WO2024046478A1 - 高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法 - Google Patents

高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法 Download PDF

Info

Publication number
WO2024046478A1
WO2024046478A1 PCT/CN2023/116613 CN2023116613W WO2024046478A1 WO 2024046478 A1 WO2024046478 A1 WO 2024046478A1 CN 2023116613 W CN2023116613 W CN 2023116613W WO 2024046478 A1 WO2024046478 A1 WO 2024046478A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
strength aluminum
content
alloy powder
additive manufacturing
Prior art date
Application number
PCT/CN2023/116613
Other languages
English (en)
French (fr)
Inventor
赵伟
赵成
薛蕾
Original Assignee
西安铂力特增材技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安铂力特增材技术股份有限公司 filed Critical 西安铂力特增材技术股份有限公司
Publication of WO2024046478A1 publication Critical patent/WO2024046478A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Definitions

  • the present disclosure belongs to the technical field of metal materials, and more specifically relates to a high-strength aluminum alloy powder and a preparation method thereof, high-strength aluminum alloy parts and an additive manufacturing method thereof.
  • high-strength aluminum alloy parts are widely used in aerospace and other fields because of their light weight and other excellent physical and chemical properties, as structural materials or functional materials to manufacture aircraft skins. , engine and fuel tank and other important parts.
  • the current related high-strength aluminum alloy parts have many problems such as low as-cast strength, long manufacturing cycle, difficulty in manufacturing parts with complex structures, and material waste. They cannot meet the requirements for precision, integration and integration of high-strength aluminum alloy parts in important fields such as aerospace and aerospace. Complex requirements. With the continuous development of material manufacturing technology, additive manufacturing technology has become a new processing technology for manufacturing high-strength aluminum alloy parts with the advantages of highly flexible design, simple processing process, and integration of structure and function.
  • Embodiments of the present disclosure provide a high-strength aluminum alloy powder and a preparation method thereof, high-strength aluminum alloy parts and an additive manufacturing method thereof; can reduce or eliminate the cracking phenomenon of high-strength aluminum alloy powder during the additive manufacturing process and improve the high-strength aluminum alloy powder.
  • the strength of aluminum alloy parts can reduce or eliminate the cracking phenomenon of high-strength aluminum alloy powder during the additive manufacturing process and improve the high-strength aluminum alloy powder.
  • embodiments of the present disclosure provide a high-strength aluminum alloy powder, which includes the following mass percentage components:
  • the content of Zn is 4.0% ⁇ 7.0%
  • the content of Mg is 1.5% ⁇ 3.5%
  • the Cu content is 1.0% ⁇ 3.5%
  • the content of Sc is a, and 0.4% ⁇ a ⁇ 1.3%;
  • the content of Zr is not higher than 0.2%;
  • the Fe content is not higher than 0.5%
  • the Si content is not higher than 0.4%
  • the content of Mn is not higher than 0.5%
  • the Ti content is not higher than 0.2%
  • the Cr content is not higher than 0.28%
  • the total content of O and N is not higher than 0.05%
  • the content of Sc is a, and 0.4% ⁇ a ⁇ 0.5%.
  • the content of Sc is a, and 0.5% ⁇ a ⁇ 0.7%.
  • the content of Sc is a, and 0.7% ⁇ a ⁇ 1.0%.
  • the content of Sc is a, and 1.0% ⁇ a ⁇ 1.3%.
  • the particle size of the high-strength aluminum alloy powder is less than 180 ⁇ m.
  • the particle size of the high-strength aluminum alloy powder is 15 ⁇ m ⁇ 53 ⁇ m.
  • inventions of the present disclosure provide a method for preparing high-strength aluminum alloy powder.
  • the preparation method includes:
  • the metal raw materials with a set proportion are melted uniformly; wherein, the metal raw materials with a set proportion include the following mass percentage components:
  • the content of Zn is 4.0% ⁇ 7.0%
  • the content of Mg is 1.5% ⁇ 3.5%
  • the Cu content is 1.0% ⁇ 3.5%
  • the content of Sc is a, and 0.4% ⁇ a ⁇ 1.3%;
  • the content of Zr is not higher than 0.2%;
  • the Fe content is not higher than 0.5%
  • the Si content is not higher than 0.4%
  • the content of Mn is not higher than 0.5%
  • the Ti content is not higher than 0.2%
  • the Cr content is not higher than 0.28%
  • the total content of O and N is not higher than 0.05%
  • the balance is Al;
  • the high-strength aluminum alloy powder is prepared by a gas atomization method.
  • the content of Sc is a; wherein,
  • inventions of the present disclosure provide an additive manufacturing method for high-strength aluminum alloy parts.
  • the additive manufacturing method includes:
  • the high-strength aluminum alloy powder forms the second layer of laser selective melting layer
  • the additive manufacturing method before performing additive manufacturing on the high-strength aluminum alloy powder, the additive manufacturing method further includes:
  • the high-strength aluminum alloy powder is dried in an argon protective atmosphere.
  • the temperature of the drying process is 100°C ⁇ 150°C.
  • the time of the drying treatment is not less than 2 Hour;
  • the high-strength aluminum alloy powder after drying is subjected to particle size screening so that the particle size of the high-strength aluminum alloy is 15 ⁇ m to 53 ⁇ m.
  • embodiments of the present disclosure provide a high-strength aluminum alloy part.
  • the high-strength aluminum alloy part is manufactured using the additive manufacturing method described in the third aspect.
  • the tensile strength of the high-strength aluminum alloy part in the deposited state is Not less than 423MPa, yield strength not less than 342MPa.
  • Embodiments of the present disclosure provide a high-strength aluminum alloy powder and a preparation method thereof, high-strength aluminum alloy parts and an additive manufacturing method thereof.
  • This high-strength aluminum alloy powder is made by adding the strengthening element Scandium (Sc) to the existing high-strength aluminum alloy powder material, so that Sc and Al form an Al 3 Sc phase during the additive manufacturing process.
  • the Al 3 Sc phase can serve as a heterogeneous nucleation site for ⁇ -Al to refine the grains, transforming the coarse columnar crystals inside the molten pool into fine equiaxed crystals, thereby eliminating hot cracks.
  • the Al 3 Sc phase has good stability and can help improve the strength of high-strength aluminum alloy parts obtained after additive manufacturing.
  • Figure 1(a) is a schematic diagram of the metallographic structure of 7XXX aluminum alloy powder with standard chemical composition after additive manufacturing;
  • Figure 1(b) is a schematic diagram of the metallographic structure of the high-strength aluminum alloy powder provided by the embodiment of the present disclosure after additive manufacturing;
  • Figure 2 is a schematic diagram of the metallographic structure of a deposited high-strength aluminum alloy part obtained after additive manufacturing of the high-strength aluminum alloy powder provided in Embodiment 1 of the present disclosure;
  • Figure 3 is a schematic diagram of the room temperature tensile stress-strain curve of a deposited high-strength aluminum alloy part obtained after additive manufacturing of the high-strength aluminum alloy powder provided in Embodiment 2 of the present disclosure;
  • Figure 4 is a schematic diagram of the room temperature tensile stress-strain curve of high-strength aluminum alloy parts obtained after additive manufacturing of high-strength aluminum alloy powder provided in Embodiment 2 of the present disclosure after T6 heat treatment;
  • Figure 5 is a schematic diagram of the room temperature tensile stress-strain curve of a deposited high-strength aluminum alloy part obtained after additive manufacturing of the high-strength aluminum alloy powder provided in Embodiment 4 of the present disclosure;
  • Figure 6 is a schematic diagram of the room temperature tensile stress-strain curve of a deposited high-strength aluminum alloy part obtained after additive manufacturing of the high-strength aluminum alloy powder provided in Example 5 of the present disclosure.
  • the high-strength aluminum alloy powder involved in the embodiments of the present disclosure is a spherical powder with a particle size less than 180 ⁇ m.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 1:
  • the high-strength aluminum alloy powder provided in the embodiment of the present disclosure is prepared by using a gas atomization method or other powder preparation technology. Its sphericity must be ⁇ 0.8 and the hollow powder ratio must be ⁇ 10 %.
  • the high-strength aluminum alloy powder must be vacuum-sealed and stored. It must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C ⁇ 150°C for 2 hours, drying and corresponding cooling in argon. Carry out in protective atmosphere.
  • the high-strength aluminum alloy powder is additively manufactured using the laser selective melting method
  • the high-strength aluminum alloy powder is added to the powder feeding bin in the additive manufacturing equipment.
  • the oxygen content in the forming chamber drops below 0.02%
  • the laser starts scanning.
  • the high-strength aluminum alloy powder supplied from the powder feeding bin on the substrate is accumulated layer by layer, eventually forming high-strength aluminum alloy parts.
  • the laser starts to scan the high-strength aluminum alloy powder supplied from the powder feeding bin on the substrate, and the layer-by-layer accumulation process can be implemented using the laser selective melting method.
  • a layer of high-strength aluminum alloy powder supplied from the powder feeding bin is laid on the surface of the substrate, and a laser is used to scan the high-strength aluminum alloy powder on the surface of the substrate to form a third A layer of laser selective melting layer; when the first layer of laser selective melting layer solidifies, lower the substrate; lay a layer of high-strength aluminum alloy powder supplied by the powder feeding bin on the upper surface of the solidified first layer of laser selective melting layer , and use the laser to scan the high-strength aluminum alloy powder on the upper surface of the first layer of laser selective melting layer to form the second layer of laser selective melting layer; stack it repeatedly layer by layer until high-strength aluminum alloy parts are manufactured.
  • the working principle of the embodiment of the present disclosure is: the embodiment of the present disclosure adjusts the composition of the existing high-strength aluminum alloy powder, specifically adds the characteristic element Sc to the existing high-strength aluminum alloy powder material, so as to improve the additive manufacturing process.
  • Sc and Al form an Al 3 Sc phase.
  • the Al 3 Sc phase serves as a heterogeneous nucleation site for ⁇ -Al to refine the grains, transforming the coarse columnar crystals inside the molten pool into fine equiaxed crystals, thereby eliminating thermal cracks generated during solidification. , which solves the problem that traditional high-strength aluminum alloy powder is prone to thermal cracks during the additive manufacturing process.
  • Figure 1(a) is a schematic diagram of the metallographic structure of 7XXX aluminum alloy powder with standard chemical composition after additive manufacturing. It can be seen from Figure 1(a) that there are a large number of hot cracks in the metallographic structure.
  • Figure 1(b) is a schematic diagram of the metallographic structure of the high-strength aluminum alloy powder after additive manufacturing after adding the characteristic element Sc according to the embodiment of the present disclosure. It can be seen from Figure 1(b) that the metallographic structure of Thermal cracks have been completely eliminated, and the metallographic structure is dense and uniform.
  • a high-strength aluminum alloy powder The high-strength aluminum alloy powder adds the characteristic element Sc to the existing high-strength aluminum alloy powder material.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 2:
  • high-strength aluminum alloy powder is prepared using the nitrogen atomization method.
  • the high-strength aluminum alloy powder must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C to 150°C for 2 hours, and the drying treatment is performed in an argon protective atmosphere. Then use a sieve to sieve the particle size so that the particle size distribution of the high-strength aluminum alloy powder is in the range of 15 ⁇ m ⁇ 53 ⁇ m.
  • the above-mentioned high-strength aluminum alloy powder is additively manufactured using the laser selective melting method to obtain high-strength aluminum alloy parts.
  • the high-strength aluminum alloy powder provided by embodiments of the present disclosure can complete the additive manufacturing process through additive manufacturing equipment such as models BLT-S310, BLT-S320, BLT-S400, BLT-S600, etc.
  • the metallographic structure of the deposited high-strength aluminum alloy parts obtained after additive manufacturing of the above-mentioned high-strength aluminum alloy powder is shown in Figure 2. From Figure 2, it can be seen that there are still tiny hot cracks in the metallographic structure and the length of the hot cracks is variable. one. Compared with the metallographic structure shown in Figure 1(a), the length and width of hot cracks in the metallographic structure shown in Figure 2 are reduced to varying degrees.
  • a high-strength aluminum alloy powder is made by adding the characteristic element Sc to the existing high-strength aluminum alloy powder material.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 3:
  • the metal raw materials with a set ratio are fully and evenly melted, and a nitrogen atomization method is used to prepare high-strength aluminum alloy powder.
  • the high-strength aluminum alloy powder must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C to 150°C for 2 hours, and the drying treatment is performed in an argon protective atmosphere. Then use a sieve to sieve the particle size so that the particle size distribution of the high-strength aluminum alloy powder is in the range of 15 ⁇ m ⁇ 53 ⁇ m.
  • High-strength aluminum alloy parts are obtained by additive manufacturing of high-strength aluminum alloy powder using laser selective melting.
  • the high-strength aluminum alloy powder provided by embodiments of the present disclosure can complete the additive manufacturing process through additive manufacturing equipment of models BLT-S310, BLT-S320, BLT-S400, BLT-S600, etc.
  • the room temperature tensile stress-strain curve of the deposited high-strength aluminum alloy parts obtained after additive manufacturing of the above-mentioned high-strength aluminum alloy powder is shown in Figure 3. It can be seen from Figure 3 that the high-strength aluminum alloy powder in this embodiment has been
  • the tensile strength of the deposited high-strength aluminum alloy parts obtained after additive manufacturing is 423MPa, the yield strength is 342MPa, and the elongation is 21%.
  • the Sc content in the high-strength aluminum alloy powder in this embodiment is 0.5%
  • the tensile strength of the deposited high-strength aluminum alloy parts obtained after additive manufacturing is also 423MPa
  • the yield strength is also 342MPa
  • the elongation is 21%.
  • a high-strength aluminum alloy powder is made by adding the characteristic element Sc to the existing high-strength aluminum alloy powder material.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 4:
  • high-strength aluminum alloy powder is prepared using the nitrogen atomization method.
  • the high-strength aluminum alloy powder must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C to 150°C for 2 hours, and the drying treatment is performed in an argon protective atmosphere. Then use a sieve to sieve the particle size so that the particle size distribution of the high-strength aluminum alloy powder is in the range of 15 ⁇ m ⁇ 53 ⁇ m.
  • High-strength aluminum alloy parts are obtained by additive manufacturing of high-strength aluminum alloy powder using laser selective melting.
  • the high-strength aluminum alloy powder provided by embodiments of the present disclosure can complete the additive manufacturing process through additive manufacturing equipment of models BLT-S310, BLT-S320, BLT-S400, BLT-S600, etc.
  • the room temperature tensile stress-strain curve of the high-strength aluminum alloy parts obtained after additive manufacturing of the above-mentioned high-strength aluminum alloy powder has been subjected to T6 heat treatment as shown in Figure 4. It can be seen from Figure 4 that the high-strength aluminum in this embodiment
  • the high-strength aluminum alloy parts obtained after additive manufacturing of alloy powder have a tensile strength of 501MPa, a yield strength of 443MPa, and an elongation of 17% after T6 heat treatment.
  • the tensile strength and yield strength of the high-strength aluminum alloy parts obtained after additive manufacturing are significantly improved after T6 heat treatment.
  • the reason is that the nano-level particles in the metallographic structure of the high-strength aluminum alloy parts after T6 heat treatment are Fine precipitates will precipitate from the Al matrix as secondary phases over time. This fine secondary phase can significantly improve the strength of high-strength aluminum alloy parts.
  • T6 heat treatment because the grains in the metallographic structure will grow and coarsen, the plasticity of high-strength aluminum alloy parts after T6 heat treatment will decrease.
  • the above-mentioned process of improving the strength properties of high-strength aluminum alloy parts is also called the age strengthening process.
  • a high-strength aluminum alloy powder is made by adding the characteristic element Sc to the existing high-strength aluminum alloy powder material.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 5:
  • high-strength aluminum alloy powder is prepared using the nitrogen atomization method.
  • the high-strength aluminum alloy powder must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C to 150°C for 2 hours, and the drying treatment is performed in an argon protective atmosphere. Then use a sieve to sieve it so that the particle size distribution of the high-strength aluminum alloy powder is in the range of 15 ⁇ m ⁇ 53 ⁇ m.
  • the above-mentioned high-strength aluminum alloy powder is additively manufactured using a laser selective melting method to obtain high-strength aluminum alloy parts.
  • the high-strength aluminum alloy powder provided by embodiments of the present disclosure can complete the additive manufacturing process on additive manufacturing equipment such as models BLT-S310, BLT-S320, BLT-S400, BLT-S600, etc.
  • the room temperature tensile stress-strain curve of the deposited high-strength aluminum alloy parts obtained after additive manufacturing of the above-mentioned high-strength aluminum alloy powder is shown in Figure 5. It can be seen from Figure 5 that the high-strength aluminum alloy powder in this embodiment is The tensile strength of the deposited high-strength aluminum alloy parts obtained after additive manufacturing is 462MPa, the yield strength is 388MPa, and the elongation is 14%.
  • a high-strength aluminum alloy powder is made by adding the characteristic element Sc to the existing high-strength aluminum alloy powder.
  • the components and content of the high-strength aluminum alloy powder are as shown in Table 6:
  • high-strength aluminum alloy powder is prepared using the nitrogen atomization method.
  • the high-strength aluminum alloy powder must be dried before additive manufacturing.
  • the drying process is: heat preservation at 100°C to 150°C for 2 hours, and the drying treatment is performed in an argon protective atmosphere. Then use a sieve to sieve the high-strength aluminum alloy powder so that the particle size distribution is in the range of 15 ⁇ m ⁇ 53 ⁇ m.
  • the above-mentioned high-strength aluminum alloy powder is additively manufactured using the laser selective melting method to obtain high-strength aluminum alloy parts.
  • the high-strength aluminum alloy powder provided by embodiments of the present disclosure can complete the additive manufacturing process through additive manufacturing equipment of models BLT-S310, BLT-S320, BLT-S400, BLT-S600, etc.
  • the room temperature tensile stress-strain curve of the deposited high-strength aluminum alloy parts obtained after additive manufacturing of the above-mentioned high-strength aluminum alloy powder is shown in Figure 6. It can be seen from Figure 6 that the high-strength aluminum alloy powder in this embodiment is The tensile strength of the deposited high-strength aluminum alloy parts obtained after additive manufacturing is 481MPa, the yield strength is 396MPa, and the elongation is 11%.
  • Embodiments of the present disclosure provide a high-strength aluminum alloy powder and a preparation method thereof, high-strength aluminum alloy parts and an additive manufacturing method thereof.
  • This high-strength aluminum alloy powder is made by adding the strengthening element Sc to the existing high-strength aluminum alloy powder material, so that Sc and Al form an Al 3 Sc phase during the additive manufacturing process.
  • the Al 3 Sc phase can serve as a heterogeneous nucleation site for ⁇ -Al to refine the grains, transforming the coarse columnar crystals inside the molten pool into fine equiaxed crystals, thereby eliminating hot cracks.
  • the Al 3 Sc phase has good stability and can help improve the strength of high-strength aluminum alloy parts obtained after additive manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

提供了一种高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法。高强铝合金粉末包括如下质量百分比的组分:Zn的含量是4.0%~7.0%;Mg的含量是1.5%~3.5%;Cu的含量是1.0%~3.5%;Sc的含量是a,且0.4%≤a≤1.3%;Zr的含量是不高于0.2%;Fe的含量是不高于0.5%;Si的含量是不高于0.4%;Mn的含量是不高于0.5%;Ti的含量是不高于0.2%;Cr的含量是不高于0.28%;O与N的总含量是不高于0.05%;余量是Al。

Description

高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法 相关申请的交叉引用
本申请要求于2022年09月02日提交中国专利局、申请号为202211070616.7,发明名称为“用于增材制造的高强铝合金粉末”的中国专利申请的优先权,该中国专利申请的内容在此引入本申请作为参考。
技术领域
本公开属于金属材料技术领域,更具体地涉及一种高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法。
背景技术
随着轻量化、结构功能一体化的强劲需求,高强铝合金零件因为质量轻以及其他优异的物理化学性能被大量地应用于航空航天等领域中,以作为结构材料或者功能材料来制造飞机蒙皮、发动机以及油箱等重要的零部件。
但是,当前相关的高强铝合金零件存在铸态强度低、制造周期长、复杂结构的零件难以制造和材料浪费等诸多问题,无法满足航空航天等重要领域对高强铝合金零件精密化、一体化以及复杂化的要求。随着材料制造技术的不断发展,增材制造技术已凭借高度柔性设计、加工过程简单以及结构功能一体化等优势成为制造高强铝合金零件的新加工技术。
然而,传统的高强铝合金粉末材料存在打印开裂问题。已有的且能够用于增材制造的铝合金材料的种类少,多为Al-Si系,并且经增材制造得到的铝合金零件的抗拉强度小于400MPa,屈服强度小于350MPa,无法在高承载、高服役性能的场景上应用。
技术内容
本公开的实施例提供了一种高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法;能够减少或者消除高强铝合金粉末在增材制造过程中的开裂现象以及提高了高强铝合金零件的强度。
本公开的实施例的技术方案是这样实现的:
第一方面,本公开的实施例提供了一种高强铝合金粉末,所述高强铝合金粉末包括如下质量百分比的组分:
Zn的含量是4.0%~7.0%;
Mg的含量是1.5%~3.5%;
Cu的含量是1.0%~3.5%;
Sc的含量是a,且0.4%≤a≤1.3%;
Zr的含量是不高于0.2%;
Fe的含量是不高于0.5%;
Si的含量是不高于0.4%;
Mn的含量是不高于0.5%;
Ti的含量是不高于0.2%;
Cr的含量是不高于0.28%;
O与N的总含量是不高于0.05%;
余量是Al。
可选地,所述Sc的含量是a,且0.4%≤a<0.5%。
可选地,所述Sc的含量是a,且0.5%≤a<0.7%。
可选地,所述Sc的含量是a,且0.7%≤a<1.0%。
可选地,所述Sc的含量是a,且1.0%≤a≤1.3%。
可选地,所述高强铝合金粉末的粒径小于180μm。
可选地,所述高强铝合金粉末的粒径是15μm~53μm。
第二方面,本公开的实施例提供了一种高强铝合金粉末的制备方法,所述制备方法包括:
设定配比的金属原材料进行均匀熔融;其中,所述设定配比的金属原材料包括如下质量百分比的组分:
Zn的含量是4.0%~7.0%;
Mg的含量是1.5%~3.5%;
Cu的含量是1.0%~3.5%;
Sc的含量是a,且0.4%≤a≤1.3%;
Zr的含量是不高于0.2%;
Fe的含量是不高于0.5%;
Si的含量是不高于0.4%;
Mn的含量是不高于0.5%;
Ti的含量是不高于0.2%;
Cr的含量是不高于0.28%;
O与N的总含量是不高于0.05%;
余量是Al;
基于均匀熔融后的所述金属原材料,采用气雾化法制备得到所述高强铝合金粉末。
可选地,所述Sc的含量是a;其中,
0.4%≤a<0.5%,或者,0.5%≤a<0.7%,或者,0.7%≤a<1.0%,或者,1.0%≤a≤1.3%。
第三方面,本公开的实施例提供了一种高强铝合金零件的增材制造方法,所述增材制造方法包括:
将第一方面所述的高强铝合金粉末添加至成形室的送粉仓中;
在所述基板的表面铺设一层由所述送粉仓供给的所述高强铝合金粉末,并利用所述激光扫描所述基板的表面的高强铝合金粉末,形成第一层激光选区熔化层;
当所述第一层激光选区熔化层凝固后,下降所述基板;
在凝固后的所述第一层激光选区熔化层的上表面铺设一层由所述送粉仓供给的所述高强铝合金粉末,并利用激光扫描所述第一层激光选区熔化层的上表面的高强铝合金粉末形成第二层激光选区熔化层;
逐层重复前序步骤,直至制造得到高强铝合金零件。
可选地,在对所述高强铝合金粉末进行增材制造之前,所述增材制造方法还包括:
对所述高强铝合金粉末进行烘干处理,所述烘干处理在氩气保护气氛中进行,所述烘干处理的温度是100℃~150℃,所述烘干处理的时间不低于2小时;
对烘干处理后的所述高强铝合金粉末进行粒径筛分,以使所述高强铝合金的粒径为15μm~53μm。
第四方面,本公开的实施例提供了一种高强铝合金零件,所述高强铝合金零件采用第三方面所述的增材制造方法制造得到,沉积态所述高强铝合金零件的抗拉强度不低于423MPa,屈服强度不低于342MPa。
相对于相关技术而言,本公开实施例具有以下有益效果:
本公开实施例提供了一种高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法。该高强铝合金粉末是在现有的高强铝合金粉末材料中添加强化元素钪(Scandium,Sc),以在增材制造过程中Sc与Al形成Al 3Sc相。在凝固过程中Al 3Sc相可作为α-Al的异质形核位点来细化晶粒,使熔池内部粗大的柱状晶转变为细小的等轴晶,从而消除了热裂纹。此外,Al 3Sc相稳定性好,能够有助于提高增材制造后得到的高强铝合金零件的强度。
附图简要说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅是本公开的示例性实施例。
图1(a)是标准化学成分的7XXX铝合金粉末经增材制造后的金相组织示意图;
图1(b)是本公开实施例提供的高强铝合金粉末经增材制造后的金相组织示意图;
图2是本公开实施例1提供的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的金相组织示意图;
图3是本公开实施例2提供的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线示意图;
图4是本公开实施例2提供的高强铝合金粉末经增材制造后得到的高强铝合金零件经T6热处理后的室温拉伸应力-应变曲线示意图;
图5是本公开实施例4提供的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线示意图;
图6是本公开实施例5提供的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是本公开的全部实施例,应理解,本公开不受这里描述的示例实施例的限制。
本公开的实施例所涉及的高强铝合金粉末为粒径小于180μm的球形粉末,该高强铝合金粉末的组分及含量如表1所示:
表1
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 4.0~7.0 1.5~3.5 1.0~3.5 0.4~1.3 ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.5 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融后,采用气雾化法或者其他粉体制备技术制备得到本公开实施例提供的高强铝合金粉末,其球形度须≥0.8,空心粉率须≤10%。
该高强铝合金粉末须抽真空密封保存,在增材制造之前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,烘干处理和相应的冷却处理在氩气保护气氛中进行。
利用激光选区熔化法对上述高强铝合金粉末进行增材制造时,高强铝合金粉末被添加至增材制造设备中的送粉仓,待成形室的氧含量下降至0.02%以下时,激光开始扫描基板上的由送粉仓供给的高强铝合金粉末,逐层堆积,最终形成高强铝合金零件。可选地,激光开始扫描基板上的由送粉仓供给的高强铝合金粉末,并逐层堆积的过程可以采用激光选区熔化法实施。详细来说,当成形室的氧含量下降至0.02%以下时,在基板的表面铺设一层由送粉仓供给的高强铝合金粉末,并利用激光扫描基板的表面的高强铝合金粉末,形成第一层激光选区熔化层;当第一层激光选区熔化层凝固后,下降基板;在凝固后的第一层激光选区熔化层的上表面铺设一层由所述送粉仓供给的高强铝合金粉末,并利用激光扫描第一层激光选区熔化层的上表面的高强铝合金粉末,形成第二层激光选区熔化层;逐层重复堆积,直至制造得到高强铝合金零件。
本公开实施例的工作原理是:本公开的实施例通过调整现有的高强铝合金粉末的组分,具体是在现有的高强铝合金粉末材料中添加特征元素Sc,以在增材制造过程中Sc与Al形成Al 3Sc相。在凝固过程中Al 3Sc相作为α-Al的异质形核位点来细化晶粒,使熔池内部粗大的柱状晶转变为细小的等轴晶,从而消除了凝固时产生的热裂纹,解决了传统高强铝合金粉末在增材制造过程中易产生热裂纹的问题。图1(a)为标准化学成分的7XXX铝合金粉末经增材制造后的金相组织示意图,由图1(a)可以看出,该金相组织中存在大量的热裂纹。图1(b)为本公开的实施例提供的添加特征元素Sc后的高强铝合金粉末经增材制造后的金相组织示意图,由图1(b)可以看出,该金相组织中的热裂纹已经完全消除,该金相组织致密且均匀。
实施例1
一种高强铝合金粉末,该高强铝合金粉末在现有的高强铝合金粉末材料中添加特征元素Sc,该高强铝合金粉末的组分及含量如表2所示:
表2
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 5.0~6.5 2.0~3.0 1.0~2.5 a, 且0.1%≤a<0.4% ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.3 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融后,采用氮气雾化法制备得到高强铝合金粉末。
该高强铝合金粉末在增材制造前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,且烘干处理在氩气保护气氛中进行。然后用筛子进行粒径筛分,使高强铝合金粉末的粒径分布在15μm~53μm范围内。
利用激光选取熔化法对上述高强铝合金粉末进行增材制造得到高强铝合金零件。
本公开的实施例提供的高强铝合金粉末可以经由例如型号为BLT-S310、BLT-S320、BLT-S400、BLT-S600等的增材制造设备完成增材制造过程。上述的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的金相组织如图2所示,由图2可知,该金相组织中仍存在微小的热裂纹且热裂纹长短不一。与图1(a)示出的金相组织相比,图2示出的金相组织中的热裂纹长度和宽度均有不同程度的减小。图1(a)与图2中的金相组织的区别表明当高强铝合金粉末中的特征元素Sc的含量较低时,能够改善高强铝合金粉末在增材制造过程中产生热裂纹的现象,但是难以完全消除热裂纹。
实施例2
一种高强铝合金粉末,该高强铝合金粉末是在现有的高强铝合金粉末材料中添加特征元素Sc,该高强铝合金粉末的组分及含量如表3所示:
表3
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 5.0~6.5 2.0~3.0 1.0~2.5 0.4~0.7 ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.3 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融,并采用氮气雾化法制备得到高强铝合金粉末。
该高强铝合金粉末在增材制造前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,且烘干处理在氩气保护气氛中进行。然后用筛子进行粒径筛分,使该高强铝合金粉末的粒径分布在15μm~53μm范围内。
利用激光选取熔化法对高强铝合金粉末进行增材制造得到高强铝合金零件。
本公开的实施例提供的高强铝合金粉末可以经由型号为BLT-S310、BLT-S320、BLT-S400、BLT-S600等的增材制造设备完成增材制造过程。上述的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线如图3所示,由图3可以看出,本实施例中的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的抗拉强度为423MPa,屈服强度为342MPa,延伸率为21%。其中,当本实施例中的高强铝合金粉末中Sc的含量为0.5%时,经增材制造后得到的沉积态高强铝合金零件的抗拉强度同样为423MPa,屈服强度同样为342MPa,延伸率同样为21%。
实施例3
一种高强铝合金粉末,该高强铝合金粉末是在现有的高强铝合金粉末材料中添加特征元素Sc,该高强铝合金粉末的组分及含量如表4所示:
表4
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 5.0~6.5 2.0~3.0 1.0~2.5 0.4~0.7 ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.3 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融后,采用氮气雾化法制备得到高强铝合金粉末。
该高强铝合金粉末在增材制造前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,且烘干处理在氩气保护气氛中进行。然后用筛子进行粒径筛分,使该高强铝合金粉末的粒径分布在15μm~53μm范围内。
利用激光选取熔化法对高强铝合金粉末进行增材制造得到高强铝合金零件。
本公开的实施例提供的高强铝合金粉末可以经由型号BLT-S310、BLT-S320、BLT-S400、BLT-S600等的增材制造设备完成增材制造过程。上述的高强铝合金粉末经增材制造后得到的高强铝合金零件再经过T6热处理后的室温拉伸应力-应变曲线如图4所示,由图4可以看出,本实施例中的高强铝合金粉末经增材制造后得到的高强铝合金零件经T6热处理后的抗拉强度为501MPa,屈服强度为443MPa,延伸率为17%。
本实施例中增材制造后得到的高强度铝合金零件经T6热处理后的抗拉强度以及屈服强度明显提升的原因是:经T6热处理后高强度铝合金零件的金相组织中的纳米级别的细小析出相会作为二次相从Al基体中时效析出,这种细小的二次相能够显著提高了高强铝合金零件的强度。但是,经T6热处理后,由于金相组织中的晶粒会长大粗化,因此经T6热处理后的高强铝合金零件的塑性会降低。上述提升高强铝合金零件的强度性能的过程也称为时效强化过程。
实施例4
一种高强铝合金粉末,该高强铝合金粉末是在现有的高强铝合金粉末材料中添加特征元素Sc,该高强铝合金粉末的组分及含量如表5所示:
表5
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 5.0~6.5 2.0~3.0 1.0~2.5 a, 且0.7%≤a<1.0% ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.3 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融后,采用氮气雾化法制备得到高强铝合金粉末。
该高强铝合金粉末在增材制造前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,且烘干处理在氩气保护气氛中进行。然后用筛子筛分,使高强铝合金粉末的粒径分布在15μm~53μm范围内。
利用激光选取熔化法对上述高强铝合金粉末进行增材制造得到高强铝合金零件。
本公开的实施例提供的高强铝合金粉末可以经由例如型号为BLT-S310、BLT-S320、BLT-S400、BLT-S600等的增材制造设备上完成增材制造过程。上述的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线如图5所示,由图5可以看出,本实施例中的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的抗拉强度为462MPa,屈服强度为388MPa,延伸率为14%。
实施例5
一种高强铝合金粉末,该高强铝合金粉末是在现有的高强铝合金粉末中添加特征元素Sc,该高强铝合金粉末的组分及含量如表6所示:
表6
元素 Zn Mg Cu Sc Zr Fe
含量/wt.% 5.0~6.5 2.0~3.0 1.0~2.5 a, 且1.0%≤a≤1.3% ≤0.2 ≤0.5
元素 Si Mn Ti Cr O+N Al
含量/wt.% ≤0.4 ≤0.3 ≤0.2 ≤0.28 ≤0.05 Bal.
将设定配比的金属原材料充分均匀熔融后,采用氮气雾化法制备得到高强铝合金粉末。
该高强铝合金粉末在增材制造前必须烘干处理,烘干处理的工艺为:在100℃~150℃下保温2小时,且烘干处理在氩气保护气氛中进行。然后用筛子筛分,使该高强铝合金粉末的粒径分布在15μm~53μm范围内。
利用激光选取熔化法对上述高强铝合金粉末进行增材制造得到高强铝合金零件。
本公开的实施例提供的高强铝合金粉末可以经由型号为BLT-S310、BLT-S320、BLT-S400、BLT-S600等的增材制造设备完成增材制造过程。上述的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的室温拉伸应力-应变曲线如图6所示,由图6可以看出,本实施例中的高强铝合金粉末经增材制造后得到的沉积态高强铝合金零件的抗拉强度为481MPa,屈服强度为396MPa,延伸率为11%。
通过上述实施例2至实施例5可以看出,通过在现有的高强铝合金粉末材料中添加含量为0.4%~1.3%的元素Sc后提高了经增材制造后得到的高强铝合金零件的强度,使得上述制造得到的高强铝合金零件能够被应用到高承载、高服役的环境中。同样地,通过本公开实施例提供的高强铝合金粉末也能够减少或消除高强铝合金粉末在增材制造过程中易开裂的现象。
在上面详细描述的本公开的示例实施例仅仅是说明性的,而不是限制性的。本领域技术人员应该理解,在不脱离本公开的原理和精神的情况下,可对这些实施例或其特征进行各种修改和组合,这样的修改应落入本公开的范围内。
工业实用性
本公开实施例提供了一种高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法。该高强铝合金粉末是在现有的高强铝合金粉末材料中添加强化元素Sc,以在增材制造过程中Sc与Al形成Al 3Sc相。在凝固过程中Al 3Sc相可作为α-Al的异质形核位点来细化晶粒,使熔池内部粗大的柱状晶转变为细小的等轴晶,从而消除了热裂纹。此外,Al 3Sc相稳定性好,能够有助于提高增材制造后得到的高强铝合金零件的强度。

Claims (12)

  1. 一种高强铝合金粉末,其特征在于,所述高强铝合金粉末包括如下质量百分比的组分:
    Zn的含量是4.0%~7.0%;
    Mg的含量是1.5%~3.5%;
    Cu的含量是1.0%~3.5%;
    Sc的含量是a,且0.4%≤a≤1.3%;
    Zr的含量是不高于0.2%;
    Fe的含量是不高于0.5%;
    Si的含量是不高于0.4%;
    Mn的含量是不高于0.5%;
    Ti的含量是不高于0.2%;
    Cr的含量是不高于0.28%;
    O与N的总含量是不高于0.05%;
    余量是Al。
  2. 根据权利要求1所述的高强铝合金粉末,其特征在于,所述Sc的含量是a,且0.4%≤a<0.5%。
  3. 根据权利要求1所述的高强铝合金粉末,其特征在于,所述Sc的含量是a,且0.5%≤a<0.7%。
  4. 根据权利要求1所述的高强铝合金粉末,其特征在于,所述Sc的含量是a,且0.7%≤a<1.0%。
  5. 根据权利要求1所述的高强铝合金粉末,其特征在于,所述Sc的含量是a,且1.0%≤a≤1.3%。
  6. 根据权利要求1至5任一项所述的高强铝合金粉末,其特征在于,所述高强铝合金粉末的粒径小于180μm。
  7. 根据权利要求6所述的高强铝合金粉末,其特征在于,所述高强铝合金粉末的粒径是15μm~53μm。
  8. 一种高强铝合金粉末的制备方法,其特征在于,所述制备方法包括:
    设定配比的金属原材料进行均匀熔融;其中,所述设定配比的金属原材料包括如下质量百分比的组分:
    Zn的含量是4.0%~7.0%;
    Mg的含量是1.5%~3.5%;
    Cu的含量是1.0%~3.5%;
    Sc的含量是a,且0.4%≤a≤1.3%;
    Zr的含量是不高于0.2%;
    Fe的含量是不高于0.5%;
    Si的含量是不高于0.4%;
    Mn的含量是不高于0.5%;
    Ti的含量是不高于0.2%;
    Cr的含量是不高于0.28%;
    O与N的总含量是不高于0.05%;
    余量是Al;
    基于均匀熔融后的所述金属原材料,采用气雾化法制备得到高强铝合金粉末。
  9. 根据权利要求8所述的制备方法,其特征在于,所述Sc的含量是a;其中,
    0.4%≤a<0.5%,或者,0.5%≤a<0.7%,或者,0.7%≤a<1.0%,或者,1.0%≤a≤1.3%。
  10. 一种高强铝合金零件的增材制造方法,其特征在于,所述增材制造方法包括:
    将权利要求1至7任一项所述的高强铝合金粉末添加至成形室的送粉仓中;
    在所述基板的表面铺设一层由所述送粉仓供给的所述高强铝合金粉末,并利用所述激光扫描所述基板的表面的高强铝合金粉末形成第一层激光选区熔化层;
    当所述第一层激光选区熔化层凝固后,下降所述基板;
    在凝固后的所述第一层激光选区熔化层的上表面铺设一层由所述送粉仓供给的所述高强铝合金粉末,并利用激光扫描所述第一层激光选区熔化层的上表面的高强铝合金粉末形成第二层激光选区熔化层;
    逐层重复前序步骤,直至制造得到高强铝合金零件。
  11. 根据权利要求10所述的增材制造方法,其特征在于,在对所述高强铝合金粉末进行增材制造之前,所述增材制造方法还包括:
    对所述高强铝合金粉末进行烘干处理,所述烘干处理在氩气保护气氛中进行,所述烘干处理的温度是100℃~150℃,所述烘干处理的时间不低于2小时;
    对烘干处理后的所述高强铝合金粉末进行粒径筛分,以使所述高强铝合金的粒径为15μm~53μm。
  12. 一种高强铝合金零件,其特征在于,所述高强铝合金零件采用权利要求10或11所述的增材制造方法制造得到,沉积态所述高强铝合金零件的抗拉强度不低于423MPa,屈服强度不低于342MPa。
PCT/CN2023/116613 2022-09-02 2023-09-01 高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法 WO2024046478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211070616.7A CN117684056A (zh) 2022-09-02 2022-09-02 用于增材制造的高强铝合金粉末
CN202211070616.7 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024046478A1 true WO2024046478A1 (zh) 2024-03-07

Family

ID=90100432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116613 WO2024046478A1 (zh) 2022-09-02 2023-09-01 高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法

Country Status (2)

Country Link
CN (1) CN117684056A (zh)
WO (1) WO2024046478A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487126A (zh) * 2018-12-19 2019-03-19 中车工业研究院有限公司 一种可用于3d打印的铝合金粉末及其制备方法和应用
CN111440975A (zh) * 2020-04-30 2020-07-24 湖南东方钪业股份有限公司 一种用于金属3D打印的Al-Zn-Mg-Sc系铝合金粉末及其制备方法
CN112831698A (zh) * 2020-12-30 2021-05-25 安德伦(重庆)材料科技有限公司 一种适用于激光增材制造的铝合金粉末及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487126A (zh) * 2018-12-19 2019-03-19 中车工业研究院有限公司 一种可用于3d打印的铝合金粉末及其制备方法和应用
CN111440975A (zh) * 2020-04-30 2020-07-24 湖南东方钪业股份有限公司 一种用于金属3D打印的Al-Zn-Mg-Sc系铝合金粉末及其制备方法
CN112831698A (zh) * 2020-12-30 2021-05-25 安德伦(重庆)材料科技有限公司 一种适用于激光增材制造的铝合金粉末及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BI JIANG; LEI ZHENGLONG; CHEN YANBIN; CHEN XI; QIN XIKUN; TIAN ZE: "Effect of process parameters on formability and surface quality of selective laser melted Al-Zn-Sc-Zr alloy from single track to block specimen", OPTICS AND LASER TECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV., AMSTERDAM., NL, vol. 118, 1 January 1900 (1900-01-01), NL , pages 132 - 139, XP085702697, ISSN: 0030-3992, DOI: 10.1016/j.optlastec.2019.05.008 *
BI JIANG; LEI ZHENGLONG; CHEN YANBIN; CHEN XI; TIAN ZE; LIANG JINGWEI; ZHANG XINRUI; QIN XIKUN: "Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting", MATERIALS SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 768, 30 September 2019 (2019-09-30), AMSTERDAM, NL, XP085890389, ISSN: 0921-5093, DOI: 10.1016/j.msea.2019.138478 *
ZHU ZHIGUANG, NG FERN LAN, SEET HANG LI, LU WENJUN, LIEBSCHER CHRISTIAN H., RAO ZIYUAN, RAABE DIERK, MUI LING NAI SHARON: "Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation", MATERIALS TODAY, ELSEVIER, AMSTERDAM, NL, vol. 52, 1 January 2022 (2022-01-01), AMSTERDAM, NL , pages 90 - 101, XP093145505, ISSN: 1369-7021, DOI: 10.1016/j.mattod.2021.11.019 *

Also Published As

Publication number Publication date
CN117684056A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN111496244B (zh) 一种增材制造高强铝合金粉及其制备方法和应用
WO2023019697A1 (zh) 一种用于3d打印的高强铝合金粉及其制备方法
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN111593234A (zh) 一种激光增材制造用铝合金材料
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
CN112853168A (zh) 一种AlSi10Mg粉末及激光选区熔化制造工艺
WO2021000617A1 (zh) 含有TiB2陶瓷颗粒的铝合金粉末及其应用
CN112048647A (zh) 一种激光增材制造用Al-Si-Mg-Sc-Zr铝合金粉末
CN110711862A (zh) 一种6系铝合金的3d打印专用合金的制备方法
CN111850332A (zh) 一种高强度铝锌合金的3d打印工艺方法
CN115194140A (zh) Al-Mg-Sc-Zr系铝基复合粉末及其制备方法和应用
WO2022000893A1 (zh) 一种无稀土元素的3d打印用铝合金
WO2024046478A1 (zh) 高强铝合金粉末及其制备方法、高强铝合金零件及其增材制造方法
CN107142403B (zh) 一种石墨烯和准晶复合强化的镁基复合材料及其制备方法
WO2023168874A1 (zh) 一种slm专用高强铝合金及其slm成形的方法
CN111842914A (zh) 一种高强度铝铜合金的3d打印工艺方法
JPS63312901A (ja) 耐熱性高力a1合金粉末及びそれを用いたセラミック強化型耐熱a1合金複合材料
JPH0578762A (ja) 強度に優れたTiAl基複合材料およびその製造方法
CN110819860B (zh) 一种铝铜锰多孔复合材料及其制备方法和用途
JP2024505349A (ja) 高い熱伝導率を有する粉状材料
AU2021100222A4 (en) Aluminum alloy powder containing tib2 ceramic particles and application thereof
CN117245084B (zh) 一种3d打印用高强耐温铝合金粉末及其制备方法和应用
CN117778835A (zh) 一种高强度Al-Mg-Sc-Zr合金及其制备方法
CN117265350A (zh) 一种航空发动机专用3d打印铝合金粉末、制备方法、其应用和3d打印方法
CN116422880B (zh) 一种3d打印用的高强度铝合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859505

Country of ref document: EP

Kind code of ref document: A1