WO2018059322A1 - 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法 - Google Patents

铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法 Download PDF

Info

Publication number
WO2018059322A1
WO2018059322A1 PCT/CN2017/102935 CN2017102935W WO2018059322A1 WO 2018059322 A1 WO2018059322 A1 WO 2018059322A1 CN 2017102935 W CN2017102935 W CN 2017102935W WO 2018059322 A1 WO2018059322 A1 WO 2018059322A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
melt
aluminum
aluminium alloy
alloy composition
Prior art date
Application number
PCT/CN2017/102935
Other languages
English (en)
French (fr)
Inventor
吴树森
刘金
熊歆晨
吕书林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059322A1 publication Critical patent/WO2018059322A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present disclosure relates to the field of non-ferrous metal materials, and in particular to an aluminum alloy composition, an aluminum alloy component, a communication product, and a method of preparing an aluminum alloy component.
  • Al and Si are extremely abundant elements in nature, with a wide range of sources and low cost. Among them, pure Al has high plasticity, low density and excellent thermal conductivity. Si has a low coefficient of thermal expansion and high hardness, and the Al-Si alloy prepared from them inherits a series of excellent properties of both.
  • Aluminum has a high thermal conductivity, and the thermal conductivity of pure aluminum reaches 238 W/(m.K), but the thermal expansion coefficient of pure aluminum is large, reaching 23.6 ⁇ 10 -6 /°C.
  • Silicon has a small coefficient of thermal expansion of only 4.1 ⁇ 10 -6 / ° C, so the coefficient of thermal expansion of aluminum alloy can be reduced by adding Si.
  • the thermal conductivity is lowered after the addition of Si element, especially when more than 10% of Si is added, and the thermal conductivity of the aluminum-silicon alloy is greatly reduced.
  • Related Art There have been some studies on the thermal conductivity of some low-Si aluminum alloys, but the thermal conductivity of high-silicon aluminum alloys is rarely studied, and the thermal conductivity of the aluminum alloys with 16-18% Si is currently low.
  • the thermal conductivity of the Japanese brand ADC12 aluminum alloy is 92W/(m.K); the thermal conductivity of the AC9B grade aluminum alloy containing 18-20% Si is 110W/(m.K), and so on.
  • the alloy elements in the grade alloys are more numerous and the content is also large, which also causes the thermal conductivity to decrease.
  • the low thermal conductivity of the above alloys cannot meet the application requirements of many fields, such as electronic product substrates requiring high thermal conductivity.
  • the hypereutectic aluminum-silicon alloy can be divided into three groups according to the silicon content.
  • Group I contains 17% to 19% of silicon;
  • Group II contains 20% to 23% of silicon;
  • Group III contains 24% to 26% of silicon.
  • the first two groups have certain plasticity, the casting performance is acceptable, and the use is more; while the last group has lower thermal expansion coefficient, better wear resistance and corrosion resistance, but the brittleness is too large, the crystallization temperature range is wide, and the casting performance is good. Poor and difficult to machine, except for the use of high-speed motorcycles or racing car pistons, are rarely used.
  • high-silicon aluminum alloys In addition to its application in the field of automotive production, high-silicon aluminum alloys have better thermal conductivity, lower thermal expansion coefficient, lighter weight, and high strength and rigidity than other alloys, and can be plated with gold, silver, copper and nickel. It can be soldered to the substrate, and it is easy to be processed with precision and non-toxic. It meets the requirements of electronic packaging technology in the direction of miniaturization, light weight and high-density assembly. Therefore, the prospect of using high-silicon aluminum alloy as a new electronic package has gradually become more and more important. Known by people. However, it can be used as an electronic package The material's lightweight high-silicon aluminum alloy has a silicon content of up to 30% to 50% or more.
  • the conventional smelting casting method has the advantages of simple equipment and low cost, and can realize large-scale industrial production, the material obtained by the production of primary silicon and eutectic silicon is coarse in size, even if a method of adding a modifier is used. Come to new questions. Therefore, the high silicon aluminum alloy is generally produced by a conventional powder metallurgy method or a spray deposition method.
  • the successful methods are quenched solidification powder metallurgy or spray deposition, the principle of which is to make Al-Si alloy droplets at 10 3 ⁇ 10 6 ° C / s.
  • the solidification under high-speed cooling causes the microstructure to be refined, and the primary Si can be refined to 2 ⁇ m to 10 ⁇ m, and the strength of the material can be as high as 400 MPa.
  • the method of spray-depositing high-silicon aluminum alloy (ZL00124660.7) which was invented by Zhang Jishan and others of Beijing University of Science and Technology, used Fe-deposited technology to prepare Al-(16 ⁇ 45%) Si alloy, adding Fe and Mn elements.
  • U.S. Patent No. 6,669,792 discloses a process for producing a hypereutectic Al-Si alloy by controlling the Si:Mg ratio (15-35) and the Cu:Mg ratio (4-15) to improve performance.
  • the Al-Si alloy material prepared by the spray milling or extrusion casting method can have a silicon content of 50% to 70%.
  • the aluminum liquid is extruded into the preform, and the material is mainly used in the field of electronic packaging, and should be attributed to the composite material or the functional material.
  • the silicon content of parts used as structural materials manufactured by liquid forming or semi-solid forming methods should generally be less than 26%.
  • the main object of the present disclosure is to provide a method for preparing an aluminum alloy composition, an aluminum alloy component, a communication product, and an aluminum alloy component to solve the problem of low casting performance of a high thermal conductivity and low expansion aluminum alloy in the related art.
  • an aluminum alloy composition comprising an aluminum body and a doping element, the doping element comprising 18% to 22% of Si, based on the total weight of the aluminum alloy composition, 0.2% to 0.95% Cu, 0.25% to 2% Fe, 0.05% to 0.2% Mg, and 0.04% to 0.08% P.
  • the weight percentage of the above Cu in the aluminum alloy combination is 0.2 to 0.9%.
  • weight percentage of the above P in the aluminum alloy combination is 0.04 to 0.06%.
  • an aluminum alloy member prepared by using any of the above aluminum alloy compositions as a raw material, and a weight percentage of P in the aluminum alloy member is 0.02% or less.
  • the weight percentage of the above P in the aluminum alloy member is 0.01% or less.
  • a communication product comprising a housing prepared using any of the above-described aluminum alloy compositions.
  • a method for preparing an aluminum alloy component comprising the above aluminum alloy composition as a raw material, the preparation method comprising: step S1, melting silicon and aluminum to form a silicon aluminum melt; Step S2, adding magnesium and iron to the silicon-aluminum melt to form a mixed melt; in step S3, refining the mixed melt to obtain a refined melt; and step S4, using the copper-phosphorus intermediate alloy to modify the refined melt, thereby obtaining The alloy melt; in step S5, the alloy melt is processed by a die casting process to obtain an aluminum alloy component.
  • step S5 comprises: casting an alloy melt having a temperature of 680 to 850 ° C into a pressure chamber of a die casting machine, and forming by a die casting process, wherein the injection punch speed is 3 to 8 m/s, and the pressure of the pressure is 70 to 70. 90MPa.
  • the temperature of the above alloy melt when poured into the pressure chamber of the die casting machine is 680 to 780 °C.
  • step S5 further comprises: after forming by a die casting process, obtaining a high temperature formed part; and heat treating the high temperature formed part, the heat treatment comprises tempering the high temperature formed part at 190 to 230 ° C for 2 to 5 hours, and then air cooling.
  • step S4 comprises: adding a copper-phosphorus intermediate alloy to the refining melt having a temperature of 820 to 840 ° C, and holding the mixture for 15 to 20 minutes for the modification treatment.
  • step S3 comprises: refining the mixed melt at 810 to 830 ° C for 5 to 15 minutes using argon gas.
  • step S2 comprises: heating the silicon-aluminum melt, and sequentially adding magnesium and iron during the temperature increasing process; after the iron is added, heating the silicon-aluminum melt to 830-860 ° C, and keeping the temperature 10 ⁇ At 30 min, a mixed melt was obtained.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the combination of the elements in the aluminum alloy composition makes the aluminum alloy component prepared from the aluminum alloy composition not only have good mechanical properties, wear resistance, low thermal expansion coefficient and high thermal conductivity, but also Good fluidity can be ensured during casting; at the same time, the proper amount of Cu, Fe and Mg elements improve the mechanical properties of the aluminum alloy components, and 0.2% to 0.95% of Cu can further effectively improve the thermal conductivity of the alloy; further, P-Cu is used as a metamorphic element, the process is simple, the cost is low, and P in the alloy is lost during the casting process. Since the aluminum alloy composition of the present disclosure has good fluidity and improved processing and casting properties, when the aluminum alloy component is prepared by using the aluminum alloy composition, casting can be carried out with a lower pouring temperature and by high-efficiency die casting. The forming method is implemented.
  • FIG. 1 shows a flow chart of preparation of an aluminum alloy component provided in accordance with a preferred embodiment of the present disclosure
  • FIG. 2 shows a metallographic structure diagram of an aluminum alloy component provided in accordance with Embodiment 1 of the present disclosure.
  • the present disclosure provides an aluminum alloy composition, an aluminum alloy component, and a method of producing the same.
  • an aluminum alloy composition comprising an aluminum body and a doping element comprising 18% to 22% Si of the total weight of the aluminum alloy composition 0.2% to 0.95% Cu, 0.25% to 2% Fe, 0.05% to 0.2% Mg, and 0.04% to 0.08% P.
  • the combination of the elements in the above aluminum alloy composition enables the aluminum alloy component prepared from the aluminum alloy composition not only to have good mechanical properties, wear resistance, low coefficient of thermal expansion and high thermal conductivity, but also to ensure good casting.
  • the process is simple, the cost is low, and the P therein is lost during the casting process of the alloy.
  • the aluminum alloy composition of the present disclosure has good fluidity and improved processing and casting properties, when the aluminum alloy component is prepared by using the aluminum alloy composition, casting can be carried out with a lower pouring temperature and by high-efficiency die casting.
  • the forming method is implemented.
  • the weight percentage of the above Cu in the aluminum alloy combination is 0.2 to 0.9%. Further, in order to further refine the primary Si and improve the mechanical properties, it is preferable that the weight percentage of the above P in the aluminum alloy combination is 0.04 to 0.06%.
  • the aluminum alloy composition of the present disclosure may be composed of 18% to 22% Si, 0.2% to 0.95% Cu (preferably 0.2 to 0.9%), 0.25% to 2% Fe, based on the total weight of the aluminum alloy composition. 0.05% to 0.2% of Mg, 0.04% to 0.08% of P (preferably 0.04 to 0.06%), and the balance of aluminum.
  • a high-priced transition element such as Ni or Mn is added to the aluminum alloy composition, so that a good thermal conductivity can be ensured even at a low cost.
  • an aluminum alloy component is prepared, which is prepared by using any of the above aluminum alloy compositions as raw materials, and P is in an aluminum alloy component due to loss during processing.
  • the weight percentage is below 0.02%, preferably below 0.01%.
  • the combination of the elements in the above aluminum alloy composition enables the aluminum alloy component prepared from the aluminum alloy composition not only to have good mechanical properties, wear resistance, low coefficient of thermal expansion and high thermal conductivity, but also to ensure good casting.
  • the fluidity; at the same time, the Cu, Fe and Mg elements improve the mechanical properties of the aluminum alloy components.
  • the aluminum alloy component of the present disclosure has a room temperature tensile strength of more than 160 MPa and an elongation after fracture of more than 1.0%.
  • the thermal expansion coefficient of 25 to 300 ° C is 17.0 ⁇ 10 -6 to 18.0 ⁇ 10 -6 / ° C
  • the thermal conductivity of 25 to 300 ° C is between 124 and 148 W / (m. K).
  • a communication product in still another exemplary embodiment of the present disclosure, includes a housing that is fabricated using any of the above-described aluminum alloy compositions. Since the aluminum alloy composition of the present disclosure has the above advantages, the thermal conductivity of the casing formed therefrom is improved, thereby improving the thermal conductivity of the communication product.
  • a method for preparing an aluminum alloy component wherein any one of the above aluminum alloy compositions is used as a raw material, as shown in FIG. 2, the preparation method comprises: step S1, Silicon and aluminum are melted to form a silicon-aluminum melt; in step S2, magnesium and iron are added to the silicon-aluminum melt to form a mixed melt; in step S3, the mixed melt is refined to obtain a refined melt; and step S4 is to use copper phosphorus.
  • the intermediate alloy is subjected to modification treatment of the refined melt to obtain an alloy melt; and in step S5, the alloy melt is processed by a die casting process to obtain an aluminum alloy component.
  • the aluminum alloy composition of the present disclosure has good fluidity, a lower casting can be employed in the preparation of the aluminum alloy component using the aluminum alloy composition (the casting here is to cast the melt of the aluminum alloy into the die casting)
  • the temperature of the process chamber is cast and is carried out by a highly efficient die casting method.
  • the obtained aluminum alloy component has a tensile strength at room temperature of more than 160 MPa, and an elongation after fracture of more than 1.0%.
  • the thermal expansion coefficient of 25 to 300 ° C is 17.0 ⁇ 10 -6 to 18.0 ⁇ 10 -6 / ° C
  • the thermal conductivity of 25 to 300 ° C is between 124 and 148 W / (m. K).
  • the step S5 includes: casting an alloy melt having a temperature of 680 to 850 ° C into a pressure chamber of a die casting machine and forming by a die casting process, wherein the injection punch speed is 3 to 8 m/ s, the supercharging pressure is 70 to 90 MPa.
  • the speed and boost pressure of the above-mentioned injection punch are common process parameters in the die-casting process, indicating that the present disclosure can be implemented by a conventional die-casting process, thereby improving the processing efficiency and manufacturing of the high-heat-conductivity low-expansion aluminum alloy. cost.
  • the temperature of the above alloy melt when poured into the pressure chamber of the die casting machine is preferably 680 to 780 ° C. . That is, the implementation of the above-mentioned lower temperature range can also achieve a good die-casting effect, so that the energy consumption cost and the high-temperature requirement cost of the device are greatly reduced with respect to the current casting temperature of about 800 ° C or more.
  • the above step S5 further comprises: after forming by a die casting process, obtaining a high temperature formed part; performing heat treatment on the high temperature formed part, including heat treating the high temperature formed part at 190 to 230 After 2 to 5 hours of incubation at ° C, air cooling.
  • the thermal conductivity can be effectively improved, and the conventional high temperature solid solution process is eliminated, which saves cost and improves production efficiency.
  • the present disclosure further optimizes the deterioration condition.
  • the above step S4 comprises: adding a phosphorus intermediate alloy to the refining melt having a temperature of 820 to 840 ° C, and maintaining the modification for 15 to 20 minutes for the modification treatment.
  • the above step S3 comprises: refining the mixed melt at 810 to 830 ° C for 5 to 15 minutes using argon gas. Refining in the above temperature range enables better removal of gases and inclusions in the melt.
  • a storage medium including a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the step S2 includes: heating the silicon-aluminum melt, and sequentially adding magnesium and iron during the temperature increasing treatment; and preparing the silicon-aluminum melt after the iron is added.
  • the mixture was heated to 830-860 ° C and kept for 10 to 30 minutes to obtain a mixed melt. Adding magnesium and iron in sequence during the heating process can improve the mixing effect of each element; Further, after the completion of the iron addition, the heat is maintained in the above temperature range to better melt and homogenize the iron component, thereby improving the heat conductivity of the iron-to-alloy component.
  • Each raw material was weighed in a ratio of 18% Si, 0.95% Cu, 2% Fe, 0.1% Mg, 0.04% P, and the balance being Al.
  • the A00 pure Al and the crystalline Si are placed in the electric resistance melting furnace, and after being melted into the aluminum silicon melt, the aluminum silicon melt is superheated to 830 ° C, and pure Mg and pure Fe are added in the middle, after the alloy is completely melted. Stir well to obtain a mixed melt, and a layer of covering agent is sprayed on the surface of the mixed melt to prevent surface oxidation; after that, the temperature of the mixed melt is lowered to 820 ° C, and the mixed melt is refined with pure Ar gas, and the mixture is slag and static. After 10 min, a refined melt having an alloy composition of Al-18Si-2Fe-0.1Mg and the balance being Al was obtained.
  • the refining melt was heated to 840 ° C, the surface covering agent was removed, and the copper-phosphorus intermediate alloy was added to change the primary Si.
  • the amount of P added was 0.04% of the total weight of the raw materials, and the Cu addition amount was 0.9% of the total weight of the raw materials.
  • the mixture was kept for 15 minutes to obtain an alloy melt.
  • the alloy melt is cooled to 750 ° C and poured into the pressure chamber of the die casting machine.
  • the die casting process is formed by a die casting process.
  • the die casting machine has a punching speed of 3 m/s and a supercharging pressure of 70 MPa.
  • the die-casting casting is subjected to short-time aging heat treatment, wherein the heat treatment process is: aging at 220 ° C for 3 hours, and the P content in the obtained aluminum alloy casting is below 0.01%.
  • Each raw material was weighed in a ratio of 20% Si, 0.5% Cu, 1% Fe, 0.2% Mg, 0.06% P, and the balance being Al.
  • the A00 pure Al and Al-24% Si intermediate alloy is placed in a resistance melting furnace, and after it is melted into an aluminum silicon melt, the aluminum silicon melt is superheated to 830 ° C, and pure Mg and pure Fe are added in the middle. After the alloy is completely melted, the mixture is uniformly stirred to obtain a mixed melt, and a coating agent is sprayed on the surface of the mixed melt to prevent surface oxidation; after that, the temperature of the mixed melt is lowered to 800 ° C, and the melt is refined with pure Ar gas. The slag was allowed to stand for 10 min to obtain a refined melt having an alloy composition of Al-20Si-1Fe-0.2Mg and the balance being Al.
  • the refining melt was heated to 820 ° C, the surface covering agent was removed, and the phosphor bronze intermediate alloy was added to change the primary Si.
  • the amount of P added was 0.06% of the total weight of the raw materials, and the Cu addition amount was 0.5% of the total weight of the raw materials.
  • the mixture was kept for 15 minutes to obtain an alloy melt.
  • the alloy melt is cooled to 770 ° C and poured into the pressure chamber of the die casting machine.
  • the die casting process is formed by a die casting process.
  • the die casting machine has a punching speed of 5 m/s and a supercharging pressure of 80 MPa.
  • the die-casting casting is subjected to short-time aging heat treatment, wherein the heat treatment process is: aging at 190 ° C for 5 hours, and the P content in the obtained aluminum alloy casting is below 0.02%.
  • Each raw material was weighed in a ratio of 22% Si, 0.7% Cu, 0.25% Fe, 0.05% Mg, 0.08% P, and the balance being Al.
  • the A00 pure Al and Al-24% Si intermediate alloy is placed in a resistance melting furnace, and after it is melted into an aluminum silicon melt, the aluminum silicon melt is superheated to 830 ° C, and pure Mg and pure Fe are added in the middle. After the alloy is completely melted, the mixture is uniformly stirred to obtain a mixed melt, and a coating agent is sprayed on the surface of the melt to prevent surface oxidation; after that, the temperature of the mixed melt is lowered to 800 ° C, and the melt is refined with pure Ar gas. The slag was allowed to stand for 10 min to obtain a refined melt having an alloy composition of Al-22Si-0.7Cu-0.25Fe-0.05Mg and the balance being Al.
  • the refining melt was heated to 830 ° C, the surface covering agent was removed, and a copper-phosphorus intermediate alloy was added to carry out metamorphism of the primary Si.
  • the amount of P added was 0.08% of the total weight of the raw materials.
  • the mixture was kept for 15 minutes to obtain an alloy melt.
  • the alloy melt is cooled to 790 ° C and poured into the pressure chamber of the die casting machine.
  • the die casting process is formed by a die casting process.
  • the die casting machine has a punching speed of 8 m/s and a supercharging pressure of 90 MPa.
  • the die cast casting is subjected to short-time aging heat treatment.
  • the heat treatment process is: aging at 230 ° C for 2 hours, and the P content in the obtained aluminum alloy casting is below 0.02%.
  • the difference from the first embodiment is that the raw material composition is weighed according to the ratio of 20% Si, 0.2% Cu, 1% Fe, 0.1% Mg, 0.06% P and the balance of Al, and the obtained aluminum alloy castings are P.
  • the content is below 0.01%.
  • the difference from the first embodiment is that the raw material composition is weighed according to the ratio of 20% Si, 0.9% Cu, 1% Fe, 0.1% Mg, 0.06% P and the balance of Al, and the obtained aluminum alloy castings are P.
  • the content is below 0.01%.
  • the difference from the first embodiment is that the alloy melt is formed into a press chamber of the die casting machine at 850 ° C and then formed by a die casting process, and the P content of the obtained aluminum alloy casting is 0.01% or less.
  • the difference from the first embodiment is that the alloy melt is cast by molding to obtain an aluminum alloy member, and the obtained aluminum alloy casting has a P content of 0.01% or less.
  • Example 1 The difference from Example 1 is that the injection punch speed is 10 m/s, the supercharging pressure is 100 MPa, and the P content in the obtained aluminum alloy casting is 0.01% or less.
  • Example 1 The difference from Example 1 is that the heat treatment process is: aging at 180 ° C for 6 hours, and the P content in the obtained aluminum alloy casting is 0.01% or less.
  • the difference from the first embodiment is that the refining melt is heated to 850 ° C, the surface covering agent is removed, and the phosphor bronze intermediate alloy is added to change the primary Si.
  • the P addition amount is 0.04% of the total weight of the raw material, and the Cu addition amount is added.
  • the total weight of the raw materials is 0.9%.
  • the alloy was melted for 12 minutes to obtain an alloy melt, and the P content in the obtained aluminum alloy casting was 0.01% or less.
  • the difference from the first embodiment is that the mixed melt temperature is lowered to 800 ° C, the mixed melt is refined with pure Ar gas, and the slag is allowed to stand for 20 minutes, and the P content in the obtained aluminum alloy casting is 0.01% or less.
  • the difference from the first embodiment is that the raw material composition is weighed according to the ratio of 25% Si, 0.9% Cu, 2% Fe, 0.1% Mg, 0.04% P and the balance of Al, and the obtained aluminum alloy castings are P.
  • the content is below 0.01%.
  • the difference from the second embodiment is that the raw material composition is weighed according to the ratio of 20% Si, 1.0% Cu, 0.3% Mg, 0.3% Mn, 0.04% P and the balance of Al, and the obtained aluminum alloy castings are P.
  • the content is below 0.01%.
  • the difference from the second embodiment is that the raw material composition is weighed according to the ratio of 20% Si, 1.0% Cu, 1% Fe, 0.2% Mg, 0.06% P and the balance of Al, and the obtained aluminum alloy castings are P. The content is below 0.02%.
  • Example 1 of the patent application with the application number 200910061081.5 was used as Comparative Example 4.
  • the aluminum alloy elements obtained in Examples 1 to 11 and Comparative Examples 1 to 4 were examined before and after the heat treatment, wherein the metallographic structure of the aluminum alloy element of Example 1 was examined by a metallographic microscope, and the test results are shown in Fig. 2;
  • the test machine uses GB/T228 to measure the room temperature tensile strength of each aluminum alloy component, and uses a universal tensile tester to conduct a metal tensile test to detect the elongation at break of each aluminum alloy component, and a thermal expansion tester to detect the thermal expansion coefficient of each aluminum alloy component.
  • the thermal conductivity at 25 to 300 ° C of each aluminum alloy component was measured by a laser thermal conductivity meter using an ASTM 41461 laser method.
  • the test results are shown in Table 1.
  • the aluminum alloy members of Examples 1 to 11 within the scope of the present disclosure have a tensile strength of more than 160 MPa, a thermal expansion coefficient of ⁇ 18.0 ⁇ 10 -6 /° C., and a thermal conductivity of 124 to 148 W/ Between (m.K), the thermal conductivity after aging heat treatment is greater than 135W / (m. K), if not aging treatment, the thermal conductivity is about 127W / (m. K), less than the thermal conductivity of silicon 135W/(m.K).
  • Embodiment 1 it can be seen from the comparison between Embodiment 1 and Embodiment 7 that the aluminum alloy material of the present disclosure can increase the room temperature tensile strength of the aluminum alloy component by using a die casting process during molding; it can be seen from the comparison between Embodiment 9 and Embodiment 1.
  • the combination of the elements in the above aluminum alloy composition enables the aluminum alloy component prepared from the aluminum alloy composition not only to have good mechanical properties, wear resistance, low coefficient of thermal expansion and high thermal conductivity, but also to ensure good casting.
  • the process is simple, the cost is low, and the P therein is lost during the casting process of the alloy.
  • the aluminum alloy composition of the present disclosure has good fluidity and improved processing and casting properties, when the aluminum alloy component is prepared by using the aluminum alloy composition, casting can be carried out with a lower pouring temperature and by high-efficiency die casting.
  • the forming method is implemented.
  • the obtained aluminum alloy component has a tensile strength at room temperature of more than 160 MPa and an elongation after fracture of more than 1.0%.
  • the thermal expansion coefficient of 25 to 300 ° C is 17.0 ⁇ 10 -6 to 18.0 ⁇ 10 -6 / ° C
  • the thermal conductivity of 25 to 150 ° C is between 124 and 148 W / (m. K).
  • the present disclosure relates to the field of non-ferrous metal materials, and in particular to an aluminum alloy composition, an aluminum alloy component, a communication product, and a method of preparing an aluminum alloy component.
  • the aluminum alloy component prepared from the aluminum alloy composition not only has good wear resistance, low thermal expansion coefficient and high thermal conductivity, but also ensures good fluidity during casting.
  • the aluminum alloy component is prepared by using the aluminum alloy composition, it can be cast at a lower casting temperature and can be carried out by a high-efficiency die casting method.

Abstract

一种铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法。该铝合金组合物包括铝主体和掺杂元素,掺杂元素包括占铝合金组合物的总重量18%~22%的Si、0.2%~0.95%的Cu、0.25%~2%的Fe、0.05%~0.2%的Mg和0.04%~0.08%的P。通过上述铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性,提高其加工铸造性能;同时适量的Cu、Fe及Mg元素提高了铝合金元件的力学性能,0.2%~0.95%的Cu能有效改善合金的导热性能;采用P-Cu作为变质元素,工艺简单,成本低。

Description

铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法 技术领域
本公开涉及有色金属材料领域,具体而言,涉及一种铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法。
背景技术
Al和Si都是自然界中储量极其丰富的元素,来源广泛,成本低廉。其中,纯Al具有高塑性、低密度以及优良的导热导电性能,Si具有低的热膨胀系数和高硬度,由它们制备的Al-Si合金,则继承了两者的一系列优良特性。
铝具有较高的热导率,纯铝的热导率达到238W/(m﹒K),但是纯铝的热膨胀系数大,达到23.6×10-6/℃。硅的热膨胀系数小,只有4.1×10-6/℃,因此通过加入Si可以降低铝合金的热膨胀系数。但加入Si元素后热导率会降低,特别是加入10%以上的Si量,铝硅合金的热导率大幅度降低。相关技术已有一些较低含Si量铝合金的热导率研究,但高硅铝合金的热导率研究很少,且目前含16~18%Si的牌号铝合金热导率都较低,在90~110W/(m﹒K)左右。例如日本牌号ADC12铝合金的热导率为92W/(m﹒K);含18~20%Si的AC9B牌号铝合金热导率为110W/(m﹒K),等等。通常牌号合金中的合金元素种类较多,含量也较大,也会使热导率降低。但是上述合金的低热导率不能满足许多领域的应用要求,例如需要高导热的电子产品基板等。
此外,为适应汽车发动机高速化的要求,对活塞材料的要求是比强度高、导热性好、稳定性好、膨胀系数小、耐磨好等。无疑Al-Si系合金正是合适的选择。在汽车工业中,使用较多的铝活塞材料大致有四类:Al-Cu-(Ni)-Mg系,Al-Cu-Si系,共晶型Al-Si-Cu系以及过共晶型Al-Si-Cu-Mg系,前两类由于存在线膨胀系数大、密度大、体积不稳定的缺点已被淘汰,目前国内使用的铝活塞材料主要是共晶型铝硅合金,如我国铝合金牌号ZL108(ZAlSi12Cu2Mg)、ZL109(ZAlSi12Cu1Mg1Ni1),或美国牌号A390(Si:16~18%)。然而随着汽车工业的发展,共晶、亚共晶铝硅合金系活塞材料已经难以适应汽车发动机高功率、高寿命的性能要求。过共晶高硅铝合金线膨胀系数更低,抗磨性及体积稳定性相应提高,是理想的活塞材料。国外已将此材料广泛用于活塞生产,国内也逐渐有单位开始应用。
过共晶铝硅合金按含硅量可分为三组,Ⅰ组含硅17%~19%;Ⅱ组含硅20%~23%;Ⅲ组含硅24%~26%。前两组有一定的塑性,铸造性能尚可,使用较多;而最后一组虽然热膨胀系数更低、耐磨性和耐蚀性更好,但由于脆性太大、结晶温度范围宽、铸造性能差以及难以切削加工的缘故,除用过高速摩托车或赛车的活塞外,一般很少使用。
除了在汽车生产领域的应用,高硅铝合金相对于其他合金因具有较好的热导性能、热膨胀系数低、质量轻、以及高的强度和刚度,与金、银、铜、镍可镀,与基材可焊,易于精密加工、无毒等优越性能,符合电子封装技术朝小型化、轻量化和高密度组装化方向发展的要求,因此高硅铝合金用作新型电子封装的前景已日渐被人们所认识。然而,可用作电子封装 材料的轻质高硅铝合金硅含量高达30%~50%甚至更高。因此,采用传统熔炼铸造方法虽然有设备简单、成本低,可实现大批量工业化生产的优点,但生产得到的材料初晶硅和共晶硅尺寸粗大,即使采用添加变质剂的方法,也会带来新的问题。故而一般用传统的粉末冶金法或喷射沉积法生产该种高硅铝合金。
对于超高强度过共晶Al-Si合金的生产,目前已成功的方法是急冷凝固粉末冶金法或喷射沉积法,其原理都是使Al-Si合金液滴在103~106℃/s的高速冷却下凝固,使组织细化,初晶Si可细化到2μm~10μm,材料的强度可高达400MPa。北京科技大学张济山等人发明的“一种喷射沉积高硅铝合金的方法”(ZL00124660.7),采用喷射沉积技术制备Al-(16~45%)Si合金时,加入Fe、Mn元素,具有快速冷却凝固的优点,且避免了针状富Fe金属间化合物的出现,提高了合金的热稳定性。但这种方法需要急冷凝固设备、粉末冶金或冷挤压成形,零件的形状及大小受到限制,且工艺复杂、成本高。美国专利(US6669792)发明一种工艺生产过共晶Al-Si合金,即控制Si:Mg比值(15~35)和Cu:Mg比值(4~15)来提高性能。此外利用喷雾制粉或挤压铸造方法制备的Al-Si合金材料含硅量可达到50%~70%。哈尔滨工业大学武高辉等人发明的“一种低膨胀超高硅铝合金的制备方法”(ZL200410043855.9),采用复合材料的挤压铸造制备方法,将60%~70%硅粉制成预制件,将铝液挤压渗入预制件而成,这类材料主要应用于电子封装领域,应归属复合材料或功能材料。而采用液态成形或半固态成形方法制造的作为结构材料的零部件的含硅量一般应该低于26%。
国内外已有不少关于高硅铝合金相关研究的成果,一些标准牌号也已被应用于工业生产中。然而,相关技术中的方案要么是25%Si以上的成本高、效率低的喷射沉积或快速冷却,要么是应用于挤压铸造或半固态成形的(18~25)%Si的含贵重金属Ni等元素的铝合金,并且导热系数偏低。
发明内容
本公开的主要目的在于提供一种铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法,以解决相关技术中的高导热低膨胀的铝合金加工铸造性能低的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种铝合金组合物,包括铝主体和掺杂元素,该掺杂元素包括占铝合金组合物的总重量18%~22%的Si、0.2%~0.95%的Cu、0.25%~2%的Fe、0.05%~0.2%的Mg和0.04%~0.08%的P。
进一步地,上述Cu在铝合金组合中的重量百分比为0.2~0.9%。
进一步地,上述P在铝合金组合中的重量百分比为0.04~0.06%。
根据本公开的另一方面,提供了一种铝合金元件,采用上述任一种铝合金组合物为原料制备而成,且P在铝合金元件中的重量百分比在0.02%以下。
进一步地,上述P在所述铝合金元件中的重量百分比在0.01%以下。
根据本公开的又一方面,提供了一种通讯产品,包括壳体,该壳体采用上述任一种铝合金组合物制备而成。
根据本公开的又一方面,提供了一种铝合金元件的制备方法,以上述任一种铝合金组合物为原料,制备方法包括:步骤S1,将硅和铝熔化,形成硅铝熔体;步骤S2,向硅铝熔体中加入镁和铁形成混合熔体;步骤S3,对混合熔体进行精炼,得到精炼熔体;步骤S4,利用铜磷中间合金对精炼熔体进行变质处理,得到合金熔体;步骤S5,利用压铸工艺加工合金熔体,得到铝合金元件。
进一步地,上述步骤S5包括:将温度为680~850℃的合金熔体浇入压铸机压室后采用压铸工艺成形,其中,压射冲头速度3~8m/s,增压压力为70~90MPa。
进一步地,上述合金熔体在浇入压铸机压室时的温度为680~780℃。
进一步地,上述步骤S5还包括:在采用压铸工艺成形后,得到高温成形件;对高温成形件进行热处理,热处理包括将高温成形件在190~230℃下保温2~5小时后空冷。
进一步地,上述步骤S4包括:向温度为820~840℃的精炼熔体中加入铜磷中间合金,并保温15~20min以进行变质处理。
进一步地,上述步骤S3包括:将混合熔体在810~830℃下采用氩气精炼5~15min。
进一步地,上述步骤S2包括:对硅铝熔体进行升温处理,且在升温处理过程中依次加入镁和铁;在铁加入完成后将硅铝熔体加热到830~860℃,且保温10~30min,得到混合熔体。
根据本公开的又一方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本公开的又一方面,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
应用本公开的技术方案,上述铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的力学性能、耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性;同时其中适量的Cu、Fe及Mg元素提高了铝合金元件的力学性能,而且0.2%~0.95%的Cu能进一步有效改善合金的导热性能;进一步地,采用P-Cu作为变质元素,工艺简单,成本低,且其中的P在合金的铸造过程中会有损耗。由于本公开的铝合金组合物具有良好的流动性,提高其加工铸造性能,因此在利用该铝合金组合物制备铝合金元件时,可以采用较低的浇注温度进行浇注并且通过生产效率高的压铸成形方法来实施。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的一种优选实施方式提供的铝合金元件的制备流程图;以及
图2示出了根据本公开实施例1提供的铝合金元件的金相组织图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
如背景技术所分析的,相关技术中25%Si以上铝合金需要采用成本高、效率低的喷射沉积或快速冷却方式制备,或者应用于挤压铸造或半固态成形的(18~25)%Si的含贵重金属Ni等元素的铝合金的导热系数偏低,综合来讲即是存在高导热低膨胀的铝合金加工铸造性能低的问题。为了解决该问题,本公开提供了一种铝合金组合物、铝合金元件及其制备方法。
在本公开一种典型的实施方式中,提供了一种铝合金组合物,包括铝主体和掺杂元素,该掺杂元素包括占所述铝合金组合物的总重量18%~22%的Si、0.2%~0.95%的Cu、0.25%~2%的Fe、0.05%~0.2%的Mg和0.04%~0.08%的P。
上述铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的力学性能、耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性;同时其中适量的Cu、Fe及Mg元素提高了铝合金元件的力学性能,而且0.2%~0.95%的Cu能进一步有效改善合金的导热性能;进一步地,采用P-Cu作为变质元素,工艺简单,成本低,且其中的P在合金的铸造过程中会有损耗。
由于本公开的铝合金组合物具有良好的流动性,提高其加工铸造性能,因此在利用该铝合金组合物制备铝合金元件时,可以采用较低的浇注温度进行浇注并且通过生产效率高的压铸成形方法来实施。
为了进一步提高铝合金的热导率,进一步优选上述Cu在铝合金组合中的重量百分比为0.2~0.9%。此外,为了进一步细化初晶Si及提高力学性能,优选上述P在铝合金组合中的重量百分比为0.04~0.06%。
当然,本公开的铝合金组合物可以由占铝合金组合物的总重量18%~22%的Si、0.2%~0.95%的Cu(优选0.2~0.9%)、0.25%~2%的Fe、0.05%~0.2%的Mg、0.04%~0.08%的P(优选0.04~0.06%)以及余量的铝组成。上述铝合金组合物中添加价格较高的Ni、Mn等过渡元素,因此在低成本前提下也能保证良好的热导率。
在本公开另一种典型的实施方式中,提供了一种铝合金元件,采用上述任一种铝合金组合物为原料制备而成,且由于加工过程中的损耗,使得P在铝合金元件中的重量百分比在0.02%以下,优选在0.01%以下。
上述铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的力学性能、耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性;同时其中的Cu、Fe及Mg元素提高了铝合金元件的力学性能。经测试,本公开的铝合金元件,室温抗拉强度可达160Mpa以上,断后伸长率超过1.0%。同时,25~300℃热膨胀系数17.0×10-6~18.0×10-6/℃,25~300℃热导率在124~148W/(m﹒K)之间。
在本公开又一种典型的实施方式中,提供了一种通讯产品,包括壳体,该壳体采用上述任一种铝合金组合物制备而成。由于本公开的铝合金组合物具有上述优势,因此使得由其所形成的壳体的导热性能得到改善,进而提高了通讯产品的导热性能。
在本公开再一种典型的实施方式中,提供了一种铝合金元件的制备方法,以上述任一种铝合金组合物为原料,如图2所示,该制备方法包括:步骤S1,将硅和铝熔化,形成硅铝熔体;步骤S2,向硅铝熔体中加入镁和铁形成混合熔体;步骤S3,对混合熔体进行精炼,得到精炼熔体;步骤S4,利用铜磷中间合金对精炼熔体进行变质处理,得到合金熔体;以及步骤S5,利用压铸工艺加工合金熔体,得到铝合金元件。
由于本公开的铝合金组合物具有良好的流动性,因此在利用该铝合金组合物制备铝合金元件时,可以采用较低的浇注(此处的浇注是在将铝合金的熔体浇入压铸工艺的压室内)温度进行浇注并且通过生产效率高的压铸成形方法来实施。且所得到的铝合金元件,室温抗拉强度可达160Mpa以上,断后伸长率超过1.0%。同时,25~300℃热膨胀系数17.0×10-6~18.0×10-6/℃,25~300℃热导率在124~148W/(m﹒K)之间。
在本公开一种优选的实施例中,上述步骤S5包括:将温度为680~850℃的合金熔体浇入压铸机压室后采用压铸工艺成形,其中,压射冲头速度3~8m/s,增压压力为70~90MPa。
上述压射冲头的速度和增压压力均是压铸工艺中常用的工艺参数,说明本公开采用常规的压铸工艺即可实施,进而有利于提高高导热低膨胀铝合金的加工效率并降低其制造成本。
在将合金熔体浇入压铸机压室时,可以在上述的680~850℃范围内实施,为了降低能量消耗,优选上述合金熔体在浇入压铸机压室时的温度为680~780℃。即在上述较低温度范围内实施也能实现良好的压铸效果,从而相对于目前的800℃左右甚至以上的浇注温度其能量消耗成本以及对设备的耐高温要求成本大大降低。
为了进一步提高所得到的铝合金远近的热导率,优选上述步骤S5还包括:在采用压铸工艺成形后,得到高温成形件;对高温成形件进行热处理,热处理包括将高温成形件在190~230℃下保温2~5小时后空冷。
采用上述的快速时效热处理工艺进行热处理,导热率能够被有效地提高,且取消了传统的高温固溶工艺,节约了成本,提高了生产效率。
此外,为了改善变质效果,本公开进一步对变质条件进行了优化,优选上述步骤S4包括:向温度为820~840℃的精炼熔体中加入磷中间合金,并保温15~20min以进行变质处理。
在本公开再一种可选的实施例中,上述步骤S3包括:将混合熔体在810~830℃下采用氩气精炼5~15min。在上述温度范围内进行精炼,能够更好地去除熔体中的气体及夹杂物。
在本公开又一种典型的实施方式中,提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
在本公开又一种典型的实施方式中,提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
上述各实施例中,在形成混合熔体时,优选上述步骤S2包括:对硅铝熔体进行升温处理,且在升温处理过程中依次加入镁和铁;在铁加入完成后将硅铝熔体加热到830~860℃,且保温10~30min,得到混合熔体。在升温过程中依次加入镁和铁,能够提高各元素的混合效果;而 且,在铁加入完成后,在上述温度范围内进行保温,更好地使铁成分熔解及均匀化,从而使铁对合金元件的导热性能的改善明显。
以下将结合实施例和对比例,进一步说明本公开的有益效果。
实施例1
按照18%Si、0.95%Cu、2%Fe、0.1%Mg、0.04%P以及余量为Al的比例称取各原料。
将A00号纯Al及结晶Si置于电阻熔炼炉坩埚内,待其熔化为铝硅熔体后,再将铝硅熔体过热到830℃,中途加入纯Mg及纯Fe,待合金全部熔化后搅拌均匀得到混合熔体,并在混合熔体表面撒上一层覆盖剂防止表面氧化;之后,将混合熔体温度降到820℃,用纯Ar气对混合熔体进行精炼,扒渣,静置10min,得到合金成分为Al-18Si-2Fe-0.1Mg,其余为Al的精炼熔体。然后再将精炼熔体升温至840℃,扒去表面覆盖剂,加入铜磷中间合金进行初晶Si的变质,P加入量为原料总重0.04%,Cu加入量为原料总重0.9%。变质处理后保温15分钟,得到合金熔体。合金熔体降低温度至750℃浇入压铸机压室后采用压铸工艺成形,压铸机压射冲头速度3m/s,增压压力为70MPa。压铸出来的铸件进行短时时效热处理,其中热处理工艺为:220℃时效3小时,所得铝合金铸件中P含量在0.01%以下。
实施例2
按照20%Si、0.5%Cu、1%Fe、0.2%Mg、0.06%P以及余量为Al的比例称取各原料。
将A00号纯Al及Al-24%Si中间合金置于电阻熔炼炉坩埚内,待其熔化为铝硅熔体后,再将铝硅熔体过热到830℃,中途加入纯Mg及纯Fe,待合金全部熔化后搅拌均匀得到混合熔体,并在混合熔体表面撒上一层覆盖剂防止表面氧化;之后,将混合熔体温度降到800℃,用纯Ar气对熔体进行精炼,扒渣,静置10min,得到合金成分为Al-20Si-1Fe-0.2Mg,其余为Al的精炼熔体。然后再将精炼熔体升温至820℃,扒去表面覆盖剂,加入磷铜中间合金进行初晶Si的变质,P加入量为原料总重0.06%,Cu加入量为原料总重0.5%。变质处理后保温15分钟,得到合金熔体。合金熔体降低温度至770℃浇入压铸机压室后采用压铸工艺成形,压铸机压射冲头速度5m/s,增压压力为80MPa。压铸出来的铸件进行短时时效热处理,其中热处理工艺为:190℃时效5小时,所得铝合金铸件中P含量在0.02%以下。
实施例3
按照22%Si、0.7%Cu、0.25%Fe、0.05%Mg、0.08%P以及余量为Al的比例称取各原料。
将A00号纯Al及Al-24%Si中间合金置于电阻熔炼炉坩埚内,待其熔化为铝硅熔体后,再将铝硅熔体过热到830℃,中途加入纯Mg及纯Fe,待合金全部熔化后搅拌均匀得到混合熔体,并在熔体表面撒上一层覆盖剂防止表面氧化;之后,将混合熔体温度降到800℃,用纯Ar气对熔体进行精炼,扒渣,静置10min,得到合金成分为Al-22Si-0.7Cu-0.25Fe-0.05Mg,其余为Al的精炼熔体。然后再将精炼熔体升温至830℃,扒去表面覆盖剂,加入铜磷中间合金进行初晶Si的变质,P加入量为原料总重0.08%。变质处理后保温15分钟,得到合金熔体。合金熔体降低温度至790℃浇入压铸机压室后采用压铸工艺成形,压铸机压射冲头速度8m/s,增压压力为90MPa。压铸出来的铸件进行短时时效热处理。热处理工艺为:230℃时效2小时,所得铝合金铸件中P含量在0.02%以下。
实施例4
与实施例1不同之处在于,原料组成为按照20%Si、0.2%Cu、1%Fe、0.1%Mg、0.06%P以及余量为Al的比例称取各原料,所得铝合金铸件中P含量在0.01%以下。
实施例5
与实施例1不同之处在于,原料组成为按照20%Si、0.9%Cu、1%Fe、0.1%Mg、0.06%P以及余量为Al的比例称取各原料,所得铝合金铸件中P含量在0.01%以下。
实施例6
与实施例1不同之处在于,合金熔体在850℃下入压铸机压室后采用压铸工艺成形,所得铝合金铸件中P含量在0.01%以下。
实施例7
与实施例1不同之处在于,合金熔体是以浇注成形而得到铝合金元件的,所得铝合金铸件中P含量在0.01%以下。
实施例8
与实施例1不同之处在于,压射冲头速度10m/s,增压压力为100MPa,所得铝合金铸件中P含量在0.01%以下。
实施例9
与实施例1不同之处在于,热处理工艺为:180℃时效6小时,所得铝合金铸件中P含量在0.01%以下。
实施例10
与实施例1不同之处在于,再将精炼熔体升温至850℃,扒去表面覆盖剂,加入磷铜中间合金进行初晶Si的变质,P加入量为原料总重0.04%,Cu加入量为原料总重0.9%。变质处理后保温12分钟,得到合金熔体,所得铝合金铸件中P含量在0.01%以下。
实施例11
与实施例1不同之处在于,将混合熔体温度降到800℃,用纯Ar气对混合熔体进行精炼,扒渣,静置20min,所得铝合金铸件中P含量在0.01%以下。
对比例1
与实施例1不同之处在于,原料组成为按照25%Si、0.9%Cu、2%Fe、0.1%Mg、0.04%P以及余量为Al的比例称取各原料,所得铝合金铸件中P含量在0.01%以下。
对比例2
与实施例2不同之处在于,原料组成为按照20%Si、1.0%Cu、0.3%Mg、0.3%Mn、0.04%P以及余量为Al的比例称取各原料,所得铝合金铸件中P含量在0.01%以下。
对比例3
与实施例2不同之处在于,原料组成为按照20%Si、1.0%Cu、1%Fe、0.2%Mg、0.06%P以及余量为Al的比例称取各原料,所得铝合金铸件中P含量在0.02%以下。
对比例4
采用申请号为200910061081.5的专利申请中的实施例1作为对比例4。
对实施例1至11以及对比例1至4得到的铝合金元件在热处理前后进行检测,其中采用金相显微镜检测实施例1的铝合金元件的金相组织,检测结果见图2;采用万能力学试验机利用GB/T228检测各铝合金元件的室温抗拉强度,采用万能力学试验机进行金属拉伸试验检测各铝合金元件的断后伸长率,采用热膨胀仪检测各铝合金元件的热膨胀系数,采用激光热导仪利用ASTM 41461激光法检测各铝合金元件的25~300℃下的热导率。检测结果见表1。
表1
Figure PCTCN2017102935-appb-000001
根据表1中的数据可以看出,在本公开的范围内实施例1至11的铝合金元件抗拉强度大于160MPa,热膨胀系数<18.0×10-6/℃,热导率在124~148W/(m﹒K)之间,其中时效热处理后热导率都大于135W/(m﹒K),若没有进行时效处理,热导率为127W/(m﹒K)左右,小于硅的热导率135W/(m﹒K)。由实施例1和实施例7的对比可以看出,本公开的铝合金材料在成型时采用压铸工艺可以使铝合金元件的室温抗拉强度增加;由实施例9和实施例1的对比可以看出,适当时间和温度内的短时时效热处理对于铝合金元件的热导率提升效果是明显,但是如果时间过长或者温度过低,虽然会在一定程度上提升热导率,但是其热处理效果不是很理想;且由对比例1和实施例1的数据可以看出,大于22%的过高的含硅量,虽可降低热膨胀系数,但热导率难以提高;同时,由对比例2和各实施例的对比可以看出,镍和锰的添加,使得铝合金元件的热导率大大减小;由对比例3和实施例2的对比可以看出,铜含量的增加反而会导致热导率相对下降;由对比例4和实施例1的对比可以看出,小于18%的含硅量及合金元素Cu、Ni等过多时,膨胀系数大,热导率也偏低,由此可见,本公开通过严格控制Ni和Mn的使用,并降低Cu的含量,起到了大幅改善热导率的效果。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
上述铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的力学性能、耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性;同时其中适量的Cu、Fe及Mg元素提高了铝合金元件的力学性能,而且0.2%~0.95%的Cu能进一步有效改善合金的导热性能;进一步地,采用P-Cu作为变质元素,工艺简单,成本低,且其中的P在合金的铸造过程中会有损耗。
由于本公开的铝合金组合物具有良好的流动性,提高其加工铸造性能,因此在利用该铝合金组合物制备铝合金元件时,可以采用较低的浇注温度进行浇注并且通过生产效率高的压铸成形方法来实施。
所得到的铝合金元件,室温抗拉强度可达160Mpa以上,断后伸长率超过1.0%。同时,25~300℃热膨胀系数17.0×10-6~18.0×10-6/℃,25~150℃热导率在124~148W/(m﹒K)之间。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开涉及有色金属材料领域,具体而言,涉及一种铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法。通过铝合金组合物中各元素的配合,使得由该铝合金组合物制备的铝合金元件不仅具有良好的耐磨性、低热膨胀系数和高导热性,同时在浇注时还能保证良好的流动性,提高其加工铸造性能,因此在利用该铝合金组合物制备铝合金元件时,可以采用较低的浇注温度进行浇注并且通过生产效率高的压铸成形方法来实施。

Claims (15)

  1. 一种铝合金组合物,包括铝主体和掺杂元素,所述掺杂元素包括占所述铝合金组合物的总重量18%~22%的Si、0.2%~0.95%的Cu、0.25%~2%的Fe、0.05%~0.2%的Mg和0.04%~0.08%的P。
  2. 根据权利要求1所述的铝合金组合物,其中,所述Cu在所述铝合金组合物中的重量百分比为0.2~0.9%。
  3. 根据权利要求1所述的铝合金组合物,其中,所述P在所述铝合金组合物中的重量百分比为0.04~0.06%。
  4. 一种铝合金元件,采用权利要求1至3中任一项所述的铝合金组合物为原料制备而成,且P在所述铝合金元件中的重量百分比在0.02%以下。
  5. 根据权利要求4所述的铝合金元件,其中,所述P在所述铝合金元件中的重量百分比在0.01%以下。
  6. 一种通讯产品,包括壳体,所述壳体采用权利要求1至3中任一项所述的铝合金组合物制备而成。
  7. 一种铝合金元件的制备方法,以权利要求1至3中任一项所述的铝合金组合物为原料,所述制备方法包括:
    步骤S1,将硅和铝熔化,形成硅铝熔体;
    步骤S2,向所述硅铝熔体中加入镁和铁形成混合熔体;
    步骤S3,对所述混合熔体进行精炼,得到精炼熔体;
    步骤S4,利用铜磷中间合金对所述精炼熔体进行变质处理,得到合金熔体;
    步骤S5,利用压铸工艺加工所述合金熔体,得到所述铝合金元件。
  8. 根据权利要求6所述的制备方法,其中,所述步骤S5包括:
    将温度为680~850℃的所述合金熔体浇入压铸机压室后采用压铸工艺成形,其中,压射冲头速度3~8m/s,增压压力为70~90MPa。
  9. 根据权利要求8所述的制备方法,其中,所述合金熔体在浇入所述压铸机压室时的温度为680~780℃。
  10. 根据权利要求8所述的制备方法,其中,所述步骤S5还包括:
    在采用压铸工艺成形后,得到高温成形件;
    对所述高温成形件进行热处理,所述热处理包括将所述高温成形件在190~230℃下保温2~5小时后空冷。
  11. 根据权利要求7所述的制备方法,其中,所述步骤S4包括:
    向温度为820~840℃的所述精炼熔体中加入所述铜磷中间合金,并保温15~20min以进行所述变质处理。
  12. 根据权利要求7所述的制备方法,其中,所述步骤S3包括:
    将所述混合熔体在810~830℃下采用氩气精炼5~15min。
  13. 根据权利要求7所述的制备方法,其中,所述步骤S2包括:
    对所述硅铝熔体进行升温处理,且在所述升温处理过程中依次加入镁和铁;
    在所述铁加入完成后将所述硅铝熔体加热到830~860℃,且保温10~30min,得到所述混合熔体。
  14. 一种存储介质,所述存储介质包括存储的程序,所述程序运行时执行权利要求7至13中任一项所述的方法。
  15. 一种处理器,所述处理器用于运行程序,所述程序运行时执行权利要求7至13中任一项所述的方法。
PCT/CN2017/102935 2016-09-29 2017-09-22 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法 WO2018059322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610871726.1 2016-09-29
CN201610871726.1A CN107881378B (zh) 2016-09-29 2016-09-29 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法

Publications (1)

Publication Number Publication Date
WO2018059322A1 true WO2018059322A1 (zh) 2018-04-05

Family

ID=61762531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102935 WO2018059322A1 (zh) 2016-09-29 2017-09-22 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法

Country Status (2)

Country Link
CN (1) CN107881378B (zh)
WO (1) WO2018059322A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472841A (zh) * 2022-01-24 2022-05-13 东莞鸿图精密压铸有限公司 压铸铝合金及其制备方法、转子端盖前驱体
CN115537611A (zh) * 2022-09-21 2022-12-30 华南理工大学 一种高导热低膨胀Al-Si-Ni基合金及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108677046A (zh) * 2018-06-15 2018-10-19 南通富尔特金属制品有限公司 一种铝合金元件的制备方法
CN111607723A (zh) * 2020-07-10 2020-09-01 内蒙古宏达压铸有限责任公司 一种高硅铝合金材料熔化压铸工艺
CN113502419B (zh) * 2021-06-28 2022-03-08 华南理工大学 一种高导热低膨胀变形铝合金及其制备方法
US11806964B2 (en) * 2021-08-31 2023-11-07 Honeywell Federal Manufacturing & Technologies, Llc Dopant for improving casting and electroplating performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341084A (en) * 1971-11-22 1973-12-19 Sumitomo Electric Industries Aluminium alloys
CN1450185A (zh) * 2003-05-07 2003-10-22 东华大学 一种具有共晶组织的过共晶铝硅合金及其工艺方法
CN1789456A (zh) * 2004-11-18 2006-06-21 东北大学 一种大尺寸过共晶高硅铝合金坯料及其制备方法
CN101503773A (zh) * 2009-03-11 2009-08-12 华中科技大学 一种耐热低膨胀高硅铝合金及其制备方法
CN101935783A (zh) * 2009-06-30 2011-01-05 现代自动车株式会社 用于车辆汽缸套的铝合金以及使用该铝合金制造车辆汽缸套的方法
CN105177325A (zh) * 2015-04-29 2015-12-23 安徽长城输送机械制造有限公司 一种铝合金铸件处理工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602381B2 (ja) * 1978-08-12 1985-01-21 マツダ株式会社 Al合金製ピストンの製造法
TW200636079A (en) * 2004-12-23 2006-10-16 Commw Scient Ind Res Org Heat treatment of aluminium alloy high pressure die castings
CN101363091B (zh) * 2008-09-08 2010-06-02 营口华润有色金属制造有限公司 一种高硅铝合金及其制备方法
CN101644203A (zh) * 2009-08-21 2010-02-10 重庆长安汽车股份有限公司 一种铸造铝合金气缸盖
CN102423798B (zh) * 2011-11-25 2016-01-27 沈阳工业大学 一种过共晶Al-Si合金挤压铸造成型方法及其模具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341084A (en) * 1971-11-22 1973-12-19 Sumitomo Electric Industries Aluminium alloys
CN1450185A (zh) * 2003-05-07 2003-10-22 东华大学 一种具有共晶组织的过共晶铝硅合金及其工艺方法
CN1789456A (zh) * 2004-11-18 2006-06-21 东北大学 一种大尺寸过共晶高硅铝合金坯料及其制备方法
CN101503773A (zh) * 2009-03-11 2009-08-12 华中科技大学 一种耐热低膨胀高硅铝合金及其制备方法
CN101935783A (zh) * 2009-06-30 2011-01-05 现代自动车株式会社 用于车辆汽缸套的铝合金以及使用该铝合金制造车辆汽缸套的方法
CN105177325A (zh) * 2015-04-29 2015-12-23 安徽长城输送机械制造有限公司 一种铝合金铸件处理工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472841A (zh) * 2022-01-24 2022-05-13 东莞鸿图精密压铸有限公司 压铸铝合金及其制备方法、转子端盖前驱体
CN115537611A (zh) * 2022-09-21 2022-12-30 华南理工大学 一种高导热低膨胀Al-Si-Ni基合金及其制备方法

Also Published As

Publication number Publication date
CN107881378B (zh) 2020-10-23
CN107881378A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2018059322A1 (zh) 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法
CN110129630B (zh) 一种高强韧薄壁结构件铸造铝合金及其制备方法
CN104471090B (zh) 铝合金
WO2017133415A1 (zh) 一种高导热压铸铝合金及其制备方法
CN110714148A (zh) 一种高性能半固态压铸铝合金及其制备方法
WO2016015488A1 (zh) 铝合金及其制备方法和应用
CN105112742B (zh) 一种Al-Si-Mg-Cu-Ti-Sc铸锻合金及其制备方法
CN108265207B (zh) 一种高导热铝合金及其制备方法和散热体
CN108517446A (zh) 一种用于真空压铸的高韧性铝合金及其产品的制备方法
TW201817892A (zh) 鋁合金粉體及鋁合金物件的製造方法
CN111690844B (zh) 一种共晶型Al-Fe-Mn-Si-Mg压铸合金及制备方法与应用
CN112779443B (zh) 一种铝合金及铝合金结构件
CN103305729A (zh) 制备新型Al-Si-Mg-Cu-Sr合金的方法
KR20140025042A (ko) 다이캐스팅용 고열전도도 Al-Zn 합금
CN115161522A (zh) 高压铸造铝合金
EP3434797B1 (en) Advanced cast aluminum alloys for automotive engine application with superior high-temperature properties
CN107937768B (zh) 一种挤压铸造铝合金材料及其制备方法
CN105886854A (zh) 降低Fe中间相危害及其高力学性能含钪、锆的A356铸造合金的制备方法
CN113481395A (zh) 一种改进铸造Al-Si系合金导热性能的复合处理方法
CN115852214B (zh) 一种可热处理强化高强韧铝合金及制备方法
CN111979455B (zh) 一种压铸铝合金及其制备方法和应用
KR20070084246A (ko) 알루미늄 합금 및 이 합금으로 이루어진 주형 부품
CN115537613A (zh) 一种新能源汽车电机壳体铝合金及其成形方法
CN108179330A (zh) 一种中强高韧高成形性的压铸铝合金
CN106884111B (zh) 一种铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854772

Country of ref document: EP

Kind code of ref document: A1