WO2021000617A1 - 含有TiB2陶瓷颗粒的铝合金粉末及其应用 - Google Patents

含有TiB2陶瓷颗粒的铝合金粉末及其应用 Download PDF

Info

Publication number
WO2021000617A1
WO2021000617A1 PCT/CN2020/083119 CN2020083119W WO2021000617A1 WO 2021000617 A1 WO2021000617 A1 WO 2021000617A1 CN 2020083119 W CN2020083119 W CN 2020083119W WO 2021000617 A1 WO2021000617 A1 WO 2021000617A1
Authority
WO
WIPO (PCT)
Prior art keywords
tib
aluminum alloy
alloy powder
ceramic particles
powder containing
Prior art date
Application number
PCT/CN2020/083119
Other languages
English (en)
French (fr)
Inventor
吴一
夏存娟
廉清
王浩伟
谢薇
王鹏举
肖亚开
Original Assignee
上海交通大学
安徽相邦复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 安徽相邦复合材料有限公司 filed Critical 上海交通大学
Publication of WO2021000617A1 publication Critical patent/WO2021000617A1/zh
Priority to AU2021100222A priority Critical patent/AU2021100222A4/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of material preparation and relates to an aluminum alloy containing ceramic particles.
  • Laser additive manufacturing uses a laser as a heat source to melt metal powder, based on three-dimensional model data, and constructs entities by layer-by-layer manufacturing.
  • Laser additive manufacturing technology breaks the limitations of molds and shortens the material development cycle. It can also reduce weight without losing strength through topology optimization and lattice structure. It has a broad field of high-end fields such as aerospace, national defense and military. Application prospects.
  • Aluminum alloy has the characteristics of low density and high specific strength. It is one of the important raw materials in the fields of aerospace, national defense and military industry. However, due to the disadvantages of poor fluidity, high laser reflectivity, and easy oxidation of aluminum, samples formed by laser additive manufacturing often have many defects. Current research and applications are mostly limited to Al-Si alloys, such as A356, AlSi10Mg, AlSi12 Etc. This is due to the good casting properties of Al-Si alloys, such as better fluidity and lower shrinkage. However, the mechanical properties of Al-Si alloys are far from meeting the requirements for use, which are manifested in low strength and poor plasticity.
  • the purpose of the present invention is to provide an aluminum alloy powder containing TiB 2 ceramic particles and an application thereof, so as to overcome the defects of the prior art and meet people's needs.
  • the aluminum alloy powder containing TiB 2 ceramic particles contains Mg, Sc, Zr, Mn and TiB 2 ;
  • the method specified in ASTM B557-15 is used for testing. After heat treatment, the yield strength is 530MPa ⁇ 545MPa; the tensile strength is 530MPa ⁇ 550MPa, and the elongation after fracture is 1.5%-6.5%;
  • the aluminum alloy powder containing TiB 2 ceramic particles includes the following mass fraction components:
  • Mg 3.0-15.0%, preferably 4.0-6.0%
  • Zr 0.1-3.0%, preferably, 0.1-1.0%
  • Mn 0.1-2.0%, preferably 0.1-1.0%
  • TiB 2 0.5-12.0%, preferably 1.0-6.0%, particularly preferably 1.0-4.5%,
  • the balance is Al and unavoidable impurities
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000nm;
  • a vacuum atomization process can be used to prepare powders with better sphericity and higher laser absorption.
  • the use of the aluminum alloy powder for laser additive manufacturing can improve uneven powder spreading, heat accumulation and other problems, thereby reducing defects and cracks in the forming process and improving forming quality.
  • the above-mentioned aluminum alloy contains Mg in a mass fraction of 3.0-15.0%, preferably 4.0-6.0%.
  • Al-Mg alloy has good corrosion resistance, heat resistance, especially excellent weldability, making it suitable for laser additive manufacturing.
  • the Mg element has a large solid solubility in the Al matrix, and can also form Mg 5 Al 8 , Mg 2 Al 3 and other reinforcing phases with the Al matrix, which plays a role of solid solution strengthening and dispersion strengthening.
  • the above-mentioned aluminum alloy contains Sc in a mass fraction of 0.1-3.0%, preferably 0.1-1.0%.
  • Sc element and Al matrix form Al 3 Sc particles, which can provide an effective nucleation base for the matrix, increase the nucleation rate, and greatly refine the grain size.
  • the above-mentioned aluminum alloy contains Zr in a mass fraction of 0.1-3.0%, preferably 0.1-1.0%.
  • the addition of Zr element can replace part of Sc atoms to form Al 3 (Sc, Zr) x particles, which have better thermal stability and improve the high temperature mechanical properties of the material.
  • the above-mentioned aluminum alloy contains Mn in a mass fraction of 0.1-2.0%, preferably 0.1-1.0%.
  • Mn element can form MnAl 6 dispersed particles with Al matrix and hinder the growth of crystal grains; Mn element can also dissolve the impurity element Fe to form (Fe, Mn)Al 6 particles, reducing the harmful effects of Fe.
  • the above-mentioned aluminum alloy contains TiB 2 in a mass fraction of 0.5-12.0%, preferably 1.0-6.0%, and particularly preferably 1.0-4.5%.
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000 nm.
  • TiB 2 particles can not only be used as an effective nucleation substrate for Al to refine the grain size; it can also affect the diffusion rate of alloying elements Sc, Zr, and Mn, and improve the morphology and distribution of the second phase.
  • TiB 2 particles can also improve the heat distribution during the laser additive manufacturing process, and reduce residual stress and anisotropy.
  • step A2 Mix KBF 4 and K 2 TiF 6 uniformly, add them to the melt obtained in step A1 after drying, and react with stirring.
  • the reaction time is 5-60 min, and the scum is removed;
  • the mass ratio of KBF 4 to K 2 TiF 6 is 1:0.5 to 1:2;
  • step A3 Add Al-Zr master alloy, Al-Sc master alloy, Al-Mn master alloy and Mg to the melt obtained in step A2, degas and refine, temperature 650 ⁇ 900°C, time 10 ⁇ 20min, strip off float Slag
  • step A4 Gas atomize the melt obtained in step A3 to obtain the aluminum alloy powder.
  • the described aerosolization is a conventional technology, which can be referred to the method reported in patent CN107262730A. Specifically, it includes the following steps:
  • the melt is heated to 700-1000°C, and atomized under the protection of Ar and/or He gas, the atomization pressure is 0.5-10MPa, and the nozzle diameter used for atomization is 0.5-5mm.
  • the aluminum alloy powder containing TiB 2 ceramic particles is particularly suitable for laser additive manufacturing and includes the following steps:
  • the aluminum alloy powder provided by the present invention is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and a metal printer is used to prepare the sample drawn in step S1;
  • step S3 Perform subsequent heat treatment on the sample obtained in step S2 to further improve performance.
  • the Selective Laser Melting (SLM) technology is used in step S2, the laser power is 150-350 W, the scanning speed is 200-2000 mm/s, the scanning interval is 0.05-0.20 mm, and the layer thickness is 30-40 ⁇ m.
  • SLM Selective Laser Melting
  • the heat treatment process in step S3 is a heating temperature of 300-350°C, a holding time of 1-8h, and air cooling.
  • the sample density of the aluminum alloy powder containing TiB 2 ceramic particles after being formed by SLM can reach more than 99%, the yield strength after heat treatment is 540MPa, the tensile strength is 550MPa, the elongation after fracture is 6.2%, and there is no obvious difference.
  • Anisotropy can meet the needs of applications in related fields.
  • test method of performance parameters can adopt the method specified in ASTM B557-15 standard.
  • the balance is Al and unavoidable impurities.
  • the preparation method is as follows:
  • the melt is heated to 850°C, and atomized under the protection of Ar gas, the atomization pressure is 3.0MPa, and the diameter of the nozzle used for atomization is 4.0mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 250W, scanning speed 800mm/s, scanning distance 0.10mm, and layer thickness 30 ⁇ m;
  • the density of the sample formed by the powder through SLM can reach more than 99%, the yield strength after heat treatment is 540MPa, the tensile strength is 550MPa, the elongation after fracture is 6.2%, and there is no obvious anisotropy.
  • the balance is Al and unavoidable impurities.
  • the preparation method is as follows:
  • the melt is heated to 820°C, and atomized under the protection of He gas, the atomization pressure is 3.5MPa, and the diameter of the nozzle used for atomization is 4.2mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed by SLM technology.
  • the process parameters are laser power 225W, scanning speed 1000mm/s, scanning distance 0.15mm, and layer thickness 40 ⁇ m;
  • the density of the sample after the powder is formed by SLM can reach more than 99%, the yield strength after heat treatment is 530MPa, the tensile strength is 538MPa, the elongation after fracture is 4.4%, and there is no obvious anisotropy.
  • the balance is Al and unavoidable impurities.
  • the preparation method is as follows:
  • the melt is heated to 820°C, and atomized under the protection of He gas, the atomization pressure is 3.5MPa, and the diameter of the nozzle used for atomization is 4.2mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 175W, scanning speed 500mm/s, scanning distance 0.05mm, and layer thickness 40 ⁇ m;
  • the density of the sample after the powder is formed by SLM can reach more than 99%, the yield strength after heat treatment is 535MPa, the tensile strength is 548MPa, the elongation after fracture is 2.6%, and there is no obvious anisotropy.
  • the balance is Al and unavoidable impurities.
  • the preparation method is as follows:
  • the melt is heated to 850°C, and atomized under the protection of He gas, the atomization pressure is 3.0MPa, and the diameter of the nozzle used for atomization is 4.0mm, to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 325W, scanning speed 1500mm/s, scanning distance 0.17mm, and layer thickness 40 ⁇ m;
  • the density of the sample formed by the powder through SLM can reach more than 99%, the yield strength after heat treatment is 545MPa, the tensile strength is 546MPa, the elongation after fracture is 1.8%, and there is no obvious anisotropy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种含有TiB 2陶瓷颗粒的铝合金粉末及其应用,该铝合金粉末含有Mg:3.0-15.0%,Sc:0.1-3.0%,Zr:0.1-3.0%,Mn:0.1-2.0%,TiB 2:0.5-12.0%,余量为Al和不可避免的杂质。该铝合金粉末可用于激光增材制造,能够满足相关领域应用的需要。

Description

含有TiB 2陶瓷颗粒的铝合金粉末及其应用 技术领域
本发明属于材料制备技术领域,涉及一种含有陶瓷颗粒的铝合金。
背景技术
激光增材制造是以激光器作为熔化金属粉末的热源,以三维模型数据为基础,通过逐层制造的方式来构造实体。激光增材制造技术打破了模具的限制,缩短了材料研发周期,还能够通过拓扑优化和点阵结构,在不损失强度的情况下减轻重量,在航空航天、国防军工等高尖端领域具有广阔的应用前景。
铝合金具有密度小、比强度高等特点,是航空航天、国防军工等领域重要原材料之一。然而,铝由于流动性差、激光反射率高、易氧化等缺点,通过激光增材制造成形后试样往往存在较多缺陷,目前研究和应用大多局限在Al-Si合金,如A356、AlSi10Mg、AlSi12等,这是由于Al-Si合金具有良好的铸造性能,如流动性较好和收缩率较低。但是,Al-Si合金的力学性能远远达不到使用要求,表现在强度较低,塑性较差。
为了解决铝合金激光增材制造的难题,国内外研究学者将目光投向了Al-Mg合金,添加Sc、Zr等合金元素,使得合金能够通过后续热处理形成Al 3(Sc,Zr) x粒子,具有显著的强化作用和热稳定性,可以使用激光增材制造技术成形获得高强度、高塑性工件。但是,AlMgScZr合金的强度仍然不能满足使用要求。
因此,扩宽适用于激光增材制造的铝合金体系,进一步提高成形工件的强度尤为重要。
发明内容
本发明的目的是提供一种含有TiB 2陶瓷颗粒的铝合金粉末及其应用,以克服现有技术存在的缺陷,满足人们的需要。
所述的含有TiB 2陶瓷颗粒的铝合金粉末,含有Mg、Sc、Zr、Mn和TiB 2
采用ASTM B557-15标准规定的方法进行检测,热处理后屈服强度为530MPa~545MPa;抗拉强度为530MPa~550MPa,断后延伸率为1.5%-6.5%;
优选的,所述的含有TiB 2陶瓷颗粒的铝合金粉末,包括如下质量分数的组分:
Mg:3.0-15.0%,优选地,4.0-6.0%
Sc:0.1-3.0%,优选地,0.1-1.0%
Zr:0.1-3.0%,优选地,0.1-1.0%
Mn:0.1-2.0%,优选地,0.1-1.0%
TiB 2:0.5-12.0%,优选地,1.0-6.0%,特别优选的为1.0-4.5%,
余量为Al和不可避免的杂质;
所述TiB 2以陶瓷颗粒的形式存在,颗粒尺寸为5-2000nm;
通过所选的铝合金,能够采用真空气雾化工艺制备得到球形度较好、激光吸收率较高的粉末。使用该铝合金粉末进行激光增材制造,能够改善铺粉不均、热量积累等问题,从而减少成形过程中的缺陷和裂纹,提高成形质量。
上述铝合金包含Mg的质量分数为3.0-15.0%,优选地,4.0-6.0%。Al-Mg 合金具有良好的耐蚀性、耐热性,尤其是具有优良的可焊性,使其适用于激光增材制造。此外,Mg元素在Al基体的固溶度较大,还可以和Al基体形成Mg 5Al 8、Mg 2Al 3等增强相,起到固溶强化和弥散强化的作用。
上述铝合金包含Sc的质量分数为0.1-3.0%,优选地,0.1-1.0%。Sc元素和Al基体形成Al 3Sc粒子,可以为基体提供有效的形核基底,提高形核率,极大地细化晶粒尺寸。
上述铝合金包含Zr的质量分数为0.1-3.0%,优选地,0.1-1.0%。Zr元素的添加能够代替部分Sc原子,形成Al 3(Sc,Zr) x粒子,具有更好的热稳定性,提高材料的高温力学性能。
上述铝合金包含Mn的质量分数为0.1-2.0%,优选地,0.1-1.0%。Mn元素的添加能够和Al基体形成MnAl 6弥散质点,阻碍晶粒长大;Mn元素还能溶解杂质元素Fe,形成(Fe,Mn)Al 6粒子,减小Fe的有害影响。
上述铝合金包含TiB 2的质量分数为0.5-12.0%,优选地,1.0-6.0%,特别优选的为,1.0-4.5%。所述TiB 2以陶瓷颗粒的形式存在,颗粒尺寸为5-2000nm。TiB 2颗粒不仅可以作为Al的有效形核基底,细化晶粒尺寸;还能够影响合金元素Sc、Zr、Mn的扩散速度,改善第二相的形貌和分布。特别地,TiB 2颗粒还能改善激光增材制造成形过程中的热量分布,降低残余应力和各向异性。
所述的含有TiB 2陶瓷颗粒的铝合金粉末的制备方法可参见专利CN100999018A报道的方法,具体的,包括如下步骤:
A1、将铝加热,升温至650~900℃,获得熔体;
A2、将KBF 4、K 2TiF 6均匀混合,烘干后加入步骤A1得到的熔体中, 搅拌进行反应,优选地,反应时间为5-60min,扒去浮渣;
优选地,步骤A2中,所述KBF 4、K 2TiF 6的质量比为1∶0.5~1∶2;
A3、在步骤A2得到的熔体中依次加入Al-Zr中间合金、Al-Sc中间合金、Al-Mn中间合金以及Mg,除气精炼,温度650~900℃,时间10~20min,扒去浮渣;
A4、将步骤A3获得的熔体进行气雾化,即得所述铝合金粉末。
所述的气雾化为常规的技术,可参见专利CN107262730A报道的方法,具体的,包括如下步骤:
熔体升温至700~1000℃,使用Ar和/或He气体保护下进行雾化,雾化气压0.5~10MPa,雾化采用的喷嘴直径0.5~5mm。所述的含有TiB 2陶瓷颗粒的铝合金粉末的尤其适用于激光增材制造,包括如下步骤:
S1、通过制图软件绘制所需加工样品的三维图形,保存为STL格式;
S2、将本发明提供的铝合金粉末,通过筛分留下粒径范围为15~53μm的粉末,使用金属打印机制备得到步骤S1所绘样品;
S3、对步骤S2得到样品进行后续热处理,以进一步提升性能。
优选地,步骤S2中使用激光选区熔化(SelectiveLaserMelting,SLM)技术,激光功率为150~350W,扫描速度为200~2000mm/s,扫描间距为0.05~0.20mm,层厚为30~40μm。
优选地,步骤S3中的热处理工艺为加热温度300-350℃,保温时间1-8h,空冷。
本发明的有益效果是:
通过测试,所述的含有TiB 2陶瓷颗粒的铝合金粉末通过SLM成形后的 样品致密度可达99%以上,热处理后屈服强度540MPa,抗拉强度550MPa,断后延伸率6.2%,且无明显各向异性,能够满足相关领域应用的需要。
具体实施方式
实施例中,性能参数的试验方法,可采用ASTM B557-15标准规定的方法。
实施例1
配方:(重量百分比)
Mg:4.5wt%
Sc:0.9wt%
Zr:0.5wt%
Mn:0.5wt%
TiB 2:1.4wt%
余量为Al和不可避免的杂质。
制备方法如下:
1.将铝加热,升温至700℃,获得熔体;
2.将质量比为1∶1.5的KBF 4、K 2TiF 6混合,烘干后加入熔体中,搅拌反应30min,扒去浮渣;
3.依次加入Al-Zr中间合金、Al-Sc中间合金、Al-Mn中间合金及Mg,除气精炼,控制温度为750℃静置15min,扒去浮渣;
4.将熔体升温至850℃,使用Ar气保护下进行雾化,雾化气压3.0MPa,雾化采用的喷嘴直径4.0mm,即得所述铝合金粉末;
5.上述铝合金粉末通过筛分留下粒径范围为15~53μm的粉末,使用SLM技术成形得到样品,工艺参数为激光功率250W,扫描速度800mm/s, 扫描间距0.10mm,层厚30μm;
6.对成形样品进行热处理,加热至325℃保温2h。
通过测试,该粉末通过SLM成形后的样品致密度可达99%以上,热处理后屈服强度540MPa,抗拉强度550MPa,断后延伸率6.2%,且无明显各向异性。
实施例2
配方:
Mg:5.6wt%
Sc:0.2wt%
Zr:0.1wt%
Mn:0.2wt%
TiB 2:4.2wt%
余量为Al和不可避免的杂质。
制备方法如下:
1.将铝加热,升温至680℃,获得熔体;
2.将质量比为1∶1.5的KBF 4、K 2TiF 6混合,烘干后加入熔体中,搅拌反应30min,扒去浮渣;
3.依次加入Al-Zr中间合金、Al-Sc中间合金、Al-Mn中间合金及Mg,除气精炼,控制温度为720℃静置15min,扒去浮渣;
4.将熔体升温至820℃,使用He气保护下进行雾化,雾化气压3.5MPa,雾化采用的喷嘴直径4.2mm,即得所述铝合金粉末;
5.上述铝合金粉末通过筛分留下粒径范围为15~53μm的粉末,使用 SLM技术成形得到样品,工艺参数为激光功率225W,扫描速度1000mm/s,扫描间距0.15mm,层厚40μm;
6.对成形样品进行热处理,加热至350℃保温1h。
通过测试,该粉末通过SLM成形后的样品致密度可达99%以上,热处理后屈服强度530MPa,抗拉强度538MPa,断后延伸率4.4%,且无明显各向异性。
实施例3
配方:
Mg:14.2wt%
Sc:1.5wt%
Zr:1.5wt%
Mn:0.1wt%
TiB 2:11.8wt%
余量为Al和不可避免的杂质。
制备方法如下:
1.将铝加热,升温至660℃,获得熔体;
2.将质量比为1∶1.5的KBF 4、K 2TiF 6混合,烘干后加入熔体中,搅拌反应30min,扒去浮渣;
3.依次加入Al-Zr中间合金、Al-Sc中间合金、Al-Mn中间合金及Mg,除气精炼,控制温度为720℃静置15min,扒去浮渣;
4.将熔体升温至820℃,使用He气保护下进行雾化,雾化气压3.5MPa,雾化采用的喷嘴直径4.2mm,即得所述铝合金粉末;
5.上述铝合金粉末通过筛分留下粒径范围为15~53μm的粉末,使用SLM技术成形得到样品,工艺参数为激光功率175W,扫描速度500mm/s,扫描间距0.05mm,层厚40μm;
6.对成形样品进行热处理,加热至300℃保温6h。
通过测试,该粉末通过SLM成形后的样品致密度可达99%以上,热处理后屈服强度535MPa,抗拉强度548MPa,断后延伸率2.6%,且无明显各向异性。
实施例4
配方:(重量百分比)
Mg:3.5wt%
Sc:2.2wt%
Zr:2.0wt%
Mn:1.2wt%
TiB 2:5.6wt%
余量为Al和不可避免的杂质。
制备方法如下:
1.将铝加热,升温至720℃,获得熔体;
2.将质量比为1∶1.5的KBF 4、K 2TiF 6混合,烘干后加入熔体中,搅拌反应30min,扒去浮渣;
3.依次加入Al-Zr中间合金、Al-Sc中间合金、Al-Mn中间合金及Mg,除气精炼,控制温度为750℃静置15min,扒去浮渣;
4.将熔体升温至850℃,使用He气保护下进行雾化,雾化气压3.0MPa, 雾化采用的喷嘴直径4.0mm,即得所述铝合金粉末;
5.上述铝合金粉末通过筛分留下粒径范围为15~53μm的粉末,使用SLM技术成形得到样品,工艺参数为激光功率325W,扫描速度1500mm/s,扫描间距0.17mm,层厚40μm;
6.对成形样品进行热处理,加热至300℃保温6h。
通过测试,该粉末通过SLM成形后的样品致密度可达99%以上,热处理后屈服强度545MPa,抗拉强度546MPa,断后延伸率1.8%,且无明显各向异性。

Claims (10)

  1. 含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,含有Mg、Sc、Zr、Mn和TiB 2颗粒,采用ASTM B557-15标准规定的方法进行检测,热处理后屈服强度为530MPa~545MPa;抗拉强度为530MPa~550MPa,断后延伸率为1.5%-6.5%。
  2. 根据权利要求1所述的含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,所述的TiB 2颗粒,质量含量为0.5-12.0%。
  3. 含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,包括如下质量分数的组分:
    Mg:3.0-15.0%
    Sc:0.1-3.0%
    Zr:0.1-3.0%
    Mn:0.1-2.0%
    TiB 2:0.5-12.0%
    余量为Al和不可避免的杂质。
  4. 根据权利要求3所述的含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,包括如下质量分数的组分:
    Mg:4.0-6.0%
    Sc:0.1-1.0%
    Zr:0.1-1.0%
    Mn:0.1-1.0%
    TiB 2:1.0-6.0%
    余量为Al和不可避免的杂质。
  5. 根据权利要求3所述的含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,包括如下质量分数的组分:
    Mg:4.0-6.0%
    Sc:0.1-1.0%
    Zr:0.1-1.0%
    Mn:0.1-1.0%
    TiB 2:1.0-4.5%
    余量为Al和不可避免的杂质。
  6. 根据权利要求1~5任一项所述的含有TiB 2陶瓷颗粒的铝合金粉末,其特征在于,所述TiB 2以陶瓷颗粒的形式存在,颗粒尺寸为5-2000nm。
  7. 根据权利要求1~6任一项所述的含有TiB 2陶瓷颗粒的铝合金粉末的应用,其特征在于,用于激光增材制造。
  8. 根据权利要求7所述的应用,其特征在于,应用方法,包括如下步骤:
    S1、通过制图软件绘制所需加工样品的三维图形,保存为STL格式;
    S2、将本发明提供的铝合金粉末,通过筛分留下粒径范围为15~53μm的粉末,使用金属打印机制备得到步骤S1所绘样品;
    S3、对步骤S2得到样品进行后续热处理。
  9. 根据权利要求8所述的应用,其特征在于,步骤S2中使用激光选区熔化技术。
  10. 根据权利要求9所述的应用,其特征在于,步骤S2中使用激光选区熔化技术,激光功率为150~350W,扫描速度为200~2000mm/s,扫描间距为0.05~0.20mm,层厚为30~40μm,步骤S3中的热处理加热温度300-350℃,保温时间1-8h,空冷。
PCT/CN2020/083119 2019-07-01 2020-04-03 含有TiB2陶瓷颗粒的铝合金粉末及其应用 WO2021000617A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021100222A AU2021100222A4 (en) 2019-07-01 2021-01-14 Aluminum alloy powder containing tib2 ceramic particles and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910585559.8 2019-07-01
CN201910585559.8A CN110229978A (zh) 2019-07-01 2019-07-01 含有TiB2陶瓷颗粒的铝合金粉末及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021100222A Division AU2021100222A4 (en) 2019-07-01 2021-01-14 Aluminum alloy powder containing tib2 ceramic particles and application thereof

Publications (1)

Publication Number Publication Date
WO2021000617A1 true WO2021000617A1 (zh) 2021-01-07

Family

ID=67857619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083119 WO2021000617A1 (zh) 2019-07-01 2020-04-03 含有TiB2陶瓷颗粒的铝合金粉末及其应用

Country Status (2)

Country Link
CN (1) CN110229978A (zh)
WO (1) WO2021000617A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996809A (zh) * 2021-11-05 2022-02-01 安徽工程大学 一种TiB2颗粒增强增材制造高强Al-Mg-Sc合金材料的制备工艺
CN115430843A (zh) * 2022-08-16 2022-12-06 上海交通大学 一种双相颗粒增强增材铝合金及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229978A (zh) * 2019-07-01 2019-09-13 上海交通大学 含有TiB2陶瓷颗粒的铝合金粉末及其应用
CN115044806B (zh) * 2022-06-17 2023-04-18 大连科天新材料有限公司 一种铝合金添加剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113696A (ja) * 2014-12-15 2016-06-23 ベ イ,ゴン アルミニウム基地複合材料の製造方法及びこれにより製造されたアルミニウム基地複合材料
CN108315577A (zh) * 2018-02-02 2018-07-24 上海交通大学 激光增材制造用7xxx系原位铝基复合材料粉末及制备
CN108372292A (zh) * 2018-01-31 2018-08-07 上海交通大学 一种激光增材制造用铝基复合材料粉末及其制备方法
CN108380865A (zh) * 2018-01-31 2018-08-10 上海交通大学 激光增材制造用6xxx系原位铝基复合材料粉末及制备
CN108465807A (zh) * 2018-03-20 2018-08-31 中南大学 一种高强度Al-Mg-Sc合金粉末、其制备方法、在3D打印中的应用及其3D打印方法
CN108660332A (zh) * 2018-04-11 2018-10-16 上海交通大学 原位铝基复合材料的制备方法
CN110229978A (zh) * 2019-07-01 2019-09-13 上海交通大学 含有TiB2陶瓷颗粒的铝合金粉末及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113696A (ja) * 2014-12-15 2016-06-23 ベ イ,ゴン アルミニウム基地複合材料の製造方法及びこれにより製造されたアルミニウム基地複合材料
CN108372292A (zh) * 2018-01-31 2018-08-07 上海交通大学 一种激光增材制造用铝基复合材料粉末及其制备方法
CN108380865A (zh) * 2018-01-31 2018-08-10 上海交通大学 激光增材制造用6xxx系原位铝基复合材料粉末及制备
CN108315577A (zh) * 2018-02-02 2018-07-24 上海交通大学 激光增材制造用7xxx系原位铝基复合材料粉末及制备
CN108465807A (zh) * 2018-03-20 2018-08-31 中南大学 一种高强度Al-Mg-Sc合金粉末、其制备方法、在3D打印中的应用及其3D打印方法
CN108660332A (zh) * 2018-04-11 2018-10-16 上海交通大学 原位铝基复合材料的制备方法
CN110512111A (zh) * 2018-04-11 2019-11-29 上海交通大学 原位铝基复合材料的制备方法
CN110229978A (zh) * 2019-07-01 2019-09-13 上海交通大学 含有TiB2陶瓷颗粒的铝合金粉末及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996809A (zh) * 2021-11-05 2022-02-01 安徽工程大学 一种TiB2颗粒增强增材制造高强Al-Mg-Sc合金材料的制备工艺
CN115430843A (zh) * 2022-08-16 2022-12-06 上海交通大学 一种双相颗粒增强增材铝合金及其制备方法

Also Published As

Publication number Publication date
CN110229978A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2021000617A1 (zh) 含有TiB2陶瓷颗粒的铝合金粉末及其应用
CN109175350B (zh) 一种用于增材制造的Al-Mg-Mn-Sc-Zr铝合金粉末及其制备方法
WO2021000618A1 (zh) 激光增材制造用铝合金粉末及其应用
CN109280820B (zh) 一种用于增材制造的高强度铝合金及其粉末的制备方法
WO2023019697A1 (zh) 一种用于3d打印的高强铝合金粉及其制备方法
CN111778433B (zh) 一种3d打印用铝合金粉末材料及其制备方法与应用
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN103831422B (zh) 一种Al-Si系铝合金组织的纳米细化方法
CN109576536A (zh) 一种3d打印专用铝锰合金粉末配方及其制备方法和打印方法
CN108372292A (zh) 一种激光增材制造用铝基复合材料粉末及其制备方法
CN102086023B (zh) 溶胶--凝胶结合铝热反应原位合成方法及用该方法合成的FeNiCrTi/NiAl-Al2O3纳米复合材料
CN109202062B (zh) 一种用于增材制造的Al-Mg-Li-Sc-Zr铝合金粉末及其制备方法
CN108998699B (zh) 一种铝锂基复合材料粉末及其制备方法和应用
CN111659882A (zh) 一种用于3d打印的铝镁合金粉末及其制备方法
WO2018059322A1 (zh) 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法
CN110144500B (zh) 一种含锑高强高韧铝硅合金及制备方法
CN111673085A (zh) 一种高强度铝镁硅合金的3d打印工艺方法
CN112048647A (zh) 一种激光增材制造用Al-Si-Mg-Sc-Zr铝合金粉末
CN111843281B (zh) 铝合金焊丝的制备方法和铝合金焊丝
CN108866397A (zh) 高导热铝合金材料的制备方法及高导热铝合金
CN112916868A (zh) 一种光固化3d打印金属件及其制备方法
CN111850332A (zh) 一种高强度铝锌合金的3d打印工艺方法
CN115261686A (zh) 3d打印铝镁合金粉末及其制备方法与应用
CN111842916A (zh) 一种用于3d打印的铝镁硅合金粉末及其制备方法
WO2014205608A1 (zh) 一种纳米级碳化硅镁合金材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835584

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20835584

Country of ref document: EP

Kind code of ref document: A1