WO2024048652A1 - 骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物 - Google Patents

骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物 Download PDF

Info

Publication number
WO2024048652A1
WO2024048652A1 PCT/JP2023/031530 JP2023031530W WO2024048652A1 WO 2024048652 A1 WO2024048652 A1 WO 2024048652A1 JP 2023031530 W JP2023031530 W JP 2023031530W WO 2024048652 A1 WO2024048652 A1 WO 2024048652A1
Authority
WO
WIPO (PCT)
Prior art keywords
macrophages
bone
cartilage
culture supernatant
composition
Prior art date
Application number
PCT/JP2023/031530
Other languages
English (en)
French (fr)
Inventor
朗仁 山本
登 橋本
史也 加納
シャ,リンゼ
栄二 田中
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Publication of WO2024048652A1 publication Critical patent/WO2024048652A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders

Definitions

  • Temporomandibular osteoarthritis is a degenerative joint disease characterized by progressive cartilage degradation, impaired subchondral bone remodeling, and chronic pain.
  • the etiology of TMJOA is diverse and unknown, but excessive mechanical stress on the mandibular condyle, such as skeletal jaw asymmetry and severe malocclusion, is the main cause of TMJOA.
  • Chondrocytes activated by excessive mechanical stress produce inflammatory cytokines, cartilage matrix degrading enzymes, as well as inducible nitric oxide synthase (iNOS), interleukin-1 ⁇ (IL-1 ⁇ ), and matrix metalloproteinases. 13 (MMP13), and NF ⁇ B-activated receptor ligand (RANKL).
  • TMJOA chondrocyte apoptosis and necrosis and cartilage matrix degradation further promote synovial inflammation and subchondral bone destruction, causing irreversible and refractory tissue damage and dysfunction. There are no effective treatments to reverse or repair tissue damage in TMJOA.
  • Activated macrophages play an important role in controlling tissue damage and regeneration.
  • Classically activated M1 macrophages produce inflammatory cytokines, reactive oxygen species and nitric oxide, thereby triggering inflammation and accelerating tissue damage.
  • alternatively activated M2 macrophages suppress inflammation and promote tissue repair by removing cellular debris and secreting anti-inflammatory cytokines.
  • Synovial M2 macrophage induction has emerged as an effective therapeutic strategy for alleviating osteoarthritis symptoms, but the mechanism by which synovial M2 macrophages exert their therapeutic effects and the role of secreted factors remain largely unknown.
  • MSC Mesenchymal stem cell
  • the present disclosure aims to provide a method for regenerating bone and/or cartilage, or a method for treating and/or preventing bone and/or cartilage diseases.
  • the present disclosure provides a composition for bone and/or cartilage regeneration that includes a culture supernatant of M2 macrophages.
  • the present disclosure provides compositions for the treatment and/or prevention of bone and/or cartilage diseases that include culture supernatants of M2 macrophages.
  • the present disclosure provides a method of producing a composition for bone and/or cartilage regeneration, comprising culturing M2 macrophages and collecting a culture supernatant.
  • the present disclosure provides a method for producing a composition for the treatment and/or prevention of bone and/or cartilage diseases, comprising culturing M2 macrophages and collecting the culture supernatant.
  • the present disclosure provides a method for regenerating bone and/or cartilage, or a method for treating and/or preventing bone and/or cartilage diseases.
  • This figure shows the results of FACS analysis of bone marrow macrophages (BMM) induced to differentiate from mouse bone marrow stromal cells, cultured with DMEM alone or with IL-4 or SHED-CM.
  • BMM bone marrow macrophages
  • TMJOA mouse temporomandibular osteoarthritis
  • results of immunohistochemical staining of IL-1b, MMP13, and PCNA in the temporomandibular joint in a mouse TMJOA model in which M2-CM, M0-CM, or DMEM were intravenously administered are shown.
  • results are shown in which mouse primary chondrocytes stimulated with IL-1b were treated with M2-CM and the expression of iNOS, MMP13, ColII, ACAN, and RANKL was measured.
  • the effect of M2-CM on osteoclast differentiation of bone marrow macrophages is shown.
  • Arthritis scores are shown in a mouse anti-collagen antibody arthritis (CAIA) model in which M2-CM or PBS was administered intravenously.
  • CAIA mouse anti-collagen antibody arthritis
  • the results of genetic analysis of M2 macrophages induced with SHED-CM and M2 macrophages induced with serum-free DMEM supplemented with recombinant IL-4 protein are shown.
  • the vertical axis of the graph shows gene sets defined by Gene Ontology (GO).
  • the horizontal axis shows the significance (p value) of gene expression differences.
  • macrophages were induced into anti-inflammatory M2 macrophages using stem cell culture supernatant, and the culture supernatant of M2 macrophages after differentiation induction was intravenously administered to an osteoarthritis model. It has been shown that it inhibits the destruction of joints and promotes recovery of injured joints. When this culture supernatant was administered intravenously to an anti-collagen antibody arthritis model, the arthritis score decreased. In an in vitro experiment, this culture supernatant directly suppressed the inflammatory response of chondrocytes, the production of cartilage matrix-destructive enzyme MMP13, and the production of RANKL by chondrocytes, and promoted the production of cartilage matrix type II collagen and aggrecan. Furthermore, osteoclast differentiation was also suppressed.
  • Macrophages differentiate into M1 macrophages (classically activated macrophages) or M2 macrophages (alternative activated macrophages).
  • Factors that cause macrophages to differentiate into M2 macrophages include parasites, fungal infection, immune complexes, apoptotic cells, macrophage colony-stimulating factor (M-CSF), IL-13, TGF-b, and T-helper (Th2) cytokine IL-4. , as well as IL-33 and IL-25 mediated by Th2 cells.
  • M-CSF macrophage colony-stimulating factor
  • Th2 T-helper
  • IDO, IL-10, TGF-b, CD115, CD204, CD163, CD206, CD209, FceR1, VSIG4, IRF4, and STAT6 are known as markers for human M2 macrophages.
  • Markers for mouse M2 macrophages include, for example, arginase, IDO, IL-10, TGF-b, YM1, CD14, CD115, CD163, CD204, CD206, CD209, CSF1R, FceR1, Ly-6C, IRF4, RELM-a and STAT6. It has been known.
  • M2 macrophages may be derived from the same biological species as the subject to which the composition is applied, or may be derived from a different biological species, preferably from the same biological species (for example, if the subject is a human, human-derived (using M2 macrophages), more preferably autologous M2 macrophages.
  • M2 macrophages may be derived from any macrophage lineage cells (macrophages, monocytes, microglia, etc.), such as peripheral blood macrophages, bone marrow macrophages, peripheral blood monocytes, myelomonocytes, alveolar macrophages or liver Kupffer cells. It is something to do. M2 macrophages derived from macrophage cells induced to differentiate from pluripotent stem cells such as iPS cells and ES cells may also be used. M2 macrophages established as a cell line may also be used.
  • macrophage lineage cells such as peripheral blood macrophages, bone marrow macrophages, peripheral blood monocytes, myelomonocytes, alveolar macrophages or liver Kupffer cells. It is something to do. M2 macrophages derived from macrophage cells induced to differentiate from pluripotent stem cells such as iPS cells and ES cells may also be used. M2 macrophages established as a cell line
  • M2 macrophages differentiated by any method may be used, and stem cell culture supernatant, IL-4 (recombinant IL-4, etc.), low molecular weight compounds, scaffolds (Mg scaffold coated with ⁇ -tricalcium phosphate, etc.) may be used. ), gene transfer (Siglec9, etc.), etc. are known to those skilled in the art.
  • M2 macrophages may have at least one artificially modified or introduced gene.
  • one, two, three, four or more genes may be introduced for the purpose of immortalizing M2 macrophages.
  • M2 macrophages are differentiated macrophage lineage cells, such as bone marrow macrophages or peripheral blood macrophages, by culturing them in the culture supernatant of dental pulp stem cells.
  • Bone marrow macrophages can be obtained, for example, by culturing bone marrow cells in a medium containing macrophage colony stimulating factor (M-CSF).
  • M-CSF macrophage colony stimulating factor
  • Dental pulp stem cells refer to somatic stem cells derived from the dental pulp.
  • Dental pulp stem cells can be derived from permanent or deciduous teeth.
  • the dental pulp stem cells are derived from exfoliated deciduous teeth.
  • Dental pulp stem cells may be derived from the same biological species as the subject to which the composition is applied, or may be derived from a different biological species.
  • Dental pulp stem cells can be selected as adherent cells among dental pulp cells. That is, dental pulp stem cells may be adherent cells contained in dental pulp cells collected from deciduous teeth or permanent teeth or their subculture cells. Alternatively, dental pulp stem cells established as a cell line may be used. Alternatively, dental pulp stem cells induced to differentiate from pluripotent stem cells such as iPS cells and ES cells may be used.
  • the culture supernatant of dental pulp stem cells is the supernatant of a culture solution obtained by culturing dental pulp stem cells.
  • the culture supernatant may or may not substantially contain cellular components (dental pulp stem cells or dental pulp cells), and preferably does not contain them.
  • the cellular components are removed by separating and removing the cellular components after culturing. Separation of cellular components from the culture fluid can be performed by methods well known to those skilled in the art.
  • the culture solution may be subjected to various treatments (e.g., centrifugation, concentration, solvent replacement, dialysis, ultrafiltration, freezing, drying, lyophilization, dilution, desalting, filter sterilization, storage, etc.) as appropriate. good.
  • a basic medium or a basic medium with serum etc. added can be used.
  • the basic medium in addition to DMEM, Iscove's modified Dulbecco's medium (IMDM) (GIBCO, etc.), Ham F12 medium (SIGMA, GIBCO, etc.), RPMI 1640 medium, etc. can be used. Two or more types of basic media may be used in combination.
  • An example of a mixed medium is a medium containing equal amounts of IMDM and HamF12 (for example, commercially available under the trade name IMDM/HamF12 (GIBCO)).
  • a medium suitable for culturing stem cells such as a serum-free medium, may be used; for example, a medium suitable for culturing mesenchymal stem cells may be used.
  • media suitable for culturing stem cells include R:STEM Medium for hMSC High Growth (Rohto Pharmaceutical), StemPro (trademark) MSC SFM XenoFree (Gibco), StemFit (registered trademark) For Mesenchymal Stem Cell (Ajinomoto Healthy Supply Co., Ltd.) , PRIME-XV MSC XSFM MDF1 (FUJIFILM Irvine Scientific), PRIME-XV MSC Expansion XSFM (FUJIFILM Irvine Scientific), etc.
  • any component that does not inhibit the survival and/or proliferation of dental pulp stem cells may be added to the medium.
  • components that can be added to the culture medium include serum (fetal bovine serum, human serum, sheep serum, etc.), serum substitutes (Knockout serum replacement (KSR), etc.), bovine serum albumin (BSA), antibiotics, various vitamins, Various minerals can be mentioned.
  • the culture supernatant of dental pulp stem cells may or may not contain serum, and preferably does not contain serum.
  • a serum-free culture supernatant can be prepared by culturing dental pulp stem cells in a serum-free medium (serum-free medium).
  • a serum-free culture supernatant can also be obtained by subculturing one or more times and culturing the last or several subcultures in a serum-free medium.
  • a serum-free culture supernatant can also be obtained by removing serum from the collected culture supernatant using dialysis, solvent replacement using a column, or the like.
  • dental pulp stem cells For culturing dental pulp stem cells, conditions normally used for stem cells can be applied as is or with appropriate changes. Those skilled in the art can appropriately manufacture dental pulp stem cells and/or culture supernatants of dental pulp stem cells. For example, the descriptions of International Publication No. 2019/230859 (Patent Document 1), International Publication No. 2011/118795, International Publication No. 2014/126176, etc., which are incorporated herein by reference, may be referred to. Further, for example, dental pulp stem cells and/or culture supernatant may be obtained by the following operation.
  • adherent cells selected from the dental pulp are cultured in the above-mentioned medium.
  • adherent cells selected from the dental pulp are cultured in the above-mentioned medium.
  • cells are seeded in a dish for adherent cell culture and cultured in an incubator adjusted to appropriate conditions (eg, 5% CO 2 , 37° C.).
  • an incubator adjusted to appropriate conditions (eg, 5% CO 2 , 37° C.).
  • Subculture for example, when observing with the naked eye that the cells have reached subconfluence (a state in which cells occupy approximately 70% of the surface of the culture container) to confluence (a state in which cells occupy approximately 100% of the surface of the culture container), the cells can be removed from the culture container. The cells are peeled off and collected, and then seeded again into a culture container filled with culture medium. Subculturing may be repeated.
  • subculture is performed 1 to 8 times to proliferate the cells to a required number (eg, about 1 ⁇ 10 7 cells/ml).
  • Cells can be detached from the culture container by conventional methods such as trypsin treatment. After the above culture, the cells may be collected and stored (eg, at -198°C to 4°C).
  • the culture supernatant when a sufficient number of dental pulp stem cells have been cultured for a sufficient period of time.
  • medium is added to dental pulp stem cells that are about 70-100% confluent, preferably about 70-80% or about 80-90% confluent, for about 12-72 hours, about 36-60 hours, about 42-54 hours, or After culturing for about 46 to 50 hours, for example about 48 hours, the culture supernatant is collected.
  • dental pulp stem cells are cultured to about 70-80% confluence, washed, serum-free medium is added, cultured for about 48 hours, and the culture supernatant is collected.
  • the culture supernatant can be collected using, for example, a dropper or pipette.
  • macrophage lineage cells By culturing macrophage lineage cells in the culture supernatant of dental pulp stem cells for, for example, about 12 to 72 hours, about 18 to 48 hours, or about 20 to 30 hours, for example about 24 hours, they can be differentiated into M2 macrophages. can. Differentiation of macrophage cells into M2 macrophages can be confirmed by positive M2 macrophage markers such as CD206. After induction of differentiation, cells positive for an M2 macrophage marker, such as CD206, may be obtained by flow cytometry or the like.
  • M2 macrophage culture supernatant is a supernatant of a culture solution obtained by culturing M2 macrophages.
  • M2 macrophages may be cultured as a cell population containing other cells, preferably about 45%, about 50%, about 60%, about 70%, about 80% or about 90% or more of the cell population is M2 It is a macrophage.
  • other cells include bone marrow stromal cells, macrophage lineage cells (such as bone marrow macrophages, peripheral blood macrophages, peripheral blood monocytes, bone marrow monocytes, alveolar macrophages or liver Kupffer cells), and the like.
  • the culture supernatant may or may not contain cellular components, and preferably does not.
  • Cellular components can be removed from the culture supernatant by methods well known to those skilled in the art, such as centrifugation. Furthermore, the culture solution may be subjected to various treatments (e.g., centrifugation, concentration, solvent replacement, dialysis, ultrafiltration, freezing, drying, lyophilization, dilution, desalting, filter sterilization, storage, etc.) as appropriate. good.
  • treatments e.g., centrifugation, concentration, solvent replacement, dialysis, ultrafiltration, freezing, drying, lyophilization, dilution, desalting, filter sterilization, storage, etc.
  • a basal medium or a basal medium to which serum or the like is added can be used.
  • the basic medium in addition to DMEM, Iscove's modified Dulbecco's medium (IMDM) (GIBCO, etc.), Ham F12 medium (SIGMA, GIBCO, etc.), RPMI 1640 medium, etc. can be used. Two or more types of basic media may be used in combination.
  • An example of a mixed medium is a medium containing equal amounts of IMDM and HamF12 (for example, commercially available under the trade name IMDM/HamF12 (GIBCO)).
  • the medium may be supplemented with any component that does not inhibit M2 macrophage survival and/or proliferation.
  • components that can be added to the culture medium include serum (fetal bovine serum, human serum, sheep serum, etc.), serum substitutes (Knockout serum replacement (KSR), etc.), bovine serum albumin (BSA), antibiotics, various vitamins, Various minerals can be mentioned.
  • the culture supernatant of M2 macrophages may or may not contain serum, and preferably does not contain serum.
  • a serum-free culture supernatant can be prepared by culturing M2 macrophages in a serum-free medium (serum-free medium).
  • a serum-free culture supernatant can also be obtained by subculturing one or more times and culturing the last one to several subcultures in a serum-free medium.
  • a serum-free culture supernatant can also be obtained by removing serum from the collected culture supernatant using dialysis, solvent replacement using a column, or the like.
  • the culture supernatant of M2 macrophages may contain high molecular compounds such as proteins secreted by M2 macrophages during culture, as well as low molecular compounds. Furthermore, the culture supernatant may also contain components derived from the medium.
  • M2 macrophages For culturing M2 macrophages, the conditions normally used for M2 macrophages can be applied as is or with appropriate modifications. M2 macrophages and/or M2 macrophage culture supernatants can be produced as appropriate by those skilled in the art. For example, the culture supernatant of M2 macrophages may be obtained by the operations described in the Examples of the present application.
  • M2 macrophages are cultured in the above-mentioned medium.
  • cells are seeded in a culture dish and cultured in an incubator adjusted to appropriate conditions (eg, 5% CO 2 , 37° C.). Perform subculture as necessary. Subculturing may be repeated. After the above culture, the cells may be collected and stored (eg, at -198°C to 4°C).
  • Culture supernatants collected once a sufficient number of M2 macrophages have been cultured for a sufficient period of time can be used in the composition.
  • Cultivate For example, after culturing M2 macrophages for about 12-72 hours, about 18-48 hours, or about 20-30 hours, such as about 24 hours, the culture supernatant is collected.
  • the collected culture supernatant can be used as an active ingredient in a composition as it is or after undergoing one or more treatments.
  • treatments include centrifugation, concentration, solvent replacement, dialysis, ultrafiltration, freezing, drying, freeze-drying, dilution, desalting, filter sterilization, and storage (e.g., 4°C, -80°C). be able to.
  • the culture supernatant may be subjected to concentration treatment. That is, the culture supernatant may be a concentrate. As a concentration method, those skilled in the art can appropriately select and use known methods.
  • the culture supernatant may be subjected to freeze-drying treatment. That is, the culture supernatant may be a lyophilized product.
  • the culture supernatant of M2 macrophages can be used for bone and/or cartilage regeneration.
  • bone regeneration refers to inhibiting osteoclast differentiation, ameliorating bone damage, improving bone function, in vivo and/or in vitro. including at least one of slowing or stopping the decline.
  • cartilage regeneration refers to promoting the proliferation of chondrocytes, inhibiting chondrocyte death, promoting the production of cartilage matrix, promoting the production of cartilage matrix in vivo and/or in vitro.
  • the method includes at least one of improving cartilage function, ameliorating cartilage damage, and delaying or stopping cartilage deterioration.
  • Bone and/or cartilage disease means a disease characterized by bone and/or cartilage abnormalities, including diseases characterized by bone abnormalities, diseases characterized by cartilage abnormalities, and bone and cartilage abnormalities.
  • diseases characterized by Bone and/or cartilage diseases include rheumatoid arthritis (including biologic-resistant rheumatoid arthritis), relapsing polychondritis, osteoporosis, osteoarthritis, osteonecrosis (including femoral head necrosis), and cancer. Includes bone metastases, especially osteoarthritis.
  • osteoarthritis include temporomandibular joint disease, knee osteoarthritis, hip osteoarthritis, ankle osteoarthritis, shoulder osteoarthritis, elbow osteoarthritis, wrist osteoarthritis, These include, but are not limited to, finger osteoarthritis and spondyloarthritis.
  • treating a disease or “treatment of a disease” means reducing, alleviating, ameliorating, or eliminating a disease.
  • preventing a disease” or “preventing a disease” refers to preventing the onset of a disease in a subject, particularly in a subject who is likely to develop the disease but has not yet developed the disease. It means to prevent or reduce the possibility of developing a disease.
  • Subjects who may develop, but have not yet developed, bone and/or cartilage disease include subjects who have risk factors for bone and/or cartilage disease.
  • Risk factors for osteoarthritis include, for example, genetics, occupation, obesity, cartilage fragility, trauma, joint dysplasia, joint instability, and advanced age (for humans, for example, over 50 years old, over 60 years old, or over 70 years old). ) is included.
  • Risk factors for osteoporosis include, for example, aging, menopause, diabetes, chronic kidney disease, rheumatoid arthritis, hyperparathyroidism, hyperthyroidism, steroid drugs, and sex hormone-lowering therapy.
  • Risk factors for osteonecrosis include, for example, steroid treatment and heavy alcohol consumption.
  • the effect of the M2 macrophage culture supernatant on bone or cartilage regeneration can be evaluated, for example, by supplying the M2 macrophage culture supernatant to a bone or cartilage regeneration evaluation system and evaluating the effect on bone or cartilage regeneration.
  • a bone or cartilage regeneration evaluation system for example, the method described in the Examples of the present application, in vitro evaluation of osteoclast differentiation, etc. can be used.
  • an evaluation system for cartilage regeneration for example, the method described in the Examples of the present application, in vitro evaluation of chondrocyte proliferation or chondrocyte death, etc. can be used.
  • the effect of the culture supernatant of M2 macrophages on bone and/or cartilage diseases can be determined, for example, by supplying the culture supernatant of M2 macrophages to an evaluation system for bone and/or cartilage diseases. It can be evaluated by evaluating the effect.
  • an evaluation system for osteoarthritis for example, a method using the temporomandibular joint osteoarthritis (TMJOA) model described in the Examples of the present application can be used.
  • TMJOA temporomandibular joint osteoarthritis
  • rheumatoid arthritis for example, a method using the anti-collagen antibody arthritis (CAIA) model described in the Examples of the present application can be used.
  • the composition containing the culture supernatant of M2 macrophages can be in liquid (liquid, gel, etc.) and solid (powder, fine, granule, etc.) forms. Further, the formulation form of the composition can be selected from various known formulation forms depending on, for example, the type of disease, the characteristics of the individual with the disease, the method of administration, or the dosage.
  • solid preparations such as tablets, powders, granules, granules, fine granules, capsules, solid injections that dissolve before use, suppositories, liquid injections (intravenous/intramuscular), injections, Examples include liquid preparations such as infusion preparations, and topical preparations such as eye drops, sprays, lotions, creams, and patches.
  • the composition may be supported on a medical device that is indwelled in the body.
  • the composition is in a formulation for intravenous administration.
  • the composition is in a formulation for intra-articular administration.
  • the composition may contain other pharmaceutically acceptable ingredients (e.g., salts, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers) depending on the purpose and formulation form. , preservatives, preservatives, saline, etc.).
  • excipients lactose, starch, sorbitol, D-mannitol, white sugar, etc. can be used.
  • As the disintegrant starch, carboxymethyl cellulose, calcium carbonate, etc. can be used. Phosphates, citrates, acetates, etc. can be used as buffers.
  • As the emulsifier gum arabic, sodium alginate, tragacanth, etc. can be used.
  • glyceryl monostearate, aluminum monostearate, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, sodium lauryl sulfate, etc. can be used.
  • benzyl alcohol, chlorobutanol, sorbitol, etc. can be used.
  • propylene glycol, ascorbic acid, etc. can be used.
  • phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, etc. can be used.
  • benzalkonium chloride, paraoxybenzoic acid, chlorobutanol, etc. can be used.
  • the composition may include antibiotics, pH adjusters, growth factors (eg, epidermal growth factor (EGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)), and the like.
  • the administration route of the composition is not particularly limited.
  • Various known dosage forms can be employed depending on the application site and target disease.
  • parenteral administration may be systemic or local. Examples include intravenous administration, intraarterial administration, intraportal administration, intradermal administration, subcutaneous administration, intramuscular administration, intraperitoneal administration, intranasal administration, intraoral administration, and intraarticular administration.
  • the composition is administered intravenously. In certain embodiments, the composition is administered intraarticularly.
  • the dosage of the composition is not particularly limited. It can be set taking into consideration the gender, age, weight, medical condition, etc. of the subject. For example, about 0.01 to about 100 ml/kg body weight, about 0.1 to about 50 ml/kg body weight, about 0.5 to about 30 ml/kg body weight, or about 1 to about 10 ml/kg body weight of the culture supernatant. be administered. Alternatively, for example, a culture of about 0.01 to about 500 mg/kg body weight, about 0.1 to about 300 mg/kg body weight, about 1 to about 100 mg/kg body weight, or about 5 to about 50 mg/kg body weight, for example. Allow supernatant to be administered.
  • the subject's sex, age, weight, pathological condition, etc. can be taken into consideration.
  • the composition may be administered in a single dose or in multiple doses. When administered multiple times, for example, it can be administered once to several times a day, once every 2 to 7 days, once every week to several weeks, or once every month to several months.
  • the administration period is not limited, and a drug holiday may be provided.
  • Subjects to which the composition is applied include mammals including humans (pets, livestock, laboratory animals, etc.). Examples include, in addition to humans, dogs, cats, rabbits, cows, pigs, goats, sheep, horses, monkeys, guinea pigs, rats, and mice.
  • the present disclosure provides a method of bone and/or cartilage regeneration that includes administering a culture supernatant of M2 macrophages to a subject in need of bone and/or cartilage regeneration.
  • the present disclosure provides M2 macrophage culture supernatants for bone and/or cartilage regeneration.
  • the present disclosure provides the use of M2 macrophage culture supernatants for bone and/or cartilage regeneration.
  • the present disclosure provides the use of culture supernatants of M2 macrophages in the manufacture of compositions for bone and/or cartilage regeneration.
  • the present disclosure provides a method for treating and/or preventing bone and/or cartilage diseases comprising administering M2 macrophage culture supernatant to a subject in need of treatment and/or prevention of bone and/or cartilage diseases. / or provide a method of prevention.
  • the present disclosure provides M2 macrophage culture supernatants for the treatment and/or prevention of bone and/or cartilage diseases.
  • the present disclosure provides the use of M2 macrophage culture supernatants for the treatment and/or prevention of bone and/or cartilage diseases.
  • the present disclosure provides the use of culture supernatants of M2 macrophages in the manufacture of compositions for the treatment and/or prevention of bone and/or cartilage diseases.
  • the present disclosure provides a method of manufacturing a composition comprising culturing M2 macrophages and collecting a culture supernatant.
  • culturing M2 macrophages and collecting the culture supernatant can be carried out as described above, but are not limited thereto, and any method known to those skilled in the art may be used.
  • This production method further includes a step of obtaining M2 macrophages, and a step of usual formulation known to those skilled in the art, such as a step of treating the culture supernatant, adding other ingredients acceptable for formulation. and/or preparing the culture supernatant into various formulations.
  • the manufacturing method includes the step of culturing macrophage lineage cells, preferably macrophages, in a culture supernatant of dental pulp stem cells to differentiate them into M2 macrophages.
  • the present disclosure provides a method of differentiating macrophage lineage cells into M2 macrophages, comprising culturing macrophage lineage cells, preferably macrophages, in a culture supernatant of dental pulp stem cells.
  • the present disclosure provides M2 macrophages obtained by a method comprising culturing macrophage lineage cells, preferably macrophages, in a culture supernatant of dental pulp stem cells.
  • the present disclosure provides a composition for inhibiting bone and/or cartilage destruction, comprising a culture supernatant of M2 macrophages.
  • the present disclosure provides a method of inhibiting bone and/or cartilage destruction, comprising administering a culture supernatant of M2 macrophages to a subject in need of inhibiting bone and/or cartilage destruction.
  • the present disclosure provides M2 macrophage culture supernatants for inhibiting bone and/or cartilage destruction.
  • the present disclosure provides the use of M2 macrophage culture supernatants to inhibit bone and/or cartilage destruction.
  • the present disclosure provides the use of a culture supernatant of M2 macrophages in the manufacture of a composition for inhibiting bone and/or cartilage destruction.
  • the present disclosure provides a composition for repairing injured joints comprising a culture supernatant of M2 macrophages.
  • the present disclosure provides a method of repairing an injured joint comprising administering a culture supernatant of M2 macrophages to a subject in need of repairing an injured joint.
  • the present disclosure provides culture supernatants of M2 macrophages for repairing injured joints.
  • the present disclosure provides the use of culture supernatants of M2 macrophages to repair injured joints.
  • the present disclosure provides the use of culture supernatants of M2 macrophages in the manufacture of compositions for repairing injured joints.
  • the present disclosure provides a composition for suppressing inflammation comprising a culture supernatant of M2 macrophages.
  • the present disclosure provides a method of suppressing inflammation comprising administering a culture supernatant of M2 macrophages to a subject in need of suppressing inflammation.
  • the present disclosure provides M2 macrophage culture supernatants for suppressing inflammation.
  • the present disclosure provides the use of M2 macrophage culture supernatants to suppress inflammation.
  • the present disclosure provides the use of M2 macrophage culture supernatant in the manufacture of a composition for suppressing inflammation.
  • a composition for bone and/or cartilage regeneration comprising a culture supernatant of M2 macrophages.
  • the composition according to item 1 which is a composition for bone regeneration.
  • a composition for suppressing bone and/or cartilage destruction comprising a culture supernatant of M2 macrophages.
  • a composition for restoring damaged joints comprising a culture supernatant of M2 macrophages.
  • a composition for suppressing inflammation comprising a culture supernatant of M2 macrophages.
  • a composition for the treatment and/or prevention of bone and/or cartilage diseases comprising a culture supernatant of M2 macrophages.
  • the composition according to item 8 which is a composition for treating and/or preventing bone diseases.
  • the composition according to item 8, wherein the bone and/or cartilage disease is rheumatoid arthritis, relapsing polychondritis, osteoporosis, osteoarthritis, osteonecrosis, or cancer bone metastasis.
  • the composition according to item 8, wherein the bone and/or cartilage disease is rheumatoid arthritis, relapsing polychondritis, osteoporosis, osteoarthritis, or osteonecrosis.
  • the composition according to item 8, wherein the bone and/or cartilage disease is osteoarthritis.
  • Osteoarthritis is temporomandibular joint disease, knee osteoarthritis, hip osteoarthritis, ankle osteoarthritis, shoulder osteoarthritis, elbow osteoarthritis, wrist osteoarthritis, 15.
  • composition according to item 14 wherein the osteoarthritis is temporomandibular joint disease.
  • the composition according to any one of Items 1 to 18, wherein the M2 macrophage is an autologous M2 macrophage.
  • Composition [21] The composition according to item 20, wherein the dental pulp stem cells are derived from deciduous teeth. [22] The composition according to any one of Items 1 to 21, which does not contain M2 macrophages. [23] The composition according to any one of items 1 to 22, which does not contain serum. [24] A method for producing the composition according to any one of Items 1 to 23, which comprises culturing M2 macrophages and collecting the culture supernatant.
  • M2 macrophages are cultured in a serum-free medium.
  • the manufacturing method according to item 24 or 25 which comprises culturing macrophage-based cells, preferably macrophages, in a culture supernatant of dental pulp stem cells to differentiate them into M2 macrophages.
  • the manufacturing method according to item 26 which comprises culturing dental pulp stem cells and collecting the culture supernatant.
  • a method for differentiating macrophage cells into M2 macrophages which comprises culturing macrophage cells, preferably macrophages, in a culture supernatant of dental pulp stem cells.
  • M2 macrophages obtained by the method described in Section 28.
  • SHED-CM 70-80% confluent dental pulp stem cells (SHED) were washed with phosphate buffered saline (PBS) and serum-free DMEM, and then the culture medium was changed to serum-free DMEM.
  • the culture medium was cultured at 37°C for 48 hours in a humidified atmosphere of 5% CO2 , then collected and centrifuged at 440g for 3 minutes at 4°C.
  • the supernatant was used as SHED-CM in the following experiment.
  • the protein concentration of each CM was unified to 3 ⁇ g/ml using serum-free DMEM.
  • M2-CM Bone marrow cells were collected from the femur and tibia of an 8-week-old female C57BL/6 mouse and seeded in a 6 cm cell culture dish at a cell density of 1 ⁇ 10 5 cells/cm 2 .
  • the cells were washed with PBS and cultured in serum-free DMEM alone, serum-free DMEM with recombinant IL-4 protein, and SHED-CM at 37° C. and 5% CO 2 for 24 hours.
  • M-CSF macrophage colony stimulating factor
  • FBS fetal bovine serum
  • serum-free DMEM was added to all cell culture dishes, and cultured at 37° C. and 5% CO 2 for 24 hours. The medium was collected, centrifuged at 1750g for 10 minutes, and the supernatant was collected. The supernatant obtained from macrophages cultured in SHED-CM was used as M2-CM. Supernatant obtained from macrophages cultured in serum-free DMEM was used as M0-CM.
  • Flow cytometry Cells were peeled off with a scraper (Viola Mocell Scraper, Cat: 1-2248-01, As One), and the number of cells was counted. Dead cells were detected by staining with 7-AAD (Cat. 420403, Biolegend, CA) for 10 minutes. Cells were stained with F4/80-FITC (Cat. 123107, clone BM8, Biolegend, CA) and CD206-PE (Cat. 12-2061-82, clone MR6F3, Thermo Fisher Scientific, MA). FITC Rat IgG2a kappa Isotype Control Antibody (Cat.
  • mice Mechanically induced murine temporomandibular osteoarthritis (TMJOA) model and CM administration Institute of Cancer Research (ICR) 11-week-old male mice were purchased from Japan SLC Co., Ltd. (Shizuoka, Japan) and The animals were kept under pathogen-free conditions at room temperature (22-24°C) under a 12-hour light/dark cycle. Mice had access to experimental solid food and water ad libitum during the experiment, and were randomly divided into one control group and three experimental groups. A schematic diagram of the experimental design is shown in Figure 2. In the experimental group, mouse TMJOA was induced with the customized spring by forced opening for 3 hours/day for 10 consecutive days.
  • Micro-computed tomography (micro-CT) analysis The mandibles of all experimental mice were carefully dissected and the surrounding soft tissues were removed and then fixed in 10% formalin overnight. Next, the mandible was transferred to 70% ethanol, and the temporomandibular joint was analyzed using a high-resolution micro-CT (SkyScan 1176 scanner, Bruker, USA) and associated analysis software. During scanning, all samples were secured with soft tissue to prevent migration and dehydration. Image acquisition was performed under 50 kV and 200 uA with a resolution of 9 micrometers/pixel. The midline posterior region of the temporomandibular joint was determined as the region of interest (ROI). Bone volume/volume ratio (BV/TV) and cancellous bone thickness (Tb.Th) were used to evaluate bone destruction.
  • ROI region of interest
  • CAIA Anti-collagen antibody arthritis
  • ICR Institute of Cancer Research
  • RNA of M2 macrophages induced with serum-free DMEM supplemented with SHED-CM or recombinant IL-4 protein was collected, and comprehensive genetic analysis was performed using a microarray. Through statistical analysis of gene expression, gene ontology (GO) analysis was performed on a set of genes that were significantly and strongly expressed in M2 macrophages induced by SHED-CM.
  • Figure 2 shows an overview of the experimental design and workflow of the mouse TMJOA model.
  • continuous mechanical stress was applied to both temporomandibular joints for 5 or 10 days by forced opening for 3 hours/day using a custom-made spring.
  • mechanical stress was applied to both temporomandibular joints for only 5 days (pretreatment group), and in other experimental groups, mechanical stress was applied continuously for 10 days, and tail vein injection was applied daily from day 6 to day 10.
  • 0.5 ml of M2-CM, M0-CM, or DMEM was injected into each well.
  • Micro-CT images showed that in the pretreatment, DMEM, and M0-CM groups, subchondral bone resorption was intense and the cartilage surface was rough, whereas in the M2-CM group, the surface became smooth and subchondral bone resorption decreased.
  • Figure 3 In particular, BV/TV and Tb.
  • the Th value was significantly higher in the M2-CM group.
  • it was found that the number of TRAP-positive osteoclasts accumulated in the bone marrow immediately below the joint was lower in the M2-CM group than in the DMEM and M0-CM groups.
  • Toluidine blue staining revealed that the proteoglycan-positive area in the M2-CM group was significantly increased compared to the DMEM and M0-CM groups (FIG. 3).
  • M2-CM suppresses the expression of cartilage inflammatory cytokines and cartilage matrix-degrading enzymes, but enhances the expression of chondrocyte proliferation markers.
  • Immunohistochemical staining revealed that the pro-inflammatory factor IL-1b and the cartilage degrading enzyme MMP13 were increased. Expression increased in both the DMEM and M0-CM groups. On the other hand, in the M2-CM treated group, the expression of IL-1b and MMP13 was significantly decreased. Furthermore, the expression of PCNA, a chondrocyte proliferation marker, was found to be significantly increased in the M2-CM group (FIG. 4).
  • M2-CM suppressed the expression of iNOS and MMP13 and promoted the expression of ColII and ACAN. and MMP13 expression, which were effectively suppressed by M2-CM treatment (Fig. 5).
  • the expression of cartilage matrix proteins ColII and ACAN was hardly detected in DMEM or M0-CM, but was found to be significantly increased by M2-CM (FIG. 5).
  • qPCR analysis also showed that M2-CM significantly suppressed the expression of iNOS and MMP13 mRNA in IL-1b-stimulated mouse primary chondrocytes (FIG. 5).
  • TRAP staining showed that the number and size of TRAP-positive multinucleated giant cells/mature osteoclasts in the M2-CM treated group were decreased compared to the DMEM group (FIG. 6).
  • M2-CM improves arthritis score in mouse CAIA model. Changes in arthritis score in mouse CAIA model are shown in FIG. 7. Administration of PBS or M2-CM was started on the 6th day after antibody administration. Arthritis scores tended to be lower in the M2-CM group from day 7, and were significantly lower from day 12.
  • M2 macrophages The results of genetic analysis of M2 macrophages are shown in FIG.
  • the vertical axis of the graph shows the gene set defined by GO.
  • the horizontal axis shows the significance (p value) of the difference in gene expression between M2 macrophages (M2(CM)) induced by SHED-CM and M2 macrophages (M2(IL-4)) induced by recombinant IL-4 protein.
  • the top row of FIG. 8 shows GOs of epithelial and secretory cells, the middle row shows GOs related to nerves, and the bottom row shows GOs related to blood vessels.
  • the difference is evaluated to have high reliability.
  • M2 (CM) is more effective in epithelial proliferation and differentiation, nerve axon guidance, nerve axon elongation, blood vessel regeneration, nerve cell differentiation, nerve cell neogenesis, and intravascular cells.
  • the expression of genes for molecules that promote cell proliferation and vascular network construction was significantly higher.
  • the present disclosure can be used in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

M2マクロファージの培養上清を含む骨および/または軟骨再生用の組成物、および、M2マクロファージを培養し、培養上清を回収することを含む、骨および/または軟骨再生用の組成物の製造方法を提供する。M2マクロファージの培養上清を含む、骨および/または軟骨の疾患の処置および/または予防用の組成物、および、M2マクロファージを培養し、培養上清を回収することを含む、骨および/または軟骨の疾患の処置および/または予防用の組成物の製造方法を提供する。

Description

骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物
 本特許出願は、日本国特許出願第2022-138193号について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本開示は、骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物に関する。
 変形性関節症では機械的刺激などにより関節軟骨の変性・磨耗を生じ、関節軟骨・骨の変形をもたらす。運動機能障害や激しい疼痛によって患者のQOLは著しく低下する。自覚症状を有する国内患者は1000万人と推定される。現在、軟骨再生を促す治療薬はない。
 変形性顎関節症(TMJOA)は、進行性の軟骨分解、軟骨下骨リモデリングの障害および慢性疼痛を特徴とする変性関節疾患である。TMJOAの病因は多岐にわたり不明であるが、骨格的な顎の非対称性や重度の不正咬合など、下顎顆部への過度の機械的ストレスがTMJOAの主な原因である。過度の機械的ストレスによって活性化された軟骨細胞は、炎症性サイトカイン、軟骨マトリックス分解酵素、並びに、誘導性一酸化窒素合成酵素(iNOS)、インターロイキン-1β(IL-1β)、マトリックスメタロプロテアーゼ-13(MMP13)、NFκB活性化受容体リガンド(RANKL)などの破骨細胞形成誘導因子を放出する。TMJOAの進行中に、軟骨細胞のアポトーシスおよび壊死並びに軟骨マトリックスの分解が滑膜の炎症と軟骨下骨の破壊をさらに促進し、不可逆的で難治性の組織損傷と機能障害を引き起こす。TMJOAにおける組織損傷を反転または修復する有効な処置は存在しない。
 活性化マクロファージは、組織の損傷と再生の制御に重要な役割を果たす。古典的活性化M1マクロファージは、炎症性サイトカイン、活性酸素種および一酸化窒素を産生し、それにより炎症を惹起し、組織損傷を加速する。対照的に、代替活性化M2マクロファージは、細胞の残骸を除去し、抗炎症性サイトカインを分泌することにより、炎症を抑制し、組織修復を促進する。滑膜M2マクロファージ誘導は骨関節炎症状緩和の有効な治療戦略として浮上してきたが、滑膜M2マクロファージが治療効果を発揮するメカニズムおよび分泌される因子の役割は殆ど解明されていない。
 間葉系幹細胞(MSC)治療は、骨関節炎の処置に有望であることが示されてきた。様々な組織タイプに由来するMSCの移植は、TMJOAおよび膝骨関節炎の骨関節炎症状を効果的に軽減する。注目すべきことに、移植されたMSCの生存率は低く、骨関節炎におけるMSCの治療効果は、パラクリンメカニズムに大きく依存する。ヒトの歯髄幹細胞は、一次歯髄の血管周囲ニッチに存在し、非侵襲性、アクセスしやすさ、活発なパラクリン制御活性のために注目されている。SHEDに由来する無血清培養上清は、SHED-CMと呼ばれ、様々な難治性疾患に治療能力を発揮する。例えば、SHED-CMの静脈内投与は、機械的に誘導されたTMJOAマウスモデルにおいて、効果的に疼痛を軽減し、軟骨と軟骨下骨の破壊を修復した(特許文献1、非特許文献1)。しかしながら、SHED-CMがTMJOAを治療するメカニズムは不明である。
国際公開第2019/230859号パンフレット
Ogasawara N, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis Cartilage. 2020;28(6):831-41.
 本開示は、骨および/または軟骨の再生方法、または、骨および/または軟骨の疾患の処置および/または予防方法を提供することを目的とする。
 ある態様では、本開示は、M2マクロファージの培養上清を含む、骨および/または軟骨再生用の組成物を提供する。
 ある態様では、本開示は、M2マクロファージの培養上清を含む、骨および/または軟骨の疾患の処置および/または予防用の組成物を提供する。
 ある態様では、本開示は、M2マクロファージを培養し、培養上清を回収することを含む、骨および/または軟骨再生用の組成物の製造方法を提供する。
 ある態様では、本開示は、M2マクロファージを培養し、培養上清を回収することを含む、骨および/または軟骨の疾患の処置および/または予防用の組成物の製造方法を提供する。
 本開示により、骨および/または軟骨の再生方法、または、骨および/または軟骨の疾患の処置および/または予防方法が提供される。
マウス骨髄間質細胞から分化誘導した骨髄マクロファージ(BMM)を、DMEM単独、またはIL-4もしくはSHED-CMとともに培養した後、FACS分析した結果を示す。 マウス変形性顎関節症(TMJOA)モデルの実験デザインおよびワークフローの概要を示す。 M2-CM、M0-CMまたはDMEMを静脈投与したマウスTMJOAモデルにおいて、顎関節の骨および軟骨の損傷をマイクロコンピュータトモグラフィー(マイクロCT)および組織染色により分析した結果を示す。 M2-CM、M0-CMまたはDMEMを静脈投与したマウスTMJOAモデルにおいて、顎関節のIL-1b、MMP13およびPCNAを免疫組織染色により測定した結果を示す。 IL-1bで刺激したマウス初代軟骨細胞をM2-CMで処理し、iNOS、MMP13、ColII、ACAN、RANKLの発現を測定した結果を示す。 骨髄マクロファージの破骨細胞分化に対するM2-CMの効果を示す。 M2-CMまたはPBSを静脈投与したマウス抗コラーゲン抗体関節炎(CAIA)モデルにおける、関節炎スコアを示す。 SHED-CMで誘導したM2マクロファージと、リコンビナントIL-4タンパク質を加えた無血清DMEMで誘導したM2マクロファージの遺伝子解析の結果を示す。グラフの縦軸に、遺伝子オントロジー(GO)で定義された遺伝子セットを示す。横軸に遺伝子発現差の有意性(p値)を示す。
 特に具体的な定めのない限り、本明細書で使用される用語は、有機化学、医学、薬学、分子生物学、微生物学等の分野における当業者に一般に理解されるとおりの意味を有する。以下にいくつかの本明細書で使用される用語についての定義を記載するが、これらの定義は、本明細書において、一般的な理解に優先する。
 本明細書では、数値が「約」の用語を伴う場合、その値の±10%の範囲を含むことを意図する。例えば、「約20」は、「18~22」を含むものとする。数値の範囲は、両端点の間の全ての数値および両端点の数値を含む。範囲に関する「約」は、その範囲の両端点に適用される。従って、例えば、「約20~30」は、「18~33」を含むものとする。
 本願実施例において、幹細胞培養上清を用いてマクロファージを抗炎症性M2マクロファージに誘導し、分化誘導後のM2マクロファージの培養上清を変形性関節症モデルに静脈内投与したところ、関節骨および軟骨の破壊を抑止し、損傷関節の回復を促すことが明らかとなった。この培養上清を抗コラーゲン抗体関節炎モデルに静脈内投与したところ、関節炎スコアが低下した。インビトロ実験では、この培養上清は、軟骨細胞の炎症反応、軟骨基質破壊酵素MMP13の産生、軟骨細胞によるRANKL産生を直接抑制するとともに、軟骨基質II型コラーゲンやアグリカンの産生を促進した。さらに破骨細胞分化も抑制した。
 マクロファージは、M1マクロファージ(古典的活性化マクロファージ)またはM2マクロファージ(代替活性化マクロファージ)に分化する。マクロファージをM2マクロファージに分化させる要因として、寄生虫、真菌感染、免疫複合体、アポトーシス細胞、マクロファージコロニー刺激因子(M-CSF)、IL-13、TGF-b、ヘルパーT2(Th2)サイトカインIL-4、ならびにTh2細胞を介したIL-33およびIL-25などが知られている。M2マクロファージにはさらに4つのサブタイプ、即ち、M2a、M2b、M2cおよびM2dマクロファージが知られている。ヒトM2マクロファージのマーカーとして、例えば、IDO、IL-10、TGF-b、CD115、CD204、CD163、CD206、CD209、FceR1、VSIG4、IRF4およびSTAT6が知られている。マウスM2マクロファージのマーカーとして、例えば、アルギナーゼ、IDO、IL-10、TGF-b、YM1、CD14、CD115、CD163、CD204、CD206、CD209、CSF1R、FceR1、Ly-6C、IRF4、RELM-aおよびSTAT6が知られている。
 M2マクロファージは、組成物を適用する対象と同一生物種に由来しても、異なる生物種に由来してもよく、好ましくは同一生物種に由来し(例えば、対象がヒトであれば、ヒト由来のM2マクロファージを用いる)、より好ましくは自己M2マクロファージである。
 M2マクロファージはいかなるマクロファージ系細胞(マクロファージ、単球、ミクログリアなど)に由来してもよく、例えば、末梢血マクロファージ、骨髄マクロファージ、末梢血単球、骨髄単球、肺胞マクロファージまたは肝臓クッパー細胞に由来するものである。iPS細胞やES細胞などの多能性幹細胞から分化誘導されたマクロファージ系細胞に由来するM2マクロファージを使用してもよい。細胞株として樹立されたM2マクロファージを使用してもよい。いかなる方法で分化させたM2マクロファージを用いてもよく、幹細胞培養上清、IL-4(リコンビナントIL-4など)、低分子化合物、スキャホールド(β-リン酸三カルシウムでコーティングしたMgスキャホールドなど)、遺伝子導入(Siglec9など)などが当業者に知られている。
 M2マクロファージは、人為的に改変または導入された少なくとも1つの遺伝子を有してもよい。例えば、M2マクロファージの不死化を目的として、1、2、3、4またはそれ以上の遺伝子が導入されていてもよい。
 ある実施態様では、M2マクロファージは、マクロファージ系細胞、例えば、骨髄マクロファージまたは末梢血マクロファージを、歯髄幹細胞の培養上清中で培養することにより分化させたものである。骨髄マクロファージは、例えば、マクロファージコロニー刺激因子(M-CSF)を含む培地中で骨髄細胞を培養することにより得ることができる。
 歯髄幹細胞は、歯髄に由来する体性幹細胞を意味する。歯髄幹細胞は、永久歯または乳歯に由来し得る。好ましくは、歯髄幹細胞は脱落した乳歯に由来する。歯髄幹細胞は、組成物を適用する対象と同一生物種に由来しても、異なる生物種に由来してもよい。歯髄幹細胞は、歯髄細胞中の接着性細胞として選別することができる。即ち、歯髄幹細胞は、乳歯や永久歯から採取した歯髄細胞に含まれる接着性細胞またはその継代細胞であり得る。また、細胞株として樹立された歯髄幹細胞を使用してもよい。あるいは、iPS細胞やES細胞などの多能性幹細胞から分化誘導された歯髄幹細胞を使用してもよい。
 歯髄幹細胞の培養上清は、歯髄幹細胞を培養して得られる培養液の上清である。培養上清は、実質的に細胞成分(歯髄幹細胞または歯髄細胞)を含んでも含まなくてもよく、好ましくは含まない。細胞成分は、培養後に細胞成分を分離除去することによって、除去される。培養液からの細胞成分の分離は、当業者に周知の方法で実施できる。さらに、培養液に対して各種処理(例えば、遠心処理、濃縮、溶媒の置換、透析、限外ろ過、凍結、乾燥、凍結乾燥、希釈、脱塩、フィルター滅菌、保存等)を適宜施してもよい。
 歯髄幹細胞の培養には、基本培地、あるいは基本培地に血清等を添加したものを使用できる。基本培地としてはDMEMの他、イスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、GIBCO社等)、RPMI1640培地等を用いることができる。2種以上の基本培地を併用してもよい。混合培地の例として、IMDMとHamF12を等量混合した培地(例えば商品名:IMDM/HamF12(GIBCO社)として市販される)を挙げることができる。幹細胞の培養に適する培地、例えば無血清培地を用いてもよく、例えば、間葉系幹細胞の培養に適する培地を使用し得る。幹細胞の培養に適する培地の例として、R:STEM Medium for hMSC High Growth(ロート製薬)、StemPro(商標) MSC SFM XenoFree(Gibco)、StemFit(登録商標) For Mesenchymal Stem Cell(味の素ヘルシーサプライ株式会社)、PRIME-XV MSC XSFM MDF1(FUJIFILM Irvine Scientific社)、PRIME-XV MSC Expansion XSFM(FUJIFILM Irvine Scientific社)などが挙げられる。培地には、歯髄幹細胞の生存および/または増殖を阻害しないいかなる成分を添加してもよい。培地に添加可能な成分の例として、血清(ウシ胎仔血清、ヒト血清、羊血清等)、血清代替物(Knockout serum replacement(KSR)など)、ウシ血清アルブミン(BSA)、抗生物質、各種ビタミン、各種ミネラルを挙げることができる。
 歯髄幹細胞の培養上清は、血清を含んでも含まなくてもよく、好ましくは含まない。例えば、血清を含まない培地(無血清培地)で歯髄幹細胞を培養することによって、血清を含まない培養上清を調製することができる。1回または複数回の継代培養を行い、最後または最後から数回の継代培養を無血清培地で培養することによっても、血清を含まない培養上清を得ることができる。一方、回収した培養上清から、透析やカラムによる溶媒置換などを利用して血清を除去することによっても、血清を含まない培養上清を得ることができる。
 歯髄幹細胞の培養には、幹細胞に通常用いられる条件をそのまま、あるいは適宜変更して適用できる。歯髄幹細胞および/または歯髄幹細胞の培養上清の製造は、当業者であれば適宜行うことができる。例えば、出典明示により本明細書の一部とする、国際公開第2019/230859号(特許文献1)、国際公開第2011/118795号、国際公開第2014/126176号等の記載を参照し得る。また、例えば、以下のような操作で歯髄幹細胞および/または培養上清を取得してもよい。
 まず、歯髄から選抜した接着性細胞(歯髄幹細胞)を、上記した培地で培養する。例えば、細胞を付着性細胞培養用ディッシュに播種し、適当な条件(例えば、5%CO、37℃)に調整したインキュベータにて培養する。必要に応じて継代培養を行う。例えば、肉眼で観察してサブコンフルエント(培養容器の表面の約70%を細胞が占める状態)からコンフルエント(培養容器の表面の約100%を細胞が占める状態)に達したときに細胞を培養容器から剥離して回収し、再度、培養液を満たした培養容器に播種する。継代培養を繰り返し行ってもよい。例えば継代培養を1~8回行い、必要な細胞数(例えば、約1×10個/ml)まで増殖させる。培養容器からの細胞の剥離は、トリプシン処理など常法で実施することができる。以上の培養の後、細胞を回収して保存(例えば、-198℃~4℃で)してもよい。
 十分な数の歯髄幹細胞を十分な時間培養した時点で培養上清を回収する。例えば、約70~100%コンフルエント、好ましくは約70~80%または約80~90%コンフルエントの歯髄幹細胞に培地を添加し、約12~72時間、約36~60時間、約42~54時間または約46~50時間、例えば約48時間培養した後、培養上清を回収する。ある実施態様では、歯髄幹細胞を約70~80%コンフルエントになるまで培養し、洗浄し、無血清培地を添加し、約48時間培養し、培養上清を回収する。培養上清は、例えば、スポイトやピペットなどを用いて回収することができる。
 歯髄幹細胞の培養上清中で、例えば、約12~72時間、約18~48時間または約20~30時間、例えば約24時間、マクロファージ系細胞を培養することにより、M2マクロファージに分化させることができる。マクロファージ系細胞がM2マクロファージに分化したことは、M2マクロファージマーカー、例えばCD206が陽性であることにより確認できる。分化誘導後、M2マクロファージマーカー、例えばCD206が陽性である細胞をフローサイトメトリー等により取得してもよい。
 「M2マクロファージの培養上清」は、M2マクロファージを培養して得られる培養液の上清である。M2マクロファージは、他の細胞を含む細胞集団として培養されてもよく、好ましくは、細胞集団の約45%、約50%、約60%、約70%、約80%または約90%以上がM2マクロファージである。他の細胞の例としては、骨髄間質細胞、マクロファージ系細胞(骨髄マクロファージ、末梢血マクロファージ、末梢血単球、骨髄単球、肺胞マクロファージまたは肝臓クッパー細胞など)などが挙げられる。培養上清は、細胞成分を含んでも含まなくてもよく、好ましくは含まない。細胞成分は、遠心分離などの当業者に周知の方法により培養上清から除去され得る。さらに、培養液に対して各種処理(例えば、遠心処理、濃縮、溶媒の置換、透析、限外ろ過、凍結、乾燥、凍結乾燥、希釈、脱塩、フィルター滅菌、保存等)を適宜施してもよい。
 M2マクロファージの培養には、基本培地、あるいは基本培地に血清等を添加したものを使用できる。基本培地としてはDMEMの他、イスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、GIBCO社等)、RPMI1640培地等を用いることができる。2種以上の基本培地を併用してもよい。混合培地の例として、IMDMとHamF12を等量混合した培地(例えば商品名:IMDM/HamF12(GIBCO社)として市販される)を挙げることができる。培地には、M2マクロファージの生存および/または増殖を阻害しないいかなる成分を添加してもよい。培地に添加可能な成分の例として、血清(ウシ胎仔血清、ヒト血清、羊血清等)、血清代替物(Knockout serum replacement(KSR)など)、ウシ血清アルブミン(BSA)、抗生物質、各種ビタミン、各種ミネラルを挙げることができる。
 M2マクロファージの培養上清は、血清を含んでも含まなくてもよく、好ましくは含まない。例えば、血清を含まない培地(無血清培地)でM2マクロファージを培養することによって、血清を含まない培養上清を調製することができる。1回以上の継代培養を行い、最後の1回から数回の継代培養を無血清培地で培養することによっても、血清を含まない培養上清を得ることができる。一方、回収した培養上清から、透析やカラムによる溶媒置換などを利用して血清を除去することによっても、血清を含まない培養上清を得ることができる。
 M2マクロファージの培養上清は、M2マクロファージが培養中に分泌したタンパク質などの高分子化合物、並びに、低分子化合物を含み得る。さらに、培養上清は、培地由来の成分も含み得る。
 M2マクロファージの培養には、M2マクロファージに通常用いられる条件をそのまま、あるいは適宜変更して適用できる。M2マクロファージおよび/またはM2マクロファージの培養上清の製造は、当業者であれば適宜行うことができる。例えば、本願実施例に記載されている操作でM2マクロファージの培養上清を取得してもよい。
 例えば、まず、M2マクロファージを、上記した培地で培養する。例えば、細胞を培養用ディッシュに播種し、適当な条件(例えば、5%CO、37℃)に調整したインキュベータにて培養する。必要に応じて継代培養を行う。継代培養を繰り返し行ってもよい。以上の培養の後、細胞を回収して保存(例えば、-198℃~4℃で)してもよい。
 十分な数のM2マクロファージを十分な時間培養した時点で回収した培養上清を、組成物に用い得る。例えば、約1×10個/cm~約1×10個/cm、約1×10個/cm~約1×10個/cm、約2×10個/cm~約5×10個/cm、約5×10個/cm~約2×10個/cm、例えば、約1×10個/cmの細胞密度でM2マクロファージを培養する。例えば、約12~72時間、約18~48時間または約20~30時間、例えば約24時間、M2マクロファージを培養した後、培養上清を回収する。
 回収した培養上清は、そのまま、あるいは一以上の処理を経た後に、組成物の有効成分として使用され得る。ここでの処理として、遠心処理、濃縮、溶媒の置換、透析、限外ろ過、凍結、乾燥、凍結乾燥、希釈、脱塩、フィルター滅菌、保存(例えば、4℃、-80℃)を例示することができる。
 培養上清は、濃縮処理が施されていてもよい。即ち、培養上清は濃縮物であってもよい。濃縮方法としては、公知の手法から当業者であれば適宜選択して用いることができる。培養上清は、凍結乾燥処理が施されていてもよい。即ち、培養上清は、凍結乾燥物であってもよい。
 M2マクロファージの培養上清は、骨および/または軟骨再生のために用いることができる。本明細書で使用されるとき、「骨再生」は、インビボおよび/またはインビトロにおいて、破骨細胞分化を抑制すること、骨の損傷を改善すること、骨の機能を改善すること、骨の機能低下を遅延または停止させることの少なくとも1つを含む。本明細書で使用されるとき、「軟骨再生」は、インビボおよび/またはインビトロにおいて、軟骨細胞の増殖を促進すること、軟骨細胞死を抑制すること、軟骨基質の産生を促進すること、軟骨の機能を改善すること、軟骨の損傷を改善すること、軟骨の機能低下を遅延または停止させることの少なくとも1つを含む。
 M2マクロファージの培養上清は、また、骨および/または軟骨の疾患の処置および/または予防のために用いることができる。骨および/または軟骨の疾患は、骨および/または軟骨の異常を特徴とする疾患を意味し、骨の異常を特徴とする疾患、軟骨の異常を特徴とする疾患、および、骨および軟骨の異常を特徴とする疾患を含む。骨および/または軟骨の疾患には、関節リウマチ(生物学的製剤耐性関節リウマチを含む)、再発性多発軟骨炎、骨粗鬆症、変形性関節症、骨壊死(大腿骨骨頭壊死を含む)およびがん骨転移が含まれ、特に変形性関節症である。変形性関節症の例には、変形性顎関節症、変形性膝関節症、変形性股関節症、変形性足関節症、変形性肩関節症、変形性肘関節症、変形性手関節症、変形性手指関節症、変形性脊椎椎間関節症が含まれるが、これらに限定されない。
 本明細書で使用されるとき、「疾患を処置する」または「疾患の処置」は、疾患を軽減、緩和、改善または除去することを意味する。本明細書で使用されるとき、「疾患を予防する」または「疾患の予防」は、対象において、特に、疾患を発症する可能性があるが、未だ発症していない対象において、疾患の発症を防止すること、または、疾患を発症する可能性を低減することを意味する。骨および/または軟骨の疾患を発症する可能性があるが、未だ発症していない対象には、骨および/または軟骨の疾患のリスク因子を有する対象が含まれる。変形性関節症のリスク因子には、例えば、遺伝、職業、肥満、軟骨脆弱性、外傷、関節形成不全、関節動揺性、高齢(ヒトの場合、例えば50歳以上、60歳以上または70歳以上)が含まれる。骨粗鬆症のリスク因子には、例えば、加齢、閉経、糖尿病、慢性腎臓病、関節リウマチ、副甲状腺機能亢進症、甲状腺機能亢進症、ステロイド薬、性ホルモン低下療法が含まれる。骨壊死のリスク因子には、例えば、ステロイド治療、アルコールの多飲が含まれる。
 M2マクロファージの培養上清の骨または軟骨再生に対する効果は、例えば、M2マクロファージの培養上清を骨または軟骨再生の評価系に供給し、骨または軟骨再生への作用を評価することにより評価し得る。骨再生の評価系としては、例えば、本願の実施例に記載の方法、インビトロでの破骨細胞分化の評価などを用いることができる。軟骨再生の評価系としては、例えば、本願の実施例に記載の方法、インビトロでの軟骨細胞増殖または軟骨細胞死の評価などを用いることができる。
 M2マクロファージの培養上清の骨および/または軟骨の疾患に対する効果は、例えば、M2マクロファージの培養上清を骨および/または軟骨の疾患の評価系に供給し、骨および/または軟骨の疾患への作用を評価することにより評価し得る。変形性関節症の評価系としては、例えば、本願の実施例に記載の変形性顎関節症(TMJOA)モデルを用いる方法などを用いることができる。関節リウマチの評価系としては、例えば、本願の実施例に記載の抗コラーゲン抗体関節炎(CAIA)モデルを用いる方法などを用いることができる。
 M2マクロファージの培養上清を含む組成物は、液体状(液状、ゲル状など)および固体状(粉状、細粒、顆粒状など)の形態であり得る。また、組成物の製剤形態は、例えば、疾患の種類、疾患を有する個体の特徴、投与方法または投与量に応じて、公知の各種製剤形態から選択し得る。例えば、錠剤、粉剤、粒剤、顆粒剤、細粒剤、カプセル剤、用時溶解する固形の注射剤、坐剤などの固形製剤、液状の注射剤(静注/筋注)、注入剤、点滴用剤などの液状製剤、点眼剤、スプレー剤、ローション剤、クリーム剤、貼付剤などの局所外用剤等が挙げられる。また、組成物は体内留置型の医療器具等に担持されてもよい。ある実施態様では、組成物は、静脈投与用の製剤形態である。ある実施態様では、組成物は、関節内投与用の製剤形態である。
 組成物は、その目的や製剤形態に応じて、製剤上許容される他の成分(例えば、塩、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含み得る。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。組成物は、抗生物質、pH調整剤、成長因子(例えば、上皮細胞成長因子(EGF)、神経成長因子(NGF)、脳由来神経栄養因子(BDNF))等を含んでもよい。
 組成物の投与経路は特に限定されない。適用部位や対象とする疾患に応じて公知の各種投与形態を採用できる。例えば、非経口投与は、全身投与であってもよいし、局所投与であってもよい。静脈内投与、動脈内投与、門脈内投与、皮内投与、皮下投与、筋肉内投与、腹腔内投与、鼻腔内投与、口腔内投与、関節内投与等が挙げられる。ある実施態様では、組成物を静脈内投与する。ある実施態様では、組成物を関節内投与する。
 組成物の用法用量は特に限定されない。対象の性別、年齢、体重、病態等を勘案して設定することができる。例えば、約0.01~約100ml/kg体重、約0.1~約50ml/kg体重、約0.5~約30ml/kg体重、または、約1~約10ml/kg体重の培養上清が投与されるようにする。あるいは、例えば、乾燥重量で約0.01~約500mg/kg体重、約0.1~約300mg/kg体重、約1~約100mg/kg体重、または、約5~約50mg/kg体重の培養上清が投与されるようにする。投与スケジュールの作成においては、対象の性別、年齢、体重、病態などを考慮することができる。組成物は、単回投与してもよく、複数回投与してもよい。複数回投与する場合、例えば、1日1回~数回、2日~7日に1回、1週~数週に1回、1月~数月に1回、投与し得る。投与期間は制限されず、休薬期間を設けてもよい。
 組成物が適用される対象としては、ヒトを含む哺乳動物(ペット、家畜、実験動物等)が挙げられる。例えば、ヒトのほか、イヌ、ネコ、ウサギ、ウシ、ブタ、ヤギ、ヒツジ、ウマ、サル、モルモット、ラットおよびマウス等が挙げられる。
 ある態様では、本開示は、骨および/または軟骨再生を必要としている対象にM2マクロファージの培養上清を投与することを含む、骨および/または軟骨再生方法を提供する。
 ある態様では、本開示は、骨および/または軟骨再生用のM2マクロファージの培養上清を提供する。
 ある態様では、本開示は、骨および/または軟骨再生のためのM2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、骨および/または軟骨再生用の組成物の製造における、M2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、骨および/または軟骨の疾患の処置および/または予防を必要としている対象にM2マクロファージの培養上清を投与することを含む、骨および/または軟骨の疾患の処置および/または予防方法を提供する。
 ある態様では、本開示は、骨および/または軟骨の疾患の処置および/または予防用のM2マクロファージの培養上清を提供する。
 ある態様では、本開示は、骨および/または軟骨の疾患の処置および/または予防のためのM2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、骨および/または軟骨の疾患の処置および/または予防用の組成物の製造における、M2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、M2マクロファージを培養し、培養上清を回収することを含む、組成物の製造方法を提供する。この製造方法において、M2マクロファージの培養および培養上清の回収は上記の通りに実施することができるが、これらに限定されず、当業者に公知のいかなる方法を用いてもよい。この製造方法は、さらに、M2マクロファージを取得する工程、並びに、当業者に知られている通常の製剤化の工程、例えば、培養上清を処理する工程、製剤上許容される他の成分を添加する工程、および/または、培養上清を各種製剤形態に調製する工程などを含み得る。ある実施態様では、この製造方法は、マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することによりM2マクロファージに分化させる工程を含む。
 ある態様では、本開示は、マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することを含む、マクロファージ系細胞をM2マクロファージに分化させる方法を提供する。
 ある態様では、本開示は、マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することを含む方法により得られるM2マクロファージを提供する。
 ある態様では、本開示は、M2マクロファージの培養上清を含む、骨および/または軟骨の破壊を抑制するための組成物を提供する。
 ある態様では、本開示は、骨および/または軟骨の破壊を抑制することを必要としている対象にM2マクロファージの培養上清を投与することを含む、骨および/または軟骨の破壊を抑制する方法を提供する。
 ある態様では、本開示は、骨および/または軟骨の破壊を抑制するためのM2マクロファージの培養上清を提供する。
 ある態様では、本開示は、骨および/または軟骨の破壊を抑制するためのM2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、骨および/または軟骨の破壊を抑制するための組成物の製造における、M2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、M2マクロファージの培養上清を含む、損傷関節を回復するための組成物を提供する。
 ある態様では、本開示は、損傷関節を回復することを必要としている対象にM2マクロファージの培養上清を投与することを含む、損傷関節を回復する方法を提供する。
 ある態様では、本開示は、損傷関節を回復するためのM2マクロファージの培養上清を提供する。
 ある態様では、本開示は、損傷関節を回復するためのM2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、損傷関節を回復するための組成物の製造における、M2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、M2マクロファージの培養上清を含む、炎症を抑制するための組成物を提供する。
 ある態様では、本開示は、炎症を抑制することを必要としている対象にM2マクロファージの培養上清を投与することを含む、炎症を抑制する方法を提供する。
 ある態様では、本開示は、炎症を抑制するためのM2マクロファージの培養上清を提供する。
 ある態様では、本開示は、炎症を抑制するためのM2マクロファージの培養上清の使用を提供する。
 ある態様では、本開示は、炎症を抑制するための組成物の製造における、M2マクロファージの培養上清の使用を提供する。
 本開示は、例えば、下記の実施態様を提供する。
[1]M2マクロファージの培養上清を含む、骨および/または軟骨再生用の組成物。
[2]骨再生用の組成物である、第1項に記載の組成物。
[3]軟骨再生用の組成物である、第1項に記載の組成物。
[4]骨および軟骨再生用の組成物である、第1項に記載の組成物。
[5]M2マクロファージの培養上清を含む、骨および/または軟骨の破壊を抑制するための組成物。
[6]M2マクロファージの培養上清を含む、損傷関節を回復するための組成物。
[7]M2マクロファージの培養上清を含む、炎症を抑制するための組成物。
[8]M2マクロファージの培養上清を含む、骨および/または軟骨の疾患の処置および/または予防用の組成物。
[9]骨の疾患の処置および/または予防用の組成物である、第8項に記載の組成物。
[10]軟骨の疾患の処置および/または予防用の組成物である、第8項に記載の組成物。
[11]骨および軟骨の疾患の処置および/または予防用の組成物である、第8項に記載の組成物。
[12]骨および/または軟骨の疾患が、関節リウマチ、再発性多発軟骨炎、骨粗鬆症、変形性関節症、骨壊死またはがん骨転移である、第8項に記載の組成物。
[13]骨および/または軟骨の疾患が、関節リウマチ、再発性多発軟骨炎、骨粗鬆症、変形性関節症または骨壊死である、第8項に記載の組成物。
[14]骨および/または軟骨の疾患が変形性関節症である、第8項に記載の組成物。
[15]変形性関節症が、変形性顎関節症、変形性膝関節症、変形性股関節症、変形性足関節症、変形性肩関節症、変形性肘関節症、変形性手関節症、変形性手指関節症または変形性脊椎椎間関節症である、第14項に記載の組成物。
[16]変形性関節症が変形性顎関節症である、第14項に記載の組成物。
[17]M2マクロファージが、骨髄マクロファージ由来M2マクロファージである、第1項~第16項のいずれかに記載の組成物。
[18]M2マクロファージが、末梢血マクロファージ由来M2マクロファージである、第1項~第16項のいずれかに記載の組成物。
[19]M2マクロファージが、自己由来M2マクロファージである、第1項~第18項のいずれかに記載の組成物。
[20]M2マクロファージが、マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することによりM2マクロファージに分化させたものである、第1項~第19項のいずれかに記載の組成物。
[21]歯髄幹細胞が乳歯に由来する、第20項に記載の組成物。
[22]M2マクロファージを含まない、第1項~第21項のいずれかに記載の組成物。
[23]血清を含まない、第1項~第22項のいずれかに記載の組成物。
[24]M2マクロファージを培養し、培養上清を回収することを含む、第1項~第23項のいずれかに記載の組成物の製造方法。
[25]血清を含まない培地中でM2マクロファージを培養する、第24項に記載の製造方法。
[26]マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することによりM2マクロファージに分化させることを含む、第24項または第25項に記載の製造方法。
[27]歯髄幹細胞を培養し、培養上清を回収することを含む、第26項に記載の製造方法。
[28]マクロファージ系細胞、好ましくはマクロファージを歯髄幹細胞の培養上清中で培養することを含む、マクロファージ系細胞をM2マクロファージに分化させる方法。
[29]第28項に記載の方法で得られたM2マクロファージ。
 本明細書で引用するすべての文献は、出典明示により本明細書の一部とする。
 上記の説明は、すべて非限定的なものであり、添付の特許請求の範囲において定義される本発明の範囲から逸脱せずに、変更することができる。さらに、下記の実施例は、すべて非限定的な実施例であり、本発明を説明するためだけに供されるものである。
材料と方法
動物
 すべての動物実験は、徳島大学動物実験委員会の承認(許可番号:T30-119)を受け、徳島大学動物実験指針に準拠して実施された。
SHED-CMの調製
 70-80%コンフルエントの歯髄幹細胞(SHED)をリン酸緩衝生理食塩水(PBS)および無血清DMEMで洗浄し、その後、培養液を無血清DMEMに交換した。培地は5%COの加湿雰囲気下、37℃で48時間培養した後、回収し、440g、4℃で3分間遠心分離を行った。上清をSHED-CMとして以下の実験に使用した。各CMのタンパク質濃度は、無血清DMEMで3μg/mlに統一した。
M2-CMの調製
 8週齢の雌性C57BL/6マウスの大腿骨と脛骨から骨髄細胞を採取し、1×10個/cmの細胞密度で6cm細胞培養ディッシュに播種した。25ng/mlマクロファージコロニー刺激因子(M-CSF、Macrophage colony stimulating factor)と10%ウシ胎児血清(FBS、Fetal Bovine Serum)を添加したDMEM中で37℃、5%CO下で4~7日間培養した。PBSで洗浄し、無血清のDMEMのみ、無血清DMEMにリコンビナントIL-4タンパクを加えたもの、SHED-CMでそれぞれ37℃、5%CO下で24時間培養した。PBSで洗浄後、全ての細胞培養ディッシュに無血清のDMEM加え、37℃、5%CO下で24時間培養した。培地を回収し、1750gで10分間遠心分離し、上清を回収した。SHED-CMで培養したマクロファージから得られた上清をM2-CMとして使用した。無血清DMEMで培養したマクロファージから得られた上清をM0-CMとして使用した。
フローサイトメトリー
 細胞はスクレーパ(ビオラモセルスクレーパー,Cat:1-2248-01,アズワン)で剥がした後、細胞数をカウントした。死細胞は7-AAD(Cat.420403, Biolegend, CA)で10分間染色を行って検出した。細胞はF4/80-FITC(Cat.123107, clone BM8, Biolegend, CA)とCD206-PE(Cat. 12-2061-82, clone MR6F3, Thermo Fisher Scientific, MA)で染色を行った。アイソタイプコントロールとしてFITC Rat IgG2a kappa Isotype Control Antibody(Cat. 400506, RTK2758, Biolegend, CA)とPE Rat IgG1 kappa Isotype Control(Cat.12-4301-82, clone eBRG1, Thermo Fisher Scientific, MA)を使用した。フローサイトメトリーではFACSCanto(BD, NJ)を使用した。forward scatter(FSC-A)と side-scatter(SSC-A)のプロット上でゲーティングし、細胞集団を選択した。さらにSSC-Aと7-AAD(PE-Cy7-A)のプロット上で生細胞のみをゲーティングした。その後、F4/80-FITC(FITC-A)とCD206-PE(PE-A)のプロットを出力した。その際、アイソタイプコントロールで見られる集団を陰性の集団とした。データ解析はAnalysis software for flow cytometry Kaluza(Beckman Coulter, CA)を用いて行った。
機械的に誘導されたマウス変形性顎関節症(TMJOA)モデルおよびCM投与
 Institute of Cancer Research(ICR)の11週齢の雄マウスを株式会社日本エスエルシー(日本、静岡)から購入し、特定の病原体を含まない条件下で、常温(22-24℃)、12時間の明暗サイクルで固定飼育した。マウスは実験中、実験用固形食と水を自由に摂取させ、無作為に1つの対照群と3つの実験群に分けた。実験デザインの概要図を図2に示す。実験群では、マウスTMJOAを強制開口により、3時間/日、10日間連続して、カスタマイズされたスプリングで誘発した。
マイクロコンピュータトモグラフィー(マイクロCT)解析
 すべての実験マウスの下顎を慎重に解剖し、周囲の軟部組織を除去した後、10%ホルマリンで一晩固定した。次に、下顎を70%エタノールに移し、高解像度マイクロCT(SkyScan 1176 scanner, Bruker, USA)と関連解析ソフトウェアで顎関節の解析を行った。スキャン中、すべてのサンプルは軟組織で固定することで移動と脱水を防いだ。画像取得は50kV、200uA下で、9マイクロメーター/pixelの解像度で行った。顎関節の正中後方領域を関心領域(ROI)として決定した。骨破壊の評価には、骨量/体積比(BV/TV)、海綿骨厚さ(Tb.Th)を使用した。
組織学的解析
 10%ホルマリン固定後、顎関節組織ブロックを20%エチレンジアミン四酢酸(EDTA)で3週間脱灰した。その後、標本を脱水し、パラフィンに包埋した。4μm矢状面パラフィン切片を作製し、その後の染色に使用した。標準的な手順に基づく脱パラフィンおよび水和の後、切片は、組織学的評価およびプロテオグリカンの可視化のためにそれぞれヘマトキシリン・エオジン(HE)およびトルイジンブルー(TB)を用いて染色した。軟骨下の骨吸収性破骨細胞活性の評価には、TRAP染色キット(コスモバイオ株式会社、日本)を使用した。
抗コラーゲン抗体関節炎(CAIA)モデルマウスおよびCM投与
 11週齢の雄のInstitute of Cancer Research (ICR) マウスを株式会社日本エスエルシー(日本、静岡)から購入し、病原体を含まない特定の環境で飼育し、12時間の明暗周期で室温(22-24℃)に維持した。マウスは実験中、標準的な固形飼料と水を自由摂取させた。体重約20gのマウスをCAIAモデル(T Kagari, H Doi and T Shimozato. The importance of IL-1β and TNF-α, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 169:1459-1466, 2002参照)の作製に使用した。150μlの抗コラーゲン抗体を腹腔内に投与した。抗体投与の3日後に、100μlのLPSを腹腔内に投与した。清潔ケアを、1日2回、2日間実施した。関節炎スコアに従い、6日目にマウスを群分けし、各ケージに2匹のマウスとし、ケージを2日毎に交換した。群分けの後、処置を開始し、6日目、8日目および10日目に、200μlのPBSまたはM2-CMを各マウスに静脈投与した。
M2マクロファージの遺伝子解析
 SHED-CMまたはリコンビナントIL-4タンパク質を加えた無血清DMEMで誘導したM2マクロファージのRNAを回収し、マイクロアレイを使って網羅的遺伝子解析を実施した。遺伝子発現の統計的な解析によってSHED-CMで誘導したM2マクロファージに有意に強く発現する遺伝子セットを遺伝子オントロジー(GO)解析した。
結果
SHED-CMで誘導されたM2細胞の培養上清は、マウスTMJOAモデルにおける骨および軟骨の損傷を改善する
 マウス骨髄間質細胞からM-CSFで誘導した骨髄マクロファージ(BMM)を、DMEM単独、またはIL-4やSHED-CMとともに培養した。FACS解析の結果、SHED-CM、IL-4およびDMEM処理後、BMMのそれぞれ70%、60%、40%以上がCD206陽性、F4/80陽性M2マクロファージに分化した(図1)。SHED-CMまたはDMEMで処理したBMMのCMを回収し、それぞれM2-CMおよびM0-CMとした。
 マウスTMJOAモデルの実験デザインおよびワークフローの概要を図2に示す。実験群では、特注のバネを用いて3時間/日の強制開口により両顎関節に5日間または10日間の連続した機械的ストレスを与えた。ある実験群では、両顎関節に5日間だけ機械的ストレスを与え(前処理群)、他の実験群では10日間連続して機械的ストレスを与え、6日目から10日目まで毎日尾静脈にM2-CM、M0-CMまたはDMEMを0.5mlずつ注入した。
 マイクロCT画像では、前処理、DMEM、M0-CM群では軟骨下骨吸収が激しく、軟骨表面が荒れていたのに対し、M2-CM群では表面が滑らかになり、軟骨下の骨吸収が減少した(図3)。特に、BV/TVとTb.Th値は、M2-CM群で有意に高かった。また、M2-CM群ではDMEM群およびM0-CM群に比べ、関節直下の骨髄に集積するTRAP陽性破骨細胞数が少ないことが判明した。トルイジンブルー染色により、M2-CM群のプロテオグリカン陽性領域は、DMEM群およびM0-CM群に比べ有意に増加していた(図3)。
M2-CMは軟骨の炎症性サイトカインと軟骨基質破壊酵素の発現を抑制するが、軟骨細胞増殖のマーカーは発現を増強した
 免疫組織化学染色の結果、炎症促進因子IL-1bと軟骨分解酵素MMP13の発現は、DMEM群、M0-CM群ともに増加した。一方、M2-CM処理群では、IL-1bとMMP13の発現が有意に減少した。さらに、軟骨細胞増殖マーカーであるPCNAの発現が、M2-CM群で顕著に増加していることがわかった(図4)。
IL-1bで刺激したマウス初代軟骨細胞において、M2-CMはiNOSとMMP13の発現を抑制し、ColIIとACANの発現を促進した
 IL-1b刺激により、DMEMとM0-CM群では炎症性のiNOSとMMP13の発現が増加したが、M2-CM処理によりそれらは効果的に抑制された(図5)。特に、軟骨基質タンパク質であるColIIとACANの発現は、DMEMやM0-CMではほとんど検出されなかったが、M2-CMによって有意に増加することが明らかとなった(図5)。免疫蛍光染色の結果と一致して、qPCR解析でも、M2-CMはIL-1b刺激マウス初代軟骨細胞におけるiNOSとMMP13mRNAの発現を有意に抑制することが示された(図5)。特に、破骨細胞誘導に必須の因子であるRANKL mRNAの発現も、DMEMやM0-CM群で高値であったが、M2-CM処理によって抑制された(図5)。これらの結果は、M2-CMの直接的な軟骨保護・修復作用を示すものであった。
M2-CMはin vitroで破骨細胞新生を抑制する
 RANKL、MCSFの存在下で骨髄マクロファージを培養し破骨細胞へと分化誘導した。TRAP染色により、M2-CM処理群のTRAP陽性多核巨細胞・成熟破骨細胞の数とサイズが、DMEM群に比べて減少していることが示された(図6)。
M2-CMはマウスCAIAモデルにおける関節炎スコアを改善する
 マウスCAIAモデルの関節炎スコアの変化を図7に示す。抗体投与から6日目にPBSまたはM2-CMの投与を開始した。7日目からM2-CM群で関節炎スコアが低い傾向が見られ、12日目からは有意に低かった。
M2マクロファージの遺伝子解析
 M2マクロファージの遺伝子解析の結果を図8に示す。グラフの縦軸に、GOで定義された遺伝子セットを示す。横軸にSHED-CMで誘導したM2マクロファージ(M2(CM))とリコンビナントIL-4タンパク質で誘導したM2マクロファージ(M2(IL-4))の遺伝子発現差の有意性(p値)を示す。図8上段は、上皮・分泌系細胞のGO、中段は神経関連のGO、下段は血管関連のGOである。一般的に、p<0.01(=-log10(p値)>2)で信頼度が高い差であると評価される。M2(CM)はM2(IL-4)と比較して、上皮の増殖・分化、神経軸索の誘導、神経軸索の伸長、血管再生、神経細胞の分化、神経細胞の新生、血管内細胞の増殖、血管網構築を促進する分子の遺伝子発現が有意に高かった。これらの結果は、M2(CM)はM2(IL-4)よりも組織再生能力が高いM2マクロファージであることを示す。
 本開示は医療の分野で利用し得る。

Claims (13)

  1.  M2マクロファージの培養上清を含む骨および/または軟骨再生用の組成物。
  2.  M2マクロファージが、骨髄マクロファージ由来M2マクロファージである、請求項1に記載の組成物。
  3.  M2マクロファージが、自己由来M2マクロファージである、請求項1または2に記載の組成物。
  4.  M2マクロファージが、マクロファージ系細胞を歯髄幹細胞の培養上清中で培養することによりM2マクロファージに分化させたものである、請求項1~3のいずれかに記載の組成物。
  5.  M2マクロファージを含まない、請求項1~4のいずれかに記載の組成物。
  6.  血清を含まない、請求項1~5のいずれかに記載の組成物。
  7.  M2マクロファージの培養上清を含む、骨および/または軟骨の疾患の処置および/または予防用の組成物。
  8.  骨および/または軟骨の疾患が、関節リウマチ、再発性多発軟骨炎、骨粗鬆症、変形性関節症、骨壊死またはがん骨転移である、請求項7に記載の組成物。
  9.  骨および/または軟骨の疾患が変形性関節症である、請求項7に記載の組成物。
  10.  変形性関節症が変形性顎関節症である、請求項9に記載の組成物。
  11.  M2マクロファージを培養し、培養上清を回収することを含む、請求項1~10のいずれかに記載の組成物の製造方法。
  12.  血清を含まない培地中でM2マクロファージを培養する、請求項11に記載の製造方法。
  13.  マクロファージ系細胞を歯髄幹細胞の培養上清中で培養することによりM2マクロファージに分化させることを含む、請求項11または12に記載の製造方法。
PCT/JP2023/031530 2022-08-31 2023-08-30 骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物 WO2024048652A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138193 2022-08-31
JP2022138193 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048652A1 true WO2024048652A1 (ja) 2024-03-07

Family

ID=90099711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031530 WO2024048652A1 (ja) 2022-08-31 2023-08-30 骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物

Country Status (1)

Country Link
WO (1) WO2024048652A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155335A (ja) * 2018-05-31 2021-10-07 国立大学法人徳島大学 変形性関節症の処置および/または予防方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155335A (ja) * 2018-05-31 2021-10-07 国立大学法人徳島大学 変形性関節症の処置および/または予防方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ISHIKAWA JUN; TAKAHASHI NOBUNORI; MATSUMOTO TAKUYA; YOSHIOKA YUTAKA; YAMAMOTO NORIYUKI; NISHIKAWA MASAYA; HIBI HIDEHARU; ISHIGRO N: "Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis", BONE, PERGAMON PRESS., OXFORD, GB, vol. 83, 19 November 2015 (2015-11-19), GB , pages 210 - 219, XP029385167, ISSN: 8756-3282, DOI: 10.1016/j.bone.2015.11.012 *
JIA XINLIN, MA JUNPING, CHEN XUZHUO, LI WENTAO, ZHOU XIANHAO, LEI BO, ZHAO XIN, MAO YUANQING: "Immunoregulation and anti-metalloproteinase bioactive injectable polysalicylate matrixgel for efficiently treating osteoarthritis", MATERIALS TODAY BIO, vol. 15, 1 June 2022 (2022-06-01), pages 100277, XP093145770, ISSN: 2590-0064, DOI: 10.1016/j.mtbio.2022.100277 *
LI XIAO‐CHUAN, LUO SHAO‐JIAN, FAN WU, ZHOU TIAN‐LI, HUANG CHUN‐MING, WANG MAO‐SHENG: "M2 macrophage‐conditioned medium inhibits intervertebral disc degeneration in a tumor necrosis factor‐α‐rich environment", JOURNAL OF ORTHOPAEDIC RESEARCH, ORTHOPAEDIC RESEARCH SOCIETY, US, vol. 40, no. 11, 1 November 2022 (2022-11-01), US , pages 2488 - 2501, XP093145764, ISSN: 0736-0266, DOI: 10.1002/jor.25292 *
LINZE, X. et al. Conditioned Medium from M2 Macrophages Alleviates Murine Temporomandibular Joint Osteoarthritis, Congress of the Japanese Society for Regenerative Medicine, vol. 22nd, March 2023, p. 73, O-13-3 entire text *
LIU QIULIANG, PIAN KAI, TIAN ZHEN, DUAN HAITAO, WANG QI, ZHANG HUI, SHI LONGYAN, SONG DONGJIAN: "Calcium-binding protein 39 overexpression promotes macrophages from ‘M1’ into ‘M2’ phenotype and improves chondrocyte damage in osteoarthritis by activating the AMP-activated protein kinase/sirtuin 1 axis", BIOENGINEERED, LANDES BIOSCIENCE, US, vol. 13, no. 4, 1 April 2022 (2022-04-01), US , pages 9855 - 9871, XP093145772, ISSN: 2165-5979, DOI: 10.1080/21655979.2022.2061289 *
LUO PING, PENG SISI, YAN YIN, JI PING, XU JIE: "IL-37 inhibits M1-like macrophage activation to ameliorate temporomandibular joint inflammation through the NLRP3 pathway", RHEUMATOLOGY, OXFORD UNIVERSITY PRESS, LONDON, GB, vol. 59, no. 10, 1 October 2020 (2020-10-01), GB , pages 3070 - 3080, XP093145769, ISSN: 1462-0324, DOI: 10.1093/rheumatology/keaa192 *
WAKAYAMA HIROTAKA, HASHIMOTO NAOZUMI, MATSUSHITA YOSHIHIRO, MATSUBARA KOHKI, YAMAMOTO NORIYUKI, HASEGAWA YOSHINORI, UEDA MINORU, Y: "Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice", CYTOTHERAPY, ISIS MEDICAL MEDIA, OXFORD,, GB, vol. 17, no. 8, 29 May 2015 (2015-05-29), GB , pages 1119 - 1129, XP093115713, ISSN: 1465-3249, DOI: 10.1016/j.jcyt.2015.04.009 *

Similar Documents

Publication Publication Date Title
JP5968442B2 (ja) 心筋梗塞の修復再生を誘導する多能性幹細胞
RU2525913C1 (ru) Новый пептид и его применение
Hermeto et al. Effects of intra-articular injection of mesenchymal stem cells associated with platelet-rich plasma in a rabbit model of osteoarthritis
JP6327647B2 (ja) 炎症性疾患の予防又は治療用組成物
EP2913059B1 (en) Novel method for treating spinal cord injury using hmgb1 fragment
US20120207790A1 (en) Immunosuppressing agent comprising mesenchymal stem cell derived from adipose tissue, and use thereof
CN113194978B (zh) 具有间充质干细胞的动员活性的肽
US20200147142A1 (en) Compositions and methods for enhancing the therapeutic potential of stem cells
KR20190073917A (ko) 인터류킨-17 억제제 및 종양괴사인자-알파 억제제를 유효성분으로 포함하는 호중구성 폐 염증질환의 예방 또는 치료용 약학적 조성물
JP2016210730A (ja) 医薬組成物及びその製造方法並びに医薬品
WO2019230859A1 (ja) 変形性関節症の処置および/または予防方法
WO2015110082A1 (zh) 牙源性干细胞和基因修饰的牙源性干细胞的用途
WO2024048652A1 (ja) 骨および/または軟骨再生用の組成物、骨および/または軟骨の疾患の処置および/または予防用の組成物
JP2021080184A (ja) 変形性関節症の予防又は治療剤、及び変形性関節症の予防又は治療用医薬組成物
CN111032677A (zh) 用于抑制骨吸收的肽
JPH05502667A (ja) 血小板減少症の処置方法及びそれに対し有用な医薬組成物
BRPI0717150A2 (pt) Células-tronco mesenquimais e usos para as mesmas
JP7083141B2 (ja) 筋肉量減少又は筋力低下を改善するための組成物及びその利用
WO2018079753A1 (ja) 間葉系幹細胞又は培養上清を含むシノビオリン発現阻害剤
KR102348920B1 (ko) Ptx-3, timp1 및 bdnf를 발현하는 간엽줄기세포를 유효성분으로 포함하는 염증 질환 또는 통증의 예방 또는 치료용 약학 조성물
WO2023027132A1 (ja) 骨代謝細胞調節剤及びその利用
CN116925186B (zh) 一种新生儿肺发育不良的间充质干细胞治疗方法
Nikolska The effects of the transplantation of thymus-derived multipotent stromal cells on the immune system and survival of lethally irradiated mice
Sanghani-Kerai Do stem cells transfected with CXCR4 enhance bone formation in osteoporosis?
JP2021059494A (ja) 神経障害性疼痛の処置および/または予防方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860414

Country of ref document: EP

Kind code of ref document: A1