WO2024048498A1 - シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法 - Google Patents

シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法 Download PDF

Info

Publication number
WO2024048498A1
WO2024048498A1 PCT/JP2023/030896 JP2023030896W WO2024048498A1 WO 2024048498 A1 WO2024048498 A1 WO 2024048498A1 JP 2023030896 W JP2023030896 W JP 2023030896W WO 2024048498 A1 WO2024048498 A1 WO 2024048498A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
etching
etching solution
ions
substrate
Prior art date
Application number
PCT/JP2023/030896
Other languages
English (en)
French (fr)
Inventor
吉貴 清家
幸佑 野呂
孝史郎 沖村
達矢 人見
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2024048498A1 publication Critical patent/WO2024048498A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a silicon etching solution. More specifically, the present invention relates to an etching solution used when etching silicon (Si) to perform microfabrication during the manufacture of semiconductor devices. In particular, the present invention relates to a silicon etching solution that has less etching properties than other constituent materials such as silicon oxide and silicon nitride, and has a high etching selectivity to silicon. The present invention also relates to a substrate processing method using the etching solution. Note that the substrate includes a semiconductor wafer, a silicon substrate, and the like. The present invention also relates to a method of manufacturing a silicon device using the etching solution.
  • Silicon (Si) is applied to various fields due to its excellent mechanical and electrical properties. Utilizing mechanical properties, it is applied to valves, nozzles, printer heads, and semiconductor sensors for detecting various physical quantities such as flow rate, pressure, and acceleration (e.g., diaphragms in semiconductor pressure sensors and cantilevers in semiconductor acceleration sensors), etc. has been done. Further, by utilizing its electrical properties, it is applied to various semiconductor devices such as memory devices and logic devices as a material for parts of metal wiring, gate electrodes, etc.
  • Etching methods include dry etching such as RIE (reactive ion etching) and ALE (atomic layer etching), and wet etching using an acidic or alkaline aqueous solution.
  • dry etching such as RIE (reactive ion etching) and ALE (atomic layer etching)
  • wet etching using an acidic or alkaline aqueous solution Although wet etching is often inferior to dry etching in terms of fineness of processing, it is superior to dry etching in terms of productivity because it can process a wide area at the same time and can process multiple wafers at the same time.
  • wet etching using an alkaline aqueous solution is suitably used in processes where productivity is important, such as when removing the entire unnecessary silicon layer by etching.
  • Patent Document 1 proposes an etching solution in which an alkali compound, an oxidizing agent, and a hydrofluoric acid compound are contained in water, and the pH of the solution is adjusted to 10 or more.
  • Patent Document 2 discloses a treatment liquid for removing ruthenium that contains tetramethylammonium hydroxide, orthoperiodic acid, and water and has a pH of 11 or more.
  • the pH of the ruthenium removal composition described in the Examples of this document is at most 12, and is not intended to be applied to silicon etching.
  • Patent Document 3 discloses a treatment liquid for etching ruthenium that contains orthoperiodic acid and ammonia and has a pH of 8 to 10.
  • Patent Document 4 discloses a semiconductor processing liquid for ruthenium etching that includes tetramethylammonium hydroxide and orthoperiodic acid.
  • Patent Document 5 discloses a semiconductor processing liquid for etching ruthenium that contains orthoperiodic acid.
  • Patent Documents 2 to 5 are all applied to a substrate containing ruthenium, and are intended to remove or etch ruthenium, and are not intended to be applied to silicon etching. Note that normally, in ruthenium etching in a semiconductor manufacturing process, silicon used as a substrate of a semiconductor is not an object to be etched, and it is preferable that a ruthenium etching solution used as a processing solution for semiconductors does not etch silicon.
  • Patent Document 6 discloses a processing liquid for removing TiN, etc., which is a material of a mask used in a semiconductor manufacturing process, which may contain ammonium peroxodisulfate, and has a pH of 2 to 14. has been done.
  • the pH of the processing solution described in the examples of this document is 11.1 at maximum, and is not intended to be applied to silicon etching.
  • silicon oxide (SiO 2 ), silicon nitride (SiN), and the like are used as insulating materials, for example.
  • silicon etching in the manufacturing process of semiconductor devices may require a higher etching selectivity for silicon than for other constituent materials such as silicon oxide and silicon nitride.
  • the hydrofluoric acid compound that the etching solution of Patent Document 1 contains as an essential component generally increases the etching rate of other constituent materials such as silicon oxide and silicon nitride. That is, the etching solution of Patent Document 1 has room for improvement in etching selectivity with respect to other constituent materials such as silicon oxide and silicon nitride.
  • an object of the present invention is to provide an alkaline etching solution that selectively etches the Si surface at high speed by bringing it into contact with a substrate having an Si surface, an SiO 2 surface, or a SiN surface.
  • the present inventors conducted extensive studies to solve the above problems.
  • an etching solution consisting of an alkaline aqueous solution containing a relatively small amount of orthoperiodate ions or peroxodisulfate ions
  • the silicon etching rate can be dramatically increased while suppressing the etching of the SiO2 surface and the SiN surface.
  • the present inventors have discovered that the present invention can be obtained, and have completed the present invention.
  • the present invention includes the following gist.
  • etching of the Si surface can be performed at a high rate while suppressing etching of the SiO 2 surface and the SiN surface. Therefore, even if it is difficult to apply a conventional high-speed etching solution depending on the material to be treated, etc., it is possible to perform high-speed etching using the etching solution of the present invention.
  • etching solution The silicon etching solution of the present invention (hereinafter sometimes referred to as "etching solution") is used for etching silicon (crystalline silicon, amorphous silicon) during the manufacture of semiconductor chips and the like. Etching of silicon can be carried out under acid conditions or under alkaline conditions, but the etching solution of the present invention is an alkaline aqueous solution and is intended for etching under alkaline conditions.
  • the greatest feature of the etching solution of the present invention is that it contains orthoperiodate ions or peroxodisulfate ions at a predetermined concentration in addition to an organic alkali compound.
  • orthoperiodate ions or peroxodisulfate ions By containing orthoperiodate ions or peroxodisulfate ions, the silicon etching rate, particularly the etching rate of the (100) plane and the (110) plane, is improved compared to the case where they are not contained.
  • the etching rate will decrease again.
  • peroxodisulfate ion which is an oxidizing agent
  • the silicon etching rate will decrease. It is presumed that this is because the silicon surface is strongly oxidized and becomes difficult to be etched under alkaline conditions.
  • Organic alkali compound used for preparing the above-mentioned etching solution various primary to tertiary amines or quaternary ammonium hydroxides are preferable, and the pH can be easily adjusted to 12.5 or higher, especially pH 13.0 or higher. and quaternary ammonium hydroxides are preferred.
  • quaternary ammonium hydroxide examples include tetramethylammonium hydroxide (TMAH), ethyltrimethylammonium hydroxide (ETMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethyl- 2-hydroxyethylammonium hydroxide (choline hydroxide), dimethylbis(2-hydroxyethyl)ammonium hydroxide, or methyltris(2-hydroxyethyl)ammonium hydroxide, phenyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, etc. can be mentioned.
  • TMAH tetramethylammonium hydroxide
  • ETMAH ethyltrimethylammonium hydroxide
  • ETMAH ethyltrimethylammonium hydroxide
  • tetraethylammonium hydroxide tetrapropy
  • etching rate tends to increase as the ion size becomes smaller, and among the above, quaternary ammonium hydroxide with a total carbon number of 8 or less is preferable, and quaternary ammonium hydroxide (TMAH) with a total carbon number of 6 or less is preferable. , ETMAH, etc.) are particularly preferred.
  • the etching solution of the present invention is a liquid containing hydroxide ions to be alkaline and its counter ions (quaternary ammonium ions).
  • the entire amount of quaternary ammonium hydroxide dissociates in the etching solution and exists as hydroxide ions and quaternary ammonium ions, which are counter cations. It may be selected and used as appropriate, taking into consideration whether an etching solution containing ions is to be manufactured.
  • quaternary ammonium hydroxide that contains as few metal impurities and insoluble impurities as possible, and if necessary, purify commercially available products by recrystallization, column purification, ion exchange purification, filtration treatment, etc. Can be used.
  • quaternary ammonium hydroxide As the alkali compound, it is preferable to use a high-purity product manufactured and sold for semiconductor manufacturing.
  • high-purity quaternary ammonium hydroxide for semiconductor manufacturing is generally sold as a solution such as an aqueous solution. In producing the silicon etching solution of the present invention, this solution may be mixed as is with a required amount of water and other ingredients.
  • An etching solution according to one embodiment of the present invention contains orthoperiodate ions.
  • the orthoperiodate ion is added as orthoperiodate or a salt thereof, dissociates in the aqueous solution, and is contained in the etching solution as orthoperiodate ion.
  • orthoperiodate ions By including orthoperiodate ions, the etching rate of silicon is significantly improved compared to when they are not included.
  • a salt other than a metal salt is naturally used.
  • Ammonium salts are preferable as orthoperiodates, and specific examples include unsubstituted ammonium salts, tetramethylammonium salts, ethyltrimethylammonium salts, tetraethylammonium salts, tetrapropylammonium salts, tetrabutylammonium salts, and phenyltrimethyl. Quaternary ammonium salts such as ammonium salts and benzyltrimethylammonium salts can be used.
  • orthoperiodate salt even if the orthoperiodate salt is not commercially available, it can be easily obtained by reacting orthoperiodic acid (H 5 IO 6 ) with an alkali compound. Specifically, for example, by adding orthoperiodic acid to an aqueous ammonia solution or an aqueous solution of quaternary ammonium hydroxide, an aqueous ammonium orthoperiodate salt solution or a quaternary ammonium orthoperiodate salt aqueous solution can be produced.
  • the content of orthoperiodate ions to be blended when preparing the etching solution in the present invention is not particularly limited as long as it can be dissolved to form a uniform solution, but the lower limit is preferably 0.05 mmol/L or more, More preferably it is 0.1 mmol/L or more. Moreover, the upper limit is preferably 500 mmol/L or less, more preferably 300 mmol/L or less, still more preferably 100 mmol/L or less, particularly preferably 50 mmol/L or less. Sufficient effects can be obtained even at 10 mmol/L or less.
  • An etching solution according to another embodiment of the present invention contains peroxodisulfate ions at a predetermined concentration.
  • the peroxodisulfate ion is added as a salt of peroxodisulfate, dissociates in the aqueous solution, and is contained in the etching solution as a peroxodisulfate ion.
  • a nonmetallic salt is used as the salt of peroxodisulfuric acid. Specifically, various ammonium salts are more preferred.
  • ammonium salt (NH 4 ) 2 S 2 O 8 ), tetramethylammonium salt (TMA 2 S 2 O 8 ), ethyltrimethylammonium salt (ETMA 2 S 2 O 8 ), and tetraethylammonium salt.
  • TMA 2 S 2 O 8 tetramethylammonium salt
  • EMA 2 S 2 O 8 ethyltrimethylammonium salt
  • tetraethylammonium salt tetrapropylammonium salt
  • TSA 2 S 2 O 8 tetrabutylammonium salt
  • Trimethylammonium salts and the like can be used.
  • Ammonium peroxodisulfate ((NH 4 ) 2 S 2 O 8 ) is particularly preferred from the viewpoint of easy availability of high purity.
  • peroxodisulfuric acid H 2 S 2 O 8
  • peroxodisulfuric acid H 2 S 2 O 8
  • peroxodisulfuric acid is first reacted with an alkali compound outside the system to form a salt before use.
  • the blending ratio of ammonium peroxodisulfate salt actually determines the concentration of peroxodisulfate ions contained in the etching solution.
  • the content of peroxodisulfate ions is set to 0.05 to 65 mmol/L per liter of etching solution. It is preferably 0.1 mmol/L or more, especially 0.2 mmol/L or more, and preferably 40 mmol/L or less, especially 20 mmol/L or less, and more particularly 10 mmol/L or less.
  • the peroxodisulfate ion concentration can be determined by a titration method.
  • the etching solution in the present invention contains water as an essential component. Etching will not proceed without water. Although it depends on the types and amounts of other components, in general, the proportion of water is preferably 30% by mass or more, more preferably 50% by mass or more, even more preferably 60% by mass or more, and 75% by mass. The above is particularly preferable. There is no particular upper limit as long as the other components can be contained in the necessary amounts, but it is usually 99.5% by mass or less, and 99% by mass or less is sufficient. It is preferable to use water of high purity with few impurities. The amount of impurities can be evaluated by the electrical resistivity.
  • the electrical resistivity of water is preferably 0.1 M ⁇ cm or more, more preferably 15 M ⁇ cm or more, and particularly preferably 18 M ⁇ cm or more.
  • Such water with few impurities can be easily produced and obtained as ultrapure water for semiconductor manufacturing.
  • ultrapure water has significantly less impurities that do not affect (less contribute to) electrical resistivity, making it highly suitable.
  • the etching solution of the present invention has a pH of 12.5 or more and is strongly alkaline.
  • the pH is more preferably 13.0 or higher, particularly preferably 13.2 or higher.
  • the stronger the alkalinity the higher the risk of leakage, and the components added to make the liquid alkaline tend to be more harmful and are also relatively expensive. From such a viewpoint, the pH may be 14.0 or less, or may be 13.7 or less.
  • the etching solution of the present invention contains orthoperiodate ions or peroxodisulfate ions, it etches silicon faster than conventional etching solutions even at the same pH. Note that this pH refers to a value measured at 24° C. using a glass electrode method.
  • etching solution has such a pH means that a large amount of hydroxide ions are present in the etching solution.
  • the etching solution of the present invention preferably does not contain metal, and the counter cation must not be Na + or K + . That is, nonmetallic cations such as ammonium ions may be present as countercations in the etching solution.
  • nonmetallic cation examples include unsubstituted ammonium ions, primary to tertiary ammonium cations, and quaternary ammonium cations.
  • the counter ion is preferably an unsubstituted ammonium ion (NH 4 + ) and/or a quaternary ammonium ion.
  • quaternary ammonium ions are particularly preferred from the viewpoint of easy adjustment to high pH.
  • the counter cations present in the etching solution are quaternary ammonium ions, and even if other counter cations are present, the counter cations are unsubstituted ammonium ions. preferable.
  • counter cations are also counter ions for hydroxide ions, orthoperiodate ions, and peroxodisulfate ions, and even when multiple types of counter cations are present in the etching solution, It is usually not possible to unambiguously determine which counter cation each is. Furthermore, if the etching solution contains other anions, they may also be counter ions.
  • the amount of quaternary ammonium hydroxide necessary to make the pH of the etching solution 12.5 or higher is approximately 35 mmol/L or higher, although it depends on the types and contents of other components.
  • the higher the amount, the higher the alkalinity, and the content is preferably 50 mmol/L or more, more preferably 100 mmol/L or more, and particularly preferably 150 mmol/L or more. Further, the content may be 1200 mmol/L or less, 1000 mmol/L or less, and in most cases, sufficient performance can be obtained even with 800 mmol/L or less.
  • the etching solution in the present invention may further contain known components contained in alkaline silicon etching solutions. In this case, even if the component reduces the etching rate of silicon, the etching rate can be improved by including orthoperiodate ions or peroxodisulfate ions as described above.
  • the etching solution in the present invention may contain quaternary ammonium halogen salts (excluding fluoride salts) such as tetramethylammonium chloride, ethyltrimethylammonium iodide, dodecyltrimethylammonium bromide, and decyltrimethylammonium bromide. good.
  • quaternary ammonium halogen salts such as tetramethylammonium chloride, ethyltrimethylammonium iodide, dodecyltrimethylammonium bromide, and decyltrimethylammonium bromide.
  • quaternary ammonium halogen salts such as tetramethylammonium chloride, ethyltrimethylammonium iodide, dodecyltrimethylammonium bromide, and decyltrimethylammonium bromide.
  • the content of counter cations can further increase by the amount derived from these, and an
  • the etching solution of the present invention does not contain any component that promotes etching of silicon dioxide (SiO 2 ) or silicon nitride (SiN) under alkaline conditions.
  • a typical example of such a component is fluoride ion. Therefore, the etching solution in the present invention preferably does not contain fluoride ions.
  • fluorides that can release fluoride ions such as ammonium fluoride and tetramethylammonium fluoride, must not be added, even if the compounds are known to be components of chemical solutions for semiconductor manufacturing.
  • the content of such fluoride ions is preferably less than 100 ppm, more preferably 10 ppm or less.
  • organic alkali compounds orthoperiodic acid or its salts, peroxodisulfate, and other compounds that contain as few metal impurities and insoluble impurities as possible, as necessary.
  • Commercially available products can be purified and used by recrystallization, column purification, ion exchange purification, distillation, sublimation, filtration, etc.
  • quaternary ammonium hydroxide it is preferable to use extremely high-purity ones, which are manufactured and sold for use in semiconductor manufacturing, depending on the type.
  • the processing solution used such as the etching solution
  • contains metal it often has a negative effect on the object to be processed (not limited to the silicon surface to be etched).
  • the etching solution in the present invention does not contain metal. More specifically, it is essential that it does not contain at least a concentration exceeding an impurity level (no metal compounds are actively added). More preferably, the content of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, and Zn is all 1 ppmw or less, and particularly preferably The content of each of the above metals is 1 ppbw or less.
  • the metals listed here are metals that affect the quality of chemical solutions used in semiconductor manufacturing.
  • the method for producing the etching solution of the present invention is not particularly limited, and for example, various organic alkali compounds are used as a component for making it alkaline, orthoperiodic acid or its salt is used as a source of orthoperiodate ions, Alternatively, as a source of peroxodisulfate ions, peroxodisulfate may be mixed with water to a predetermined concentration and dissolved uniformly.
  • the above-mentioned components are mixed to prepare an etching solution.
  • the preparation method is not particularly limited, and any known method may be appropriately selected and carried out.
  • the following methods can be adopted: a method in which a homogeneous solution is obtained by mixing the components at a ratio of
  • the above-mentioned high-purity quaternary ammonium hydroxide for semiconductor manufacturing is sold as a solution such as an aqueous solution with a relatively high concentration. Therefore, in producing the etching solution in the present invention, it is preferable to employ a preparation method that allows the solution to be used as it is, that is, the latter two methods among those described above.
  • a high-purity quaternary ammonium hydroxide aqueous solution may be mixed with pure water, orthoperiodic acid, its salt, or peroxodisulfate. Furthermore, the order of mixing is not particularly limited.
  • the etching solution used in the present invention should be a homogeneous solution in which all the ingredients are dissolved.
  • the number of particles with a diameter of 200 nm or more is preferably 100 particles/mL or less, more preferably 50 particles/mL or less, and particularly preferably 10 particles/mL or less.
  • the filter passing process may be performed multiple times.
  • various known treatments can be performed to obtain the necessary physical properties in the production of the etching solution, such as bubbling with an inert gas such as high-purity nitrogen gas to reduce dissolved oxygen.
  • etching solution For mixing and dissolving (and storage), use containers and equipment whose inner walls are made of or coated with materials that prevent contaminants from eluting into the etching solution, such as polyfluoroethylene or high-purity polypropylene. It is preferable. It is also preferable to clean these containers and devices in advance.
  • silicon (Si) is etched by bringing the above etching solution into contact with a silicon-containing substrate having a Si surface and at least one surface selected from a SiO 2 surface and a SiN surface. conduct.
  • the "surface” is not limited to a flat surface and may have a three-dimensional shape. (Hereinafter, bringing the etching solution into contact with the substrate may be referred to as "etching treatment.")
  • the silicon-containing substrate can be used for various silicon composite semiconductor devices (silicon devices), such as silicon single crystal films (including those made by epitaxial growth), polysilicon films, amorphous silicon films, and other substrates with silicon (Si) surfaces. Examples include substrates at each stage of manufacturing.
  • silicon composite semiconductor devices such as silicon single crystal films (including those made by epitaxial growth), polysilicon films, amorphous silicon films, and other substrates with silicon (Si) surfaces. Examples include substrates at each stage of manufacturing.
  • the silicon-containing substrate to be brought into contact during the etching process has at least one of a SiO 2 (silicon dioxide) surface and a SiN (silicon nitride) surface. are doing. Since the etching solution in the present invention does not substantially etch the SiO 2 surface and the SiN surface, it is useful in etching a substrate having a contact surface made of such materials. Note that the substrate may further include various metal films, ferroelectric films, and the like.
  • Examples of such a silicon-containing substrate include a structure in which silicon and silicon dioxide are alternately laminated, a structure in which a pattern is formed using polysilicon, silicon nitride, or silicon dioxide on a silicon single crystal, and the like. More specifically, in the semiconductor manufacturing flow using the gate last process, when etching a device structure in which a polysilicon dummy gate is surrounded by silicon nitride and silicon dioxide, which are insulating films, silicon This is preferable because it can selectively remove only the following.
  • the method and conditions for bringing the etching solution into contact with the substrate can be appropriately set depending on the structure of the substrate, etc., and are not particularly limited.
  • Commonly used means include a substrate holding step in which the substrate is held in a horizontal position, and an etching solution applied to the main surface of the substrate while rotating the substrate around a vertical axis of rotation that passes through the center of the substrate.
  • There are means (batch type) for bringing the substrate into contact with an etching solution and any means can be suitably used in the substrate processing method of the present invention.
  • the temperature during the etching process may be appropriately determined from a range of 20 to 95°C, taking into consideration the desired etching rate, the shape and surface condition of silicon after etching, productivity, etc. is preferably in the range of 35 to 90°C.
  • the etching process can be performed while degassing under vacuum or reduced pressure or bubbling the etching solution with an inert gas. Such operations can suppress or reduce the rise in dissolved oxygen during etching.
  • post-processing using alkaline silicon etching that is, rinsing process and drying, can be further performed as necessary. These may be carried out according to conventional methods.
  • the substrate processing method of the present invention can be incorporated as an intermediate step in the manufacturing of silicon devices, and various other processes known as silicon device manufacturing methods can be performed before and after the substrate processing method of the present invention. . Furthermore, it is also possible to apply the substrate processing method of the present invention multiple times in manufacturing one type of silicon device.
  • TMAH Tetramethylammonium hydroxide (NH 4 ) 2 S 2 O 8 : Ammonium peroxodisulfate H 2 O 2 : Hydrogen peroxide mCPBA: m-chloroperbenzoic acid TMAClO 4 : Tetramethylammonium perchlorate salt NH 4 NO 3 :Ammonium nitrate (preparation method of etching solution) After diluting a commercially available TMAH aqueous solution (2730 mmol/L) for semiconductor manufacturing with ultrapure water and mixing it so that the chemical solution is uniform, various additives were added and each example and comparison shown in Table 1 was prepared. The composition of each etching solution according to the example was prepared. The additives used in the preparation are as follows.
  • the alkali compound tetramethylammonium hydroxide was blended in an amount such that the final concentration was 260 mmol/L (2.38% by mass).
  • Substrate A 2 cm square single crystal silicon substrate (manufactured by SUMTEC Service) whose front and back surfaces are Si (100) mirror surfaces;
  • Substrate B 2 cm square single crystal silicon substrate (manufactured by SUMTEC Service) whose front and back surfaces are Si (110) mirror surfaces;
  • Substrate C 2 cm square single crystal silicon substrate (manufactured by Enatec) whose front and back surfaces are Si (111) mirror surfaces.
  • the weight was measured in grams to five decimal places using an electronic balance AUW220D manufactured by Shimadzu Corporation.
  • Etching treatment was performed by immersing each Si substrate in 100 mL of an etching solution heated to 70° C. for 10 minutes. Thereafter, it was washed with ultrapure water and then dried.
  • the weight of each substrate after the etching process was measured in the same manner as before the etching process.
  • the etching rate per one side of the substrate was calculated using the following formula (1) using the weight change before and after etching and the density value of 2.329 g/cm 3 of common single crystal silicon.
  • the unit of "etching rate” in the following formula is "nm/min”
  • the unit of "area of the front and back surfaces of the substrate” is "cm 2 "
  • "2.” is a value indicating the density of single crystal silicon.
  • the unit of ⁇ 329'' is ⁇ g/cm 3 ''
  • the unit of ⁇ weight change before and after etching'' is ⁇ g''
  • the unit of ⁇ etching time'' is ⁇ min''.
  • Etching rate Area of front and back surfaces of substrate x 10 7 /2.329/Weight change before and after etching/Etching time
  • a 2 cm x 1 cm silicon substrate on which silicon nitride was epitaxially grown by the low pressure CVD method (LP-CVD method) (silicon nitride film, manufactured by Seiren KST Co., Ltd.) was etched in the same manner as above.
  • the etching rate for silicon nitride (SiN) was calculated.
  • Example 1 The etching rate was evaluated using an aqueous solution with a TMAH concentration of 260 mmol/L and an orthoperiodic acid concentration of 4.4 mmol/L. The results are shown in Table 1.
  • Comparative examples 1-2 An etching solution containing hydrogen peroxide instead of orthoperiodic acid was prepared and evaluated. The composition and evaluation results are shown in Table 1.
  • Comparative example 2 An etching solution containing mCPBA instead of orthoperiodic acid was prepared and evaluated. The composition and evaluation results are shown in Table 1.
  • Comparative examples 4-5 An etching solution containing TMAC1O4 instead of orthoperiodic acid was prepared and evaluated. The composition and evaluation results are shown in Table 1.
  • Comparative example 6 An etching solution containing NH 4 NO 3 instead of orthoperiodic acid was prepared and evaluated. The composition and evaluation results are shown in Table 1.
  • Example 4 The etching rate was evaluated using an aqueous solution with a TMAH concentration of 260 mmol/L and a peroxodisulfate ion concentration of 0.4 mmol/L. The results are shown in Table 1.
  • Example 5 Etching solutions with peroxodisulfate ion concentrations changed to 4.4 mmol/L were prepared and evaluated. The results are shown in Table 1. Compared to Example 4, as the peroxodisulfate ion concentration increased, the etching rate for both the (100) plane and the (110) plane further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Abstract

【課題】 半導体デバイス等の製造時に、二酸化ケイ素、窒化ケイ素等の絶縁膜をエッチングすることなく、一方で、シリコンを高速でウェットエッチングすることのできるシリコンエッチング液を提供する。 【解決手段】 本発明に係るシリコンエッチング液は有機アルカリ化合物、 オルト過ヨウ素酸イオンまたは所定濃度のペルオキソ二硫酸イオン、 および水を含み、 24℃でのpHが12.5以上であることを特徴としている。

Description

シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法
 本発明は、シリコンエッチング液に関する。より詳しくは、半導体デバイスの製造に際して、シリコン(Si)をエッチングして微細加工をする際等に用いられるエッチング液に関する。特に、酸化シリコンや窒化シリコン等といった他の構成材料に多するエッチング性が小さく、シリコンに対する高いエッチング選択比を有するシリコンエッチング液に関する。また、本発明は該エッチング液を用いた基板処理方法に関する。なお、基板には、半導体ウェハ、またはシリコン基板などが含まれる。また、本発明は該エッチング液を用いたシリコンデバイスの製造方法に関する。
 シリコン(Si)は、その優れた機械特性、および電気特性から様々な分野に応用されている。機械特性を利用して、バルブ;ノズル;プリンタ用ヘッド;並びに流量、圧力及び加速度等の各種物理量を検知するための半導体センサ(例えば半導体圧力センサのダイヤフラムや半導体加速度センサのカンチレバーなど)等に応用されている。また、電気特性を利用して、金属配線の一部、ゲート電極等の材料としてメモリデバイスやロジックデバイス等といった種々の半導体デバイスに応用されている。
 半導体デバイスの製造におけるシリコンの加工は、主にエッチング処理により行われる。エッチング方法としてはRIE(反応性イオンエッチング)やALE(原子層エッチング)等のドライエッチングや、酸性水溶液またはアルカリ性水溶液によるウェットエッチングがある。ウェットエッチングは、加工の微細性の点ではドライエッチングには劣る場合が多いものの、同時に加工できる面積が広く、また同時に複数枚のウェハを処理できるため生産性の点ではドライエッチングに優っており、中でもアルカリ性水溶液によるウェットエッチングは、不要なシリコン層全体をエッチングにより除去する場合等、生産性が重視されるプロセスにおいて好適に用いられている。
 生産性が高い、すなわちシリコンを高速で除去できるエッチング液はいくつか提案されている。例えば、特許文献1には、アルカリ化合物と酸化剤とフッ酸化合物とを水中に含有させ、そのpHを10以上に調液したエッチング液が提案されている。
 特許文献2には、水酸化テトラメチルアンモニウム、オルト過ヨウ素酸および水を含有し、pHが11以上のルテニウム除去用の処理液が開示されている。本文献の実施例に記載のルテニウム除去組成物のpHは最大でも12であり、またシリコンエッチングに適用することは想定されていない。
 特許文献3には、オルト過ヨウ素酸とアンモニアとを含み、pHが8~10のルテニウムをエッチングするための処理液液が開示されている。
 特許文献4には、水酸化テトラメチルアンモニウムと、オルト過ヨウ素酸とを含む、ルテニウムエッチング用の半導体用処理液が開示されている。
 特許文献5には、オルト過ヨウ素酸を含み、ルテニウムエッチング用の半導体用処理液が開示されている。
 特許文献2~5の処理液は、いずれもルテニウムを含む基板に適用され、ルテニウムを除去あるいはエッチングすることを目的とし、シリコンエッチングに適用することは想定されていない。なお、通常、半導体製造工程におけるルテニウムエッチングでは、半導体の基板として用いられるシリコンはエッチング非対象物であり、半導体用処理液としてのルテニウムエッチング液は、シリコンをエッチングしない方が望ましい。
 特許文献6には、半導体製造工程で使用されるマスクの材料であるTiN等を除去するための処理液であり、ペルオキソ二硫酸アンモニウムを含んでいてもよく、pHが2~14の処理液が開示されている。本文献の実施例に記載の処理液のpHは最大でも11.1であり、またシリコンエッチングに適用することは想定されていない。
特開2013-135081号公報 国際公開第2016/068183号パンフレット 特開2021-90040号公報 特開2021-184454号公報 国際公開第2021/172397号パンフレット 米国特許出願公開第2015/0104952号明細書
 各種の半導体デバイスでは、シリコンの他に、例えば絶縁材料として酸化シリコン(SiO)や窒化シリコン(SiN)等が用いられている。このため、半導体デバイスの製造工程におけるシリコンエッチング加工では、酸化シリコンや窒化シリコン等といった他の構成材料に比べてシリコンに対する高いエッチング選択比が必要とされる場合がある。特許文献1のエッチング液が必須成分として含有しているフッ酸化合物は、一般に、酸化シリコンや窒化シリコン等といった他の構成材料に対するエッチング速度を上昇させる。すなわち、特許文献1のエッチング液は、酸化シリコンや窒化シリコン等といった他の構成材料に対するエッチング選択性という点で改善の余地があった。
 したがって、本発明の目的は、Si面と、SiO面やSiN面を有する基板に接触させて、上記Si面を選択的に且つ高速でエッチングするアルカリ性エッチング液を提供することにある。
 本発明者等は、上記課題を解決するため、鋭意検討を行った。そして、比較的少量のオルト過ヨウ素酸イオンまたはペルオキソ二硫酸イオンを含むアルカリ性水溶液からなるエッチング液を用いることで、SiO面やSiN面のエッチングは抑制しつつシリコンエッチング速度を飛躍的を上昇させ得ることを見出し、本発明を完成するに至った。
 即ち本発明は、以下の要旨を含む。
(1) 有機アルカリ化合物、
 オルト過ヨウ素酸イオン、
 および水を含み、
 24℃でのpHが12.5以上であるシリコンエッチング液。
(2) 有機アルカリ化合物、
 ペルオキソ二硫酸イオン、
 および水を含み、
 24℃でのpHが12.5以上であり、
 ペルオキソ二硫酸イオンの濃度が0.05~65mmol/Lであるシリコンエッチング液。
(3) 有機アルカリ化合物が、水酸化第四級アンモニウムである(1)に記載シリコンエッチング液。
(4) 有機アルカリ化合物が、水酸化第四級アンモニウムである(2)に記載シリコンエッチング液。
(5) フッ化物イオンの含有量が100ppm未満である、(1)に記載シリコンエッチング液。
(6) フッ化物イオンの含有量が100ppm未満である、(2)に記載シリコンエッチング液。
(7) (1)~(6)の何れかに記載のシリコンエッチング液を、Si面と、SiO面およびSiN面から選ばれる少なくともいずれかの面とを有するシリコン含有基板に接触させて、Si面を選択的にエッチングする工程を含んでなるシリコン含有基板の処理方法。
(8) (7)に記載の基板の処理方法を工程中に含む、シリコンデバイスの製造方法。
 本発明によれば、従来から汎用されているアルカリ性水溶液に比べ、SiO面やSiN面のエッチングは抑制しつつ、Si面のエッチングを高い速度で行うことができる。そのため、処理対象の材質などにより、従来からある高速エッチング液を適用しにくい場合などでも、本発明のエッチング液を用いれば高速でエッチングすることが可能である。
 (エッチング液)
 本発明のシリコンエッチング液(以下、「エッチング液」と記すことがある)は、半導体チップの製造等に際してシリコン(結晶性シリコン、アモルファスシリコン)のエッチングに用いるものである。シリコンのエッチングは酸条件で行うものと、アルカリ条件で行うものがあるが、本発明のエッチング液はアルカリ性水溶液であり、アルカリ条件でエッチングするためのものである。
 本発明のエッチング液の最大の特徴は、有機アルカリ化合物に加え、オルト過ヨウ素酸イオンまたは所定濃度のペルオキソ二硫酸イオンを含む点にある。オルト過ヨウ素酸イオンまたはペルオキソ二硫酸イオンを含有することにより、含有しない場合に比べてシリコンエッチング速度、特に(100)面および(110)面のエッチング速度が向上する。一方で、含有量が多すぎても再度エッチング速度が低下してしまう。特に、酸化剤であるペルオキソ二硫酸イオンが多すぎると、シリコンエッチング速度が低下する。これは、シリコン表面が強く酸化されてしまい、アルカリ条件下でエッチングされ難くなってしまうためであると推測される。
 (有機アルカリ化合物)
 上記エッチング液の調製に用いる有機アルカリ化合物としては、第一級ないし第三級の各種アミン類あるいは水酸化第四級アンモニウム類が好ましく、pHを12.5以上、特にpH13.0以上としやすい点で、水酸化第四級アンモニウム類が好ましい。
 水酸化第四級アンモニウムを具体的に例示すると、テトラメチルアンモニウムハイドロオキサイド(TMAH)、エチルトリメチルアンモニウムハイドロオキサイド(ETMAH)、テトラエチルアンモニウムハイドロオキサイド、テトラプロピルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、トリメチル-2-ヒドロキシエチルアンモニウムハイドロオキサイド(水酸化コリン)、ジメチルビス(2-ヒドロキシエチル)アンモニウムハイドロオキサイド、またはメチルトリス(2-ヒドロキシエチル)アンモニウムハイドロオキサイド、フェニルトリメチルアンモニウムハイドロオキサイド、ベンジルトリメチルアンモニウムハイドロキサイド等を挙げることができる。
 イオンサイズが小さいほどエッチング速度が上がる傾向にあり、上記のなかでも総炭素数が8以下の水酸化第四級アンモニウムが好ましく、さらには総炭素数が6以下の水酸化第四級アンモニウム(TMAH、ETMAH等)が特に好ましい。
 なおエッチング液中で、これら水酸化第四級アンモニウムは、エッチング液中で解離して水酸化物イオンと第四級アンモニウムイオンとして存在していることが通常である。換言すれば本発明のエッチング液は、アルカリ性であるための水酸化物イオンと、そのカウンターイオン(第四級アンモニウムイオン)とを含有する液体である。
 水酸化第四級アンモニウムは、全量がエッチング液中で解離して水酸化物イオンと、カウンターカチオンである第四級アンモニウムイオンとして存在していることが通常であるから、どの程度のサイズのカウンターイオンを含んだエッチング液を製造するのかを考慮して、適宜選択して使用すればよい。
 水酸化第四級アンモニウムは、金属不純物や不溶性の不純物が可能な限り少ないものを用いることが好ましく、必要に応じて市販品を再結晶、カラム精製、イオン交換精製、濾過処理等により精製して使用できる。アルカリ化合物として水酸化第4級アンモニウムを採用する場合、半導体製造用として製造・販売されている高純度品を用いることが好ましい。なお半導体製造用の高純度水酸化第四級アンモニウムは水溶液などの溶液として販売されているのが一般的である。本発明のシリコンエッチング液の製造にあたっては、この溶液をそのまま必要な量の水や他の配合成分と混合すればよい。
 (オルト過ヨウ素酸イオン)
 本発明の一実施態様に係るエッチング液は、オルト過ヨウ素酸イオンを含む。オルト過ヨウ素酸イオンは、オルト過ヨウ素酸又はその塩として添加され、水溶液中で解離しオルト過ヨウ素酸イオンとしてエッチング液中に含まれる。オルト過ヨウ素酸イオンを含むことで、シリコンのエッチング速度が、含まない場合に比べて大幅に向上する。なおオルト過ヨウ素酸塩を配合する場合には、当然に金属塩ではない塩を用いる。
 オルト過ヨウ素酸塩としてはアンモニウム塩が好ましく、具体的に例示すると、無置換アンモニウム塩や、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラブチルアンモニウム塩、フェニルトリメチルアンモニウム塩、ベンジルトリメチルアンモニウム塩等の第四級アンモニウム塩を使用することができる。
 なお市販されていないオルト過ヨウ素酸塩であっても、オルト過ヨウ素酸(HIO)とアルカリ化合物とを反応させれば容易に得られる。具体的には、例えばアンモニア水溶液又は水酸化第四級アンモニウムの水溶液に、オルト過ヨウ素酸を加えることで、オルト過ヨウ素酸アンモニウム塩水溶液やオルト過ヨウ素酸第四級アンモニウム塩水溶液を製造できる。
 本発明におけるエッチング液を調製するに際して配合するオルト過ヨウ素酸イオンの含有量は、溶解して均一な溶液を形成できる範囲であれば特に限定されないが、下限は好ましくは0.05mmol/L以上、より好ましくは0.1mmol/L以上である。また上限は、好ましくは500mmol/L以下であり、より好ましくは300mmol/L以下であり、さらに好ましくは100mmol/L以下であり、特に好ましくは50mmol/L以下である。10mmol/L以下であっても十分な効果が得られる。
 (ペルオキソ二硫酸イオン)
 本発明の他の実施態様に係るエッチング液は、所定濃度のペルオキソ二硫酸イオンを含む。ペルオキソ二硫酸イオンは、ペルオキソ二硫酸の塩として添加され、水溶液中で解離しペルオキソ二硫酸イオンとしてエッチング液中に含まれる。ペルオキソ二硫酸の塩としては非金属塩を用いる。具体的には各種アンモニウム塩がより好ましい。より具体的に例示すると、アンモニウム塩((NH)、テトラメチルアンモニウム塩(TMA)、エチルトリメチルアンモニウム塩(ETMA)、テトラエチルアンモニウム塩(TEA)、テトラプロピルアンモニウム塩(TPA)、テトラブチルアンモニウム塩(TBA)、トリメチル-2-ヒドロキシエチルアンモニウム塩、フェニルトリメチルアンモニウム塩、ベンジルトリメチルアンモニウム塩等を使用することができる。高純度のものの入手のしやすさの点で、特にペルオキソ二硫酸アンモニウム((NH)であることが好ましい。
 なおペルオキソ二硫酸(H)も使用し得るが、前記アルカリ化合物と中和反応を起こしてしまいpHの調整が難しくなる傾向が高いためあまり好ましくない。換言すれば、ペルオキソ二硫酸は、系外で先にアルカリ化合物と反応させて塩としてから用いる方が好ましい。
 ペルオキソ二硫酸アンモニウム塩の配合割合が、事実上、エッチング液に含まれるペルオキソ二硫酸イオンの濃度を決定する。前述したように、酸化剤であるペルオキソ二硫酸イオンが多すぎると、シリコン表面が強く酸化されてしまい、アルカリ条件下でエッチングされ難くなってしまうことがある。したがってペルオキソ二硫酸イオンの含有量は、エッチング液1Lあたり0.05~65mmol/Lとする。好ましくは0.1mmol/L以上、特に0.2mmol/L以上であり、また好ましくは40mmol/L以下、特に20mmol/L以下、より特に10mmol/L以下である。なおペルオキソ二硫酸イオン濃度は、滴定法により把握できる。
 (水)
 本発明におけるエッチング液は水を必須成分とする。水がないとエッチングが進まない。他の成分の種類や量にもよるが、一般的には、水の割合は30質量%以上が好ましく、50質量%以上であることがより好ましく、60質量%以上がさらに好ましく、75質量%以上が特に好ましい。また他の成分を必要量含有できる限り上限は特に定められないが、通常は99.5質量%以下でよく、99質量%以下であれば十分である。水は不純物が少ない高純度のものを使用することが好ましい。不純物の多寡は電気抵抗率で評価でき、具体的には、電気抵抗率が0.1MΩ・cm以上であることが好ましく、15MΩ・cm以上の水がさらに好ましく、18MΩ・cm以上が特に好ましい。このような不純物の少ない水は、半導体製造用の超純水として容易に製造・入手できる。さらに超純水であれば、電気抵抗率に影響を与えない(寄与が少ない)不純物も著しく少なく、適性が高い。
 (エッチング液のpH)
 本発明のエッチング液では、アルカリ濃度が高いほどエッチング速度が速くなる傾向にある。このような観点から本発明のエッチング液はpHが12.5以上と強いアルカリ性をもつ。より好ましくはpHが13.0以上、特に好ましくはpH13.2以上である。他方、アルカリ性が強いほど漏洩などを生じた際の危険性が高く、また液性をアルカリ性とするために配合する成分は有害性が高い傾向にあり、さらには比較的高価でもある。このような観点から、pHは14.0以下であってよく、pH13.7以下でもよい。本発明のエッチング液はオルト過ヨウ素酸イオンまたはペルオキソ二硫酸イオンを含有するため、同等のpHであっても従来のエッチング液よりはシリコンのエッチング速度が速い。なおこのpHは、ガラス電極法により24℃で測定した値を指す。
 エッチング液がこのようなpHであるということは、エッチング液中には多量の水酸化物イオンが存在するということを意味する。
 そして当然、当該水酸化物イオン、前記オルト過ヨウ素酸イオンおよびペルオキソ二硫酸イオンに対するカウンターカチオンが存在する。ここで、本発明のエッチング液は金属を含まないことが好ましく、カウンターカチオンがNaやKであってはならない。即ち、エッチング液中にカウンターカチオンとして存在していてよいのは、アンモニウムイオン等の非金属カチオンである。
 当該非金属カチオンとしては、無置換のアンモニウムイオン、第一級ないし第三級のアンモニウムカチオン、あるいは第四級アンモニウムカチオン等が挙げられる。本発明のエッチング液を調製する際に高純度の原料を入手し易いという観点からは、当該カウンターイオンは無置換のアンモニウムイオン(NH )および/または第四級アンモニウムイオンであることが好ましく、高いpHに調整し易いという観点からは第四級アンモニウムイオンが特に好ましい。これらを考慮すると、エッチング液中に存在するカウンターカチオンの一部又は全部が第四級アンモニウムイオンであり、他のカウンターカチオンが存在する場合でも、当該カウンターカチオンは無置換のアンモニウムイオンであることが好ましい。
 なお当然のことながら、このようなカウンターカチオンは、水酸化物イオン、オルト過ヨウ素酸イオンおよびペルオキソ二硫酸イオンにとってのカウンターイオンでもあり、エッチング液中に複数種のカウンターカチオンが存在する場合でも、夫々がどちらのカウンターカチオンであるかを一義的に決定することは通常はできない。さらにまたエッチング液が他の陰イオンを含む場合には、そのカウンターイオンでもあり得る。
 エッチング液のpHを12.5以上にするのに必要な水酸化第四級アンモニウムの量は、他の成分の種類や含有量にもよるが、概ね35mmol/L以上である。多い方がアルカリ性が高くなり、50mmol/L以上含有することが好ましく、100mmol/L以上がより好ましく、150mmol/L以上が特に好ましくい。また含有量は1200mmol/L以下でよく、1000mmol/L以下でもよく、多くは800mmol/L以下でも十分な性能を得ることができる。
 なおエッチング液中の有機アルカリ化合物の含有量を確認したい場合、その濃度が薄い場合にはpHからも計算できるが、濃厚である場合は誤差が大きくなる。従って、カウンターカチオンである第四級アンモニウムイオン等の含有量をイオンクロマトグラフィーなどにより測定し、そこから算出する方が正確性が高い。
 (その他の成分)
 本発明におけるエッチング液には、アルカリ性のシリコンエッチング液に含まれる公知の成分がさらに含有されていてもよい。この場合、シリコンのエッチング速度を低下させるような成分であっても、上記のとおりオルト過ヨウ素酸イオンまたはペルオキソ二硫酸イオンを含有させることでエッチング速度を向上させることができる。
 例えば本発明におけるエッチング液には、テトラメチルアンモニウムクロライド、エチルトリメチルアンモニウムアイオダイド、ドデシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド等の第4級アンモニウムのハロゲン塩(フッ化物塩を除く)を配合してもよい。なお、このようなイオン性の化合物を配合した場合、カウンターカチオンの含有量は、これらに由来する分だけさらに増え得るし、水酸化物イオン、オルト過ヨウ素酸イオンおよびペルオキソ二硫酸イオン以外の陰イオンも含有される。
 他方、半導体チップの製造においてシリコンをエッチングする際には、二酸化ケイ素部分(面)や窒化ケイ素部分(面)はエッチングしたくない場合が多い。従って、本発明のエッチング液には、アルカリ性条件下で二酸化ケイ素(SiO)や窒化ケイ素(SiN)のエッチングを促進するような成分は含まれていないことが好ましい。このような成分の代表的なものとしてはフッ化物イオンがある。したがって、本発明におけるエッチング液はフッ化物イオンを含まないことが好ましい。そのため半導体製造用薬液の成分と知られている化合物であっても、フッ化アンモニウム、テトラメチルアンモニウムフルオリド等のフッ化物イオンを放出しうるフッ化物は配合してはならない。PF塩、BF塩等も同じである。かかるフッ化物イオンの含有量は、100ppm未満であることが好ましく、10ppm以下であることがさらに好ましい。
 有機アルカリ化合物およびオルト過ヨウ素酸又はその塩、ペルオキソ二硫酸塩、その他配合される化合物は、前記したような金属不純物や不溶性の不純物が可能な限り少ないものを用いることが好ましく、必要に応じて市販品を再結晶、カラム精製、イオン交換精製、蒸留、昇華、濾過処理等により精製して使用できる。有機アルカリ化合物として水酸化第4級アンモニウムを採用する場合、その種類によっては半導体製造用として極めて高純度なものが製造・販売されており、そのようなものを用いることが好ましい。
 シリコンデバイスを含む各種半導体の製造において、使用するエッチング液などの処理液が金属を含んでいると、それが被処理体(エッチング対象のシリコン面に限らない)に悪影響を与える場合が多い。
 そのため本発明におけるエッチング液は、金属を含んでいない。より具体的には、少なくとも不純物レベルを超える濃度で含んでいない(金属化合物を積極的に添加していない)ことが必須である。さらに好ましくは、Ag、Al、Ba、Ca、Cd、Co、Cr、Cu、Fe、K、Li、Mg、Mn、Na、Ni、Pb、Znの含有量がいずれも1ppmw以下であり、特に好ましくは上記各金属の含有量がいずれも1ppbw以下である。なおここに列記した各金属は、半導体製造に用いる薬液において、品質に影響を与える金属である。
 (エッチング液の製造方法)
 本発明のエッチング液の製造方法は特に限定されるものではなく、例えば、アルカリ性とするための成分として各種有機アルカリ化合物を、オルト過ヨウ素酸イオンの供給源となるオルト過ヨウ素酸又はその塩、あるいはペルオキソ二硫酸イオンの供給源としてはペルオキソ二硫酸塩を所定の濃度となるように水と混合、均一になるように溶解させればよい。
 本発明においては、上記各成分を混合し、エッチング液を調製する。調製の方法は特に限定されず、公知の方法を適宜選択して実施すればよい。
 例えば、配合する各成分の純品を所定量秤り取り、水と混合、均一になるまで攪拌する方法に限らず、配合成分の一部又は全部を濃厚水溶液として準備し、これらと水を所定の割合で混合し均一溶液を得る方法、先に全ての配合成分が含まれる濃厚水溶液を調整し、これを水で希釈する方法などが採用できる。
 前記した半導体製造用の高純度水酸化第4級アンモニウムは水溶液などの溶液として比較的高濃度のものが販売されている。従って本発明におけるエッチング液の製造にあたっては、この溶液をそのまま利用できる調製方法、即ち上記したなかでも後者2つの方法を採用することが好ましい。具体的には、高純度水酸化第4級アンモニウム水溶液を、純水やオルト過ヨウ素酸又はその塩あるいはペルオキソ二硫酸塩と混合すればよい。また混合の順序も特に限定されない。
 また本発明におけるエッチング液は、配合される全ての成分が溶解している均一な溶液であるべきである。さらに、エッチング時の汚染を防ぐという意味で200nm以上のパーティクルが100個/mL以下であることが好ましく、50個/mL以下であることがより好ましく、10個/以下であることが特に好ましい。
 このような観点から、エッチング液の調製においては、各成分を混合溶解させたのち、数nm~数十nmのフィルターを通し、パーティクルを除去することも好ましい。必要に応じ、フィルター通過処理は複数回行ってもよい。
 さらに高純度窒素ガス等の不活性ガスでのバブリングにより溶存酸素を減らすなど、その他、エッチング液の製造において、必要な物性を得るために行われる公知の種々の処理を施すことができる。
 混合と溶解(及び保存)にあたっては、使用する容器および装置の内壁としてポリフルオロエチレンや高純度ポリプロピレンなど、エッチング液中に汚染物質が溶出し難い材料で形成ないしはコーティングなどされた容器や装置を用いることが好ましい。これら容器や装置は、予め洗浄しておくことも好適である。
 (基板処理方法)
 本発明の基板処理方法においては、上記のエッチング液を、Si面と、SiO面およびSiN面から選ばれる少なくともいずれかの面とを有するシリコン含有基板に接触させてシリコン(Si)のエッチングを行う。なお当該「面」は、平面に限らず三次元的な形状をもっていてよい。(以下、エッチング液と基板とを接触させることを、「エッチング処理」という場合がある。)
 当該シリコン含有基板は、シリコン単結晶膜(エピタキシャル成長によって作られたものを含む)、ポリシリコン膜およびアモルファスシリコン膜等のシリコン(Si)面を有する基板など、各種シリコン複合半導体デバイス(シリコンデバイス)の製造時の各段階における基板を挙げることができる。
 本発明の基板処理方法において、エッチング処理に際して接触させる対象となるシリコン含有基板には上記Si面に加え、SiO(二酸化ケイ素)面とSiN(窒化ケイ素)面との少なくともいずれかの面が存在している。本発明におけるエッチング液はSiO面およびSiN面を実質的にエッチングしないため、このような材質の接触面を有する基板のエッチング処理において有用である。なお当該基板には、さらに各種金属膜や強誘電体膜なども含まれていてもよい。
 このようなシリコン含有基板としては例えば、シリコンおよび二酸化ケイ素を交互に積層したものや、シリコン単結晶上にポリシリコンや窒化ケイ素、二酸化ケイ素を使ってパターン形成された構造体などが挙げられる。より具体的には、ゲートラストプロセスによる半導体製造フローにおいて、ポリシリコンのダミーゲートが絶縁膜である窒化ケイ素および二酸化ケイ素で囲まれた構造を設けたデバイス構造をエッチング対象とした際には、シリコンのみを選択的に除去できるため好適である。
 本発明の基板処理方法において、エッチング液を基板に接触させる方法や条件は、基板の構造等に応じて適宜設定でき、特に限定されない。一般的に用いられる手段として、基板を水平姿勢に保持する基板保持工程と、当該基板の中央部を通る、鉛直な回転軸線まわりに前記基板を回転させながら、前記基板の主面にエッチング液を供給して前記基板とエッチング液とを接触させる手段(枚葉式)や、複数の基板を直立姿勢で保持する基板保持工程と、処理槽に貯留されたエッチング液に前記基板を直立姿勢で浸漬することで前記基板とエッチング液とを接触させる手段(バッチ式)等があり、本発明の基板処理方法ではいずれの手段も好適に用いることができる。
 本発明の基板処理方法において、エッチング処理の際の温度は、所望のエッチング速度、エッチング後のシリコンの形状や表面状態、生産性などを考慮して20~95℃の範囲から適宜決定すればよいが、35~90℃の範囲とするのが好適である。
 本発明の基板処理方法においては、真空下または減圧下での脱気または不活性ガスによるエッチング液のバブリングを行いながらエッチング処理を行うことができる。このような操作によりエッチング処理中の溶存酸素の上昇を抑え、あるいは低減できる。
 本発明の基板処理方法においては、上記のようにしてエッチング処理を行った後、さらに必要に応じ、アルカリ性のシリコンエッチングで行われる後処理、即ち、リンス処理や乾燥を行うことができる。これらは常法に従って行えばよい。
 本発明の基板処理方法は、シリコンデバイスの製造における途中の工程として組み込むことができ、本発明の基板処理方法の前後に、シリコンデバイスの製造方法として知られる他の様々な処理を行うことができる。さらにまた、1種のシリコンデバイスの製造において、本発明の基板処理方法を複数回適用することも可能である。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例、比較例での実験方法/評価方法は以下の通りである。
 (略号)
 用いた化合物の略号は以下の通りである。
  TMAH:水酸化テトラメチルアンモニウム
  (NH:ペルオキソ二硫酸アンモニウム
  H:過酸化水素
  mCPBA:m-クロロ過安息香酸
  TMAClO:過塩素酸テトラメチルアンモニウム塩
  NHNO:硝酸アンモニウム
 (エッチング液の調製方法)
 半導体製造用として市販されているTMAH水溶液(2730mmol/L)を超純水で希釈して薬液が均一になるように混合した後、各種添加剤を入れて、表1に示す各実施例及び比較例に係る各エッチング液の組成となるように調製した。なお、調製に用いた各添加剤は以下のとおりである。
 <調製に用いた各添加剤>
  オルト過ヨウ素酸:富士フイルム和光純薬株式会社製
  (NH:硫酸アンモニウム(富士フイルム和光純薬株式会社製)
  H水溶液:10300mmol/L水溶液
  mCPBA: m-クロロ過安息香酸 (水分含有)(富士フイルム和光純薬株式会社製)
  TMAClO:Tetramethylammonium Perchlorate(東京化成工業株式会社製)
  NHNO:硝酸アンモニウム(富士フイルム和光純薬株式会社製)
 なお実施例、比較例のいずれもアルカリ化合物である水酸化テトラメチルアンモニウムの最終濃度が260mmol/L(2.38質量%)となる量で配合している。
 (エッチング液のpHの測定)
 堀場製作所製卓上pHメータF-73、及び堀場製作所製強アルカリ試料用pH電極9632-10Dを用いて24℃の温度条件下で測定した。
 (シリコンエッチング速度(単位:nm/min)の測定)
 Si(100)面、Si(110)面、Si(111)面の各結晶面に対するエッチング速度を求めるため下記3種のSi基板を用意した。
 基板A:基板の表裏面がSi(100)面の鏡面である2cm角単結晶シリコン基板(SUMTECサービス製)、
 基板B:基板の表裏面がSi(110)面の鏡面である2cm角単結晶シリコン基板(SUMTECサービス製)、
 基板C:基板の表裏面がSi(111)面の鏡面である2cm角単結晶シリコン基板(エナテック製)
 それぞれエッチング処理前に島津製作所製電子天秤AUW220Dを用いてg単位で小数点5桁まで重量を測定した。
 70℃に加温したエッチング液100mLに各Si基板を10分間浸してエッチング処理を行った。その後、超純水で洗浄した後、乾燥させた。
 上記エッチング処理後の各基板をエッチング処理前と同様に重量測定した。エッチング前後の重量変化と、一般的な単結晶シリコンの密度の値である2.329g/cmを用いて、下記式(1)により基板片面当たりのエッチング速度を算出した。なお、下記式における「エッチング速度」の単位は「nm/min」であり、「基板表裏面の面積」の単位は「cm」であり、単結晶シリコンの密度を示す値である「2.329」の単位は「g/cm」であり、「エッチング前後の重量変化」の単位は「g」であり、「エッチング時間」の単位は「min」である。
 エッチング速度=基板表裏面の面積×10/2.329/エッチング前後の重量変化/エッチング時間
 (SiNおよびSiO2に対するエッチング速度)
 70℃に加熱したシリコンエッチング液100mLを用意し、そこへ2cm×1cmサイズの、シリコン基板上に酸化シリコン(SiO)をエピタキシャル成長させた基板(酸化シリコン膜、株式会社エナテック製)を浸漬し、上記と同様にエッチングした。酸化シリコンエッチング速度(RSiO)は、各基板のエッチング前とエッチング後の膜厚を分光エリプソメーターで測定し、処理前後の膜厚差から酸化シリコン膜のエッチング量を求め、エッチング時間で除することにより酸化シリコン(SiO)に対するエッチング速度を求めた。
 同様にして、2cm×1cmサイズの、シリコン基板上に減圧CVD法(LP-CVD法)により窒化シリコンをエピタキシャル成長させた基板(窒化シリコン膜、セーレンKST株式会社製)を上記と同様にエッチングし、窒化シリコン(SiN)に対するエッチング速度を算出した。
 参考例
 260mmol/LのTMAH水溶液を用いて、各基板に対するエッチング速度を評価した。結果を表1に示す。
 実施例1
 TMAH濃度260mmol/L、オルト過ヨウ素酸濃度4.4mmol/Lの水溶液を用いてエッチング速度を評価した。結果を表1に示す。
 実施例2~3
 オルト過ヨウ素酸の濃度を表1に示すように変化させたエッチング液を調製し、評価を行った。結果を合わせて表1に示す。
 比較例1~2
 オルト過ヨウ素酸に替え、過酸化水素を含むエッチング液を調製し評価を行った。組成と評価結果を表1に示す。
 比較例2
 オルト過ヨウ素酸に替え、mCPBAを含むエッチング液を調製し評価を行った。組成と評価結果を表1に示す。
 比較例4~5
 オルト過ヨウ素酸に替え、TMAClOを含むエッチング液を調製し評価を行った。組成と評価結果を表1に示す。
 比較例6
 オルト過ヨウ素酸に替え、NHNOを含むエッチング液を調製し評価を行った。組成と評価結果を表1に示す。
 実施例4
 TMAH濃度260mmol/L、ペルオキソ二硫酸イオン濃度0.4mmol/Lの水溶液を用いてエッチング速度を評価した。結果を表1に示す。
 実施例5
 ペルオキソ二硫酸イオン濃度を4.4mmol/Lに変化させたエッチング液を調製し評価を行った。結果を表1に示す。実施例4と比較して、ペルオキソ二硫酸イオン濃度が高くなると(100)面および(110)面のいずれもエッチング速度はさらに上昇した。
 比較例7
 ペルオキソ二硫酸イオン濃度を70mmol/Lに変化させたエッチング液を調製し評価を行った。結果を表1に示す。ペルオキソ二硫酸イオン濃度が高すぎるとエッチング速度は低くなる傾向が見られた。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  有機アルカリ化合物、
     オルト過ヨウ素酸イオン、
     および水を含み、
     24℃でのpHが12.5以上であるシリコンエッチング液。
  2.  有機アルカリ化合物、
     ペルオキソ二硫酸イオン、
     および水を含み、
     24℃でのpHが12.5以上であり、
     ペルオキソ二硫酸イオンの濃度が0.05~65mmol/Lであるシリコンエッチング液。
  3.  有機アルカリ化合物が、水酸化第四級アンモニウムである請求項1に記載シリコンエッチング液。
  4.  有機アルカリ化合物が、水酸化第四級アンモニウムである請求項2に記載シリコンエッチング液。
  5.  フッ化物イオンの含有量が100ppm未満である、請求項1に記載シリコンエッチング液。
  6.  フッ化物イオンの含有量が100ppm未満である、請求項2に記載シリコンエッチング液。
  7.  請求項1~6の何れかに記載のシリコンエッチング液を、Si面と、SiO面およびSiN面から選ばれる少なくともいずれかの面とを有するシリコン含有基板に接触させて、Si面を選択的にエッチングする工程を含んでなるシリコン含有基板の処理方法。
  8.  請求項7に記載の基板の処理方法を工程中に含む、シリコンデバイスの製造方法。
PCT/JP2023/030896 2022-09-01 2023-08-28 シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法 WO2024048498A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-139120 2022-09-01
JP2022139120 2022-09-01
JP2022143372 2022-09-09
JP2022-143372 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024048498A1 true WO2024048498A1 (ja) 2024-03-07

Family

ID=90099799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030896 WO2024048498A1 (ja) 2022-09-01 2023-08-28 シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2024048498A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105281A1 (ja) * 2006-03-10 2007-09-20 Fujitsu Limited 化合物半導体装置の製造方法及びエッチング液
WO2017126554A1 (ja) * 2016-01-22 2017-07-27 富士フイルム株式会社 処理液
JP2019054121A (ja) * 2017-09-15 2019-04-04 攝津製油株式会社 エッチング液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105281A1 (ja) * 2006-03-10 2007-09-20 Fujitsu Limited 化合物半導体装置の製造方法及びエッチング液
WO2017126554A1 (ja) * 2016-01-22 2017-07-27 富士フイルム株式会社 処理液
JP2019054121A (ja) * 2017-09-15 2019-04-04 攝津製油株式会社 エッチング液

Similar Documents

Publication Publication Date Title
JP7311477B2 (ja) 次亜塩素酸イオンを含む半導体ウェハの処理液
EP0811666B1 (en) Fluoride additive containing chemical mechanical polishing slurry and method for use of same
US6316366B1 (en) Method of polishing using multi-oxidizer slurry
KR100865881B1 (ko) 다성분을 가지는 글라스 기판용 미세가공 표면처리액
JP2022153481A (ja) 半導体ウエハ用処理液
EP3787008B1 (en) Aqueous composition and cleaning method using same
CN111961472A (zh) 高选择比氮化硅蚀刻液、其制备方法及应用
EP3761345A1 (en) Composition having suppressed alumina damage and production method for semiconductor substrate using same
WO2024048498A1 (ja) シリコンエッチング液、基板の処理方法およびシリコンデバイスの製造方法
KR20240031136A (ko) 실리콘 에칭액 및 그 제조 방법, 기판의 처리 방법, 그리고 실리콘 디바이스의 제조 방법
JP7410355B1 (ja) エッチング液、該エッチング液を用いた基板の処理方法及び半導体デバイスの製造方法
JP2024034694A (ja) シリコンエッチング液
JP2024028211A (ja) エッチング液、該エッチング液を用いたシリコンデバイスの製造方法および基板処理方法
CN118240553A (zh) 硅蚀刻液、硅基板的处理方法和半导体器件的制造方法
JPS62115833A (ja) 半導体基板表面処理剤
CN111925805B (zh) 一种蚀刻液组合物、其制备方法及应用
JP2024075501A (ja) シリコンエッチング液、基板の処理方法、およびシリコンデバイスの製造方法
US20240170294A1 (en) Silicon Etching Solution, Method for Treating Substrate, and Method for Manufacturing Silicon Device
KR20240076737A (ko) 실리콘 에칭액, 기판의 처리 방법 및 실리콘 디바이스의 제조 방법
WO2022025163A1 (ja) シリコンエッチング液、並びに該エッチング液を用いたシリコンデバイスの製造方法およびシリコン基板の処理方法
CN116235282A (zh) 半导体基板清洗用组合物和清洗方法
WO2024048382A1 (ja) 被処理物の処理方法、処理液、電子デバイスの製造方法
US20240124775A1 (en) Silicon etching liquid, and method for producing silicon devices and method for processing substrates, each using said etching liquid
CN111925803A (zh) 高选择比氮化硅蚀刻液、其制备方法及应用
TW202416373A (zh) 被處理物之處理方法、處理液、電子元件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860260

Country of ref document: EP

Kind code of ref document: A1