WO2024046421A1 - 表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用 - Google Patents

表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用 Download PDF

Info

Publication number
WO2024046421A1
WO2024046421A1 PCT/CN2023/116100 CN2023116100W WO2024046421A1 WO 2024046421 A1 WO2024046421 A1 WO 2024046421A1 CN 2023116100 W CN2023116100 W CN 2023116100W WO 2024046421 A1 WO2024046421 A1 WO 2024046421A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudo
boehmite
aging
catalytic cracking
weight
Prior art date
Application number
PCT/CN2023/116100
Other languages
English (en)
French (fr)
Inventor
袁帅
刘雨晴
严加松
于善青
李家兴
张杰潇
田辉平
邱中红
刘博�
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211051672.6A external-priority patent/CN117699834A/zh
Priority claimed from CN202211104668.1A external-priority patent/CN117732505A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024046421A1 publication Critical patent/WO2024046421A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates

Definitions

  • the present invention relates to a mesoporous pseudo-boehmite with a hydroxyl-rich surface and a preparation method thereof.
  • the invention also relates to a catalytic cracking catalyst containing the above-mentioned mesoporous pseudo-boehmite and its preparation method and application method.
  • pseudo-boehmite is AlOOH ⁇ nH 2 O (0 ⁇ n ⁇ 1, especially 0.08-0.62). It is an alumina compound with a greater water content than boehmite and a smaller grain size than boehmite. It is a crystal phase that is easily generated during the synthesis of aluminum hydroxide. The crystallization is incomplete, and its typical crystal form is very thin wrinkled lamellae.
  • the precipitation method is divided into two categories: acid method and alkali method.
  • the aluminum alkoxide hydrolysis method uses metal aluminum and higher alcohols (n-amyl alcohol, n-hexanol, isopropyl alcohol) as raw materials, and forms aluminum alkoxide by reacting metal aluminum with alcohol in the presence of a catalyst, and then hydrolyzes it to obtain pseudo-boehmite.
  • This method has high production cost and complicated production process.
  • the alkali precipitation method refers to the method of preparing pseudo-boehmite by neutralizing and precipitating acidic aluminum salts with alkali.
  • Commonly used aluminum salts include Al 2 (SO 4 ) 3 , Al (NO 3 ) 3 , AlCl 3, etc.
  • Commonly used alkali precipitations Agents include NaOH, NH 3 ⁇ H 2 O, NaAlO 2 , Na 2 CO 3 , etc.
  • the acid precipitation method refers to the method of preparing pseudo-boehmite by neutralizing and precipitating alkaline aluminates with acid.
  • the alkaline aluminates are generally (meta)sodium aluminates, and the acids used can be strong acids (HNO 3 , H 2 SO 4, etc.), it can also be a weak acid (NH 4 HCO 3 , NaHCO 3, etc.) and CO 2 , etc.
  • the NaAlO 2 -CO 2 method is also called the carbonization method.
  • the carbonization method to prepare pseudo-boehmite can rely on the sintering method to produce alumina, using the intermediate product NaAlO 2 solution and aluminum plant waste gas CO 2 as reaction raw materials.
  • the process is simple and the production is
  • the by-products and waste liquids in the process can be returned to the alumina production process for reuse, which is currently the lowest cost method for industrial production of pseudo-boehmite.
  • Pseudo-boehmite is widely used in petroleum refining and petrochemical catalysts. It is often used as a binder for catalytic cracking catalysts and a precursor for hydrogenation catalyst carriers ( ⁇ -Al 2 O 3 ). In semi-synthetic catalytic cracking catalysts, pseudo-boehmite is an important raw material. Pseudo-boehmite has good binding properties after acidification, and can also form a specific mesoporous structure after the catalyst is prepared and shaped.
  • the pseudo-boehmite prepared by the conventional carbonization method has low crystallinity and the most probable pore size is only 3.8nm. When prepared into a catalytic cracking catalyst, it can only provide 3.8nm intermediates. Pore structure. The molecular size of the catalytic cracking raw material is large, and its diffusion in the pore channel of 3.8nm is obviously hindered. This hindrance restricts the efficient diffusion and transformation of heavy oil raw material molecules, which is not conducive to reducing coke yield and improving product distribution. There are no reports in the literature that pseudo-boehmite prepared by carbonization method can provide a larger pore size distribution when used in catalytic cracking catalysts. However, the current pseudo-boehmite with larger pore size has poor wear resistance. After acidification, it is impossible to directly form a pore structure with a larger pore size.
  • Catalytic cracking catalysts typically include molecular sieves, binders and clays.
  • the commonly used binders are double aluminum binders - alumina and aluminum sol.
  • catalytic cracking catalysts usually need to contain a higher content of molecular sieves.
  • an increase in the molecular sieve content often leads to a reduction in the wear resistance of the catalyst, and the molecular sieves commonly used in catalytic cracking mainly contain micropores, medium and large pores. less.
  • Pseudo-boehmite is often used as the matrix of catalytic cracking catalysts and the precursor of hydrogenation catalyst carrier ( ⁇ -Al 2 O 3 ).
  • Pseudo-boehmite has good binding properties after acidification, and can form a specific mesoporous structure after the catalyst is prepared and shaped.
  • the strength of the catalytic cracking catalyst product obtained by using existing pseudo-boehmite is low.
  • larger pore sizes cannot often be obtained using existing pseudo-boehmite, and several pore sizes are less than 4.5 nm, and no pore structure larger than 5 nm can be formed in the obtained catalytic cracking catalyst.
  • the first technical problem to be solved by the present invention is to provide a mesoporous pseudo-boehmite with good bonding performance, which is rich in surface hydroxyl groups.
  • the second technical problem to be solved by the present invention is to provide a method for preparing the pseudo-boehmite.
  • the third technical problem to be solved by the present invention is to provide a method for preparing a catalytic cracking catalyst using a pseudo-boehmite binder.
  • the catalytic cracking catalyst prepared by this method can have better wear resistance.
  • the fourth technical problem to be solved by the present invention is to provide a catalytic cracking catalyst prepared by the above solution and its application method.
  • the present invention provides the following three groups of technical solutions A, B and C:
  • a pseudo-boehmite characterized in that the pseudo-boehmite has any one, two or three of the following characteristics (a), (b) and (c), that is, alone (a), (b) alone, (c) alone, combination of (a) and (b), combination of (a) and (c), combination of (b) and (c), (a), Combination of (b) and (c):
  • the possible pore diameter of the pseudo-boehmite is greater than 4.5nm and not more than 12nm, For example, 4.8nm-11nm, 5nm-10nm, 5.5nm-9nm, 6-8.5nm, 7-9nm, 5.2-7.6nm, or 5.2-7.5nm;
  • I 3000-3800 of the pseudo-boehmite is 6.0cm -1 ⁇ mg -1 -8.5cm -1 ⁇ mg -1 , for example, 6.2cm -1 ⁇ mg -1 -8.3cm -1 ⁇ mg -1
  • I 3000-3800 represents the infrared absorption intensity of hydroxyl groups on the pseudo-boehmite surface in the range of infrared wavelength 3000cm -1 -3800cm -1 .
  • the calculation method of I 3000-3800 is based on the sample at 3000cm -1 -3800cm - The ratio of the area of the absorption peak within the range of 1 (unit: cm -1 ) to the mass of the sample (unit: mg);
  • a Fourier transform infrared spectrometer is used to measure the infrared absorption intensity of the surface hydroxyl groups of the sample.
  • the specific method is as follows:
  • the sample is transferred to the sample holder in the in-situ cell and vacuumed.
  • the sample is purified for 2 hours under the conditions of high vacuum 1.0 ⁇ 10 -3 Pa (absolute pressure) and temperature of 450°C;
  • the hydroxyl infrared absorption spectrum is obtained with the wave number as the abscissa and the absorbance as the ordinate.
  • the base 10 logarithm of the ratio of the incident light intensity before light passes through a substance to the transmitted light intensity after the light passes through the substance, that is, lg(I 0 /I 1 ), where I 0 is the incident light intensity , I 1 is the transmitted light intensity;
  • XRD X-ray powder diffraction
  • the pseudo-boehmite according to any one of the preceding technical solutions characterized in that the crystallinity of the pseudo-boehmite is 85%-110%, such as 88%-108%, 90%-105% , or 92%-103%.
  • the pseudo-boehmite according to any one of the preceding technical solutions characterized in that the peptization index of the pseudo-boehmite is 90%-100%, such as 93%-99%, or 94-98 %.
  • the pseudo-boehmite according to any one of the aforementioned technical solutions, characterized in that the pore volume of the pseudo-boehmite is 0.3cm 3 /g-0.58cm 3 /g, such as 0.31cm 3 /g -0.52cm 3 /g, 0.33-0.5cm 3 /g, or 0.34-0.46cm 3 /g.
  • a method for preparing pseudo-boehmite which method includes the following steps:
  • the aging temperature is 100-185°C, such as above 100°C and not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C; preferably, aging under certain conditions: Aging statically first, then aging under stirring;
  • step (1) the end-point pH value of the reaction between the (meta)sodium aluminate solution and CO2 is 8.5-10.5 , such as 9.2-10.3, the Al 2 O 3 concentration of the (meta)sodium aluminate solution is 5-60g/L, such as 8-45g/L.
  • the conditions for the reaction of the (meta)sodium aluminate solution and CO 2 include, in (meta) ) into the sodium aluminate solution, a CO 2- containing gas with a concentration of 20-100 volume %, such as 40-100 volume %, 30-90 volume %, or 40-80 volume % (the balance is inert Gas (such as nitrogen) is used to react, the reaction starting temperature is 10-35°C, and the reaction end temperature is 15-55°C.
  • the method for preparing pseudo-boehmite according to any one of the aforementioned technical solutions, characterized in that the slurry aging temperature in step (2) is 100-185°C, for example, 100°C or more and not more than 185°C, 120 -180°C, 135-180°C, 120-160°C, or 135-160°C, the aging pressure is 0.2-1.0MPa, the aging time is 2-11.5 hours, such as 2-10 hours, or 3.5-10.5 hours.
  • step (2) the static aging time is 1-8 hours, such as 1-6 hours, or 2.5-6 hours , 1-4 hours, or 2-3 hours, the aging time under stirring is 1-6 hours, such as 1-4.5 hours; the stirring speed of the stirring aging can be 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150-450rpm; preferably, the aging is constant temperature aging.
  • the method for preparing pseudo-boehmite according to any one of the preceding technical solutions characterized in that the aging temperature is 100-185°C, for example, 100°C or more and not more than 185°C, 120-185°C. 180°C, 135-180°C, 120-160°C, or 135-160°C.
  • the aging is preferably constant temperature aging.
  • A13 The method for preparing pseudo-boehmite according to any one of the preceding technical solutions, characterized in that the hydroxyl regulator is added before static aging; or is added during static aging; or is added after static aging for a period of time after the static aging is completed and before the stirring aging begins; or a combination thereof; the hydroxyl regulator accounts for 0.5-2% by weight of the first slurry calculated as alumina, such as 0.7-1.8% by weight ; wherein the concentration of ammonia in the ammonia water is preferably 15-25% by weight, such as 20% by weight.
  • step (2)
  • Conditions for static aging include: temperature 100-185°C, such as above 100°C but not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C, and pressure 0.2-1.0MPa , the time is 1-8 hours, such as 1-6 hours, or 2.5-6 hours;
  • Conditions for aging under stirring include: temperature of 100-185°C, for example, above 100°C but not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C, and pressure of 0.2-1.0 MPa, the time is 1-6 hours, such as 1-4.5 hours, the stirring speed is 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150- 450rpm;
  • the ratio of the static aging time to the aging time under stirring is (1-5):1, such as (1.1-3):1, (1.2-3):1, or (1.14-3):1.
  • washing conditions in step (3) are: washing with deionized water at 70-100°C, such as 75-95°C Until the pH value of the wet filter cake is 7-7.5; dry as described in step (3), the drying temperature is 60-98°C, such as 70-98°C, or 70-95°C, and the drying time is not particularly limited, for example, 1-10 hours, such as 3-4 hours.
  • the pseudo-boehmite according to any one of the aforementioned technical solutions is used as a catalyst, carrier, and binder in the petroleum industry; used as a carrier coating for automobile exhaust gas treatment catalysts in the automobile industry; and used in the fire protection field.
  • Additive for flame retardant materials used in the paper industry as an ink-absorbing coating in high-end inkjet printing paper; used in the environmental protection industry as a gas purification adsorbent, drinking water fluoride remover, industrial wastewater color and odor eliminator; in the environmental protection industry Used as a coating additive in the construction industry; used as a reinforcing agent in ceramic composites.
  • a method for preparing a catalytic cracking catalyst including:
  • the pseudo-boehmite, molecular sieve, binder, clay and water according to any one of the aforementioned technical solutions are formed into an acidic slurry (for example, the pH value of the acidic slurry is preferably 1.5-2.6), and spray-dried;
  • the possible pore diameters of the catalytic cracking catalyst are 3.5-4nm and 4.5-10nm (for example, 5.1-10nm, or 5.1-7.5nm).
  • the pseudo-boehmite slurry according to any one of the aforementioned technical solutions is beaten with water to form a pseudo-boehmite slurry, the solid content of which is preferably 5-25% by weight.
  • Hydrochloric acid, HCl and pseudo-boehmite slurry calculated as alumina are added.
  • the mass ratio of diaspore is preferably 0.037-0.104, and the concentration of hydrochloric acid can be 10-37% by weight,
  • the pseudo-boehmite slurry is mixed with molecular sieves, binders, clay and water to obtain a colloidal slurry.
  • the solid content of the colloidal slurry is preferably 20-40% by weight, spray-dried, and optionally washed and dried.
  • a catalytic cracking catalyst containing 10% to 50% by weight of molecular sieve on a dry basis, 10% to 40% by weight of alumina pseudo-boehmite according to any one of the aforementioned technical solutions, and 10% to 40% by weight of alumina. 3 to 20% by weight of binder based on oxide and 10 to 80% by weight of clay on a dry basis, based on 100% by weight of said catalyst,
  • the possible pore diameters of the catalytic cracking catalyst are 3.5-4nm and 4.5-10nm (for example, 5.1-10nm, or 5.1-7.5nm) and/or
  • the molecular sieve is, for example, one or more of a Y-type molecular sieve, a molecular sieve with an MFI structure, a non-zeolite molecular sieve, and a molecular sieve with a BEA structure.
  • a catalytic cracking catalyst containing 10-50% by weight of Y-type molecular sieve on a dry basis, 0-40% by weight of other molecular sieves on a dry basis, and 10-40% by weight of alumina. Pseudo-boehmite of any one of the aforementioned technical solutions, 3-20% by weight of binder as oxide and 10-80% by weight of clay on a dry basis, 100% by weight of the catalyst as a benchmark;
  • the other molecular sieves are one or more of MFI structure zeolite, beta zeolite, and non-zeolite molecular sieves. More preferably, the other molecular sieves are one or more of HZSM-5, ZRP, and ZSP. ;and / or,
  • the Y-type molecular sieve is one or more of REY, REHY, DASY, SOY, PSRY, HSY, and HRY.
  • a catalytic cracking method including the step of contacting and reacting heavy oil with a catalytic cracking catalyst under FCC conditions, characterized in that the catalytic cracking catalyst is a catalytic cracking catalyst according to any one of the aforementioned technical solutions or according to The catalytic cracking catalyst obtained by the method for preparing a catalytic cracking catalyst in any of the preceding technical solutions; for example, the FCC conditions include: reaction temperature is 480-530°C, reaction time is 1-10 seconds, and the agent-oil ratio is 3- 20:1 weight ratio.
  • a method for preparing a catalytic cracking catalyst including:
  • the surface hydroxyl-rich pseudo-boehmite, molecular sieve, binder, clay and water are formed into an acidic slurry, and spray-dried;
  • the I 3000-3800 of the surface hydroxyl-rich pseudo-boehmite is 6.0 cm -1 ⁇ mg -1 -8.5cm -1 ⁇ mg -1
  • I 3000-3800 represents the infrared absorption intensity of hydroxyl groups on the pseudo-boehmite surface in the range of infrared wavelength 3000cm -1 -3800cm -1
  • calculation method of I 3000-3800 It is the ratio of the area of the absorption peak of the sample in the range of 3000cm -1 -3800cm -1 to the mass of the sample.
  • the possible pore diameter of the surface hydroxyl-rich pseudo-boehmite is greater than 4.5nm and not more than 12nm.
  • the catalytic cracking catalyst has Available pore diameters are 3.5-4nm
  • the surface hydroxyl-rich pseudo-boehmite has a crystallinity of 85%-110%, preferably 88%-108%, a peptization index of 90%-100%, for example, 93%-99%, and pores.
  • the capacity is 0.3cm 3 /g-0.58cm 3 /g, for example, it is 0.31cm 3 /g-0.52cm 3 /g.
  • the method according to technical solution B1 characterized in that the preparation method of pseudo-boehmite with hydroxyl-rich surface includes the following steps:
  • the hydroxyl regulator is urea and/or ammonia water to obtain an aged slurry.
  • the aging temperature is above 100°C and Not exceeding 185°C; preferably, aging under certain conditions: first static aging, and then aging under stirring;
  • step (1) the pH value of the end point of the reaction between the sodium aluminate solution and CO 2 is 8.5-10.5, and the Al 2 O 3 of the sodium aluminate solution The concentration is 5-60g/L;
  • the conditions for the reaction between the sodium aluminate solution and CO2 include passing CO2-containing gas with a CO2 concentration of 20%-100% by volume, such as 40-80% by volume, into the sodium aluminate solution.
  • the preferred reaction starting temperature is 10-35°C
  • the reaction end temperature is preferably 15-55°C.
  • step (2) The method according to technical solution B3 or B4, characterized in that in step (2), the aging temperature of the slurry is 100-185°C, the aging pressure is 0.2-1MPa, and the aging time is 2-10 hours.
  • step (2) The method according to technical solution B3 or B5, characterized in that in step (2), the static aging time is 1-4 hours, for example, after 2-3 hours, the aging time under stirring is 1-6 hours; the stirring The aging stirring speed can be 50-400r/min.
  • the hydroxyl regulator accounts for 0.5-2% by weight of the first slurry calculated as alumina; wherein the concentration of ammonia in the ammonia water is preferably 15-25% by weight. .
  • the solid content of the colloidal slurry is preferably 20-40% by weight, spray drying, and optional washing and drying. .
  • the catalytic cracking catalyst according to technical solution B10 characterized in that the possible pore diameters of the catalytic cracking catalyst are 3.5-4nm and 4.5-10nm;
  • the molecular sieve is, for example, a Y-type molecular sieve, a molecular sieve with an MFI structure, One or more of non-zeolite molecular sieves and molecular sieves with BEA structure.
  • a catalytic cracking method including the step of contacting and reacting heavy oil with a catalytic cracking catalyst under FCC conditions, characterized in that the catalytic cracking catalyst is the catalytic cracking catalyst described in any one of technical solutions B1-B9
  • the catalytic cracking catalyst prepared by the preparation method or the catalytic cracking catalyst described in any one of the technical solutions B10-B11 is connected; the FCC conditions are such as: reaction temperature is 480-530°C, reaction time is 1-10 seconds, and the agent-to-oil ratio is The weight ratio is 3-20:1.
  • the possible pore diameter of the pseudo-boehmite is greater than 4.5nm and not more than 12nm
  • I 3000-3800 is 6.0cm -1 ⁇ mg -1 -8.5cm - 1 ⁇ mg -1
  • I 3000-3800 represents the infrared absorption intensity of hydroxyl groups on the pseudo-boehmite surface in the range of infrared wavelength 3000cm -1 -3800cm -1 .
  • the calculation method of I 3000-3800 is based on the sample's The ratio of the area of the absorption peak to the sample mass in the range of 3000cm - 1 -3800cm - 1 .
  • the pseudo-boehmite according to technical solution C1 characterized in that the possible pore diameter of the pseudo-boehmite is preferably 4.8 nm-11 nm, for example, 5 nm-10 nm.
  • the pseudo-boehmite according to technical scheme C1 or C2, characterized in that the pseudo-boehmite has a grain size D (130) 4nm-10nm, preferably 5-8.5nm; D (130) /D (020) is 1.0-1.5, and D (130) /D (020) of the pseudo-boehmite is preferably 1.1-1.3.
  • the pseudo-boehmite according to technical scheme C1, C2 or C3, characterized in that the crystallinity of the pseudo-boehmite is 85%-110%; the crystallinity of the pseudo-boehmite Preferably it is 88%-108%; the peptization index of the pseudo-boehmite is 90%-100%, and the peptization index is, for example, 93%-99%; the pore volume of the pseudo-boehmite is 0.3cm 3 /g-0.58cm 3 /g is, for example, 0.31cm 3 /g-0.52cm 3 /g.
  • a method for preparing pseudo-boehmite which method includes the following steps:
  • the hydroxyl regulator is urea and/or ammonia water to obtain an aged slurry.
  • the aging temperature is above 100°C and Not exceeding 185°C; preferably, aging under certain conditions: first static aging, and then aging under stirring;
  • step (1) the end-point pH value of the reaction between the sodium aluminate solution and CO 2 is 8.5-10.5, and the Al 2 O 3 of the sodium aluminate solution is The concentration is 5-60g/L.
  • step (1) the conditions for the reaction between the sodium aluminate solution and CO 2 include passing CO 2 into the sodium aluminate solution at a concentration of 20 %-100% by volume of CO2- containing gas for reaction, the reaction starting temperature is 10-35°C, and the reaction end temperature is preferably 15-55°C.
  • step (2) The method according to technical scheme C5, C6 or C7, characterized in that in step (2), the aging temperature of the slurry is 100-185°C, the aging pressure is 0.2-1MPa, and the aging time is 2-10 hours.
  • step (2) the static aging time is 1-4 hours, such as 2-3 hours, and the aging time under stirring is 1-6 hours; the stirring The aging stirring speed can be 50-400r/min.
  • sodium aluminate and sodium metaaluminate are synonymous and both refer to: NaAlO 2 .
  • the present invention provides a pseudo-boehmite, the possible pore diameter of the pseudo-boehmite is greater than 4.5nm and not more than 12nm; and/or I 3000-3800 is 6.0cm -1 ⁇ mg -1 -8.5cm -1 ⁇ mg -1 , I 3000-3800 represents the infrared absorption intensity of hydroxyl groups on the pseudo-boehmite surface in the range of infrared wavelength 3000cm -1 -3800cm -1 .
  • the calculation method of I 3000-3800 is based on the sample at 3000cm - The ratio of the area of the absorption peak (unit: cm -1 ) in the range of 1 -3800cm -1 to the sample mass (unit: mg).
  • the grain size D (130) of the pseudo-boehmite provided by the present invention is 4nm-10nm, for example, greater than 4nm-10nm, 4.5-9nm, 5-8.5nm, 5.1-8.5nm, 5.5-8.5nm. , 6-8.2nm, or 5.0-7.9nm.
  • the pseudo-boehmite can maintain a large pore size after acidification.
  • XRD X-ray powder diffraction
  • the possible pore diameter of the pseudo-boehmite provided by the invention is greater than 4.5nm and less than or equal to 12nm, such as 4.8nm-11nm, 5nm-10nm, 5.5nm-9nm, 6-8.5nm, 7-9nm, 5.2-7.6 nm, or 5.2-7.5nm; the pore size refers to the diameter of the pore.
  • the crystallinity of the pseudo-boehmite provided by the present invention is 85%-110%, such as 88%-108%, 90%-105%, or 92%-103%.
  • the pseudo-boehmite provided by the present invention has a pore volume of 0.3cm 3 /g-0.58cm 3 /g, such as 0.31cm 3 /g-0.52cm 3 /g, 0.33-0.5cm 3 /g, or 0.34-0.46 cm 3 /g.
  • the pseudo-boehmite provided by the present invention has an I 3000-3800 of 6.0cm -1 ⁇ mg -1 -8.5/cm - 1 ⁇ mg -1 , for example, 6.2-8.3cm -1 ⁇ mg -1 .
  • the peptization index of the pseudo-boehmite provided by the present invention is 90%-100%, such as 93%-99%, or 94-98%.
  • the invention provides a method for preparing pseudo-boehmite, which method includes the following steps:
  • the aging temperature is 100-185°C, such as above 100°C and not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C; preferably, so Aging under certain conditions: first static aging, then aging under stirring;
  • the concentration of the (meta)sodium aluminate solution can be 5-60g/L in terms of Al 2 O 3 , such as 8-45g /L.
  • the sodium (meta)aluminate solution can be purchased commercially or prepared according to existing methods.
  • the preparation method of the sodium (meta)aluminate solution includes: reacting aluminum hydroxide and alkali solution at a temperature of 90-120°C for 1-4 hours, and diluting to an Al 2 O 3 concentration of 5 -60g/L, such as 8-45g/L.
  • the alkali solution is, for example, sodium hydroxide solution.
  • the causticity ratio (molar ratio of sodium oxide to alumina) of the (meta)aluminate solution is, for example, 1.0-3.2.
  • step (1) the (meta)sodium aluminate solution is contacted with CO 2 and CO 2 can be passed into the (meta)sodium aluminate solution.
  • the gas is reacted with, and the volume concentration of CO2 in the CO2 -containing gas is 20-100 volume%, such as 40-100 volume%, 30-90 volume%, or 40-80 volume%.
  • the balance is an inert gas such as nitrogen.
  • step (1) the pH value at the end point of the reaction between (meta)sodium aluminate solution and CO2 is 8.5-10.5, such as 9.2-10.3.
  • the reaction starting temperature may be 10-35°C
  • the reaction end temperature may be 15-55°C.
  • step (1) the (meta)sodium aluminate solution and CO 2 are contacted and reacted, and the reaction time of the reaction between the (meta)sodium aluminate solution and CO 2 can be for 20-70 minutes.
  • the conditions for the reaction of (meta)sodium aluminate solution and CO 2 may include: the reaction starting temperature is 10-35°C, and the reaction end temperature The temperature is 15-55°C, and the reaction time is 20-70 minutes.
  • the pH value at the end point of the reaction between (meta)sodium aluminate solution and CO2 is 8.5-10.5, such as 9.2-10.3; the (meta)sodium aluminate solution reacts with CO2 , and the (meta)sodium aluminate solution is reacted with CO2-containing 2 gas contact reaction, the volume concentration of CO2 in the CO2 -containing gas is 20-100 volume%, such as 40-100 volume%, 30-90 volume%, or 40-80 volume%.
  • the balance is an inert gas such as nitrogen.
  • step (2) the aging under certain conditions is preferably carried out in the following manner: static aging first, and then aging under stirring.
  • D (130) /D (020) is 1.0-1.5, for example, 1.1-1.4, 1.2-1.35, 1.1-1.3, or 1.13-1.26, and it can have a higher dispersion aperture.
  • the first slurry is aged under certain conditions.
  • the aging temperature is 100-185°C, such as above 100°C and no more than 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C.
  • the first slurry can be added to Heat to 100-185°C, such as above 100°C and not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C, and then aged at this temperature. For example, the time for the first slurry to rise from the reaction end temperature to the aging temperature does not exceed 60 minutes.
  • Constant temperature aging can be performed by keeping the temperature at a constant temperature from the beginning to the end of aging.
  • the constant temperature aging refers to controlling the temperature of static aging and stirring aging to remain unchanged.
  • the temperature difference between static aging and stirring aging should preferably not exceed 2°C.
  • step (2) the aging pressure can be 0.2-1.0MPa.
  • the stirring speed can be controlled to 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150-450rpm.
  • the stirring can adopt existing stirring methods. Through stirring, the aging slurry rotates in the aging kettle driven by the stirring paddle.
  • the aging time may be 2-11.5 hours, such as 2-10 hours, or 3.5-10.5 hours.
  • step (2) it is first aged statically at a certain temperature, and then aged under stirring.
  • stirring is not performed during aging, so that the slurry is in a static state, for example, it can be left standing for a period of time for aging.
  • the stirring speed may be 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150-450rpm.
  • the first slurry is aged under certain conditions, and the aging temperature is 100-185°C, for example, above 100°C and not exceeding 185°C, 120-180°C, 135-180°C. , 120-160°C, or 135-160°C, the aging pressure is 0.2-1.0MPa, and the constant temperature reaction is 2-11.5 hours, such as 2-10 hours, or 3.5-10.5 hours for aging; among which, the first slurry is left to stand first Aging for 1-8 hours, such as 1-6 hours, or 2.5-6 hours, 1-4 hours, or 2-3 hours, then maintain the aging temperature and aging pressure, apply stirring, and control the stirring speed to 50-450rpm, such as 50 -400rpm, 60-400rpm, 120-450rpm, or 150-450rpm, stirring and aging time 1-6 hours, such as 1-4.5 hours.
  • the aging temperature is 100-185°C, for example, above 100°C and not exceeding 185°C, 120-180°C, 135-180°C
  • step (2) add a hydroxyl regulator, which can be ammonia and/or a precursor capable of forming NH3 such as urea.
  • the amount of hydroxyl regulator added is 0.5-2 weight of the alumina content in pseudoboehmite. %, for example 0.7-1.8% by weight.
  • the concentration of the ammonia water (calculated as NH 3 ) is 15-25% by weight, such as 20% by weight.
  • the hydroxyl modulator ceases to react with CO2 in step (1) Then add it before stirring and aging.
  • the hydroxyl regulator is added before static aging; or is added during static aging; or is added after static aging for a period of time and before stirring aging; or is added after static aging is completed and before stirring aging starts; or its combination.
  • the hydroxyl regulator is added after a period of static aging, for example, during the static aging process or after the static aging is completed and before the stirring aging is started.
  • step (3) the aged slurry is filtered, washed, and dried to obtain macroporous pseudo-boehmite with a specific hydroxyl-rich surface and a specific pore size distribution.
  • the washing condition is to wash with deionized water at 70-100°C, such as 75-95°C until the pH of the wet filter cake is 7-7.5.
  • the drying temperature may be 60-98°C, such as 70-98°C, or 70-95°C; the drying time is not particularly limited, such as 1-10 hours, such as 2-4 hours, or 3-4 hours.
  • the pseudo-boehmite provided by the invention has abundant hydroxyl groups on the surface, a large pore size, high crystallinity and good peptization.
  • the pseudo-boehmite provided by the invention has good bonding properties and can reduce the coke selectivity of hydrocarbon oil conversion when used in catalytic cracking catalysts.
  • the preparation method of pseudo-boehmite provided by the invention is green, environmentally friendly, low-cost and easy to implement, and fills the technical gap in the production of pseudo-boehmite suitable for catalytic cracking catalysts by carbonization. It is possible to obtain pseudo-boehmite with good bonding properties and high pore size distribution.
  • the pseudo-boehmite has high crystallinity, large grain size, specific crystal structure and good peptization.
  • the pseudo-boehmite provided by the present invention can be used for catalyst preparation. After acidification, the obtained catalyst can have larger pore size and better strength. For example, it can be used for the preparation of catalytic cracking catalyst without pore expansion. Direct acidification is performed to obtain a catalytic cracking catalyst with a larger pore size, for example, a pore size greater than 5 nm and good wear resistance.
  • the pseudo-boehmite used in the preparation of catalytic cracking catalysts can provide more mesoporous structures, higher possible pore sizes, and better catalyst strength (lower wear index) ), the resulting catalytic cracking catalyst has lower coke selectivity and better product distribution, such as higher liquefied gas and gasoline yields.
  • the invention also provides a method for preparing a catalytic cracking catalyst, which includes:
  • the surface hydroxyl-rich pseudo-boehmite, molecular sieve, binder, clay and Water forms an acidic slurry, wherein the pH value of the slurry is preferably 1.5-2.6, spray drying;
  • the I 3000-3800 of the surface hydroxyl-rich pseudo-boehmite is 6.0cm -1 ⁇ mg -1 -8.5cm -1 ⁇ mg -1 , for example, 6.2cm -1 ⁇ mg -1 -8.3cm -1 ⁇ mg -1 ,
  • I 3000-3800 represents the infrared absorption intensity of hydroxyl groups on the surface of pseudo-boehmite in the range of infrared wavelength 3000cm -1 -3800cm -1 .
  • the calculation method of I 3000-3800 is based on the sample in the range of 3000cm -1 -3800cm -1
  • the ratio of the area of the absorption peak (unit: cm -1 ) to the mass of the sample unit: mg).
  • the possible pore diameter of the surface hydroxyl-rich pseudoboehmite is greater than 4.5nm and not more than 12nm, such as 4.8nm- 11nm, 5nm-10nm, 5.5nm-9nm, 6-8.5nm, 7-9nm, 5.2-7.6nm, or 5.2-7.5nm, the possible pore diameters of the catalytic cracking catalyst can be 3.5-4nm and 4.5-10nm ( For example, 5.1-10nm, or 5.1-7.5nm).
  • aperture refers to the diameter of the hole.
  • the grain size D (130) of the surface hydroxyl-rich pseudoboehmite is 4 nm to 10 nm, for example, greater than 4 nm to 10 nm, 4.5 to 9 nm, 5 to 8.5 nm, 5.1 to 8.5 nm. , 5.5-8.5nm, 6-8.2nm, or 5.0-7.9nm.
  • XRD X-ray powder diffraction
  • the surface hydroxyl-rich pseudoboehmite has a crystallinity of 85% to 110%, such as 88% to 108%, 90% to 105%, or 92% to 103%.
  • the pore volume of the surface hydroxyl-rich pseudoboehmite is 0.3cm 3 /g-0.58cm 3 /g, such as 0.31cm 3 /g-0.52cm 3 /g, 0.33-0.5cm 3 /g, or 0.34-0.46cm 3 /g.
  • the peptization index of the surface hydroxyl-rich pseudoboehmite is 90%-100%, such as 93%-99%, or 94-98%.
  • the hydroxyl-rich surface pseudo-boehmite of the present invention can maintain a larger visible pore size after acidification, which is beneficial to reducing the coke yield and increasing the gasoline and liquefied gas yields.
  • the method for preparing pseudo-boehmite with hydroxyl-rich surfaces includes the following steps:
  • the aging temperature is 100-185°C, such as above 100°C and not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C; preferably, so Aging under certain conditions: first static aging, then aging under stirring;
  • the concentration of the (meta)sodium aluminate solution can be 5-60g/L in terms of Al 2 O 3 , For example, 8-45g/L.
  • the sodium (meta)aluminate solution can be purchased commercially or prepared according to existing methods.
  • the preparation method of the sodium (meta)aluminate solution includes: reacting aluminum hydroxide and alkali solution at a temperature of 90-120°C for 1-4 hours, and diluting to an Al 2 O 3 concentration of 5 -60g/L, such as 8-45g/L.
  • the alkali solution is, for example, sodium hydroxide solution.
  • the causticity ratio (molar ratio of sodium oxide to alumina) of the (meta)aluminate solution is, for example, 1.0-3.2.
  • step (1) the (meta)sodium aluminate solution is contacted with CO 2 and can be passed through the (meta)sodium aluminate solution.
  • a CO2 -containing gas is introduced for reaction, and the volume concentration of CO2 in the CO2 -containing gas is 20-100 volume%, such as 40-100 volume%, 30-90 volume%, or 40-80 volume%.
  • the balance is an inert gas such as nitrogen.
  • the pH value at the end point of the reaction between (meta)sodium aluminate solution and CO2 is 8.5-10.5, for example, 9.2-10.3.
  • the reaction starting temperature may be 10-35°C
  • the reaction end temperature may be 15-55°C.
  • step (1) makes the (meta)sodium aluminate solution and CO 2 contact and react, and the reaction of the (meta)sodium aluminate solution and CO 2
  • the time can be 20-70 minutes.
  • the conditions for the reaction of sodium (meta)aluminate solution and CO 2 may include, the reaction starting temperature is 10-35°C , the reaction end temperature is 15-55°C, and the reaction time is 20-70 minutes.
  • the pH value at the end point of the reaction between (meta)sodium aluminate solution and CO2 is 8.5-10.5, such as 9.2-10.3; the (meta)sodium aluminate solution reacts with CO2 , and the (meta)sodium aluminate solution is reacted with CO2-containing 2 gas contact reaction, the volume concentration of CO 2 in the CO 2 -containing gas is 20-100 volume %, such as 40-100 volume %, 30-90 volume %, or 40-80 volume %; the balance is inert Gas such as nitrogen.
  • step (2) aging under certain conditions: first static aging, and then aging under stirring; the pseudo-boehmite obtained by this method
  • the grain size of the stone D (130) 4nm-10nm, for example, greater than 4nm-10nm, 4.5-9nm, 5-8.5nm, 5.1-8.5nm, 5.5-8.5nm, 6-8.2nm, or 5.0-7.9nm
  • D (130) /D (020) is 1.0-1.5, for example, 1.1-1.4, 1.2-1.35, 1.1-1.3, or 1.13-1.26, and it may have a higher possible pore size.
  • the catalyst prepared by acidifying it has a lower wear index, and a larger catalyst pore size can be obtained.
  • the first slurry is aged under certain conditions.
  • the aging temperature is 100-185°C, such as above 100°C and no more than 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C.
  • the first slurry may be heated to 100-185°C, such as above 100°C and not exceeding 185°C, 120-180°C, 135-180°C, 120-160°C, or 135-160°C, and then aged at this temperature.
  • Constant temperature aging can be performed by keeping the temperature at a constant temperature from the beginning to the end of aging.
  • the constant temperature aging refers to controlling the temperature of static aging and stirring aging to remain unchanged.
  • the temperature difference between static aging and stirring aging should preferably not exceed 2°C.
  • the aging pressure may be 0.2-1.0 MPa.
  • the stirring speed can be controlled to 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150- 450rpm.
  • the stirring can adopt existing stirring methods. Through stirring, the aging slurry rotates in the aging kettle driven by the stirring paddle.
  • the aging time may be 2-11.5 hours, such as 2-10 hours, or 3.5-10.5 hours.
  • step (2) it is first aged statically at a certain temperature, and then aged under stirring.
  • stirring is not performed during aging, so that the slurry is in a static state, for example, it can be left standing for a period of time for aging.
  • the stirring speed may be 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150-450rpm.
  • the first slurry is aged under certain conditions, and the aging temperature is 100-185°C.
  • the aging temperature is 100-185°C.
  • the aging pressure is 0.2-1.0MPa
  • the constant temperature reaction is 2-11.5 hours, such as 2-10 hours, or 3.5-10.5 hours for aging;
  • the first slurry is first allowed to stand for 1-8 hours, such as 1-6 hours, or 2.5-6 hours, 1-4 hours, or 2-3 hours, and then kept Aging temperature and pressure, applying stirring, stirring speed control 50-450rpm, such as 50-400rpm, 60-400rpm, 120-450rpm, or 150-450rpm, stirring aging time 1-6 hours, such as 1-4.5 hours.
  • a hydroxyl regulator is added, which can be ammonia water and/or a precursor capable of forming NH 3 such as urea, as described
  • the hydroxyl regulator is added in an amount of 0.5-2% by weight of the alumina in the slurry, for example 0.7-1.8% by weight.
  • the concentration of the ammonia water (calculated as NH 3 ) is 15-25% by weight, such as 20% by weight.
  • the hydroxyl regulator is added after stopping the reaction with CO 2 in step (1) and before stirring and aging.
  • the hydroxyl regulator is added before static aging; or is added during static aging; or is added after static aging for a period of time and before stirring aging; or is added after static aging is completed and before stirring aging starts; or its combination.
  • the hydroxyl regulator is added after a period of static aging, for example, during the static aging process or after the static aging is completed and before the stirring aging is started.
  • step (3) the aged slurry is filtered, washed, and dried to obtain large surface hydroxyl-rich particles with a specific pore size distribution.
  • the pores are pseudo-boehmite.
  • the washing condition is to wash with deionized water at 70-100°C, such as 75-95°C until the pH of the wet filter cake is 7-7.5.
  • the drying temperature is preferably 60-98°C, such as 70-98°C, or 70-95°C; the drying time is not particularly limited, such as 1-10 hours, such as 2-4 hours, or 3-4 hours.
  • the pseudo-boehmite obtained by the preparation method of pseudo-boehmite with rich surface hydroxyl groups has rich surface hydroxyl groups, has a larger possible pore size, has higher crystallinity, good peptization, and has good properties after acidification. Bonding properties. After static aging and then stirring aging, pseudo-boehmite with specific crystal characteristics and rich surface hydroxyl groups can be obtained.
  • the pseudo-boehmite used in a catalytic cracking catalyst can reduce the coke selectivity of hydrocarbon oil conversion and reduce the wear index of the catalytic cracking catalyst.
  • the preparation method of the catalytic cracking catalyst provided by the invention includes the following steps: forming a slurry including the pseudo-boehmite, molecular sieve, alumina binder, clay and water, spray drying, optional washing, and drying. Spray drying, washing and drying are existing technologies, and the present invention has no special requirements. You can refer to existing methods, for example, prepare according to the methods disclosed in patents CN1098130A and CN1362472A.
  • the catalytic cracking catalyst provided by the present invention based on 100% by weight of the catalyst, contains 10%-50% by weight on a dry basis, such as 20-45% by weight of molecular sieve, and 10%-40% by weight of alumina. %, for example 15-35% by weight of the surface hydroxyl-rich pseudoboehmite, 3-20% by weight of binder as oxide and 10-80% by weight on a dry basis, for example 20- 50% by weight clay.
  • the catalytic cracking catalyst provided by the present invention contains a molecular sieve.
  • the molecular sieve is, for example, one of Y-type molecular sieves, zeolites with MFI structure, beta zeolites (also referred to as "molecular sieves with BEA structure” in this article), and non-zeolite molecular sieves. or more.
  • the molecular sieve includes Y-type molecular sieve and other molecular sieves except Y-type molecular sieve. Based on 100% by weight of the catalyst, the other molecules are calculated on a dry basis.
  • the sieve content is, for example, 0-40% by weight, for example 0-30% by weight or 1-20% by weight.
  • the other molecular sieves are molecular sieves used in autocatalytic cracking catalysts, such as one or more of a zeolite with an MFI structure, a beta zeolite, and a non-zeolite molecular sieve.
  • a zeolite with an MFI structure such as one or more of a zeolite with an MFI structure
  • a beta zeolite such as a beta zeolite
  • a non-zeolite molecular sieve based on 100% by weight of the catalyst, the content of the Y-type molecular sieve on a dry basis does not exceed 40% by weight, such as 1-40% by weight or 30-38% by weight.
  • the Y-type molecular sieve is, for example, one or more of REY, REHY, DASY, SOY, PSRY, and HRY zeolites
  • the MFI structure zeolite is, for example, one or more of HZSM-5, ZRP, and ZSP.
  • the beta zeolite is, for example, H ⁇
  • the non-zeolite molecular sieve is, for example, one or more of aluminum phosphate molecular sieve (AlPO molecular sieve) and silicoaluminophosphorus molecular sieve (SAPO molecular sieve).
  • the content of the surface hydroxyl-rich pseudoboehmite is 10-40% by weight, such as 15-35% by weight, or 20-30% by weight on a dry basis.
  • the binder is preferably an alumina binder, and the content of the alumina binder in terms of alumina is 3-20% by weight, such as 5-15% by weight.
  • the alumina binder aluminum sol is preferred.
  • the catalytic cracking catalyst contains 3-20 wt%, such as 5-15 wt%, or 3-15 wt% aluminum sol based on alumina.
  • the catalytic cracking catalyst has a biscosmic pore size, and the biscosmic pore size is 3.5-4nm and 4.5-10nm (for example, 5.1-10nm, or 5.1-7.5nm).
  • the clay is selected from one or more clays used as cracking catalyst components, such as kaolin, halloysite, halloysite, montmorillonite, diatomite, saponite One or more of stone, rectorite, sepiolite, attapulgite, hydrotalcite, and bentonite.
  • clays used as cracking catalyst components, such as kaolin, halloysite, halloysite, montmorillonite, diatomite, saponite One or more of stone, rectorite, sepiolite, attapulgite, hydrotalcite, and bentonite.
  • the content of the clay in the catalytic cracking catalyst provided by the present invention is 20-55% by weight, or 30-50% by weight on a dry basis.
  • the present invention further provides a catalytic cracking method, which includes the step of contacting and reacting heavy oil with the catalytic cracking catalyst prepared by the catalytic cracking catalyst preparation method under FCC conditions.
  • the FCC conditions are, for example: reaction temperature is 480-530°C, reaction time is 1-10 seconds, and the weight ratio of agent to oil is (3-20):1.
  • the preparation method of the catalytic cracking catalyst provided by the invention uses pseudo-boehmite with a rich surface of hydroxyl groups and undergoes acidification treatment.
  • the resulting catalytic cracking catalyst has a lower wear index and better strength.
  • using the hydroxyl-rich pseudo-boehmite with specific crystal characteristics on the surface can make the obtained catalytic cracking catalyst have a diameter greater than 5 nm.
  • Pore structure, the resulting catalytic cracking catalyst has lower coke selectivity, and in the case of using Y-type molecular sieve and ZSM-5 molecular sieve, it can have better product distribution, such as higher liquefied gas and gasoline yields.
  • the preparation method of the catalytic cracking catalyst provided by the invention is suitable for the preparation of the catalytic cracking catalyst containing pseudo-boehmite.
  • the possible pore diameters of the catalytic cracking catalyst are 3.5-4nm and 4.5-10nm (for example, 5.1-10nm, or 5.1-7.5nm). nm), can have better wear resistance when the amounts of pseudo-boehmite and molecular sieve are the same; especially when the molecular sieve content is higher, such as higher than 35% by weight, compared with existing catalysts of the same composition , can significantly reduce the wear index, and has larger mesopores and several pore diameters.
  • the crystallinity and grain size D of the sample were measured by X-ray powder diffraction (XRD), using the RIPP139-90, RIPP140-90, RIPP145-90, and RIPP146-90 standard methods (see “Petrochemical Analysis Methods” (RIPP test method) edited by Yang Cuiding et al., Science Press, published in 1990).
  • the standard sample number is S87-16b, which was prepared by the Petrochemical Science Research Institute and is commercially available. After calibration, its pseudo-boehmite crystallinity is 98.0%. Calculate the crystallinity of the sample according to the following formula:
  • Crystallinity net integrated intensity of the sample/net integrated intensity of the standard sample ⁇ 98.0
  • the pore distribution and pore volume (pore volume) of the sample were measured by the low-temperature nitrogen static capacity adsorption method, the specific surface area and pore volume were calculated using the two-parameter BET formula, and the pore size distribution was calculated using the BJH formula.
  • the pore size distribution curve The aperture size corresponding to the highest point is sample The product can have several pore diameters.
  • the American Micromeritics company ASAP 2405N V1.01 automatic adsorption instrument was used. The sample was vacuumed and degassed at 1.33 ⁇ 10 -2 Pa and 300°C for 4 hours. N 2 was used as the adsorption medium, and the adsorption-desorption of the sample was measured at 77.4K. Isotherm.
  • the measurement method of I 3000-3800 is as follows: Use a Fourier transform infrared spectrometer (for example, Nicolet 6700 model produced by Thermo Fisher in the United States) to measure the infrared absorption intensity of the surface hydroxyl groups of the sample. Test conditions: After the sample is fully ground , sample 10mg-20mg and press into self-supporting tablets. After being accurately weighed, the sample was transferred to the sample holder in the in-situ cell and vacuumed. The sample was purified for 2 hours under the conditions of high vacuum 1.0 ⁇ 10 -3 Pa (absolute pressure) and a temperature of 450°C.
  • a Fourier transform infrared spectrometer for example, Nicolet 6700 model produced by Thermo Fisher in the United States
  • the hydroxyl infrared absorption spectrum is obtained with the wave number as the abscissa and the absorbance as the ordinate (absorbance: the ratio of the incident light intensity before the light passes through a certain substance to the transmitted light intensity after the light passes through the substance).
  • the logarithm of base 10 i.e. lg(I 0 /I 1 )), where I 0 is the incident light intensity and I 1 is the transmitted light intensity).
  • the calculation method of I 3000-3800 is that in the hydroxyl infrared absorption spectrum of the sample, the area of the infrared absorption peak of the hydroxyl group on the pseudo-boehmite surface in the infrared wavelength range of 3000cm -1 -3800cm -1 (unit is cm -1 ) to the sample mass (unit: mg).
  • the sodium metaaluminate used in the examples was produced by Shanghai McLean Biochemical Technology Co., Ltd., with a causticity ratio of 1 and analytical purity.
  • a sodium metaaluminate solution with a concentration of 20gAl 2 O 3 /L is reacted with a carbon dioxide gas with a volume fraction of 40% (the volume fraction of carbon dioxide is 40%, and the rest is nitrogen) to form a gel, and the end point pH value is controlled to 9.5.
  • the obtained slurry is transferred to the aging kettle, it is left to be aged for 3 hours at 135°C and 0.35MPa. 0.8% by weight (based on the weight of the slurry based on the mass of alumina) urea is added to maintain the temperature and pressure conditions. Next, start stirring and maintain the stirring speed at 150 rpm and continue aging for 1 hour.
  • a sodium metaaluminate solution with a concentration of 45gAl 2 O 3 /L is contacted with carbon dioxide gas with a volume fraction of 60% (CO 2 volume fraction is 60%, the remainder is nitrogen), and the end point pH value is controlled to 10.3.
  • carbon dioxide gas with a volume fraction of 60% CO 2 volume fraction is 60%, the remainder is nitrogen
  • the end point pH value is controlled to 10.3.
  • ammonia was added (the ammonia concentration was 20% by weight based on NH 3 ), then maintain the temperature at 180°C and the pressure at 1.0MPa, start stirring, maintain the stirring rate at 450rpm, and age for 1 hour.
  • the obtained slurry is separated from solid and liquid, and continuously washed with 95°C deionized water for half an hour until the pH value of the wet filter cake is 7.3, to obtain a pseudo-boehmite wet filter cake with impurities removed.
  • the wet filter cake was dried at 90°C for 4 hours and crushed to obtain pseudo-boehmite powder S2. Its physical and chemical properties are shown in Table 1.
  • Example 2 Y molecular sieve, ZSP-3 molecular sieve, kaolin, water, S2 pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a micron Ball catalyst, prepared by catalytic cracking
  • the catalyst is designated as SC2.
  • SC2 catalyst contained 30% by weight of molecular sieves (Y molecular sieve and ZSP-3 molecular sieve), 42% by weight of kaolin, 25% by weight of S2 pseudoboehmite, and 3% by weight of aluminum sol.
  • a sodium metaaluminate solution with a concentration of 8gAl 2 O 3 /L is contacted with carbon dioxide gas with a volume fraction of 35% (CO 2 volume fraction is 35%, the remainder is nitrogen), and the end point pH value is controlled to 9.2.
  • carbon dioxide gas with a volume fraction of 35% CO 2 volume fraction is 35%, the remainder is nitrogen
  • the end point pH value is controlled to 9.2.
  • the obtained slurry is separated from solid and liquid, and continuously washed with 75°C deionized water for half an hour until the pH value of the wet filter cake is 7.2, to obtain a pseudo-boehmite wet filter cake with impurities removed.
  • the wet filter cake was dried at 75°C for 4 hours and crushed to obtain pseudo-boehmite powder S3. Its physical and chemical properties are shown in Table 1.
  • the catalyst was prepared according to the method of Example 1, using S3 instead of S1 to obtain SC3.
  • a sodium metaaluminate solution with a concentration of 15gAl 2 O 3 /L is contacted with carbon dioxide gas with a volume fraction of 50% (CO 2 volume fraction is 50%, the remainder is nitrogen), and the end point pH value is controlled to 9.9.
  • carbon dioxide gas with a volume fraction of 50% CO 2 volume fraction is 50%, the remainder is nitrogen
  • the end point pH value is controlled to 9.9.
  • After transferring the obtained slurry to the aging kettle add 1.8% (based on the slurry based on the mass of alumina) urea, and let it stand for aging at 150°C and 0.48MPa for 4 hours, and then maintain the temperature and pressure at 150°C and 0.48MPa. Under the conditions, start stirring, maintain the stirring speed at 250 rpm, and age for 3 hours.
  • the obtained slurry is separated from solid and liquid, and continuously washed with 80°C deionized water for half an hour until the pH value of the wet filter cake is 7.2, to obtain a pseudo-boehmite wet filter cake with impurities removed.
  • the wet filter cake was dried at 85°C for 4 hours and crushed to obtain pseudo-boehmite powder S4. Its physical and chemical properties are shown in Table 1.
  • the catalyst was prepared according to the method of Example 1, using S4 instead of S1 to obtain SC4.
  • a sodium metaaluminate solution with a concentration of 55gAl 2 O 3 /L is contacted with carbon dioxide gas with a volume fraction of 90% (CO 2 volume fraction is 90%, the rest is nitrogen), and the end point pH value is controlled to 10.3.
  • carbon dioxide gas with a volume fraction of 90% CO 2 volume fraction is 90%, the rest is nitrogen
  • the end point pH value is controlled to 10.3.
  • After transferring the obtained slurry to the aging kettle add 0.7% (based on the mass of alumina) ammonia water (the concentration of ammonia water is 20% by weight based on NH 3 ), and let it stand for aging at 160°C and 0.62MPa for 6 hours, and then Keep the temperature and pressure at 160°C and 0.62MPa, start stirring, maintain the stirring rate at 350rpm, and age for 4.5 hours.
  • the catalyst was prepared according to the method of Example 1, using S5 instead of S1 to obtain SC5.
  • a sodium metaaluminate solution with a concentration of 20gAl 2 O 3 /L was reacted with carbon dioxide gas gelation with a volume fraction of 40%, and the endpoint pH value was controlled to 9.5.
  • the obtained slurry is transferred to the aging kettle, it is left to stand for aging at 90°C for 3 hours.
  • the solid and liquid of the obtained slurry are separated and washed continuously with deionized water at 78°C for half an hour to obtain a product filter cake with impurities removed. Dried at °C for 3 hours, and then crushed to obtain pseudo-boehmite powder D1. Its physical and chemical properties are shown in Table 1.
  • Molecular sieve (same as the molecular sieve used in Example 1), kaolin, water, D1 pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared The catalytic cracking catalyst is marked as DC1 (refer to the preparation method of Example 1).
  • the obtained DC1 catalyst contained 30% by weight of molecular sieve, 42% by weight of kaolin, 25% by weight of D1 pseudoboehmite, and 3% by weight of aluminum sol.
  • a sodium metaaluminate solution with a concentration of 20gAl 2 O 3 /L was reacted with carbon dioxide gas gelation with a volume fraction of 40%, and the endpoint pH value was controlled to 9.5.
  • the obtained slurry was transferred to the aging kettle, it was left to be aged for 3.5 hours at 135°C and 0.35MPa.
  • the obtained slurry was separated from solid and liquid, and washed continuously with deionized water at 80°C for half an hour to obtain a pseudo-boehmite wet filter cake with impurities removed.
  • the wet filter cake was dried at 80°C for 3 hours and crushed to obtain pseudo-boehmite powder D2. Its physical and chemical properties are shown in Table 1.
  • Molecular sieve, kaolin, water, D2 pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional catalytic cracking catalyst preparation method, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst is recorded as DC2 (reference Preparation method of Example 1).
  • the obtained DC2 catalyst contained 30% by weight of molecular sieve, 42% by weight of kaolin, 25% by weight of D2 pseudoboehmite, and 3% by weight of aluminum sol.
  • a high-purity sodium metaaluminate solution with an Al 2 O 3 content of 45 g/L is used as the raw material, and CO 2 with a concentration of 40% is introduced to perform the gelation reaction.
  • the flow rate per hour is controlled at 3.0m3/h, and the reaction time is controlled at 40 minutes, control the residual Al 2 O 3 to 5g/l, and control the final temperature to 35°C.
  • the slurry was separated and washed, and the filter cake was washed with high-purity water at 85°C until the pH value of the filter cake was 7.0.
  • Molecular sieve, kaolin, water, D3 pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional catalytic cracking catalyst preparation method, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst is recorded as DC3 (reference Preparation method of Example 1).
  • the obtained DC3 catalyst contained 30% by weight of molecular sieve, 42% by weight of kaolin, 25% by weight of D3 pseudoboehmite, and 3% by weight of aluminum sol.
  • a sodium metaaluminate solution with a concentration of 45gAl 2 O 3 /L is contacted with carbon dioxide gas with a volume fraction of 60% (CO 2 volume fraction is 60%, the remainder is nitrogen), and the end point pH value is controlled to 10.3.
  • the stirring rate was maintained at 450 rpm at 180°C and 1.0 MPa for 3.5 hours.
  • the obtained slurry is separated from solid and liquid, and continuously washed with 95°C deionized water for half an hour until the pH value of the wet filter cake is 7.3, to obtain a pseudo-boehmite wet filter cake with impurities removed.
  • the wet filter cake was dried at 90°C for 4 hours and crushed to obtain pseudo-boehmite powder D4. Its physical and chemical properties are shown in Table 1.
  • Catalyst DC4 was prepared by referring to the method of Example 1 and using D4 preparation instead of S1 preparation.
  • the acid-aluminum ratio (concentration 36 wt% HCl:Al 2 O 3 mass ratio) is 0.2, the solid content of the acidification mixture is 10 wt%; the roasting temperature is 550°C, and the roasting time is 2 hours.
  • the pseudo-boehmite provided by the present invention has abundant surface hydroxyl groups, larger pore sizes, higher crystallinity, larger grain size, and larger D (130) /D (020) .
  • This pseudo-boehmite has good peptizing properties and the possible pore size of the calcined sample after peptization is still large.
  • the catalytic cracking catalyst prepared from the pseudo-boehmite provided by the present invention has a lower wear index.
  • the catalytic cracking catalyst prepared from pseudo-boehmite provided by the present invention has a certain mesopore distribution at 5.1nm-7.7nm, in addition to having a pore distribution at 3.8nm.
  • Catalysts prepared from conventional pseudoboehmite only have mesopore distribution at 3.8 nm.
  • the catalytic cracking catalyst provided by the present invention has a larger mesopore distribution, has significantly lower coke selectivity, and has significantly higher gasoline yield and liquefied gas yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种表面富羟基的中孔拟薄水铝石及其制备方法以及一种含该中孔拟薄水铝石的催化裂化催化剂及其制备和应用。所述拟薄水铝石的可几孔径为大于4.5nm且不超过12nm。

Description

表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用 技术领域
本发明涉及一种表面富羟基的中孔拟薄水铝石及其制备方法,本发明还涉及一种含上述中孔拟薄水铝石的催化裂化催化剂及其制备方法和应用方法。
背景技术
拟薄水铝石的化学式为AlOOH·nH2O(0<n<1,特别地0.08-0.62),是含水量大于薄水铝石而晶粒粒径小于薄水铝石的铝氧化合物。它是合成氢氧化铝过程中易生成的一种晶相,结晶不完整,其典型晶型是很薄的皱折片晶。
拟薄水铝石的制备方法很多,主要包括醇铝水解法和沉淀法等,沉淀法又分为酸法和碱法两大类。醇铝水解法以金属铝和高级醇(正戊醇、正己醇、异丙醇)为原料,通过在催化剂存在下金属铝与醇反应形成醇铝,再水解得到拟薄水铝石。但该方法生产成本高,生产工艺复杂。碱沉淀法是指利用碱中和沉淀酸性铝盐制备拟薄水铝石的方法,常用的铝盐有Al2(SO4)3、Al(NO3)3、AlCl3等,常用的碱沉淀剂有NaOH、NH3·H2O、NaAlO2、Na2CO3等。酸沉淀法是指采用酸中和沉淀碱性铝酸盐制备拟薄水铝石的方法,碱性铝酸盐一般为(偏)铝酸钠,所用的酸可以是强酸(HNO3、H2SO4等),也可为弱酸(NH4HCO3、NaHCO3等)及CO2等。其中NaAlO2-CO2法又称碳化法,碳化法制备拟薄水铝石可以依托烧结法生产氧化铝工艺,利用中间产物NaAlO2溶液和铝厂废气CO2作为反应原料,工艺简单,且生产过程中的副产物、废液等都可以返回氧化铝的生产流程再利用,是目前工业生产拟薄水铝石成本最低的方法。
拟薄水铝石在石油炼制和石油化工催化剂中应用广泛,常用作催化裂化催化剂的粘结剂以及加氢催化剂载体(γ-Al2O3)的前驱物。在半合成法催化裂化催化剂中,拟薄水铝石是重要的原材料。拟薄水铝石酸化后具有良好的粘结性能,在催化剂制备成形后还能够形成特定的中孔结构。
常规碳化法制备的拟薄水铝石结晶度低,可几孔径(most probable pore size)仅为3.8nm,制备成催化裂化催化剂时仅能提供3.8nm的中 孔结构。催化裂化原料分子尺寸较大,在3.8nm的孔道内扩散受到明显的阻碍作用。这种阻碍作用限制了重油原料分子的高效扩散和转化,不利于降低焦炭产率和提升产物分布。目前尚未见文献报道通过碳化法制备的拟薄水铝石应用于催化裂化催化剂中能够提供更大的可几孔径分布,而目前孔径较大的拟薄水铝石其耐磨损性能不佳,酸化后均无法直接形成可几孔径更大的孔道结构。
催化裂化催化剂通常包括分子筛、粘结剂和粘土。其中常用的粘结剂是双铝粘结剂-氧化铝和铝溶胶。为提高高附加值产品的收率,催化裂化催化剂通常需要含有较高含量的分子筛,但是往往分子筛含量提高,会导致催化剂耐磨性能降低,且催化裂化常用的分子筛主要含有微孔,中大孔较少。拟薄水铝石常用作催化裂化催化剂的基质以及加氢催化剂载体(γ-Al2O3)的前驱物。拟薄水铝石酸化后具有良好的粘结性能,在催化剂制备成形后还能够形成特定的中孔结构,但是,使用现有拟薄水铝石所得催化裂化催化剂产品的强度较低。此外,使用现有的拟薄水铝石往往不能获得更大孔径,可几孔径均小于4.5nm,得到的催化裂化催化剂中均无法形成大于5nm的孔道结构。
发明内容
本发明要解决的第一个技术问题是提供一种粘结性能好的中孔拟薄水铝石,其富含表面羟基。
本发明要解决的第二个技术问题是提供一种该拟薄水铝石的制备方法。
本发明要解决的第三个技术问题是提供一种使用拟薄水铝石粘结剂的催化裂化催化剂制备方法,该方法制备的催化裂化催化剂可以具有较好的耐磨性能。
本发明要解决的第四个技术问题是提供一种由上述方案制备的催化剂裂化催化剂及其应用方法。
具体来说,本发明提供了下述三组技术方案A、B和C:
技术方案A:
A1.一种拟薄水铝石,其特征在于,所述拟薄水铝石具有以下特征(a)、(b)和(c)中的任意一个、两个或三个,即,单独的(a),单独的(b),单独的(c),(a)和(b)的组合,(a)和(c)的组合,(b)和(c)的组合,(a)、(b)和(c)的组合:
(a)所述拟薄水铝石的可几孔径为大于4.5nm且不超过12nm, 例如4.8nm-11nm,5nm-10nm,5.5nm-9nm,6-8.5nm,7-9nm,5.2-7.6nm,或者5.2-7.5nm;
(b)所述拟薄水铝石的I3000-3800为6.0cm-1·mg-1-8.5cm-1·mg-1,例如6.2cm-1·mg-1-8.3cm-1·mg-1,I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是由样品在3000cm-1-3800cm-1范围内吸收峰的面积(单位为cm-1)与样品质量(单位为mg)之比;
其中,采用傅里叶变换红外光谱仪测定样品的表面羟基的红外吸收强度,具体方法如下:
将样品充分研磨后,取样10mg-20mg压成自支撑片;
准确称重后,将样品转移到原位池的样品托中,进行抽真空处理,样品在高真空1.0×10-3Pa(绝对压强)、温度为450℃的条件下净化2小时;
净化后降到室温,然后以分辨率为4.0cm-1,在400cm-1-4000cm-1范围内扫描,获得红外羟基吸收信号;
该吸收信号经过数据处理后获得以波数为横坐标、以吸光度为纵坐标的羟基红外吸收谱图,
吸光度:光线通过某一物质前的入射光强度与该光线通过该物质后的透射光强度比值的以10为底的对数,即lg(I0/I1),其中I0为入射光强,I1为透射光强;
(c)所述拟薄水铝石的晶粒大小D(130)和D(020)的比值为D(130)/D(020)=1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26,
晶粒大小D由X射线粉末衍射法(XRD)测量,根据Scherrer公式计算晶粒大小D,其中K=1.075,λ为阳极辐射Kα1谱线的波长,β为拟薄水铝石特定衍射峰的半峰宽(单位为弧度),θ为衍射峰的Bragg衍射角(单位为度),即,D(130)表示样品在垂直于(130)晶面的晶粒大小,β130为样品(130)衍射峰(对应2θ=38.3°)的半峰宽;D(020)表示样品在垂直于(020)晶面的晶粒大小,β020为样品(020)衍射峰(对应2θ=14.1°)的半峰宽。
A2.根据前述技术方案中任一项的拟薄水铝石,其特征在于, 拟薄水铝石的分子式为AlOOH·nH2O,n=0.08-0.62。
A3.根据前述技术方案中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的晶粒大小D(130)=4nm-10nm,例如,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm。
A4.根据前述技术方案中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的结晶度为85%-110%,例如88%-108%,90%-105%,或者92%-103%。
A5.根据前述技术方案中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的胶溶指数为90%-100%,例如93%-99%,或者94-98%。
A6.根据前述技术方案中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的孔容为0.3cm3/g-0.58cm3/g,例如0.31cm3/g-0.52cm3/g,0.33-0.5cm3/g,或者0.34-0.46cm3/g。
A7.一种拟薄水铝石的制备方法,该方法包括以下步骤:
(1)使(偏)铝酸钠溶液与CO2反应,形成第一浆液;优选地,两者的摩尔比,分别以NaAlO2和CO2计,在理论当量比的0.5倍-2倍,例如0.833倍-1.2倍,或者0.9倍-1.1倍的范围内,即若理论当量比为2:1的话,两者的实际摩尔比为(1-4):1,例如(1.67-2.4):1,或者(1.8-2.2):1;
(2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为氨水和/或能够形成NH3的前驱物如尿素,得到老化之后的浆料,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
(3)老化之后的浆料被过滤、洗涤、干燥。
A8.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,步骤(1)中,所述(偏)铝酸钠溶液与CO2反应终点pH值为8.5-10.5,例如9.2-10.3,所述(偏)铝酸钠溶液的Al2O3浓度为5-60g/L,例如8-45g/L。
A9.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,步骤(1)中,所述(偏)铝酸钠溶液与CO2反应的条件包括,在(偏)铝酸钠溶液中通入CO2浓度为20-100体积%,例如40-100体积%,30-90体积%,或者40-80体积%的含CO2的气体(余量为惰性 气体如氮气)进行反应,反应起始温度为10-35℃,反应终点温度为15-55℃。
A10.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,步骤(2)中浆料老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,老化压力为0.2-1.0MPa,老化时间为2-11.5小时,例如2-10小时,或者3.5-10.5小时。
A11.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,步骤(2)中,静止老化时间为1-8小时,例如1-6小时,或者2.5-6小时,1-4小时,或者2-3小时,搅拌下老化时间为1-6小时,例如1-4.5小时;所述搅拌老化的搅拌速度可以为50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm;优选地,所述老化为恒温老化。
A12.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,其特征在于,所述老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,所述老化优选为恒温老化。
A13.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,所述羟基调节剂在静止老化前;或者,在静止老化过程中加入;或者,在静止老化一段时间后、搅拌老化前加入;或者,在静止老化结束后、搅拌老化开始前加入;或者其组合;羟基调节剂占以氧化铝计的第一浆液的0.5-2重量%,例如0.7-1.8重量%;其中所述氨水中氨的浓度优选为15-25重量%,例如20重量%。
A14.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,
步骤(2)中,
静止老化的条件包括:温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,压力为0.2-1.0MPa,时间为1-8小时,例如1-6小时,或者2.5-6小时;
搅拌下老化的条件包括:温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,压力为0.2-1.0MPa,时间为1-6小时,例如1-4.5小时,搅拌速度为50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150- 450rpm;
优选地,静止老化的时间与搅拌下老化的时间的比值为(1-5):1,例如(1.1-3):1,(1.2-3):1,或者(1.14-3):1。
A15.按照前述技术方案中任一项的制备拟薄水铝石的方法,其特征在于,步骤(3)所述洗涤条件为:用70-100℃,例如75-95℃的去离子水洗涤至湿滤饼pH值为7-7.5;步骤(3)所述干燥,干燥温度为60-98℃,例如70-98℃,或者70-95℃,干燥时间不特别限制,例如为1-10小时,例如3-4小时。
A16.按照前述技术方案中任一项的拟薄水铝石在石油工业中用作催化剂、载体、粘结剂;在汽车工业中用作汽车尾气处理催化剂的载体涂层;在消防领域用作阻燃材料的添加剂;在造纸行业中用作高档喷墨打印纸中的吸墨涂层;在环保行业中用作气体净化吸附剂、饮用水除氟剂、工业污水颜色和气味消除剂;在建筑行业用作涂料添加剂;陶瓷复合材料中的增强剂中的用途。
A17.一种催化裂化催化剂的制备方法,包括:
使按照前述技术方案中任一项的拟薄水铝石、分子筛、粘结剂、粘土和水形成酸性的浆液(例如所述酸性的浆液的pH值优选为1.5-2.6),喷雾干燥;
所述催化裂化催化剂的可几孔径为3.5-4nm和4.5-10nm(例如5.1-10nm,或者5.1-7.5nm)。
A18.按照前述技术方案中任一项的制备催化裂化催化剂的方法,其特征在于,所述方法为包括:
将按照前述技术方案中任一项的拟薄水铝石与水打浆,形成拟薄水铝石浆液,其固含量优选为5-25重量%,加入盐酸,HCl与以氧化铝计的拟薄水铝石的质量比优选为0.037-0.104,盐酸的浓度可以为10-37重量%,
将所述拟薄水铝石浆液与分子筛、粘结剂、粘土和水混合得到胶体浆液,所述胶体浆液的固含量优选为20-40重量%,喷雾干燥,任选洗涤和干燥。
A19.一种催化裂化催化剂,含有以干基计10重量%-50重量%的分子筛、以氧化铝计10重量-40重量%的按照前述技术方案中任一项的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%的粘土,以100重量%的所述催化剂为基准,
优选地,所述催化裂化催化剂的可几孔径为3.5-4nm和4.5-10nm(例如5.1-10nm,或者5.1-7.5nm)和/或
所述分子筛例如为Y型分子筛、具有MFI结构分子筛、非沸石分子筛和具有BEA结构分子筛中的一种或多种。
A20.一种催化裂化催化剂,含有以干基计10重量%-50重量%的Y型分子筛、以干基计0-40重量%的其它分子筛、以氧化铝计10重量-40重量%的按照前述技术方案中任一项的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%的粘土,以100重量%的所述催化剂为基准;
优选地,所述的其它分子筛为MFI结构沸石、beta沸石、非沸石分子筛的一种或几种,更优选地,所述的其它分子筛为HZSM-5、ZRP、ZSP中的一种或多种;和/或,
优选地,所述Y型分子筛为REY、REHY,DASY、SOY、PSRY、HSY、HRY中的一种或多种。
A21.一种催化裂化方法,包括在FCC条件下,将重油与催化裂化催化剂接触反应的步骤,其特征在于,所述的催化裂化催化剂为按照前述技术方案中任一项的催化裂化催化剂或按照前述技术方案中任一项的制备催化裂化催化剂的方法得到的催化裂化催化剂;例如,所述的FCC条件包括:反应温度为480-530℃,反应时间1-10秒,剂油比为3-20:1重量比。
技术方案B
B1.一种催化裂化催化剂的制备方法,包括:
使表面富羟基的拟薄水铝石、分子筛、粘结剂、粘土和水形成酸性的浆液,喷雾干燥;所述表面富羟基的拟薄水铝石的I3000-3800为6.0cm-1·mg-1-8.5cm-1·mg-1,I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是样品在3000cm-1-3800cm-1范围内吸收峰的面积与样品质量之比,所述表面富羟基的拟薄水铝石的可几孔径大于4.5nm不超过12nm,所述催化裂化催化剂的可几孔径为3.5-4nm和4.5-10nm。
B2.按照技术方案B1所述的方法,其特征在于,所述表面富羟基的拟薄水铝石的可几孔径为4.8nm-11nm例如为5nm-10nm;所述酸性的浆液的pH值优选为1.5-2.6;
一种方案,所述表面富羟基的拟薄水铝石的晶粒大小D(130)=4nm-10nm优选5nm-8.5nm;D(130)/D(020)为1.0-1.5优选为1.1-1.3;
一种方案,所述表面富羟基的拟薄水铝石,结晶度为85%-110%优选为88%-108%,胶溶指数为90%-100%例如为93%-99%,孔容为0.3cm3/g-0.58cm3/g例如为0.31cm3/g-0.52cm3/g。
B3.按照技术方案B1所述的方法,其特征在于,所述表面富羟基的拟薄水铝石的制备方法包括以下步骤:
(1)使铝酸钠溶液与CO2反应,形成第一浆液;
(2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为尿素和/或氨水,得到老化之后的浆料,老化温度为100℃以上且不超过185℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
(3)老化之后的浆料过滤、洗涤、干燥。
B4.按照技术方案B3所述的方法,其特征在于,步骤(1)中,所述铝酸钠溶液与CO2反应终点pH值为8.5-10.5,所述铝酸钠溶液的Al2O3浓度为5-60g/L;
步骤(1)中,所述铝酸钠溶液与CO2反应的条件包括,在铝酸钠溶液中通入CO2浓度为20%-100体积%例如40-80体积%的含CO2气体进行反应,优选的,反应起始温度10-35℃,反应终点温度优选15-55℃。
B5.按照技术方案B3或B4所述的方法,其特征在于,步骤(2)中浆料老化温度为100-185℃,老化压力为0.2-1MPa,老化时间为2-10小时。
B6.按照技术方案B3或B5所述的方法,其特征在于,步骤(2)中静止老化时间为1-4小时例如2-3小时后,搅拌下老化时间为1-6小时;所述搅拌老化的搅拌速度可以为50-400r/min。
B7.按照技术方案B3-B7任一项所述的方法,其特征在于,所述老化温度为120-160℃,所述老化优选为恒温老化。
B8.按照技术方案B3-B8任一项所述的方法,其特征在于,所述羟基调节剂在静止老化一段时间后、搅拌老化前例如在静止老 化过程中加入或在静止老化结束后搅拌老化开始前加入;羟基调节剂占以氧化铝计的第一浆液的0.5-2重量%;其中所述氨水中氨的浓度优选为15-25重量%。
B9.按照技术方案B1所述的方法,其特征在于,所述催化裂化催化剂的制备方法为包括:
(1)将所述表面富羟基的拟薄水铝石与水打浆,形成拟薄水铝石浆液,其固含量优选为5-25重量%,加入盐酸,HCl与以氧化铝计的表面富羟基的拟薄水铝石的质量比优选为0.037-0.104,盐酸的浓度可以为10-37重量%,
(2)将所述拟薄水铝石浆液与分子筛、粘结剂、粘土和水混合得到胶体浆液,所述胶体浆液的固含量优选为20-40重量%,喷雾干燥,任选洗涤和干燥。
B10.一种催化裂化催化剂,含有以干基计10重量%-50重量%的分子筛、以氧化铝计10重量-40重量%的所述表面富羟基的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%的粘土。
B11.按照技术方案B10所述的催化裂化催化剂,其特征在于,所述催化裂化催化剂的可几孔径为3.5-4nm和4.5-10nm;所述的分子筛例如为Y型分子筛、具有MFI结构分子筛、非沸石分子筛和具有BEA结构分子筛中的一种或多种。
B12.一种催化裂化方法,包括在FCC条件下,将重油与催化裂化催化剂接触反应的步骤,其特征在于,所述的催化裂化催化剂为技术方案B1-B9任意一项所述的催化裂化催化剂制备方法制得的催化裂化催化剂或技术方案B10-B11任一项所述的催化裂化催化剂接;所述的FCC条件例如:反应温度为480-530℃,反应时间1-10秒,剂油比为3-20:1重量比。
技术方案C
C1.一种表面富羟基的中孔拟薄水铝石,所述拟薄水铝石的可几孔径大于4.5nm不超过12nm,I3000-3800为6.0cm-1·mg-1-8.5cm- 1·mg-1,I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是由样品在 3000cm- 1-3800cm- 1范围内吸收峰的面积与样品质量之比。
C2.按照技术方案C1所述的拟薄水铝石,其特征在于,所述拟薄水铝石的可几孔径优选为4.8nm-11nm例如为5nm-10nm。
C3.按照技术方案C1或C2所述的拟薄水铝石,其特征在于,所述拟薄水铝石的晶粒大小D(130)=4nm-10nm优选5-8.5nm;D(130)/D(020)为1.0-1.5,所述拟薄水铝石的D(130)/D(020)优选为1.1-1.3。
C4.按照技术方案C1、C2或C3所述的拟薄水铝石,其特征在于,所述拟薄水铝石的结晶度为85%-110%;所述拟薄水铝石的结晶度优选为88%-108%;所述拟薄水铝石的胶溶指数为90%-100%,所述胶溶指数例如为93%-99%;所述拟薄水铝石的孔容为0.3cm3/g-0.58cm3/g例如为0.31cm3/g-0.52cm3/g。
C5.一种拟薄水铝石的制备方法,该方法包括以下步骤:
(1)使铝酸钠溶液与CO2反应,形成第一浆液;
(2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为尿素和/或氨水,得到老化之后的浆料,老化温度为100℃以上且不超过185℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
(3)老化之后的浆料过滤、洗涤、干燥。
C6.按照技术方案C5所述的方法,其特征在于,步骤(1)中,所述铝酸钠溶液与CO2反应终点pH值为8.5-10.5,所述铝酸钠溶液的Al2O3浓度为5-60g/L。
C7.按照技术方案C5或C6所述的方法,其特征在于,步骤(1)中,所述铝酸钠溶液与CO2反应的条件包括,在铝酸钠溶液中通入CO2浓度为20%-100体积%的含CO2气体进行反应,反应起始温度10-35℃,反应终点温度优选15-55℃。
C8.按照技术方案C5、C6或C7所述的方法,其特征在于,步骤(2)中浆料老化温度为100-185℃,老化压力为0.2-1MPa,老化时间为2-10小时。
C9.按照技术方案C5或C8所述的方法,其特征在于,步骤(2)中,静止老化时间为1-4小时例如2-3小时,搅拌下老化时间为1-6小时;所述搅拌老化的搅拌速度可以为50-400r/min。
C10.按照技术方案C5、C6、C7、C8或C9所述的方法,其特征在于,所述老化温度为120-160℃,所述老化优选为恒温老化。
C11.按照技术方案C5-C10任一项所述的方法,其特征在于,所述羟基调节剂在静止老化一段时间后、搅拌老化前加入例如在静止老化过程中加入或在静止老化结束后搅拌老化开始前加入;羟基调节剂占以氧化铝计的第一浆液的0.5-2重量%;其中所述氨水中氨的浓度优选为15-25重量%。
C12.技术方案C1-C4任一项所述的拟薄水铝石在催化剂制备中的应用。
具体实施方式
在本文中,压强为表压,除非明确指出。
在本文中,含量是基于重量百分比的值,除非明确指出。
在本文中,铝酸钠和偏铝酸钠是同义的,均是指:NaAlO2
本发明提供一种拟薄水铝石,所述拟薄水铝石的可几孔径为大于4.5nm且不超过12nm;和/或I3000-3800为6.0cm-1·mg-1-8.5cm-1·mg-1,I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是由样品在3000cm-1-3800cm-1范围内吸收峰的面积(单位为cm-1)与样品质量(单位为mg)之比。
优选的,本发明提供的拟薄水铝石的晶粒大小D(130)为4nm-10nm,例如,大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm。
优选的,本发明提供的拟薄水铝石的D(130)/D(020)=1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26。该拟薄水铝石可以在酸化后保持较大的可几孔径。
D(130)表示拟薄水铝石晶粒的XRD谱图中(130)峰(对应2θ=38.3°)所代表的晶面的晶粒尺寸,
D(020)表示拟薄水铝石晶粒的XRD谱图中(020)峰(对应2θ=14.1°)所代表的晶面的晶粒尺寸。
晶粒大小D由X射线粉末衍射法(XRD)测量,根据Scherrer公式计算晶粒大小D,其中K=1.075,λ为阳极辐射Kα1谱线的波长,β为拟薄水铝石特定衍射峰的半峰宽(单位为弧度),θ 为衍射峰的Bragg衍射角(单位为度),即,D(130)表示样品在垂直于(130)晶面的晶粒大小,β130为样品(130)衍射峰(对应2θ=38.3°)的半峰宽;D(020)表示样品在垂直于(020)晶面的晶粒大小,β020为样品(020)衍射峰(对应2θ=14.1°)的半峰宽。
本发明提供的拟薄水铝石的可几孔径为大于4.5nm且小于或等于12nm,例如4.8nm-11nm,5nm-10nm,5.5nm-9nm,6-8.5nm,7-9nm,5.2-7.6nm,或者5.2-7.5nm;所述孔径指孔的直径。
本发明提供的拟薄水铝石的结晶度为85%-110%,例如88%-108%,90%-105%,或者92%-103%。
本发明提供的拟薄水铝石,孔容为0.3cm3/g-0.58cm3/g,例如0.31cm3/g-0.52cm3/g,0.33-0.5cm3/g,或者0.34-0.46cm3/g。
本发明提供的拟薄水铝石,其I3000-3800为6.0cm-1·mg-1-8.5/cm- 1·mg-1,例如6.2-8.3cm-1·mg-1
本发明提供的拟薄水铝石,其胶溶指数为90%-100%,例如93%-99%,或者94-98%。
本发明提供一种所述拟薄水铝石的制备方法,该方法包括以下步骤:
(1)使(偏)铝酸钠溶液与CO2反应,形成第一浆液;优选地,两者的摩尔比,分别以NaAlO2和CO2计,在理论当量比的0.5倍-2倍,例如0.833倍-1.2倍,或者0.9倍-1.1倍的范围内,即若理论当量比为2:1的话,两者的实际摩尔比为(1-4):1,例如(1.67-2.4):1,或者(1.8-2.2):1;
(2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为氨水和/或能够形成NH3的前驱物如尿素,得到老化之后的浆料,称为第二浆液,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
(3)老化之后的浆料被过滤、洗涤、干燥。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,所述(偏)铝酸钠溶液的浓度以Al2O3计可以为5-60g/L,例如8-45g/L。
所述(偏)铝酸钠溶液可以商购或按照现有方法制备。在一种实施方案中,所述(偏)铝酸钠溶液的制备方法包括:将氢氧化铝和碱液在温度90-120℃下反应1-4小时,稀释到Al2O3浓度为5-60g/L,例如8-45g/L。所述碱液例如为氢氧化钠溶液。所述(偏)铝酸钠溶液的苛性比(氧化钠与氧化铝的摩尔比)例如为1.0-3.2。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,使(偏)铝酸钠溶液与CO2接触反应,可以在(偏)铝酸钠溶液中通入含CO2的气体进行反应,所述含CO2的气体中CO2的体积浓度为20-100体积%,例如40-100体积%,30-90体积%,或者40-80体积%。余量为惰性气体如氮气。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,(偏)铝酸钠溶液与CO2反应终点的pH值为8.5-10.5,例如9.2-10.3。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,反应起始温度可以为10-35℃,反应终点时的温度可以为15-55℃。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,使(偏)铝酸钠溶液与CO2接触反应,(偏)铝酸钠溶液与CO2反应的反应时间可以为20-70分钟。
根据本发明所述的拟薄水铝石的制备方法,步骤(1)中,(偏)铝酸钠溶液与CO2反应的条件可以包括,反应起始温度为10-35℃,反应终点温度为15-55℃,反应时间为20-70分钟。(偏)铝酸钠溶液与CO2反应终点的pH值为8.5-10.5,例如9.2-10.3;所述(偏)铝酸钠溶液与CO2反应,将(偏)铝酸钠溶液与含CO2的气体接触反应,所述含CO2的气体中CO2的体积浓度为20-100体积%,例如40-100体积%,30-90体积%,或者40-80体积%。余量为惰性气体如氮气。
步骤(2)中,所述一定条件下老化优选地以下述方式进行:先静止老化,然后在搅拌下老化。该方法得到的拟薄水铝石的晶粒大小D(130)=4nm-10nm,例如大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm,D(130)/D(020)为1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26,并且其可以具有较高的可几孔径。
步骤(2)中,使所述第一浆液在一定条件下老化。在一种实施方案中,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃。可以将第一浆液加 热到100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,然后在该温度下老化。例如,第一浆液从反应终点温度升高到老化温度的时间不超过60分钟。从老化开始到老化结束,可以将温度保持在恒温来进行恒温老化。所述恒温老化是指控制静止老化和搅拌老化的温度不变,例如静止老化和搅拌老化的温度相差最好不超过2℃。
步骤(2)中,老化压力可以为0.2-1.0MPa。
步骤(2)中,搅拌速度可以控制为50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm。所述搅拌可以采用现有搅拌方法。通过搅拌,老化浆液在搅拌桨的带动下在老化釜中旋转。
步骤(2)中,所述老化的老化时间可以为2-11.5小时,例如2-10小时,或者3.5-10.5小时。
步骤(2)中,先在一定温度下静止老化,然后在搅拌下老化。所述静止老化,老化时不进行搅拌,使浆液处于静止状态例如可以静置一段时间进行老化。例如,先将第一浆液在老化温度下静置老化1-8小时,例如1-6小时,或者2.5-6小时,1-4小时,或者2-3小时,然后在老化温度下搅拌老化1-6小时,例如1-4.5小时。搅拌速度可以是50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm。
步骤(2)中,在一种实施方案中,使第一浆液在一定条件下老化,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,老化压力为0.2-1.0MPa,恒温反应2-11.5小时,例如2-10小时,或者3.5-10.5小时进行老化;其中,先将第一浆液静置老化1-8小时,例如1-6小时,或者2.5-6小时,1-4小时,或者2-3小时,然后保持老化温度和老化压力,施加搅拌,搅拌速度控制为50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm,搅拌老化时间1-6小时,例如1-4.5小时。
在步骤(2)中,加入羟基调节剂,其可以为氨水和/或能够形成NH3的前驱物如尿素,羟基调节剂的加入量为拟薄水铝石中氧化铝含量的0.5-2重量%,例如0.7-1.8重量%。所述氨水的浓度(以NH3计)为15-25重量%,例如20重量%。
在一种实施方案中,所述羟基调节剂在步骤(1)停止与CO2反应 之后、搅拌老化前加入。例如,所述羟基调节剂在静止老化前;或者,在静止老化过程中加入;或者,在静止老化一段时间后、搅拌老化前加入;或者,在静止老化结束后、搅拌老化开始前加入;或者其组合。通常,所述羟基调节剂在静止老化一段时间后加入,例如在静止老化过程中加入或在静止老化结束后、搅拌老化开始前加入。
步骤(3),老化之后的浆料经过过滤、洗涤、干燥,得到具有特定的可几孔径分布的表面富羟基的大孔拟薄水铝石。在一种实施方案中,所述洗涤条件为用70-100℃,例如75-95℃的去离子水洗涤至湿滤饼的pH为7-7.5。所述干燥温度可以为60-98℃,例如70-98℃,或者70-95℃;干燥时间不特别限制,例如为1-10小时,例如2-4小时,或者3-4小时。
经过先静止老化然后搅拌老化,可以得到具有特定晶体特征的拟薄水铝石,其晶粒大小D(130)为4nm-10nm,例如大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm,D(130)/D(020)=1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26。
本发明提供的拟薄水铝石,表面羟基丰富,具有较大的可几孔径,具有较高的结晶度,胶溶性好。本发明提供的拟薄水铝石具有良好的粘结性能,应用于催化裂化催化剂中可以降低烃油转化的焦炭选择性。
本发明提供的拟薄水铝石的制备方法,绿色环保,成本低廉,易于实施,填补了碳化法生产适用于催化裂化催化剂的拟薄水铝石技术空白。可以得到具有较好粘结性能和较高可几孔径分布的拟薄水铝石,该拟薄水铝石结晶度高、晶粒尺寸大、具有特定的晶体结构、胶溶性好。
本发明提供的拟薄水铝石,可以用于催化剂制备,酸化后,所得到的催化剂可以具有较大的可几孔径和较好的强度,例如用于催化裂化催化剂制备,可以不经扩孔处理直接酸化得到具有较大可几孔径,例如具有大于5nm可几孔径和较好的耐磨性能的催化裂化催化剂。
与现有拟薄水铝石相比,该拟薄水铝石应用于催化裂化催化剂制备能够提供更多的中孔结构,具有较高的可几孔径,且催化剂强度更好(磨损指数更低),所得催化裂化催化剂更低的焦炭选择性,具有更好的产物分布例如可以使液化气和汽油产率更高。
本发明还提供了一种催化裂化催化剂的制备方法,包括:
使本发明的表面富羟基的拟薄水铝石、分子筛、粘结剂、粘土和 水形成酸性的浆液,其中所述浆液的pH值优选为1.5-2.6,喷雾干燥;
所述表面富羟基的拟薄水铝石的I3000-3800为6.0cm-1·mg-1-8.5cm- 1·mg-1,例如6.2cm-1·mg-1-8.3cm-1·mg-1
I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是由样品在3000cm-1-3800cm-1范围内吸收峰的面积(单位为cm-1)与样品质量(单位为mg)之比,所述表面富羟基的拟薄水铝石的可几孔径为大于4.5nm且不超过12nm,例如4.8nm-11nm,5nm-10nm,5.5nm-9nm,6-8.5nm,7-9nm,5.2-7.6nm,或者5.2-7.5nm,所述催化裂化催化剂的可几孔径可以为3.5-4nm和4.5-10nm(例如5.1-10nm,或者5.1-7.5nm)。在本文中,可几孔径指孔的直径。
在一种实施方案中,所述表面富羟基的拟薄水铝石的晶粒大小D(130)为4nm-10nm,例如大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm。
在一种实施方案中,所述表面富羟基的拟薄水铝石的D(130)/D(020)=1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26。
D(130)表示拟薄水铝石晶粒的XRD谱图中(130)峰(对应2θ=38.3°)所代表的晶面的晶粒尺寸,
D(020)表示拟薄水铝石晶粒的XRD谱图中(020)峰(对应2θ=14.1°)所代表的晶面的晶粒尺寸。
晶粒大小D由X射线粉末衍射法(XRD)测量,根据Scherrer公式计算晶粒大小D,其中K=1.075,λ为阳极辐射Kα1谱线的波长,β为拟薄水铝石特定衍射峰的半峰宽(单位为弧度),θ为衍射峰的Bragg衍射角(单位为度),即,D(130)表示样品在垂直于(130)晶面的晶粒大小,β130为样品(130)衍射峰(对应2θ=38.3°)的半峰宽;D(020)表示样品在垂直于(020)晶面的晶粒大小,β020为样品(020)衍射峰(对应2θ=14.1°)的半峰宽。
在一种实施方案中,所述表面富羟基的拟薄水铝石的结晶度为85%-110%,例如88%-108%,90%-105%,或者92%-103%。
在一种实施方案中,所述表面富羟基的拟薄水铝石的孔容为 0.3cm3/g-0.58cm3/g,例如0.31cm3/g-0.52cm3/g,0.33-0.5cm3/g,或者0.34-0.46cm3/g。
在一种实施方案中,所述表面富羟基的拟薄水铝石的胶溶指数为90%-100%,例如93%-99%,或者94-98%。
本发明的表面富羟基的拟薄水铝石可以在酸化后保持较大的可几孔径,有利于降低焦炭产率,提高汽油和液化气收率。
在一种实施方案中,所述表面富羟基的拟薄水铝石的制备方法,包括以下步骤:
(1)使(偏)铝酸钠溶液与CO2反应,形成第一浆液;优选地,两者的摩尔比,分别以NaAlO2和CO2计,在理论当量比的0.5倍-2倍,例如0.833倍-1.2倍,或者0.9倍-1.1倍的范围内,即若理论当量比为2:1的话,两者的实际摩尔比为(1-4):1,例如(1.67-2.4):1,或者(1.8-2.2):1;
(2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为氨水和/或能够形成NH3的前驱物如尿素,得到老化之后的浆料,称为第二浆液,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
(3)老化之后的浆料被过滤、洗涤、干燥。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(1)中,所述(偏)铝酸钠溶液的浓度以Al2O3计可以为5-60g/L,例如8-45g/L。
所述(偏)铝酸钠溶液可以商购或按照现有方法制备。在一种实施方案中,所述(偏)铝酸钠溶液的制备方法包括:将氢氧化铝和碱液在温度90-120℃下反应1-4小时,稀释到Al2O3浓度为5-60g/L,例如8-45g/L。所述碱液例如为氢氧化钠溶液。所述(偏)铝酸钠溶液的苛性比(氧化钠与氧化铝的摩尔比)例如为1.0-3.2。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(1)中,使(偏)铝酸钠溶液与CO2接触反应,可以在(偏)铝酸钠溶液中通入含CO2的气体进行反应,所述含CO2的气体中CO2的体积浓度为20-100体积%,例如40-100体积%,30-90体积%,或者40-80体积%。余量为惰性气体如氮气。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,(偏)铝酸钠溶液与CO2反应终点的pH值为8.5-10.5,例如9.2-10.3。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(1)中,反应起始温度可以为10-35℃,反应终点时的温度可以为15-55℃。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(1)使(偏)铝酸钠溶液与CO2接触反应,(偏)铝酸钠溶液与CO2反应的反应时间可以为20-70分钟。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(1)中,(偏)铝酸钠溶液与CO2反应的条件可以包括,反应起始温度为10-35℃,反应终点温度为15-55℃,反应时间为20-70分钟。(偏)铝酸钠溶液与CO2反应终点的pH值为8.5-10.5,例如9.2-10.3;所述(偏)铝酸钠溶液与CO2反应,将(偏)铝酸钠溶液与含CO2的气体接触反应,所述含CO2的气体中CO2的体积浓度为20-100体积%,例如40-100体积%,30-90体积%,或者40-80体积%;余量为惰性气体如氮气。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,所述一定条件下老化:先静止老化,然后在搅拌下老化;该方法得到的拟薄水铝石的晶粒大小D(130)=4nm-10nm,例如大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm,D(130)/D(020)为1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26,并且其可以具有较高的可几孔径。将其酸化后制备的催化剂的磨损指数较低,并且可以获得较大的催化剂可几孔径。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,使所述第一浆液在一定条件下老化。在一种实施方案中,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃。可以将第一浆液加热到100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,然后在该温度下老化。例如,第一浆液从反应终点温度升高到老化温度的时间不超过60分钟。从老化开始到老化结束,可以将温度保持在恒温来进行恒温老化。所述恒温老化是指控制静止老化和搅拌老化的温度不变,例如静止老化和搅拌老化的温度相差最好不超过2℃。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,老化压力可以为0.2-1.0MPa。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,搅拌速度可以控制为50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm。所述搅拌可以采用现有搅拌方法。通过搅拌,老化浆液在搅拌桨的带动下在老化釜中旋转。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,所述老化的老化时间可以为2-11.5小时,例如2-10小时,或者3.5-10.5小时。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,先在一定温度下静止老化,然后在搅拌下老化。所述静止老化,老化时不进行搅拌,使浆液处于静止状态例如可以静置一段时间进行老化。例如,先将第一浆液在老化温度下静置老化1-8小时,例如1-6小时,或者2.5-6小时,1-4小时,或者2-3小时,然后在老化温度下搅拌老化1-6小时,例如1-4.5小时。搅拌速度可以是50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(2)中,在一种实施方案中,使第一浆液在一定条件下老化,老化温度为100-185℃,例如100℃以上且不超过185℃,120-180℃,135-180℃,120-160℃,或者135-160℃,老化压力为0.2-1.0MPa,恒温反应2-11.5小时,例如2-10小时,或者3.5-10.5小时进行老化;其中,先将第一浆液静置老化1-8小时,例如1-6小时,或者2.5-6小时,1-4小时,或者2-3小时,然后保持老化温度和压力,施加搅拌,搅拌速度控制50-450rpm,例如50-400rpm,60-400rpm,120-450rpm,或者150-450rpm,搅拌老化时间1-6小时,例如1-4.5小时。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,在步骤(2)中,加入羟基调节剂,其可以为氨水和/或能够形成NH3的前驱物如尿素,所述羟基调节剂的加入量为浆液中氧化铝的0.5-2重量%,例如0.7-1.8重量%。所述氨水的浓度(以NH3计)为15-25重量%,例如20重量%。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,在一种实施方案中,所述羟基调节剂在步骤(1)停止与CO2反应之后、搅拌老化前加入。例如,所述羟基调节剂在静止老化前;或者,在静止老化过程中加入;或者,在静止老化一段时间后、搅拌老化前加入;或者,在静止老化结束后、搅拌老化开始前加入;或者其组合。通常, 所述羟基调节剂在静止老化一段时间后加入,例如在静止老化过程中加入或在静止老化结束后、搅拌老化开始前加入。
根据本发明所述的表面富羟基的拟薄水铝石的制备方法,步骤(3),老化之后的浆料经过过滤、洗涤、干燥,得到具有特定的可几孔径分布的表面富羟基的大孔拟薄水铝石。在一种实施方案中,所述洗涤条件为用70-100℃,例如75-95℃的去离子水洗涤至湿滤饼的pH为7-7.5。所述干燥温度优选为60-98℃,例如70-98℃,或者70-95℃;干燥时间不特别限制,例如为1-10小时,例如2-4小时,或者3-4小时。
所述表面富羟基的拟薄水铝石的制备方法得到的拟薄水铝石,表面羟基丰富,具有较大的可几孔径,具有较高的结晶度,胶溶性好,酸化后具有良好的粘结性能。经过先静止老化然后搅拌老化,可以得到具有特定晶体特征的表面富羟基的拟薄水铝石,其晶粒大小D(130)为4nm-10nm,例如大于4nm-10nm,4.5-9nm,5-8.5nm,5.1-8.5nm,5.5-8.5nm,6-8.2nm,或者5.0-7.9nm,D(130)/D(020)=1.0-1.5,例如,1.1-1.4,1.2-1.35,1.1-1.3,或者1.13-1.26。该拟薄水铝石应用于催化裂化催化剂中可以降低烃油转化的焦炭选择性,降低催化裂化催化剂的磨损指数。
本发明提供的催化裂化催化剂制备方法,包括如下的步骤:形成包括所述拟薄水铝石、分子筛、氧化铝粘结剂、粘土和水的浆液,喷雾干燥,任选洗涤,和干燥。喷雾干燥、洗涤、干燥为现有技术,本发明没有特殊要求。可参考现有方法,例如按照专利CN1098130A、CN1362472A所公开的方法制备。
本发明提供的催化裂化催化剂,以100重量%的所述催化剂为基准,含有以干基计10重量%-50重量%,例如20-45重量%的分子筛、以氧化铝计10重量-40重量%,例如15-35重量%的所述表面富羟基的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%,例如20-50重量%的粘土。
本发明提供的催化裂化催化剂,含有分子筛,所述的分子筛例如为Y型分子筛、具有MFI结构沸石、beta沸石(在本文中还称为“具有BEA结构分子筛”)、非沸石分子筛中的一种或多种。在一种实施方案中,所述分子筛包括Y型分子筛和除Y型分子筛以外的其它分子筛,以100重量%的所述催化剂为基准,以干基计所述的其它分子 筛的含量例如为0-40重量%,例如为0-30重量%或1-20重量%。所述其它分子筛选自催化裂化催化剂中使用的分子筛,例如具有MFI结构沸石、beta沸石、非沸石分子筛的一种或几种。例如,以100重量%的所述催化剂为基准,以干基计所述Y型分子筛的含量不超过40重量%,例如可以为1-40重量%或为30-38重量%。所述Y型分子筛例如是REY、REHY,DASY、SOY、PSRY、HRY沸石中的一种或多种,所述MFI结构沸石例如是HZSM-5、ZRP、ZSP中的一种或多种,所述beta沸石例如是Hβ,所述非沸石分子筛例如是磷酸铝分子筛(AlPO分子筛)、硅铝磷分子筛(SAPO分子筛)中的一种或多种。
本发明提供的催化裂化催化剂中,以干基计所述表面富羟基的拟薄水铝石的含量为10-40重量%,例如15-35重量%,或者20-30重量%。
本发明提供的催化裂化催化剂中,所述粘结剂优选为氧化铝粘结剂,以氧化铝计所述氧化铝粘结剂的含量为3-20重量%,例如5-15重量%。作为所述氧化铝粘结剂,优选铝溶胶。例如所述催化裂化催化剂中含有以氧化铝计3-20重量%,例如5-15重量%,或者3-15重量%的铝溶胶。
优选的,所述催化裂化催化剂具有双可几孔径,所述的双可几孔径为3.5-4nm和4.5-10nm(例如5.1-10nm,或者5.1-7.5nm)。
本发明提供的催化裂化催化剂中,所述粘土选自用作裂化催化剂组分的粘土中的一种或几种,例如高岭土、多水高岭土、埃洛石、蒙脱土、硅藻土、皂石、累托土、海泡石、凹凸棒石、水滑石、膨润土中的一种或几种。这些粘土为本领域普通技术人员所公知。优选的,以干基计本发明提供的催化裂化催化剂中所述粘土的含量为20-55重量%,或者30-50重量%。
本发明进一步提供一种催化裂化方法,包括在FCC条件下,将重油与所述的催化裂化催化剂制备方法制得的催化裂化催化剂接触反应的步骤。所述的FCC条件例如:反应温度为480-530℃,反应时间为1-10秒,剂油重量比为(3-20):1。
本发明提供的催化裂化催化剂制备方法,使用表面富羟基的拟薄水铝石,经过酸化处理,所得到的催化裂化催化剂磨损指数较低,具有较好的强度。优选的情况下,使用所述具有特定晶体特征的表面富羟基的拟薄水铝石,可以使得到的催化裂化催化剂具有大于5nm的 孔道结构,所得催化裂化催化剂更低的焦炭选择性,在使用Y型分子筛和ZSM-5分子筛的情况下,可以具有更好的产物分布例如可以使液化气和汽油产率更高。
本发明提供的催化裂化催化剂制备方法,适用于含拟薄水铝石的催化裂化催化剂的制备,催化裂化催化剂的可几孔径为3.5-4nm和4.5-10nm(例如5.1-10nm,或者5.1-7.5nm),可以在拟薄水铝石和分子筛用量相同的情况下具有更好的耐磨强度;尤其是在分子筛含量较高例如高于35重量%的情况下,与现有相同组成的催化剂相比,可以明显降低磨损指数,并具有较大的中孔可几孔径。
实施例
下面的实施例将对本发明进一步说明,但不能用于限制本发明。
有关拟薄水铝石的性能参数的测定,可以参考YS/T 1161(拟薄水铝石分析方法)。
本申请中,样品的结晶度和晶粒大小D由X射线粉末衍射法(XRD)测量,采用RIPP139-90、RIPP140-90、RIPP145-90、RIPP146-90标准方法(见《石油化工分析方法》(RIPP试验方法)杨翠定等编,科学出版社,1990年出版)测定。
采用外标法,通过测量试样与标样S87-16b的2θ=38.3°处(130晶面)的积分强度,计算出试样中拟薄水铝石的结晶度。标样编号为S87-16b,由石油化工科学研究院制备且市售可得。经标定,其拟薄水铝石结晶度为98.0%。按照下式计算试样的结晶度:
结晶度=试样的净积分强度/标样的净积分强度×98.0
根据Scherrer公式计算晶粒大小,其中K=1.075,λ为阳极辐射Kα1谱线的波长,β为拟薄水铝石特定衍射峰的半峰宽,θ为衍射峰的Bragg衍射角。D(130)表示样品在垂直于(130)晶面的晶粒大小,β130为样品(130)衍射峰的半峰宽。D(020)表示样品在垂直于(020)晶面的晶粒大小,β020为样品(020)衍射峰的半峰宽。
在本申请中,样品的可几孔分布和孔容(孔体积)由低温氮静态容量吸附法测定,利用两参数BET公式计算比表面积和孔体积,利用BJH公式计算孔径分布,孔径分布曲线的最高点对应的孔径大小为样 品的可几孔径。采用美国Micromeritics公司ASAP 2405N V1.01自动吸附仪,样品在1.33×10-2Pa、300℃下抽真空脱气4小时,以N2为吸附介质,在77.4K下测定样品的吸附-脱附等温线。
在本申请中,胶溶指数的测定:称取拟薄水铝石10克,经600℃焙烧3小时,置于保干器中冷却,温度降至室温后,称重得W0克,得到干基a0=W0/10,称取拟薄水铝石重量m1=6/a0克,将称取m1克拟薄水铝石置于100mL的聚四氟乙烯杯中,加入去离子水至40克,使用磁力转子搅拌均匀后,再加入20mL 0.19N的稀硝酸溶液,磁力搅拌20分钟,将全部溶液倒入离心管中,放入离心机中,以1900转/min的转速,离心分离20分钟。倾倒出上部胶体溶液,放于称重过的坩埚中,于80℃烘干,600℃焙烧3小时,置于保干器中冷却,温度降至室温后,称重得m2克,胶溶指数DI=(m2/6)*100%。
在本申请中,I3000-3800测量方法如下:采用傅里叶变换红外光谱仪(例如,美国Thermo Fisher生产的Nicolet 6700型)测定样品的表面羟基的红外吸收强度,测试条件:将样品充分研磨后,取样10mg-20mg压成自支撑片。准确称重后,将样品转移到原位池的样品托中,进行抽真空处理,样品在高真空1.0×10-3Pa(绝对压强)、温度为450℃的条件下净化2小时。净化后降到室温,然后以分辨率为4.0cm-1,在400cm- 1-4000cm-1范围内扫描,获得红外羟基吸收信号。该吸收信号经过数据处理后获得以波数为横坐标、以吸光度为纵坐标的羟基红外吸收谱图(吸光度:光线通过某一物质前的入射光强度与该光线通过物质后的透射光强度比值的以10为底的对数(即lg(I0/I1)),其中I0为入射光强,I1为透射光强)。I3000-3800的计算方法是,在该羟基红外吸收谱图中样品在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收峰的面积(单位为cm-1)与样品质量(单位为mg)之比。
实施例所用的偏铝酸钠是由上海麦克林生化科技有限公司生产,苛性比1,分析纯。
实施例1
将浓度为20gAl2O3/L的偏铝酸钠溶液与体积分数40%的二氧化碳气(其中,二氧化碳体积分数为40%,其余为氮气)成胶反应,控制终点pH值9.5。将所得浆料转移至老化釜后,于135℃、0.35MPa下静置老化3小时,加入0.8重量%(以氧化铝质量计的浆料的重量为基准)的尿素,保持该温度和压力条件下,启动搅拌,保持搅拌速率150 rpm,继续老化1小时。老化结束后将所得浆液固液分离,85℃去离子水连续洗涤半小时至湿滤饼pH值为7.1,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于80℃干燥3小时,粉碎得到拟薄水铝石粉体S1,其物化性质见表1。
取714.5克氧化铝含量为21重量%的铝溶胶加入1565.5克脱阳离子水中,开启搅拌,加入2763克固含量为76重量%的高岭土分散60分钟,得到分散好的高岭土浆液。取2049克氧化铝含量为61重量%的S1拟薄水铝石加入8146克脱阳离子水中,在搅拌状态下加入210ml质量浓度为36%的盐酸,酸化60分钟后加入分散好的高岭土浆液,然后加入磨细的分子筛(为HSY-12分子筛和ZSP-3分子筛,以干基计HSY-12分子筛:ZSP-3分子筛重量比为14:1;均为中国石化催化剂齐鲁分公司产品;其中HSY-12分子筛,Re2O3含量11.6重量%,结晶度50.3%,Na2O含量0.9重量%,Si/Al摩尔比为2.5,磨细粒度d(0.5)=2.6,d(0.9)=6.6);ZSP-3分子筛:Fe2O3含量1.7重量%,P2O5含量3.9重量%,结晶度78%,Na2O含量0.05重量%,Si/Al摩尔比为25,磨细粒度d(0.5)=3.9,d(0.9)=7.8),以下各实施例、对比例用的分子筛相同)1500克(以干基计),搅拌均匀后,进行喷雾干燥和洗涤处理,烘干得到催化剂,记为SC1。其中以干基计,所得到的SC1催化剂中含有分子筛30重量%,高岭土42重量%,S1拟薄水铝石25重量%,铝溶胶3重量%。
实施例2
将浓度为45gAl2O3/L的偏铝酸钠溶液与体积分数60%的二氧化碳气(CO2体积分数60%,其余为氮气)接触反应,控制终点pH值10.3。将所得浆料转移至老化釜后,于180℃、1.0MPa下静置老化2.5小时,加入1.5%(以浆料中氧化铝质量为基准)的氨水(氨水浓度以NH3计为20重量%),然后保持温度180℃和压力1.0MPa条件下,启动搅拌,保持搅拌速率450rpm,老化1小时。老化结束后将所得浆液固液分离,用95℃去离子水连续洗涤半小时至湿滤饼pH值7.3,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于90℃干燥4小时,粉碎得到拟薄水铝石粉体S2,其物化性质见表1。
参考实施例1的制备方法,将Y分子筛、ZSP-3分子筛、高岭土、水、S2拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂 化催化剂记为SC2。其中以干基计,所得到的SC2催化剂中含有分子筛(Y分子筛和ZSP-3分子筛)30重量%,高岭土42重量%,S2拟薄水铝石25重量%,铝溶胶3重量%。
实施例3
将浓度为8gAl2O3/L的偏铝酸钠溶液与体积分数35%的二氧化碳气(CO2体积分数35%,其余为氮气)接触反应,控制终点pH值9.2。将所得浆料转移至老化釜后,加入1.8%(以氧化铝质量为基准)的氨水(氨水浓度以NH3计为20重量%),搅拌均匀,然后于120℃、0.2MPa下静置老化3.5小时,然后保持温度和压力120℃、0.2MPa条件下,启动搅拌,保持搅拌速率120rpm,老化2.5小时。老化结束后将所得浆液固液分离,用75℃去离子水连续洗涤半小时至湿滤饼pH值7.2,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于75℃干燥4小时,粉碎得到拟薄水铝石粉体S3,其物化性质见表1。
按照实施例1的方法,用S3代替S1制备催化剂,得到SC3。
实施例4
将浓度为15gAl2O3/L的偏铝酸钠溶液与体积分数50%的二氧化碳气(CO2体积分数50%,其余为氮气)接触反应,控制终点pH值9.9。将所得浆料转移至老化釜后,加入1.8%(以氧化铝质量计的浆液为基准)的尿素,于150℃、0.48MPa下静置老化4小时,然后保持温度和压力150℃、0.48MPa条件下,启动搅拌,保持搅拌速率250rpm,老化3小时。老化结束后将所得浆液固液分离,用80℃去离子水连续洗涤半小时至湿滤饼pH值7.2,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于85℃干燥4小时,粉碎得到拟薄水铝石粉体S4,其物化性质见表1。
按照实施例1的方法,用S4代替S1制备催化剂,得到SC4。
实施例5
将浓度为55gAl2O3/L的偏铝酸钠溶液与体积分数90%的二氧化碳气(CO2体积分数90%,其余为氮气)接触反应,控制终点pH值10.3。将所得浆料转移至老化釜后,加入0.7%(以氧化铝质量为基准)的氨水(氨水浓度以NH3计为20重量%),于160℃、0.62MPa下静置老化6小时,然后保持温度和压力160℃、0.62MPa条件下,启动搅拌,保持搅拌速率350rpm,老化4.5小时。老化结束后将所得浆液固液分离,用90℃去离子水连续洗涤半小时至湿滤饼pH值7.2,得到脱除 杂质的拟薄水铝石湿滤饼。湿滤饼于95℃干燥4小时,粉碎得到拟薄水铝石粉体S5,其物化性质见表1。
按照实施例1的方法,用S5代替S1制备催化剂,得到SC5。
对比例1
将浓度为20gAl2O3/L的偏铝酸钠溶液与体积分数40%的二氧化碳气成胶反应,控制终点pH值9.5。将所得浆料转移至老化釜后,于90℃静置老化3小时,老化结束后将所得浆液固液分离,78℃去离子水连续洗涤半小时,得到脱除杂质的产物滤饼,于90℃干燥3小时,粉碎得到拟薄水铝石粉体D1,其物化性质见表1。
将分子筛(同实施例1所用分子筛)、高岭土、水、D1拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC1(参考实施例1的制备方法)。其中以干基计,所得到的DC1催化剂中含有分子筛30重量%,高岭土42重量%,D1拟薄水铝石25重量%,铝溶胶3重量%。
对比例2
将浓度为20gAl2O3/L的偏铝酸钠溶液与体积分数40%的二氧化碳气成胶反应,控制终点pH值9.5。将所得浆料转移至老化釜后,于135℃、0.35MPa下静置老化3.5小时。老化结束后将所得浆液固液分离,80℃去离子水连续洗涤半小时,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于80℃干燥3小时,粉碎得到拟薄水铝石粉体D2,其物化性质见表1。
将分子筛、高岭土、水、D2拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC2(参考实施例1的制备方法)。其中以干基计,所得到的DC2催化剂中含有分子筛30重量%,高岭土42重量%,D2拟薄水铝石25重量%,铝溶胶3重量%。
对比例3
以Al2O3含量45g/L的高纯度偏铝酸钠溶液为原料,通入浓度为40%的CO2进行成胶反应,控制每小时的流量在3.0m3/h,反应时间控制在40分钟,控制Al2O3残留5g/l,终温控制35℃。反应后浆液进行分离洗涤,用85℃的高纯水洗涤滤饼,直至滤饼pH值7.0。将上述制得的滤饼加入高纯水搅拌,再加入浓度为8g/L的尿素,搅拌 50min后,把料浆移入高压釜设备,控制釜温150℃,压力0.6MPa,静置老化3小时。老化结束后用85℃去离子水连续洗涤半小时,过滤后在90℃下烘干。粉碎得到最终产品拟薄水铝石D3,其物化性质见表1。
将分子筛、高岭土、水、D3拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC3(参考实施例1的制备方法)。其中以干基计,所得到的DC3催化剂中含有分子筛30重量%,高岭土42重量%,D3拟薄水铝石25重量%,铝溶胶3重量%。
对比例4
将浓度为45gAl2O3/L的偏铝酸钠溶液与体积分数60%的二氧化碳气(CO2体积分数60%,其余为氮气)接触反应,控制终点pH值10.3。将所得浆料转移至老化釜后,于180℃、1.0MPa下保持搅拌速率450rpm,老化3.5小时。老化结束后将所得浆液固液分离,用95℃去离子水连续洗涤半小时至湿滤饼pH值7.3,得到脱除杂质的拟薄水铝石湿滤饼。湿滤饼于90℃干燥4小时,粉碎得到拟薄水铝石粉体D4,其物化性质见表1。
参考实施例1的方法用D4制备代替S1制备制备催化剂DC4。
表1拟薄水铝石性质
*酸化条件:酸铝比(浓度36重量%HCl:Al2O3质量比)为0.2,酸化混合物固含量10重量%;焙烧温度为550℃,焙烧时间2小时。
由表1可见,本发明提供的拟薄水铝石,表面羟基丰富,可几孔径较大,结晶度较高,晶粒尺寸较大,D(130)/D(020)较大。该拟薄水铝石胶溶性能较好且胶溶后焙烧样品的可几孔径仍然较大。
表2
由表2可见,本发明提供的拟薄水铝石制备成的催化裂化催化剂磨损指数较低。本发明提供的拟薄水铝石制备成的催化裂化催化剂,除了在3.8nm具有孔分布外,在5.1nm-7.7nm处具有一定的中孔分布。常规拟薄水铝石制备的催化剂仅在3.8nm处具有中孔分布。
实施例6-10
将SC1-SC5催化剂经800℃,17小时100%水蒸气老化后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,裂化气和产品油分别收集由气相色谱分析。催化剂装量为9g,反应温度500℃,重时空速为16小时-1,ACE实验的原料油性质见表3,评价结果见表4。
对比例5-8
DC1-DC4催化剂经800℃,17小时100%水蒸气老化后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,ACE实验的原料油性质见表3,评价结果列于表4中。
表3

表4
由表2及表4所列的结果可知,本发明提供的催化裂化催化剂具有较大的中孔分布,具有明显更低的焦炭选择性,具有明显更高的汽油收率和液化气收率。

Claims (22)

  1. 一种拟薄水铝石,其特征在于,所述拟薄水铝石的可几孔径为大于4.5nm且不超过12nm,例如4.8nm-11nm,或者5nm-10nm。
  2. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的I3000-3800为6.0cm-1·mg-1-8.5cm-1·mg-1,例如6.2cm-1·mg- 1-8.3cm-1·mg-1,I3000-3800表示在红外光波长3000cm-1-3800cm-1范围内拟薄水铝石表面羟基的红外吸收强度,I3000-3800的计算方法是由样品在3000cm-1-3800cm-1范围内吸收峰的面积(单位为cm-1)与样品质量(单位为mg)之比。
  3. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的晶粒大小D(130)和D(020)的比值为D(130)/D(020)=1.0-1.5,例如1.1-1.3,
    其中,晶粒大小D由X射线粉末衍射法(XRD)测量,根据Scherrer公式计算晶粒大小D,其中K=1.075,λ为阳极辐射Kα1谱线的波长,β为拟薄水铝石特定衍射峰的半峰宽(单位为弧度),θ为衍射峰的Bragg衍射角(单位为度),即,D(130)表示样品在垂直于(130)晶面的晶粒大小,β130为样品(130)衍射峰(对应2θ=38.3°)的半峰宽;D(020)表示样品在垂直于(020)晶面的晶粒大小,β020为样品(020)衍射峰(对应2θ=14.1°)的半峰宽。
  4. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的晶粒大小D(130)=4nm-10nm,例如5-8.5nm。
  5. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的结晶度为85%-110%,例如88%-108%。
  6. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的胶溶指数为90%-100%,例如93%-99%。
  7. 根据前述权利要求中任一项的拟薄水铝石,其特征在于,所述拟薄水铝石的孔容为0.3cm3/g-0.58cm3/g,例如0.31cm3/g-0.52cm3/g。
  8. 一种拟薄水铝石的制备方法,该方法包括以下步骤:
    (1)使(偏)铝酸钠溶液与CO2反应,形成第一浆液;
    (2)使所述第一浆液在一定条件下老化,在老化过程中加入羟基调节剂,所述羟基调节剂为氨水和/或能够形成NH3的前驱物如尿素,得到老化之后的浆料,老化温度为100℃以上且不超过185℃,例如120-180℃,或者120-160℃;优选的,所述一定条件下老化:先静止老化,然后在搅拌下老化;
    (3)老化之后的浆料被过滤、洗涤、干燥。
  9. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,步骤(1)中,所述(偏)铝酸钠溶液与CO2反应终点pH值为8.5-10.5,例如9.2-10.3,所述(偏)铝酸钠溶液的Al2O3浓度为5-60g/L,例如8-45g/L。
  10. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,步骤(1)中,所述(偏)铝酸钠溶液与CO2反应的条件包括,在(偏)铝酸钠溶液中通入CO2浓度为20-100体积%,例如30-90体积%的含CO2的气体(余量为惰性气体如氮气)进行反应,反应起始温度为10-35℃,反应终点温度为15-55℃。
  11. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,步骤(2)中浆料老化温度为100℃以上且不超过185℃,例如120-180℃,或者120-160℃,老化压力为0.2-1.0MPa,老化时间为2-11.5小时,例如3.5-10.5小时。
  12. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,步骤(2)中,静止老化时间为1-8小时,例如1-6小时,或者2.5-6小时,搅拌下老化时间为1-6小时,例如1-4.5小时;所述搅拌老化的搅拌速度可以为50-450rpm,例如120-450rpm;优选地,所述老化为恒温老化。
  13. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,其特征在于,所述老化温度为120-180℃,所述老化优选为恒温老化。
  14. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,所述羟基调节剂在静止老化前;或者,在静止老化过程中加入;或者,在静止老化一段时间后、搅拌老化前加入;或者,在静止老化结束后、搅拌老化开始前加入;或者其组合;羟基调节剂占以氧化铝计的第一浆液的0.5-2重量%,例如0.7-1.8重量%;其中所述氨水中氨的浓度优选为15-25重量%,例如20重量%。
  15. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,
    步骤(2)中,
    静止老化的条件包括:温度为100℃以上且不超过185℃,例如120-180℃,或者120-160℃,压力为0.2-1.0MPa,时间为1-8小时,例如2.5-6小时;
    搅拌下老化的条件包括:温度为100℃以上且不超过185℃,例如120-180℃,或者120-160℃,压力为0.2-1.0MPa,时间为1-6小时,例如1-4.5小时,搅拌速度为120-450rpm;
    优选地,静止老化的时间与搅拌下老化的时间的比值为(1-5):1,例如(1.14-3):1。
  16. 按照前述权利要求中任一项的制备拟薄水铝石的方法,其特征在于,步骤(3)所述洗涤条件为:用70-100℃的去离子水洗涤至湿滤饼pH值为7-7.5;步骤(3)所述干燥,干燥温度为60-98℃。
  17. 按照前述权利要求中任一项的拟薄水铝石在石油工业中用作催化剂、载体、粘结剂;在汽车工业中用作汽车尾气处理催化剂的载体涂层;在消防领域用作阻燃材料的添加剂;在造纸行业中用作高档喷墨打印纸中的吸墨涂层;在环保行业中用作气体净化吸附剂、饮用水除氟剂、工业污水颜色和气味消除剂;在建筑行业用作涂料添加剂;陶瓷复合材料中的增强剂中的用途。
  18. 一种催化裂化催化剂的制备方法,包括:
    使按照前述权利要求中任一项的拟薄水铝石、分子筛、粘结剂、粘土和水形成酸性的浆液(例如所述酸性的浆液的pH值优选为1.5-2.6),喷雾干燥;
    所述催化裂化催化剂的可几孔径为3.5-4nm和5.1-10nm。
  19. 按照前述权利要求中任一项的制备催化裂化催化剂的方法,其特征在于,所述方法为包括:
    将按照前述权利要求中任一项的拟薄水铝石与水打浆,形成拟薄水铝石浆液,其固含量优选为5-25重量%,加入盐酸,HCl与以氧化铝计的拟薄水铝石的质量比优选为0.037-0.104,盐酸的浓度可以为10-37重量%,
    将所述拟薄水铝石浆液与分子筛、粘结剂、粘土和水混合得到胶体浆液,所述胶体浆液的固含量优选为20-40重量%,喷雾干燥,任 选洗涤和干燥。
  20. 一种催化裂化催化剂,含有以干基计10重量%-50重量%的分子筛、以氧化铝计10重量-40重量%的按照前述权利要求中任一项的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%的粘土,以100重量%的所述催化剂为基准,
    优选地,所述催化裂化催化剂的可几孔径为3.5-4nm和5.1-10nm和/或
    所述分子筛例如为Y型分子筛、具有MFI结构分子筛、非沸石分子筛和具有BEA结构分子筛中的一种或多种。
  21. 一种催化裂化催化剂,含有以干基计10重量%-50重量%的Y型分子筛、以干基计0-40重量%的其它分子筛、以氧化铝计10重量-40重量%的按照前述权利要求中任一项的拟薄水铝石、以氧化物计3重量-20重量%的粘结剂和以干基计10重量-80重量%的粘土,以100重量%的所述催化剂为基准;
    优选地,所述的其它分子筛为MFI结构沸石、beta沸石、非沸石分子筛的一种或几种,更优选地,所述的其它分子筛为HZSM-5、ZRP、ZSP中的一种或多种;和/或,
    优选地,所述Y型分子筛为REY、REHY,DASY、SOY、PSRY、HSY、HRY中的一种或多种。
  22. 一种催化裂化方法,包括在FCC条件下,将重油与催化裂化催化剂接触反应的步骤,其特征在于,所述的催化裂化催化剂为按照前述权利要求中任一项的催化裂化催化剂或按照前述权利要求中任一项的制备催化裂化催化剂的方法得到的催化裂化催化剂;例如,所述的FCC条件包括:反应温度为480-530℃,反应时间1-10秒,剂油比为3-20:1重量比。
PCT/CN2023/116100 2022-08-31 2023-08-31 表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用 WO2024046421A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211051672.6A CN117699834A (zh) 2022-08-31 2022-08-31 一种表面富羟基的中孔拟薄水铝石及其制备方法
CN202211051672.6 2022-08-31
CN202211104668.1A CN117732505A (zh) 2022-09-09 2022-09-09 一种催化裂化催化剂及其制备和应用
CN202211104668.1 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024046421A1 true WO2024046421A1 (zh) 2024-03-07

Family

ID=90100421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116100 WO2024046421A1 (zh) 2022-08-31 2023-08-31 表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用

Country Status (2)

Country Link
TW (1) TW202411163A (zh)
WO (1) WO2024046421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088136A (ja) * 2009-09-24 2011-05-06 Petroleum Energy Center 炭化水素油の接触分解触媒及びその製造方法、並びに炭化水素油の接触分解方法
CN103861636A (zh) * 2014-03-07 2014-06-18 北京化工大学 一种多产柴油的重油催化裂化催化剂及其制备方法
CN105174293A (zh) * 2015-09-10 2015-12-23 中国海洋石油总公司 一种孔径分布集中的拟薄水铝石的制备方法
CN114426300A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 一种大孔氧化铝载体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088136A (ja) * 2009-09-24 2011-05-06 Petroleum Energy Center 炭化水素油の接触分解触媒及びその製造方法、並びに炭化水素油の接触分解方法
CN103861636A (zh) * 2014-03-07 2014-06-18 北京化工大学 一种多产柴油的重油催化裂化催化剂及其制备方法
CN105174293A (zh) * 2015-09-10 2015-12-23 中国海洋石油总公司 一种孔径分布集中的拟薄水铝石的制备方法
CN114426300A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 一种大孔氧化铝载体的制备方法

Also Published As

Publication number Publication date
TW202411163A (zh) 2024-03-16

Similar Documents

Publication Publication Date Title
EP1863588B1 (en) Fcc catalyst, its preparation and use
JP5404056B2 (ja) 酸化物混合物
RU2264254C2 (ru) Гидротермически стабильные, имеющие высокий объем пор композиционные материалы типа оксид алюминия / набухаемая глина и способы их получения и использования
JP7437412B2 (ja) 接触分解触媒およびその調製方法
CN109312238B (zh) 具有衍生自结晶勃姆石的氧化铝的fcc催化剂
Jiang et al. Characterization of Y/MCM-41 composite molecular sieve with high stability from Kaolin and its catalytic property
CN115812006A (zh) 一种催化裂化催化剂及其制备方法
CN116265108A (zh) 一种多产汽油催化裂化催化剂的制备方法
CN114425399B (zh) 一种催化裂化催化剂及其制备方法与应用
WO2024046421A1 (zh) 表面富羟基的中孔拟薄水铝石、含该拟薄水铝石的催化裂化催化剂及其制备和应用
CN116265107A (zh) 一种多产柴油催化裂化催化剂的制备方法
CN116265109A (zh) 一种重油高效转化催化剂的制备方法
WO2022196025A1 (ja) シリカアルミナ粉末、シリカアルミナ粉末の製造方法、流動接触分解触媒およびその製造方法
CN111744485A (zh) 改性氧化铝、改性氧化铝的制备方法及包含改性氧化铝的催化剂
CN115920961A (zh) 一种含硅拟薄水铝石浆液的制备方法
CN115518678B (zh) 一种轻烃催化裂解催化剂及其制备方法与应用
CN116265106A (zh) 一种多产低碳烯烃催化裂化催化剂的制备方法
WO2023232021A1 (zh) 一种拟薄水铝石及其制备方法、以及一种含该拟薄水铝石的催化裂化催化剂及其制备和应用
CN110876926A (zh) 锆铝复合溶胶及其制备方法和应用以及催化裂化催化剂的制备方法
CN117181290A (zh) 一种催化裂化催化剂及其制备和应用
CN117732505A (zh) 一种催化裂化催化剂及其制备和应用
JP4541688B2 (ja) イソパラフィン−オレフィンアルキル化法
CN111744514B (zh) 改性氧化铝、改性氧化铝的制备方法及包含改性氧化铝的催化剂
WO2018077764A1 (fr) Procede de preparation d&#39;un materiau poreux composite
CN116328819A (zh) 一种低生焦催化裂化催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859450

Country of ref document: EP

Kind code of ref document: A1