WO2022065768A1 - 리저버 탱크 통합 급수 모듈 - Google Patents

리저버 탱크 통합 급수 모듈 Download PDF

Info

Publication number
WO2022065768A1
WO2022065768A1 PCT/KR2021/012324 KR2021012324W WO2022065768A1 WO 2022065768 A1 WO2022065768 A1 WO 2022065768A1 KR 2021012324 W KR2021012324 W KR 2021012324W WO 2022065768 A1 WO2022065768 A1 WO 2022065768A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
reservoir tank
coolant
step member
component
Prior art date
Application number
PCT/KR2021/012324
Other languages
English (en)
French (fr)
Inventor
백승수
정성우
최정범
고광옥
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200126155A external-priority patent/KR20220042841A/ko
Priority claimed from KR1020200125893A external-priority patent/KR20220042715A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US18/026,172 priority Critical patent/US20230366340A1/en
Priority to DE112021004073.1T priority patent/DE112021004073T5/de
Priority to CN202180064905.3A priority patent/CN116391073A/zh
Publication of WO2022065768A1 publication Critical patent/WO2022065768A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means

Definitions

  • the present invention relates to an integrated reservoir tank water supply module, and more particularly, to a reservoir tank integrated water supply module in which components of several water supply modules are integrated and connected.
  • Eco-friendly vehicles are largely divided into electric vehicles or hydrogen vehicles using batteries or fuel cells as energy sources, and hybrid vehicles powered by an engine and battery.
  • the cooling system it further includes a separate electric vehicle cooling system for managing heat of electric components including the electric motor.
  • the electronic cooling system mainly uses cooling water to cool electrical components, actuators, or hybrid start and generator (HSG). It has a structure in which the temperature of the battery is raised by allowing the waste heat to pass through the battery.
  • HSG hybrid start and generator
  • the electronic cooling system of an eco-friendly vehicle must satisfy various uses such as heating, cooling, and waste heat recovery from a number of water supply module components, but due to the limitation of the layout space in the vehicle, the arrangement of each component, the hose route design and The difficulty of connection increases, and when each component is mounted on a vehicle, each component and hose must be individually mounted and connected, which requires a lot of man-hours, and the complicated route increases the resistance of the coolant side, which puts a high load on the water pump. There may be problems such as
  • the present invention has been devised to solve such a problem, and relates to a reservoir tank integrated water supply module that is connected to a plurality of coolant lines, integrates components of several water supply modules, and which components can be connected to each other through the reservoir tank .
  • the reservoir tank integrated water supply module includes: a reservoir tank having a hollow formed therein to receive cooling water, and including a first mounting part provided on one side and a second mounting part provided on the other side; a first component mounted to the first mount; and a second component mounted to the second mounting part, wherein the first component and the second component may be connected through the reservoir tank.
  • a through hole is formed in the reservoir tank in a direction from the first mounting part to the second mounting part, and the coolant may flow between the first component and the second component through the through hole.
  • a pipe may further include a pipe connecting the first component and the second component, and the pipe may pass through the through hole to connect the first component and the second component.
  • a partition wall dividing a space inside the reservoir tank into a first chamber and a second chamber may be provided inside the reservoir tank.
  • the through hole may be formed to pass through the partition wall.
  • a thickness of the barrier rib may be smaller than a cross-sectional width of the through hole.
  • the first component is a valve assembly in which an internal flow path through which the coolant flows is formed, the internal flow path of the valve assembly includes a branch that branches in multiple directions, and the internal flow path branches in each direction from the branch. It may include first to fifth branch flow paths.
  • the second component and the first branch passage communicate with each other through the through hole, the second and third branch passages form the first cooling circuit, and the fourth and fifth branch passages communicate with each other through the second forming a cooling circuit, wherein the first chamber coolant outlet communicates with any one of the second and third branch passages, and the second chamber coolant outlet communicates with any one of the fourth and fifth branch passages.
  • the valve assembly may include a first water pump mounting part provided to communicate with any one of the second and third branch flow paths, and a second water pump mounting part provided to communicate with any one of the fourth and fifth branch flow paths.
  • a first water pump for pressurizing and transferring the first coolant flowing through the second and third branch passages is mounted on the first water pump mounting unit, and the second water pump mounting unit includes the fourth , a second water pump that pressurizes and transfers the second coolant flowing through the fifth branch flow path may be mounted.
  • the second component is a chiller for controlling the temperature of the cooling water
  • the chiller includes a pair of pipes through which the cooling water enters and exits. It can be connected to the assembly.
  • the chiller may include a chiller component coupling structure to which a component is coupled, and an expansion valve for reducing the pressure of the coolant is coupled to the chiller component coupling structure, and the expansion valve may be disposed between the chiller and the reservoir tank. .
  • a gasket coupling structure is provided in the first mounting part, and a gasket is coupled to the gasket coupling structure so that the gasket is disposed between the reservoir tank and the first component, wherein the gasket is a cotton gasket, wherein the first component and the first component are provided.
  • the cotton gasket may be face-contacted.
  • the reservoir tank may include a housing having a hollow therein; a partition wall disposed inside the housing to partition the hollow of the housing into a plurality of chambers; and a step member disposed inside the reservoir tank to control the flow of the coolant flowing in the reservoir tank, wherein the flow of the coolant is guided so that air bubbles contained in the coolant are removed by the step member.
  • the step member includes an inner wall step member having one end fixed to the inner wall of the housing and the other end extending to the partition wall; and a partition step member having one end fixed to the partition wall and the other end extending to the inner wall of the housing, wherein the cooling water flowing into the housing by the inner wall step member and the partition wall step member is the inner wall step member and the partition wall It may flow in a zigzag form along the step member.
  • the inner wall step member and the bulkhead step member may be formed in plurality, and the plurality of inner wall step members and the bulkhead step member may be alternately disposed along a vertical direction of the reservoir tank.
  • the plurality of chambers may include a first chamber and a second chamber partitioned by the partition wall, and the housing may include: a first chamber coolant inlet for introducing the first coolant into the first chamber; a first chamber coolant outlet for discharging the first coolant from the inside of the first chamber to the outside; a second chamber coolant inlet for introducing a second coolant into the second chamber; a second chamber coolant outlet for discharging the second coolant from the second chamber to the outside, wherein the first coolant outlet is disposed below the first chamber coolant inlet, and the second coolant outlet includes the second coolant outlet It may be disposed below the two-chamber coolant inlet.
  • a cooling water inlet disposed at the upper portion of the housing and through which cooling water is introduced from the outside; and a distribution member disposed on the upper end of the partition wall to distribute the coolant flowing in from the outside to the first chamber and the second chamber.
  • the inner wall step member is disposed on the first chamber, the first inner wall step member having one end fixed to the inner wall of the housing and the other end extending to the partition wall; and a second inner wall step member disposed on the second chamber and having one end fixed to the inner wall of the housing and the other end extending to the partition wall, wherein the partition wall step member is disposed on the first chamber and the partition wall a first bulkhead step member having one end fixed to the member and the other end extending to the inner wall of the housing; and a second partition wall step member disposed on the second chamber and having one end fixed to the partition member and the other end extending to the inner wall of the housing.
  • the housing includes a first housing and a second housing coupled to each other to form the hollow therein, the step member is made in plurality, some of the plurality of step members are disposed in the first housing, and another A portion may be disposed in the second housing.
  • the coolant flow path is directly connected to each other without bypassing the reservoir tank, thereby cooling the vehicle cooling system.
  • the circuit can be simplified and configured intensively.
  • the reservoir tank integrated water supply module of the present invention is provided with a partition wall dividing the space inside the reservoir tank into two chambers, it is possible to configure two independent cooling circuits with only one reservoir tank, It is possible to reduce the overall packaging size and reduce the cost.
  • FIG. 1 is a schematic configuration diagram of an electric vehicle cooling circuit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the reservoir tank integrated water supply module.
  • FIG 3 is an exploded perspective view of the reservoir tank integrated water supply module.
  • FIG. 4 is a rear perspective view of the reservoir tank.
  • valve assembly 7 shows that the valve assembly and the chiller are in communication.
  • valve assembly 8 is a perspective view of the valve assembly
  • FIG. 9 is a view for explaining a surface contact portion of the gasket and the valve assembly.
  • Fig. 10 is a representation of Fig. 4 again.
  • FIG. 11 is a cross-sectional view of the reservoir tank according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a reservoir tank according to a second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a reservoir tank according to a third embodiment of the present invention.
  • FIG. 14 and 15 are cross-sectional views of a reservoir tank according to a fourth embodiment of the present invention.
  • 16 and 17 are cross-sectional views of a reservoir tank according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a cooling circuit for an electric vehicle according to an embodiment of the present invention.
  • a cooling circuit C1 for cooling an electric unit and a cooling circuit for cooling a battery (C2) is required respectively.
  • a chiller, a valve, a pump (P), an expansion valve (TXV), etc. are mounted on the reservoir tank centered on the reservoir tank (10)
  • a cooling circuit for cooling an electric device is referred to as a first cooling circuit (c1)
  • a cooling circuit for cooling a battery is referred to as a second cooling circuit (c2).
  • the first and second cooling circuits c1 and c2 are not limited thereto, and may refer to various types of cooling circuits.
  • the reservoir tank integrated water supply module 10 of the present invention is a reservoir tank 100 and a component mounted on the reservoir tank 100, the valve assembly 200 having an internal flow path through which the cooling water flows, the component is a chiller 300 controlling the temperature of the cooling water, and transferring the cooling water by pressurizing it It may include a water pump 400 and an expansion valve 500 for reducing the pressure of the coolant.
  • a water pump 400 and an expansion valve 500 for reducing the pressure of the coolant.
  • up (D1), down (D2), before (D3), after (D4), left (D5), right (D6) to define
  • the reservoir tank 100 accommodates coolant therein, and the reservoir tank 100 has a plurality of reservoir tank coolant inlets and outlets 110 through which coolant enters and exits. and at least one mounting part 120 to which the component is mounted is provided.
  • the reservoir tank 100 may be installed to respond to a volume change of the cooling water. More specifically, since the volume of the coolant circulating in the first cooling circuit C1 and the second cooling circuit C2 may change according to changes in temperature and pressure, when the coolant is circulated, the coolant has a volume greater than or equal to the reference value.
  • an excess amount of coolant may be accommodated in the reservoir tank 100 , and when it is less than the reference value, insufficient coolant may be supplied to the reservoir tank 100 from the outside.
  • a stopper C may be provided on the upper side of the reservoir tank 100 to supply cooling water from the outside.
  • the first mounting part 121 is provided on one side of the reservoir tank 100
  • the second mounting part 122 is provided on the other side
  • the first mounting part 121 is attached to the first mounting part 121 .
  • One component 200 is mounted, and a second component (eg, a chiller 300 as will be described later) may be mounted on the second mounting unit, in which case the first component 200 and the second component 300 are It may be connected through the reservoir tank 100.
  • a through-hole 130 penetrating in a direction from the first mounting part 121 to the second mounting part 122 is formed, and the through-hole Cooling water may flow between the first component 200 and the second component 300 through 130.
  • the pipe P connecting the first component 200 and the second component 300 is further It is provided so that the pipe P passes through the through hole to connect the first component 200 and the second component 300 to each other, and the through hole 300 is the pipe inserted into the through hole 300 .
  • It can be designed in various forms depending on the shape.
  • each component in configuring the coolant flow path, in order to connect each component to each other, each component is directly connected through the reservoir tank without bypassing the reservoir tank, thereby simplifying the cooling circuit of the vehicle cooling system and It can be configured intensively.
  • Fig. 5 is an internal cross-sectional view of the reservoir tank, wherein Fig. 5 (a) shows a cross section from the inside in the front direction, and Fig. 5 (b) shows a cross section from the inside in the rear direction.
  • a partition wall 140 dividing the space inside the reservoir tank 100 into a first chamber S1 and a second chamber S2 may be provided inside the reservoir tank 100, and in this case, the cooling water in the first chamber S1 Cooling water (hereinafter, referred to as 'first cooling water (A)') circulating in the first cooling circuit of (B)') can flow.
  • the partition wall 140 extends upward from the bottom inside the reservoir tank 100 to separate the internal space of the reservoir tank 100 into a first chamber S1 and a second chamber S2, and the first chamber S1 and The second chamber (S2) is separated from each other due to the partition wall so that the first coolant (A) in the first chamber (S1) and the second coolant (B) in the second chamber (S2) do not mix with each other and constitute an independent cooling circuit.
  • two cooling circuits can be configured with only one reservoir tank, compared to the conventional need to provide a reservoir tank in each cooling circuit to configure the battery cooling circuit and the electronic component cooling circuit. , it is possible to reduce the overall packaging size of the vehicle cooling system and reduce the cost.
  • the through hole 130 may be formed to pass through the partition wall 140 . That is, as shown in FIG. 5 , the through hole 130 is formed to penetrate the partition wall 140 to be formed integrally with the partition wall 140 , and the cross-sectional width of the through hole 130 is that of the partition wall 140 . It may be larger than the thickness.
  • the partition wall 140 is formed to have a constant thickness except for the portion through which the through hole 130 penetrates, and at the starting point of the portion through which the through hole 130 penetrates, the partition wall 140 is branched into one side and the other side, One side is recessed to the left and the other side is recessed to the right, and at the end point of the portion through which the through hole 130 is penetrated, one side and the other side of the partition wall 140 may be merged again.
  • the through hole is configured to pass through the partition wall, it is possible to symmetrically design the first chamber and the second chamber, so that the cooling water accommodating capacity accommodated in the first chamber and the second chamber can be the same, and the cooling water When flowing through the first chamber and the second chamber, it is possible to prevent the coolant flow resistance in either side from being deflected to become large.
  • one through-hole is described as an example, but for various modifications of the cooling circuit, a plurality of through-holes connecting the first and second components may be formed, and the third and fourth components may be formed. Of course, one or more through-holes for connecting may be further formed.
  • the reservoir tank 100 of the present invention may have a plurality of coolant inlets 110 .
  • the plurality of coolant inlets 100 includes the first chamber S1 and The first chamber coolant inlet 111 communicates with the first coolant A to flow into the first chamber S1, and the first coolant A communicates with the first chamber S1 so that the first coolant A flows into the first chamber (S1).
  • the first chamber coolant outlet 112 to be discharged from the inside to the outside, and the second chamber coolant to communicate with the second chamber S2 so that the second coolant B flows into the second chamber S2 It may include an inlet 113 and a second chamber coolant outlet 114 communicating with the second chamber S2 to discharge the second coolant B from the second chamber S2 to the outside.
  • one reservoir tank is divided into two chambers through the partition wall, and a cooling water inlet and an outlet are separately provided in each chamber, two independent cooling circuits can be configured using one reservoir tank.
  • a through hole 130 penetrating the reservoir tank 100 is formed in the reservoir tank 100 , so that one component and another component can pass through the through hole 130 . can be connected to each other. More specifically, the component mounted on any one of the plurality of mounting units 120 of the reservoir tank 100 and the component mounted on the other may communicate with each other through the pipe P passing through the through hole 130 . there is.
  • communicating means that each component is connected or coupled so that the cooling water flows between the components.
  • the reservoir tank 100 is provided with a through hole 130 and a pipe P is passed through the through hole 130 to form a structure in which different components can be directly connected. It is possible to reduce the number of additional hoses or piping, increase the convenience of installation, and simplify the airtight structure for maintaining the airtightness of the coolant, thereby reducing the airtight portion of the connection between each component.
  • FIG. 6 shows that the gasket is coupled to the reservoir tank
  • FIG. 6 (a) shows the gasket coupling structure 125 of the mounting part 120
  • FIG. 6 (b) shows the gasket 600 on the mounting part 120 indicates that it is connected.
  • a gasket coupling structure 125 is provided on at least one of the plurality of mounting units 120 of the reservoir tank 100
  • the gasket 600 is coupled to the gasket coupling structure 125 .
  • the gasket 600 may be disposed between the reservoir tank 100 and the component mounted on the mounting unit 121 provided with the gasket coupling structure 125 . This is to improve the airtightness between the reservoir tank 100 and the component, and it is possible to more reliably prevent the coolant from leaking to the outside at the connection portion where the reservoir tank 100 and the component are connected.
  • valve assembly 200 is mounted on one side of the reservoir tank 100, the chiller 300 is mounted on the other side of the reservoir tank, and the valve assembly 200 ) and the water pump 400 may be combined.
  • the mounting part 120 of the reservoir tank 100 includes the first mounting part 121 provided on one side of the reservoir tank 100 and the reservoir tank 100 provided on the other side.
  • the second mounting part 122 may be included, the valve assembly 200 may be mounted on the first mounting part 121 , and the chiller 300 may be mounted on the second mounting part.
  • At least one water pump mounting unit 220 may be provided in the valve assembly 200 , and the water pump 400 may be coupled to the water pump mounting unit 220 .
  • the first mounting part 121 may be formed on the front lower portion of the reservoir tank 100
  • the second mounting portion 122 may be formed on the rear upper portion of the reservoir tank 100 .
  • the first mounting part 121 and the second mounting part 122 may be formed to be recessed into the reservoir tank 100 so that the valve assembly 200 and the chiller 300 can be accommodated, respectively.
  • the reservoir tank is provided with a through hole 130 penetrating in the direction from the first mounting part 121 to the second mounting part 122 , and passing the pipe P through the through hole 130 ,
  • the valve assembly 200 and the chiller 300 may communicate with each other through (P). 7 shows that the valve assembly and the chiller are in communication with each other, as shown, the valve assembly 200 and the chiller 300 may be directly connected to each other through a pipe P, and the pipe P is a through hole 130 ) so that the reservoir tank 100 may be disposed between the valve assembly 200 and the chiller 300 .
  • a through hole is formed in the reservoir tank and a pipe is passed through the through hole to directly connect the chiller and the valve assembly, so space utilization can be maximized, and the cooling circuit can be configured more intensively.
  • the branch portion 210 branching in multiple directions may be formed in the internal flow path of the valve assembly 200 .
  • 8 is a perspective view of the valve assembly.
  • the valve assembly 200 may be a 5-way valve, and accordingly, the internal flow path may be branched in 5 directions with the branch 210 as the center.
  • the first branch flow path V1 which is one of the internal flow paths branched in each direction from the branch unit 210 , may communicate with the pipe P.
  • one end of the pipe (P) is connected to the end of the first branch passage (V1), so that the first branch passage (V1) and the pipe (P) can communicate with each other, and accordingly, the valve assembly 200 and Cooling water F between the chiller 300 connected to the other end of the pipe P may flow with each other.
  • the end of each branch flow path may correspond to the cooling water inlet of the valve assembly 200 by itself, or the end of each branch flow path may be in communication with the cooling water inlet of the valve assembly 200 .
  • the second and third branch passages V2 and V3 among the internal passages branched in each direction from the branch unit 210 form the first cooling circuit C1 and branch in each direction from the branch portion 210 .
  • the fourth and fifth branch passages V4 and V5 among the internal passages may form a second cooling circuit C2.
  • the first chamber coolant outlet 112 communicates with any one of the second and third branch passages V2 and V3, and the second chamber coolant outlet 114 is connected to the fourth and fifth branch passages V4, V5), the coolant between the reservoir tank 100 and the valve assembly 200 may flow with each other.
  • the first coolant A introduced into the first chamber S1 through the first chamber coolant inlet 111 is discharged through the first chamber coolant outlet 112 .
  • the first cooling circuit C1 may be formed by circulating the discharge into the first chamber S1 of the reservoir tank 100 to cool the battery.
  • the second coolant B introduced into the second chamber S2 through the second chamber coolant inlet 113 is discharged to the second chamber coolant outlet 114 and communicates with the second chamber coolant outlet 114 .
  • the second cooling water (B) introduced into the fourth branch passage (V4) and flowing into the fourth branch passage (V4) is discharged to the fifth branch passage (V5) to cool the electric unit and again to the reservoir tank
  • the inflow into the second chamber of the circulating may form a second cooling circuit.
  • the water pump mounting unit 220 of the valve assembly 200 includes a first water pump mounting unit 221 communicating with any one of the second and third branch passages V2 and V3, It consists of a second water pump mounting part 222 communicating with any one of the fourth and fifth branch flow paths V4 and V5, and the first water pump mounting part 221 includes the second and third branch flow paths V2 and V3.
  • a first water pump 410 that pressurizes and transports the first cooling water A flowing therein
  • the second water pump mounting unit 222 flows the fourth and fifth branch passages V4 and V5.
  • a second water pump 420 that pressurizes and transfers the second cooling water B may be mounted.
  • FIG. 1 the water pump mounting unit 221 communicating with any one of the second and third branch passages V2 and V3
  • It consists of a second water pump mounting part 222 communicating with any one of the fourth and fifth branch flow paths V4 and V5
  • the first water pump mounting part 221 includes the second and third branch flow paths V2 and V3.
  • the first water pump 410 is mounted on the left side of the valve assembly 200 and the second water pump 420 is mounted on the right side of the valve assembly 200 .
  • the first water pump 410 is mounted near the second branch flow path V2 to supply the first coolant A flowing through the second and third branch flow paths V2 and V3.
  • the second water pump 420 is mounted near the fifth branch flow path V5 to pressurize the second cooling water B flowing through the fourth and fifth branch flow paths V4 and V5.
  • the water pump 400 may be an electric water pump (EWP).
  • EWP electric water pump
  • the first mounting part 121 is provided with a gasket coupling structure 125 , and the gasket coupling structure of the first mounting part 121 (
  • the gasket 600 may be coupled to the 125 , and the gasket 600 may be disposed between the reservoir tank 100 and the valve assembly 200 .
  • the valve assembly 200 may include the surface contact portion 250 that is in surface contact with the gasket 600 , and the surface contact portion 250 and the gasket 600 are in close contact with each other to improve airtightness.
  • 9 is a view for explaining a surface contact portion between the gasket and the valve assembly.
  • the gasket 600 is provided on the front of the first mounting portion 121 and the surface contact portion 250 on the rear surface of the valve assembly 200. is formed, so that the gasket 600 and the valve assembly 200 may be in surface contact, and at this time, the gasket 600 has a connection portion where the pipe P and the valve assembly 200 are connected, and a first chamber coolant outlet ( 112) and a connection portion where each of the second chamber coolant outlet 114 and the valve assembly 200 are connected, an O-ring (O) may be formed.
  • the chiller 300 may be provided with one or more chiller component coupling structures 320 capable of mounting components, in this case, the chiller component coupling structures 320 .
  • the expansion valve 500 is mounted on the , and the expansion valve 500 may be coupled to the chiller component coupling structure 320 so that the expansion valve 500 is disposed between the chiller 300 and the reservoir tank 100 . That is, as shown in FIG. 3 , the chiller component coupling structure 320 is provided on the upper front side of the chiller 300 , and the expansion valve 500 may be coupled to the chiller component coupling structure 320 , at this time the expansion The valve 500 may be disposed between the chiller 300 and the reservoir tank 100 . This can dramatically reduce the overall packaging size of the reservoir tank integrated water supply module and further maximize space utilization.
  • the electric field cooling system may include a heat exchanger and a water pump for cooling the circulating coolant, and a cooling circuit may be configured, and since the volume of the coolant changes according to the temperature, a reservoir tank capable of adjusting this may be additionally disposed in the cooling circuit . At this time, bubbles may be generated due to various factors while the cooling water circulates through the pipeline, leading to a problem in that cooling efficiency is lowered due to the generated bubbles.
  • Korean Patent Publication No. 10-1765589 discloses a technology for improving efficiency by removing generated air bubbles through a separate collection space.
  • the reservoir tank 100 of the present invention can solve such a problem by adopting a solution to be described below.
  • FIG. 10 is a view of FIG. 4 again, and as shown, in the reservoir tank 100 of the present invention, the first tank body 100a and the second tank body 100b are coupled to each other in the front-rear direction to form an internal hollow. there is. And the first chamber coolant inlet 111 , the first chamber coolant outlet 112 , the second chamber coolant inlet 113 , and the second chamber coolant outlet 114 are the first tank body 100a and the second It may be disposed on any one of the tank body (100b). In FIG.
  • the arrangement structure may be modified in various forms in consideration of compatibility.
  • FIG. 11 relates to a reservoir tank according to a first embodiment of the present invention, and FIG. 11 is a cross-sectional view of the reservoir tank. At this time, FIG. 11 is a cross-sectional view taken from the rear to the front to show the first tank body 100a of the reservoir tank 100. As the left and right sides are reversed in the drawing, the first chamber coolant outlet 112 is disposed A direction in which one side is defined and a direction in which the second chamber cooling water outlet 114 is disposed is defined as the other side.
  • the reservoir tank 100 of the present invention may include a housing 1110 having a hollow therein, and a partition wall 140 disposed inside the housing 1110 .
  • the partition wall 140 has a lower end coupled to the inner bottom surface of the housing 1110 and extending upward so as to divide the hollow in the housing 1110 into the first chamber S1 and the second chamber S2. there is.
  • the upper end of the partition wall 140 may be disposed below the inner upper surface of the housing 1110 to form a space communicating with the first chamber S1 and the second chamber S2 above the partition wall 140 .
  • the reservoir tank 100 of the present invention may further include distribution members 1130 coupled to the upper end of the partition wall 140 and extending to both sides.
  • the stopper (C) is disposed on the upper side of the distribution member (1130), when the user opens the stopper (C) and puts the coolant (F) through the guide of the distribution member (1130) the first chamber (S1) and the second chamber (S1) (S2) can be dispersed.
  • the reservoir tank 100 of the present invention may further include inner wall step members 1141 and 1142 and bulkhead step members 1151 and 1152 .
  • the inner wall step members 1141 and 1142 may include a first inner wall step member 1141 and a second inner wall step member 1142
  • the bulkhead step members 1151 and 1152 are also the first bulkhead step member 1151 . and a second bulkhead step member 1152 .
  • one end of the first inner wall step member 1141 and the second inner wall step member 1142 may be fixed to the inner wall of the housing 1110 , and the other end of the partition wall 140 is disposed at the inner center of the housing 1110 .
  • first partition wall step member 1151 and the second partition wall step member 1152 may be fixed to the outer surface of the partition wall 140 , and the other end may extend toward the inner wall of the housing 1110 .
  • first inner wall step member 1141 and the second inner wall step member 1142 and the partition wall 140 may be spaced apart so that coolant flows, the first partition wall step member 1151 and the second partition wall step member A gap may also be formed between the other end of the 1152 and the housing 1110 .
  • the first inner wall step member 1141 and the first partition wall step member 1151 are disposed on the first chamber S1, and the second inner wall step member 1142 and the second partition wall step member 1152 are disposed in the second chamber. It may be disposed on (S2).
  • each of the first chamber S1 and the second chamber S2 may be connected to a first chamber coolant outlet 112 and a second chamber coolant outlet 114 through which the first coolant and the second coolant are discharged.
  • the first inner wall step member 1141 and the first partition wall step member 1151 may be alternately disposed up and down in the first chamber S1 , and the first cooling water may include the first inner wall step member 1141 and the first It may flow in a zigzag form along the bulkhead step member 1151 .
  • the second inner wall step member 1142 and the second bulkhead step member 1152 may also be alternately disposed up and down in the second chamber S1 , and the second cooling water may include the second inner wall step member 1142 and the second It may flow in a zigzag form along the bulkhead step member 1152 .
  • first inner wall step member 1141 and the second inner wall step member 1142 may be disposed with respect to the partition wall 140, respectively, and the other end may face each other around the partition wall.
  • first bulkhead step member 1151 and the second bulkhead step member 1152 may be disposed at corresponding heights and extend in both directions.
  • the above-described through-hole 130 may be disposed to pass through the partition wall 140 , and the partition wall 140 may be formed in a form that is rejoined after branching from the upper and lower center to both sides to form the through hole 130 .
  • the through hole 130 may be designed in various shapes according to the shape of the pipe to be inserted.
  • FIG. 12 relates to a reservoir tank according to a second embodiment of the present invention
  • Fig. 12 is a cross-sectional view of the reservoir tank.
  • FIG. 12 is a cross-sectional view taken from the rear to the front to show the first tank body 100a of the reservoir tank 100.
  • the first chamber coolant outlet 112 is disposed direction
  • a direction in which the second chamber cooling water outlet 114 is disposed is defined as one side and the other side is described.
  • the distribution member 1130 coupled to the upper end of the partition wall 120 includes a first distribution member 1131 extending to one side of the partition wall 140 and a second distribution member 1131 extending to the other side of the partition wall 140 .
  • a distribution member 1132 may be included.
  • the first distribution member 1131 or the second distribution member 1132 may have a shape inclined upward or downward, where the inclined shape is a shape in which the other end is deflected upward and downward than one end, such as inclined or bent. can be
  • the first inner wall step member 1141, the second inner wall step member 1142, the first bulkhead step member 1151, and the second bulkhead step member 1152 may also have an inclined shape with the other end deflected upward and downward compared to one end. there is.
  • the first inner wall step member 1141 , the second inner wall step member 1142 , the first bulkhead step member 1151 , and the second partition wall step member 1152 may be vertically formed and spaced apart from each other.
  • a plurality of pieces may be inclined to the same side as each other, and as in the illustrated second inner wall step member 1142, some of the plurality are inclined in different directions. may be In addition, one end and the other end may be disposed at the same height as in the illustrated first bulkhead stair member 1151 , or may have a partially inclined shape as in the illustrated second bulkhead step member 1152 .
  • the shapes of the first inner wall step member 1141 , the second inner wall step member 1142 , the first bulkhead step member 1151 , and the second partition wall step member 1152 are not limited to those shown in the drawings, and the various shapes described above can be changed to any one of them.
  • FIG. 13 relates to a reservoir tank according to a third embodiment of the present invention, and FIG. 13 is a cross-sectional view of the reservoir tank.
  • FIG. 13 is a cross-sectional view taken from the rear to the front to show the first tank body 100a of the reservoir tank 100.
  • the first chamber cooling water outlet 112 is disposed direction
  • a direction in which the second chamber cooling water outlet 114 is disposed is defined as one side and the other side is described.
  • the first distribution member 1131 and the second distribution member 1132 may be formed at different heights and may be disposed to cross each other.
  • the first inner wall step member 1141 and the second inner wall step member 1142 may be disposed at different heights, or the first partition wall step member 1151 and the second partition wall step member 1152 may be disposed at different heights.
  • first inner wall step member 1141 , the second inner wall step member 1142 , the first bulkhead step member 1151 , or the second partition step member 1152 may be plural, the plurality of first inner wall step members Some of the 1141 and the second inner wall step members 1142 may be disposed to cross each other, or some of the plurality of first partition wall step members 1151 and the second partition wall step members 1152 may be disposed to cross each other. .
  • the other end of the first inner wall step member 1141 may be disposed above one surface of the first partition wall step member 1151 . Accordingly, it is disposed to partially face between one surface of the first inner wall step member 1141 and one surface of the first bulkhead step member 1151 to form a tunnel through which coolant can flow.
  • some of the plurality of first inner wall step members 1141 and first bulkhead step members 1151 may have different vertical gaps to control the cooling water.
  • a pair of first partition wall step members 1151 are disposed on upper and lower sides of one first inner wall step member 1141 , and one of the first partition wall step members 1151 and the first inner wall step member 1151 is disposed.
  • the upper and lower intervals of the other first partition wall step member 1151 and the first inner wall step member 1141 may be arranged to be closer than the upper and lower intervals of 1141 .
  • FIGS. 14 and 15 relate to a reservoir tank according to a fourth embodiment of the present invention
  • FIGS. 14 and 15 are cross-sectional views of the first tank body and the second tank body, respectively.
  • FIG. 14 is a cross-sectional view taken from the rear to the front to show the first tank body 100a of the reservoir tank 100.
  • the first chamber coolant outlet 112 is disposed direction
  • a direction in which the second chamber cooling water outlet 114 is disposed is defined as one side and the other side is described.
  • the reservoir tank 100 of the present invention may be formed by coupling a first tank body 100a and a second tank body 100b to each other, and the first tank body 100a and The second tank body 100b may include a first housing 1110a and a second housing 1110b, respectively.
  • the first housing 1110a and the second housing 1110b may be coupled to form a hollow therein.
  • the stopper C, the first chamber coolant inlet 111 , the second chamber coolant inlet 113 , the first chamber coolant outlet 112 , and the second chamber coolant outlet 114 are connected to the first housing 1110a or It may be disposed in any one of the second housings 1110b.
  • the first reservoir tank 100a includes first bulkheads 140a disposed in the center of both sides of the first housing 1110a, and the second reservoir tank 100b is disposed in the center of both sides of the second housing 1110b.
  • a second partition wall 140b may be included.
  • the center described above is not limited to the center of both sides, but may be formed in various forms as long as it can partition the first chamber S1 and the second chamber S2. For example, it may be eccentric from the center to the left or right.
  • the first partition wall 140a of the first reservoir tank 100a and the second partition wall 140b of the second reservoir tank 100b are opposite to each other when the first housing 1110a and the second housing 1110b are coupled. It may be disposed to form one bulkhead, and the bulkhead may be disposed in any one of the first reservoir tank 100a and the second reservoir tank 100b and may have a shape protruding forward or rearward.
  • the first reservoir tank 100a and the second reservoir tank 100b may include bulkhead step members 1150a and 1150b, respectively.
  • the bulkhead step member 1150a of the first reservoir tank 100a may extend to both sides around the first bulkhead 140a
  • the bulkhead step member 1150b of the second reservoir tank 100b and the second bulkhead It may extend to both sides with respect to (140b).
  • both ends of the bulkhead step member 1150a of the first reservoir tank 100a are spaced apart from both inner surfaces of the first housing 1110a to form a gap therebetween
  • the bulkhead step member of the second reservoir tank 100b (1150b) both end portions may be spaced apart from both inner surfaces of the second housing 1110b to form a gap therebetween.
  • the bulkhead step member 1150a of the first reservoir tank 100a and the bulkhead step member 1150b of the second reservoir tank 100b may be disposed at different heights,
  • the bulkhead step member 1150a of the first reservoir tank 100a and the bulkhead step member 1150b of the second reservoir tank 100b may be configured in plurality.
  • FIGS. 16 and 17 relate to a reservoir tank according to a fifth embodiment of the present invention
  • FIGS. 16 and 17 are cross-sectional views of the first tank body and the second tank body, respectively.
  • FIG. 16 is a cross-sectional view taken from the rear to the front to show the first tank body 100a of the reservoir tank 100.
  • the first chamber coolant outlet 112 is disposed direction
  • a direction in which the second chamber cooling water outlet 114 is disposed is defined as one side and the other side is described.
  • the first reservoir tank 100a includes the first bulkheads 140a disposed at both central portions of the first housing 1110a
  • the second reservoir tank 100b includes the second housing. It may include second partition walls 140b disposed in the center of both sides of the 1110b.
  • the first reservoir tank 100a and the second reservoir tank 100b may include any one or more of the inner wall step member 1140 and the bulkhead step member 1150 .
  • the first reservoir tank 100a includes the bulkhead step member 1150 and the second reservoir tank 100b includes the inner wall step member 1140, but the present invention is not limited to such a structure. .
  • the first reservoir tank 100a includes a first housing 1110a, a lower end fixed to an inner lower surface of the first housing 1110a, and a first bulkhead 140a and a first bulkhead 140a extending upward. ) and may include a bulkhead step member 1150 extending in both directions.
  • the second reservoir tank 100b has a second housing 1110b and a lower end fixed to an inner lower surface of the second housing 1110b to extend upward, and a second bulkhead 140b disposed opposite to the first bulkhead 140a. , an inner wall step member 1140 having one end fixed to both inner surfaces of the second housing 1110b and extending to the second partition wall 140b.
  • the inner wall step member 1140 and the bulkhead step member 1150 may be formed in plurality and disposed to be spaced apart from each other in the vertical direction.
  • the distribution member 1130 may be disposed in any one of the first reservoir tank 100a and the second reservoir tank 100b.
  • bubbles are generated when the coolant is injected into the reservoir tank or the first coolant and the second coolant for cooling the battery and electrical equipment flow through the inner wall step member and the bulkhead step member. can be suppressed, and thus, there is an advantage that a cooling circuit with improved cooling efficiency can be formed.
  • the reservoir tank of the present invention is connected to a plurality of cooling circuits through a bulkhead structure capable of suppressing the generation of bubbles, the space can be more efficiently utilized, and the user can control it in an integrated manner, thereby reducing maintenance time and cost. can save
  • A, B first and second coolants
  • V1, V2, V3, V4, V5 1st, 2nd, 3rd, 4th, 5th branch flow path

Abstract

본 발명은 내부에 중공이 형성되어 냉각수가 수용되고, 일측에 구비된 제1 장착부와 타측에 구비된 제2 장착부를 포함하는 리저버 탱크; 제1 장착부에 장착되는 제1 컴포넌트; 및 제2 장착부에 장착되는 제2 컴포넌트를 포함하되, 제1 컴포넌트와 제2 컴포넌트가 리저버 탱크를 관통하여 연결됨에 따라, 냉각수 유로가 리저버 탱크를 우회하지 않고 서로 직결되어 차량 냉각시스템의 냉각회로를 단순화하고 집약적으로 구성할 수 있는, 리저버 탱크 통합 급수 모듈에 관한 것이다.

Description

리저버 탱크 통합 급수 모듈
본 발명은 리저버 탱크 통합 급수 모듈에 관한 것으로, 보다 구체적으로는 여러 급수 모듈의 컴포넌트들이 통합하여 연결된 리저버 탱크 통합 급수 모듈에 관한 것이다.
최근 에너지 효율 및 환경오염 문제로 인해 내연기관 자동차를 실질적으로 대체할 수 있는 친환경 자동차의 개발이 요구되고 있다. 친환경 자동차는 크게 배터리 또는 연료전지를 에너지원으로 하는 전기자동차 또는 수소자동차와, 엔진과 배터리를 이용하여 구동되는 하이브리드 자동차 등으로 구분되며, 이와 같은 친환경 자동차는 엔진의 냉각/승온 등을 관리하는 엔진 냉각 시스템과 더불어, 전기모터를 비롯한 전장품의 열을 관리하는 별도의 전장 냉각 시스템을 더 포함한다.
전장 냉각 시스템은 주로 전장품, 액추에이터, 또는 HSG(hybrid start and generator) 등을 냉각수를 이용하여 냉각하며, 혹한기에는 냉각수가 바이패스회로를 통해 라디에이터를 우회하도록 함과 동시에 전장품(PE, Power Electronics)의 폐열을 이용하여 배터리를 통과하게 함으로써 배터리를 승온시키는 구조로 이루어진다.
친환경 차량의 전자 냉각 시스템은 다수의 급수 모듈 컴포넌트(component)로부터 난방, 냉각, 폐열 회수 등의 다양한 용도를 만족시켜야 하나, 차량 내 레이아웃 공간의 한계로 인해 각 컴포넌트의 배치, 호스 루트 설계 및 이들의 연결 난이도가 높아지고, 각 컴포넌트를 차량에 장착하는데 있어 각 컴포넌트와 호스를 개별적으로 장착하고 연결해야 하는데 많은 공수가 필요하며, 복잡한 루트로 인해 냉각수 측의 저항이 높아지고 이로 인해 워터펌프에 높은 부하가 걸리게 되는 점 등의 문제가 발생할 수 있다.
[선행기술문헌]
한국 등록특허공보 제1765578호 (2017.08.01.)
본 발명은 이와 같은 문제점을 해결하기 위하여 안출된 것으로, 복수의 냉각수 라인과 연결되고, 여러 급수 모듈의 컴포넌트를 통합하며, 컴포넌트가 리저버 탱크를 관통하여 서로 연결될 수 있는 리저버 탱크 통합 급수 모듈에 관한 것이다.
본 발명의 일 예에 따른 리저버 탱크 통합 급수 모듈은, 내부에 중공이 형성되어 냉각수가 수용되고, 일측에 구비된 제1 장착부와 타측에 구비된 제2 장착부를 포함하는 리저버 탱크; 상기 제1 장착부에 장착되는 제1 컴포넌트; 및 상기 제2 장착부에 장착되는 제2 컴포넌트;를 포함하고, 상기 제1 컴포넌트와 상기 제2 컴포넌트는 상기 리저버 탱크를 관통하여 연결될 수 있다.
상기 리저버 탱크에는 상기 제1 장착부에서 상기 제2 장착부 방향으로 관통된 관통홀이 형성되고, 상기 관통홀을 통해 상기 제1 컴포넌트와 상기 제2 컴포넌트 간 상기 냉각수가 유동될 수 있다.
상기 제1 컴포넌트와 상기 제2 컴포넌트를 연결하는 파이프를 더 포함하고, 상기 파이프는 상기 관통홀을 통과하여 상기 제1 컴포넌트와 상기 제2 컴포넌트를 연결할 수 있다.
상기 리저버 탱크 내부에는 상기 리저버 탱크 내부의 공간을 제1 챔버와 제2 챔버로 나누는 격벽이 구비될 수 있다.
상기 관통홀은 상기 격벽을 관통하도록 형성될 수 있다.
상기 격벽의 두께는 상기 관통홀의 단면 너비보다 작을 수 있다.
상기 제1 챔버에는 상기 냉각수 중 제1 냉각회로를 순환하는 제1 냉각수가 유동되고, 상기 제2 챔버에는 상기 냉각수 중 제2 냉각회로를 순환하는 제2 냉각수가 유동되며, 상기 리저버 탱크는 상기 냉각수가 출입되는 냉각수 출입구 다수개를 더 포함하고, 상기 다수개의 냉각수 출입구는, 상기 제1 냉각수를 상기 제1 챔버 내부로 유입하는 제1 챔버 냉각수 유입구; 상기 제1 냉각수를 상기 제1 챔버 외부로 배출하는 제1 챔버 냉각수 배출구; 상기 제2 냉각수를 상기 제2 챔버 내부로 유입하는 제2 챔버 냉각수 유입구; 및 상기 제2 냉각수를 상기 제2 챔버 외부로 배출하는 제2 챔버 냉각수 배출구;를 포함할 수 있다.
상기 제1 컴포넌트는 내부에 상기 냉각수가 유동되는 내부유로가 형성된 밸브 어셈블리이고, 상기 밸브 어셈블리의 내부유로는 다방향으로 분기되는 분기부를 포함하며, 상기 내부유로는, 상기 분기부로부터 각 방향으로 분기되는 제1 내지 제5 분기유로를 포함할 수 있다.
상기 관통홀을 통해 상기 제2 컴포넌트와 상기 제1 분기유로가 서로 연통되고, 상기 제2, 제3 분기유로는 상기 제1 냉각회로를 형성하고, 상기 제4, 제5 분기유로는 상기 제2 냉각회로를 형성하며, 상기 제1 챔버 냉각수 배출구는 상기 제2, 제3 분기유로 중 어느 하나와 연통되고, 상기 제2 챔버 냉각수 배출구는, 상기 제4, 제5 분기유로 중 어느 하나와 연통될 수 있다.
상기 밸브 어셈블리는, 상기 제2, 제3 분기유로 중 어느 하나와 연통되도록 구비된 제1 워터펌프 장착부와, 상기 제4, 제5 분기유로 중 어느 하나와 연통되도록 구비된 제2 워터펌프 장착부를 포함하고, 상기 제1 워터펌프 장착부에는, 상기 제2, 제3 분기유로를 유동하는 상기 제1 냉각수를 가압하여 이송하는 제1 워터펌프가 장착되고, 상기 제2 워터펌프 장착부에는, 상기 제4, 제5 분기유로를 유동하는 상기 제2 냉각수를 가압하여 이송하는 제2 워터펌프가 장착될 수 있다.
상기 제2 컴포넌트는 상기 냉각수의 온도를 조절하는 칠러이고, 상기 칠러는 상기 냉각수가 출입되는 한 쌍의 파이프를 포함하되, 상기 한 쌍의 파이프 중 어느 하나의 파이프가 상기 관통홀을 통과하여 상기 밸브 어셈블리와 연결될 수 있다.
상기 칠러는, 컴포넌트가 결합되는 칠러 컴포넌트 결합구조를 포함하고, 상기 칠러 컴포넌트 결합구조에는, 상기 냉각수를 감압하는 팽창밸브가 결합되되, 상기 팽창밸브는 상기 칠러와 상기 리저버 탱크 사이에 배치될 수 있다.
상기 제1 장착부에는 가스켓 결합구조가 구비되고, 상기 가스켓 결합구조에 가스켓이 결합되어 상기 리저버 탱크와 상기 제1 컴포넌트 사이에 상기 가스켓이 배치되며, 상기 가스켓은 면 가스켓으로서, 상기 제1 컴포넌트와 상기 면 가스켓이 면접촉될 수 있다.
상기 리저버 탱크는 내부에 중공이 형성된 하우징; 상기 하우징의 내부에 배치되어 상기 하우징의 중공을 복수의 챔버로 구획하는 격벽; 및 상기 리저버 탱크의 내부에 배치되어 상기 리저버 탱크의 내부에서 유동되는 냉각수의 흐름을 제어하는 계단부재;를 포함하고, 상기 계단부재에 의해 냉각수 상에 내포된 기포가 제거되도록 상기 냉각수의 흐름이 가이드될 수 있다.
상기 계단부재는 상기 하우징의 내벽에 일단이 고정되고 타단이 상기 상기 격벽으로 연장되는 내벽계단부재; 및 상기 격벽에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 격벽계단부재;를 포함하며, 상기 내벽계단부재 및 격벽계단부재에 의해 상기 하우징 내부에 유동되는 상기 냉각수가 상기 내벽계단부재 및 격벽계단부재를 따라 지그재그 형태로 유동될 수 있다.
상기 내벽계단부재 및 격벽계단부재는 다수개로 이루어지고, 상기 다수개의 내벽계단부재 및 격벽계단부재는 상기 리저버 탱크의 상하방향을 따라 교번 배치될 수 있다.
상기 복수의 챔버는 상기 격벽에 의해 구획되는 제1 챔버 및 제2 챔버를 포함하고, 상기 하우징은 상기 제1 냉각수를 상기 제1 챔버 내부로 유입하는 제1 챔버 냉각수 유입구; 상기 제1 냉각수를 상기 제1 챔버 내부에서 외부로 배출하는 제1 챔버 냉각수 배출구; 제2 냉각수를 상기 제2 챔버 내부로 유입하는 제2 챔버 냉각수 유입구; 상기 제2 냉각수를 상기 제2 챔버에서 외부로 배출하는 제2 챔버 냉각수 배출구;를 포함하며, 상기 제1 냉각수 배출구는 상기 제1 챔버 냉각수 유입구보다 하측에 배치되고, 상기 제2 냉각수 배출구는 상기 제2 챔버 냉각수 유입구보다 하측에 배치될 수 있다.
상기 하우징의 상부에 배치되어 외부로부터 냉각수가 유입되는 냉각수 유입구; 및 상기 격벽의 상단에 배치되어 상기 외부로부터 유입되는 냉각수를 상기 제1 챔버 및 상기 제2 챔버로 분배하는 분배부재;를 더 포함할 수 있다.
상기 내벽계단부재는 상기 제1 챔버 상에 배치되되 상기 하우징의 내벽에 일단이 고정되고 타단이 상기 격벽으로 연장되는 제1 내벽계단부재; 및 상기 제2 챔버 상에 배치되되 상기 하우징의 내벽에 일단이 고정되어 타단이 상기 격벽으로 연장되는 제2 내벽계단부재;를 포함하고, 상기 격벽계단부재는 상기 제1 챔버 상에 배치되되 상기 격벽부재에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 제1 격벽계단부재; 및 상기 제2 챔버 상에 배치되되 상기 격벽부재에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 제2 격벽계단부재;를 포함할 수 있다.
상기 하우징은 서로 결합되어 내부에 상기 중공을 형성하는 제1 하우징 및 제2 하우징으로 이루어지고, 상기 계단부재는 복수로 이루어지고, 상기 복수의 계단부재 중 일부는 상기 제1 하우징에 배치되고, 다른 일부는 상기 제2 하우징에 배치될 수 있다.
본 발명의 리저버 탱크 통합 급수 모듈은, 리저버 탱크에 장착되는 제1 컴포넌트와 제2 컴포넌트가 리저버 탱크를 관통하여 직접 연결됨에 따라, 냉각수 유로가 리저버 탱크를 우회하지 않고 서로 직결되어 차량 냉각시스템의 냉각회로를 단순화하고 집약적으로 구성할 수 있다.
또한, 본 발명의 리저버 탱크 통합 급수 모듈은, 리저버 탱크 내부의 공간을 두 개의 챔버로 나누는 격벽이 구비됨에 따라, 하나의 리저버 탱크만으로 두 개의 독립된 냉각회로를 구성할 수 있게 되어, 차량 냉각시스템의 전체 패키징 사이즈를 감소시키고 원가를 절감시킬 수 있다.
도 1은 본 발명의 일 예에 따른 전기차량 냉각회로의 개략적인 구성도이다.
도 2는 리저버 탱크 통합 급수 모듈의 사시도이다.
도 3은 리저버 탱크 통합 급수 모듈의 분해 사시도이다.
도 4는 리저버 탱크의 후면 사시도이다.
도 5는 리저버 탱크의 내부 단면도이다.
도 6은 리저버 탱크에 가스켓이 결합되는 것을 나타낸다.
도 7은 밸브 어셈블리와 칠러가 연통된 것을 나타낸다.
도 8은 밸브 어셈블리의 사시도이다.
도 9는 가스켓과 밸브 어셈블리의 면접촉부를 설명하기 위한 도면이다.
도 10은 도 4를 다시 나타낸 것이다.
도 11은 본 발명의 제1 실시예에 따른 리저버 탱크의 단면도이다.
도 12는 본 발명의 제2 실시예에 따른 리저버 탱크의 단면도이다.
도 13은 본 발명의 제3 실시예에 따른 리저버 탱크의 단면도이다.
도 14, 15는 본 발명의 제4 실시예에 따른 리저버 탱크의 단면도이다.
도 16, 17은 본 발명의 제5 실시예에 따른 리저버 탱크의 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명에 대하여 상세히 설명한다.
도 1은 본 발명의 일 예에 따른 전기차량 냉각회로의 개략적인 구성도로서, 전기차량에는 전장품(electric unit)을 냉각하기 위한 냉각회로(C1)와, 배터리(battery)를 냉각하기 위한 냉각회로(C2)가 각각 필요하다. 본 발명은 이와 같은 냉각회로에 있어서, 리저버 탱크를 중심으로 칠러(chiller), 밸브(valve), 펌프(P), 팽창밸브(TXV) 등을 리저버 탱크에 장착한 리저버 탱크 통합 급수 모듈(10)을 통해 냉각회로를 통합적으로 집약시킨 것으로서, 본 발명의 리저버 탱크는 각 컴포넌트들이 장착될 수 있는 장착구조와 위치를 제공한다. 한편, 본 발명에서 전장품을 냉각하기 위한 냉각회로를 제1 냉각회로(c1)라 하고, 배터리를 냉각하기 위한 냉각회로를 제2 냉각회로(c2)라 하기로 한다. 단, 제1, 제2 냉각회로(c1, c2)는 이에 한정되는 것은 아니며, 다양한 종류의 냉각회로를 지칭하는 것일 수 있다.
도 2는 리저버 탱크 통합 급수 모듈의 사시도이고, 도 3은 리저버 탱크 통합 급수 모듈의 분해 사시도로서, 도 2, 3을 참조하면, 본 발명의 리저버 탱크 통합 급수 모듈(10)은 리저버 탱크(100)와, 리저버 탱크(100)에 장착되는 컴포넌트를 포함하며, 냉각수가 유동되는 내부유로가 내부에 형성된 밸브 어셈블리(200), 컴포넌트는 냉각수의 온도를 조절하는 칠러(300), 냉각수를 가압하여 이송하는 워터펌프(400), 및 냉각수를 감압하는 팽창 밸브(500)를 포함할 수 있다. 각 컴포넌트들은 공지기술로서 일반적인 구조나 기능 등에 대한 상세한 설명은 생략하기로 한다. 한편, 이후 후술되는 내용에서는 보다 명확한 설명을 위해, 도 2의 방향표시를 기준으로 상(D1), 하(D2), 전(D3), 후(D4), 좌(D5), 우(D6)를 정의한다.
도 4는 리저버 탱크의 후면 사시도로서, 도 4를 참조하면, 리저버 탱크(100)는 내부에 냉각수가 수용되며, 리저버 탱크(100)에는 냉각수가 출입되는 리저버 탱크 냉각수 출입구(110)가 다수 개 구비되고, 컴포넌트가 장착되는 장착부(120)가 적어도 하나 이상 구비된다. 리저버 탱크(100)는 냉각수의 체적변화에 대응하도록 설치될 수 있다. 보다 구체적으로, 제1 냉각회로(C1)와 제2 냉각회로(C2)를 순환하는 냉각수는 온도와 압력의 변화에 따라 체적이 변화될 수 있으므로, 냉각수가 순환될 시 냉각수가 기준치 이상의 체적을 가지는 경우 초과되는 양의 냉각수가 리저버 탱크(100)에 수용될 수 있고, 기준치에 미달되는 경우 리저버 탱크(100)로 부족한 냉각수를 외부에서 공급할 수도 있다. 이를 위해, 외부에서 냉각수를 공급할 수 있도록 리저버 탱크(100) 상측에 마개(C)가 구비될 수 있다.
도 2 내지 4에 도시된 바와 같이, 본 발명은 리저버 탱크(100) 일측에 제1 장착부(121)가 구비되고, 타측에 제2 장착부(122)가 구비되며, 제1 장착부(121)에 제1 컴포넌트(200)가 장착되고, 제2 장착부에 제2 컴포넌트(예를 들어, 후술하는 바와 같이 칠러(300)가 장착될 수 있으며, 이때 제1 컴포넌트(200)와 제2 컴포넌트(300)가 리저버 탱크(100)를 관통하여 연결될 수 있다. 보다 구체적으로, 리저버 탱크(100)에는 제1 장착부(121)에서 제2 장착부(122) 방향으로 관통된 관통홀(130)이 형성되고, 관통홀(130)을 통해 제1 컴포넌트(200)와 제2 컴포넌트(300) 간 냉각수가 유동될 수 있다. 여기서, 제1 컴포넌트(200)와 제2 컴포넌트(300)를 연결하는 파이프(P)가 더 구비되어, 파이프(P)가 관통홀을 통과하여 제1 컴포넌트(200)와 제2 컴포넌트(300)를 서로 연결되도록 할 수 있으며, 관통홀(300)은 관통홀(300)에 삽입되는 파이프의 형상에 따라 다양한 형태로 설계될 수 있다.
이와 같이, 본 발명에 의하면 냉각수 유로를 구성하는 것에 있어서, 각 컴포넌트를 서로 연결하기 위해, 리저버 탱크를 우회하지 않고 리저버 탱크를 관통하여 각 컴포넌트가 직결됨에 따라, 차량 냉각시스템의 냉각회로를 단순화하고 집약적으로 구성할 수 있다.
도 5는 리저버 탱크의 내부 단면도로서, 도 5(a)는 내부에서 전측 방향으로의 단면을 나타내고, 도 5(b)는 내부에서 후측 방향으로의 단면을 나타낸다. 리저버 탱크(100) 내부에는 리저버 탱크 내부(100)의 공간을 제1 챔버(S1)와 제2 챔버(S2)로 나누는 격벽(140)이 구비될 수 있으며, 이때 제1 챔버(S1)에는 냉각수 중 제1 냉각회로를 순환하는 냉각수(이하, '제1 냉각수(A)'라고 함)가 유동되고, 제2 챔버(S2)에는 냉각수 중 제2 냉각회로를 순환하는 냉각수(이하, 제2 냉각수(B)'라고 함)가 유동될 수 있다.
격벽(140)은 리저버 탱크(100) 내부의 바닥으로부터 상측으로 연장되어 리저버 탱크(100) 내부 공간을 제1 챔버(S1)와 제2 챔버(S2)로 분리시키며, 제1 챔버(S1)와 제2 챔버(S2)는 격벽으로 인해 서로 분리되어 제1 챔버(S1) 내의 제1 냉각수(A)와 제2 챔버(S2) 내의 제2 냉각수(B)가 서로 섞이지 않고 독립된 냉각회로를 구성할 수 있도록 한다. 이 같은 격벽 구조로 인해, 종래 배터리 냉각회로와 전장품 냉각회로를 구성하기 위해 각 냉각회로에 리저버 탱크를 각각 구비시켜야 하던 것에 비해, 본 발명은 하나의 리저버 탱크만으로 두 냉각회로를 구성할 수 있게 되어, 차량 냉각시스템의 전체 패키징 사이즈를 감소시키고 원가를 절감시킬 수 있다.
여기서, 본 발명은 관통홀(130)이 격벽(140)을 관통하도록 형성될 수 있다. 즉 도 5에 잘 도시된 바와 같이, 관통홀(130)은 격벽(140)을 관통하도록 형성되어 격벽(140)과 일체로 이루어질 수 있으며, 관통홀(130)의 단면 너비는 격벽(140)의 두께보다 클 수 있다. 이를 위해 격벽(140)은 관통홀(130)이 관통되는 부분을 제외하고는 일정한 두께로 형성되되, 관통홀(130)이 관통되는 부분의 시작점에서 격벽(140)이 일측과 타측으로 분기되어, 일측이 좌측으로 만입되고 타측이 우측으로 만입되었다가, 관통홀(130)이 관통되는 부분의 종료점에서 격벽(140)의 일측과 타측이 다시 합쳐지는 형태를 가질 수 있다.
이와 같이, 관통홀이 격벽을 관통하도록 구성됨에 따라 제1 챔버와 제2 챔버를 대칭적으로 설계하는 것이 가능해져 제1 챔버와 제2 챔버에 수용되는 냉각수 수용 용량을 동일하게 할 수 있고, 냉각수가 제1 챔버와 제2 챔버를 유동할 시 어느 한쪽에서의 냉각수 유동 저항이 커지게 편향되는 것을 방지할 수 있다.
한편, 본 발명에서는 관통홀이 하나인 것을 예로 들어 설명하고 있으나, 냉각회로의 다양한 변형을 위해 제1, 제2 컴포넌트를 연결하는 관통홀이 다수개 형성될 수도 있으며, 제3, 제4 컴포넌트를 연결하는 또 다른 관통홀이 하나 이상 더 형성될 수도 있음은 물론이다.
또한, 도 4, 5에 도시된 바와 같이, 본 발명의 리저버 탱크(100)는 다수개의 냉각수 출입구(110)를 가질 수 있으며, 이때 다수개의 냉각수 출입구(100)는, 제1 챔버(S1)와 연통되어 제1 냉각수(A)가 제1 챔버(S1) 내부로 유입되도록 하는 제1 챔버 냉각수 유입구(111)와, 제1 챔버(S1)와 연통되어 제1 냉각수(A)가 제1 챔버(S1) 내부에서 외부로 배출되도록 하는 제1 챔버 냉각수 배출구(112)와, 제2 챔버(S2)와 연통되어 제2 냉각수(B)가 제2 챔버(S2) 내부로 유입되도록 하는 제2 챔버 냉각수 유입구(113)와, 제2 챔버(S2)와 연통되어 제2 냉각수(B)가 제2 챔버(S2)에서 외부로 배출되도록 하는 제2 챔버 냉각수 배출구(114)를 포함할 수 있다.
이와 같이, 격벽을 통해 하나의 리저버 탱크를 2개의 챔버로 분리하고, 각 챔버에 냉각수 유입구와 출입구를 별도로 구비함에 따라, 하나의 리저버 탱크를 이용하여 독립된 두 개의 냉각회로를 구성할 수 있다.
나아가, 도 4, 5에 도시된 바와 같이, 리저버 탱크(100)에는 리저버 탱크(100)를 관통하는 관통홀(130)이 형성되어, 관통홀(130)을 통해 어느 하나의 컴포넌트와 다른 컴포넌트가 서로 연결될 수 있다. 보다 구체적으로, 리저버 탱크(100)의 다수개의 장착부(120) 중 어느 하나에 장착되는 컴포넌트와 다른 하나에 장착되는 컴포넌트는, 관통홀(130)을 통과하는 파이프(P)를 통해 서로 연통될 수 있다. 여기서 연통된다는 것은 각 컴포넌트 간 냉각수가 유동될 수 있도록 각 컴포넌트가 연결 내지는 결합된다는 것을 의미하며, 이를 위해 컴포넌트에 냉각수 출입구가 구비되어 냉각수 출입구와 파이프(p)가 연결될 수 있다.
본 발명은 리저버 탱크(100)에 관통홀(130)이 구비되고, 관통홀(130)에 파이프(P)를 통과시켜 서로 다른 컴포넌트가 직접 연결될 수 있는 구조로 형성됨에 따라, 컴포넌트 간 연결을 위한 추가 호스나 배관류를 줄일 수 있고, 장착 편의성을 증대시킬 수 있을 뿐 아니라, 냉각수의 기밀을 유지하기 위한 기밀 구조가 단순화되어 각 컴포넌트 간 연결부의 기밀하는 부분을 절감시킬 수 있다.
도 6은 리저버 탱크에 가스켓이 결합되는 것을 나타내는 것으로, 도 6(a)는 장착부(120)의 가스켓 결합구조(125)를 나타내고, 도 6(b)는 장착부(120)에 가스켓(600)이 결합된 것을 나타낸다. 도시된 바와 같이, 리저버 탱크(100)의 다수개의 장착부(120) 중 적어도 어느 하나의 장착부(121)에는 가스켓 결합구조(125)가 구비되고, 가스켓 결합구조(125)에 가스켓(600)이 결합될 수 있다. 이에 따라, 리저버 탱크(100)와, 가스켓 결합구조(125)가 구비된 장착부(121)에 장착되는 컴포넌트 사이에 가스켓(600)이 배치될 수 있다. 이는 리저버 탱크(100)와 컴포넌트 간 기밀성을 향상시키기 위한 것으로, 리저버 탱크(100)와 컴포넌트가 연결되는 연결부위에서 냉각수가 외부로 누출되는 것을 보다 확실하게 방지할 수 있다.
이하에서는, 본 발명의 구체적인 실시예에 따른 리저버 탱크 통합 급수 모듈을 통해, 본 발명에 대해 보다 상세히 대해 설명한다.
본 발명의 일 실시예에 따른 리저버 탱크 통합 급수 모듈(10)은, 리저버 탱크(100) 일측에 밸브 어셈블리(200)가 장착되고, 리저버 탱크 타측에 칠러(300)가 장착되며, 밸브 어셈블리(200)에 워터펌프(400)가 결합되어 이루어질 수 있다.
보다 구체적으로, 도 3, 도 4를 참조하면, 리저버 탱크(100)의 장착부(120)는, 리저버 탱크(100) 일측에 구비되는 제1 장착부(121)와 리저버 탱크(100) 타측에 구비되는 제2 장착부(122)를 포함할 수 있고, 제1 장착부(121)에 밸브 어셈블리(200)가 장착되고, 제2 장착부에 칠러(300)가 장착될 수 있다. 밸브 어셈블리(200)에는 워터펌프 장착부(220)가 적어도 하나 이상 구비되어, 워터펌프 장착부(220)에 워터펌프(400)가 결합될 수 있다. 예를 들어, 도시된 바와 같이 제1 장착부(121)는 리저버 탱크(100)의 전측 하단 부분에 형성될 수 있고, 제2 장착부(122)는 리저버 탱크(100)의 후측 상단 부분에 형성될 수 있으며, 제1 장착부(121)와 제2 장착부(122)는 각각 밸브 어셈블리(200)와 칠러(300)가 수용될 수 있도록 리저버 탱크(100) 내부로 만입된 형태로 형성될 수 있다.
이때, 상술한 바와 같이 리저버 탱크에는 제1 장착부(121)에서 제2 장착부(122) 방향으로 관통된 관통홀(130)이 구비되고, 관통홀(130)에 파이프(P)를 통과시켜, 파이프(P)를 통해 밸브 어셈블리(200)와 칠러(300)가 서로 연통될 수 있다. 도 7은 밸브 어셈블리와 칠러가 서로 연통된 것을 나타내는 것으로, 도시된 바와 같이 파이프(P)를 통해 밸브 어셈블리(200)와 칠러(300)가 직접 연결될 수 있으며, 파이프(P)가 관통홀(130)에 통과되도록 하여 밸브 어셈블리(200)와 칠러(300) 사이에 리저버 탱크(100)가 배치될 수 있다. 이와 같이 리저버 탱크에 관통홀이 형성되고 관통홀에 파이프를 통과시켜 칠러와 밸브 어셈블리를 직접 연결함에 따라 공간활용이 극대화될 수 있고, 냉각회로를 더욱 집약적으로 구성할 수 있다.
한편, 밸브 어셈블리(200)의 내부유로에는 다방향으로 분기되는 분기부(210)가 형성될 수 있다. 도 8은 밸브 어셈블리의 사시도로서, 도시된 바와 같이 밸브 어셈블리(200)는 5-way 밸브일 수 있으며, 이에 따라 내부유로는 분기부(210)를 중심으로 5 방향으로 분기될 수 있다. 이때, 분기부(210)로부터 각 방향으로 분기된 내부유로 중 어느 하나인 제1 분기유로(V1)는 파이프(P)와 연통될 수 있다. 즉, 제1 분기유로(V1)의 단부에 파이프(P)의 일측 단부가 연결되어, 제1 분기유로(V1)와 파이프(P)가 연통될 수 있으며, 이에 따라 밸브 어셈블리(200)와, 파이프(P)의 타측 단부와 연결된 칠러(300) 간 냉각수(F)가 서로 유동될 수 있다. 이때, 각 분기유로의 단부는 그 자체로 밸브 어셈블리(200)의 냉각수 출입구에 해당하거나, 각 분기유로의 단부가 밸브 어셈블리(200)의 냉각수 출입구와 연통되는 구조일 수 있다.
여기서, 분기부(210)로부터 각 방향으로 분기된 내부유로 중 제2, 제3 분기유로(V2, V3)는 제1 냉각회로(C1)를 형성하고, 분기부(210)로부터 각 방향으로 분기된 내부유로 중 제4, 제5 분기유로(V4, V5)는 제2 냉각회로(C2)를 형성할 수 있다. 또한, 제1 챔버 냉각수 배출구(112)는, 제2, 제3 분기유로(V2, V3) 중 어느 하나와 연통되고, 제2 챔버 냉각수 배출구(114)는 제4, 제5 분기유로(V4, V5) 중 어느 하나와 연통되어, 리저버 탱크(100)와 밸브 어셈블리(200) 간 냉각수가 서로 유동될 수 있다. 예를 들어, 도 1, 도2 및 도 8을 참조하면, 제1 챔버 냉각수 유입구(111)를 통해 제1 챔버(S1)로 유입된 제1 냉각수(A)가 제1 챔버 냉각수 배출구(112)로 배출되어, 제1 챔버 냉각수 배출구(112)와 연통된 제3 분기유로(V3)로 유입되고, 제3 분기유로(V3)로 유입된 제1 냉각수(A)가 제2 분기유로(V2)로 배출되어 배터리(battery)를 냉각하고 다시 리저버 탱크(100)의 제1 챔버(S1)로 유입되는 것이 순환되어 제1 냉각회로(C1)가 형성될 수 있다. 마찬가지로, 제2 챔버 냉각수 유입구(113)를 통해 제2 챔버(S2) 내로 유입된 제2 냉각수(B)가 제2 챔버 냉각수 배출구(114)로 배출되어, 제2 챔버 냉각수 배출구(114)와 연통된 제4 분기유로(V4)로 유입되고, 제4 분기유로(V4)로 유입된 제2 냉각수(B)가 제5 분기유로(V5)로 배출되어 전장품(electric unit)을 냉각하고 다시 리저버 탱크의 제2 챔버 내로 유입되는 것이 순환되어 제2 냉각회로가 형성될 수 있다.
나아가, 도 7, 8과 같이, 밸브 어셈블리(200)의 워터펌프 장착부(220)는 제2, 제3 분기유로(V2, V3) 중 어느 하나와 연통되는 제1 워터펌프 장착부(221)와, 제4, 제5 분기유로(V4, V5) 중 어느 하나와 연통되는 제2 워터펌프 장착부(222)로 이루어지고, 제1 워터펌프 장착부(221)에는 제2, 제3 분기유로(V2, V3)를 유동하는 제1 냉각수(A)를 가압하여 이송하는 제1 워터펌프(410)가 장착되고, 제2 워터펌프 장착부(222)에는 제4, 제5 분기유로(V4, V5)를 유동하는 제2 냉각수(B)를 가압하여 이송하는 제2 워터펌프(420)가 장착될 수 있다. 예를 들어, 도 2에 잘 도시된 바와 같이, 밸브 어셈블리(200)의 좌측에 제1 워터펌프(410)가 장착되고, 밸브 어셈블리(200)의 우측에 제2 워터펌프(420)가 장착될 수 있으며, 도 8을 참조하면, 제1 워터펌프(410)는 제2 분기유로(V2) 근처에 장착되어 제2, 제3 분기유로(V2, V3)를 유동하는 제1 냉각수(A)를 가압하여 이송하고, 제2 워터펌프(420)는 제5 분기유로(V5) 근처에 장착되어 제4, 제5 분기유로(V4, V5)를 유동하는 제2 냉각수(B)를 가압하여 이송할 수 있다. 이때, 워터펌프(400)는 전자식 워터펌프(EWP, electric water pump)일 수 있다. 이와 같이 제1 냉각회로와 제2 냉각회로 각각에 워터펌프가 장착됨에 따라 각 냉각회로의 냉각수 순환이 독립적으로 이루어질 수 있게 되고, 본 발명에 의하면 하나의 리저버 탱크 통합 급수 모듈만으로 두 냉각회로의 냉각수를 충분히 순환시킬 수 있다.
한편, 도 6을 통해 상술한 바와 같이, 리저버 탱크 통합 급수 모듈(10)에 있어서, 제1 장착부(121)에는 가스켓 결합구조(125)가 구비되고, 제1 장착부(121)의 가스켓 결합구조(125)에 가스켓(600)이 결합되어, 리저버 탱크(100)와 밸브 어셈블리(200) 사이에 가스켓(600)이 배치될 수 있다. 이때, 밸브 어셈블리(200)는 가스켓(600)과 면접촉되는 면접촉부(250)를 포함할 수 있으며, 면접촉부(250)와 가스켓(600)이 밀착되어 기밀성이 향상될 수 있다. 도 9는 가스켓과 밸브 어셈블리의 면접촉부를 설명하기 위한 도면으로서, 도시된 바와 같이 가스켓(600)은 제1 장착부(121) 전면에 구비되고, 밸브 어셈블리(200)의 후면에 면접촉부(250)가 형성되어, 가스켓(600)과 밸브 어셈블리(200)가 면접촉할 수 있으며, 이때 가스켓(600)에는 파이프(P)와 밸브 어셈블리(200)가 연결되는 연결부위와, 제1 챔버 냉각수 배출구(112), 제2 챔버 냉각수 배출구(114) 각각과 밸브 어셈블리(200)가 연결되는 연결부위가 관통되어 O-ring(O)이 형성될 수 있다.
나아가, 본 발명의 리저버 탱크 통합 급수 모듈(10)에 있어서, 칠러(300)에는 컴포넌트를 장착할 수 있는 칠러 컴포넌트 결합구조(320)가 하나 이상 구비될 수 있고, 이때 칠러 컴포넌트 결합구조(320)에 팽창밸브(500)가 장착되되, 팽창밸브(500)는 칠러(300)와 리저버 탱크(100) 사이에 배치되도록 팽창밸브(500)가 칠러 컴포넌트 결합구조(320)에 결합될 수 있다. 즉, 도 3에 도시된 바와 같이, 칠러(300)의 전면 상측에 칠러 컴포넌트 결합구조(320)가 구비되고, 칠러 컴포넌트 결합구조(320)에 팽창밸브(500)가 결합될 수 있으며, 이때 팽창밸브(500)는 칠러(300)와 리저버 탱크(100) 사이에 배치될 수 있다. 이는 리저버 탱크 통합 급수 모듈의 전체 패키징 사이즈를 획기적으로 감소시키고, 공간 활용을 더욱 극대화할 수 있다.
이하에서는, 다양한 실시예에 따른 리저버 탱크(100)에 대해 보다 상세히 살펴보기로 한다.
전장 냉각 시스템은 순환하는 냉각수를 냉각하는 열교환기 및 워터펌프를 포함하여 냉각회로가 구성될 수 있으며, 냉각수는 온도에 따라 체적이 변화되므로 이를 조절할 수 있는 리저버 탱크를 추가적으로 냉각회로에 배치될 수 있다. 이때 상기 냉각수는 관로를 순환하는 중에 다양한 요소로 인하여 기포가 발생될 수 있으며, 발생된 기포로 인해서 냉각효율이 저하되는 문제로 이어졌다. 한국 등록특허공보 제10-1765589호에서는 발생된 기포를 별도의 포집공간을 통해 제거하여 효율을 향상시키는 기술을 개시하고 있다. 하지만, 기포는 해당 기술에서 기재되어 있는 워터펌프 통과, 관로의 굴곡면 통과 및 엔진열에 의한 가열과 더불어 리저버 탱크 상에 냉각수가 주입되거나 유동될 시에도 다량이 발생될 수 있고, 리저버 탱크에서 발생된 기포로 인해서 냉각 시스템의 냉각효율이 저하될 수 있는 문제로 이어질 수 있다.
본 발명의 리저버 탱크(100)는 이하 설명되는 해결수단을 채택함으로써 이와 같은 문제를 해결할 수 있다.
도 10은 도 4를 다시 나타낸 것으로, 도시된 바와 본 발명의 리저버 탱크(100)는 제1 탱크몸체(100a) 및 제2 탱크몸체(100b)가 전후 방향으로 서로 결합되어 내부 중공을 형성할 수 있다. 그리고 상술한 제1 챔버 냉각수 유입구(111), 제1 챔버 냉각수 배출구(112), 제2 챔버 냉각수 유입구(113), 및 제2 챔버 냉각수 배출구(114)는 제1 탱크몸체(100a) 및 제2 탱크몸체(100b) 중 어느 하나에 배치될 수 있다. 도 10에서는 제1 챔버 냉각수 유입구(111), 제1 챔버 냉각수 배출구(112), 및 제2 챔버 냉각수 배출구(114)가 전방 측에 배치된 제1 탱크몸체(100a)에 배치되고, 제2 챔버 냉각수 유입구(113)가 후방 측에 배치된 제2 탱크몸체(100b)에 연결된 것을 도시하고 있으나, 배치 구조는 호환성을 고려하여 다양한 형태로 변형될 수 있다.
도 11은 본 발명의 제1 실시예에 따른 리저버 탱크에 관한 것으로, 도 11은 리저버 탱크의 단면도를 나타낸다. 이때 도 11은 리저버 탱크(100)의 제1 탱크몸체(100a)를 도시하기 위해 후방에서 전방으로 도시한 단면도로서, 도면 상에서는 좌우 측이 반전됨에 따라, 제1 챔버 냉각수 배출구(112)가 배치된 방향을 일측으로, 제2 챔버 냉각수 배출구(114)가 배치된 방향을 타측으로 정의하여 설명한다.
도 11을 참조하면, 본 발명의 리저버 탱크(100)는, 내부에 중공이 형성된 하우징(1110)과, 하우징(1110) 내부에 배치되는 격벽(140)을 포함할 수 있다. 이때 격벽(140)은 하우징(1110) 내의 중공을 제1 챔버(S1) 및 제2 챔버(S2)로 구획하도록, 하단이 하우징(1110)의 내부 저면에 결합되고, 상측으로 연장된 형상일 수 있다. 그리고 격벽(140)의 상단은 하우징(1110)의 내부 상면보다 하측에 배치되어 격벽(140)의 상측에 제1 챔버(S1) 및 제2 챔버(S2)로 연통된 공간이 형성될 수 있다. 이때 본 발명의 리저버 탱크(100)는 격벽(140)의 상단에 결합되어 양측으로 연장된 분배부재(1130)를 더 포함할 수 있다. 그리고 마개(C)가 분배부재(1130)의 상측에 배치되어, 사용자가 마개(C)를 열고 냉각수(F)를 넣으면 분배부재(1130)의 가이드를 통해 제1 챔버(S1) 및 제2 챔버(S2)로 분산될 수 있다.
본 발명의 리저버 탱크(100)는 내벽계단부재(1141, 1142) 및 격벽계단부재(1151, 1152)를 더 포함할 수 있다. 이때 내벽계단부재(1141, 1142)는 제1 내벽계단부재(1141) 및 제2 내벽계단부재(1142)를 포함할 수 있으며, 격벽계단부재(1151, 1152)도 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152)를 포함할 수 있다. 여기서 제1 내벽계단부재(1141) 및 제2 내벽계단부재(1142)는 하우징(1110)의 내벽에 일단이 고정될 수 있으며, 타단이 격벽(140)이 배치된 하우징(1110)의 내부 중심부를 향해 연장될 수 있다. 그리고 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152)는 격벽(140)의 외면에 일단이 고정될 수 있으며, 타단이 하우징(1110)의 내벽을 향해 연장될 수 있다. 아울러 제1 내벽계단부재(1141) 및 제2 내벽계단부재(1142)의 타단과 격벽(140) 사이에는 냉각수가 흐르도록 이격될 수 있고, 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152)의 타단과 하우징(1110) 사이에도 간극이 형성될 수 있다.
제1 내벽계단부재(1141) 및 제1 격벽계단부재(1151)는 제1 챔버(S1) 상에 배치되고, 제2 내벽계단부재(1142) 및 제2 격벽계단부재(1152)는 제2 챔버(S2) 상에 배치될 수 있다. 그리고 제1 챔버(S1) 및 제2 챔버(S2) 각각은 제1 냉각수 및 제2 냉각수가 배출되는 제1 챔버 냉각수 배출구(112) 및 제2 챔버 냉각수 배출구(114)와 연결될 수 있다. 여기서 제1 내벽계단부재(1141) 및 제1 격벽계단부재(1151)는 제1 챔버(S1) 상에서 상하로 교번되어 배치될 수 있으며, 제1 냉각수가 제1 내벽계단부재(1141) 및 제1 격벽계단부재(1151)를 따라 지그재그 형태로 유동될 수 있다. 그리고 제2 내벽계단부재(1142) 및 제2 격벽계단부재(1152) 또한 제2 챔버(S1) 상에서 상하로 교번되어 배치될 수 있으며, 제2 냉각수가 제2 내벽계단부재(1142) 및 제2 격벽계단부재(1152)를 따라 지그재그 형태로 유동될 수 있다.
제1 내벽계단부재(1141)와 제2 내벽계단부재(1142)는 격벽(140)을 중심으로 각각 일측 및 타측이 배치될 수 있으며, 타단이 격벽을 중심으로 서로 대향할 수도 있다. 그리고 제1 격벽계단부재(1151) 와 제2 격벽계단부재(1152)는 서로 대응되는 높이에 배치되어 양측 방향으로 서로 연장된 형태로 구성될 수도 있다.
상술한 관통홀(130)은 격벽(140)을 관통하도록 배치될 수도 있으며, 격벽(140)이 상하 중심부에서 양측으로 분기된 후 다시 결합된 형태로 이루어져 관통홀(130)을 형성할 수도 있다. 이때 관통홀(130)은 삽입되는 파이프의 형상에 따라 다양한 형태로 설계될 수 있다.
도 12는 본 발명의 제2 실시예에 따른 리저버 탱크에 관한 것으로, 도 12는 리저버 탱크의 단면도를 나타낸다. 이때 도 12는 리저버 탱크(100)의 제1 탱크몸체(100a)를 도시하기 위해 후방에서 전방으로 도시한 단면도로 도면 상에서는 좌우 측이 반전됨에 따라, 제1 챔버 냉각수 배출구(112)가 배치된 방향을 일측으로, 제2 챔버 냉각수 배출구(114)가 배치된 방향을 타측으로 정의하여 설명한다.
도 12를 참조하면, 격벽(120)의 상단에 결합된 분배부재(1130)는, 격벽(140)의 일측으로 연장되는 제1 분배부재(1131) 및 격벽(140)의 타측으로 연장되는 제2 분배부재(1132)를 포함할 수 있다. 그리고 제1 분배부재(1131) 또는 제2 분배부재(1132)는 상측 또는 하측으로 기울어진 형상일 수 있으며, 여기서 기울어진 형상은 경사지거나 절곡되는 등 타단이 일단보다 상하측으로 편향되어 배치된 있는 형상일 수 있다.
제1 내벽계단부재(1141), 제2 내벽계단부재(1142), 제1 격벽계단부재(1151), 및 제2 격벽계단부재(1152) 또한 일단 대비 타단이 상하측으로 편향되어 기울어진 형상일 수 있다. 이때 제1 내벽계단부재(1141), 제2 내벽계단부재(1142), 제1 격벽계단부재(1151), 및 제2 격벽계단부재(1152)는 상하로 복수로 이루어져 서로 이격 배치될 수도 있다.
이때 도시된 제1 내벽계단부재(1141)와 같이 복수 개가 서로 동일한 측으로 기울어진 형태일 수 있으며, 도시된 제2 내벽계단부재(1142)와 같이 복수 개 중 일부가 서로 다른 방향으로 기울어진 형태일 수도 있다. 아울러 도시된 제1 격벽계단부재(1151)와 같이 일단 및 타단이 동일한 높이 배치되거나, 도시된 제2 격벽계단부재(1152)와 같이 복수 개 중 일부만 기울어진 형태일 수도 있다. 여기서 제1 내벽계단부재(1141), 제2 내벽계단부재(1142), 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152)의 형태는 도시된 바에 한정하지는 아니하며, 상술한 여러 형태 중 어느 하나로 변경될 수 있다.
도 13은 본 발명의 제3 실시예에 따른 리저버 탱크에 관한 것으로, 도 13은 리저버 탱크의 단면도를 나타낸다. 이때 도 13은 리저버 탱크(100)의 제1 탱크몸체(100a)를 도시하기 위해 후방에서 전방으로 도시한 단면도로 도면 상에서는 좌우 측이 반전됨에 따라, 제1 챔버 냉각수 배출구(112)가 배치된 방향을 일측으로, 제2 챔버 냉각수 배출구(114)가 배치된 방향을 타측으로 정의하여 설명한다.
도 13을 참조하면, 제1 분배부재(1131) 및 제2 분배부재(1132)가 서로 다른 높이에 형성되어 서로 엇갈리도록 배치될 수도 있다. 아울러 제1 내벽계단부재(1141) 및 제2 내벽계단부재(1142)가 서로 다른 높이에 배치되거나, 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152)가 서로 다른 높이에 배치될 수도 있다. 여기서 제1 내벽계단부재(1141), 제2 내벽계단부재(1142), 제1 격벽계단부재(1151), 또는 제2 격벽계단부재(1152)가 복수로 이루어진 경우, 복수의 제1 내벽계단부재(1141) 및 제2 내벽계단부재(1142) 중 일부가 서로 엇갈리도록 배치되거나, 복수의 제1 격벽계단부재(1151) 및 제2 격벽계단부재(1152) 중 일부가 서로 엇갈리도록 배치될 수 있다.
제1 내벽계단부재(1141)의 타단이 제1 격벽계단부재(1151)의 일면의 상측에 배치될 수도 있다. 이에 따라 제1 내벽계단부재(1141)의 일면과 제1 격벽계단부재(1151)의 일면 사이에 일부 대면하도록 배치되어, 냉각수가 흐를 수 있는 터널을 형성할 수 있다. 여기서 복수의 제1 내벽계단부재(1141) 및 제1 격벽계단부재(1151) 중 일부가 서로 다른 상하 간극으로 이루어져 냉각수를 제어할 수도 있다. 일 예로, 하나의 제1 내벽계단부재(1141)의 상하측에 한 쌍의 제1 격벽계단부재(1151)가 배치되고, 이 중 하나의 제1 격벽계단부재(1151)와 제1 내벽계단부재(1141)의 상하 간격 보다 다른 하나의 제1 격벽계단부재(1151)와 제1 내벽계단부재(1141)의 상하 간격이 더 가깝도록 배치될 수도 있다.
도 14 및 도 15는 본 발명의 제4 실시예에 따른 리저버 탱크에 관한 것으로, 도 14 및 도 15는 각각 제1 탱크몸체 및 제2 탱크몸체의 단면도를 나타낸다. 이때 도 14는 리저버 탱크(100)의 제1 탱크몸체(100a)를 도시하기 위해 후방에서 전방으로 도시한 단면도로 도면 상에서는 좌우 측이 반전됨에 따라, 제1 챔버 냉각수 배출구(112)가 배치된 방향을 일측으로, 제2 챔버 냉각수 배출구(114)가 배치된 방향을 타측으로 정의하여 설명한다.
도 14 및 도 15를 참조하면, 본 발명의 리저버 탱크(100)는 제1 탱크몸체(100a) 및 제2 탱크몸체(100b)가 서로 결합되어 형성될 수 있으며, 제1 탱크몸체(100a) 및 제2 탱크몸체(100b)는 각각 제1 하우징(1110a) 및 제2 하우징(1110b)을 포함할 수 있다. 그리고 제1 하우징(1110a) 및 제2 하우징(1110b)이 결합되어 내부에 중공을 형성할 수 있다. 이때 마개(C), 제1 챔버 냉각수 유입구(111), 제2 챔버 냉각수 유입구(113), 제1 챔버 냉각수 배출구(112), 및 제2 챔버 냉각수 배출구(114)는 제1 하우징(1110a) 또는 제2 하우징(1110b) 중 어느 하나에 배치될 수 있다.
제1 리저버 탱크(100a)는 제1 하우징(1110a)의 양측 중심부에 배치된 제1 격벽(140a)을 포함하고, 제2 리저버 탱크(100b)는 제2 하우징(1110b)의 양측 중심부에 배치된 제2 격벽(140b)을 포함할 수 있다. 위에서 기술하는 중심부는 양측의 정중앙으로 한정하는 것이 아닌, 제1 챔버(S1) 및 제2 챔버(S2)를 구획할 수 있는 형태라면 다양한 형태로 이루어질 수 있다. 일 예로 정중앙에서 좌측 또는 우측으로 편심된 형태일 수도 있다. 이때 제1 리저버 탱크(100a)의 제1 격벽(140a)과 제2 리저버 탱크(100b)의 제2 격벽(140b)은 제1 하우징(1110a) 및 제2 하우징(1110b)이 결합하면 서로 대향하도록 배치되어 하나의 격벽으로 형성될 수 있으며, 격벽이 제1 리저버 탱크(100a) 및 제2 리저버 탱크(100b) 중 어느 하나에 배치되어 전방 또는 후방으로 돌출된 형상일 수도 있다.
제1 리저버 탱크(100a) 및 제2 리저버 탱크(100b)는 각각 격벽계단부재(1150a, 1150b)를 포함할 수 있다. 이때 제1 리저버 탱크(100a)의 격벽계단부재(1150a)는 제1 격벽(140a)을 중심으로 양측으로 연장될 수 있고, 제2 리저버 탱크(100b)의 격벽계단부재(1150b) 또한 제2 격벽(140b)을 중심으로 양측으로 연장될 수 있다. 그리고 제1 리저버 탱크(100a)의 격벽계단부재(1150a)는 양측 단부가 제1 하우징(1110a)의 양측 내면에 이격되어 그 사이에 간극이 형성되고, 제2 리저버 탱크(100b)의 격벽계단부재(1150b) 또한 양측 단부가 제2 하우징(1110b)의 양측 내면에 이격되어 그 사이에 간극이 형성될 수 있다. 여기서 본 발명의 리저버 탱크(100)는 제1 리저버 탱크(100a)의 격벽계단부재(1150a)와 제2 리저버 탱크(100b)의 격벽계단부재(1150b)가 서로 다른 높이에 배치될 수 있으며, 제1 리저버 탱크(100a)의 격벽계단부재(1150a)와 제2 리저버 탱크(100b)의 격벽계단부재(1150b)는 복수로 구성될 수도 있다.
도 16 및 도 17은 본 발명의 제5 실시예에 따른 리저버 탱크에 관한 것으로, 도 16 및 도 17은 각각 제1 탱크몸체 및 제2 탱크몸체의 단면도를 나타낸다. 이때 도 16은 리저버 탱크(100)의 제1 탱크몸체(100a)를 도시하기 위해 후방에서 전방으로 도시한 단면도로 도면 상에서는 좌우 측이 반전됨에 따라, 제1 챔버 냉각수 배출구(112)가 배치된 방향을 일측으로, 제2 챔버 냉각수 배출구(114)가 배치된 방향을 타측으로 정의하여 설명한다.
도 16 및 도 17을 참조하면, 제1 리저버 탱크(100a)는 제1 하우징(1110a)의 양측 중심부에 배치된 제1 격벽(140a)을 포함하고, 제2 리저버 탱크(100b)는 제2 하우징(1110b)의 양측 중심부에 배치된 제2 격벽(140b)을 포함할 수 있다. 그리고 제1 리저버 탱크(100a) 및 제2 리저버 탱크(100b)는 내벽계단부재(1140) 또는 격벽계단부재(1150) 중 어느 하나 이상을 포함할 수도 있다. 도시된 바로는 제1 리저버 탱크(100a)가 격벽계단부재(1150)를 포함하고 제2 리저버 탱크(100b)가 내벽계단부재(1140)를 포함하고 있으나, 본 발명은 이와 같은 구조에 한정하지는 아니한다.
보다 상세히 설명하면, 제1 리저버 탱크(100a)는 제1 하우징(1110a), 제1 하우징(1110a)의 내부 하면에 하단이 고정되어 상측으로 연장되는 제1 격벽(140a), 제1 격벽(140a) 상에 배치되어 양측 방향으로 연장되는 격벽계단부재(1150)를 포함할 수 있다. 그리고 제2 리저버 탱크(100b)는 제2 하우징(1110b), 제2 하우징(1110b)의 내부 하면에 하단이 고정되어 상측으로 연장되되 제1 격벽(140a)과 대향 배치되는 제2 격벽(140b), 제2 하우징(1110b)의 양측 내면에 일단이 고정되어 제2 격벽(140b)으로 연장되는 내벽계단부재(1140)를 포함할 수 있다. 여기서 내벽계단부재(1140) 및 격벽계단부재(1150)는 복수로 이루어져 상하 방향으로 서로 이격 배치될 수 있다. 아울러 분배부재(1130)는 제1 리저버 탱크(100a) 및 제2 리저버 탱크(100b) 중 어느 하나에 배치될 수 있다.
이와 같이, 본 발명의 리저버 탱크는, 내벽계단부재 및 격벽계단부재를 통해, 리저버 탱크 내에 냉각수가 주입되거나 배터리 및 전장품을 냉각하는 제1 냉각수 및 제2 냉각수가 유동될 시에 기포가 발생되는 것을 억제할 수 있으며, 이에 따라, 냉각효율이 향상된 냉각회로를 형성할 수 있는 이점이 있다.
또한, 본 발명의 리저버 탱크는, 기포 발생을 억제할 수 있는 격벽구조를 통해 다수의 냉각회로에 연결됨에 따라 공간을 보다 효율적으로 활용할 수 있고, 사용자가 통합 제어할 수 있게 되어 유지보수 시간 및 비용을 절감할 수 있다.
이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
10: 리저버 탱크 통합 급수 모듈
100: 리저버 탱크
110: 냉각수 출입구
111: 제1 챔버 냉각수 유입구
112: 제1 챔버 냉각수 배출구
113: 제2 챔버 냉각수 유입구
114: 제2 챔버 냉각수 배출구
120: 장착부
121: 제1 장착부
122: 제2 장착부
130: 관통홀
140: 격벽
100a: 제1 탱크몸체
100b: 제2 탱크몸체
1101 : 냉각수 유입구
1110: 하우징
1110a: 제1 하우징
1110b: 제2 하우징
1130: 분배부재
1131: 제1 분배부재
1132: 제2 분배부재
1140: 내벽계단부재
1141: 제1 내벽계단부재
1142: 제2 내벽계단부재
1150: 격벽계단부재
1151: 제1 격벽계단부재
1152: 제2 격벽계단부재
200: 밸브 어셈블리
210: 분기부
220: 워터펌프 장착부
221: 제1워터펌프 장착부
222: 제2 워터펌프 장착부
250: 면접촉부
251: O-ring
300: 칠러
320: 칠러 컴포넌트 결합구조
400: 워터펌프
410: 제1 워터펌프
420: 제2 워터펌프
500: 팽창밸브
600: 가스켓
A, B: 제1, 제2 냉각수
C1: 제1 냉각회로
C2: 제2 냉각회로
F: 냉각수
S1: 제1 챔버
S2: 제2 챔버
V1, V2, V3, V4, V5: 제1, 제2, 제3, 제4, 제5 분기유로

Claims (20)

  1. 내부에 중공이 형성되어 냉각수가 수용되고, 일측에 구비된 제1 장착부와 타측에 구비된 제2 장착부를 포함하는 리저버 탱크;
    상기 제1 장착부에 장착되는 제1 컴포넌트; 및
    상기 제2 장착부에 장착되는 제2 컴포넌트;를 포함하고,
    상기 제1 컴포넌트와 상기 제2 컴포넌트는 상기 리저버 탱크를 관통하여 연결되는, 리저버 탱크 통합 급수 모듈.
  2. 제1항에 있어서,
    상기 리저버 탱크에는 상기 제1 장착부에서 상기 제2 장착부 방향으로 관통된 관통홀이 형성되고,
    상기 관통홀을 통해 상기 제1 컴포넌트와 상기 제2 컴포넌트 간 상기 냉각수가 유동되는, 리저버 탱크 통합 급수 모듈.
  3. 제2항에 있어서,
    상기 제1 컴포넌트와 상기 제2 컴포넌트를 연결하는 파이프를 더 포함하고,
    상기 파이프는 상기 관통홀을 통과하여 상기 제1 컴포넌트와 상기 제2 컴포넌트를 연결하는, 리저버 탱크 통합 급수 모듈.
  4. 제2항에 있어서,
    상기 리저버 탱크 내부에는 상기 리저버 탱크 내부의 공간을 제1 챔버와 제2 챔버로 나누는 격벽이 구비되는, 리저버 탱크 통합 급수 모듈.
  5. 제4항에 있어서,
    상기 관통홀은 상기 격벽을 관통하도록 형성되는, 리저버 탱크 통합 급수 모듈.
  6. 제5항에 있어서,
    상기 격벽의 두께는 상기 관통홀의 단면 너비보다 작은, 리저버 탱크 통합 급수 모듈.
  7. 제4항에 있어서,
    상기 제1 챔버에는 상기 냉각수 중 제1 냉각회로를 순환하는 제1 냉각수가 유동되고, 상기 제2 챔버에는 상기 냉각수 중 제2 냉각회로를 순환하는 제2 냉각수가 유동되며,
    상기 리저버 탱크는 상기 냉각수가 출입되는 냉각수 출입구 다수개를 더 포함하고,
    상기 다수개의 냉각수 출입구는,
    상기 제1 냉각수를 상기 제1 챔버 내부로 유입하는 제1 챔버 냉각수 유입구;
    상기 제1 냉각수를 상기 제1 챔버 외부로 배출하는 제1 챔버 냉각수 배출구;
    상기 제2 냉각수를 상기 제2 챔버 내부로 유입하는 제2 챔버 냉각수 유입구; 및
    상기 제2 냉각수를 상기 제2 챔버 외부로 배출하는 제2 챔버 냉각수 배출구;를 포함하는, 리저버 탱크 통합 급수 모듈.
  8. 제7항에 있어서,
    상기 제1 컴포넌트는 내부에 상기 냉각수가 유동되는 내부유로가 형성된 밸브 어셈블리이고,
    상기 밸브 어셈블리의 내부유로는 다방향으로 분기되는 분기부를 포함하며,
    상기 내부유로는,
    상기 분기부로부터 각 방향으로 분기되는 제1 내지 제5 분기유로를 포함하는, 리저버 탱크 통합 급수 모듈.
  9. 제8항에 있어서,
    상기 관통홀을 통해 상기 제2 컴포넌트와 상기 제1 분기유로가 서로 연통되고, 상기 제2, 제3 분기유로는 상기 제1 냉각회로를 형성하고, 상기 제4, 제5 분기유로는 상기 제2 냉각회로를 형성하며,
    상기 제1 챔버 냉각수 배출구는 상기 제2, 제3 분기유로 중 어느 하나와 연통되고, 상기 제2 챔버 냉각수 배출구는, 상기 제4, 제5 분기유로 중 어느 하나와 연통되는, 리저버 탱크 통합 급수 모듈.
  10. 제9항에 있어서,
    상기 밸브 어셈블리는, 상기 제2, 제3 분기유로 중 어느 하나와 연통되도록 구비된 제1 워터펌프 장착부와, 상기 제4, 제5 분기유로 중 어느 하나와 연통되도록 구비된 제2 워터펌프 장착부를 포함하고,
    상기 제1 워터펌프 장착부에는, 상기 제2, 제3 분기유로를 유동하는 상기 제1 냉각수를 가압하여 이송하는 제1 워터펌프가 장착되고,
    상기 제2 워터펌프 장착부에는, 상기 제4, 제5 분기유로를 유동하는 상기 제2 냉각수를 가압하여 이송하는 제2 워터펌프가 장착되는, 리저버 탱크 통합 급수 모듈.
  11. 제8항에 있어서,
    상기 제2 컴포넌트는 상기 냉각수의 온도를 조절하는 칠러이고,
    상기 칠러는 상기 냉각수가 출입되는 한 쌍의 파이프를 포함하되, 상기 한 쌍의 파이프 중 어느 하나의 파이프가 상기 관통홀을 통과하여 상기 밸브 어셈블리와 연결되는, 리저버 탱크 통합 급수 모듈.
  12. 제11항에 있어서,
    상기 칠러는, 컴포넌트가 결합되는 칠러 컴포넌트 결합구조를 포함하고,
    상기 칠러 컴포넌트 결합구조에는, 상기 냉각수를 감압하는 팽창밸브가 결합되되, 상기 팽창밸브는 상기 칠러와 상기 리저버 탱크 사이에 배치되는, 리저버 탱크 통합 급수 모듈.
  13. 제1항에 있어서,
    상기 제1 장착부에는 가스켓 결합구조가 구비되고,
    상기 가스켓 결합구조에 가스켓이 결합되어 상기 리저버 탱크와 상기 제1 컴포넌트 사이에 상기 가스켓이 배치되며,
    상기 가스켓은 면 가스켓으로서, 상기 제1 컴포넌트와 상기 면 가스켓이 면접촉되는, 리저버 탱크 통합 급수 모듈.
  14. 제1항에 있어서,
    상기 리저버 탱크는
    내부에 중공이 형성된 하우징;
    상기 하우징의 내부에 배치되어 상기 하우징의 중공을 복수의 챔버로 구획하는 격벽; 및
    상기 리저버 탱크의 내부에 배치되어 상기 리저버 탱크의 내부에서 유동되는 냉각수의 흐름을 제어하는 계단부재;를 포함하고,
    상기 계단부재에 의해 냉각수 상에 내포된 기포가 제거되도록 상기 냉각수의 흐름이 가이드되는, 리저버 탱크 통합 급수 모듈.
  15. 제14항에 있어서,
    상기 계단부재는
    상기 하우징의 내벽에 일단이 고정되고 타단이 상기 상기 격벽으로 연장되는 내벽계단부재; 및
    상기 격벽에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 격벽계단부재;를 포함하며,
    상기 내벽계단부재 및 격벽계단부재에 의해 상기 하우징 내부에 유동되는 상기 냉각수가 상기 내벽계단부재 및 격벽계단부재를 따라 지그재그 형태로 유동되는, 리저버 탱크 통합 급수 모듈.
  16. 제15항에 있어서,
    상기 내벽계단부재 및 격벽계단부재는 다수개로 이루어지고, 상기 다수개의 내벽계단부재 및 격벽계단부재는 상기 리저버 탱크의 상하방향을 따라 교번 배치되는, 리저버 탱크 통합 급수 모듈.
  17. 제15항에 있어서,
    상기 복수의 챔버는 상기 격벽에 의해 구획되는 제1 챔버 및 제2 챔버를 포함하고,
    상기 하우징은
    상기 제1 냉각수를 상기 제1 챔버 내부로 유입하는 제1 챔버 냉각수 유입구;
    상기 제1 냉각수를 상기 제1 챔버 내부에서 외부로 배출하는 제1 챔버 냉각수 배출구;
    제2 냉각수를 상기 제2 챔버 내부로 유입하는 제2 챔버 냉각수 유입구;
    상기 제2 냉각수를 상기 제2 챔버에서 외부로 배출하는 제2 챔버 냉각수 배출구;를 포함하며,
    상기 제1 냉각수 배출구는 상기 제1 챔버 냉각수 유입구보다 하측에 배치되고, 상기 제2 냉각수 배출구는 상기 제2 챔버 냉각수 유입구보다 하측에 배치되는, 리저버 탱크 통합 급수 모듈.
  18. 제15항에 있어서,
    상기 하우징의 상부에 배치되어 외부로부터 냉각수가 유입되는 냉각수 유입구; 및
    상기 격벽의 상단에 배치되어 상기 외부로부터 유입되는 냉각수를 상기 제1 챔버 및 상기 제2 챔버로 분배하는 분배부재;를 더 포함하는, 리저버 탱크 통합 급수 모듈.
  19. 제18항에 있어서,
    상기 내벽계단부재는
    상기 제1 챔버 상에 배치되되 상기 하우징의 내벽에 일단이 고정되고 타단이 상기 격벽으로 연장되는 제1 내벽계단부재; 및
    상기 제2 챔버 상에 배치되되 상기 하우징의 내벽에 일단이 고정되어 타단이 상기 격벽으로 연장되는 제2 내벽계단부재;를 포함하고,
    상기 격벽계단부재는
    상기 제1 챔버 상에 배치되되 상기 격벽부재에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 제1 격벽계단부재; 및
    상기 제2 챔버 상에 배치되되 상기 격벽부재에 일단이 고정되고 타단이 상기 하우징의 내벽으로 연장되는 제2 격벽계단부재;를 포함하는, 리저버 탱크 통합 급수 모듈.
  20. 제14항에 있어서,
    상기 하우징은 서로 결합되어 내부에 상기 중공을 형성하는 제1 하우징 및 제2 하우징으로 이루어지고,
    상기 계단부재는 복수로 이루어지고,
    상기 복수의 계단부재 중 일부는 상기 제1 하우징에 배치되고, 다른 일부는 상기 제2 하우징에 배치되는, 리저버 탱크 통합 급수 모듈.
PCT/KR2021/012324 2020-09-28 2021-09-10 리저버 탱크 통합 급수 모듈 WO2022065768A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/026,172 US20230366340A1 (en) 2020-09-28 2021-09-10 Water supply module integrated with reservoir tank
DE112021004073.1T DE112021004073T5 (de) 2020-09-28 2021-09-10 Wasserversorgungsmodul mit integriertem vorratsbehälter
CN202180064905.3A CN116391073A (zh) 2020-09-28 2021-09-10 与储液罐集成的供水模块

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0125893 2020-09-28
KR1020200126155A KR20220042841A (ko) 2020-09-28 2020-09-28 리저버 탱크 통합 급수 모듈
KR1020200125893A KR20220042715A (ko) 2020-09-28 2020-09-28 리저버 탱크 및 이를 포함하는 급수모듈
KR10-2020-0126155 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065768A1 true WO2022065768A1 (ko) 2022-03-31

Family

ID=80845673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012324 WO2022065768A1 (ko) 2020-09-28 2021-09-10 리저버 탱크 통합 급수 모듈

Country Status (4)

Country Link
US (1) US20230366340A1 (ko)
CN (1) CN116391073A (ko)
DE (1) DE112021004073T5 (ko)
WO (1) WO2022065768A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681648A (ja) * 1992-07-13 1994-03-22 Nippondenso Co Ltd 車両用冷却装置
KR20010044388A (ko) * 2001-02-16 2001-06-05 김외식 2중 압출 구조의 자바라 스크린 싸이징 냉각방법 및 장치
KR20160097613A (ko) * 2015-02-09 2016-08-18 현대자동차주식회사 통합 egr 쿨러
KR20180136633A (ko) * 2017-06-15 2018-12-26 현대자동차주식회사 통합 리저버를 구비한 냉각시스템
US20200171914A1 (en) * 2018-12-03 2020-06-04 Hyundai Motor Company Six-way valve and vehicle thermal management system having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168138A1 (en) 2010-12-30 2012-07-05 Hyundai Motor Company Integrated pump, coolant flow control and heat exchange device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681648A (ja) * 1992-07-13 1994-03-22 Nippondenso Co Ltd 車両用冷却装置
KR20010044388A (ko) * 2001-02-16 2001-06-05 김외식 2중 압출 구조의 자바라 스크린 싸이징 냉각방법 및 장치
KR20160097613A (ko) * 2015-02-09 2016-08-18 현대자동차주식회사 통합 egr 쿨러
KR20180136633A (ko) * 2017-06-15 2018-12-26 현대자동차주식회사 통합 리저버를 구비한 냉각시스템
US20200171914A1 (en) * 2018-12-03 2020-06-04 Hyundai Motor Company Six-way valve and vehicle thermal management system having the same

Also Published As

Publication number Publication date
US20230366340A1 (en) 2023-11-16
CN116391073A (zh) 2023-07-04
DE112021004073T5 (de) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2019117485A1 (ko) 배터리 팩
WO2016068551A1 (ko) 단위 전지 팩
WO2018009003A1 (en) Battery module carrier, battery module, and vehicle with a battery system
WO2019221376A1 (ko) 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩
WO2021025525A1 (ko) 자동차용 언더 바디
WO2017116128A1 (ko) 전기소자 냉각용 열교환기
WO2021025469A1 (ko) 배터리 모듈과 강성 빔을 통합하고 역방향 조립 방식을 채용한 배터리 팩
WO2021221353A1 (ko) 냉각 유로 구조의 효율화 및 안정성을 향상시킨 배터리 팩 및 이를 포함하는 자동차
WO2019088438A1 (ko) 바닥 접속형 트레이를 갖는 배터리 팩 및 이것의 제조 방법
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차
WO2021025470A1 (ko) 배터리 모듈들의 기계적, 전기적 고정구조를 통합한 배터리 팩
WO2022065751A1 (ko) 냉각수 제어 모듈
WO2016105034A1 (ko) 냉각 기능을 구비하는 전해액 분배블럭 및 이를 포함하는 스택 분할형 레독스 흐름 전지
WO2022065768A1 (ko) 리저버 탱크 통합 급수 모듈
WO2020013348A1 (ko) 냉각 장치
WO2022097943A1 (ko) 전기 차량용 공냉식 배터리 팩
KR20220042841A (ko) 리저버 탱크 통합 급수 모듈
WO2018221959A1 (ko) 전기소자 냉각용 열교환기
WO2022030663A1 (ko) 통합 열관리용 리저버 탱크 및 이를 포함한 통합 열관리 모듈
WO2022103131A1 (ko) 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024058386A1 (ko) 통합 냉각수 모듈
WO2022055230A1 (ko) 통합 하우징 및 이를 포함하는 급수 모듈
WO2021206325A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024019394A1 (ko) 리저버 탱크
WO2024019397A1 (ko) 통합 냉각수 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872797

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21872797

Country of ref document: EP

Kind code of ref document: A1