WO2024048980A1 - 통합 냉각수 모듈 - Google Patents

통합 냉각수 모듈 Download PDF

Info

Publication number
WO2024048980A1
WO2024048980A1 PCT/KR2023/009876 KR2023009876W WO2024048980A1 WO 2024048980 A1 WO2024048980 A1 WO 2024048980A1 KR 2023009876 W KR2023009876 W KR 2023009876W WO 2024048980 A1 WO2024048980 A1 WO 2024048980A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
protruding rib
reservoir tank
hole
pipe
Prior art date
Application number
PCT/KR2023/009876
Other languages
English (en)
French (fr)
Inventor
최정범
정성우
강호성
신성근
조병선
최문석
한정완
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2024048980A1 publication Critical patent/WO2024048980A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Definitions

  • the present invention relates to an integrated coolant module applied to a vehicle's thermal management system, and more specifically, to a coolant connection and fixation structure between a reservoir tank and a coolant control module.
  • thermal management system of a vehicle is becoming more complex in order to increase thermal efficiency by performing thermal management independently for each component and simultaneously integrating thermal management of the entire vehicle.
  • FIG. 1 is a diagram schematically showing a conventional cooling water module.
  • the conventional cooling water module 90 includes a reservoir tank 91 in which cooling water is stored and stored, a valve 92 fluidly connected to the reservoir tank, and a valve. It is configured to include a pump 93 that is fluidly connected to.
  • a coolant inlet pipe 91P is provided on the reservoir tank 91 side, and a separate coolant inlet pipe 92P is provided on the valve 92 (or pump, hereinafter limited to the valve) side. It is provided in a structure in which the reservoir tank side pipe (91P) is inserted and coupled to the valve side pipe (92P) so that coolant communicates between the reservoir tank (91) and the valve (92). Additionally, a fixing member 95 is provided around the connection portion of the pipes 91P and 92P to secure the reservoir tank and the valve to each other.
  • the reservoir tank 91 is manufactured by injection molding.
  • the coolant inlet pipe (91P) is formed in the reservoir tank 91 by injection molding, the minimum area for molding the pipe (91P) is around the pipe (91P).
  • Figure 2 is a diagram showing a pipe and a fixing member on the reservoir tank side. As shown, there is a required mold space (PP) in a certain area around the pipe, and accordingly, a fixing member 95 for fixing the reservoir tank and the valve is provided. There is a problem in that it cannot be placed close to the pipes (91P, 92P).
  • Figure 3 is an enlarged view showing the connection between pipes in Figure 1.
  • the reservoir tank side pipe 91P is inserted into the valve side pipe 92P, the inner diameter of the valve side pipe 92P and the reservoir Since the inner diameters of the side pipes (91P) are different, there is a problem of pressure loss occurring at the connection point between the two pipes.
  • Patent Document Korean Patent Publication No. 10-2022-0043563 (published on April 5, 2022)
  • the present invention was developed to solve the above problems, and adopts a structure that forms a through hole on the reservoir tank side, forms a coolant pipe on the coolant control module side, and connects the two to maintain a constant width of the coolant passage.
  • the purpose is to provide an integrated coolant module that can solve the problem of pressure loss due to differences in inner diameter in the coolant passage.
  • An integrated coolant module includes a reservoir tank in which coolant is stored; and a coolant control module including a valve and a pump, wherein a through hole penetrating one side of the reservoir tank is formed as a coolant inlet on the side of the reservoir tank, and a through hole is formed on one side of the coolant control module as a coolant inlet on the side of the coolant control module.
  • a coolant pipe may be provided protruding from the coolant, and the through hole may be connected to the coolant pipe to allow coolant to flow between the reservoir tank and the coolant control module.
  • One surface of the reservoir tank is provided with a protruding rib of a pipe structure surrounding the through hole, and the inner diameter of the protruding rib is formed to be larger than the diameter of the through hole, so that the outer peripheral wall of the protruding rib is spaced at a predetermined distance from the through hole in the radial direction.
  • a ring-shaped ring portion is formed between the protruding rib and the through hole on one surface of the reservoir tank, and an end of the coolant pipe may be inserted into the protruding rib.
  • the inner diameter of the coolant pipe may be the same as the diameter of the through hole.
  • the thickness of the coolant pipe may be equal to the width of the ring portion.
  • the tip of the coolant pipe may be seated on the ring portion.
  • connection portion between the protruding rib and the coolant pipe includes an O-ring interposed between the inner peripheral surface of the protruding rib and the outer peripheral surface of the coolant pipe to seal the coolant pipe by lateral pressure, and an O-ring interposed between the ring portion and the tip of the coolant pipe to seal the coolant pipe.
  • At least one of the ring gaskets for surface pressure sealing the pipe may be provided.
  • the through hole, the protruding rib, and the coolant pipe are each formed in two or more, one of the two or more through holes is called a first through hole and the other is called a second through hole, and the one of the two or more protruding ribs is called a second through hole.
  • a protruding rib corresponding to the first through hole is referred to as a first protruding rib
  • a protruding rib corresponding to the second through hole is referred to as a second protruding rib
  • a coolant pipe corresponding to the first through hole among the two or more coolant pipes is referred to as a first protruding rib
  • a second protruding rib a coolant pipe corresponding to the first through hole among the two or more coolant pipes.
  • first coolant pipe and the coolant pipe corresponding to the second through hole is a second coolant pipe
  • one may be provided with only the O-ring and the ring gasket, and the other may be provided with only the ring gasket among the O-ring and the ring gasket.
  • a fixing block is provided on one side of the reservoir tank and around the protruding rib for fixing the coolant pipe to the protruding rib, and the coolant pipe is provided with a fixing bracket to correspond to the fixing block, so that the fixing block and the A coolant pipe inserted into the protruding rib is fixed through a fixing bracket, and the fixing block may be disposed adjacent to the protruding rib.
  • the fixed block may protrude outward from one surface of the reservoir tank, and at least a portion of the fixed block may be in contact with the outer peripheral surface of the protruding rib.
  • the height of the fixing block may be the same as the height of the protruding rib.
  • the fixed block may protrude inward from one surface of the reservoir tank, and at least a portion of the fixed block may be positioned on the same line as the outer peripheral wall of the protruding rib.
  • the fixed block may be composed of one piece corresponding to the protruding rib.
  • the reservoir tank is provided with an additional fixing block for fixing the coolant control module and the reservoir tank to each other, and the additional fixing block is such that the through hole is disposed between the additional fixing block and the fixing block. It can be placed in the opposite direction of the block.
  • One surface of the reservoir tank may have a constant thickness throughout the entire area.
  • the reservoir tank and the protruding rib may be manufactured by injection molding and may be formed as one piece.
  • a through hole is formed on the reservoir tank side, a coolant pipe is formed on the coolant control module side, and a structure connecting the two is adopted to make the width of the coolant passage constant, thereby preventing the difference in internal diameter in the coolant passage from being eliminated. It can solve the pressure loss problem.
  • a fixing block to secure the reservoir tank and the coolant control module is installed on the pipe.
  • Figure 1 is a diagram schematically showing a conventional cooling water module.
  • Figure 2 is a diagram showing a reservoir tank side pipe and a fixing member.
  • Figure 3 is an enlarged view showing the connection between pipes in Figure 1.
  • Figure 4 is a diagram showing an integrated coolant module according to an example of the present invention.
  • Figure 5 is an enlarged view of part C of Figure 4.
  • Figure 6 is a perspective view showing one side of the reservoir tank in part C of Figure 4.
  • Figure 7 is a diagram for explaining a fixing structure according to another example of the present invention.
  • Figure 8 is a view showing one side of a reservoir tank according to an example of the present invention.
  • FIG. 4 is a diagram showing an integrated coolant module according to an example of the present invention.
  • the integrated coolant module 10 of the present invention includes a reservoir tank 100 and a coolant control module 200.
  • the reservoir tank 100 has a hollow interior, and coolant is accommodated and stored in the hollow interior.
  • the outer wall structure forming a hollow internal space in the reservoir tank 100 may be referred to as a tank body.
  • the reservoir tank 100 may be provided with one or more coolant inlet pipes through which coolant flows in and out, and may be provided at the top with a coolant inlet for replenishing coolant and a coolant cap for closing the coolant inlet.
  • the coolant control module 200 corresponds to a component of a cooling system in which the valve 210 and the pump 220 are modularized and integrated, and includes at least one valve 210 and the pump 220.
  • the coolant control module 200 has a structure in which a valve 210 is placed in the center and a first pump 220-1 and a second pump 220-2 are placed on both sides. You can.
  • the valve 210 may be a multi-directional automated valve 210 that controls the flow path of coolant
  • the pump 220 may be a coolant pump 220 that pressurizes and transfers coolant.
  • the coolant control module 200 may further include a controller that controls the valve 210 and the pump 220, and the controller is made of a PCB board equipped with electronic elements, and the coolant control module 200 ) can be placed on one side of the.
  • the coolant control module 200 may further include a housing that accommodates a valve 210, a pump 220, and a controller. This coolant control module 200 is mounted on one side of the reservoir tank 100, for example, at the bottom of the reservoir tank 100, and forms an integrated coolant module 10 together with the reservoir tank 100.
  • the coolant stored in the reservoir tank 100 flows to the valve 210 of the coolant control module 200, and the coolant flowing from the valve 210 to the first pump 220-1 is Circulate the first coolant path passing through the battery in such a way that it is discharged through the coolant inlet pipe of the first pump 220-1, passes through the battery, and then re-introduces through the first coolant inlet pipe of the reservoir tank 100,
  • the coolant flowing from the valve 210 to the second pump 220-2 is discharged through the coolant inlet pipe of the second pump 220-2, passes through the electrical equipment, and then enters the second coolant inlet pipe of the reservoir tank 100.
  • the second coolant path passing through the electrical equipment can be circulated by being re-introduced through .
  • the integrated coolant module 10 of the present invention forms a through hole 110 on the reservoir tank 100 side, a coolant pipe 230 on the coolant control module 200 side, and a through hole 110. ) and the coolant pipe 230 are connected to allow coolant to flow between the reservoir tank 100 and the coolant control module 200.
  • a through hole 110 is formed as a coolant inlet and passes through one side 100A of the reservoir tank (for example, the lower surface of the tank body), and on the coolant control module 200 side, a through hole 110 is formed.
  • a coolant inlet a coolant pipe 230 protrudes from one side of the coolant control module 200 (for example, the top of the valve 210 or the pump 220, or the top of the housing of the coolant control module 200 described above). It can be provided.
  • these through holes 110 and the coolant pipe 230 are connected to each other to form a reservoir tank 100 and a coolant control module 200, that is, the reservoir tank 100 and the valve 210, or the reservoir tank 100. Coolant may flow between the pumps 220.
  • the present invention adopts a structure. It differs from the prior art in that the coolant entrance on the reservoir tank 100 side is configured as a through hole 110. This is to overcome the problems of the prior art described above, and more details will be described later.
  • FIG. 5 is an enlarged view of part C of Figure 4
  • Figure 6 is a perspective view showing one side of the reservoir tank in part C of Figure 4.
  • the coolant connection structure of the present invention is provided with a protruding rib 120 of a pipe structure surrounding a through hole 110 on one surface 100A of the reservoir tank, and a coolant pipe inside the protruding rib 120. It may be structured so that the end of 230 is inserted. This helps improve the connectivity between the through hole 110 and the coolant pipe 230 and strengthens the fixing force of the coolant pipe 230.
  • the inner diameter of the protruding rib 120 is formed to be larger than the diameter of the through hole 110, so that the outer circumferential wall of the protruding rib 120 can be arranged at a predetermined distance from the through hole 110 in the radial direction. That is, the protruding rib 120 and the through hole 110 are arranged concentrically, but the inner diameter of the protruding rib 120 is formed to be larger than the diameter of the through hole 110, so that the outer peripheral wall of the protruding rib 120 is formed in the through hole. It may have a structure that is spaced apart from 110 in the radial direction and surrounds the perimeter of the through hole 110.
  • a ring-shaped ring portion 110A may be formed between the outer peripheral wall of the protruding rib 120 and the through hole 110 on one side 100A of the reservoir tank, and a coolant pipe inserted into the protruding rib 120 ( The tip of 230) may be seated on the corresponding ring portion (110A).
  • the width of the coolant passage between the reservoir tank 100 and the valve 210 can be configured to be constant.
  • the inner diameter of the coolant pipe 230 and the diameter of the through hole 110 are configured to be the same, and accordingly, the width of the coolant passage at the connection point between the two components can be configured to be constant.
  • the thickness 230_D of the coolant pipe 230 can be configured to be the same as the width 110A_D of the ring portion 110A, so that the inner diameter of the coolant pipe 230 and the diameter of the through hole 110 can be configured to be the same. Accordingly, the problem of pressure loss occurring at the connection point between the two pipes can be solved because the inner diameter of the conventional reservoir side pipe and the inner diameter of the valve 210 side pipe are different.
  • the description is limited to the case where the through hole 110, the protruding rib 120, and the coolant pipe 230 are circular or cylindrical, but of course, a polygonal structure can also be applied.
  • one surface 100A of the reservoir tank may have a constant thickness throughout the entire area. That is, the present invention is not a structure in which a certain area of one side of the reservoir tank (i.e., one side of the tank body) is thicker than other areas and a through hole is formed in the thickly formed area, but a generally uniform structure without such processing.
  • the through hole 110 may be formed directly on one side (100A) of the thick reservoir tank.
  • the above-described protruding rib 120 is formed around the through hole 110 of this structure. This is different from the general coolant pipe structure or through-hole structure formed on the side of the conventional reservoir tank, and can provide advantages in terms of structure and manufacturing.
  • a seal structure 300 may be provided at the connection between the protruding rib 120 and the coolant pipe 230 to seal the coolant and prevent the coolant from leaking out.
  • the seal structure 300 of the present invention includes an O-ring 310 that is interposed between the inner peripheral surface of the protruding rib 120 and the outer peripheral surface of the coolant pipe 230 and seals the coolant pipe 230 by lateral pressure, a ring portion 110A, and coolant. It may include a ring gasket 320 that is interposed between the ends of the pipes 230 and seals the coolant pipe 230 by surface pressure. Any one of the O-ring 310 and the ring gasket 320, or a combination of the two, may be applied to the connection between the protruding rib 120 and the coolant pipe 230.
  • the O-ring 310 and the ring gasket 320 may be alternatively applied to different connection parts. That is, the above-described through hole 110, the protruding rib 120, and the coolant pipe 230 can be formed into one set to form multiple sets, and only the O-ring 310 is applied to at least one of them. , only the ring gasket 320 can be applied to any other one.
  • the through hole 110, the protruding rib 120, and the coolant pipe 230 are composed of two sets, each of which is called a first set connection part and a second set connection part.
  • the first set connection part will be provided with only the O-ring 310 among the O-ring 310 and the ring gasket 320
  • the second set connection part will be provided with only the ring gasket 320 among the O-ring 310 and the ring gasket 320. You can.
  • each of the two or more coolant pipes 230 is connected to two or more protruding ribs 120.
  • the O-ring 310 is applied to one coolant pipe 230 and the ring gasket 320 is applied to the other coolant pipe 230, thereby greatly improving the assembly efficiency in the structure.
  • confidentiality performance can be guaranteed.
  • a fixing structure for fixing the coolant pipe 230 inserted into the protruding rib 120 may be applied to the integrated coolant module 10 of the present invention.
  • a fixing block 130 is provided on one side 100A of the reservoir tank and around the protruding rib 120 to secure the coolant pipe 230 to the protruding rib 120, and the coolant
  • the pipe 230 may be provided with a fixing bracket 235 formed at a position corresponding to the fixing block 130.
  • a thread groove may be formed in the fixing block 130 or an insert, etc. may be inserted, and the fixing bracket 235 may have a structure extending from the outer peripheral surface of the coolant pipe 230.
  • the fixing bracket 235 and the fixing block By bolting the two components together using a fixing member such as a bolt (B) while 130 is in close contact, the coolant pipe 230 can be firmly fixed to the protruding rib 120.
  • the fixed block 130 may be disposed adjacent to the protruding rib 120.
  • the fixing block 130 protrudes outward from one surface 100A of the reservoir tank, and at least a portion of the fixing block 130 may be configured to contact the outer peripheral surface of the protruding rib 120. That is, in the related art, by adopting a pipe-pipe coupling structure, there is a problem in that the fixing structure for fixing the reservoir tank 100 and the valve 210 cannot be installed close to the pipe due to reasons such as undercut.
  • the present invention As shown, by providing the through hole 110 and the protruding rib 120 on the side of the reservoir tank 100, there is no need for a mold space for forming a pipe, so the fixing block 130 is very attached to the rib structure around the through hole 110. Closely, specifically, at least one side of the fixing block 130 can be brought into close contact with the rib structure, thereby providing advantages such as securing space and ease of assembly in the integrated coolant module.
  • the height of the fixed block 130 that is, the height at which the fixed block 130 protrudes outward from one surface 100A of the reservoir tank, is the height of the protruding rib 120, i.e.
  • the outer circumferential wall of the protruding rib 120 may be formed to be equal to the height of the protruding outer wall from one surface 100A of the reservoir tank, which can improve space utilization and structural stability.
  • FIG. 7 is a diagram for explaining a fixing structure according to another example of the present invention.
  • the fixing block 130 may be formed to protrude inward from one surface 100A of the reservoir tank. This helps to simplify the structure of the outside of one side 100A of the reservoir tank, and thus the space utilization of the integrated coolant module 10 can be further improved.
  • the fixing bracket 235 provided on the coolant pipe 230 extends toward the fixing block 130 so as to be in close contact with the fixing block 130, and may be structured to surround the outer peripheral surface of the protruding rib 120. This may help improve the fixing force between the coolant pipe 230 and the protruding rib 120.
  • the fixed block 130 may be arranged as close to the protruding rib 120 as possible, and specifically, at least a portion of the fixed block 130 may be located on the same line as the outer peripheral wall of the protruding rib 120. You can. That is, at least a portion of the fixing block 130 may be located on an extension line in the height direction of the outer peripheral wall of the protruding rib 120, and the advantage of the fixing rib being disposed close to the protruding rib 120 is as discussed above. It's like a bar.
  • the integrated coolant module 10 of the present invention may be further provided with an additional fixing structure for fixing the reservoir tank 100 and the coolant control module 200 to each other.
  • one side (100A) of the reservoir tank is provided with an additional fixing block 140 for fixing the coolant control module 200 and the reservoir tank 100 to each other, and although not shown, the coolant control The module 200 may be provided with an additional fixing bracket on which one side is fixed to the coolant control module 200 and the other side is coupled with the additional fixing block 140.
  • the additional fixing block 140 may have a thread groove formed or an insert may be inserted, and by connecting an additional fixing bracket to this additional fixing block 140 and bolting it, the coolant control module (200) ) and the reservoir tank 100 can be fixed more firmly.
  • the additional fixing block 140 may be arranged to face the fixing block 130 described above. That is, the additional fixing block 140 may be placed in the opposite direction of the fixing block 130 so that the through hole 110 and the protruding rib 120 are disposed between the additional fixing block 140 and the fixing block 130. there is.
  • the additional fixing block 140 is preferably disposed on one side (100A) of the reservoir tank, spaced apart from the protruding rib 120, but is not limited thereto and may be placed at another position of the reservoir tank 100 so as to face the fixing block 130. It can be placed anywhere. In this way, as the additional fixing block 140 is located in opposite directions to the fixing block 130 with respect to the through hole 110, the fixing force between the reservoir tank 100 side and the coolant control module 200 side is balanced. can be matched.
  • Figure 8 is a view showing one side (100A) of a reservoir tank according to an example of the present invention.
  • two through holes 110 and two protruding ribs 120 may be formed, respectively, and are fixed correspondingly.
  • Blocks 130 and additional fixing blocks 140 may also be formed in pairs.
  • the first fixing block 130-1 has the first through hole 110-1 or the first protruding rib 120. -1)
  • one second fixing block 130-2 may be provided corresponding to the second through hole 110-2 or the second protruding rib 120-2.
  • the number of fixing blocks 130 is formed to be equal to the number of protruding ribs 120, and each fixing block 130 protrudes so that each fixing block 130 corresponds one to one with each protruding rib 120.
  • One rib may be provided on each rib 120.
  • first fixing block 130-1 and one second fixing block 130-2 are identical based on the first protruding rib 120-1 and the second protruding rib 120-2, respectively. They can be placed in a position and arranged side by side with each other, and the first additional fixed block 140-1 and the second additional fixed block 140-2 are respectively a first fixed block 130-1 and a second fixed block ( 130-2) and can be arranged in parallel with each other. As the fixing blocks 130 and the additional fixing blocks 140 are arranged in this way, the balance between the reservoir tank 100 side and the coolant control module 200 side can be further improved.
  • the reservoir tank 100 of the present invention may be manufactured by injection molding and made of a resin material.
  • the through hole 110 and the protruding rib 120, and further the fixing block 130 and the additional fixing block 140 are It is manufactured by injection molding together with the tank body and can be formed as one piece.
  • a through hole 110 is formed in the tank body, a protruding rib 120 is formed around the through hole 110, and the coolant pipe 230 on the coolant control module 200 side is inserted into the protruding rib 120.
  • the reason for adopting a structure connected to the through hole 110 and the resulting effects are as discussed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 차량의 열관리 시스템에 적용되는 통합 냉각수 모듈에 관한 것으로, 보다 구체적으로 리저버 탱크와 냉각수 제어 모듈 간의 냉각수 연결 및 고정 구조에 관한 것이며, 본 발명에 의하면 리저버 탱크 측에 관통홀을 형성하고 냉각수 제어 모듈 측에 냉각수 파이프를 형성하고 이 둘을 연결하는 구조를 채택하여 냉각수 통로의 폭을 일정하게 구성함으로써 냉각수 통로에서 내경의 차이로 인한 압력 손실 문제를 해결할 수 있다.

Description

통합 냉각수 모듈
본 발명은 차량의 열관리 시스템에 적용되는 통합 냉각수 모듈에 관한 것으로, 보다 구체적으로 리저버 탱크와 냉각수 제어 모듈 간의 냉각수 연결 및 고정 구조에 관한 것이다.
최근 차량의 전동화로 인하여 차량의 실내, 배터리, 모터 등의 전장품들의 열관리 니즈가 많이 확대되었다. 이에 따라 각각의 구성에 대하여 독립적으로 열관리를 수행하면서 동시에 전체적인 차량의 열관리를 통합하여 열효율을 증대시키고자 차량의 열관리 시스템이 복잡해지고 있다.
이러한 차량의 통합 열관리가 수행되기 위해서는 복잡한 냉각수 라인들과 부품들을 통합하여 모듈화할 필요가 있으며, 이에 따라 냉각수를 저장하는 리저버 탱크, 냉각수를 가압 이송하는 펌프, 및 냉각수의 유동방향과 유동량을 제어하는 밸브를 통합한 냉각수 모듈이 제안되고 있다.
도 1은 종래 냉각수 모듈을 개략적으로 나타낸 도면으로, 종래 냉각수 모듈(90)은, 내부에 냉각수가 수용되어 저장되는 리저버 탱크(91)와, 리저버 탱크와 유동적으로 연결되는 밸브(92)와, 밸브와 유동적으로 연결되는 펌프(93)를 포함하여 구성된다.
도시된 바와 같이, 종래에는 리저버 탱크(91) 측에 냉각수 출입 파이프(91P)가 구비되고, 밸브(92)(또는 펌프, 이하 밸브로 한정하여 설명) 측에 별도의 냉각수 출입 파이프(92P)가 구비되며, 리저버 탱크 측 파이프(91P)가 밸브 측 파이프(92P)에 삽입 결합되어 리저버 탱크(91)와 밸브(92) 간 냉각수가 연통되는 구조로 이루어진다. 그리고, 파이프(91P, 92P)의 연결부 주변에는 리저버 탱크와 밸브를 서로 고정하기 위한 고정 부재(95)가 마련된다.
이때, 리저버 탱크(91)는 사출성형으로 제작되는데, 사출성형으로 리저버 탱크(91)에 냉각수 출입 파이프(91P)를 구성하는 경우, 파이프(91P) 주변에는 해당 파이프(91P)를 성형하기 위한 최소의 공간이 필요하게 되어, 파이프 주변의 일정 영역으로 구조 성형이 불가능한 영역이 존재하게 된다. 도 2는 리저버 탱크 측 파이프와 고정 부재를 나타낸 도면으로서, 도시된 바와 같이 파이프 주변 일정 영역에 금형 필요공간(PP)이 존재하며, 그에 따라 리저버 탱크와 밸브를 고정하기 위한 고정 부재(95)가 파이프(91P, 92P)에 근접 배치되지 못하는 문제가 있다.
또한, 도 3은 도 1에서 파이프 간의 연결부를 확대하여 나타낸 도면으로서, 도시된 바와 같이 리저버 탱크 측 파이프(91P)가 밸브 측 파이프(92P) 내에 삽입 시, 밸브 측 파이프(92P)의 내경과 리저버 측 파이프(91P)의 내경이 서로 달라, 두 파이프 간의 연결 지점에서 압력 손실이 발생하는 문제가 있다.
[선행기술문헌]
(특허문헌) 한국 공개특허공보 제10-2022-0043563호(2022.04.05. 공개)
본 발명은 상기와 같은 문제를 해결하기 위하여 안출된 것으로, 리저버 탱크 측에 관통홀을 형성하고 냉각수 제어 모듈 측에 냉각수 파이프를 형성하고 이 둘을 연결하는 구조를 채택하여 냉각수 통로의 폭을 일정하게 구성함으로써 냉각수 통로에서 내경의 차이로 인한 압력 손실 문제를 해결할 수 있는 통합 냉각수 모듈을 제공하기 위한 것을 목적으로 한다.
본 발명의 일 예에 따른 통합 냉각수 모듈은, 냉각수가 저장되는 리저버 탱크; 및 밸브와 펌프를 포함하는 냉각수 제어 모듈;을 포함하고, 상기 리저버 탱크 측에는 냉각수 출입구로서 상기 리저버 탱크의 일면을 관통하는 관통홀이 형성되고, 상기 냉각수 제어 모듈 측에는 냉각수 출입구로서 상기 냉각수 제어 모듈의 일측으로부터 돌출 형성되는 냉각수 파이프가 구비되며, 상기 관통홀과 상기 냉각수 파이프가 연결되어 상기 리저버 탱크와 상기 냉각수 제어 모듈 간 냉각수가 유동되도록 구성될 수 있다.
상기 리저버 탱크의 일면에는 상기 관통홀을 감싸는 파이프 구조의 돌출 리브가 구비되고, 상기 돌출 리브의 내경이 상기 관통홀의 직경보다 크게 형성되어 상기 돌출 리브의 외주벽이 상기 관통홀과 반경방향으로 소정 이격 배치되고, 상기 리저버 탱크의 일면 중 상기 돌출 리브와 상기 관통홀 사이에는 링 형태의 링부가 형성되며, 상기 돌출 리브의 내부에 상기 냉각수 파이프의 단부가 삽입될 수 있다.
상기 냉각수 파이프의 내경은 상기 관통홀의 직경과 동일할 수 있다.
상기 냉각수 파이프의 두께는 상기 링부의 폭과 동일할 수 있다.
상기 냉각수 파이프의 선단이 상기 링부에 안착될 수 있다.
상기 돌출 리브와 상기 냉각수 파이프 간의 연결부에는, 상기 돌출 리브의 내주면과 상기 냉각수 파이프의 외주면 사이에 개재되어 상기 냉각수 파이프를 측압 실링하는 오링과, 상기 링부와 상기 냉각수 파이프의 선단 사이에 개재되어 상기 냉각수 파이프를 면압 실링하는 링 가스켓 중 적어도 하나가 구비될 수 있다.
상기 관통홀과 돌출 리브, 그리고 상기 냉각수 파이프는 각각 두개 이상 형성되며, 상기 두개 이상의 관통홀 중 어느 하나를 제1 관통홀이라 하고 다른 하나를 제2 관통홀이라 하고, 상기 두개 이상의 돌출 리브 중 상기 제1 관통홀에 대응되는 돌출 리브를 제1 돌출 리브라 하고 상기 제2 관통홀에 대응되는 돌출 리브를 제2 돌출 리브라 하고, 상기 두개 이상의 냉각수 파이프 중 상기 제1 관통홀에 대응되는 냉각수 파이프를 제1 냉각수 파이프라 하고 상기 제2 관통홀에 대응되는 냉각수 파이프를 제2 냉각수 파이프라 하면, 상기 제1 돌출 리브와 상기 제1 냉각수 파이프 간의 제1 연결부와, 상기 제2 돌출 리브와 상기 제2 냉각수 파이프 간의 제2 연결부 중, 어느 하나에는 상기 오링과 링 가스켓 중 오링만 구비되고, 나머지 하나에는 상기 오링과 링 가스켓 중 링 가스켓만 구비될 수 있다.
상기 리저버 탱크의 일면이자 상기 돌출 리브의 주변에는 상기 냉각수 파이프를 상기 돌출 리브에 고정하기 위한 고정 블록이 구비되고, 상기 냉각수 파이프에는 상기 고정 블록에 대응되도록 고정 브라켓이 구비되어, 상기 고정 블록과 상기 고정 브라켓을 통해 상기 돌출 리브에 삽입된 냉각수 파이프가 고정되며, 상기 고정 블록은 상기 돌출 리브에 인접하게 배치될 수 있다.
상기 고정 블록은 상기 리저버 탱크의 일면에서 외측으로 돌출 형성되고, 상기 고정 블록의 적어도 일부가 상기 돌출 리브의 외주면과 맞닿을 수 있다.
상기 고정 블록의 높이는 상기 돌출 리브의 높이와 동일할 수 있다.
상기 고정 블록은 상기 리저버 탱크의 일면에서 내측으로 돌출 형성되고, 상기 고정 블록의 적어도 일부가 상기 돌출 리브의 외주벽과 동일선상에 위치할 수 있다.
상기 고정 블록은 상기 돌출 리브에 대응하여 한 개로 구성될 수 있다.
상기 리저버 탱크에는, 상기 냉각수 제어 모듈과 상기 리저버 탱크를 서로 고정하기 위한 추가 고정 블록이 구비되고, 상기 추가 고정 블록은, 상기 추가 고정 블록과 상기 고정 블록 사이에 상기 관통홀이 배치되도록, 상기 고정 블록의 반대 방향에 배치될 수 있다.
상기 리저버 탱크의 일면은 전 영역에서 두께가 일정하게 형성될 수 있다.
상기 리저버 탱크와 상기 돌출 리브는 사출성형으로 제작되어 일체로 이루어질 수 있다.
본 발명에 의하면, 리저버 탱크 측에 관통홀을 형성하고 냉각수 제어 모듈 측에 냉각수 파이프를 형성하고 이 둘을 연결하는 구조를 채택하여 냉각수 통로의 폭을 일정하게 구성함으로써 냉각수 통로에서 내경의 차이로 인한 압력 손실 문제를 해결할 수 있다.
또한, 리저버 탱크 측에 관통홀과 돌출 리브를 형성하고 해당 돌출 리브에 냉각수 제어 모듈 측의 냉각수 파이프를 삽입하는 결합방식을 채택함에 따라, 리저버 탱크와 냉각수 제어 모듈을 고정하기 위한 고정 블록을 파이프에 근접 배치할 수 있게 되어 공간성과 결합 용이성 등이 향상될 수 있다.
도 1은 종래 냉각수 모듈을 개략적으로 나타낸 도면이다.
도 2는 리저버 탱크 측 파이프와 고정 부재를 나타낸 도면이다.
도 3은 도 1에서 파이프 간의 연결부를 확대하여 나타낸 도면이다.
도 4는 본 발명의 일 예에 따른 통합 냉각수 모듈을 나타낸 도면이다.
도 5는 도 4의 C 부분을 확대하여 나타낸 도면이다.
도 6은 도 4의 C 부분 중 리저버 탱크의 일면을 나타낸 사시도이다.
도 7은 본 발명의 다른 예에 따른 고정 구조를 설명하기 위한 도면이다.
도 8은 본 발명의 일 예에 따른 리저버 탱크의 일면을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명에 대해 설명하도록 한다.
도 4는 본 발명의 일 예에 따른 통합 냉각수 모듈을 나타낸 도면으로, 도시된 바와 같이 본 발명의 통합 냉각수 모듈(10)은 리저버 탱크(100)와 냉각수 제어 모듈(200)을 포함한다.
리저버 탱크(100)는 내부가 중공된 구조로 이루어지며, 중공된 내부에 냉각수가 수용되어 저장된다. 리저버 탱크(100)에서 중공된 내부 공간을 형성하는 외벽 구조를 탱크 바디라 할 수 있다. 리저버 탱크(100)에는 냉각수가 출입되는 냉각수 출입 파이프가 하나 이상 구비될 수 있으며, 상부에 냉각수를 보충할 수 있는 냉각수 유입구와 냉각수 유입구를 폐쇄하는 냉각수 캡이 구비될 수 있다.
냉각수 제어 모듈(200)은 밸브(210)와 펌프(220)가 모듈화되어 통합된 냉각 시스템의 일 컴포넌트에 해당하는 것으로, 적어도 하나 이상의 밸브(210)와 펌프(220)를 포함한다. 일 예로서, 도시된 바와 같이 냉각수 제어 모듈(200)은 중앙에 밸브(210)가 배치되고, 양측에 제1 펌프(220-1)와 제2 펌프(220-2)가 배치되는 구조로 이루어질 수 있다. 밸브(210)는 냉각수의 유동 경로를 제어하는 다방향 자동화 밸브(210)일 수 있으며, 펌프(220)는 냉각수를 가압하여 이송하는 냉각수 펌프(220)일 수 있다. 또한, 도시하지는 않았으나, 냉각수 제어 모듈(200)은 밸브(210)와 펌프(220)를 제어하는 제어기를 더 포함할 수 있으며, 해당 제어기는 전자소자들이 장착된 PCB 기판으로 이루어져 냉각수 제어 모듈(200)의 일측에 배치될 수 있다. 또한, 도시하지는 않았으나, 냉각수 제어 모듈(200)은 밸브(210)와 펌프(220) 나아가 제어기를 수용하는 하우징을 더 포함할 수 있다. 이러한 냉각수 제어 모듈(200)은 리저버 탱크(100)의 일측, 예를 들어 리저버 탱크(100)의 하부에 장착 결합되어 리저버 탱크(100)와 함께 통합 냉각수 모듈(10)을 구성한다.
도 4를 참조하여 설명하면, 리저버 탱크(100)에 저장된 냉각수는 냉각수 제어 모듈(200)의 밸브(210)로 유동되고, 밸브(210)에서 제1 펌프(220-1)로 유동된 냉각수는 제1 펌프(220-1)의 냉각수 출입 파이프를 통해 배출되어 배터리를 경유한 뒤 리저버 탱크(100)의 제1 냉각수 출입 파이프를 통해 재유입되는 방식으로 배터리를 지나는 제1 냉각수 경로를 순환하고, 밸브(210)에서 제2 펌프(220-2)로 유동된 냉각수는 제2 펌프(220-2)의 냉각수 출입 파이프를 통해 배출되어 전장품을 경유한 뒤 리저버 탱크(100)의 제2 냉각수 출입 파이프를 통해 재유입되는 방식으로 전장품을 지나는 제2 냉각수 경로를 순환할 수 있다.
이때, 본 발명의 통합 냉각수 모듈(10)은, 리저버 탱크(100) 측에 관통홀(110)을 형성하고, 냉각수 제어 모듈(200) 측에 냉각수 파이프(230)를 형성하며, 관통홀(110)과 냉각수 파이프(230)를 연결하여 리저버 탱크(100)와 냉각수 제어 모듈(200) 간 냉각수가 유동되도록 구성된다.
구체적으로, 냉각수 제어 모듈(200) 측에는 냉각수 출입구로서 리저버 탱크의 일면(100A)(예를 들어, 탱크 바디의 하부면)을 관통하는 관통홀(110)이 형성되고, 냉각수 제어 모듈(200) 측에는 냉각수 출입구로서 냉각수 제어 모듈(200)의 일측(예를 들어 밸브(210)나 펌프(220)의 상부, 또는 상술한 냉각수 제어 모듈(200) 하우징의 상부)으로부터 돌출 형성되는 냉각수 파이프(230)가 구비될 수 있다. 그리고, 이러한 관통홀(110)과 냉각수 파이프(230)가 서로 연결되어 리저버 탱크(100)와 냉각수 제어 모듈(200), 즉 리저버 탱크(100)와 밸브(210), 또는 리저버 탱크(100)와 펌프(220) 간 냉각수가 유동될 수 있다.
배경기술에서 살펴본 바와 같이, 종래에는 리저버 탱크 측과 밸브 측(즉, 냉각수 제어 모듈 측) 각각에 출입 파이프가 형성되고, 두 출입 파이프가 서로 삽입 결합되어 연결되는 구조를 채택하는 반면, 본 발명은 리저버 탱크(100) 측의 냉각수 출입구를 관통홀(110)로 구성하는 점에서 종래 기술과 차이가 있다. 이는 상술한 종래 기술의 문제점을 극복하기 위한 것으로서, 보다 상세한 내용은 후술하기로 한다.
이하에서는 리저버 탱크(100) 측의 관통홀(110)과 냉각수 제어 모듈(200) 측의 냉각수 파이프(230) 간의 냉각수 연결 구조에 대해 상세히 살펴보기로 한다.
도 5는 도 4의 C 부분을 확대하여 나타낸 도면이고, 도 6은 도 4의 C 부분 중 리저버 탱크의 일면을 나타낸 사시도이다. 도시된 바와 같이, 본 발명의 냉각수 연결 구조는, 리저버 탱크의 일면(100A)에 관통홀(110)을 감싸는 파이프 구조의 돌출 리브(120)가 구비되고, 돌출 리브(120)의 내부에 냉각수 파이프(230)의 단부가 삽입되는 구조로 이루어질 수 있다. 이는 관통홀(110)과 냉각수 파이프(230) 간의 연결성을 향상시키고, 냉각수 파이프(230)의 고정력을 강화시키는데 도움이 된다.
이때, 돌출 리브(120)의 내경은 관통홀(110)의 직경보다 크게 형성되어 돌출 리브(120)의 외주벽이 관통홀(110)과 반경방향으로 소정 이격 배치될 수 있다. 즉, 돌출 리브(120)와 관통홀(110)은 동심원으로 배치되되, 돌출 리브(120)의 내경이 관통홀(110)의 직경보다 크게 형성되어, 돌출 리브(120)의 외주벽이 관통홀(110)과 반경방향으로 소정 이격되어 관통홀(110)의 둘레를 감싸는 구조로 이루어질 수 있다. 그에 따라 리저버 탱크의 일면(100A) 중 돌출 리브(120)의 외주벽과 관통홀(110) 사이에는 링 형태의 링부(110A)가 형성될 수 있으며, 돌출 리브(120)에 삽입된 냉각수 파이프(230)의 선단이 해당 링부(110A)에 안착될 수 있다.
이러한 구조를 채택함으로써, 리저버 탱크(100)와 밸브(210) 간의 냉각수 통로의 폭이 일정하게 구성될 수 있다. 구체적으로, 냉각수 파이프(230)의 내경과 관통홀(110)의 직경은 서로 동일하게 구성되며, 그에 따라 두 구성 간 연결 지점에서 냉각수 통로의 폭이 일정하게 구성될 수 있다. 바람직한 예로서, 냉각수 파이프(230)의 두께(230_D)를 링부(110A)의 폭(110A_D)과 동일하게 구성하여 냉각수 파이프(230)의 내경과 관통홀(110)의 직경을 동일하게 구성할 수 있으며, 그에 따라 종래 리저버 측 파이프의 내경과 밸브(210) 측 파이프의 내경이 달라 두 파이프 간의 연결 지점에서 발생하는 압력 손실의 문제를 해소할 수 있다.
한편, 본 발명에서는 관통홀(110)과 돌출 리브(120), 그리고 냉각수 파이프(230)가 원형 내지 원통형인 경우를 한정하여 설명하고 있으나, 이외에도 다각형 구조가 적용될 수 있음은 물론이다.
도 4 내지 6을 다시 참조하면, 리저버 탱크의 일면(100A)은 전 영역에서 두께가 일정하게 형성될 수 있다. 즉, 본 발명은, 리저버 탱크의 일면(즉, 탱크 바디의 일면) 중 소정 영역을 다른 영역에 비해 두껍게 형성하고 두껍게 형성된 해당 영역에 관통홀이 형성되는 구조가 아니라, 이러한 가공 없이 일반적으로 균일한 두께를 가지는 리저버 탱크의 일면(100A)에 관통홀(110)이 직접 형성되는 구조로 이루어질 수 있다. 그리고 이러한 구조의 관통홀(110) 주변에 상술한 돌출 리브(120)가 형성된다. 이는 종래 리저버 탱크 측에 형성되는 일반적인 냉각수 파이프 구조, 또는 관통홀 구조와는 상이하며, 그에 따른 구조적 측면 내지 제작 측면에서의 이점을 제공할 수 있다.
도 5를 다시 참조하면, 돌출 리브(120)와 냉각수 파이프(230) 간의 연결부에는 냉각수를 기밀하여 냉각수의 외부 유출을 방지하기 위한 씰 구조(300)가 마련될 수 있다. 본 발명의 씰 구조(300)는, 돌출 리브(120)의 내주면과 냉각수 파이프(230)의 외주면 사이에 개재되어 냉각수 파이프(230)를 측압 실링하는 오링(310)과, 링부(110A)와 냉각수 파이프(230)의 선단 사이에 개재되어 냉각수 파이프(230)를 면압 실링하는 링 가스켓(320)을 포함할 수 있다. 돌출 리브(120)와 냉각수 파이프(230) 간의 연결부에는 이와 같은 오링(310)과 링 가스켓(320) 중 어느 하나, 또는 이 둘이 복합적으로 적용될 수 있다.
이때, 오링(310)과 링 가스켓(320)은 각각 서로 다른 연결부에 택일적으로 적용될 수 있다. 즉, 상술한 관통홀(110)과 돌출 리브(120), 그리고 냉각수 파이프(230)는 하나의 세트를 이루어 다수의 세트로 구성될 수 있으며, 이 중 적어도 어느 하나에는 오링(310)만 적용되고, 다른 어느 하나에는 링 가스켓(320)만 적용될 수 있다. 도 4를 참조하여 설명하면, 관통홀(110)과, 돌출 리브(120), 및 냉각수 파이프(230)는 각각 두개씩 구성되어 두 세트로 구성되며, 이를 각각 제1 세트 연결부와 제2 세트 연결부라 하면, 제1 세트 연결부에는 오링(310)과 링 가스켓(320) 중 오링(310)만 구비되고, 제2 세트 연결부에는 오링(310)과 링 가스켓(320) 중 링 가스켓(320)만 구비될 수 있다.
일반적으로, 두 개 이상의 냉각수 파이프를 오링과 함께 두 개 이상의 다른 파이프에 각각 삽입 고정하는 것은 구조적으로 어려운 문제가 있으나, 본 발명은 둘 이상의 냉각수 파이프(230) 각각을 둘 이상의 돌출 리브(120) 각각에 삽입하는 것에 있어서 하나의 냉각수 파이프(230)에는 오링(310)만 적용하고 다른 하나의 냉각수 파이프(230)에는 링 가스켓(320)만 적용함으로써 해당 구조에서의 조립성을 크게 향상시킬 수 있으며, 동시에 기밀 성능을 보장할 수 있다.
다음으로, 리저버 탱크(100) 측의 관통홀(110)과 냉각수 제어 모듈(200) 측의 냉각수 파이프(230) 간의 고정 구조에 대해 상세히 살펴보기로 한다.
본 발명의 통합 냉각수 모듈(10)에는 돌출 리브(120)에 삽입된 냉각수 파이프(230)를 고정하기 위한 고정 구조가 적용될 수 있다. 도 5, 6을 다시 참조하면, 리저버 탱크의 일면(100A)이자 돌출 리브(120)의 주변에는 냉각수 파이프(230)를 돌출 리브(120)에 고정하기 위한 고정 블록(130)이 구비되고, 냉각수 파이프(230)에는 고정 블록(130)에 대응되는 위치에 형성되는 고정 브라켓(235)이 구비될 수 있다. 고정 블록(130)에는 나사선 홈이 형성되어 있거나 인서트 등이 삽입될 수 있고, 고정 브라켓(235)은 냉각수 파이프(230)의 외주면으로부터 연장 형성된 구조로 이루어질 수 있으며, 고정 브라켓(235)과 고정 블록(130)이 밀착된 상태에서 볼트(B) 등의 고정부재를 이용해 두 구성을 볼팅 결합함으로써, 냉각수 파이프(230)가 돌출 리브(120)에 견고히 고정될 수 있다.
이때, 도 5, 6에 도시된 바와 같이, 고정 블록(130)은 돌출 리브(120)에 인접하게 배치될 수 있다. 구체적으로, 고정 블록(130)은 리저버 탱크의 일면(100A)에서 외측으로 돌출 형성되며, 고정 블록(130)의 적어도 일부가 돌출 리브(120)의 외주면과 맞닿게 구성될 수 있다. 즉, 종래에는 파이프-파이프 결합구조를 채택함으로써 언더컷 등의 이유로 리저버 탱크(100)와 밸브(210)를 고정하기 위한 고정 구조가 해당 파이프에 근접하게 설치되지 못하는 문제가 있으나, 본 발명은 앞서 살펴본 바와 같이 리저버 탱크(100) 측에 관통홀(110)과 돌출 리브(120)를 구비함으로써 파이프 형성을 위한 금형 필요공간을 필요치 않아 고정 블록(130)이 관통홀(110) 주변의 리브 구조에 매우 근접하게, 구체적으로 고정 블록(130)의 적어도 일측이 리브 구조에 밀착될 수 있게 되며, 그에 따라 통합 냉각수 모듈에 있어서 공간성 확보와 결합 용이성 등의 이점을 제공할 수 있다.
나아가, 도 5, 6에 도시된 바와 같이, 고정 블록(130)의 높이, 즉 고정 블록(130)이 리저버 탱크의 일면(100A)으로부터 외측으로 돌출된 높이는, 돌출 리브(120)의 높이, 즉 돌출 리브(120)의 외주벽이 리저버 탱크의 일면(100A)으로부터 외측으로 돌출된 높이와 동일하게 형성될 수 있으며, 이는 공간 활용성 및 구조적 안정성을 향상시킬 수 있다.
도 7은 본 발명의 다른 예에 따른 고정 구조를 설명하기 위한 도면으로서, 도시된 바와 같이 고정 블록(130)은 리저버 탱크의 일면(100A)에서 내측으로 돌출 형성될 수 있다. 이는 리저버 탱크의 일면(100A)의 외측의 구조를 간단하게 하는 것에 도움이 되며, 그에 따라 통합 냉각수 모듈(10)의 공간 활용성이 보다 향상될 수 있다. 여기서, 냉각수 파이프(230)에 구비되는 고정 브라켓(235)은 고정 블록(130)과 밀착될 수 있도록 고정 블록(130) 측으로 연장형성되어 돌출 리브(120)의 외주면을 감싸는 구조로 이루어질 수 있으며, 이는 냉각수 파이프(230)와 돌출 리브(120) 간의 고정력을 향상시키는 것에 도움이 될 수 있다.
이때, 본 예에서도, 고정 블록(130)이 돌출 리브(120)와 최대한 근접 배치될 수 있으며, 구체적으로 고정 블록(130)의 적어도 일부가 돌출 리브(120)의 외주벽과 동일선상에 위치할 수 있다. 즉, 돌출 리브(120)의 외주벽의 높이방향으로의 연장선상에 고정 블록(130)의 적어도 일부가 위치할 수 있으며, 이와 같이 고정 리브가 돌출 리브(120)와 근접 배치되는 것의 이점은 앞서 살펴본 바와 같다.
한편, 본 발명의 통합 냉각수 모듈(10)에는, 리저버 탱크(100)와 냉각수 제어 모듈(200)을 서로 고정하기 위한 추가 고정 구조가 더 마련될 수 있다. 구체적으로, 도 5를 다시 참조하면, 리저버 탱크의 일면(100A)에는 냉각수 제어 모듈(200)과 리저버 탱크(100)를 서로 고정하기 위한 추가 고정 블록(140)이 구비되고, 도시하지는 않았으나 냉각수 제어 모듈(200)에는 일측이 냉각수 제어 모듈(200) 측에 고정되고 타측이 추가 고정 블록(140)과 결합되는 추가 고정 브라켓이 구비될 수 있다. 추가 고정 블록(140)은 고정 블록(130)과 마찬가지로 나사산 홈이 형성되어 있거나 인서트가 삽입될 수 있으며, 이러한 추가 고정 블록(140)에 추가 고정 브라켓을 연결하여 볼팅 결합함으로써, 냉각수 제어 모듈(200)과 리저버 탱크(100)를 보다 견고히 고정할 수 있다.
여기서, 추가 고정 블록(140)은 상술한 고정 블록(130)과 대향하도록 배치될 수 있다. 즉, 추가 고정 블록(140)은, 추가 고정 블록(140)과 고정 블록(130) 사이에 관통홀(110)과 돌출 리브(120)가 배치되도록 고정 블록(130)의 반대 방향에 배치될 수 있다. 추가 고정 블록(140)은 돌출 리브(120)와 이격되어 리저버 탱크의 일면(100A)에 배치되는 것이 바람직하나, 이에 한정되는 것은 아니고 고정 블록(130)과 대향되도록 리저버 탱크(100)의 다른 위치에 얼마든지 배치될 수 있다. 이와 같이, 추가 고정 블록(140)이 관통홀(110)을 기준으로 고정 블록(130)과 서로 반대 방향에 위치함에 따라, 리저버 탱크(100) 측과 냉각수 제어 모듈(200) 측 간의 고정력의 균형을 맞출 수 있다.
도 8은 본 발명의 일 예에 따른 리저버 탱크의 일면(100A)을 나타낸 도면으로, 상술한 바와 같이 관통홀(110), 돌출 리브(120)가 각각 2개씩 형성될 수 있고, 그에 대응하여 고정 블록(130)과 추가 고정 블록(140) 또한 2개씩 형성될 수 있다. 이때, 도면상 좌측의 구성들을 제1 구성이라 하고, 우측의 구성들을 제2 구성이라 하면, 제1 고정 블록(130-1)은 제1 관통홀(110-1) 또는 제1 돌출 리브(120-1)에 대응하여 한 개 구비되고, 제2 고정 블록(130-2)은 제2 관통홀(110-2) 또는 제2 돌출 리브(120-2)에 대응하여 한 개 구비될 수 있다. 즉, 고정 블록(130)의 수는 돌출 리브(120)의 수와 동일하게 형성되며, 각 고정 블록(130)이 각 돌출 리브(120)와 일대일로 대응되도록 각 고정 블록(130)이 각 돌출 리브(120)에 한 개씩 구비될 수 있다.
그리고, 하나의 제1 고정 블록(130-1)과 하나의 제2 고정 블록(130-2)은 각각 제1 돌출 리브(120-1)와 제2 돌출 리브(120-2)를 기준으로 동일한 위치에 배치되어 서로 나란하게 배치될 수 있으며, 제1 추가 고정 블록(140-1)과 제2 추가 고정 블록(140-2)은 각각 제1 고정 블록(130-1)과 제2 고정 블록(130-2)에 대향하게 배치되어 서로 나란하게 배치될 수 있다. 이와 같이 고정 블록(130)들과 추가 고정 블록(140)들이 배치됨에 따라, 리저버 탱크(100) 측과 냉각수 제어 모듈(200) 측 간의 균형이 더욱 향상될 수 있다.
한편, 본 발명의 리저버 탱크(100)는 사출 성형으로 제작되어 수지 재질로 이루어질 수 있으며, 이때 관통홀(110)과 돌출 리브(120), 나아가 고정 블록(130)과 추가 고정 블록(140)은 탱크 바디와 함께 사출 성형으로 제작되어 일체로 이루어질 수 있다. 탱크 바디에 관통홀(110)을 형성하고 관통홀(110) 주변에 돌출 리브(120)를 형성하며, 해당 돌출 리브(120)에 냉각수 제어 모듈(200) 측의 냉각수 파이프(230)를 삽입하여 관통홀(110)과 연결되는 구조를 채택하는 이유와 그에 따른 효과는 앞서 살펴본 바와 같다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
[부호의 설명]
10: 통합 냉각수 모듈
100: 리저버 탱크
100A: 리저버 탱크의 일면
110: 관통홀
120: 돌출 리브
130: 고정 블록
140: 추가 고정 블록
200: 냉각수 제어 모듈
210: 밸브
220: 펌프
230: 냉각수 파이프
235: 고정 브라켓
300: 씰 구조
310: 오링
320: 링 가스켓

Claims (15)

  1. 냉각수가 저장되는 리저버 탱크; 및
    밸브와 펌프를 포함하는 냉각수 제어 모듈;을 포함하고,
    상기 리저버 탱크 측에는 냉각수 출입구로서 상기 리저버 탱크의 일면을 관통하는 관통홀이 형성되고,
    상기 냉각수 제어 모듈 측에는 냉각수 출입구로서 상기 냉각수 제어 모듈의 일측으로부터 돌출 형성되는 냉각수 파이프가 구비되며,
    상기 관통홀과 상기 냉각수 파이프가 연결되어 상기 리저버 탱크와 상기 냉각수 제어 모듈 간 냉각수가 유동되도록 구성되는,
    통합 냉각수 모듈.
  2. 제1항에 있어서,
    상기 리저버 탱크의 일면에는 상기 관통홀을 감싸는 파이프 구조의 돌출 리브가 구비되고,
    상기 돌출 리브의 내경이 상기 관통홀의 직경보다 크게 형성되어 상기 돌출 리브의 외주벽이 상기 관통홀과 반경방향으로 소정 이격 배치되고, 상기 리저버 탱크의 일면 중 상기 돌출 리브와 상기 관통홀 사이에는 링 형태의 링부가 형성되며,
    상기 돌출 리브의 내부에 상기 냉각수 파이프의 단부가 삽입되는,
    통합 냉각수 모듈.
  3. 제2항에 있어서,
    상기 냉각수 파이프의 내경은 상기 관통홀의 직경과 동일한,
    통합 냉각수 모듈.
  4. 제2항에 있어서,
    상기 냉각수 파이프의 두께는 상기 링부의 폭과 동일한,
    통합 냉각수 모듈.
  5. 제2항에 있어서,
    상기 냉각수 파이프의 선단이 상기 링부에 안착되는,
    통합 냉각수 모듈.
  6. 제2항에 있어서,
    상기 돌출 리브와 상기 냉각수 파이프 간의 연결부에는,
    상기 돌출 리브의 내주면과 상기 냉각수 파이프의 외주면 사이에 개재되어 상기 냉각수 파이프를 측압 실링하는 오링과,
    상기 링부와 상기 냉각수 파이프의 선단 사이에 개재되어 상기 냉각수 파이프를 면압 실링하는 링 가스켓 중 적어도 하나가 구비되는,
    통합 냉각수 모듈.
  7. 제6항에 있어서,
    상기 관통홀과 돌출 리브, 그리고 상기 냉각수 파이프는 각각 두개 이상 형성되며,
    상기 두개 이상의 관통홀 중 어느 하나를 제1 관통홀이라 하고 다른 하나를 제2 관통홀이라 하고, 상기 두개 이상의 돌출 리브 중 상기 제1 관통홀에 대응되는 돌출 리브를 제1 돌출 리브라 하고 상기 제2 관통홀에 대응되는 돌출 리브를 제2 돌출 리브라 하고, 상기 두개 이상의 냉각수 파이프 중 상기 제1 관통홀에 대응되는 냉각수 파이프를 제1 냉각수 파이프라 하고 상기 제2 관통홀에 대응되는 냉각수 파이프를 제2 냉각수 파이프라 하면,
    상기 제1 돌출 리브와 상기 제1 냉각수 파이프 간의 제1 연결부와, 상기 제2 돌출 리브와 상기 제2 냉각수 파이프 간의 제2 연결부 중, 어느 하나에는 상기 오링과 링 가스켓 중 오링만 구비되고, 나머지 하나에는 상기 오링과 링 가스켓 중 링 가스켓만 구비되는,
    통합 냉각수 모듈.
  8. 제2항에 있어서,
    상기 리저버 탱크의 일면이자 상기 돌출 리브의 주변에는 상기 냉각수 파이프를 상기 돌출 리브에 고정하기 위한 고정 블록이 구비되고,
    상기 냉각수 파이프에는 상기 고정 블록에 대응되도록 고정 브라켓이 구비되어, 상기 고정 블록과 상기 고정 브라켓을 통해 상기 돌출 리브에 삽입된 냉각수 파이프가 고정되며,
    상기 고정 블록은 상기 돌출 리브에 인접하게 배치되는,
    통합 냉각수 모듈.
  9. 제8항에 있어서,
    상기 고정 블록은 상기 리저버 탱크의 일면에서 외측으로 돌출 형성되고,
    상기 고정 블록의 적어도 일부가 상기 돌출 리브의 외주면과 맞닿는,
    통합 냉각수 모듈.
  10. 제9항에 있어서,
    상기 고정 블록의 높이는 상기 돌출 리브의 높이와 동일한,
    통합 냉각수 모듈.
  11. 제8항에 있어서,
    상기 고정 블록은 상기 리저버 탱크의 일면에서 내측으로 돌출 형성되고,
    상기 고정 블록의 적어도 일부가 상기 돌출 리브의 외주벽과 동일선상에 위치하는,
    통합 냉각수 모듈.
  12. 제8항에 있어서,
    상기 고정 블록은 상기 돌출 리브에 대응하여 한 개로 구성되는,
    통합 냉각수 모듈.
  13. 제8항에 있어서,
    상기 리저버 탱크에는, 상기 냉각수 제어 모듈과 상기 리저버 탱크를 서로 고정하기 위한 추가 고정 블록이 구비되고,
    상기 추가 고정 블록은, 상기 추가 고정 블록과 상기 고정 블록 사이에 상기 관통홀이 배치되도록, 상기 고정 블록의 반대 방향에 배치되는,
    통합 냉각수 모듈.
  14. 제2항에 있어서,
    상기 리저버 탱크의 일면은 전 영역에서 두께가 일정하게 형성되는,
    통합 냉각수 모듈.
  15. 제2항에 있어서,
    상기 리저버 탱크와 상기 돌출 리브는 사출성형으로 제작되어 일체로 이루어지는,
    통합 냉각수 모듈.
PCT/KR2023/009876 2022-08-29 2023-07-11 통합 냉각수 모듈 WO2024048980A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0108179 2022-08-29
KR1020220108179A KR20240029858A (ko) 2022-08-29 2022-08-29 통합 냉각수 모듈

Publications (1)

Publication Number Publication Date
WO2024048980A1 true WO2024048980A1 (ko) 2024-03-07

Family

ID=90098068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009876 WO2024048980A1 (ko) 2022-08-29 2023-07-11 통합 냉각수 모듈

Country Status (2)

Country Link
KR (1) KR20240029858A (ko)
WO (1) WO2024048980A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181486A (ja) * 2000-12-15 2002-06-26 Denso Corp 熱交換器
KR20040031821A (ko) * 2002-10-04 2004-04-14 현대자동차주식회사 자동차용 워셔액 탱크
US20110062163A1 (en) * 2009-09-16 2011-03-17 Mann+Hummel Gmbh Multi-layer coolant reservoir
KR20210109072A (ko) * 2020-02-26 2021-09-06 현대위아 주식회사 차량의 통합 리저버 탱크
KR20220060759A (ko) * 2020-11-05 2022-05-12 현대자동차주식회사 냉각수 급수 모듈

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220043563A (ko) 2020-09-29 2022-04-05 한온시스템 주식회사 차량용 냉각수 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181486A (ja) * 2000-12-15 2002-06-26 Denso Corp 熱交換器
KR20040031821A (ko) * 2002-10-04 2004-04-14 현대자동차주식회사 자동차용 워셔액 탱크
US20110062163A1 (en) * 2009-09-16 2011-03-17 Mann+Hummel Gmbh Multi-layer coolant reservoir
KR20210109072A (ko) * 2020-02-26 2021-09-06 현대위아 주식회사 차량의 통합 리저버 탱크
KR20220060759A (ko) * 2020-11-05 2022-05-12 현대자동차주식회사 냉각수 급수 모듈

Also Published As

Publication number Publication date
KR20240029858A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2012099409A2 (en) Nozzle-boss for high pressure vessel
WO2023113210A1 (ko) 연료전지용 막가습기
WO2016208952A1 (ko) 실링구조를 포함하는 연료공급노즐
WO2024048980A1 (ko) 통합 냉각수 모듈
WO2022103131A1 (ko) 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2018124806A1 (ko) 유로 연결 구조
WO2022065768A1 (ko) 리저버 탱크 통합 급수 모듈
WO2010050782A2 (en) Filter assembly
WO2019151627A1 (en) Venting device for a battery system
WO2023132561A1 (ko) 유체 가열 히터
WO2020032495A1 (ko) 유압 브레이크 시스템용 밸브블록
WO2018217015A1 (ko) 이차전지의 제조방법 및 이차전지 제조용 보조 케이스
WO2018174400A1 (ko) 배터리팩의 냉각 장치
WO2023219295A1 (ko) 볼밸브
WO2023128393A1 (ko) 냉각수 리저버 탱크
WO2012053714A1 (ko) 보일러용 펌프
WO2023219296A1 (ko) 볼밸브 및 이를 포함하는 볼밸브 모듈
WO2019164169A1 (ko) 통기성 캡
WO2024058386A1 (ko) 통합 냉각수 모듈
WO2024019394A1 (ko) 리저버 탱크
WO2019146984A1 (ko) 전지 모듈 하우징용 냉매 분배 인터페이스
WO2024014938A1 (ko) 전해액 주액용 펠릿 및 전해액 주액 방법
WO2022149948A1 (ko) 볼조인트 및 이의 제조방법
WO2014168381A1 (ko) 압축기
WO2022245155A1 (ko) 통합 쿨링 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860662

Country of ref document: EP

Kind code of ref document: A1