WO2024048290A1 - 車両用制動装置 - Google Patents

車両用制動装置 Download PDF

Info

Publication number
WO2024048290A1
WO2024048290A1 PCT/JP2023/029669 JP2023029669W WO2024048290A1 WO 2024048290 A1 WO2024048290 A1 WO 2024048290A1 JP 2023029669 W JP2023029669 W JP 2023029669W WO 2024048290 A1 WO2024048290 A1 WO 2024048290A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
torque
operating point
efficiency line
vehicle
Prior art date
Application number
PCT/JP2023/029669
Other languages
English (en)
French (fr)
Inventor
悠祐 柴田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024048290A1 publication Critical patent/WO2024048290A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present disclosure relates to a vehicle braking device.
  • the motor is adjusted so that the magnitude of the pressing force reaches a target value.
  • Techniques for controlling drive are known.
  • the motor control device controls the drive current of the motor based on the magnitude of the pressing force detected by the load sensor.
  • the relationship between motor torque and pressing force has hysteresis characteristics.
  • This motor control device increases the motor torque along the positive efficiency line until the pressing force increases to a predetermined value that is larger than the target value when applying and maintaining the pressing force to the brake disc. Decrease the motor torque along the inverse efficiency line until it decreases to the target value.
  • the vertical axis of the hysteresis diagram is described as the "correlation amount of braking force.”
  • the pressing force detected by the load sensor corresponds to the actual braking force that is the braking force actually output by the electric brake.
  • the load command value in Patent Document 1 corresponds to the required braking force.
  • Patent Document 1 describes the operation of increasing and then holding the braking force, but does not describe the operation of decreasing and then holding the braking force, or the operation of switching the braking force from decreasing to increasing. .
  • the braking force will be maintained at the operating point on the inverse efficiency line.
  • a torque change corresponding to the width between the positive efficiency line and the reverse efficiency line is required, resulting in a response delay.
  • An object of the present disclosure is to provide a vehicle braking device that can adjust the balance between the current reduction effect while braking force is being maintained and the responsiveness when switching from the holding operation to the braking force increasing operation.
  • the vehicle braking device of the present disclosure is applicable to a vehicle in which each wheel is equipped with a plurality of electric brakes that convert the torque output by a motor into direct force using a linear motion mechanism and press the corresponding wheel to generate braking force. It will be installed.
  • the vehicle braking device includes a torque command calculation section and a current command calculation section, and includes a braking force control section that controls the braking force generated by each electric brake.
  • the torque command calculation section calculates a torque command value for the motor based on a required braking force commanded from the outside.
  • the current command calculation unit calculates a current command value for energizing the motor based on the torque command value.
  • the relationship between the motor torque and the braking force generated by the electric brake is that when the torque increases, the braking force increases along the positive efficiency line, and decreases from the turning value where the torque changes from increasing to decreasing to the holding critical value.
  • the braking force When the braking force is held constant and the torque decreases from the holding critical value, the braking force has a hysteresis characteristic that decreases along the inverse efficiency line.
  • the torque command calculation unit includes a prediction unit and an operating point adjuster.
  • the prediction unit predicts a change in the required braking force from now on.
  • the operating point regulator stores the maximum torque on the positive efficiency line and the minimum torque on the reverse efficiency line corresponding to the maintained braking force, and determines the operating point at which the braking force is maintained in the adjustment zone between the minimum torque and the maximum torque. is adjusted based on prediction information from the prediction unit.
  • the torque command calculating section calculates a torque command value of the motor at the operating point adjusted by the operating point adjuster.
  • improving responsiveness in switching from holding operation to increasing operation may be prioritized over reducing current while holding braking force.
  • the operating point adjuster adjusts the operating point at the operating point on the positive efficiency line side from the operating point boundary at the time of the predicted increase in the adjustment zone. Maintain braking force. This reduces the response delay when switching from the braking force holding operation to the braking force increasing operation.
  • FIG. 1 is a configuration diagram of a vehicle equipped with a vehicle braking device according to an embodiment
  • FIG. 2 is a block diagram of braking force control of electric brakes corresponding to each wheel
  • FIG. 3A is a schematic diagram of an electric brake pad
  • FIG. 3B is a characteristic diagram of pad load and pad position
  • FIG. 4 is a diagram showing hysteresis characteristics between motor torque and braking force
  • FIG. 5 is a block diagram of a torque command calculation unit according to an embodiment
  • FIG. 6 is a diagram illustrating calculation of maximum torque and minimum torque
  • FIG. 1 is a configuration diagram of a vehicle equipped with a vehicle braking device according to an embodiment
  • FIG. 2 is a block diagram of braking force control of electric brakes corresponding to each wheel
  • FIG. 3A is a schematic diagram of an electric brake pad
  • FIG. 3B is a characteristic diagram of pad load and pad position
  • FIG. 4 is a diagram showing hysteresis characteristics between motor torque and braking force
  • FIG. 7 is a diagram illustrating setting of the operating point boundary and adjustment of the operating point when predicting an increase, holding, and decreasing the required braking force
  • FIG. 8 is a diagram showing an example of changing the boundary coefficient according to electric brake temperature and vehicle speed
  • FIG. 9 is a flowchart of the process of adjusting the operating point.
  • the vehicle braking device of this embodiment is a vehicle in which each wheel is provided with a plurality of electric brakes that convert torque output by a motor into direct force using a linear motion mechanism and press the corresponding wheel to generate braking force.
  • the vehicle braking device includes a braking force control section that controls the braking force generated by each electric brake.
  • the vehicle 900 is a four-wheeled vehicle having two rows of left and right pairs of wheels 91, 92, 93, and 94 in the front-rear direction.
  • the front row left and right wheels 91 and 92 are written as "FL, FR”
  • the rear row left and right wheels 93 and 94 are written as "RL, RR”.
  • a plurality (four in this example) of electric brakes 81, 82, 83, 84 are provided corresponding to each wheel 91, 92, 93, 94.
  • wheels 91-94 and electric brakes 81-84.
  • Electric brake temperatures Temp1-Temp4 The same applies to the symbols “Electric brake temperatures Temp1-Temp4".
  • the vehicle braking device 30 includes a braking force control section 400.
  • the braking force control unit 400 controls the braking force generated by each electric brake 81-84 based on a required braking force commanded from the outside.
  • the required braking force is commanded by a driver's brake operation, a braking signal from a driving support device, or the like.
  • the braking force control unit 400 of this embodiment acquires the vehicle speed V from the vehicle speed sensor 97, and acquires the electric brake temperatures Temp1-Temp4 from each electric brake 81-84.
  • the electric brake temperatures Temp1-Temp4 are detected, for example, by a temperature sensor. Alternatively, if the influence of outside temperature, vehicle exhaust heat, etc. is the same on each electric brake 81-84, electric brake temperatures Temp1-Temp4 may be calculated based on the integrated power value of each electric brake 81-84. .
  • the braking force control unit 400 of this embodiment acquires information regarding automatic driving from the automatic driving controller 200.
  • the automatic driving controller 200 may notify information that the slope of the downhill slope ahead becomes steeper, gentler, or transitions to an uphill slope while braking on a downhill slope, or when the automatic driving controller 200 is stopped at a traffic light. and notify information that it is.
  • the braking force control unit 400 predicts future changes in the required braking force based on automatic driving information from the automatic driving controller 200, other cameras, map information, and the like.
  • FIG. 2 illustrates a control configuration of the electric brake by the braking force control unit 400, taking one of the electric brakes 81 to 84 as an example.
  • Each electric brake 81-84 includes a motor 60, a linear motion mechanism 85, and a caliper 86.
  • the motor 60 is composed of, for example, a permanent magnet three-phase brushless motor, and outputs torque using a drive current supplied from the braking force control section 400.
  • the linear motion mechanism 85 is an actuator that converts the output rotation of the motor 60 into linear motion while decelerating it.
  • the rotation angle ⁇ of the motor 60 and the stroke X of the linear motion mechanism 85 are proportional. In this way, each electric brake 81-84 converts the torque output by the motor 60 into direct force using the linear motion mechanism 85, and presses the corresponding wheel 91-94 to generate braking force.
  • the output torque of the motor 60 operates the pad 87 of the caliper 86 via the linear motion mechanism 85.
  • the pad 87 moves and is pressed against the disk 88 of each wheel 91-94, braking force is generated due to friction. Furthermore, when the pad 87 separates from the disc 88, the braking force is released.
  • the pad 87 of the electric brake 81-81 shown in section IIIa of FIG. 2 will be supplemented.
  • the pad 87 has spring-like characteristics, and the pushing force Fd by the linear motion mechanism 85 and the reaction force Fr depending on the amount of strain act in opposite directions.
  • the pad position X based on the stroke of the linear motion mechanism 85 and the pad load F are approximately proportional. If the pad position changes by ⁇ X due to a change ⁇ in the rotation angle of the motor 60, the pad load changes by ⁇ F. Note that only in FIG. 3B, the symbol " ⁇ F" indicates a change in load. It has a different meaning from " ⁇ F", which is used in FIG. 5 and below and indicates the load deviation between the load command value and the actual load.
  • the braking force control section 400 includes a torque command calculation section 40, a current command calculation section 50, and an inverter 55.
  • the torque command calculation unit 40 calculates a torque command value Trq * for the motor 60 based on a required braking force commanded from the outside.
  • the current command calculation unit 50 calculates a current command value I * for energizing the motor 60 based on the torque command value.
  • the inverter 55 converts the DC power of the battery 15 into AC power, and supplies the AC power to the motor 60 according to the current command value I * . Note that detailed configurations such as current feedback from the current command calculation unit 50 to the inverter 55 are omitted. Using general motor control technology, the inverter 55 performs a switching operation in accordance with a switching signal based on PWM control or the like.
  • the electric brakes 81-84 include a load sensor 71 that detects the actual load F, which is the braking load actually pressed against the wheels 91-94.
  • the actual load F detected by the load sensor 71 is input to the torque command calculation section 40.
  • the torque command calculation unit 40 performs load control so that the actual load F approaches the load command value calculated based on the required braking force, and calculates the torque command value Trq * .
  • the description of one embodiment assumes a configuration in which the torque command calculation section 40 performs load control.
  • the electric brakes 81-84 of other embodiments may include an angle sensor 72 shown by a chain line or a stroke sensor 73 shown by a chain double-dot line.
  • Angle sensor 72 detects an actual angle ⁇ , which is the actual rotation angle of motor 60.
  • the stroke sensor 73 detects the actual stroke X, which is the actual stroke of the linear motion mechanism 85.
  • the angle sensor 72 and the stroke sensor 73 are collectively referred to as a "position sensor,” and the actual angle ⁇ and the actual stroke X are collectively referred to as an "actual position.”
  • the actual positions ⁇ and X detected by the position sensors 72 and 73 are input to the torque command calculation section 40.
  • the torque command calculation unit 40 performs position control so that the actual positions ⁇ and X approach the position command value calculated based on the required braking force, and calculates the torque command value Trq * . It's okay.
  • FIG. 4 corresponds to FIG. 10 of Patent Document 1 (Japanese Patent No. 6080682).
  • the relationship between the torque of the motor 60 and the braking force generated in the electric brakes 81-84 has hysteresis characteristics.
  • torque increases braking force increases along the positive efficiency line.
  • the torque decreases from the turning value Tconv, at which the torque changes from increasing to decreasing, to the holding critical value Tcr the braking force is kept constant.
  • the torque decreases from the holding critical value Tcr the braking force decreases along the inverse efficiency line.
  • the torque of the motor is increased until the magnitude of the load detected by the load sensor reaches "a value larger than the target value F * by a predetermined offset value dF.” Thereafter, the drive current of the motor is controlled to reduce the torque of the motor until the magnitude of the load detected by the load sensor reaches the target value F * .
  • the load F that is, the braking force
  • the action of increasing torque and braking force along the positive efficiency line is called “increasing action,” and the action of maintaining braking force at an arbitrary operating point between the positive efficiency line and the reverse efficiency line is called “holding action,” and the torque and braking force are called “holding action.”
  • the operation of reducing the braking force along the inverse efficiency line is defined as a “reducing operation.”
  • the vehicle braking device 30 of the present embodiment can adjust the balance between the current reduction effect while braking force is being maintained and the responsiveness when switching from the holding operation to the braking force increasing operation, depending on the vehicle condition etc.
  • the purpose is to
  • FIG. 5 shows a block diagram of the torque command calculation section 40 of one embodiment.
  • the torque command calculation section 40 includes a load command calculation section 41 , a load deviation calculator 42 , a prediction section 45 , an operating point adjuster 46 , and a load controller 48 .
  • the load command calculation unit 41 calculates a load command value F * based on the required braking force.
  • the prediction unit 45 acquires the current required braking force, automatic driving information from the automatic driving controller 200, other camera, map information, etc., and predicts changes in the required braking force from now on based on this.
  • the prediction unit 45 notifies the operating point adjuster 46 of prediction information regarding changes in the required braking force from now on.
  • the prediction unit 45 predicts that the required braking force will increase from now on.
  • the prediction unit 45 predicts that the required braking force will decrease from now on. Further, when the vehicle ahead decelerates in a vehicle equipped with ACC (adaptive cruise control), etc., the prediction unit 45 predicts that the required braking force will increase from now on. When the brake is loosened just before the vehicle stops and the vehicle moves slightly, the prediction unit 45 predicts that the required braking force will decrease from now on.
  • the prediction unit 45 is not limited to the configuration example in which the prediction unit 45 predicts a change in the required braking force based on vehicle behavior information acquired from the outside, but the prediction unit 45 may be configured to accept the command and issue a command to the operating point adjuster 46.
  • the operating point adjuster 46 acquires the actual load F, load deviation ⁇ F, electric brake temperatures Temp1-Temp4, and vehicle speed V. Based on the actual load F and the load deviation ⁇ F, the current operating point on the map and the direction of increase/decrease in braking force are estimated. The operating point adjuster 46 also acquires automatic driving information from the automatic driving controller 200, other camera information, map information, and the like.
  • the operating point adjuster 46 stores the torque-braking force relationship shown in FIG. 4 as a map. When the braking force is maintained, the operating point adjuster 46 stores the maximum torque on the positive efficiency line and the minimum torque on the reverse efficiency line corresponding to the maintained braking force, based on the map. Further, the operating point adjuster 46 adjusts the operating point at which the braking force is maintained in the adjustment zone between the minimum torque and the maximum torque, based on the prediction information from the prediction unit 45. For example, when the prediction unit 45 predicts that the required braking force will increase from now on, the operating point adjuster 46 shifts the operating point to the positive efficiency line side. Details of the operation of the operating point adjuster 46 will be described later with reference to FIGS. 6 to 9.
  • the load controller 48 basically calculates the torque command value Trq * so that the load deviation ⁇ F approaches zero, that is, the actual load F approaches the load command value F * . Further, the load controller 48 calculates the torque command value Trq * at the operating point adjusted by the operating point adjuster 46 while the braking force is maintained.
  • the storage of the maximum torque Trq_max and the minimum torque Trq_min and the calculation of the hysteresis width W_hys by the operating point adjuster 46 will be described.
  • the white circle on the positive efficiency line indicates the maximum torque Trq_max
  • the hatched circle on the reverse efficiency line indicates the minimum torque Trq_min.
  • the operating point adjuster 46 stores maximum torque Trq_max and minimum torque Trq_min corresponding to each load command value F * .
  • the operating point adjuster 46 moves the torque in the order of "0 ⁇ maximum torque ⁇ 0" with respect to the load command value F * , and stores the maximum torque Trq_max and the minimum torque Trq_min.
  • the map may be updated as appropriate each time the power is turned on, each time a task is performed, etc.
  • the operating point adjuster 46 The torque value may be stored. In this case, there is no need to maintain the entire map, which is efficient.
  • the torque width from the minimum torque Trq_min to the maximum torque Trq_max is defined as "hysteresis width W_hys.” Moreover, the thick line portion between the minimum torque Trq_min and the maximum torque Trq_max becomes an adjustment zone Za of the operating point where the braking force is maintained.
  • the operating point adjuster 46 adjusts the operating point at which the braking force is maintained in the adjustment zone Za based on prediction information from the prediction unit 45.
  • operating points close to the positive efficiency line includes “operating points on the positive efficiency line”
  • operating points close to the inverse efficiency line include “operating points on the inverse efficiency line”.
  • Reducing response delay includes “reducing response delay to zero.”
  • the operating point adjuster 46 recognizes changes in the required braking force during a predetermined predicted time period from now onwards, based on the prediction information from the prediction unit 45 .
  • the operating point adjuster 46 maintains the braking force at an operating point close to the inverse efficiency line, thereby ensuring a suitable current reduction effect during holding and reducing response delay when switching to decreasing operation. can do.
  • the operating point adjuster 46 maintains the braking force at an operating point close to the inverse efficiency line even during the holding prediction, so that the current reduction effect during holding can be suitably ensured.
  • the operating point adjuster 46 specifically adjusts the operating point using the configuration shown in FIG.
  • the operating point adjuster 46 sets an operating point boundary OBi for predicting an increase, an operating point boundary OBh for predicting a hold, and an operating point boundary OBd for predicting a decrease in the adjustment zone Za.
  • the operating point boundaries OBi, OBh, and OBd are the minimum torque Trq_min corresponding to the load command value F * , the hysteresis width W_hys, and the boundary coefficients ⁇ , ⁇ , and ⁇ (0 ⁇ 1, 0 ⁇ 1, 0 ⁇ ⁇ 1), it is expressed as the following formula.
  • the boundary coefficients ⁇ , ⁇ , and ⁇ are 0, the operating point is set on the inverse efficiency line, and when the boundary coefficients ⁇ , ⁇ , and ⁇ are 1, the operating point is set on the positive efficiency line.
  • OBi Trq_min+ ⁇ W_hys
  • OBh Trq_min+ ⁇ W_hys
  • OBd Trq_min+ ⁇ W_hys
  • operating point boundaries OBi, OBh, and OBd are shown in the image of ⁇ >0.5, ⁇ 0.5, and ⁇ 0.5.
  • the operating point adjuster 46 can reduce the response delay when switching to the increasing operation by maintaining the braking force at an operating point closer to the positive efficiency line than the operating point boundary OBi when predicting an increase. Further, the operating point adjuster 46 maintains the braking force at an operating point on the reverse efficiency line side than the operating point boundary OBh and operating point boundary OBd, respectively, at the time of holding prediction and decreasing prediction, thereby maintaining the current reduction effect. This can be suitably secured.
  • the operating point adjuster 46 changes the boundary coefficients ⁇ , ⁇ , and ⁇ according to at least one of the electric brake temperature Temp and the vehicle speed V, and changes the operating point boundaries OBi, OBh, and OBd.
  • the electric brake temperature Temp is a representative value calculated as the maximum value or average value of each electric brake temperature Temp1-Temp4.
  • FIG. 8 illustrates a simple polygonal line characteristic, it may also be a multi-step or curved characteristic.
  • logic may be added to arbitrate the dependence on the electric brake temperature Temp and the dependence on the vehicle speed V to determine the boundary coefficients ⁇ , ⁇ , and ⁇ .
  • the delay in switching to the braking force increasing operation has a large effect, so it is required to prioritize improving responsiveness over reducing current during holding.
  • the operating point adjuster 46 changes operating point boundaries OBi, OBh, and OBd for increasing operation, holding operation, and decreasing operation according to vehicle speed V or electric brake temperature Temp.
  • the operating point adjuster 46 changes the boundary coefficients ⁇ , ⁇ , and ⁇ according to the electric brake temperature Temp or the vehicle speed V, as shown in FIG. Note that the operating point boundary may be set to a fixed value regardless of the electric brake temperature Temp or vehicle speed V.
  • the operating point adjuster 46 obtains prediction information of the required braking force from the prediction unit 45.
  • the prediction unit 45 predicts that the required braking force will increase within the prediction time from the current time
  • YES is determined in S3.
  • the operating point adjuster 46 maintains the braking force at an operating point closer to the positive efficiency line than the operating point boundary OBi when predicting an increase in the adjustment zone Za.
  • the operating point adjuster 46 adjusts the operating point at which the braking force is maintained. Thereby, it is possible to appropriately adjust the balance between the current reduction effect while braking force is maintained and the responsiveness at the time of switching from the holding operation to the braking force increasing operation.
  • the vehicle on which the vehicle braking device of the present disclosure is installed is not limited to a four-wheeled vehicle having two rows of left and right pairs of wheels in the longitudinal direction of the vehicle, but is also a six-wheeled vehicle or more having three or more rows of wheels in the longitudinal direction of the vehicle. It may be a vehicle. Further, the vehicle braking device of the present disclosure may be installed in a vehicle that does not include the automatic driving controller 200.
  • the torque command calculation unit 40 calculates the torque command value Trq * by load control, but in other embodiments, the torque command calculation unit 40 calculates the torque command value Trq * by position control. Good too. In that case, the braking force is correlated with the positions ⁇ , X, and the positions ⁇ , X are used as the vertical axes of the hysteresis diagrams corresponding to FIGS. 4, 6, etc.
  • the braking force control unit and method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. , may be realized.
  • the braking force controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits.
  • the braking force control unit and the method described in the present disclosure may include a processor configured with a processor and memory programmed to perform one or more functions, and one or more hardware logic circuits. It may also be realized by one or more dedicated computers configured in combination.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

モータ(60)のトルクと電動ブレーキ(81-84)に発生する制動力との関係は、ヒステリシス特性を有している。トルクが増加するとき、制動力が正効率線に沿って増加し、トルクが減少するとき、制動力が逆効率線に沿って減少する。トルク指令演算部(40)の予測部(45)は、現在以後の要求制動力の変化を予測する。動作点調整器(46)は、保持された制動力に対応する正効率線上の最大トルク及び逆効率線上の最小トルクを記憶する。動作点調整器(46)は、最小トルクと最大トルクとの間の調整ゾーン(Za)において制動力を保持する動作点を、予測部(45)による予測情報に基づいて調整する。トルク指令演算部(40)は、動作点調整器(46)が調整した動作点におけるモータ(60)のトルク指令値(Trq*)を演算する。

Description

車両用制動装置 関連出願の相互参照
 本出願は、2022年9月1日に出願された日本出願番号2022-139250号に基づくものであり、ここにその記載内容を援用する。
 本開示は、車両用制動装置に関する。
 従来、モータのトルクと、運動変換機構からブレーキディスクに加える押圧力との関係がヒステリシス特性を有している車両の電動ブレーキ装置において、押圧力の大きさが目標値に到達するようにモータの駆動を制御する技術が知られている。例えば特許文献1に開示された電動ブレーキ装置では、モータ制御装置は、荷重センサで検出される押圧力の大きさに基づいてモータの駆動電流を制御する。モータトルクと押圧力との関係はヒステリシス特性を有している。このモータ制御装置は、押圧力をブレーキディスクに加えて保持するとき、押圧力が目標値よりも大きい所定値に上昇するまで正効率線に沿ってモータのトルクを増加させてから、押圧力が目標値に減少するまで逆効率線に沿ってモータのトルクを減少させる。
特許第6080682号公報
 本明細書ではヒステリシスの図の縦軸を「制動力の相関量」として記載する。特許文献1において荷重センサで検出される押圧力は、電動ブレーキが実際に出力する制動力である実制動力に相当する。また、特許文献1における荷重指令値は要求制動力に相当する。特許文献1の従来技術では、正効率線上から逆効率線上に動作点を移して制動力を保持することで、制動力の保持中にモータを駆動する電流を低減することができる。
 特許文献1には制動力を増加させてから保持する動作について記載されているが、制動力を減少させてから保持する動作、又は、制動力を減少から増加に切り替える動作については記載されていない。制動力を減少させてから保持する動作では、成り行き上、逆効率線上の動作点で制動力が保持されると推定される。逆効率線上の動作点での保持動作から制動力増加動作に切り替えるとき、正効率線と逆効率線との間の幅に相当するトルク変化が必要となり、応答遅れが生じるという課題があった。
 本開示の目的は、制動力保持中の電流低減効果と、保持動作から制動力増加動作への切り替え時における応答性とのバランスを調整可能な車両用制動装置を提供することにある。
 本開示の車両用制動装置は、モータが出力したトルクを直動機構により直動力に変換し、対応する車輪に押圧して制動力を発生させる複数の電動ブレーキが各車輪に設けられた車両に搭載される。
 車両用制動装置は、トルク指令演算部及び電流指令演算部を含み、各電動ブレーキが発生させる制動力を制御する制動力制御部を備える。トルク指令演算部は、外部から指令される要求制動力に基づきモータのトルク指令値を演算する。電流指令演算部は、トルク指令値に基づきモータに通電する電流指令値を演算する。
 モータのトルクと電動ブレーキに発生する制動力との関係は、トルクが増加するとき、制動力が正効率線に沿って増加し、トルクが増加から減少に転じる転向値から保持臨界値まで減少するとき、制動力が一定に保持され、トルクが保持臨界値から減少するとき、制動力が逆効率線に沿って減少するヒステリシス特性を有している。
 トルク指令演算部は、予測部と、動作点調整器と、を有する。予測部は、現在以後の要求制動力の変化を予測する。
 動作点調整器は、保持された制動力に対応する正効率線上の最大トルク及び逆効率線上の最小トルクを記憶し、最小トルクと最大トルクとの間の調整ゾーンにおいて制動力を保持する動作点を、予測部による予測情報に基づいて調整する。トルク指令演算部は、動作点調整器が調整した動作点におけるモータのトルク指令値を演算する。
 車両状態によっては、制動力保持中の電流低減よりも、保持動作から増加動作への切り替えにおける応答性向上が優先される場合がある。その場合、予測部により、現在から予測時間内に要求制動力が増加すると予測されたとき、動作点調整器は、調整ゾーンにおける増加予測時の動作点境界よりも正効率線側の動作点で制動力を保持する。これにより、制動力の保持動作から増加動作への切り替え時における応答遅れが低減される。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態の車両用制動装置が搭載される車両の構成図であり、 図2は、各車輪に対応する電動ブレーキの制動力制御ブロック図であり、 図3Aは、電動ブレーキのパッドの模式図であり、 図3Bは、パッド荷重とパッド位置との特性図であり、 図4は、モータのトルクと制動力とのヒステリシス特性を示す図であり、 図5は、一実施形態によるトルク指令演算部のブロック図であり、 図6は、最大トルク及び最小トルクの算出を説明する図であり、 図7は、要求制動力の増加予測時、保持予測時、減少予測時における動作点境界の設定及び動作点の調整を説明する図であり、 図8は、電動ブレーキ温度、車速に応じた境界係数の変更例を示す図であり、 図9は、動作点を調整する処理のフローチャートである。
 一実施形態による車両用制動装置を図面に基づいて説明する。本実施形態の車両用制動装置は、モータが出力したトルクを直動機構により直動力に変換し、対応する車輪に押圧して制動力を発生させる複数の電動ブレーキが各車輪に設けられた車両に搭載される。車両用制動装置は、各電動ブレーキが発生させる制動力を制御する制動力制御部を備える。
 [車両の構成]
 図1~図3Bを参照し、本実施形態の車両用制動装置30が搭載される車両900及び電動ブレーキ81-84の構成を説明する。図1に示すように、車両900は、前後方向において二列の左右対の車輪91、92、93、94を有する四輪車両である。前列左右輪91、92に「FL、FR」、後列左右輪93、94に「RL、RR」と記す。
 各車輪91、92、93、94に対応して複数(この例では四つ)の電動ブレーキ81、82、83、84が設けられている。以下、連続する四つの符号を「車輪91-94」、「電動ブレーキ81-84」のように省略して記す。記号「電動ブレーキ温度Temp1-Temp4」についても同様とする。
 車両用制動装置30は制動力制御部400を備える。制動力制御部400は、外部から指令される要求制動力に基づき、各電動ブレーキ81-84が発生させる制動力を制御する。要求制動力は、運転者のブレーキ操作や運転支援装置からの制動信号等により指令される。
 本実施形態の制動力制御部400は、車速センサ97から車速Vを取得し、各電動ブレーキ81-84から電動ブレーキ温度Temp1-Temp4を取得する。電動ブレーキ温度Temp1-Temp4は、例えば温度センサにより検出される。或いは、各電動ブレーキ81-84において外気温や車両の排熱等の影響が同等である場合、各電動ブレーキ81-84の積算電力値に基づき、電動ブレーキ温度Temp1-Temp4が算出されてもよい。
 また、本実施形態の制動力制御部400は、自動運転コントローラ200から自動運転に関する情報を取得する。例えば自動運転コントローラ200は、下り坂を制動しながら走行中に、前方の下り坂の勾配が急になる、緩やかになる、又は上り坂に移行するという情報を通知したり、信号待ちで停車中であるという情報を通知したりする。後述するように、制動力制御部400は、自動運転コントローラ200からの自動運転情報やその他のカメラ、地図情報等に基づき現在以後の要求制動力の変化を予測する。
 本実施形態では各電動ブレーキ81-84の制御構成は同様である。図2には、電動ブレーキ81-84のうちいずれか一つを例として、制動力制御部400による電動ブレーキの制御構成を図示する。
 各電動ブレーキ81-84は、モータ60、直動機構85、及びキャリパ86を含む。モータ60は、例えば永久磁石式三相ブラシレスモータで構成されており、制動力制御部400から通電される駆動電流によりトルクを出力する。直動機構85は、モータ60の出力回転を減速しつつ直線運動に変換するアクチュエータである。モータ60の回転角度θと直動機構85のストロークXとは比例する。こうして各電動ブレーキ81-84は、モータ60が出力したトルクを直動機構85により直動力に変換し、対応する車輪91-94に押圧して制動力を発生させる。
 モータ60の出力トルクは、直動機構85を介してキャリパ86のパッド87を動作させる。パッド87が移動して各車輪91-94のディスク88に押し付けられることで、摩擦により制動力が発生する。また、パッド87がディスク88から離れることで、制動力が解除される。
 図3A、図3Bを参照し、図2のIIIa部に示す電動ブレーキ81-81のパッド87の特性について補足する。図3Aに示すように、パッド87はバネのような特性を持ち、直動機構85による押し込み力Fdと、ひずみ量に応じた反力Frとが互いに反対方向に作用する。図3Bに示すように、直動機構85のストロークに基づくパッド位置Xと、パッド荷重Fとはほぼ比例する。モータ60の回転角度の変化Δθによりパッド位置がΔX変化すれば、パッド荷重はΔF変化する。なお、図3Bでのみ、記号「ΔF」は荷重の変化分を示す。図5以下で用いられる、荷重指令値と実荷重との荷重偏差を示す「ΔF」とは意味が異なる。
 図2に戻り、制動力制御部400は、トルク指令演算部40、電流指令演算部50及びインバータ55を含む。トルク指令演算部40は、外部から指令される要求制動力に基づきモータ60のトルク指令値Trq*を演算する。電流指令演算部50は、トルク指令値に基づきモータ60に通電する電流指令値I*を演算する。
 インバータ55は、バッテリ15の直流電力を交流電力に変換し、電流指令値I*に応じた交流電力をモータ60に供給する。なお、電流指令演算部50からインバータ55までの電流フィードバック等の詳細な構成を省略する。一般的なモータ制御技術により、PWM制御等によるスイッチング信号に従ってインバータ55がスイッチング動作する。
 基本的な実施形態では、電動ブレーキ81-84は、車輪91-94に実際に押圧される制動荷重である実荷重Fを検出する荷重センサ71を備えている。荷重センサ71が検出した実荷重Fはトルク指令演算部40に入力される。トルク指令演算部40は、要求制動力に基づき演算される荷重指令値に実荷重Fを近づけるように荷重制御を行い、トルク指令値Trq*を演算する。一実施形態の説明では、トルク指令演算部40が荷重制御を行う構成を前提とする。
 ただし、その他の実施形態の電動ブレーキ81-84は、一点鎖線で示す角度センサ72、又は、二点鎖線で示すストロークセンサ73を備えてもよい。角度センサ72は、モータ60の実際の回転角度である実角度θを検出する。ストロークセンサ73は、直動機構85の実際のストロークである実ストロークXを検出する。
 角度センサ72及びストロークセンサ73を包括して「位置センサ」といい、実角度θ及び実ストロークXを包括して「実位置」という。位置センサ72、73が検出した実位置θ、Xはトルク指令演算部40に入力される。トルク指令演算部40は、荷重制御に代えて又は加えて、要求制動力に基づき演算される位置指令値に実位置θ、Xを近づけるように位置制御を行い、トルク指令値Trq*を演算してもよい。
 次に図4を参照し、この構成の電動ブレーキにおけるモータトルクと制動力との関係について説明する。制動力はブレーキパッド荷重に相関する。以下、単に「トルク」とはモータ60が出力するトルクを意味し、単に「荷重」とはパッド87による押圧荷重を意味する。図4は、特許文献1(特許第6080682号公報)の図10に対応する。
 モータ60のトルクと電動ブレーキ81-84に発生する制動力との関係はヒステリシス特性を有している。トルクが増加するとき、制動力は正効率線に沿って増加する。トルクが増加から減少に転じる転向値Tconvから保持臨界値Tcrまで減少するとき、制動力は一定に保持される。トルクが保持臨界値Tcrから減少するとき、制動力は逆効率線に沿って減少する。
 特許文献1の従来技術では、荷重センサで検出される荷重の大きさが「目標値F*よりも所定のオフセット値dF大きい値」に到達するまでモータのトルクを増加させる。その後、荷重センサで検出される荷重の大きさが目標値F*に到達するまでモータのトルクを減少させるようにモータの駆動電流を制御する。モータのトルクを減少させる過程で荷重F、すなわち制動力は保持される。
 トルク及び制動力を正効率線に沿って増加させる動作を「増加動作」、正効率線と逆効率線との間の任意の動作点で制動力を保持する動作を「保持動作」、トルク及び制動力を逆効率線に沿って減少させる動作を「減少動作」と定義する。
 特許文献1の従来技術では、逆効率線上の動作点での保持動作から制動力増加動作に切り替えるとき、正効率線と逆効率線との間の幅に相当するトルク変化が必要となり、応答遅れが生じるという課題があった。そこで本実施形態の車両用制動装置30は、車両状態等に応じて、制動力保持中の電流低減効果と、保持動作から制動力増加動作への切り替え時における応答性とのバランスを調整可能とすることを目的とする。
 (一実施形態)
 図5に一実施形態のトルク指令演算部40のブロック図を示す。トルク指令演算部40は、荷重指令演算部41、荷重偏差算出器42、予測部45、動作点調整器46及び荷重制御器48を有する。
 荷重指令演算部41は、要求制動力に基づき荷重指令値F*を演算する。荷重偏差算出器42は、荷重センサ71により検出された実荷重Fと荷重指令値F*との荷重偏差ΔF(=F*-F)を算出し、荷重制御器48に出力する。
 予測部45は、現在の要求制動力、及び、自動運転コントローラ200からの自動運転情報やその他のカメラ、地図情報等を取得し、それに基づき現在以後の要求制動力の変化を予測する。予測部45は、現在以後の要求制動力の変化に関する予測情報を動作点調整器46に通知する。
 例えば、自動運転で下り坂を一定減速度で制動力を保持しながら走行中、カメラ映像や地図情報に基づき、前方の道路が現在走行中の下り坂よりも急勾配の下り坂であるという情報が通知された場合を想定する。この場合、減速度を一定に保つために制動力が増加される必要がある。そこで予測部45は、現在以後、要求制動力が増加すると予測する。
 反対に、自動運転で下り坂を一定減速度で制動力を保持しながら走行中、前方の道路が現在の走行地点よりも緩い勾配の下り坂又は上り坂であるという情報が通知された場合、予測部45は、現在以後、要求制動力が減少すると予測する。また、ACC(アダプティブクルーズコントロール)搭載車等で前方車両が減速した場合、予測部45は、現在以後、要求制動力が増加すると予測する。停車直前にブレーキを緩めて微小移動するとき、予測部45は、現在以後、要求制動力が減少すると予測する。
 このように、予測部45が外部から取得した車両挙動情報に基づいて要求制動力の変化を予測する構成例に限らず、自動運転コントローラ200等による要求制動力の変化予測の結果を予測部45が受理し、動作点調整器46に指令する構成としてもよい。
 動作点調整器46は、実荷重F、荷重偏差ΔF、電動ブレーキ温度Temp1-Temp4及び車速Vを取得する。実荷重F及び荷重偏差ΔFに基づき、マップ上の現在の動作点と制動力の増減方向とが推定される。また動作点調整器46は、自動運転コントローラ200からの自動運転情報やその他のカメラ、地図情報等を取得する。
 動作点調整器46は、図4に示すトルク-制動力の関係をマップとして記憶している。制動力が保持されているとき、動作点調整器46は、マップに基づき、保持された制動力に対応する正効率線上の最大トルク及び逆効率線上の最小トルクを記憶する。また動作点調整器46は、最小トルクと最大トルクとの間の調整ゾーンにおいて制動力を保持する動作点を、予測部45による予測情報に基づいて調整する。例えば予測部45により、現在以後、要求制動力が増加すると予測されたとき、動作点調整器46は動作点を正効率線側にシフトする。動作点調整器46の作用の詳細は、図6~図9を参照して後述する。
 荷重制御器48は、基本的に荷重偏差ΔFをゼロに近づけるように、すなわち実荷重Fを荷重指令値F*に近づけるようにトルク指令値Trq*を演算する。また、荷重制御器48は、制動力の保持中に、動作点調整器46が調整した動作点におけるトルク指令値Trq*を演算する。
 図6を参照し、動作点調整器46による最大トルクTrq_max、最小トルクTrq_minの記憶、及び、ヒステリシス幅W_hysの算出について説明する。図6のトルク-制動力マップにおいて正効率線上の白丸は最大トルクTrq_maxを示し、逆効率線上のハッチング入りの丸は最小トルクTrq_minを示す。動作点調整器46は、各荷重指令値F*に対応する最大トルクTrq_max及び最小トルクTrq_minを記憶する。
 例えば製造工程中や初回動作時に動作点調整器46は、荷重指令値F*に対しトルクを「0→最大トルク→0」のように動かして、最大トルクTrq_max及び最小トルクTrq_minを記憶する。電源投入ごと、作業ごと等に適宜マップが更新されてもよい。また、特許文献1の従来技術のように、荷重指令値F*に対し超過動作をしてから戻す方式の保持動作を行う場合、動作点調整器46は、超過動作開始時及び戻し動作終了時のトルク値を記憶してもよい。この場合、全体のマップを保持する必要がなく効率的である。
 最小トルクTrq_minから最大トルクTrq_maxまでのトルク幅を「ヒステリシス幅W_hys」と定義する。また、最小トルクTrq_minと最大トルクTrq_maxとの間の太線部は、制動力が保持される動作点の調整ゾーンZaとなる。動作点調整器46は、調整ゾーンZaにおいて制動力を保持する動作点を、予測部45による予測情報に基づいて調整する。
 次に図7、図8を参照し、制動力保持動作中における動作点の調整について説明する。以下の説明中、「正効率線に近い動作点」には「正効率線上の動作点」が含まれ、「逆効率線に近い動作点」には「逆効率線上の動作点」が含まれる。「応答遅れを低減する」には「応答遅れをゼロにする」ことが含まれる。動作点調整器46は、予測部45による予測情報に基づき、現在以後、所定の予測時間における要求制動力の変化を認知する。
 現在から予測時間以内に要求制動力が増加し、保持動作から増加動作に切り替わると予測される場合を「増加予測時」という。増加予測時、動作点調整器46は正効率線に近い動作点で制動力を保持することにより、保持中の電流低減効果は低下するが、増加動作への切り替え時の応答遅れを低減することができる。
 一方、現在から予測時間以内に要求制動力が減少し、保持動作から減少動作に切り替わると予測される場合を「減少予測時」という。減少予測時、動作点調整器46は逆効率線に近い動作点で制動力を保持することにより、保持中の電流低減効果を好適に確保するとともに、減少動作への切り替え時の応答遅れを低減することができる。
 現在から予測時間以上にわたり要求制動力が保持されると予測される場合を「保持予測時」という。保持予測時にも動作点調整器46は逆効率線に近い動作点で制動力を保持することにより、保持中の電流低減効果を好適に確保することができる。
 例えば動作点調整器46は、図7に示す構成により、具体的に動作点を調整する。動作点調整器46は、調整ゾーンZaにおいて、増加予測時の動作点境界OBi、保持予測時の動作点境界OBh、及び、減少予測時の動作点境界OBdを設定する。動作点境界OBi、OBh、OBdは、荷重指令値F*に対応する最小トルクTrq_min、ヒステリシス幅W_hys、及び、境界係数α、β、γ(0≦α≦1、0≦β≦1、0≦γ≦1)を用いて下式のように表される。境界係数α、β、γが0のとき逆効率線上に動作点が設定され、境界係数α、β、γが1のとき正効率線上に動作点が設定される。
 OBi=Trq_min+α×W_hys
 OBh=Trq_min+β×W_hys
 OBd=Trq_min+γ×W_hys
 図7には、α>0.5、β≒0.5、γ<0.5のイメージで各動作点境界OBi、OBh、OBdを示す。動作点調整器46は、増加予測時、動作点境界OBiよりも正効率線側の動作点で制動力を保持することで、増加動作への切り替え時の応答遅れを低減することができる。また、動作点調整器46は、保持予測時及び減少予測時、それぞれの動作点境界OBh、動作点境界OBdよりも逆効率線側の動作点で制動力を保持することで、電流低減効果を好適に確保することができる。
 図8に示すように、動作点調整器46は、電動ブレーキ温度Temp又は車速Vの少なくとも一方に応じて境界係数α、β、γを変更し、動作点境界OBi、OBh、OBdを変更してもよい。ここで、電動ブレーキ温度Tempは、各電動ブレーキ温度Temp1-Temp4の最大値や平均値として算出される代表値とする。図8には単純な折れ線状の特性を例示しているが、多段ステップ状や曲線状の特性としてもよい。また、電動ブレーキ温度Tempによる依存度と車速Vによる依存度とを調停して境界係数α、β、γを決定するロジックを追加してもよい。
 電動ブレーキ温度Tempが臨界値TempX以上の高温域では、制動力増加動作への切り替え応答性よりも、インバータ55やモータ60の巻線への通電による発熱を低下して素子の故障を回避することの要求が高くなる。したがって、境界係数α、β、γを0近くまで小さくすることが好ましい。
 一方、車速Vが臨界値VX以上の高速域では、制動力増加動作への切り替え遅れによる影響が大きいため、保持中の電流低減よりも応答性の向上を優先することが求められる。特に増加予測時には境界係数αを1近くまで大きくして、応答遅れを最小限にすることが好ましい。保持予測時及び減少予測時の予測信頼度が高ければ、破線で示すように、車速Vによらず境界係数β、γを一定としてもよい。ただし、予測に反した急制動に備え、車速Vが臨界値VX以上のとき、境界係数β、γを大きく変更してもよい。
 図9のフローチャートを参照し、動作点調整器46が実行する処理について説明する。フローチャートの説明で記号「S」はステップを意味する。S1で動作点調整器46は、車速V又は電動ブレーキ温度Tempに応じて、増加動作、保持動作、減少動作の各動作点境界OBi、OBh、OBdを変更する。例えば動作点調整器46は、図8に示すように電動ブレーキ温度Temp又は車速Vに応じて境界係数α、β、γを変更する。なお、電動ブレーキ温度Temp又は車速Vによらず、動作点境界を固定値としてもよい。
 S2で動作点調整器46は、予測部45から要求制動力の予測情報を取得する。予測部45により、現在から予測時間内に要求制動力が増加すると予測されたとき、S3でYESと判断される。このとき、S4で動作点調整器46は、調整ゾーンZaにおける増加予測時の動作点境界OBiよりも正効率線側の動作点で制動力を保持する。
 予測部45により、現在から予測時間以上にわたり要求制動力が保持されると予測されたとき、S5でYESと判断される。このとき、S6で動作点調整器46は、調整ゾーンZaにおける保持予測時の動作点境界OBhよりも逆効率線側の動作点で制動力を保持する。
 予測部45により、現在から予測時間内に要求制動力が減少すると予測されたとき、S7でYESと判断される。このとき、S8で動作点調整器46は、調整ゾーンZaにおける減少予測時の動作点境界OBdよりも逆効率線側の動作点で制動力を保持する。
 以上のように、予測部45による予測情報に基づき、動作点調整器46が制動力を保持する動作点を調整する。これにより、制動力保持中の電流低減効果と、保持動作から制動力増加動作への切り替え時における応答性とのバランスを適切に調整可能である。
(その他の実施形態)
 (a)本開示の車両用制動装置が搭載される車両は、車両前後方向において二列の左右対の車輪を有する四輪車両に限らず、車両前後方向において三列以上の車輪を有する六輪以上の車両であってもよい。また、本開示の車両用制動装置は、自動運転コントローラ200を備えていない車両に搭載されてもよい。
 (b)上記実施形態ではトルク指令演算部40は荷重制御によりトルク指令値Trq*を演算するが、他の実施形態では、トルク指令演算部40は位置制御によりトルク指令値Trq*を演算してもよい。その場合、制動力は位置θ、Xに相関し、図4、図6等に対応するヒステリシス図の縦軸として位置θ、Xが用いられる。
 (c)動作点の調整において、電動ブレーキ温度Temp又は車速Vの情報が用いられなくてもよい。また、例えば電動ブレーキ温度Tempについて、通電による発熱よりも気温の影響が大きい地域等では、気温を電動ブレーキ温度Tempとみなして処理してもよい。
 以上、本開示はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
 本開示に記載の制動力制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制動力制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制動力制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (5)

  1.  モータ(60)が出力したトルクを直動機構(85)により直動力に変換し、対応する車輪(91-94)に押圧して制動力を発生させる複数の電動ブレーキ(81-84)が各車輪に設けられた車両(900)に搭載される車両用制動装置であって、
     外部から指令される要求制動力に基づき前記モータのトルク指令値を演算するトルク指令演算部(40)、及び、前記トルク指令値に基づき前記モータに通電する電流指令値を演算する電流指令演算部(50)を含み、各前記電動ブレーキが発生させる制動力を制御する制動力制御部(400)を備え、
     前記モータのトルクと前記電動ブレーキに発生する制動力との関係は、トルクが増加するとき、制動力が正効率線に沿って増加し、トルクが増加から減少に転じる転向値から保持臨界値まで減少するとき、制動力が一定に保持され、トルクが前記保持臨界値から減少するとき、制動力が逆効率線に沿って減少するヒステリシス特性を有しており、
     前記トルク指令演算部は、
     現在以後の前記要求制動力の変化を予測する予測部(45)と、
     保持された制動力に対応する前記正効率線上の最大トルク及び前記逆効率線上の最小トルクを記憶し、前記最小トルクと前記最大トルクとの間の調整ゾーン(Za)において制動力を保持する動作点を、前記予測部による予測情報に基づいて調整する動作点調整器(46)と、
     を有し、前記動作点調整器が調整した動作点における前記モータのトルク指令値を演算する車両用制動装置。
  2.  前記予測部により、現在から予測時間内に前記要求制動力が増加すると予測されたとき、
     前記動作点調整器は、前記調整ゾーンにおける増加予測時の動作点境界(OBi)よりも正効率線側の動作点で制動力を保持する請求項1に記載の車両用制動装置。
  3.  前記予測部により、現在から予測時間以上にわたり前記要求制動力が保持されると予測されたとき、
     前記動作点調整器は、前記調整ゾーンにおける保持予測時の動作点境界(OBh)よりも逆効率線側の動作点で制動力を保持する請求項1に記載の車両用制動装置。
  4.  前記予測部により、現在から予測時間内に前記要求制動力が減少すると予測されたとき、
     前記動作点調整器は、前記調整ゾーンにおける減少予測時の動作点境界(OBd)よりも逆効率線側の動作点で制動力を保持する請求項1に記載の車両用制動装置。
  5.  前記動作点調整器は、前記電動ブレーキの温度又は車速の少なくとも一方に応じて前記動作点境界を変更する請求項2~4のいずれか一項に記載の車両用制動装置。
PCT/JP2023/029669 2022-09-01 2023-08-17 車両用制動装置 WO2024048290A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139250A JP2024034777A (ja) 2022-09-01 2022-09-01 車両用制動装置
JP2022-139250 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024048290A1 true WO2024048290A1 (ja) 2024-03-07

Family

ID=90099398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029669 WO2024048290A1 (ja) 2022-09-01 2023-08-17 車両用制動装置

Country Status (2)

Country Link
JP (1) JP2024034777A (ja)
WO (1) WO2024048290A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19841170C1 (de) * 1998-09-09 2000-02-24 Continental Ag Verfahren zur sparsamen Nutzung der von einem elektrisch betätigbaren Bremsaktuator benötigten elektrischen Energie
JP2014226007A (ja) * 2013-05-17 2014-12-04 Ntn株式会社 電動式直動アクチュエータおよび電動ブレーキ装置
JP2017039439A (ja) * 2015-08-21 2017-02-23 Ntn株式会社 電動ブレーキ装置
JP2019172251A (ja) * 2019-05-23 2019-10-10 Ntn株式会社 電動ブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19841170C1 (de) * 1998-09-09 2000-02-24 Continental Ag Verfahren zur sparsamen Nutzung der von einem elektrisch betätigbaren Bremsaktuator benötigten elektrischen Energie
JP2014226007A (ja) * 2013-05-17 2014-12-04 Ntn株式会社 電動式直動アクチュエータおよび電動ブレーキ装置
JP2017039439A (ja) * 2015-08-21 2017-02-23 Ntn株式会社 電動ブレーキ装置
JP2019172251A (ja) * 2019-05-23 2019-10-10 Ntn株式会社 電動ブレーキ装置

Also Published As

Publication number Publication date
JP2024034777A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
JP5720701B2 (ja) 車両制御装置
CN107848424B (zh) 制动控制装置
JP6408585B2 (ja) フェールセーフティと利用性の向上した運転アシストシステム
WO2016178428A1 (ja) 電動ブレーキシステム
WO2017090504A1 (ja) ブレーキ制御装置、ブレーキ制御方法、列車、及びプログラム
JP7435503B2 (ja) 車両用制動装置
JP6737733B2 (ja) 車両の制動制御装置
JP4736742B2 (ja) 電気駆動車両
JP6713024B2 (ja) 車両用制動装置
WO2017026329A1 (ja) 電動ブレーキシステム
WO2024048290A1 (ja) 車両用制動装置
JP4940803B2 (ja) 車両の制動力制御装置
EP2853435A2 (en) Electric vehicle
US11932224B2 (en) Brake control device and brake system
JP2005263098A (ja) オートクルーズ制御装置
JP7431989B2 (ja) 車両制御装置、車両制御方法、及び車両制御システム
JP2024034766A (ja) 車両用制動装置
JP2019206302A (ja) 運転支援装置
KR20180107666A (ko) 하이브리드 전기 자동차의 스마트 크루즈 컨트롤 제어 방법
JP4542832B2 (ja) 電動ブレーキ装置
JP7331415B2 (ja) 車両の制御装置
WO2024029316A1 (ja) 車両用制動装置
WO2024009950A1 (ja) 車両用制動装置
WO2024048291A1 (ja) 車両用制動装置
JP2005306281A (ja) 減速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860055

Country of ref document: EP

Kind code of ref document: A1