 이하, 또는 5중량% 이하의 양으로 포함될 수 있다.
또 다른 일례로, 상기 중합용 조성물은 자외선 흡수제를 더 포함할 수 있다. 상기 자외선 흡수제는 구체적으로, 벤조티아졸(benzotriazole)계 자외선 흡수제, 포름아미딘(formamidine)계 자외선 흡수제등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 포름아미딘계 자외선 흡수제가 바람직하게 사용될 수 있다.
상기 포름아미딘계 자외선 흡수제로는 ZIKO 사제의 Zikasorb R™, Zikasorb BS™, ZIKA-FA02™, ZIKA-FUA™, ZIKA-FLS'™, ZIKA-UVS3™, 또는 ZIKA-UVS4™; 또는 Sakai Chemical industry Co., Ltd 사제의 Biosorb™ 583 등과 같은 제품을 상업적으로 입수하여 사용할 수도 있다.
상기 자외선 흡수제는 중합용 조성물 총 중량에 대하여 0.01중량% 이상, 또는 0.05중량% 이상이고, 5중량% 이하, 또는 1중량% 이하의 양으로 포함될 수 있다.
또, 상기 우레탄 반응 촉매로는, 디부틸주석 디클로라이드(dibutyltin dichloride), 디메틸주석 디클로라이드 등의 디알킬주석 할로겐화물 계 화합물; 디메틸주석 디아세테이트, 디부틸주석 디옥타노에이트, 디부틸주석 디라우레이트 등의 디알킬주석 디카르복실레이트 계 화합물; 디부틸주석 디부톡사이드, 디옥틸주석 디부톡사이드 등의 디알킬주석 디알콕사이드 계 화합물; 디부틸주석 디(티오부톡사이드) 등의 디알킬주석 디티오알콕사이드 계 화합물; 디(2-에틸헥실)주석 옥사이드, 디옥틸주석 옥사이드, 비스(부톡시디부틸주석) 옥사이드 등의 디알킬주석 산화물 계 화합물; 또는 디알킬주석 황화물 계 화합물 등을들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 우레탄 반응 촉매는 중합용 조성물 총 중량에 대하여 0.001중량% 이상, 또는 0.002중량% 이상, 또는 0.004중량% 이상이고, 0.1중량% 이하, 또는 0.05중량% 이하, 또는 0.01중량% 이하, 또는 0.008증량% 이하의 양으로 포함될 수 있다.
상기한 중합용 조성물은 이소시아네이트 조성물 내 포함된 포스폰산계 화합물로 인해, 이소시아네이트의 반응 속도 및 올리고머화가 지연 또는 억제됨으로써 우수한 내변색성을 나타낼 수 있고, 또 점도 증가가 억제됨으로써 제품 제조시 필터 시간 단축 등 개선된 작업성을 나타낼 수 있다.
이와 같이 상기 중합용 조성물은 우수한 물성적 특성으로 인해 폭넓은 분야에 이용될 수 있으며, 안경 렌즈, 카메라 렌즈, 플라스틱 렌즈, 프리즘 등 우수한 외관 특성, 특히 투명성이 요구되는 광학 재료로 사용될 수 있다.
본 발명에 따르면, 상기한 중합용 조성물에서의 이소시아네이트 조성물;과 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;이 중합된 중합체를 포함하는 물품이 제공된다.
일례로 상기 중합용 조성물이 다가 싸이올계 화합물을 포함하는 경우, 상기 중합 반응은 이소시아네이트 화합물에서의 이소시아네이트기와 다가 싸이올계 화합물내 싸이올기 간의 우레탄화 반응으로 이루어진다. 이와 같이 다가 싸이올계 화합물과의 반응에 의해 제조되는 폴리우레탄은 우수한 투명성를 나타내기 때문에 광학 물품, 특히 안경 렌즈, 카메라 렌즈 등의 광학 렌즈의 제조에 특히 유용하다.
또 다른 일례로, 상기 중합용 조성물이 다가 알코올계 화합물을 포함하는 경우, 상기 중합 반응은 방향족 디이소시아네이트 내 이소시아네이트와 다가 알코올 내 히드록시기 간의 우레탄화 반응(또는 축합 중합 반응)으로 이루어진다. 이와 같이 다가 알코올계 화합물과의 반응에 의해 제조되는 폴리우레탄은 우수한 투명성과 함께 우수한 점/접착 특성을 나타내기 때문에, 광학용 점착제 또는 광학용 접착제로서 유용할 수 있다.
상기 중합 반응은 상압의 조건 및 질소, 아르곤 등 불활성 가스 분위기 하에서 수행될 수 있다.
또, 상기 중합 반응은 -15℃ 이상, 또는 0℃ 이상이고, 150℃ 이하, 또는 120℃ 이하의 온도 범위에서 수행되는 것이 변색 발생에 대한 우려 없이 반응 속도를 용이하게 제어할 수 있고, 반응 효율 또한 높일 수 있어 바람직하다.
상기 중합 반응은 무촉매의 조건에서 수행될 수도 있고, 우레탄 반응 촉매의 존재 하에서 수행될 수도 있다. 촉매 존재 하에 수행될 경우, 상기 촉매는 이소시아네이트 조성물에 다가 싸이올을 혼합시 투입될 수 있으며, 상기 우레탄 반응 촉매는 앞서 설명한 바와 같다.
또, 상기 중합 반응은, 전위차 적정 장치를 이용한 n-디부틸 아민법으로 중합 반응물 내 이소시아네이트기의 농도를 측정하거나, 또는 굴절율을 측정함으로써 진행 정도를 예상할 수 있다. 본 발명에서는 중합 반응물 내 이소시아네이트기의 농도가, 다가 싸이올과 반응한 후 잔존하는 이소시아네이트기의 계산 값에 도달할 때까지 수행할 수 있다.
상기와 같은 중합 반응의 결과로, 중합체, 구체적으로는 폴리티오우레탄 또는 폴리우레탄이 제조되게 된다.
한편, 상기 이소시아네이트 조성물;과 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;이 중합된 중합체를 포함하는 물품은, 구체적으로 플라스틱용 도료 또는 자동차용 도료와 같은 도료; 필름 코팅제와 같은 코팅제; 각종 잉크; 점착제; 접착제; 실링재; 각종 마이크로 캡슐; 인공 및 합성 피혁과 같은 인조 피혁; 반응 사출 성형(RIM)품; 슬러시 파우더; 탄성 성형품(스판덱스); 우레탄폼; 또는 안경 렌즈, 카메라 렌즈, 플라스틱 렌즈, 프리즘 등의 광학 물품일 수 있다. 상기 중합용 조성물의 우수한 투명성을 고려할 때, 광학 물품, 특히 안경 렌즈, 카메라 렌즈 등의 광학 렌즈일 수 있다.
상기 물품은 상기한 중합용 조성물에서의 중합 반응 후 성형 공정을 수행함으로써 제조될 수도 있고, 또는 상기 중합용 조성물을 이용한 성형 공정을 통해 제조될 수도 있다. 후자의 경우, 성형 공정 동안에 중합 반응이 동시에 일어나게 된다.
일례로, 광학 렌즈의 경우 상기 중합용 조성물을 렌즈 성형용 몰드에 주입한 후, 몰드의 온도를 높여 이소시아네이트계 화합물과, 다가 싸이올계 화합물 또는 다가 에피설파이드계 화합물과의 중합 반응을 수행한다. 이때 몰드는 전술한 바와 같이 우레탄 중합 반응이 일어나는 온도 범위로까지 승온한다. 중합 반응이 완료된 후, 제조된 중합체를 몰드에서 분리하여 광학 렌즈를 얻을 수 있다.
본 발명에 따른 중합용 조성물로부터 제조된 중합체, 구체적으로 폴리티오우레탄은 우수한 투명성과 함께 개선된 작업성을 나타냄에 따라, 광학 물품, 특히 광학용 점착제, 광학용 접착제 또는 광학 렌즈의 제조에 특히 유용하다.
일례로, 본 발명에 따른 중합용 조성물로부터 제조된 중합체를 포함하는 광학 렌즈는 ASTM E313에 따른 측정시 1.6 이하, 또는 1.5 이하의 YI 값을 나타낸다. YI 값은 낮을수록 우수한 내변색성을 가짐을 의미하기 때문에 하한은 특별히 한정되지 않지만, 구체적으로는 0 초과 또는 0.1 이상일 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
<이소시아네이트 조성물의 제조>
실시예 1-1
플라스크에 1,2-디클로로벤젠 471 g과 순도 99.4%인 m-XDA 32.5 g, 4-hydroxy TEMPO 0.24 g을 담고 상온에서 무수 염산을 20 g/hr 속도로 주입하며 교반하였다. 무수 염산을 주입하면 온도가 50℃까지 상승하였다. 4시간 주입 후 형성된 염을 상온으로 냉각하고, 포스겐 43 g을 반응기 내로 투입 후, 반응기 온도를 130℃가 되도록 가열하였다. 포스겐 투입시점부터 반응 종료시점까지 드라이아이스-아세톤 냉각기로 포스겐이 외부로 유출되지 않도록 하였다. 반응기 온도가 130℃에 도달한 후, 반응 용액이 투명해지도록 2시간 동안 반응기 온도를 125~135 ℃로 유지하였다. 용액이 투명해진 뒤 반응기 내부를 80℃로 냉각하고, 질소를 불어넣으며 포스겐을 배출, 제거하였다. 포스겐이 제거된 반응 용액을 진공 증류를 통해 용매를 제거하고, 생성물을 160℃ 고온에서 감압 하에 정제하여 m-자일릴렌디이소시아네이트(m-XDI)를 얻었다.
상기 m-XDI에 대해, m-XDI 총 중량 기준 phenol 10ppm 및 Butylphosphonic acid(boiling point: 274.8℃) 1000ppm을 첨가하고 혼합하여 이소시아네이트 조성물을 제조하였다.
실시예 1-2
상기 실시예 1-1에서 Butylphosphonic acid 대신에 Hexylphosphonic acid(boiling point: 299.7℃) 1000ppm을 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
실시예 1-3
상기 실시예 1-1에서의 m-XDI에 대해, phenol은 첨가하지 않고, Hexylphosphonic acid만을 1000ppm을 첨가하는 것을 제외하고는 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
비교예 1-1
상기 실시예 1-1에서 Butylphosphonic acid은 첨가하지 않고, phenol 10ppm 만을 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
비교예 1-2
상기 실시예 1-1에서 m-XDI에 대해, phenol과 Butylphosphonic acid 둘 모두를 첨가하지 않는 것을 제외하고는, 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
비교예 1-3
상기 실시예 1-1에서 Butylphosphonic acid 대신에 인산 에스테르계 화합물인 ZELEC™ UN(Stepan Company 사제)을 1000ppm 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
비교예 1-4
상기 실시예 1-1에서 Butylphosphonic acid 대신에 인산 에스테르계 화합물인 Bis(2-ethylhexyl) phosphate을 1000ppm 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
비교예 1-5
상기 실시예 1-1에서 Butylphosphonic acid 대신에 인산(phosphoric acid) 1000ppm을 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
그러나 제조된 이소시아네이트 조성물에서 석출물이 발생하였다.
비교예 1-6
상기 실시예 1-1에서 Butylphosphonic acid 대신에 Ethyl Phosphate(mono and di ester mixture)(DEP) 1000ppm을 첨가하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 수행하여, 이소시아네이트 조성물을 제조하였다.
<중합용 조성물 및 광학 렌즈의 제조>
실시예 2-1
상기 실시예 1-1에서 제조한 이소시아네이트 조성물 20.8g, 내부 이형제로서 ZELEC™ UN(Stepan Company 사제) 0.04 g 및 자외선 흡수제로서 Biosorb™ 583(Sakai Chemical industry Co., Ltd 사제) 0.04 g를 상온의 플라스크에서 약 20분간 교반하며 혼합하였다.
결과의 혼합물에 디부틸틴 디클로라이드(dibutyltin dichloride) 0.002 g를 첨가하고 10분간 교반하여 혼합한 후, 다가 싸이올로서 2,3-bis(2-sulfanyl ethyl sulfanyl)propane-1-thiol 19.2g(이소시아네이트 화합물 내 이소시아네이트기 1몰 기준, 상기 다가 싸이올 내 싸이올기의 몰비가 1.0에 해당함)를 첨가하고, 5 mbar 조건에서 탈포하며 1시간 교반하고, 중합용 조성물을 제조하였다.
또, 상기에서 제조한 중합용 조성물을 1μm PTFE 필터에서 여과한 후, 유리 몰드와 테이프로 구성되는 몰드형으로 주입했다. 이 몰드형을 오븐에 투입하고 10℃에서 120℃까지 서서히 승온하며 20 시간 중합 반응을 수행하였다. 중합 종료 후 오븐에서 몰드형을 꺼내 이형하여 플라스틱 렌즈를 얻었다. 얻어진 렌즈를 120℃에서 6 시간 어닐링했다.
실시예 2-2, 2-3 및 비교예 2-1 내지 2-6
상기 실시예 1-2, 1-3, 및 비교예 1-1 내지 1-6에서 제조한 이소시아네이트 조성물을 각각 사용하는 것을 제외하고는 상기 실시예 2-1에서와 동일한 방법으로 수행하여 중합용 조성물 및 렌즈를 제조하였다.
다만, 비교예 2-3과 2-4의 경우, 중합용 조성물 제조 후 렌즈 제조를 위한 여과 과정에서 필터 막힘 현상이 발생하였다.
또, 비교예 2-5의 경우, 비교예 1-5에서 제조한 이소시아네이트 조성물 내 석출물이 발생하여 중합용 조성물 제조에 적합하지 않았고, 결과, 중합용 조성물 제조 및 렌즈 제조를 진행하지 않았다.
실험예 1
상기 실시예 1-1 내지 1-3, 및 비교예 1-1 내지 1-6에서 제조한 이소시아네이트 조성물에 대해 하기의 방법으로 산도를 측정하였다.
<산도 측정 방법>
1. 기구 및 시약
1.1 0.01N KOH 표준용액(Methanol성): 0.01mol Potassium hydroxide methanolic standard solution(0.01N), DAEJUNG, S/T
1.2 n-Propyl Alcohol: 묽은 염산용액으로 먼저 pH를 4~4.5로 맞추어 사용한다.
1.3 300㎖ 비이커
1.4 유리전극과 카로멜 전극이 달린 전위차 적정기: Metrohm E 536
2. 시험절차
2.1 300㎖ 비이커에 100㎖의 n-Propyl Alcohol을 넣고 교반한다.
2.2 상기 n-Propyl Alcohol이 담긴 비이커에 15g의 이소시아네이트 조성물 시료를 첨가한 후 시계접시로 덮고 10분 동안 교반한다.
2.3 상기 비이커를 냉각시킨 후, 전위차 적정기에서 0.01N Methanol성 KOH 표준용액으로 적정하여 겉보기 산도를 읽는다.
조건: Mode; pH 14, V 0, 적정속도 0.05㎖ increasement
겉보기 산도는 pH 5.5 ~ 7.0 사이에서 일어난다.
2.4 상기 2.2의 단계에서 이소시아네이트 조성물 시료를 첨가하지 않는 것을 제외하고는 상기와 동일하게 2.1 ~ 2.3의 단계를 수행하는 공시험을 병행한다.
3. 계산
[수학식 1]
산도(as HCl)(ppm)=[(A-B)×N×f×36.5×106]/(C×103)
상기 수학식 1에서,
A: 이소시아네이트 조성물 시료의 적정에 소모된 KOH 메탄올 용액의 부피(㎖)
B: 공시험 적정에 소모된 KOH 메탄올 용액의 부피(㎖)
C: 이소시아네이트 조성물 시료의 중량(g)
N: KOH 메탄올 용액의 노르말 농도
f: 측정시 사용하는 KOH 메탄올 용액의 노르말 농도가 변화될 경우 0.01N KOH 메탄올 용액과 동일하도록 보정하는 factor로서, ASTM D-1638, TOLOCHIMIE 04-01-68 에 따라 측정한다. 0.01N KOH 메탄올 용액의 경우 f 값은 1이다.
실시예 비교예
1-1 1-2 1-3 1-1 1-2 1-3 1-4 1-5 1-6
A(ml) 13.6190 8.5177 8.3943 0.8657 0.9068 1.0714 7.9921 5.7613 12.4043
B(ml) 0.7834 0.7834 0.7834 0.7834 0.7834 0.7834 1.3495 0.7834 1.3495
C(g) 15 15 15 15 15 15 15 15 15
산도(ppm) 312 188 185 2 3 7 162 121 269
상기 표 1에서, A, B 및 C는 상기 수학식 1에서 정의한 바와 같다.
실험결과, 이소시아네이트 조성물의 제조시 알코올과 반응해 유리하는 산 성분을 제공할 수 있는 첨가제를 전혀 투입하지 않은 비교예 1-1 및 1-2의 이소시아네이트 조성물은 낮은 산도를 나타내었다.
또 이소시아네이트 조성물의 제조시 상업적으로 입수한 인산 에스테르계 화합물을 실시예에서와 동일한 수준으로 투입한 비교예 1-3의 경우에도 낮은 산도를 나타내었다.
또, 이소시아네이트 조성물의 제조시 본 발명에서의 포스폰산계 화합물 대신에 인산 에스테르계 화합물 또는 인산을 투입한 비교예 1-4 및 1-5의 경우 비교예 1-3에 비해서는 높은 산도를 나타내었으나, 실시예에 비해서는 다소 낮은 산도를 나타내었다.
한편, 실시예 1-1의 경우, 투입된 포스폰산계 화합물의 종류가 상이한 것을 제외하고는 실시예 1-2와 동일한 함량으로 포스폰산계 화합물을 투입하였지만 더 높은 산도를 나타내었다. 이와 같이 더 높은 산도를 나타내는 이유는, 실시예 1-1에서 투입된 Butylphosphonic acid의 경우 실시예 1-2에서 투입된 hexylphosphonic acid 대비 사슬의 길이가 짧아 동일한 양으로 투입되더라도 XDI 대비 상대적으로 더 많은 몰비로 산성기가 제공되기 때문이다.
실험예 2
상기 실시예 1-1 내지 1-3, 및 비교예 1-1 내지 1-6에서 제조한 이소시아네이트 조성물에 대해, 질소 분위기, 구체적으로는 순도 99.999%의 질소 충진을 통한 대기 중 질소 100부피%의 조건 하에 5℃의 온도에서 12주간 냉장 보관하면서 시간 경과에 따른 이소시아네이트 조성물 내 올리고머 함량 증가를 확인하고, 그 결과로부터 보관 안정성을 평가하였다.
구체적으로, 상기 이소시아네이트 조성물내 올리고머 함량은, 이소시아네이트 조성물에 대해 하기 조건에 따라 겔 투과 크로마토그래피(GPC) 분석을 수행하여 이소시아네이트 조성물에 대한 분자량 분포 곡선(GPC curve)(x축: 중량평균분자량(M)의 로그값(log M), Y축: 상기 로그값에 대한 분자량 분포(dwt/dlog M))을 얻고, 상기 GPC curve의 전체 면적 대비, 올리고머에 해당하는 분획의 면적 비율을 백분율로 나타내었다. 구체적으로 올리고머 함량(%)은 하기 수학식 3에 따라 계산하였다.
[수학식 3]
올리고머 함량 (%) = [E/D] ×100
상기 수학식 3에서,
D는 이소시아네이트 조성물에 대한 겔 투과 크로마토그래피 분석을 통해 수득한 분자량 분포 곡선(GPC curve)에서의 곡선 하 전체 면적이고,
E는 상기 이소시아네이트 조성물에 대한 분자량 분포 곡선에서 올리고머에 해당하는 피크의 면적이다.
상기 GPC curve의 전체 면적 및 상기 올리고머에 해당하는 분획의 면적은 각각 적분을 통해 구한다. 이때 상기 올리고머는 중량평균 분자량(Mw) 600 내지 2000 g/mol의 중합체를 의미하며, GPC curve에서 상기 올리고머에 해당하는 분획은 19.42 ≤ logMw ≤ 22.18 이다.
<GPC 분석 조건>
사용기기: Agilent
컬럼: Agilent PL Mixded D, Agilent PLgel 100Å, Agilent PLgel 50Å
시료농도: 1wt/vol% in 테트라하이드로퓨란(THF)
캐리어: THF
검출방법: RI
유출량: 1.0 ml/분
컬럼 온도: 25 ℃
Detector: Agilent RI detector
검량선 작성시, 분자량 104~24,600 g/mol의 폴리스티렌 표준폼을 이용하였다.
또 상기 측정 결과를 토대로, 하기 수학식 2에 따라 올리고머의 함량 증가율(%)을 계산하였다.
[수학식 2]
올리고머의 함량 증가율(%)=[(Cf-Ci)/Ci]×100
상기 수학식 2에서,
Ci는 제조 직후 이소시아네이트 조성물 내 올리고머 함량(%)이고,
Cf는 질소 분위기, 구체적으로는 순도 99.999%의 질소 충진을 통한 질소 100부피%의 분위기 하에 5℃에서 12주간 보관한 후, 이소시아네이트 조성물 내 올리고머의 함량(%)이며, 상기 Ci 및 Cf는 각각 상기 수학식 3에 따른 계산값이다.
시간 경과
(Week)
실시예 비교예
1-1 1-2 1-3 1-1 1-2 1-3 1-4 1-5 1-6
제조직후a) 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
1 0.32 0.36 0.37 0.29 0.30 0.36 0.35 측정불가 b) 0.35
4 0.72 0.60 0.70 0.82 0.86 0.75 0.42 0.71
8 0.96 0.98 0.93 0.93 1.03 0.97 0.54 0.85
12 1.16 1.15 1.08 1.75 1.82 1.21 0.84 1.2
올리고머의 함량 증가율(%) 346 342 315 573 600 365 223 362
상기 표 2에서, a)는 실시예 및 비교예에서의 이소시아네이트 조성물의 제조 직후 이소시아네이트 조성물 내 올리고머 함량을 상기와 동일한 방법으로 측정하였다.b)는 석출물 발생으로 정확한 올리고머의 함량 측정이 어려웠다.
실시예 및 비교예는 동일한 m-XDI를 제조한 후 Butylphosphonic acid 등의 첨가제를 후첨하기 때문에, 제조 직후 이소시아네이트 조성물 내 올리고머의 함량은 모두 동일하였다. 그러나, 시간의 경과에 따라 올리고머 함량이 증가하였으며, 첨가제의 종류에 따라 올리고머 함량의 증가율이 다른 양상을 나타내었다. 구체적으로, 비교예 1-4를 제외하고는 실시예 1-1 내지 1-3의 이소시아네이트 조성물이 비교예들에 비해 시간의 경과에 따른 올리고머의 함량 증가율이 낮았다.
실험예 3
상기 실험예 2에서 질소 분위기, 구체적으로는 순도 99.999%의 질소 충진을 통한 질소 100부피%의 분위기 하에 5℃의 온도에서 12주간 냉장 보관한 실시예 1-1 내지 1-3, 및 비교예 1-1 내지 1-6의 이소시아네이트 조성물에 대해, HunterLab의 Ultrascan Pro를 이용하여 ASTM D1209의 방법에 따라 하기의 측정 조건에서 APHA를 측정하였다. 그 결과를 하기 표 3에 나타내었다. APHA 값이 작을수록 내변색성이 우수함을 의미한다.
<APHA 측정 조건>
색차계: Ultrascan Pro
광원: C/2
Cell: 10mm 석영
실시예 비교예
1-1 1-2 1-3 1-1 1-2 1-3 1-4 1-5 1-6
APHA 9 9 9 9 9 10 9 8 9
실험결과, 실시예의 이소시아네이트 조성물은 비교예와 동등 수준 이상의 우수한 내변색성을 나타내었다.
실험예 4
상기 실시예 2-1 내지 2-3, 및 비교예 2-1 내지 2-6에서 제조한 중합용 조성물에 대해, 기공 크기(Pore size) 1.0μm의 PTFE 필터(25mm Diameter Syringe Filter, Whatman사제)를 이용하여 여과하는데 걸리는 시간(min)을 측정하고, 그 결과로부터 작업성 개선 효과를 평가하였다.
여과 시간은 200g의 중합용 조성물이 필터를 통과하는 시점부터 통과를 완료한 시점까지의 시간을 의미한다.
실시예 비교예
2-1 2-2 2-3 2-1 2-2 2-3 2-4 2-6
여과시간 (min) 5 5 5 25 26 필터막힘 발생 5 16
실험결과, 이소시아네이트 조성물의 제조시 알코올과 반응해 유리하는 산 성분을 제공할 수 있는 첨가제를 전혀 투입하지 않아 낮은 산도를 나타낸 비교예 2-1 및 2-2의 중합용 조성물은 여과 시간이 길었다.
반면, 이소시아네이트 조성물의 제조시 화학식 1의 포스폰산계 화합물을 투입한 실시예 2-1 내지 2-3의 중합용 조성물은, 비교예와 비교하여 현저히 짧은 여과 시간을 나타내었으며, 이로부터 보다 개선된 작업성을 가짐을 확인하였다.
한편, 비교예 1-3의 이소시아네이트 조성물은 점도가 높아져 중합용 조성물 제조가 어려웠고, 또 제조된 비교예 2-3의 중합용 조성물은 상기 필터 과정에서 필터 막힘이 발생하여 여과 시간을 측정하지 못하였다.
또, 비교예 1-5의 이소시아네이트 조성물은 석출물 발생으로 중합용 조성물 제조에 적합하지 않아 진행하지 않았다.
실험예 5
상기 실시예 2-1 내지 2-3, 및 비교예 2-1 내지 2-6에서의 중합용 조성물을 이용하여 제조한 렌즈에 대해 하기 기재된 방법으로 YI(Yellowness Index)를 측정하였다.
다만, 비교예 1-3의 이소시아네이트 조성물은 점도가 높아져 중합용 조성물 제조가 어려웠고, 결과 렌즈를 제조하지 못하였다. 또, 비교예 1-5의 이소시아네이트 조성물은 석출물 발생으로 중합용 조성물 제조에 적합하지 않아, 렌즈 제조를 진행하지 않았다.
결과를 하기 표 5에 나타내었다.
<YI 측정방법>
장비: Ultrascan Pro, HunterLab
광원: D65/10
측정 규격: ASTM E313
실시예 비교예
2-1 2-2 2-3 2-1 2-2 2-4c) 2-6
YI 1.5 1.6 1.6 1.8 1.7 2.6 2.7
상기 표 5에서, c)는 렌즈에 흰 줄의 불량요소가 확인되었다.
실험결과, 실시예의 중합용 조성물을 이용하여 제조한 렌즈가 비교예에 비해 낮은 YI값을 나타내었으며, 이로부터 보다 우수한 변색 억제 효과를 가짐을 확인하였다.
한편, 이소시아네이트 조성물의 제조시 Phosphate계 화합물을 사용한 비교예 2-4 및 2-6의 렌즈는 높은 YI를 나타내었으며, 특히 Bis(2-ethylhexyl) phosphate 를 사용한 비교예 2-4의 렌즈에서는 흰 줄의 불량이 발생하였다.

Claims (15)

  1. 이소시아네이트계 화합물, 및
    하기 화학식 1로 표시되는 포스폰산계 화합물을 포함하는, 이소시아네이트 조성물:
    [화학식 1]
    Figure PCTKR2023011389-appb-img-000004
    상기 화학식 1에서,
    R은 C1-20 알킬, C6-20 아릴, C7-30 알킬아릴, 또는 C7-30 아릴알킬이다.
  2. 제1항에 있어서,
    상기 이소시아네이트 조성물은 산도가 500ppm 이하인, 이소시아네이트 조성물.
  3. 제1항에 있어서,
    상기 포스폰산계 화합물은 부틸 포스폰산, 헥실 포스폰산, 메틸 포스폰산, 또는 옥타데실 포스폰산인, 이소시아네이트 조성물.
  4. 제1항에 있어서,
    상기 포스폰산계 화합물은 이소시아네이트계 화합물 총 중량에 대하여 100 내지 3,000ppm의 양으로 포함되는, 이소시아네이트 조성물.
  5. 제1항에 있어서,
    상기 이소시아네이트계 화합물은 분자내 이소시아네이트기를 2개 포함하는 디이소시아네이트인, 이소시아네이트 조성물.
  6. 제1항에 있어서,
    상기 이소시아네이트계 화합물은 1,5-펜타메틸렌 디이소시아네이트, 톨루엔 디이소시아네이트, 메틸렌 디페닐 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트, 1,4-사이클로헥실렌 디이소시아네이트, 이소포론 디이소시아네이트, o-자일릴렌 디이소시아네이트, m-자일릴렌 디이소시아네이트 또는 p-자일릴렌 디이소시아네이트인, 이소시아네이트 조성물.
  7. 제1항에 있어서,
    상기 이소시아네이트 조성물은 페놀계 안정제를 더 포함하는, 이소시아네이트 조성물.
  8. 제7항에 있어서,
    상기 페놀계 안정제는, 페놀; 디부틸하이드록시톨루엔; t-부틸하이드로퀴논; 부틸하이드록시아니솔; 펜타에리트리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트]; 티오디에틸렌 비스[3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트]; 옥타데실-3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트; N,N'-헥산-1,6-디일비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드]; 벤젠 프로판산 3,5-비스(1,1-디메틸에틸)-4-하이드록시 C7-C9 곁사슬 알킬 에스테르; 3,3',3",5,5',5"-헥사-tert-부틸-a,a',a"-(메시틸렌-2,4,6-트리일) 트리p-크레졸; 에틸렌 비스(옥시에틸렌) 비스[3-(5-tert-부틸-4-하이드록시-m-톨릴)프로피오네이트]; 헥사메틸렌 비스[3-(3,5-디-tert-부틸-4-하이드록시페닐) 프로피오네이트]; 1,3,5-트리스(3,5-디-tert-부틸-4-하이드록시벤질)-1,3,5-트리아진-2,4,6-(1H,3H,5H)-트리온; 2-[1-(2-하이드록시-3,5-디-tert-펜틸페닐)에틸]-4,6-디-tert-펜틸페닐 아크릴레이트; 2,6-디-tert-부틸-p-크레졸; 2,6-디페닐-4-옥타데실옥시페놀; 스테아릴(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트; 디스테아릴(3,5-디-tert-부틸-4-하이드록시벤질)포스페이트; 티오디에틸렌 글리콜 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트]; 1,6-헥사메틸렌 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트]; 1,6-헥사메틸렌 비스[(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드]; 4,4'-티오비스(6-tert-부틸-m-크레졸); 2,2'-메틸렌 비스(4-메틸-6-tert-부틸페놀); 2,2'-메틸렌비스(4-에틸-6-tert-부틸페놀); 비스[3,3-비스(4-하이드록시-3-tert-부틸페닐)부티르산]글리콜에스테르; 4,4'-부틸리덴 비스(6-tert-부틸-m-크레졸); 2,2'-에틸리덴 비스(4,6-디-tert-부틸페놀); 2,2'-에틸리덴 비스(4-sec-부틸-6-tert-부틸페놀); 1,1,3-트리스(2-메틸-4-하이드록시-5-tert-부틸페닐)부탄; 비스[2-tert-부틸-4-메틸-6-(2-하이드록시-3-tert-부틸-5-메틸벤질)페닐]테레프탈레이트; 1,3,5-트리스(3,5-디-tert-부틸-4-하이드록시벤질)-2,4,6-트리메틸벤젠; 테트라키스[메틸렌-3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트]메탄; 2-tert-부틸-4-메틸-6(2-아크릴로일옥시-3-tert-부틸-5-메틸벤질)페놀; 3,9-비스{2-[3-(3-tert-부틸-4-히드록시-5-메틸페닐)프로피오닐옥시]-1,1-디메틸에틸}-2,4,8,10-테트라옥사스피로[5.5]운데칸; 트리에틸렌글리콜 비스[(3-tert-부틸-4-하이드록시-5-메틸페닐)프로피오네이트]; 6-[3-(3-tert-부틸-4-하이드록시-5-메틸페닐)프로폭시]-2,4,8,10-테트라-tert-부틸디벤조[d,f][1,3,2]디옥사포스페핀; 또는 이들의 혼합물을 포함하는, 이소시아네이트 조성물.
  9. 제7항에 있어서,
    상기 페놀계 안정제는 이소시아네이트계 화합물 총 중량에 대하여 5 내지 1000 ppm의 양으로 포함되는, 이소시아네이트 조성물.
  10. 제1항에 있어서,
    상기 이소시아네이트 조성물은, 하기 수학식 2에 따라 계산한 올리고머의 함량 증가율이 500% 이하인, 이소시아네이트 조성물.
    [수학식 2]
    올리고머의 함량 증가율(%)=[(Cf-Ci)/Ci]×100
    상기 수학식 2에서,
    Ci는 제조 직후 이소시아네이트 조성물 내 올리고머 함량이고,
    Cf는 질소 분위기 하에 5℃에서 12주간 보관 후 이소시아네이트 조성물 내 올리고머의 함량이다.
  11. 제1항에 있어서,
    상기 이소시아네이트 조성물은, 질소 분위기 하에 5℃에서 12주간 보관 후 ASTM D1209에 따라 측정한 APHA값이 9 이하인, 이소시아네이트 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 이소시아네이트 조성물, 및
    다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;을 포함하는,
    중합용 조성물.
  13. 제1항 내지 제11항 중 어느 한 항에 따른 이소시아네이트 조성물;과 다가 싸이올계 화합물, 다가 알코올계 화합물 및 다가 에피설파이드계 화합물 중 어느 하나 이상;이 중합된 중합체를 포함하는, 물품.
  14. 제13항에 있어서,
    상기 물품은 광학 렌즈인, 물품.
  15. 제14항에 있어서,
    상기 광학 렌즈는 ASTM E313에 따른 측정시 YI 값이 1.6 이하인, 물품.
PCT/KR2023/011389 2022-08-31 2023-08-03 이소시아네이트 조성물 WO2024049033A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220109625 2022-08-31
KR10-2022-0109625 2022-08-31
KR1020230101106A KR20240031040A (ko) 2022-08-31 2023-08-02 이소시아네이트 조성물
KR10-2023-0101106 2023-08-02

Publications (1)

Publication Number Publication Date
WO2024049033A1 true WO2024049033A1 (ko) 2024-03-07

Family

ID=90098139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011389 WO2024049033A1 (ko) 2022-08-31 2023-08-03 이소시아네이트 조성물

Country Status (1)

Country Link
WO (1) WO2024049033A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782358A (en) * 1980-11-13 1982-05-22 Mitsui Toatsu Chem Inc Prevention of coloring of aromatic isocyanate compound
JPS5998050A (ja) * 1982-11-26 1984-06-06 Mitsui Toatsu Chem Inc 有機イソシアナ−ト化合物の着色防止方法
JPH0565264A (ja) * 1991-09-09 1993-03-19 Sumitomo Bayer Urethane Kk 芳香族イソシアネート化合物の着色防止法
EP0699658A1 (en) * 1994-08-30 1996-03-06 Sumitomo Bayer Urethane Co., Ltd. Process for preparing liquid diphenylmethane diisocyanate
JP2005170793A (ja) * 2003-11-19 2005-06-30 Mitsui Takeda Chemicals Inc 有機ポリイソシアネート組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782358A (en) * 1980-11-13 1982-05-22 Mitsui Toatsu Chem Inc Prevention of coloring of aromatic isocyanate compound
JPS5998050A (ja) * 1982-11-26 1984-06-06 Mitsui Toatsu Chem Inc 有機イソシアナ−ト化合物の着色防止方法
JPH0565264A (ja) * 1991-09-09 1993-03-19 Sumitomo Bayer Urethane Kk 芳香族イソシアネート化合物の着色防止法
EP0699658A1 (en) * 1994-08-30 1996-03-06 Sumitomo Bayer Urethane Co., Ltd. Process for preparing liquid diphenylmethane diisocyanate
JP2005170793A (ja) * 2003-11-19 2005-06-30 Mitsui Takeda Chemicals Inc 有機ポリイソシアネート組成物

Similar Documents

Publication Publication Date Title
WO2019235862A1 (ko) 디이소시아네이트 및 광학 렌즈의 제조방법
WO2018012803A1 (ko) 광학 재료용 방향족 폴리티올 화합물
WO2017160016A1 (ko) 이중 경화가 가능한 저온가교형 블록이소시아네이트 및 이를 포함하는 조성물
WO2021040316A1 (ko) 폴리이소시아네이트 조성물의 제조방법
WO2024049033A1 (ko) 이소시아네이트 조성물
WO2024090855A1 (ko) 이소시아네이트 조성물
WO2016085087A2 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2018151501A1 (ko) 폴리올 또는 폴리티올 화합물, 그의 제조 방법, 그로부터 제조된 투명한 폴리우레탄계 수지 및 광학체
WO2022146093A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2024106985A1 (ko) 자일렌 디이소시아네이트 조성물 및 이의 제조방법
WO2022245079A1 (ko) 수지 및 이의 제조방법
WO2023101379A1 (ko) 이소시아네이트 조성물 및 광학용 조성물
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2024048993A1 (ko) 이소시아네이트 조성물
WO2022019677A1 (ko) 광경화형 조성물, 이의 경화물을 포함하는 코팅층 및 반도체 공정용 기재
WO2023101404A1 (ko) 이소시아네이트 조성물 및 이의 제조방법
WO2020101248A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
KR20240031040A (ko) 이소시아네이트 조성물
KR20240058767A (ko) 이소시아네이트 조성물
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2022164074A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2024144331A1 (ko) 자일렌 디이소시아네이트 조성물 및 이소시아누레이트의 제조 방법
WO2023182589A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2024035146A1 (ko) 이소시아네이트 조성물의 제조 방법 및 이소시아네이트 조성물
WO2022055221A1 (ko) 폴리티올 조성물 및 이를 포함하는 광학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860713

Country of ref document: EP

Kind code of ref document: A1