WO2024046236A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2024046236A1
WO2024046236A1 PCT/CN2023/115018 CN2023115018W WO2024046236A1 WO 2024046236 A1 WO2024046236 A1 WO 2024046236A1 CN 2023115018 W CN2023115018 W CN 2023115018W WO 2024046236 A1 WO2024046236 A1 WO 2024046236A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
timer
uplink
transmission
terminal
Prior art date
Application number
PCT/CN2023/115018
Other languages
English (en)
French (fr)
Inventor
徐修强
王磊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024046236A1 publication Critical patent/WO2024046236A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to the field of communication technology, and in particular, to a data transmission method and device.
  • the terminal in order to improve the terminal multiplexing transmission capability, during an uplink data transmission process, when the terminal receives Uplink authorization information, if certain conditions are met, the terminal can perform uplink transmission according to the time-frequency resources configured by the network equipment (such as the base station) for other terminals.
  • This uplink transmission method can be called uplink opportunistic transmission or affiliated transmission.
  • the terminal that performs uplink data transmission through this transmission method can be called a slave terminal, and the time-frequency resource is the network device's primary terminal. distributed.
  • the slave terminal device will continuously monitor the uplink authorization information sent by the network device to the master terminal device, and determine and use the time-frequency resources of the master terminal for data transmission based on the uplink authorization information.
  • the slave When the terminal cannot monitor valid dynamic authorization, it will continue to monitor for a long time, resulting in high power consumption of the terminal, poor reliability of data transmission, and high delay.
  • This application discloses a data transmission method and device, which can reduce the power consumption of the terminal, improve the reliability of data transmission, and reduce the delay.
  • the first terminal device is a terminal device (which may be called a terminal device corresponding to the first terminal device) or a component implementation in the terminal device.
  • the components in this application are such as a processor, a transceiver, a processing module or a transceiver module. of at least one.
  • the terminal device corresponding to the first terminal device may be a slave terminal.
  • the method can be implemented through the following steps: the first terminal device starts or restarts a first timer, where the first timer includes an opportunistic multiple access timer (opma-Timer) ; When the first timer is running, the first terminal device receives the first uplink authorization information, and the time-frequency resource corresponding to the first uplink authorization information is used for the uplink transmission of the second device. It can also be said that the second terminal device The corresponding terminal device is the main calling terminal; and by setting the first timer, it can also prevent the first terminal device from monitoring for a long time when it cannot monitor the valid dynamic authorization, thereby reducing the power consumption of the terminal. Improve the reliability of data transmission and reduce latency.
  • the second terminal device is different from the first terminal device; the first terminal device sends uplink data based on the time-frequency resource.
  • the first terminal device receiving the first uplink authorization information includes: the first terminal device receiving the first uplink authorization information from the second terminal device; or, the first terminal device receives the first uplink authorization information from the second terminal device; or, the first terminal device receives the first uplink authorization information from the second terminal device; A terminal device receives the first uplink authorization information from a network device. Therefore, the first terminal device can flexibly obtain the first uplink authorization information to meet transmission requirements in different scenarios.
  • the method further includes: when the first timer times out, the first terminal device initiates a dynamic authorization-free transmission process or a random access process. In this way, it can be avoided that the first terminal device continues to monitor for a long time when it cannot monitor the valid dynamic authorization, thereby reducing the power consumption of the terminal, improving the reliability of data transmission, and reducing the delay.
  • the first terminal device starts or restarts the first timer, including: when the first condition is met, the first terminal device starts or restarts the first timer. ;
  • the first condition includes at least one of the following: when/after the first terminal device initiates an opportunistic multiple access transmission process; when/after the first terminal device receives the first uplink authorization information.
  • the first terminal device determines that the first uplink authorization information is a valid authorization; when/after the first terminal device receives the second uplink authorization information, the second uplink authorization information is used for authorization Data transmission of the first terminal device, or used to authorize data transmission of a group of terminal devices including the first terminal device; when/after the first terminal device sends uplink data; the first terminal When/after the device completes the random access process, or when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the first terminal device times out.
  • the first terminal device can continue to obtain the first uplink authorization information and use the time-frequency resources of the second terminal device for opportunistic transmission, thereby improving the overload rate of resources. , so that the system can support the access and data transmission of more terminal devices.
  • the first terminal device initiating an opportunistic multiple access transmission process includes one of the following: the first terminal device initiates an opportunistic multiple access transmission process on its own; The first terminal device sends a first instruction letter to the network device The first indication information is used to notify the network device that the first terminal device initiates an opportunistic multiple access transmission process, or for the first terminal device to initiate an opportunistic multiple access transmission process.
  • the network device can learn that the first terminal device will perform opportunistic transmission, so it can detect and receive the data of the first terminal device on the time-frequency resource indicated by the first authorization information, improving the reliability of detection and data reception. sex.
  • starting or restarting the first timer when/after the first terminal device sends uplink data includes: the time domain resources used by the first terminal device when sending uplink data.
  • the first timer is started after the first symbol/last symbol or the first symbol/last symbol.
  • the first terminal device when the first timer times out, the first terminal device initiates a dynamic authorization-free transmission process or a random access process, including: when the first timer times out , the first terminal device determines to initiate a dynamic authorization-free transmission process or a random access process according to the initial transmission situation of the first terminal device.
  • the first terminal device determines to initiate a dynamic authorization-free transmission process or random access based on the initial transmission situation of the first terminal device.
  • the process includes: when the first timer times out and the first terminal device does not perform initial transmission, the first terminal device initiates a dynamic authorization-free transmission process. In this way, security can be improved and latency reduced.
  • the first terminal device determines to initiate a dynamic authorization-free transmission process or random access based on the initial transmission situation of the first terminal device.
  • the process includes: when the first timer times out and the first terminal device has performed initial transmission, the first terminal device initiates a random access process.
  • the method further includes: when a second condition is met, the first terminal device stops the first timer; the second condition includes one or more of the following Item: when/after the first terminal device terminates the opportunistic multiple access transmission process; when/after the first terminal device receives the third indication information from the network device, the third indication information is used to indicate an opportunity
  • the multi-access transmission process ends; when/after the radio resource control RRC state of the first terminal device changes; or when/after the time alignment timer (TimerAlignmentTimer) in the first terminal device times out.
  • the acquisition of the first uplink authorization information can be terminated, thereby reducing the power consumption of the first terminal device.
  • it also enables the first terminal device to select a more appropriate data transmission process, such as a random access process, thereby improving the reliability of data transmission and reducing latency.
  • the method further includes: the first terminal device determines to select to perform an opportunistic multiple access process.
  • the method before the first terminal device determines to choose to perform the opportunistic multiple access process, the method further includes: the first terminal device determines whether the third condition is met; if the first terminal device is met, The third condition is that the first terminal device performs the first type of dynamic authorization-free transmission process, otherwise, the first terminal device performs an opportunistic multiple access process; the third condition includes one or more of the following : The first terminal device and the network device are in a synchronized state; the channel quality of the first terminal device meets the first preset value; the network device is the dynamic authorization-free transmission of the first terminal device The measurement result of at least one of the configured beam directions satisfies a preset condition; or the data buffer size of the first terminal device satisfies a second preset value. In this way, the first type of dynamic authorization-free transmission process can be prioritized, thereby avoiding resource competition in terminal devices and improving resource utilization.
  • this application provides a data transmission method for reducing the power consumption of the terminal, improving the reliability of data transmission, and reducing the delay.
  • the method may be implemented by a network device or a component in the network device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the method can be implemented through the following steps: the network device determines the first uplink authorization information, and the time-frequency resource corresponding to the first uplink authorization information is used for the uplink transmission of the second terminal device;
  • the network device sends the first uplink authorization information.
  • the first terminal device can send uplink data to the network device according to the time-frequency resource corresponding to the first uplink authorization information. In this way, the power consumption of the terminal can be reduced, the reliability of data transmission can be improved, and the delay can be reduced.
  • inventions of the present application provide a data transmission device, which can implement the method described in any possible implementation of the first aspect.
  • the device has the function of the above-mentioned first terminal device.
  • the device is, for example, a terminal device corresponding to the first terminal device, or a functional module in the terminal device.
  • the device may include a module that performs one-to-one correspondence with the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit, software, or hardware.
  • the circuit is combined with software implementation.
  • the device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can achieve The sending function and the receiving function.
  • the sending and receiving unit implements the sending function, it can be called the sending unit (sometimes also called the sending module).
  • the sending and receiving unit implements the receiving function, it can be called the receiving unit (sometimes also called the receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the device may include a transceiver module and a processing module.
  • the processing module is used to start or restart the first timer
  • the first timer includes an opportunistic multiple access timer (opma-Timer)
  • the transceiver module is used to receive when the first timer is running.
  • First uplink authorization information the time-frequency resource corresponding to the first uplink authorization information is used for uplink transmission of the second terminal device; the second terminal device is different from the device; the transceiver module is also used to send uplink data based on the video resource .
  • the transceiver module is configured to receive the first uplink authorization information from the second terminal device; or, receive the first uplink authorization information from the network device.
  • the processing module is also configured to initiate a dynamic authorization-free transmission process or a random access process when the first timer times out.
  • the processing module is also configured to start or restart the first timer when a first condition is met; the first condition includes at least one of the following: the device initiates an opportunity When/after the device receives the first uplink authorization information; when/after the device determines that the first uplink authorization information is a valid authorization; when/after the device receives the second uplink authorization information When/after, the second uplink authorization information is used to authorize data transmission of the first terminal device, or used to authorize data transmission of a group of terminal devices including the first terminal device; when/after the device sends uplink data After/after the device completes the random access process, or when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the device times out.
  • the first condition includes at least one of the following: the device initiates an opportunity When/after the device receives the first uplink authorization information; when/after the device determines that the first uplink authorization information is a valid authorization; when/after the device receives the second up
  • the processing module is used to trigger the opportunistic multiple access transmission process by itself; the processing module is used to initiate the opportunistic multiple access transmission process after sending the first indication information to the network device.
  • the first indication information is used to notify the network device that the device initiates an opportunistic multiple access transmission process, or for the device to request to initiate an opportunistic multiple access transmission process; or, the processing module is used to receive from the The network device initiates an opportunistic multiple access transmission process after receiving the second instruction information.
  • the second instruction information is used to instruct the device to initiate an opportunistic multiple access transmission process.
  • the processing module is configured to start the first timer after the first symbol/last symbol or the first symbol/last symbol of the time domain resource used for sending uplink data.
  • the processing module is configured to determine to initiate a dynamic authorization-free transmission process or a random access process based on the initial transmission situation of the device when the first timer times out.
  • the processing module is configured to determine to initiate a dynamic authorization-free transmission process when the first timer times out and the device does not perform initial transmission.
  • the processing module is configured to determine to initiate a random access process when the first timer times out and the device has performed initial transmission.
  • the processing module is configured to stop the first timer when a second condition is met; the second condition includes one or more of the following: the device terminates opportunistic multiple access When/after the access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC state of the device occurs When/after the change; or when/after the time alignment timer (TimerAlignmentTimer) in the device expires.
  • the second condition includes one or more of the following: the device terminates opportunistic multiple access When/after the access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC state of the device occurs When/after the change; or when/after the time alignment timer (TimerAlignmentTimer) in the device expires.
  • the processing module is also used to determine the selection to perform an opportunistic multiple access process.
  • the processing module is also configured to determine whether the third condition is met before determining to perform the opportunistic multiple access process; the processing module is also configured to determine whether the third condition is met when the third condition is met.
  • the first type of dynamic authorization-free transmission process is executed, otherwise, the opportunistic multiple access process is executed;
  • the third condition includes one or more of the following: the device and the network equipment are in a synchronization state; the device's The channel quality satisfies the first preset value; the network equipment has a measurement result of at least one beam direction among the beam directions configured for dynamic authorization-free transmission of the device that satisfies the preset condition; or the data buffer size of the device satisfies the second preset condition. Set value.
  • the device when the device is used to perform the method described in the second aspect, the device may include a transceiver module and a processing module.
  • the processing module may be used to determine the first uplink authorization information
  • the transceiving module may be used to send the first uplink authorization information.
  • the first uplink authorization information please refer to the description of the first uplink authorization information in the first aspect.
  • the device includes: a processor coupled to a memory and configured to execute instructions in the memory to implement the method of the first aspect.
  • the device also includes other components, such as antennas, input and output modules, interfaces, etc. These components can be hardware, software, or a combination of software and hardware.
  • embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the program or instruction when executed, causes the method described in the first aspect, any possible implementation manner of the first aspect, the second aspect, or any possible implementation manner of the second aspect to be implemented.
  • embodiments of the present application provide a computer program product containing instructions that, when run on a computer, enable the first aspect, any possible implementation of the first aspect, the second aspect, or any of the second aspects. Any possible implementation of the described method is implemented.
  • embodiments of the present application provide a chip system, which includes a logic circuit (or is understood to mean that the chip system includes a processor, and the processor may include a logic circuit, etc.), and may also include an input and output interface.
  • the input and output interface can be used to receive messages or send messages.
  • the input and output interface may be used to receive the first uplink authorization information.
  • the input and output interfaces can be the same interface, that is, the same interface can realize both the sending function and the receiving function; or the input and output interface includes an input interface and an output interface, and the input interface is used to realize the receiving function, that is, used to receive Message; the output interface is used to implement the sending function, that is, used to send messages.
  • the logic circuit can be used to perform the above-mentioned operations in addition to the transceiver function in the first aspect; the logic circuit can also be used to transmit messages to the input-output interface, or receive messages from other communication devices from the input-output interface.
  • the chip system can be used to implement the method described in the above first aspect, any possible implementation of the first aspect, the second aspect, or any possible implementation of the second aspect.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the chip system can also include a memory, which can be used to store instructions, and the logic circuit can call the instructions stored in the memory to implement corresponding functions.
  • inventions of the present application provide a communication system.
  • the communication system may include a first terminal device and a network device.
  • the first terminal device may be used to perform the method described in the first aspect.
  • the network device may For performing the method described in the second aspect above.
  • Figure 1 is a schematic diagram of the architecture of a wireless communication system provided by this application.
  • Figure 2a is a schematic diagram of the protocol stack architecture of a wireless communication system provided by this application.
  • Figure 2b is a schematic diagram of the protocol stack architecture of another wireless communication system provided by this application.
  • FIG. 3 is a schematic flow chart of RRC state switching provided by this application.
  • Figure 4 is a schematic flow chart of a random access method provided by this application.
  • Figure 5 is a schematic flow chart of another random access method provided by this application.
  • Figure 6 is a schematic flow chart of an uplink data transmission method provided by this application.
  • Figure 7 is a schematic diagram of the relationship between a beam and spatial direction provided by this application.
  • Figure 8 is a schematic diagram of the relationship between beams and transmission resources provided by this application.
  • Figure 9 is a schematic flow chart of an uplink opportunistic transmission method provided by this application.
  • Figure 10 is a schematic flow chart of a data transmission method provided by this application.
  • FIG 11 is a schematic flow chart of another data transmission method provided by this application.
  • Figure 12 is a schematic flow chart of another data transmission method provided by this application.
  • Figure 13 is a schematic flow chart of another data transmission method provided by this application.
  • Figure 14 is a schematic structural diagram of a data transmission device provided by this application.
  • FIG. 15 is a schematic structural diagram of another data transmission device provided by this application.
  • Figure 16 is a schematic structural diagram of another data transmission device provided by this application.
  • Embodiments of the present application provide a data transmission method and device.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • "and/or" describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, alone There are three situations B.
  • the character "/" generally indicates that the related objects are in an "or” relationship. At least one mentioned in this application refers to one or more; multiple refers to two or more.
  • the data transmission method provided by the embodiment of the present application can be applied to the fourth generation (4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) communication system, and can also be applied to the fifth generation (5th generation, 5G) Communication systems, such as 5G new
  • the air interface (new radio, NR) communication system may be used in various future communication systems, such as the sixth generation (6th generation, 6G) communication system.
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, WiFi systems, LoRa systems or Internet of Vehicles systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • FIG. 1 is an architectural schematic diagram of a wireless communication system provided by this application.
  • the communication system architecture shown in Figure 1 is taken as an example to illustrate the application scenarios used in this application.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the apparatus provided in the embodiment of this application can be applied to the network device 101 or to the terminal device 102.
  • FIG. 1 only shows one possible communication system architecture to which embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • the network device 101 is a node in a radio access network (radio access network, RAN), which can also be called a base station or a RAN node (or device).
  • RAN radio access network
  • some examples of network devices 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) , Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (base band unit, BBU), or wireless fidelity (Wifi) access point (access point, AP), satellite equipment, or network equipment in 5G communication systems, or networks in possible future communication systems equipment.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver
  • the network device 101 can also be other devices with network device functions.
  • the network device 101 can also be a device that serves as a network device in device-to-device (D2D) communication, Internet of Vehicles communication, and machine communication.
  • the network device 101 may also be a network device in a possible future communication system.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain Radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment 102 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users. , or it can be an IoT device.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices ( For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, smart home equipment ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in driverless driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (such as smart robots, hot air balloons, drones, airplanes), etc.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • vehicle-mounted devices For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • the terminal device may also be other devices with terminal functions.
  • the terminal device may also be a device that serves as a terminal function in D2D communication.
  • terminal equipment with wireless transceiver functions and chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • Figure 2a is a schematic diagram of the protocol stack architecture of a wireless communication system provided by this application.
  • the user plane protocol stack for communication between the terminal device and the network device includes service data adaptation.
  • Configuration service data adaptation protocol, SDAP
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • RLC wireless link control
  • media access control medium access control
  • PHY physical
  • Figure 2b is a schematic diagram of the protocol stack architecture of another wireless communication system provided by this application.
  • the control plane protocol stack for communication between the terminal device and the network device includes non-contact Access (non access stratum, NAS) layer, radio resource control (radio resource control, RRC) layer, PDCP layer, RLC layer, MAC layer and PHY layer.
  • NAS non-contact Access
  • RRC radio resource control
  • RRC_CONNECTED RRC idle
  • RRC_INACTIVE RRC inactive
  • RRC_CONNECTED RRC connected
  • RRC_CONNECTED RRC connected
  • RRC_CONNECTED RRC connected
  • the terminal device is in the RRC_CONNECTED state or RRC_INACTIVE state.
  • the terminal device does not establish an RRC connection
  • the terminal device is in the RRC_IDLE state.
  • the RRC_INACTIVE state is a state introduced for terminal equipment in the 5G NR communication system.
  • the RRC_INACTIVE state mainly targets the situation where "terminal equipment with infrequent data transmission is usually maintained in the RRC_INACTIVE state by the network.”
  • FIG 3 is a schematic flow chart of RRC state switching provided by this application; when the terminal device is in different RRC states, different operations will be performed.
  • the terminal device starts to be in the RRC_IDLE state.
  • the terminal device will perform a random access process to establish (setup) an RRC connection with the network device and enter the RRC_CONNECTED state.
  • the terminal device starts data transmission after entering the RRC_CONNECTED state.
  • the RRC connection is established by the terminal device sending a connection establishment request message, such as RRCSetupRequest, to the network device during the process of initiating random access, and receiving the connection establishment message sent by the network device. For example, RRCSetup message.
  • the network device can release the terminal device to enter the RRC_IDLE state or RRC_INACTIVE state. For example, the network device sends a release message with a suspension indication, such as RRCRelease with suspension indication, causing the terminal device to enter the RRC_INACTIVE state. Or the network device sends a release message, such as an RRCRelease message, to cause the terminal device to enter the RRC_IDLE state.
  • a suspension indication such as RRCRelease with suspension indication
  • a release message such as an RRCRelease message
  • the terminal device in the RRC_INACTIVE state can also return to the RRC_CONNECTED state through a resume (resume) message.
  • the terminal device sends an RRC resume request (RRCResumeRequest) and receives an RRC resume (RRCResume) message, returning to the RRC_CONNECTED state.
  • the network device can also release the terminal device to enter the RRC_IDLE state.
  • the RRC_IDLE state can also be briefly described as the idle state or IDLE state; the RRC_INACTIVE state can also be simply described as the inactive state or INACTIVE state; the RRC_CONNECTED state can also be briefly described as the connected state or activated state or CONNECTED state.
  • RRC states which can also be referred to as states
  • the embodiments of the present application can be used for terminal equipment in the RRC connected state, RRC idle state or RRC inactive state to implement uplink data transmission, or can be used in other states other than the RRC connected state, RRC idle state and RRC inactive state.
  • terminal equipment such as terminal equipment that is not attached to the network or is located on the network for downlink synchronization, to realize uplink data transmission.
  • RA random access
  • Figure 4 is a schematic flow chart of a random access method provided by this application, specifically illustrating the process of small packet transmission in four-step RA.
  • the terminal device sends message 1 (Msg1) to the network device, and the network device receives message 1 from the terminal device.
  • the message 1 is a random access preamble (hereinafter referred to as the preamble).
  • the preamble is used for
  • the network device estimates the timing advance (TA) of the terminal device.
  • the network device sends message 2 (Msg2) to the terminal device, and the terminal device receives message 2 from the network device.
  • Msg2 message 2
  • message 2 is a random access response (random access response).
  • the terminal device sends message 3 (Msg3) to the network device, and the network device receives message 3 from the terminal device.
  • Uplink data such as small packet data, can be carried in Msg3.
  • the network device sends message 4 (Msg4) to the terminal device, and the terminal device receives message 4 from the network device.
  • Figure 5 is a schematic flow chart of another random access method provided by this application, and specifically illustrates the process of small packet transmission in two-step RA.
  • the terminal device sends message A (MsgA) to the network device, and the network device receives message A from the terminal device.
  • MsgA message A
  • Uplink data such as small packet data, can be carried in MsgA.
  • the transmission channel of MsgA can include physical random access channel (physical random access channel, PRACH) and physical uplink shared channel (physical uplink shared channel, PUSCH).
  • PRACH is used to send the preamble, which is used by the network equipment to estimate the time advance of the terminal equipment, so that the terminal equipment can achieve uplink synchronization with the network equipment.
  • the terminal device can also send uplink data (such as small packet data) through MsgA's PUSCH. It can also be said that PUSCH can be used to carry uplink data.
  • the network device returns message B (MsgB) to the terminal, and the terminal device receives message B from the network device.
  • Downlink data can be carried in MsgB. Early downlink data can be transmitted on the physical downlink shared channel PDSCH of MsgB.
  • the terminal device can send uplink data to the network device.
  • Figure 6 is a schematic flow chart of an uplink data transmission method provided by this application; the uplink data transmission method is based on dynamic grant (DG) (or dynamic UL grant). ) uplink transmission.
  • DG dynamic grant
  • DG dynamic UL grant
  • the terminal device sends SR/BS to the network device.
  • the terminal device Before monitoring DCI, the terminal device can first send a scheduling request (SR) to the network device through the physical uplink control channel (PUCCH) or send a scheduling request (SR) to the network through the physical uplink shared channel (PUSCH).
  • SR scheduling request
  • the device reports buffer state (BS), which is used to inform the base station of uplink transmission requirements or buffer status, which facilitates network equipment to perform uplink authorization and resource scheduling according to needs.
  • BS buffer state
  • the network device sends DCI to the terminal device.
  • the terminal device can monitor the downlink control information (DCI) sent by the network device through the physical downlink control channel (PDCCH).
  • DCI carries an uplink grant (UL grant), which can be used to authorize a terminal to use specified parameters, such as a specified modulation and coding scheme (MCS), to send uplink data on a specified time-frequency resource.
  • MCS modulation and coding scheme
  • the terminal device sends uplink data to the network device.
  • the uplink data transmission method provided by the embodiment of the present application may also include a data transmission process based on grant-free (GF).
  • the GF-based data transmission process includes two types, namely the first type of dynamic authorization-free transmission process and the second type of dynamic authorization-free transmission process.
  • the first type of dynamic authorization-free transmission process refers to the time-frequency and/or reference signals used for transmission such as demodulation reference signals (DMRS) and other resources.
  • DMRS demodulation reference signals
  • the network equipment uses terminal-specific signaling such as terminal-specific RRC messages. Resources such as time-frequency reference signals configured or used for transmission are dedicated to the terminal and are not used by multiple terminals competing for use.
  • the terminal device directly uses the resources preconfigured by the network device to send data without having to send random access.
  • Input preamble suitable for situations where the terminal equipment and network equipment have completed uplink synchronization, such as semi-persistent scheduling (SPS) in LTE and transmission based on preconfigured uplink resources (PUR), 5G NR Configured grant (CG) transmission, CG-based small data packet transmission CG-SDT, etc.
  • SPS semi-persistent scheduling
  • PUR preconfigured uplink resources
  • CG 5G NR Configured grant
  • CG-based small data packet transmission CG-SDT etc.
  • the second type of dynamic authorization-free transmission process means that the resources such as time and frequency used for transmission are configured by the network device through broadcast messages such as system messages, or the resources such as time and frequency used for transmission are not exclusive to the terminal but are used by multiple terminals competing for use.
  • RA early data transmission
  • MsgA uplink and downlink data transmission in MsgB
  • RA-SDT small data packet transmission RA-SDT in 5G NR. Its characteristics Before sending data (Msg1) or while sending data (MsgA), the terminal also sends a random access preamble to the base station. The function of the random access preamble is for uplink synchronization between the terminal and the base station.
  • the common feature of these two types of dynamic authorization-free transmission processes is that the terminal device does not need to obtain the time-frequency resources and transmission parameters used to send data through the dynamic authorization of the monitoring network device before uplink transmission, but uses the preconfigured time-frequency Resources and transport parameters send data to network devices.
  • the time-frequency resources and transmission parameters used for data transmission are usually obtained by network equipment through high-level signaling such as system information (SI) or terminal-specific (UE-specific) RRC signaling such as RRC reconfiguration message or RRC release message. configuration.
  • Dynamic authorization-free transmission naturally supports multi-terminal multiplexing.
  • network equipment can configure the same time-frequency resources and mutual or quasi-orthogonal reference signals such as demodulation reference signals for multiple terminals through high-level signaling.
  • terminal equipment uses the same time-frequency resource to send data
  • network equipment can detect and receive data from multiple terminals through DMRS.
  • Uplink transmission based on dynamic authorization currently needs to rely on multi-user multiple input multiple output (MU-MIMO) technology.
  • MU-MIMO multi-user multiple input multiple output
  • the network device needs to issue a channel state information reference signal (channel state information RS, CSI-RS) for the terminal device to obtain the channel information.
  • a channel state information reference signal channel state information RS, CSI-RS
  • SRS sounding reference signal
  • MU-MIMO technology is mainly used to improve the uplink throughput rate, and has an effect on improving the number of connections. Not obvious.
  • 5G NR also introduces synchronization system/physical broadcast channel block (SS/PBCH block).
  • SS/PBCH block can also be called synchronization signal block (SSB).
  • SSB can be composed of three parts: primary synchronization signal (PSS), secondary synchronization signal (SSS), and master information block (MIB).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • MIB master information block
  • the network device sends multiple SSBs in a scanning manner in one cycle.
  • Different SSBs correspond to different spatial directions (for example, corresponding to different beams). Therefore, beam indication can also be implemented through SSB, or the SSB can be used as beam information.
  • Figure 7 is a schematic diagram of the relationship between beams and spatial directions provided by this application.
  • SSB-1 and SSB-2 respectively cover different areas, and different areas can include different terminal equipment.
  • the number of SSBs can be configured by the network device to the terminal device through system messages.
  • NR supports three SSB numbers: 4, 8, and 64. Generally, the higher the frequency, the greater the number of SSBs, and the narrower the beam used to send SSBs.
  • the terminal device can measure the reference signal receiving power (RSRP) for the SSB sent by the network device.
  • RSRP reference signal receiving power
  • the terminal device can select the access channel opportunity (RACH occasion, RO) or preamble mapped by the SSB to perform the RA process, where a PRACH time-frequency resource can is called a physical random access channel opportunity. Therefore, if there is a mapping relationship between SSB and RO or preamble, the mapping relationship can be one-to-many, one-to-one, or many-to-one.
  • the terminal device performs two-step RA or four-step RA, it can implicitly inform the network device of the selected SSB through the selected RO or preamble.
  • the network device when the network device sends the response message (MsgB or Msg2), it can send in the same spatial direction as the SSB mapped by the RO or preamble selected by the terminal device.
  • the quasi co-location (QCL) characteristic is the same as the SSB mapped by the selected RO or preamble, so the terminal device can implicitly indicate the SSB to the network device.
  • QCL characteristics can also be called QCL relationships. QCL relationships mean that two reference signals have certain same spatial parameters.
  • the terminal device can select the RO or Preamble mapped by the SSB to perform the RA process.
  • SSB can also have a mapping relationship with authorization-free transmission resources.
  • SSB has a mapping relationship with time-frequency resources (transmission occasion, TO) or DMRS.
  • the relationship can also be one-to-many or one-to-one. Or many to one.
  • the network device configures authorization-free resources for inactive direct small packet transmission through the terminal device dedicated RRC message, including periodic time. frequency resources and DMRS resources, as well as MCS and other transmission parameters.
  • the terminal device needs to transmit uplink data packets, it uses the configured time-frequency resources to send data.
  • time and frequency resources are shared by multiple terminal devices, the network device can distinguish the terminals through DMRS resources such as DMRS ports or DMRS sequences. For example, different terminal devices use different DMRS ports or sequences.
  • the network device when the network device configures time-frequency resources and DMRS resources for the terminal device, it will associate beams such as SSB with the configured resources. In this way, the terminal device selects the time-frequency resource or DMRS resource associated with a certain beam to send data based on the beam measurement results. , to implement beam indication, and the network device uses the beam direction to receive data sent by the terminal using the associated DMRS on the associated time-frequency resource.
  • SSBs are mapped to multiple time-frequency resources in the order of DMRS resources (ports or sequences) first, and then time-frequency resources.
  • two different SSBs can be mapped to different time-frequency resources (as shown in case 1 in Figure 8) or different DMRS resources on the same time-frequency resource (as shown in case 1 in Figure 8) shown in 2).
  • the network equipment In order to take into account the transmission of terminals that support GF transmission for all service types in the cell, the network equipment needs to configure corresponding SSB for each terminal. However, since the distribution of these terminals in the cell may be completely dispersed, this means that the network equipment needs to be configured for all or Most beam directions (such as SSB) are configured with associated time-frequency resources and DMRS resources. This will cause the time-frequency resources mapped to the same beam direction to be widely spaced in time, resulting in terminal equipment that performs multiplexing transmission within a certain period of time. The number of terminals is limited and it is difficult to meet the terminal multiplexing and transmission requirements brought by the growing number of terminals.
  • the beams are narrower and the beam directions are more, and limited by the number of transceiver channels, the beam directions that network equipment can serve at the same time are limited, further limiting the number of terminal devices that can perform multiplexed transmission.
  • terminal equipment can also use a data transmission method based on opportunistic multiple access (OpMA) or based on affiliated multiple access (AMA)
  • OpMA opportunistic multiple access
  • AMA affiliated multiple access
  • the data transmission method sends uplink data to the network device.
  • This method can also be called opportunity-based multiple access (OBMA) transmission.
  • the terminal can determine the beam direction based on the received uplink authorization information, and when the beam direction meets the preset conditions, send uplink data to the network device through the time-frequency resources corresponding to the uplink authorization information.
  • the time-frequency resources corresponding to the uplink authorization information are used for the calling terminal to send uplink data, or in other words, the time-frequency resources are allocated to the calling terminal.
  • the first terminal device, the second terminal device and the network device are the execution subjects as an example.
  • the first terminal device may be a first terminal device or a component of the first terminal device
  • the second terminal device may be a second terminal device or a component of the second terminal device.
  • the first terminal device and the second terminal device are different terminal devices respectively.
  • the first terminal device and the second terminal device are different terminals within the coverage area of the same beam.
  • the second terminal device may serve as the main dispatching terminal (or main scheduling terminal), or in other words, the time-frequency resource corresponding to the first uplink authorization information was originally allocated by the network device to the second terminal device.
  • the first terminal device can be used as a slave terminal in this application.
  • the slave terminal in this application can transmit uplink data through the time-frequency resources allocated by the network device to the master terminal under certain conditions.
  • the first terminal device and the second terminal device both serve as slave terminals, or the second terminal device is one or more slave terminals including the first terminal device.
  • the process of this method is introduced below with reference to Figure 9.
  • Figure 9 is a schematic flowchart of an uplink opportunistic transmission method provided by this application, which may include the following steps:
  • the network device configures the relevant parameters of the uplink opportunistic transmission to the first terminal device for the first terminal device to perform uplink transmission.
  • the first terminal device obtains the first uplink authorization information.
  • the first uplink authorization information may come from the network device, or the first uplink authorization information is sent by the network device to the first terminal device for scheduling uplink data transmission of the second terminal device.
  • the first terminal device determines the beam direction according to the first uplink authorization information.
  • the first terminal device sends uplink data to the network device through the time-frequency resource corresponding to the first uplink authorization information.
  • the first terminal device will continuously monitor the first uplink authorization information, and determine the time-frequency resources for data transmission based on the first uplink authorization information.
  • the slave terminal cannot monitor the effective dynamic authorization, Monitoring will continue for a long time, resulting in high power consumption of terminal equipment, poor reliability of data transmission, and high latency.
  • the method can be implemented by network equipment and terminal devices.
  • the network device may include the network device 101 shown in FIG. 1
  • the terminal device may include the terminal device 102 shown in FIG. 1 .
  • the steps performed by the terminal device in this method can also be performed by components (such as chips, modules or circuits, etc.) in the terminal device, and/or the steps performed by the network device in this method can also be performed by the network device.
  • Components (such as chips, modules or circuits, etc.) execute.
  • the terminal device may include a first terminal device and a second terminal device.
  • first terminal device and the second terminal device please refer to the above-mentioned related introductions and will not be described again here.
  • Figure 10 is a schematic flowchart of a data transmission method provided by this application, which may include steps shown in S1001 to S1003. The steps are described below.
  • S1001 The first terminal device starts or restarts the first timer.
  • the first timer includes an opportunistic multiple access timer (opma-Timer).
  • the length of the first timer can be determined by the first terminal device itself, or it can be agreed upon by the protocol between the first terminal device and the network device, or it can be configured by the network device for the first terminal device. This is not the case in the embodiments of this application. limited.
  • the first terminal device starts or restarts the first timer when the first condition is met, and the first condition includes at least one of the following: when the first terminal device initiates an opportunistic multiple access transmission process/ after; when/after the first terminal device receives the first uplink authorization information; when/after the first terminal device determines that the first uplink authorization information is a valid authorization; when/after the first terminal device receives the second uplink authorization information,
  • the second uplink authorization information is used to authorize the data transmission of the first terminal device, or to authorize the data transmission of a group of terminal devices including the first terminal device; when/after the first terminal device sends uplink data; the first terminal device When/after the random access process is completed, or when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the first terminal device times out.
  • the first terminal device when/after the first terminal device that meets the first condition initiates an opportunistic multiple access transmission process, the first terminal device starts the first timer.
  • the first condition when/after the first terminal device receives the first uplink authorization information; when/after the first terminal device determines that the first uplink authorization information is a valid authorization;
  • the second uplink authorization information is used to authorize data transmission of the first terminal device, or to authorize data transmission of a group of terminal devices including the first terminal device;
  • a terminal device sends uplink data; when/after the first terminal device completes the random access process, or the opportunistic multiple access response listening timer and/or opportunistic multiple access in the first terminal device
  • the first terminal device restarts the first timer.
  • initiate, trigger, perform, and initialization may be used interchangeably, for example, when/after the first terminal device initiates the opportunistic multiple access transmission process It can be understood that the first terminal device triggers the opportunistic multiple access transmission process.
  • the first terminal device triggers the opportunistic multiple access transmission process.
  • when can be understood as what operation is performed at a certain moment, and after... can be understood as what operation is performed after a certain period of time at a certain time.
  • the first terminal device initiating the opportunistic multiple access transmission process may include one of the following: the first terminal device initiates the opportunistic multiple access transmission process on its own; the first terminal device sends the first indication information to the network device After initiating the opportunistic multiple access transmission process, the first indication information is used to notify the network equipment that the first terminal device initiates the opportunistic multiple access transmission process, or is used for the first terminal device to request to initiate the opportunistic multiple access transmission process. process; or, the first terminal device initiates an opportunistic multiple access transmission process after receiving the second instruction information from the network device, and the second instruction information is used to instruct the first terminal device to initiate an opportunistic multiple access transmission process.
  • the first terminal device initiates the opportunistic multiple access transmission process on its own.
  • the upper layer (upper layer) of the first terminal device such as the application layer, initiates the opportunistic multiple access transmission process; in another example, In this example, the MAC entity of the first terminal device initiates an opportunistic multiple access transmission process.
  • the time-frequency resource used by the first terminal device to send the first indication information to the network device may be configured by the network device for the first terminal device; optionally, the first terminal device may send the first indication information when the first terminal device sends the first indication information.
  • the first timer is started after the first symbol/last symbol or the first symbol/last symbol of the time domain resource in the used time-frequency resource.
  • the first terminal device when the first terminal device sends the first instruction information to the network device, the first instruction information is used for the first terminal device to request to initiate an opportunistic multiple access transmission process, and the first terminal device needs to receive the response, that is, the second indication information.
  • the first terminal device may initiate an opportunistic connection after receiving the second indication information. Enter the transmission process; when the first terminal device sends the first instruction information to the network device, the first instruction information is used to notify the network device that the first terminal device initiates the opportunistic multiple access transmission process, and the first terminal device does not need to receive the network Accordingly, the first terminal device may initiate an opportunistic multiple access transmission process after sending the first indication information.
  • the first terminal device receives the first uplink authorization information, it can be understood that the first terminal device monitors the first uplink authorization information.
  • the first terminal device determines that the first uplink authorization information is a valid authorization can be understood as when/after the first terminal device determines that the first uplink authorization information monitored or received is a valid authorization. Among them, the first terminal device can determine whether the first uplink authorization information is a valid authorization through but is not limited to the following two methods:
  • the first method the first terminal device determines the beam direction according to the first uplink authorization information. When the beam direction meets the preset conditions, it determines that the first uplink authorization information is a valid authorization, as follows:
  • the first uplink authorization information may include beam indication information for indicating the beam direction.
  • the beam indication information includes, for example, indication information of a reference signal associated with the beam direction or a beam direction identifier.
  • the first terminal device may determine the beam direction according to the beam indication information.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may correspond to the beam direction, and accordingly, the first terminal device may be used to receive the first uplink grant information according to At least one of RNTI, CORESET, search space or signaling format of the information determines the beam direction.
  • the first terminal device can determine the beam direction corresponding to the first uplink authorization information according to the RNTI and the third correspondence relationship, where the third correspondence relationship is available Indicate the correspondence between at least one of RNTI, CORESET, search space or signaling format and the beam direction (or indication information of the reference signal associated with the beam direction), for example, in the third correspondence, indicate RNTI#1 and SSB When #1 corresponds, the first terminal device may determine the beam direction to be the beam direction associated with SSB#1.
  • the first uplink authorization information is determined to be an invalid authorization. Accordingly, the first terminal device may not send (or ignore sending) uplink data in the time-frequency resource corresponding to the first uplink authorization information, or , when the beam direction does not meet the preset conditions, it is determined that the first uplink authorization information is an invalid authorization.
  • the first terminal device can send uplink data in a time-frequency resource other than the time-frequency resource corresponding to the first uplink authorization information, so as to Avoid transmission failure and interference to the transmission of the second terminal device.
  • the preset condition may be indicated by the network device through an RRC message, MAC CE or DCI, or the preset condition may be predefined by a protocol or preconfigured in the first terminal device.
  • the preset conditions include at least one of condition 1 and condition 2.
  • condition 1 is: the signal measurement value corresponding to the beam direction meets the threshold condition.
  • Condition 2 is: the beam direction configured by the network device for the first terminal device includes the beam direction.
  • Condition 1 and Condition 2 are introduced below respectively.
  • the first terminal device can determine whether the beam direction needs to meet the preset condition according to the measurement result of the beam direction. For example, when the reference signal can represent the beam direction, the first terminal device determines whether the beam direction meets the preset conditions based on the signal quality measurement value and threshold condition (or signal quality threshold) of the reference signal corresponding to the beam direction.
  • the signal quality here includes but Not limited to the RSRP of the reference signal, received quality (RSRQ), signal-to-noise and interference ratio (SINR), received signal strength indicator (RSSI), path loss ( pathloss, PL), signal incident angle (angle of arrival, AoA), incident time difference (time difference of arrival, TDOA) measurement. For example, when the RSRP of the reference signal exceeds a preset RSRP threshold, the first terminal device determines that the beam direction meets the preset condition.
  • condition 2 if the beam direction is the beam direction configured by the network device for the opportunistic transmission of the first terminal device, or the beam direction is included in the beam direction configured by the network device for the opportunistic transmission of the first terminal device, Then the first terminal device can determine that the beam direction satisfies the preset condition.
  • condition 1 and 2 are exemplary conditions.
  • one of condition 1 and condition 2 can be adopted as the preset condition, that is, the first terminal device determines that the preset condition is met when it determines that one of condition 1 and condition 2 is met.
  • a combination of condition 1 and condition 2 may be used as the preset condition, that is, the first terminal device determines that the preset condition is satisfied when it determines that condition 1 is satisfied and condition 2 is satisfied.
  • the first uplink authorization information may include indication information indicating whether to allow the first terminal device (or slave terminal) to perform uplink transmission through the first uplink authorization information (or the time-frequency resource); when the first When the uplink authorization information is used to indicate that the first terminal device (or slave terminal) is not allowed to perform uplink transmission through the first uplink authorization information (or the time-frequency resource), then the first uplink authorization information is determined to be an invalid authorization; When the first uplink authorization information is used to indicate that the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink authorization information (or the time-frequency resource), it is determined that the first uplink authorization information is valid.
  • Authorization details are as follows:
  • the indication information used to indicate whether the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource) may include specific bit information in the first uplink grant information. For example, when the value of a specific bit of the first uplink grant information is "0", it means that the first terminal device (or slave terminal) is not allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource) Instruction information, correspondingly, the first terminal device determines that the first uplink authorization information is an invalid authorization. When the value of the specific bit is "1", it means that the first terminal device (or slave terminal) is allowed to pass the first uplink authorization information. Instruction information for uplink transmission of authorization information (or the time-frequency resource).
  • the first terminal device determines that the first uplink authorization information is a valid authorization. For another example, when the value of a specific bit of the first uplink grant information is "0", it indicates that the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource) Instruction information, correspondingly, the first terminal device determines that the first uplink authorization information is a valid authorization. When the value of the specific bit is "1", it means that the first terminal device (or slave terminal) is not allowed to pass the first Instruction information for uplink transmission of uplink authorization information (or the time-frequency resource). Correspondingly, the first terminal device determines that the first uplink authorization information is an invalid authorization.
  • the first terminal device starts the first timer when/after receiving the second uplink authorization information
  • the second uplink authorization information is used to authorize the data transmission of the first terminal device, or to authorize the data transmission including the first terminal device.
  • the second uplink authorization information is used to authorize the data transmission of the first terminal device.
  • the DCI used to send the second uplink authorization information uses a wireless network temporary identifier RNTI dedicated to the first terminal device, such as a cell wireless network.
  • the temporary identifier (cell-radio network temporary identifier, C-RNTI) is scrambled.
  • the C-RNTI dedicated to the first terminal device is configured by the network equipment to the first terminal device.
  • the second uplink authorization information is used to authorize the data transmission of a group of terminal devices including the first terminal device.
  • the DCI used to send the second uplink authorization information is scrambled using a group RNTI.
  • the group RNTI is composed of a group including the first terminal device.
  • a group of terminal devices including the device is shared, and the group RNTI is configured by the network device to a group of terminal devices including the first terminal device.
  • the second uplink authorization information may be directly sent by the network device to the first terminal device, or may be sent by the second terminal device to the first terminal device.
  • starting the first timer when/after the first terminal device transmits the uplink data can be understood as the first symbol/last symbol or the first symbol of the time domain resource in the time-frequency resource used by the first terminal device to transmit the uplink data.
  • the first timer is started after one symbol/last symbol.
  • the first terminal device starts the first symbol or the last time domain resource of the PUSCH used by the opportunistic multiple access determined according to the first uplink grant information. This first timer is started after one symbol or after the first/last symbol.
  • the first terminal device may start the first timer when/after completing the random access process.
  • the completion of the random access process by the first terminal device may mean that the first terminal device receives a contention resolution (CR) message sent by the network device, and the contention resolution message is carried in the MsgB or 4-step RA. step RA in Msg4.
  • CR contention resolution
  • the first timer is started when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the first terminal device expires.
  • the opportunistic multiple access response listening timer may be referred to as the OpMA response listening timer
  • the opportunistic multiple access automatic retransmission timer may be referred to as the OpMA automatic retransmission timer.
  • the OpMA response listening timer is a timer that is started or restarted after the first terminal device sends uplink data based on the time-frequency resource corresponding to the first uplink authorization information. For example, the first terminal device sends the PUSCH at the end of opportunistic multiple access.
  • the first symbol of the earliest control resource set after one symbol for receiving PDCCH starts the OpMA response listening timer. After starting the OpMA response listening timer, the predefined time period set by the OpMA response listening timer ends. Within the time, the first terminal device monitors or receives a response message from the network device to the sent uplink data. During the operation of the OpMA response listening timer, after the first terminal device monitors or receives a response message from the network device, the first terminal device terminates the OpMA response listening timer, wherein the first terminal device terminates the OpMA response listening timer. may be understood as the first terminal device stopping the OpMA response listening timer.
  • the first terminal device determines that the sent uplink data is correctly received by the network device.
  • the OpMA automatic retransmission timer is a timer that is started or restarted after the first terminal device sends uplink data based on the time-frequency resource corresponding to the first uplink authorization information. For example, the first terminal device sends PUSCH for opportunistic multiple access. The first symbol of the earliest control resource set used to receive PDCCH after the last symbol starts the OpMA automatic retransmission timer.
  • the first uplink authorization information monitored or received by the first terminal device is used to automatically retransmit the uplink data.
  • the first terminal device terminates the OpMA automatic retransmission timer.
  • the first terminal device determines to choose to perform an opportunistic multiple access process.
  • the first terminal device determines whether the first Three conditions; if the third condition is met, the first terminal device performs the first type of dynamic authorization-free transmission process; otherwise, the first terminal device performs the opportunistic multiple access process.
  • this process can exist independently as a separate embodiment, and is not limited by the embodiments of this application.
  • the third condition includes one or more of the following: the first terminal device and the network device are in a synchronization state; the channel quality of the first terminal device meets the first preset value; the network device is the first terminal The measurement result of at least one beam direction among the beam directions of the device's dynamic authorization-free transmission configuration satisfies the preset condition; or, the data buffer size of the first terminal device satisfies the second preset value.
  • the synchronization state between the first terminal device and the network device may be that, for example, the time alignment timer (TimerAlignmentTimer) in the first terminal device is running, that is, the time alignment timer is started and the time alignment has not exceeded.
  • the channel quality of the first terminal device that meets the first preset value may be that the signal quality here includes but is not limited to the measurement of RSRP, RSRQ, SINR, RSSI, PL, AoA, and TDOA of the reference signal. For example, when the RSRP of the reference signal exceeds a preset RSRP threshold, the first terminal device determines that the third condition is met.
  • the measurement result of at least one beam direction among the beam directions configured by the network device for dynamic authorization-free transmission of the first terminal device satisfies the preset condition.
  • the first terminal device determines whether the beam direction meets the preset conditions based on the signal quality measurement value and threshold condition (or signal quality threshold) of the reference signal corresponding to the beam direction.
  • the signal quality here includes but Not limited to measurements of RSRP, RSRQ, SINR, RSSI, PL, AoA, and TDOA.
  • the RSRP of the reference signal exceeds the preset RSRP threshold, the first terminal device determines that the measurement result of at least one beam direction among the configured beam directions satisfies the preset condition.
  • the first terminal device determines that the third condition.
  • the data cache size of the first terminal device satisfying the second preset value may be, for example, that the data cache size of the first terminal device is not higher than the preset threshold value, and the first terminal device determines that the third condition is met.
  • the running of the first timer can be understood to mean that the first timer has not timed out, or that the time length of the first timer has not exceeded after the first timer is started.
  • the time-frequency resource corresponding to the first uplink grant information is used for uplink transmission of the second terminal device.
  • the first uplink authorization information can be used by the second terminal device to send uplink data using specified parameters (such as MCS) on the corresponding time-frequency resources.
  • the time-frequency resources corresponding to the first uplink authorization information may be time-frequency resources allocated by the network equipment to the master terminal (such as the second terminal device), and the slave terminal (such as the first terminal device) has uplink data transmission.
  • data is transmitted using the time-frequency resources allocated by the base station to the primary terminal (such as the second terminal device), that is, uplink opportunistic transmission or affiliated transmission or uplink based on opportunistic multiple access. transmission.
  • the first terminal device and the second terminal device both serve as slave terminals. Therefore, the time-frequency resources corresponding to the first uplink grant information may be resources allocated by the network device to a group (or at least one) of slave terminals.
  • the time-frequency resource corresponding to the first uplink grant information may be the time-frequency resource indicated by the first uplink grant information.
  • the time-frequency resources can also be used by the first terminal device to send uplink data.
  • the following describes the manner in which the first terminal device determines the time-frequency resource based on the first uplink grant information.
  • the first uplink grant information may include the time-frequency resource information of the time-frequency resource. That is to say, the time-frequency resource corresponding to the first uplink grant information is indicated by the time-frequency resource information included in the first uplink grant information.
  • the first uplink grant information includes time domain location information and frequency domain location information of the time-frequency resource.
  • the network device can configure a transmission resource set for the terminal through an RRC message or MAC CE or DCI.
  • the first uplink authorization information can carry indication information for indicating a certain transmission resource from the transmission resource set.
  • the transmission resources may include time-frequency resources (i.e., time domain resources and frequency domain resources).
  • the transmission resources may also include air domain resources, code domain resources (such as DMRS) or multiple access signatures (signatures), etc.
  • the time-frequency resource determined according to the indication information in the first uplink grant information is also the time-frequency resource corresponding to the first uplink grant information.
  • the first uplink grant information may include an index of a time-frequency resource in the resource set.
  • the time-frequency resource indicated by the first uplink grant information may be a time-frequency resource corresponding to at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information, or That is, the time-frequency resource indicated by the first uplink grant information is implicitly indicated by at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information.
  • at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information corresponds to the transmission resource.
  • the first terminal device may receive a first correspondence relationship from the network device, and the first correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between transmission resources, or the first corresponding relationship may be stored in the first terminal device.
  • the corresponding relationship may be preconfigured by the network device through signaling, or may be defined by a protocol, or may be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the first correspondence determine the time-frequency resource corresponding to the first uplink grant information.
  • the above RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information can be called the RNTI used to send the first uplink authorization information for the network device that sends the first uplink authorization information. , CORESET, search space or signaling format.
  • At least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may be for one or more terminals (including the first terminal device and/or the second terminal device) )distributed.
  • the first correspondence includes the correspondence between RNTI-1 and time-frequency resource 1.
  • the time-frequency corresponding to the first uplink grant information The resource is time-frequency resource 1.
  • time-frequency resources corresponding to the above first uplink grant information may be time-frequency resources allocated by the network device to the second terminal device. Therefore, the second terminal device can perform uplink transmission through the time-frequency resource.
  • the first uplink authorization information may come from the network device or the second terminal device, specifically including the following two possible implementation methods:
  • the first uplink authorization information is dynamic authorization information sent by the network device.
  • the second terminal device can send a scheduling request to the network device through PUCCH, or the second terminal device can send the cache status to the network device through PUSCH, and then the network device can send the first uplink authorization information, using for scheduling uplink data transmission of the second terminal device.
  • the first uplink grant information may include time-frequency resources used for uplink data transmission by the second terminal device.
  • the first uplink authorization information may be sent by the network device through unicast, multicast or broadcast.
  • the first uplink grant information may be a physical layer signal, for example, the first uplink grant information is DCI, and the first uplink grant information may be sent through the PDCCH.
  • the first authorization information may also be a MAC layer signal, such as a MAC control element (CE).
  • CE MAC control element
  • the first authorization information may be delivered through, for example, PDSCH.
  • DCI is usually sent after being scrambled by a specific RNTI. Therefore, the terminal must first determine the RNTI before it can correctly receive the DCI sent by the base station to the terminal, while the reception of MAC CE does not need to be scrambled by a specific RNTI.
  • the RNTI used by the first terminal device to receive the first uplink authorization information may be preconfigured by the network device through signaling.
  • the network device may configure the RNTI to the first terminal device through an RRC message, MAC CE or DCI.
  • the RNTI may be an RNTI configured by the network device for the second terminal device, such as a C-RNTI. At this time, the first terminal device and the second terminal device share the RNTI.
  • the RNTI may also be calculated by the first terminal device based on resources such as time domain resources, frequency domain resources, code domain resources, and multiple access signatures.
  • the network device configures transmission resources including time domain resources, frequency domain resources, code domain resources or multiple access signatures, such as authorization-free transmission resources, for the first terminal device.
  • the terminal can calculate the RNTI based on these resources, and Receive the first uplink grant information sent through the PDCCH according to the RNTI.
  • the authorization-free resource is set with a corresponding RNTI, or is set with a corresponding parameter for calculating the RNTI, which is used by the first terminal device to calculate the RNTI.
  • the first uplink authorization information here may be sent by the network device to the second terminal device, and the network device may configure at least one terminal device (including the first terminal device) including time domain resources, frequency domain resources, and code domain in advance.
  • Transmission resources including any one or more of resources or multi-access signatures, such as authorization-free transmission resources, when the network device sends dynamic authorization information to the second terminal device (for example, used to instruct the second terminal device to proceed)
  • the RNTI of the dynamic authorization information will be calculated based on the configured transmission resources, and the dynamic authorization information will be sent based on the RNTI. If the first terminal device has uplink transmission requirements, the RNTI can also be calculated based on the configured transmission resources.
  • the dynamic authorization information can be used as the first uplink authorization information. If the first terminal device does not successfully receive the dynamic grant information according to the RNTI, it means that there is no uplink grant information corresponding to the time-frequency resource.
  • the code domain resources here may be DMRS resources such as DMRS ports, preamble resources or sequence resources.
  • the sequence resources include, for example, ZC (Zadoff-Chu) sequences, covered ZC (covered-ZC) sequences, and pseudo-random noise. (pseudo-noise, PN) sequence, longest linear feedback shift register (M) sequence, Golden sequence, Reed-Muller (Reed-Muller) sequence, discrete Fourier transform (DFT) sequence, Inverse discrete Fourier transform (IDFT) sequence, or Hadamard sequence, etc.
  • the multi-access signatures here include but are not limited to codebooks, patterns, sequences, etc. that can be used to assist or enhance multi-user detection or multi-data reception, such as spreading sequences, spreading patterns ( spreading pattern), resource mapping pattern (resource mapping pattern) or resource hopping pattern (resource hopping pattern), etc.
  • the first uplink authorization information may include explicit indication information of transmission resources and/or transmission parameters, or the first uplink authorization information may include transmission resources and/or transmission parameters.
  • the transmission resources and/or transmission parameters may be used by the first terminal device to send uplink data.
  • transmission resources include but are not limited to any one of time domain resources, frequency domain resources, code domain resources or multiple access signature resources. or multiple resources.
  • the transmission parameters in this application include but are not limited to parameters such as MCS, power control parameters or the number of repeated transmissions.
  • the first terminal device may send uplink data to the network device according to the transmission resource and/or the transmission parameter.
  • the first uplink grant information may specifically include resource information and/or transmission parameters of transmission resources, so the first uplink grant information may directly indicate the transmission resources and/or transmission parameters.
  • the first uplink authorization information may also be used to indicate a transmission resource from a transmission resource set.
  • the transmission resource set may be indicated by the network device through an RRC message, MAC CE or DCI.
  • the first uplink authorization information may be used to indicate a transmission parameter from a transmission parameter set, and the transmission parameter set may be indicated by the network device through an RRC message, MAC CE or DCI.
  • the first uplink grant information may be used to implicitly indicate transmission resources and/or transmission parameters.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may correspond to a transmission resource. Therefore, after the first terminal device receives the first uplink grant information, The transmission resource corresponding to at least one of RNTI, CORESET, search space or signaling format may be used as a transmission resource for sending uplink data.
  • At least one of RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information may correspond to a transmission parameter, and at least one of RNTI, CORESET, search space or signaling format may be The corresponding transmission parameters are used as transmission parameters for sending uplink data.
  • the first terminal device may receive a second correspondence relationship from the network device, and the second correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between the transmission parameters, or the second corresponding relationship can be stored in the first terminal device.
  • the corresponding relationship can be preconfigured by the network device through signaling, or it can be defined by the protocol, or it can be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the second correspondence determine transmission parameters.
  • the first uplink authorization information may be used by the first terminal device to determine the beam direction corresponding to the first uplink authorization information, wherein the first uplink authorization information may include the beam direction
  • the indication information, or the first uplink grant information can be used to implicitly indicate the beam direction.
  • the beam direction can be used by the first terminal device to determine whether to send uplink data in the time-frequency resource corresponding to the first uplink authorization information.
  • the beam here may be a beam used by the network device for reception.
  • the first uplink grant information may include beam indication information (which may also be referred to as beam direction indication information), which is used to explicitly indicate the beam direction.
  • the beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identification.
  • the indication information of the reference signal associated with the beam direction includes, for example, an index characterizing the reference signal of the beam direction, such as an SSB index or a CSI-RS index.
  • the beam direction identifier may be, for example, an index or identifier corresponding to the beam direction.
  • the first terminal device may determine the beam direction according to at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information, which may correspond to the beam direction.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may correspond to the beam direction. Therefore, after the first terminal device receives the first uplink grant information, it may The beam direction corresponding to at least one of RNTI, CORESET, search space or signaling format is used as the beam direction here, or in other words, the first uplink grant information can be used to implicitly indicate the beam direction.
  • the first terminal device may receive a third correspondence relationship from the network device, and the third correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between the beam directions, or the third corresponding relationship may be stored in the first terminal device.
  • the corresponding relationship may be preconfigured by the network device through signaling, or may be defined by a protocol, or may be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the third correspondence determine the beam direction corresponding to the first uplink grant information.
  • the third correspondence includes the correspondence between RNTI-1 and SSB-1 (or the index of SSB-1), and the third correspondence between RNTI-2 and SSB-2 (or the index of SSB-2).
  • the first terminal device when the first terminal device receives the first uplink authorization information according to RNTI-1, the first terminal device can use the beam direction associated with SSB-1 as the beam direction, or in other words, use the SSB-1 as the beam direction.
  • the first terminal device may use the beam direction associated with SSB-2 as the beam direction, or in other words, use the SSB-2 as the beam direction.
  • the first uplink authorization information may come from the second terminal device.
  • the second terminal device may send the first uplink authorization information to the first terminal device according to the second uplink authorization information from the network device.
  • the second terminal device can use any communication link between terminals, such as D2D link, sidelink, bluetooth, etc., to perform unicast or groupcast. ), multicast or broadcast to
  • the first terminal device sends first uplink authorization information.
  • the first uplink grant information may be carried on a physical sidelink control channel (physical sidelink control channel, PSCCH) or a physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • the second terminal device can send a scheduling request to the network device through PUCCH, or the second terminal device can send the buffer status to the network device through PUSCH.
  • the second terminal device can receive the second uplink authorization information from the network device.
  • the second terminal device may determine and send the first uplink authorization information to the first terminal device according to the received second uplink authorization information.
  • the second terminal device may determine the time-frequency resource according to the second uplink grant information, and carry the indication information of the time-frequency resource in the first uplink grant information.
  • the second terminal device may determine, according to the explicit indication carried in the second uplink authorization information, that the second uplink authorization information is used for the second terminal device to transmit uplink data.
  • the second terminal device may determine the second terminal device to be the primary calling terminal according to the explicit indication carried in the second uplink authorization information.
  • the second terminal device is a slave terminal.
  • the first terminal device and the second terminal device serve as a group of slave terminals, and the second terminal device can be configured to receive the The uplink authorization information is forwarded to other slave terminals (for example, including the first terminal device).
  • the first uplink authorization information may also include transmission resources (or indication information of transmission resources) and/or transmission parameters used for the first terminal device to perform uplink transmission to the network device. (or instructions for transmitting parameters).
  • the second uplink authorization information may include transmission resources and/or transmission parameters for the second terminal device to perform uplink transmission
  • the first uplink authorization information may include transmission resources and/or transmission parameters for the first terminal device to perform uplink transmission to the network device.
  • the transmission resources and/or transmission parameters may be the same as the transmission resources and/or transmission parameters included in the second uplink authorization information for the second terminal device to perform uplink transmission.
  • the first uplink authorization information may include indication information of transmission resources and/or transmission parameters used and/or unusable by the first terminal device to parameterize uplink data to the network device.
  • the first uplink grant information may also include beam indication information.
  • the beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identifier.
  • the beam direction may be indicated by the second uplink authorization information, and the second uplink authorization information may indicate the beam direction in an explicit or implicit manner.
  • the explicit indication and implicit indication methods may refer to the first implementation manner. The way to indicate the beam direction explicitly or implicitly will not be described again.
  • the first uplink authorization information may also include other information used for the first terminal device to perform uplink transmission.
  • This information includes, for example: the identification of the calling terminal, The identification of the subordinate terminal or the indication information used to indicate whether the first terminal device (or the subordinate terminal) is allowed to perform uplink transmission through the first uplink authorization information (or the time-frequency resource), etc.
  • the identification of the slave terminal can be used to explicitly indicate the slave terminal.
  • the identity of the first terminal device and/or the slave terminal such as UE ID, may include other information that can be used to identify the terminal type. For example, when the terminal can be identified through time-frequency resources, DMRS resources or sequences, the time-frequency corresponding to the terminal Resources, DMRS resources or sequences and other information.
  • the type of terminal in this application refers to the terminal as a master terminal or a slave terminal.
  • the identification of the calling terminal can be used to explicitly indicate the calling terminal (eg, the second terminal device).
  • the identification of the calling terminal may be the terminal's UE ID, or may include other information that can be used to identify the terminal.
  • the identity of the slave terminal and the calling terminal can also be used as the identity of the terminal that is allowed to send data. If the identity of the terminal that receives the first uplink authorization information is not included in the identity of the terminal that is allowed to send data, it means The terminal is not allowed to send uplink data through the first uplink authorization information.
  • the first terminal device may determine itself as a slave terminal based on the first uplink authorization information.
  • the second terminal device may determine itself as the calling terminal based on the first uplink authorization information or the second uplink authorization information.
  • the terminal when the terminal receives the uplink authorization information (including the first uplink authorization information and/or the second uplink authorization information), and the uplink authorization information only indicates the calling terminal (such as carrying the identification of the calling terminal), if The terminal determines that it is not the primary calling terminal. If the identity of the primary calling terminal does not include the terminal's identity, one implementation method is that the terminal determines that it is a slave terminal; if the terminal determines that the identity of the calling terminal includes its own identity, then determine Call the main terminal yourself.
  • the terminal receives the uplink authorization information (including the first uplink authorization information and/or the second uplink authorization information), and the uplink authorization information only indicates the subordinate terminal (such as carrying the identification of the subordinate terminal), if the terminal determines that it When it is not a slave terminal, if the identifier of the slave terminal does not include the identifier of the terminal, one implementation method is that the terminal determines itself as the master terminal; if the terminal determines that the identifier of the slave terminal includes its own identifier, it determines itself as the slave terminal. .
  • At least one of RNTI, CORESET, search space or signaling format used to receive uplink grant information may correspond to the master terminal or the slave terminal, so that the uplink authorization information can implicitly indicate the type of terminal.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information has a corresponding relationship (can be called is the fourth corresponding level Tie).
  • the network device configures two RNTIs for the terminal, RNTI-1 and RNTI-2, which are respectively associated with the two types of master terminal and slave terminal. When the terminal uses RNTI-1 to receive the dynamic authorization instruction, the terminal determines that it is Master terminal; when the terminal receives a dynamic authorization instruction using RNTI-2, the terminal determines itself as a slave terminal.
  • the first uplink authorization information includes indication information indicating whether to allow the first terminal device (or slave terminal) to perform uplink transmission through the first uplink authorization information (or the time-frequency resource). Please refer to the relevant description in step S1001. No further details will be given here.
  • the first terminal device can transmit uplink data according to the first uplink authorization information; otherwise, if the first uplink authorization information does not include the identification of the first terminal device, or does not include an indication to allow the first terminal device to pass the Instruction information for uplink transmission using time-frequency resources, the first terminal device does not perform uplink transmission according to the first uplink authorization information (or the time-frequency resource), or in other words, the first terminal device ignores the instruction information based on the first uplink authorization information (or the time-frequency resource). time-frequency resources) for uplink transmission.
  • the method further includes: when the first timer times out, the first terminal device initiates a dynamic authorization-free transmission process or a random access process.
  • the first terminal device when the first timer times out, the first terminal device also determines to initiate a dynamic authorization-free transmission process or a random access process based on the initial transmission situation of the first terminal device.
  • the first terminal device when the first timer times out and the first terminal device does not perform initial transmission, the first terminal device initiates a dynamic authorization-free transmission process.
  • the first terminal device initiates the second type of dynamic authorization-free transmission process, or when the first terminal device determines that the resources for the first type of dynamic authorization-free transmission are valid, it initiates the first type of dynamic authorization-free transmission process, otherwise it initiates the third type of dynamic authorization-free transmission process.
  • Type II dynamic authorization-free transmission process For descriptions of the first type of dynamic authorization-free transmission process and the second type of dynamic authorization-free transmission process, please refer to the above description and will not be described again here.
  • the first terminal device When the first timer times out and the first terminal device has performed initial transmission, the first terminal device initiates a random access process.
  • the initial transmission by the first terminal device can be understood as the first data packet has been sent by the first terminal device after executing the opportunistic multiple access process. That is, when the first terminal device executes the opportunistic multiple access process, it is based on the time.
  • the frequency resource has sent the first data packet; the first terminal device has not performed initial transmission, which can be understood as the first terminal device has not sent the first data packet after executing the opportunistic multiple access process.
  • the method further includes: when the second condition is met, the first terminal device stops the first timer.
  • the second condition includes one or more of the following: when/after the first terminal device terminates the opportunistic multiple access transmission process; when/after the first terminal device receives the third indication information from the network device, the third The indication information is used to indicate the end of the opportunistic multiple access transmission process; when/after the RRC status of the first terminal device changes; or when/after the time alignment timer (TimerAlignmentTimer) in the first terminal device times out.
  • the first terminal device terminating the opportunistic multiple access transmission process can be understood as the first terminal device stopping the opportunistic multiple access transmission process.
  • the first terminal device receives third indication information from the network device, and the third indication information may be an RRC release message.
  • the RRC state of the first terminal device changes, for example, the first terminal device transitions from an inactive state to an active state; or, the first terminal device transitions from an inactive state to an idle state.
  • the time alignment timer in the first terminal device is used to synchronize the first terminal device with the network equipment.
  • the timeout of the time alignment timer in the first terminal device can be understood as the time alignment timer starts and exceeds the time alignment timer setting. of duration.
  • the first terminal device sends uplink data based on time-frequency resources.
  • the first terminal device sending uplink data based on time-frequency resources may mean that the first terminal device uses part or all of the time-frequency resources to send uplink data.
  • the time-frequency resource is determined by the first terminal device based on the first uplink authorization information.
  • the first terminal device may send uplink data to the network device according to transmission resources and/or transmission parameters.
  • the transmission resource and/or the transmission parameter may be determined by the first terminal device based on the first uplink authorization information.
  • the first uplink authorization information may specifically include transmission resource information and/or transmission parameters.
  • the first uplink grant information may also be used to indicate a transmission resource from a transmission resource set, and/or the first uplink grant information may be used to indicate a transmission parameter from a transmission parameter set.
  • the first uplink grant information may be used to implicitly indicate transmission resources and/or transmission parameters.
  • the transmission resources and/or transmission parameters may be pre-configured by the network device for the first terminal device through signaling such as RRC, DCI, MAC CE, etc.
  • the network device may send or indicate to the terminal device at least one of RNTI, CORESET, search space or signaling format, and at least one of transmission resources, transmission parameters, beam direction and terminal type.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and a transmission resource
  • the corresponding relationship includes a first corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and a transmission parameter
  • the corresponding relationship includes a second corresponding relationship.
  • the corresponding relationship includes a third corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and the terminal type, the corresponding relationship includes a fourth corresponding relationship.
  • the first terminal device may receive the first uplink grant information according to At least one of RNTI, CORESET, search space or signaling format and the corresponding relationship, determine the transmission resource, and send uplink data through the transmission resource and/or transmission parameters.
  • the network device may receive uplink data from the first terminal device according to the transmission resources and/or transmission parameters.
  • the first terminal device may receive the first uplink grant information according to the RNTI, CORESET , search space or signaling format and the corresponding relationship, determine the beam direction, and determine whether to send uplink data in the time-frequency resource corresponding to the first uplink authorization information according to the beam direction. For details, see the description in S803.
  • the first terminal device may receive the first uplink authorization information according to the RNTI, CORESET , search space or signaling format and the corresponding relationship, determine the terminal type, and the terminal type is a slave terminal or a calling terminal. If the terminal type is a slave terminal, the first terminal device can execute the process shown in Figure 8 to implement opportunistic transmission or slave transmission.
  • the above correspondence between at least one of the RNTI, CORESET, search space or signaling format and at least one of the transmission resources, transmission parameters, beam direction and terminal type may be stored in the first In the terminal device, for example, the corresponding relationship may be preconfigured by the network device through signaling, may be defined by a protocol, or may be preconfigured in the first terminal device. The usage of this correspondence relationship can be seen in the above example and will not be described again.
  • the first terminal device when the first terminal device receives the first uplink authorization information, it can directly use the time-frequency resource corresponding to the first uplink authorization information to send uplink data without performing determination of the beam direction and judgment. Action to determine whether the beam direction meets preset conditions. For example, when the first terminal device and the second terminal device have the same beam direction, the base station will configure the first terminal device to receive the first uplink authorization information. At this time, when the first terminal device can receive the first uplink authorization information, By default, the corresponding time-frequency resources can be used to send uplink data.
  • the corresponding relationship between at least two items of information such as beam direction, transmission resources, transmission parameters or terminal type can also be set by network equipment or through pre-configuration or pre-defined methods to implicitly indicate the above information.
  • the corresponding relationship between the beam direction and transmission resources and/or transmission parameters can be set, so that the first terminal device can determine the beam direction according to any method shown in this application, according to the beam direction and transmission resources and/or The correspondence between transmission parameters determines transmission resources and/or transmission parameters.
  • the first terminal device may also determine the beam direction according to the corresponding relationship after determining the transmission resources and/or transmission parameters according to any method shown in this application.
  • the first terminal device may report a request or capability information to the network device to indicate that the first terminal device supports opportunistic transmission or dependent transmission.
  • the network device can configure the opportunistic transmission mode or the dependent transmission mode to the first terminal device (such as a terminal device that supports opportunistic transmission or dependent transmission, or broadcast to multiple unspecified terminal devices), or configure One or more of the following information: parameters used to receive the first authorization information sent by the network device, such as RNTI, CORESET, SS, and signaling format, used to receive the first authorization information sent by the second terminal device. Parameters such as PSCCH and/PSSCH channel configuration, transmission resources and/or transmission parameters used to send data.
  • the second terminal device may report capability information to the network device.
  • the network device can configure the calling terminal mode to the second terminal device (such as a terminal device that supports being a calling terminal, or broadcast to multiple unspecified terminal devices), or configure one of the following information or more: used to receive the first authorization information and/or the parameters used by the second authorization information sent by the network device, such as RNTI, CORESET, SS, signaling format, and used to send the first authorization information to the second terminal device. Parameters such as PSCCH and /PSSCH channel configuration.
  • the network device may send configuration information to the first terminal device and/or the second terminal device through one or more signaling among RRC messages, MAC CE or DCI, Used to configure the uplink transmission mode and/or related parameters based on opportunistic transmission or multiple access.
  • Related parameters include but are not limited to beam direction, transmission resources used to send data, transmission parameters, used to receive uplink Authorization parameters such as RNTI, CORESET, search space or signaling format, etc.
  • the network device can pre-configure the calling terminal (including the second terminal device) and the slave terminal (including the first terminal device), and configure the calling terminal and Communication link between slave terminals.
  • the network equipment is pre-configured to enable communication between a group of terminals (for example, including a first terminal device and a second terminal device) with similar positions or similar beam directions, and one or more terminals in the group of terminals can serve as the main calling terminal.
  • a group of terminals for example, including a first terminal device and a second terminal device
  • one or more terminals in the group of terminals can serve as the main calling terminal.
  • one or more terminals in the group of terminals can serve as slave terminals to perform the steps of the slave terminal in the embodiment of the present invention.
  • one terminal in this group of terminals can be either a master terminal or a slave terminal.
  • the first terminal device by setting the first timer and receiving the first uplink authorization information when the first timer is running, it can be avoided that the first terminal device will not be able to monitor the valid dynamic authorization for a long time. Monitoring continues, thereby reducing the power consumption of the terminal, improving the reliability of data transmission, and reducing latency.
  • Figure 11 is a schematic flow chart of another data transmission method provided by this application, which may include the following steps:
  • the first terminal device determines whether the third condition is met.
  • the third condition includes one or more of the following: the first terminal device and the network device are in a synchronization state; the channel quality of the first terminal device meets the first preset value; the network device is the first terminal.
  • the measurement result of at least one beam direction among the beam directions of the device's dynamic authorization-free transmission configuration satisfies the preset condition; or, the data buffer size of the first terminal device satisfies the second preset value.
  • the first terminal device performs the first type of dynamic authorization-free transmission process; otherwise, the first terminal device determines whether the fourth condition is met.
  • the fourth condition includes one or more of the following: the first terminal device and the network device are in a synchronization state; the channel quality of the first terminal device meets the third preset value; the network device is the first terminal
  • the measurement result of at least one beam direction among the beam directions of the device's opportunistic multiple access transmission configuration satisfies the preset condition; or, the data buffer size of the first terminal device satisfies the fourth preset value.
  • the first terminal device may directly perform the opportunistic multiple access transmission process without determining whether the fourth condition is met.
  • the first terminal device performs the opportunistic multiple access transmission process; otherwise, the first terminal device determines whether the fifth condition is met.
  • the fifth condition includes one or more of the following: the channel quality of the first terminal device meets the fifth preset value; or the data cache size of the first terminal device meets the sixth preset value.
  • the channel quality of the first terminal device meets the fifth preset value
  • the data cache size of the first terminal device meets the sixth preset value.
  • the first terminal device may directly perform the second type of dynamic authorization-free transmission process without determining whether the fifth condition is met.
  • the first terminal device performs the second type of dynamic authorization-free transmission process.
  • steps S1103 and S1104 are optional steps.
  • the first type of dynamic authorization-free transmission process is preferentially selected, thereby avoiding resource competition of terminal devices and improving resource utilization.
  • the opportunistic multiple access transmission process is selected, and finally the second type of dynamic authorization-free transmission process is selected.
  • the resources of the terminal device need to compete. Therefore, through the above selection sequence, it is possible to Ensure the optimality of the plan.
  • Figure 12 is a schematic flow chart of another data transmission method provided by this application, which may include the following steps:
  • the first terminal device sends fourth instruction information to the network device.
  • the fourth indication information is used for the first terminal device to request opportunistic transmission from the network device or for the first terminal device to notify the network device to perform opportunistic transmission.
  • the fourth indication information may be carried in uplink control information (UCI) or MAC CE and sent by the first terminal device to the network device.
  • the fourth indication information itself may also be a sequence.
  • the fourth indication information may be used to assist the network device in detecting and receiving the opportunistic transmission of the first terminal device.
  • the network device receives fourth instruction information from the first terminal device.
  • the network device after the network device receives the fourth indication information, it can learn that the first terminal device will perform opportunistic transmission, so the network device can detect and receive the data of the first terminal device on the time-frequency resource indicated by the first authorization information. , thereby improving the reliability of detection and data reception.
  • the fourth instruction information when the fourth instruction information is used for the first terminal device to request opportunistic transmission from the network device, after sending the fourth instruction information, the first terminal device will receive the third instruction sent by the network device to the first terminal device.
  • Fifth instruction information the fifth instruction information is used by the network device to respond to the fourth instruction information sent by the first terminal device, for example, instructing the first terminal device to perform opportunistic transmission.
  • the first terminal device after receiving the fifth indication information, performs an opportunistic multiple access process.
  • Figure 13 is a schematic flow chart of another data transmission method provided by this application, which may include the following steps:
  • the first terminal device determines whether the sixth condition is met.
  • the first terminal device performs a random access process.
  • the sixth condition includes one or more of the following: the measurement results of all beam directions configured by the network equipment for the first terminal device's opportunistic multiple access do not meet the preset conditions, or the first terminal device determines that the first terminal device One authorization information is invalid authorization.
  • the measurement results of all beam directions configured by the network equipment for the opportunistic multiple access of the first terminal device do not meet the preset conditions, please refer to the description in step S1001 for the relevant description, which will not be described again here; the first terminal For a description of how the device determines that the first authorization information is an invalid authorization, please refer to the description in step S1001, which will not be described again here.
  • the communication device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Figure 14 is a schematic structural diagram of a data transmission device provided by this application. Based on the same technical concept, an embodiment of this application also provides a data transmission device 1400.
  • the data transmission device 1400 may be a data transmission device. , it can also be a device or component in the data transmission device, or a device that can be used in conjunction with the data transmission device.
  • the data transmission device 1400 may be a terminal device or a network device.
  • the data transmission device 1400 may include a module that performs one-to-one correspondence with the methods/operations/steps/actions involved in the above method embodiments.
  • the module may be a hardware circuit, software, or hardware. The circuit is combined with software implementation.
  • the data transmission device 1400 may include a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 may include a sending module and/or a receiving module.
  • the device may include a transceiver module 1402 and a processing module 1401.
  • the processing module 1401 is used to start or restart the first timer
  • the first timer includes an opportunistic multiple access timer (opma-Timer)
  • the transceiver module 1402 is used to start or restart the first timer when the first timer is running.
  • receiving the first uplink authorization information the time-frequency resource corresponding to the first uplink authorization information is used for the uplink transmission of the second terminal device; the second terminal device is different from the device; the transceiver module 1402 is also used to based on the video resource Send uplink data.
  • the transceiver module 1402 is configured to receive the first uplink authorization information from the second terminal device; or, receive the first uplink authorization information from the network device.
  • the processing module 1401 is also configured to initiate a dynamic authorization-free transmission process or a random access process when the first timer times out.
  • the processing module 1401 is also configured to start or restart the first timer when a first condition is met; the first condition includes at least one of the following: the device initiates When/after the opportunistic multiple access transmission process; when/after the device receives the first uplink authorization information; when/after the device determines that the first uplink authorization information is a valid authorization; when/after the device receives the second uplink authorization When/after the information is sent, the second uplink authorization information is used to authorize the data transmission of the first terminal device, or to authorize the data transmission of a group of terminal devices including the first terminal device; when the device sends uplink data /after; when/after the device completes the random access process, or when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the device times out.
  • the first condition includes at least one of the following: the device initiates When/after the opportunistic multiple access transmission process; when/after the device receives the first up
  • the processing module 1401 is configured to trigger the opportunistic multiple access transmission process by itself; the processing module 1401 is configured to initiate the opportunistic multiple access after sending the first indication information to the network device. transmission process, the first indication information is used to notify the network device that the device initiates an opportunistic multiple access transmission process, or for the device to request to initiate an opportunistic multiple access transmission process; or, the processing module 1401 is used to After receiving the second instruction information from the network device, the opportunistic multiple access transmission process is initiated, and the second instruction information is used to instruct the device to initiate the opportunistic multiple access transmission process.
  • the processing module 1401 is configured to start the first timing after the first symbol/last symbol or the first symbol/last symbol of the time domain resource used for sending uplink data. device.
  • the processing module 1401 is configured to determine to initiate a dynamic authorization-free transmission process or a random access process according to the initial transmission situation of the device when the first timer times out.
  • the processing module 1401 is configured to determine to initiate a dynamic authorization-free transmission process when the first timer times out and the device does not perform initial transmission.
  • the processing module 1401 is configured to determine to initiate a random access process when the first timer times out and the device has performed initial transmission.
  • the processing module 1401 is configured to stop the first timer when a second condition is met; the second condition includes one or more of the following: the device terminates the opportunistic multiple When/after the address access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC status of the device When/after a change occurs; or when/after the time alignment timer (TimerAlignmentTimer) in the device times out.
  • the second condition includes one or more of the following: the device terminates the opportunistic multiple When/after the address access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC status of the device When/after a change occurs; or when/after the time alignment timer (TimerAlignmentTimer) in the device times out.
  • the processing module 1401 is also used to determine the selection to execute an opportunistic multiple access process.
  • the processing module 1401 is also configured to determine whether the third condition is met before determining to choose to perform the opportunistic multiple access process; the processing module 1401 is also configured to determine whether the third condition is met when the third condition is met.
  • the third condition includes one or more of the following: the device and the network equipment are in a synchronization state; the The channel quality of the device meets the first preset value; the network equipment has a measurement result of at least one beam direction among the beam directions configured for dynamic authorization-free transmission of the device that meets the preset condition; or the data buffer size of the device meets the first preset value. 2. Default value.
  • the device when the device is used to perform the method performed by the network device described in each of the above embodiments, the device may include a transceiver module 1402 and a processing module 1401.
  • the processing module 1401 may be used to determine the first uplink authorization information
  • the transceiving module 1402 may be used to send the first uplink authorization information.
  • the first uplink authorization information please refer to the description of the first uplink authorization information in the above method embodiment.
  • the transceiver module 1402 can also be used to perform actions represented by arrows in the embodiment shown in FIGS. 10 to 13 , and the processing module 1401 can also be used to perform actions represented by rectangular boxes in the embodiment shown in FIGS. 10 to 13 . Other operations will not be described one by one here.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. In the device, it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Figure 15 is a schematic structural diagram of another data transmission device provided by this application, which is used to implement the data transmission method provided by this application.
  • the data transmission device 1500 may be a device or component located in a terminal device, a terminal device, a network device, or a device or component in a network device.
  • the data transmission device 1500 may be a data transmission device, a device in a data transmission device, or a device that can be used in conjunction with the data transmission device.
  • the data transmission device 1500 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the data transmission device 1500 includes at least one processor 1520, which is used to implement the data transmission method provided by the embodiment of the present application.
  • the data transmission device 1500 may also include a communication interface 1510, which may also be called an input-output interface.
  • the communication interface 1510 is used to communicate with other devices through transmission media.
  • the data transmission device 1500 is a chip, it transmits with other chips or devices through the communication interface 1510 .
  • the processor 1520 is used to implement the method described in the above method embodiment.
  • the device may include a communication interface 1510 and a processor 1520.
  • the processor 1520 is used to perform the following operations: start or restart the first timer, the first timer includes an opportunistic multiple access timer (opma-Timer); when the first timer is running , receiving the first uplink authorization information through the communication interface 1510, and the time-frequency resource corresponding to the first uplink authorization information is used for the uplink transmission of the second terminal device; the second terminal device is different from the device; through the communication interface 1510 based on This time-frequency resource sends uplink data.
  • opma-Timer opportunistic multiple access timer
  • the processor 1520 is configured to receive the first uplink authorization information from the second terminal device through the communication interface 1510; or, the processor 1520 is configured to receive the first uplink authorization information from the second terminal device through the communication interface 1510. The first uplink authorization information of the network device.
  • the processor 1520 is also configured to initiate a dynamic authorization-free transmission process or a random access process when the first timer times out.
  • the processor 1520 is configured to start or restart the first timer when a first condition is met; the first condition includes at least one of the following: the device initiates an opportunity When/after the device receives the first uplink authorization information; when/after the device determines that the first uplink authorization information is a valid authorization; when/after the device receives the second uplink authorization information When/after, the second uplink authorization information is used to authorize the data transmission of the device, or to authorize the data transmission of a group of terminal devices including the device; when/after the device sends uplink data; when the device completes randomization During/after the access process, or when/after the opportunistic multiple access response listening timer and/or the opportunistic multiple access automatic retransmission timer in the device expires.
  • the processor 1520 is configured to trigger the opportunistic multiple access transmission process by itself; the processor 1520 is configured to initiate the opportunistic multiple access after sending the first instruction information to the network device. transmission process, the first indication information is used to notify the network device that the device initiates an opportunistic multiple access transmission process, or for the device to request to initiate an opportunistic multiple access transmission process; or, the processor 1520 is used to After receiving the second instruction information from the network device, the opportunistic multiple access transmission process is initiated, and the second instruction information is used to instruct the device to initiate the opportunistic multiple access transmission process.
  • the processor 1520 is configured to start the first timing after the first symbol/last symbol or the first symbol/last symbol of the time domain resource used to send uplink data. device.
  • the processor 1520 is configured to determine to initiate a dynamic authorization-free transmission process or a random access process according to the initial transmission situation of the device when the first timer times out.
  • the processor 1520 is configured to determine to initiate a dynamic authorization-free transmission process when the first timer times out and the device does not perform initial transmission.
  • the processor 1520 is configured to determine to initiate a random access process when the first timer times out and the device has performed initial transmission.
  • the processor 1520 is also configured to stop the first timer when a second condition is met; the second condition includes one or more of the following: the device terminates the opportunistic formula When/after the multiple access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC of the device When/after the status changes; or when/after the time alignment timer (TimerAlignmentTimer) in the device times out.
  • the second condition includes one or more of the following: the device terminates the opportunistic formula When/after the multiple access transmission process; when/after the device receives the third indication information from the network device, the third indication information is used to indicate the end of the opportunistic multiple access transmission process; the radio resource control RRC of the device When/after the status changes; or when/after the time alignment timer (TimerAlignmentTimer) in the device times out.
  • the time alignment timer
  • the processor 1520 is also configured to determine the selection to perform an opportunistic multiple access process.
  • the processor 1520 is also configured to determine whether the third condition is met before determining to choose to perform the opportunistic multiple access process; the processor 1520 is also configured to determine whether the third condition is met when the third condition is met.
  • the third condition includes one or more of the following: the device and the network equipment are in a synchronization state; the The channel quality of the device meets the first preset value; the network equipment has a measurement result of at least one beam direction among the beam directions configured for dynamic authorization-free transmission of the device that meets the preset condition; or the data buffer size of the device meets the first preset value. 2. Default value.
  • the apparatus when the apparatus is used to perform the method performed by the network device described in each of the above embodiments, the apparatus may include a communication interface 1510 and a processor 1520.
  • the processor 1520 may be used to determine the first uplink authorization information, and the communication interface 1510 may be used to send the first uplink authorization information.
  • the first uplink authorization information please refer to the description in the above method embodiment.
  • the communication interface 1510 may also be used to perform actions represented by arrows in the embodiment shown in FIGS. 10 to 13
  • the processor 1520 may also be used to perform actions represented by rectangular boxes in the embodiment shown in FIGS. 10 to 13 . Other operations will not be described one by one here.
  • the data transmission device 1500 may also include at least one memory 1530 for storing program instructions and/or data.
  • Memory 1530 and processor 1520 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1520 may cooperate with the memory 1530.
  • Processor 1520 may execute program instructions stored in memory 1530 . At least one of the at least one memory may be integrated with the processor.
  • the memory 1530 can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it can also be a volatile memory (volatile memory), For example, random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 1520 may be a general processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • Figure 16 is a schematic structural diagram of another data transmission device 1600 provided by this application and used to implement the data transmission method provided by this application.
  • the data transmission device 1600 may be a device located in a terminal device, a terminal device, a network device, or a device or component located in a network device.
  • the data transmission device 1600 may be a data transmission device, a device in a data transmission device, or a device that can be used in conjunction with the data transmission device.
  • the data transmission device 1600 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the numbers provided by the above embodiments Part or all of the data transmission method can be implemented by hardware or software.
  • the data transmission device 1600 can include: an input interface circuit 1601, a logic circuit 1602, and an output interface circuit 1603.
  • the input interface circuit 1601 can be used to obtain the first uplink authorization information
  • the logic circuit 1602 can be used to perform the processing action of the first terminal device
  • the output interface circuit 1603 Can be used to output upstream data.
  • the data transmission device 1600 may be a chip or an integrated circuit during specific implementation.
  • Embodiments of the present application provide a computer-readable storage medium storing a computer program.
  • the computer program includes instructions for executing the above method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the above method embodiments.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法及装置,该方法包括:第一终端装置启动或重启第一定时器,所述第一定时器包括机会式多址接入定时器(opma-Timer);当所述第一定时器运行时,所述第一终端装置接收第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;所述第二终端装置与所述第一终端装置不同;所述第一终端装置基于所述时频资源发送上行数据,采用本申请能够降低终端的功耗,提高数据传输的可靠性,且降低时延。

Description

一种数据传输方法及装置
本申请要求于2022年8月27日提交中国专利局、申请号为202211037914.6、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
移动通信系统例如第五代移动通信技术(5th generation mobile communication technology,5G)新无线(new radio,NR)系统中,为了提高终端复用传输能力,一种上行数据传输过程中,当终端接收到上行授权信息,在满足一些条件的情况下,终端可以根据网络设备(如基站)为其他终端配置的时频资源进行上行传输。此种上行传输方式可称为上行机会式(opportunistic)传输或从属(affiliated)传输,通过该传输方式进行上行数据传输的终端可称为从属终端,而该时频资源为网络设备为主调终端分配的。
目前,上行机会式传输中,从属终端设备会不断的监听网络设备发送给主调终端设备的上行授权信息,且根据该上行授权信息确定并使用主调终端的时频资源进行数据传输,当从属终端在无法监听到有效的动态授权时,会长时间的监听下去,导致终端的功耗高,数据传输的可靠性差,且时延高。
发明内容
本申请公开了一种数据传输方法及装置,能够降低终端的功耗,提高数据传输的可靠性,且降低时延。
第一方面,本申请实施例提供一种数据传输方法,用于降低终端的功耗,提高数据传输的可靠性,且降低时延。该方法可由第一终端装置实施。示例性的,第一终端装置是终端设备(可称为第一终端装置对应的终端设备)或终端设备中的组件实施,本申请中的组件例如处理器、收发器、处理模块或收发模块中的至少一种。本申请中,第一终端装置对应的该终端设备可以是从属终端。以执行主体是第一终端装置为例,该方法可以通过以下步骤实现:第一终端装置启动或重启第一定时器,该第一定时器包括机会式多址接入定时器(opma-Timer);当该第一定时器运行时,该第一终端装置接收第一上行授权信息,该第一上行授权信息对应的时频资源用于第二装置的上行传输,也可以说,第二终端装置对应的终端设备为主调终端;且通过设置第一定时器的方式,也能够避免第一终端装置在无法监听到有效的动态授权时,会长时间的监听下去,从而降低终端的功耗,提高数据传输的可靠性,且降低时延。第二终端装置与该第一终端装置不同;该第一终端装置基于该时频资源发送上行数据。
在一种可能的实现方式中,第一终端装置接收第一上行授权信息,包括:所述第一终端装置接收来自所述第二终端装置的所述第一上行授权信息;或者,所述第一终端装置接收来自网络设备的所述第一上行授权信息。因此,第一终端装置可以灵活获取第一上行授权信息,以满足不同场景下的传输需求。
在又一种可能的实现方式中,所述方法还包括:当所述第一定时器超时时,所述第一终端装置发起免动态授权传输过程或随机接入过程。通过这样的方式,能够避免第一终端装置在无法监听到有效的动态授权时,会长时间的监听下去,从而降低终端的功耗,提高数据传输的可靠性,且降低时延。
在又一种可能的实现方式中,所述第一终端装置启动或重启第一定时器,包括:在满足第一条件的情况下,所述第一终端装置启动或重启所述第一定时器;所述第一条件包括以下中的至少一项:所述第一终端装置发起机会式多址接入传输过程时/后;所述第一终端装置接收到所述第一上行授权信息时/后;所述第一终端装置确定所述第一上行授权信息为有效授权时/后;所述第一终端装置接收到第二上行授权信息时/后,所述第二上行授权信息用于授权所述第一终端装置的数据传输,或者用于授权包括所述第一终端装置在内的一组终端装置的数据传输;所述第一终端装置发送上行数据时/后;所述第一终端装置完成随机接入过程时/后,或,所述第一终端装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。通过这样的方式,能够使得第一终端装置在成功进行一次数据传输之后,还能够继续获取第一上行授权信息,使用第二终端装置的时频资源进行机会式传输,从而提高资源上的过载率,使得系统可以支持更多的终端装置接入和进行数据传输。
在又一种可能的实现方式中,所述第一终端装置发起机会式多址接入传输过程,包括以下中的一项:所述第一终端装置自行发起机会式多址接入传输过程;所述第一终端装置向所述网络设备发送第一指示信 息后发起机会式多址接入传输过程,所述第一指示信息用于通知所述网络设备所述第一终端装置发起机会式多址接入传输过程,或用于所述第一终端装置请求发起机会式多址接入传输过程;或者,所述第一终端装置接收来自所述网络设备的第二指示信息后发起机会式多址接入传输过程,所述第二指示信息用于指示所述第一终端装置发起机会式多址接入传输过程。通过这样的方式,网络设备可以获知第一终端装置将进行机会式传输,因此可以在第一授权信息所指示的时频资源上检测和接收第一终端装置的数据,提高检测和数据接收的可靠性。
在又一种可能的实现方式中,所述第一终端装置发送上行数据时/后启动或重启所述第一定时器,包括:所述第一终端装置在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动所述第一定时器。
在又一种可能的实现方式中,所述当所述第一定时器超时时,所述第一终端装置发起免动态授权传输过程或随机接入过程,包括:当所述第一定时器超时,所述第一终端装置根据所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,所述当所述第一定时器超时,所述第一终端装置根据所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程,包括:当所述第一定时器超时,且所述第一终端装置未进行初始传输,所述第一终端装置发起免动态授权传输过程。通过这样的方式,能够提升安全性,且降低时延。
在又一种可能的实现方式中,所述当所述第一定时器超时,所述第一终端装置根据所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程,包括:当所述第一定时器超时,且所述第一终端装置已进行初始传输,所述第一终端装置发起随机接入过程。
在又一种可能的实现方式中,所述方法还包括:在满足第二条件的情况下,所述第一终端装置停止所述第一定时器;所述第二条件包括以下一项或多项:所述第一终端装置终止机会式多址接入传输过程时/后;所述第一终端装置接收来自网络设备的第三指示信息时/后,所述第三指示信息用于指示机会式多址接入传输过程结束;所述第一终端装置的无线资源控制RRC状态发生改变时/后;或所述第一终端装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。通过这样的方式,一方面能够使得当第一终端装置的数据传输完毕或者不满足进行机会式多址接入条件的情形下,终止获取第一上行授权信息,从而降低第一终端装置的功耗;另一方面,也使得第一终端装置能够选择更合适的数据传输过程,例如随机接入过程,从而提升数据传输的可靠性和降低时延。
在又一种可能的实现方式中,所述方法还包括:所述第一终端装置确定选择执行机会式多址接入过程。
在又一种可能的实现方式中,所述第一终端装置确定选择执行机会式多址接入过程之前,所述方法还包括:所述第一终端装置判断是否满足第三条件;若满足所述第三条件,所述第一终端装置执行第一类免动态授权传输过程,否则,所述第一终端装置执行机会式多址接入过程;所述第三条件包括以下一项或多项:所述第一终端装置与所述网络设备之间处于同步状态;所述第一终端装置的信道质量满足第一预设值;所述网络设备为所述第一终端装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,所述第一终端装置的数据缓存大小满足第二预设值。通过这样的方式,能够优先选择第一类免动态授权传输过程,从而避免终端设备的资源竞争,提高资源利用率。
第二方面,本申请提供一种数据传输方法,用于降低终端的功耗,提高数据传输的可靠性,且降低时延。该方法可由网络设备或网络设备中的组件实施,本申请中的组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是网络设备为例,该方法可以通过以下步骤实现:网络设备确定第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;所述网络设备发送所述第一上行授权信息。该第一终端装置可根据第一上行授权信息对应的时频资源向网络设备发送上行数据,通过这样的方式,能够降低终端的功耗,提高数据传输的可靠性,且降低时延。
第三方面,本申请实施例提供一种数据传输装置,所述装置可以实现上述第一方面其任意可能的实现方式所述的方法。所述装置具备上述第一终端装置的功能。所述装置例如为第一终端装置对应的终端设备,或为该终端设备中的功能模块等。
一种可选的实现方式中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可选的实现方式中,所述装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现 发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
示例性的,在该装置用于执行第一方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,处理模块,用于启动或重启第一定时器,该第一定时器包括机会式多址接入定时器(opma-Timer);收发模块,用于在该第一定时器运行时,接收第一上行授权信息,该第一上行授权信息对应的时频资源用于第二终端装置的上行传输;该第二终端装置与该装置不同;收发模块,还用于基于该视频资源发送上行数据。
在一种可能的实现方式中,收发模块,用于接收来自该第二终端装置的第一上行授权信息;或者,接收来自网络设备的第一上行授权信息。
在又一种可能的实现方式中,处理模块,还用于在该第一定时器超时时,发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理模块,还用于在满足第一条件的情况下,启动或重启该第一定时器;该第一条件包括以下中的至少一项:该装置发起机会式多址接入传输过程时/后;该装置接收到该第一上行授权信息时/后;该装置确定该第一上行授权信息为有效授权时/后;该装置接收到第二上行授权信息时/后,该第二上行授权信息用于授权该第一终端装置的数据传输,或者用于授权包括该第一终端装置在内的一组终端装置的数据传输;该装置发送上行数据时/后;该装置完成随机接入过程时/后,或,该装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。
在又一种可能的实现方式中,处理模块,用于自行触发机会式多址接入传输过程;处理模块,用于向该网络设备发送第一指示信息后发起机会式多址接入传输过程,该第一指示信息用于通知该网络设备该装置发起机会式多址接入传输过程,或用于该装置请求发起机会式多址接入传输过程;或者,处理模块,用于接收来自该网络设备的第二指示信息后发起机会式多址接入传输过程,该第二指示信息用于指示该装置发起机会式多址接入传输过程。
在又一种可能的实现方式中,处理模块,用于在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动该第一定时器。
在又一种可能的实现方式中,处理模块,用于在该第一定时器超时的情况下,根据该装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理模块,用于在该第一定时器超时,且该装置未进行初始传输情况下,确定发起免动态授权传输过程。
在又一种可能的实现方式中,处理模块,用于在该第一定时器超时,且该装置已进行初始传输情况下,确定发起随机接入过程。
在又一种可能的实现方式中,处理模块,用于在满足第二条件的情况下,停止该第一定时器;该第二条件包括以下一项或多项:该装置终止机会式多址接入传输过程时/后;该装置接收来自网络设备的第三指示信息时/后,该第三指示信息用于指示机会式多址接入传输过程结束;该装置的无线资源控制RRC状态发生改变时/后;或该装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
在又一种可能的实现方式中,处理模块,还用于确定选择执行机会式多址接入过程。
在又一种可能的实现方式中,处理模块,还用于在确定选择执行机会式多址接入过程之前,判断是否满足第三条件;处理模块,还用于在满足该第三条件的情况下,执行第一类免动态授权传输过程,否则,执行机会式多址接入过程;该第三条件包括以下一项或多项:该装置与该网络设备之间处于同步状态;该装置的信道质量满足第一预设值;该网络设备为该装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,该装置的数据缓存大小满足第二预设值。
示例性的,在该装置用于执行第二方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,处理模块可用于确定第一上行授权信息,所述收发模块可用于发送所述第一上行授权信息。第一上行授权信息可参见第一方面中对于第一上行授权信息的说明。
再例如,所述装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面的方法。可选的,该装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程 序或指令,当其被运行时,使得第一方面、第一方面中任一可能的实现方式、第二方面或第二方面中任一可能的实现方式所述的方法被实现。
第五方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得第一方面、第一方面中任一可能的实现方式、第二方面或第二方面中任一可能的实现方式所述的方法被实现。
第六方面,本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路(或理解为,该芯片系统包括处理器,处理器可包括逻辑电路等),还可以包括输入输出接口。该输入输出接口可以用于接收消息,也可以用于发送消息。例如该芯片系统用于实现第一终端装置的功能时,该输入输出接口可用于接收第一上行授权信息。输入输出接口可以是相同的接口,即,同一个接口既能够实现发送功能也能够实现接收功能;或者,输入输出接口包括输入接口以及输出接口,输入接口用于实现接收功能,即,用于接收消息;输出接口用于实现发送功能,即,用于发送消息。逻辑电路可用于执行上述第一方面除收发功能之外的操作;逻辑电路还可用于向输入输出接口传输消息,或者从输入输出接口接收来自其他通信装置的消息。该芯片系统可用于实现上述第一方面、第一方面中任一可能的实现方式、第二方面或第二方面中任一可能的实现方式所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
可选的,该芯片系统还可以包括存储器,存储器可用于存储指令,逻辑电路可调用存储器所存储的指令来实现相应功能。
第七方面,本申请实施例提供一种通信系统,该通信系统可以包括第一终端装置和网络设备,该第一终端装置可以用于执行如上述第一方面所述的方法,该网络设备可以用于执行如上述第二方面所述的方法。
以上第二方面至第七方面所带来的技术效果可参见上述第一方面的描述,此处不再赘述。
附图说明
以下对本申请用到的附图进行介绍。
图1为本申请提供的一种无线通信系统的架构示意图;
图2a为本申请提供的一种无线通信系统的协议栈架构示意图;
图2b为本申请提供的另一种无线通信系统的协议栈架构示意图;
图3为本申请提供的RRC状态切换的流程示意图;
图4为本申请提供的一种随机接入方法的流程示意图;
图5为本申请提供的另一种随机接入方法的流程示意图;
图6为本申请提供的一种上行数据传输方式的流程示意图;
图7为本申请提供的一种波束与空间方向关系的示意图;
图8为本申请提供的一种波束与传输资源关系的示意图;
图9为本申请提供的一种上行机会式传输方法的流程示意图;
图10为本申请提供的一种数据传输方法的流程示意图;
图11为本申请提供的又一种数据传输方法的流程示意图;
图12为本申请提供的又一种数据传输方法的流程示意图;
图13为本申请提供的又一种数据传输方法的流程示意图;
图14为本申请提供的一种数据传输装置的结构示意图;
图15为本申请提供的又一种数据传输装置的结构示意图;
图16为本申请提供的又一种数据传输装置的结构示意图。
具体实施方式
本申请实施例提供一种数据传输方法及装置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的数据传输方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新 空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的方法还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
请参见图1,为本申请提供的一种无线通信系统的架构示意图,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。该通信系统100包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些网络设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。网络设备101还可以是其他具有网络设备功能的设备,例如,网络设备101还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备101还可以是未来可能的通信系统中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
下面结合图1所示的通信系统,对本申请实施例提供的数据传输方法做详细说明。
为了更好的理解本申请实施例提供的方案,以下先对本申请实施例涉及到的一些术语、概念或流程进行介绍。
首先介绍一下终端设备的状态。
请参见图2a,图2a为本申请提供的一种无线通信系统的协议栈架构示意图,如图2a所示,在终端设备与网络设备之间进行通信的用户面协议栈中,包括服务数据适配(service data adaptation protocol,SDAP)层、包数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层。
请参见图2b,图2b为本申请提供的另一种无线通信系统的协议栈架构示意图,如图2b所示,在终端设备与网络设备之间进行通信的控制面协议栈中,包括非接入(non access stratum,NAS)层、无线资源控制(radio resource control,RRC)层、PDCP层、RLC层、MAC层和PHY层。
针对RRC层,存在几种终端设备的RRC状态,分别为RRC空闲(RRC_IDLE)态,RRC非激活(RRC_INACTIVE)态以及RRC连接(RRC_CONNECTED)态。当终端设备已经建立了RRC连接,则 终端设备处于RRC_CONNECTED态或RRC_INACTIVE态。如果终端设备未建立RRC连接,则终端设备处于RRC_IDLE态。其中,RRC_INACTIVE态是在5G NR通信系统中为终端设备引入的一种状态,该RRC_INACTIVE态主要针对的情况为“具有不频繁(infrequent)数据传输的终端设备通常由网络保持在RRC_INACTIVE状态”。
请参见图3,图3为本申请提供的RRC状态切换的流程示意图;当终端设备处于不同的RRC状态时,均会执行不同的操作。如图3所示,终端设备开始处于RRC_IDLE状态,当终端设备需要进行数据传输时,终端设备会执行随机接入过程与网络设备建立(setup)RRC连接,进入RRC_CONNECTED态。终端设备在进入RRC_CONNECTED态后开始进行数据传输,其中建立RRC连接是通过终端设备在发起随机接入的过程中向网络设备发送连接建立请求消息,例如RRCSetupRequest,并接收网络设备发送的连接建立消息,例如RRCSetup消息。
当终端设备后续无需进行数据传输时,网络设备可将终端设备释放使其转入RRC_IDLE态或RRC_INACTIVE态。例如,网络设备发送带有暂停指示的释放(release)消息,例如RRCRelease with suspend indication,使终端设备进入RRC_INACTIVE态。或者网络设备发送释放消息,例如RRCRelease消息,使终端设备进入RRC_IDLE态。
另外,处于RRC_INACTIVE态的终端设备还可以通过恢复(resume)消息回到RRC_CONNECTED态,例如终端设备发送RRC恢复请求(RRCResumeRequest)并接收RRC恢复(RRCResume)消息,回到RRC_CONNECTED态。同样,网络设备还可将终端设备释放使其转入RRC_IDLE态。
为了描述简要,RRC_IDLE态也可以简述为空闲态或IDLE态;RRC_INACTIVE态也可以简述为非激活态或INACTIVE态;RRC_CONNECTED态也可以简述为连接态或激活态或CONNECTED态。
综上,对于终端设备的几种RRC状态(也可以简称为状态)已经介绍完毕。本申请实施例可以用于处于RRC连接态、RRC空闲态或RRC非激活态的终端设备实现上行数据传输,或者,可以用于处于RRC连接态、RRC空闲态和RRC非激活态以外的其他状态的终端设备,例如未进行网络附着或位于网络进行下行同步的终端设备,实现上行数据传输,不具体要求。
目前,RRC空闲态或RRC非激活态的终端设备建立RRC连接需要通过执行随机接入(random access,RA)过程完成。可以理解,RA可以包括四步RA(4-step RA)和两步RA(2-step RA)。
请参见图4,图4为本申请提供的一种随机接入方法的流程示意图,具体示例了四步RA中小包传输的过程。
S401、终端设备向网络设备发送消息1(Msg1),网络设备从终端设备接收消息1,该消息1为随机接入前导码(random access preamble)(以下可简称为前导码),前导码用于网络设备对终端设备的时间提前量(timing advance,TA)进行估计。
S402、网络设备向终端设备发送消息2(Msg2),终端设备从网络设备接收消息2。
其中,该消息2为随机接入响应(random access response)。
S403、终端设备向网络设备发送消息3(Msg3),网络设备从终端设备接收消息3。
可以在Msg3中携带上行数据,如小包数据。
S404、网络设备向终端设备发送消息4(Msg4),终端设备从网络设备接收消息4。
可选的,在Msg4中携带下行数据。
请参见图5,图5为本申请提供的另一种随机接入方法的流程示意图,具体示例了两步RA中小包传输的过程。
S501、终端设备向网络设备发送消息A(MsgA),网络设备从终端设备接收消息A。
可以在MsgA中携带上行数据,如小包数据。
MsgA的传输信道可以包括物理随机接入信道(physical random access channel,PRACH)和物理上行共享信道(physical uplink shared channel,PUSCH)。PRACH用于发送前导码,用于网络设备对终端设备的时间提前量进行估计,使终端设备实现与网络设备的上行同步。终端设备还可以通过MsgA的PUSCH发送上行数据(如小包数据),也可以说,PUSCH可用于承载上行数据。
S502、网络设备向终端返回消息B(MsgB),终端设备从网络设备接收消息B。
可以在MsgB中携带下行数据。可以在MsgB的物理下行共享信道PDSCH上传输早传的下行数据。
本申请中,终端设备可向网络设备发送上行数据。
请参见图6,图6为本申请提供的一种上行数据传输方式的流程示意图;该一种上行数据传输方式为基于动态授权(dynamic grant,DG)(或称动态上行授权(dynamic UL grant))的上行传输。
S601、终端设备向网络设备发送SR/BS。
终端设备在监听DCI之前,可以先通过物理上行控制信道(physical uplink control channel,PUCCH)向网络设备发送调度请求(scheduling request,SR)或通过物理上行共享信道(physical uplink shared channal,PUSCH)向网络设备上报缓存状态(buffer state,BS),用于将上行发送需求或缓存状态告知基站,便于网络设备根据需求进行上行授权和资源调度。
S602、网络设备向终端设备发送DCI。
当终端设备有用户面数据需要向网络设备发送时,终端设备可以监听网络设备通过下行物理控制信道(physical downlink control channel,PDCCH)下发的下行控制信息(downlink control information,DCI)。DCI中携带上行授权(uplink grant,UL grant),上行授权可用于授权终端在指定的时频资源上使用指定的参数,如指定的调制编码方案(modulation and coding scheme,MCS)等发送上行数据。
S603、终端设备向网络设备发送上行数据。
可以理解的是,本申请实施例提供的上行数据传输方式还可包括基于免授权(grant-free,GF)的数据传输过程。其中,基于GF的数据传输过程包括两类,分别为第一类免动态授权传输过程和第二类免动态授权传输过程。其中,第一类免动态授权传输过程是指用于传输的时频和/或参考信号如解调参考信号(demodulation reference signal,DMRS)等资源是网络设备通过终端专用信令如终端专用RRC消息配置的,或者用于传输的时频参考信号等资源是终端专用的而不是多个终端竞争使用的,也即可以理解为终端设备直接使用网络设备预配置的资源发送数据,而不必发送随机接入前导,适用于终端设备与网络设备已经完成上行同步的情形,例如LTE中的半持续调度(semi-persistent scheduling,SPS)和基于预配置上行资源(preconfigured uplink resource,PUR)的传输、5G NR中的配置的授权(configured grant,CG)传输、基于CG的小数据包传输CG-SDT等。第二类免动态授权传输过程是指用于传输的时频等资源是网络设备通过广播消息例如系统消息配置的,或者用于传输的时频等资源不是终端专用的而是多个终端竞争使用的,可以理解为终端设备在随机接入过程中完成上行数据传输,例如在Msg3和Msg4中分别完成上行和下行数据传输的4-step RA(也可以称为数据早传(early data transmission,EDT))以及分别在MsgA和MsgB中分别完成上行和下行数据传输的2-step RA,这一类免动态授权传输技术在5G NR中又称为基于RA的小数据包传输RA-SDT,其特点是终端在发送数据之前(Msg1)或发送数据的同时(MsgA),还要向基站发送随机接入前导preamble,随机接入前导的作用是用于终端与基站之间进行上行同步。这两类免动态授权传输过程的共同特点是,终端设备在上行传输之前,不需要通过监听网络设备的动态授权获取发送数据所使用的时频资源和传输参数,而是使用预配置的时频资源和传输参数向网络设备发送数据。用于数据传输的时频资源和传输参数通常由网络设备通过高层信令如系统消息(system information,SI)或终端特定(UE-specific)的RRC信令如RRC重配置消息或RRC释放消息来配置。
终端设备复用相同的时频资源进行上行数据传输是支持大连接的重要手段。免动态授权传输天然支持多终端复用,例如CG中,网络设备可以通过高层信令为多个终端配置相同的时频资源和相互或准正交的参考信号如解调参考信号,这样多个终端设备使用相同的时频资源发送数据时,网络设备可以通过DMRS进行多终端的检测和数据接收。而基于动态授权的上行传输中,目前还需要依靠多用户多入多出(multi-user multiple input multiple output,MU-MIMO)技术来实现。但是该技术非常依赖网络设备对终端设备的上行信道信息的准确获取,开销较大,例如网络设备需要下发信道状态信息参考信号(channel state information RS,CSI-RS)用于终端设备对信道信息进行测量和上报,或者终端设备需要发送信道探测参考信号SRS(sounding RS),而且终端设备间的配对也比较复杂,因此MU-MIMO技术主要用于提升上行吞吐率,而对连接数的提升效果不明显。
另外,5G NR还引入了同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block),本申请中,SS/PBCH block也可以称为同步信号块(synchronization signal block,SSB)。SSB可由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、主信息块(master information block,MIB)三部分组成。
网络设备在一个周期中以扫描的方式发送多个SSB,不同的SSB对应不同的空间方向(例如对应不同的波束),因此也可以通过SSB实现波束指示,或者,SSB可作为波束信息。例如图7所示,图7为本申请提供的一种波束与空间方向关系的示意图,SSB-1和SSB-2分别覆盖不同区域,不同区域可包含不同的终端设备。SSB的数量可由网络设备通过系统消息配置给终端设备,NR支持4、8、64三种SSB数量。通常情况下,频点越高,SSB数量越多,发送SSB的波束越窄。
终端设备可对网络设备发送的SSB测量参考信号接收功率(reference signal receiving power,RSRP), 当某个SSB的RSRP测量结果大于或等于预设门限时,终端设备可以选择该SSB所映射的接入信道时机(RACH occasion,RO)或前导码执行RA过程,其中,一个PRACH时频资源可以称为一个物理随机接入信道时机。因此,SSB与RO或前导码有映射关系的,该映射关系可以是一对多、一对一、多对一的。终端设备在执行两步RA或四步RA时,可通过选择的RO或前导码,用隐式的方式将所选择的SSB告知网络设备。这样网络设备在发送响应消息(MsgB或Msg2)时,可以使用与终端设备所选择的RO或前导码所映射的SSB相同的空间方向发送,终端设备在接收响应消息时,也假设准共址(quasi co-location,QCL)特性与所选择的RO或前导码所映射的SSB相同,因此可以实现终端设备向网络设备隐式指示SSB。QCL特性也可以称为QCL关系,QCL关系指:两个参考信号之间具有某些相同的空间参数。通过RA实现SSB的隐式指示,可以让网络设备初步确定终端设备的位置,从而进行更精确的波束管理。终端设备会对网络设备发送的SSB进行测量,当某个SSB的测量结果超过预设门限时,终端设备可以选择该SSB所映射的RO或Preamble执行RA过程。与RA类似,GF传输中,SSB也可以与免授权传输资源有映射关系,例如SSB与时频资源(transmission occasion,TO)或DMRS有映射关系,该关系也可以是一对多、一对一或者多对一的。
基于以上对于小包传输的介绍和对于SSB配置方式的介绍,在目前的GF传输中,网络设备通过终端设备专用RRC消息为其配置用于非激活态直接小包传输的免授权资源,包括周期性时频资源和DMRS资源,以及MCS等传输参数。终端设备有上行数据包传输需求时,使用所配置的时频资源发送数据。当时频资源被多个终端设备共享时,网络设备可以通过DMRS资源例如DMRS端口或DMRS序列区分终端,例如不同的终端设备使用不同的DMRS端口或序列。
此外,网络设备为终端设备配置时频资源以及DMRS资源时,会为所配置的资源关联波束如SSB,这样,终端设备根据波束测量结果,选择某个波束关联的时频资源或DMRS资源发送数据,以实现波束指示,而网络设备则使用该波束方向在关联的时频资源上使用关联的DMRS接收终端发送的数据。波束方式与免授权时频资源和DMRS资源的一种关联方法例如是,N(N>=1)个SSB按照先DMRS资源(端口或序列)、再时频资源的顺序映射到多个时频资源和DMRS的组合上。例如,当N=2时,两个不同的SSB可以映射到不同的时频资源(如图8中的情况1所示)或同一个时频资源上的不同的DMRS资源(如图8中情况2所示)。
为了兼顾小区内所有业务类型支持GF传输的终端的传输,网络设备需要为每个终端配置相应的SSB,然而由于这些终端在小区的分布可能是完全分散的,这意味着网络设备需要为全部或者大部分波束方向(如SSB)配置关联的时频资源和DMRS资源,这就会使得映射到同一个波束方向的时频资源在时间上间隔较大,导致一定时间内进行复用传输的终端设备的数量受限,难以满足日益增长的终端数量带来的终端复用传输需求。另外,在高频场景下,波束更窄,波束方向更多,且受限于收发通道数量,网络设备同时能服务的波束方向有限,进一步限制了能够进行复用传输的终端设备的数量。
此外,为了提高上行数据传输的复用传输能力,终端设备还可通过基于机会式多址接入(opportunistic multiple access,OpMA)的数据传输方法或基于从属多址接入(affiliated multiple access,AMA)的数据传输方法向网络设备发送上行数据,该方法也可称为基于机会的多址接入(opportunity-based multiple access,OBMA)传输。在上行机会式传输中,终端可根据接收的上行授权信息确定波束方向,并在波束方向满足预设条件时,通过上行授权信息对应的时频资源向网络设备发送上行数据。其中,上行授权信息对应的时频资源用于主调终端发送上行数据,或者说,该时频资源是为主调终端分配的。
下文中,以第一终端装置、第二终端装置和网络设备是执行主体为例进行描述。其中,第一终端装置可以是第一终端设备或第一终端设备中的组件,第二终端装置可以是第二终端设备或第二终端设备中的组件。可选的,第一终端设备与第二终端设备分别为不同的终端设备,例如可选的,第一终端设备和第二终端设备为同一个波束的覆盖区域内的不同终端。本申请中,第二终端设备可作为主调终端(或主调度终端),或者说,第一上行授权信息对应的时频资源原本是网络设备为第二终端设备分配的。第一终端设备在本申请中可作为从属终端,本申请中的从属终端在一些条件下可通过网络设备为主调终端分配的时频资源进行上行数据的传输。或者,第一终端设备和第二终端设备均作为从属终端,或者,第二终端设备为包括第一终端设备的一个或多个从属终端,此时可以不存在主调终端,或者说,不需要区分主调终端和从属终端。下面结合图9对该方法的流程进行介绍。
请参见图9,图9为本申请提供的一种上行机会式传输方法的流程示意图,可包括以下步骤:
S901:网络设备向第一终端装置配置上行机会式传输的相关参数,用于第一终端装置进行上行传输。
S902:第一终端装置获取第一上行授权信息。
其中,该第一上行授权信息可以来自于网络设备,或者,第一上行授权信息由网络设备发送至第一终端装置,用于调度第二终端装置的上行数据传输。
S903:第一终端装置根据第一上行授权信息确定波束方向。
S904:在波束方向满足预设条件时,第一终端装置通过第一上行授权信息对应的时频资源向网络设备发送上行数据。
基于图9所示流程,第一终端装置会不断的监听第一上行授权信息,且根据该第一上行授权信息确定时频资源进行数据传输,当从属终端在无法监听到有效的动态授权时,会长时间的监听下去,导致终端设备的功耗高,数据传输的可靠性差,且时延高。
为了提高数据传输的可靠性差,降低时延,本申请实施例提供一种数据传输方法。该方法可由网络设备和终端装置实施。示例性的,网络设备可包括图1所示网络设备101,终端装置可包括图1所示终端设备102。应理解,该方法中由终端装置执行的步骤也可以由终端装置中的组件(如芯片、模块或者电路等)执行,和/或,该方法中由网络设备执行的步骤也可由网络设备中的组件(如芯片、模块或者电路等)执行。该终端装置可包括第一终端装置和第二终端装置。第一终端装置和第二终端装置可参见对于上述的相关介绍,此处不再赘述。
请参见图10,图10为本申请提供的一种数据传输方法的流程示意图,可包括S1001至S1003所示步骤,下面分别对所述步骤进行描述。
S1001:第一终端装置启动或重启第一定时器。
其中,第一定时器包括机会式多址接入定时器(opma-Timer)。该第一定时器的长度可以由第一终端装置自身确定的,也可以为第一终端装置和网络设备协议约定的,也可以为网络设备为第一终端装置配置的,本申请实施例不做限定。
具体地,在满足第一条件的情况下,第一终端装置启动或重启第一定时器,第一条件包括以下中的至少一项:第一终端装置发起机会式多址接入传输过程时/后;第一终端装置接收到第一上行授权信息时/后;第一终端装置确定第一上行授权信息为有效授权时/后;第一终端装置接收到第二上行授权信息时/后,第二上行授权信息用于授权第一终端装置的数据传输,或者用于授权包括第一终端装置在内的一组终端装置的数据传输;第一终端装置发送上行数据时/后;第一终端装置完成随机接入过程时/后,或,第一终端装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。其中,当满足第一条件中的第一终端装置发起机会式多址接入传输过程时/后,第一终端装置启动第一定时器。当满足第一条件中的以下中的至少一项:第一终端装置接收到所述第一上行授权信息时/后;第一终端装置确定第一上行授权信息为有效授权时/后;第一终端装置接收到第二上行授权信息时/后,第二上行授权信息用于授权第一终端装置的数据传输,或者用于授权包括第一终端装置在内的一组终端装置的数据传输;第一终端装置发送上行数据时/后;第一终端装置完成随机接入过程时/后,或,第一终端装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后,第一终端装置重启第一定时器。在以下实施例中,除非特别说明,发起(initiate)、触发(trigger)、执行(perform)、初始化(initiation)可以混用,例如,第一终端装置发起机会式多址接入传输过程时/后可以理解为第一终端装置触发机会式多址接入传输过程。在本申请实施例中,在…时可以理解为某个时刻执行什么操作,在…后可以理解为该某个时刻间隔一段时间才执行什么操作。
其中,第一终端装置发起机会式多址接入传输过程可以包括以下中的一项:第一终端装置自行发起机会式多址接入传输过程;第一终端装置向网络设备发送第一指示信息后发起机会式多址接入传输过程,第一指示信息用于通知网络设备第一终端装置发起机会式多址接入传输过程,或用于第一终端装置请求发起机会式多址接入传输过程;或者,第一终端装置接收来自网络设备的第二指示信息后发起机会式多址接入传输过程,第二指示信息用于指示第一终端装置发起机会式多址接入传输过程。其中,第一终端装置自行发起机会式多址接入传输过程,在一种示例中,第一终端装置的上层(upper layer),例如应用层发起机会式多址接入传输过程;在又一种示例中,第一终端装置的MAC实体发起机会式多址接入传输过程。其中,第一终端装置向网络设备发送第一指示信息所使用的时频资源可以是由网络设备为该第一终端装置配置的;可选的,第一终端装置可以在发送第一指示信息所使用的时频资源中的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动该第一定时器。需要说明的是,当第一终端装置向网络设备发送第一指示信息,该第一指示信息用于第一终端装置请求发起机会式多址接入传输过程,第一终端装置需要接收网络设备的响应,即第二指示信息,相应的,第一终端装置可以接收到第二指示信息后发起机会式接 入传输过程;当第一终端装置向网络设备发送第一指示信息,该第一指示信息用于通知网络设备第一终端装置发起机会式多址接入传输过程,第一终端装置不需要接收网络设备的响应,相应的,第一终端装置可以在发送第一指示信息后发起机会式多址接入传输过程。
需要说明的是,第一终端装置接收到第一上行授权信息可以理解为第一终端装置监听到第一上行授权信息。
需要说明的是,第一终端装置确定第一上行授权信息为有效授权时/后可以理解为第一终端装置判断监听或接收到的第一上行授权信息为有效授权时/后。其中,第一终端装置可以通过但不限于如下两种方式判断第一上行授权信息是否为有效授权:
第一种方式:第一终端装置根据第一上行授权信息确定波束方向,当波束方向满足预设条件,则确定第一上行授权信息为有效授权,具体如下:
其中,第一终端装置根据第一上行授权信息确定波束方向可以理解如下:例如,第一上行授权信息中可包括波束指示信息,用于指示该波束方向。波束指示信息例如包括波束方向关联的参考信号的指示信息或波束方向标识,则相应的,第一终端装置可根据波束指示信息确定波束方向。又如,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,则相应的,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定所述波束方向。例如,当第一终端装置根据RNTI#1接收第一上行授权信息后,第一终端装置可以根据该RNTI以及第三对应关系确定第一上行授权信息对应的波束方向,其中,第三对应关系可用于指示RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向(或波束方向关联的参考信号的指示信息)之间的对应关系,例如,在第三对应关系指示RNTI#1与SSB#1对应时,第一终端装置可确定波束方向为SSB#1关联的波束方向。
当波束方向不满足预设条件时,确定第一上行授权信息为无效授权,相应的,第一终端装置可以在第一上行授权信息对应的时频资源不发送(或忽略发送)上行数据,或者,当波束方向不满足预设条件时,确定第一上行授权信息为无效授权,相应的,第一终端装置可以在第一上行授权信息对应的时频资源以外的时频资源发送上行数据,以避免传输失败,并且对于第二终端装置的传输造成的干扰。
其中,预设条件可以是网络设备通过RRC消息、MAC CE或DCI指示的,或者,预设条件也可以是协议预定义或预配置在第一终端装置中的。
示例性的,预设条件包括条件1和条件2中的至少一项。其中,条件1为:该波束方向对应的信号测量值满足阈值条件。条件2为:网络设备为第一终端装置配置的波束方向包括该波束方向。
下面分别对条件1和条件2进行介绍。
在条件1中,第一终端装置可根据该波束方向的测量结果确定该波束方向是否需满足预设条件。例如当参考信号可以表征波束方向时,第一终端装置根据波束方向对应的参考信号的信号质量测量值和阈值条件(或信号质量门限)判断波束方向是否满足预设条件,这里的信号质量包括但不限于参考信号的RSRP、接收质量(reference signal received quality,RSRQ)、信干燥比(signal-to-noise and interference ratio,SINR)、接收信号强度指示(received signal strength indicator,RSSI)、路径损耗(pathloss,PL)、信号的入射角(angle of arrival,AoA)、入射时间差(time difference of arrival,TDOA)的测量。例如,当参考信号的RSRP超过预设的RSRP的门限时,第一终端装置确定该波束方向满足预设条件。
在条件2中,如果该波束方向为网络设备为第一终端装置的机会式传输配置的波束方向,或者,该波束方向包括在网络设备为第一终端装置的机会式传输配置的波束方向中,则第一终端装置可确定该波束方向满足预设条件。
应理解,以上条件1和条件2为示例性的条件。在实际使用中,可根据采用条件1和条件2中的一个作为预设条件,即第一终端装置在确定满足条件1和条件2中的一个时确定满足预设条件。或者,可采用条件1和条件2的结合作为预设条件,即第一终端装置在确定满足条件1且满足条件2时确定满足预设条件。
第二种方式:第一上行授权信息可以包括用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息;当第一上行授权信息用于指示不允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息时,则确定第一上行授权信息为无效授权;当第一上行授权信息用于指示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息时,则确定第一上行授权信息为有效授权,具体如下:
用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,可包括第一上行授权信息中的特定比特信息。例如,当第一上行授权信息的特定比特位的取值为“0”时,表示不允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,相应的,第一终端装置确定第一上行授权信息为无效授权,当特定比特位的取值为“1”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,相应的,第一终端装置确定第一上行授权信息为有效授权。又如,当第一上行授权信息的特定比特位的取值为“0”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,相应的,第一终端装置确定第一上行授权信息为有效授权,当特定比特位的取值为“1”时,表示不允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,相应的,第一终端装置确定第一上行授权信息为无效授权。可以理解,本申请中,用于指示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息的名称不做具体要求,该指示信息也可具有其他名称,例如:用于指示是否允许从属终端传输的指示信息,或用于指示是否只进行主调终端传输的信息等。
其中,第一终端装置接收到第二上行授权信息时/后启动第一定时器,第二上行授权信息用于授权第一终端装置的数据传输,或者用于授权包括第一终端装置在内的一组终端装置的数据传输。其中,第二上行授权信息用于授权所述第一终端装置的数据传输例如可以是,用于发送第二上行授权信息的DCI使用第一终端装置专用的无线网络临时标识RNTI,例如小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)进行加扰,第一终端装置专用的C-RNTI是由网络设备配置给第一终端装置的。第二上行授权信息用于授权包括第一终端装置在内的一组终端装置的数据传输例如可以是,用于发送第二上行授权信息的DCI使用组RNTI加扰,组RNTI由包括第一终端装置在内的一组终端装置共享,组RNTI由网络设备配置给包括第一终端装置在内的一组终端装置。第二上行授权信息可以是由网络设备直接发送给第一终端装置的,也可以是由第二终端装置发送给第一终端装置的。
其中,第一终端装置发送上行数据时/后启动第一定时器可以理解为第一终端装置在发送上行数据所使用的时频资源中的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动该第一定时器,例如,第一终端装置在根据第一上行授权信息确定的机会式多址接入所使用的PUSCH时域资源的第一个符号或最后一个符号或第一个符号/最后一个符号后启动该第一定时器。
其中,第一终端装置可以在完成随机接入过程时/后启动第一定时器。其中,第一终端装置完成随机接入过程可以是指,第一终端装置接收到网络设备发送的竞争解决(contention resolution,CR)消息,该竞争解决消息携带在2-step RA的MsgB或4-step RA的Msg4中。
其中,第一终端装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后启动第一定时器。机会式多址接入响应监听定时器可以简称为OpMA响应监听定时器,机会式多址接入自动重传定时器可以简称为OpMA自动重传定时器。OpMA响应监听定时器是第一终端装置基于第一上行授权信息对应的时频资源发送上行数据后启动或重启的定时器,例如,第一终端装置在发送机会式多址接入的PUSCH的最后一个符号后的、最早的用于接收PDCCH的控制资源集的第一个符号启动该OpMA响应监听定时器,在启动该OpMA响应监听定时器之后到该OpMA响应监听定时器设置的预定义时长结束时刻内,第一终端装置监听或接收来自网络设备对发送的上行数据的响应消息。在该OpMA响应监听定时器运行期间,第一终端装置监听或接收到来自网络设备的响应消息后,第一终端装置终止该OpMA响应监听定时器,其中,第一终端装置终止该OpMA响应监听定时器可以理解为第一终端装置停止该OpMA响应监听定时器。可选的,当OpMA响应监听定时器超时时,且第一终端装置未接收到来自网络设备的响应消息,则第一终端装置确定发送的上行数据被该网络设备正确接收。OpMA自动重传定时器是第一终端装置基于第一上行授权信息对应的时频资源发送上行数据后启动或重启的定时器,例如,第一终端装置在发送机会式多址接入的PUSCH的最后一个符号后的、最早的用于接收PDCCH的控制资源集的第一个符号启动该OpMA自动重传定时器,如果在该OpMA自动重传定时器时仍未接收到来自网络设备对应该上行数据的响应消息,则该第一终端装置监听或接收的第一上行授权信息用于自动重传该上行数据。在该OpMA自动重传定时器运行期间,第一终端装置监听或接收到来自网络设备对该上行数据的响应消息后,第一终端装置终止该OpMA自动重传定时器。
可选的,在第一终端装置执行步骤S1001之前,第一终端装置确定选择执行机会式多址接入过程。
需要说明的是,第一终端装置确定选择执行机会式多址接入过程之前,第一终端装置判断是否满足第 三条件;若满足第三条件,第一终端装置执行第一类免动态授权传输过程;否则第一终端装置执行机会式多址接入过程。其中,该过程可以作为单独的实施例独立存在,本申请实施例不做限定。
其中,第三条件包括以下一项或多项:第一终端装置与所述网络设备之间处于同步状态;第一终端装置的信道质量满足第一预设值;网络设备为所述第一终端装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,第一终端装置的数据缓存大小满足第二预设值。
其中,第一终端装置与所述网络设备之间处于同步状态可以是例如第一终端装置中的时间对齐定时器(TimerAlignmentTimer)正在运行,也即该时间对齐定时器启动,且未超过该时间对齐定时器设置的时长。第一终端装置的信道质量满足第一预设值可以是这里的信号质量包括但不限于参考信号的RSRP、RSRQ、SINR、RSSI、PL、AoA、TDOA的测量。例如,当参考信号的RSRP超过预设的RSRP的门限时,第一终端装置确定满足第三条件。网络设备为所述第一终端装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件。例如当参考信号可以表征波束方向时,第一终端装置根据波束方向对应的参考信号的信号质量测量值和阈值条件(或信号质量门限)判断波束方向是否满足预设条件,这里的信号质量包括但不限于RSRP、RSRQ、SINR、RSSI、PL、AoA、TDOA的测量。例如,当参考信号的RSRP超过预设的RSRP的门限时,第一终端装置确定配置的波束方向中至少有一个波束方向的测量结果满足预设条件,相应的,第一终端装置判断满足第三条件。第一终端装置的数据缓存大小满足第二预设值可以是例如第一终端装置的数据缓存大小不高于预设门限值,第一终端装置判断满足第三条件。
S1002:当第一定时器运行时,第一终端装置接收第一上行授权信息。
其中,第一定时器运行可以理解为第一定时器未超时,或者第一定时器启动后未超过第一定时器的时间长度。
其中,第一上行授权信息对应的时频资源用于第二终端装置的上行传输。或者说,第一上行授权信息可用于第二终端装置在对应的时频资源上使用指定的参数(如MCS)等发送上行数据。也就是说,第一上行授权信息对应的时频资源可以是网络设备为主调终端(如第二终端装置)分配的时频资源,而从属终端(如第一终端装置)在有上行数据传输需求时,借助基站分配给主调终端(如第二终端装置)的时频资源进行数据传输,即进行上行机会式(opportunistic)传输或从属(affiliated)传输或者基于机会式多址接入的上行传输。或者,第一终端装置和第二终端装置均作为从属终端,因此,该第一上行授权信息对应的时频资源可以是网络设备为一组(或至少一个)从属终端分配的资源。
本申请中,第一上行授权信息对应的时频资源可以是第一上行授权信息指示的时频资源。该时频资源还可用于第一终端装置发送上行数据。
下面说明第一终端装置根据第一上行授权信息确定该时频资源的方式。
作为一种示例,第一上行授权信息可包括该时频资源的时频资源信息,也就是说,第一上行授权信息对应的时频资源由第一上行授权信息包括的时频资源信息指示,例如,第一上行授权信息中包括时频资源的时域位置信息和频域位置信息。
作为另一种示例,网络设备可以通过RRC消息或MAC CE或DCI为终端配置传输资源集合,该第一上行授权信息中可携带指示信息,用于从传输资源集合中指示某个传输资源。其中,传输资源可包括时频资源(即时域资源和频域资源),此外,该传输资源还可包括空域资源、码域资源(如DMRS)或多址接入签名(signature)等。根据第一上行授权信息中的指示信息确定的该时频资源也就是第一上行授权信息对应的时频资源。例如,第一上行授权信息可包括该资源集合中的时频资源的索引。
作为另一种示例,第一上行授权信息指示的时频资源可以是用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的时频资源,或者说,第一上行授权信息指示的时频资源是通过用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个隐式指示的。例如,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,对应于传输资源。可选的,第一终端装置可从网络设备接收第一对应关系,该第一对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源之间的对应关系,或者,该第一对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第一对应关系确定第一上行授权信息对应的时频资源。
可以理解,以上用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式,对于发送第一上行授权信息的网络设备来说,可称为用于发送第一上行授权信息的RNTI、CORESET、搜索空间或信令格式。
可选的,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,可以是针对一个或多个终端(包括第一终端装置和/或第二终端装置)分配的。
举例来说,第一对应关系包括RNTI-1与时频资源1之间的对应关系,当第一终端装置根据RNTI-1接收到第一上行授权信息,则第一上行授权信息对应的时频资源为时频资源1。
应理解,以上第一上行授权信息对应的时频资源可以是网络设备为第二终端装置分配的时频资源。因此,第二终端装置可通过该时频资源进行上行传输。
需要说明的是,第一上行授权信息可以来自于网络设备,也可以是来自于第二终端装置,具体包括如下两种可能的实现方式:
(1)、在第一种可能的实现方式中,第一上行授权信息是网络设备发送的动态授权信息。例如根据本申请中的介绍,第二终端装置可通过PUCCH向网络设备发送调度请求,或者,第二终端装置可通过PUSCH向网络设备发送缓存状态,之后网络设备可发送第一上行授权信息,用于调度第二终端装置的上行数据传输。可选的,该第一上行授权信息中可包括用于第二终端装置进行上行数据传输的时频资源。可选的,第一上行授权信息可以是网络设备通过单播、组播或广播方式发送的。
示例性的,该第一上行授权信息可以是物理层信号,例如,第一上行授权信息为DCI,该第一上行授权信息可通过PDCCH发送。又如,第一授权信息也可以是MAC层信号,例如MAC控制信元(control element,CE),此时第一授权信息可通过例如PDSCH下发。两者的区别在于,DCI通常会经过特定的RNTI加扰之后再发送,因此终端先确定RNTI才能正确接基站发送给该终端的DCI,而MAC CE的接收则不需要通过特定的RNTI加扰。
其中,如果第一上行授权信息为DCI,此时第一终端装置接收第一上行授权信息所使用的RNTI可以是网络设备通过信令预配置的。例如,网络设备可通过RRC消息、MAC CE或DCI向第一终端装置配置该RNTI。可选的,该RNTI可以是网络设备为第二终端装置配置的RNTI,例如C-RNTI,此时,第一终端装置和第二终端装置共享该RNTI。
或者,该RNTI也可以是第一终端装置根据时域资源、频域资源、码域资源、多址接入签名等资源推算的。例如,网络设备为第一终端装置配置了包括时域资源、频域资源、码域资源或多址接入签名等在内的传输资源例如免授权传输资源,终端可以根据这些资源推算RNTI,并根据RNTI接收通过PDCCH发送的第一上行授权信息。例如,免授权资源设置有对应的RNTI,或设置有对应的用于推算RNTI的参数,用于第一终端装置推算RNTI。
应理解,这里的第一上行授权信息可以是网络设备针对第二终端装置发送的,网络设备可以提前向至少一个终端装置配置(包括第一终端装置)包括时域资源、频域资源、码域资源或多址接入签名等中任意一项或多项在内的传输资源例如免授权传输资源,当网络设备向第二终端装置发送动态授权信息(例如,用于向第二终端装置指示进行上行传输的时频资源)时,会根据该配置的传输资源推算动态授权信息的RNTI,并根据该RNTI发送动态授权信息。如果第一终端装置有上行传输需求,则也可根据该配置的传输资源推算RNTI,如果第一终端装置根据该RNTI成功接收该动态授权信息,则该动态授权信息可作为第一上行授权信息。如果第一终端装置未根据该RNTI成功接收到动态授权信息,则表示不存在对应于该时频资源的上行授权信息。
其中,这里的码域资源可以是DMRS资源如DMRS端口、前导码资源或序列资源等,其中,序列资源例如包括ZC(Zadoff-Chu)序列、覆盖的ZC(covered-ZC)序列、伪随机噪声(pseudo-noise,PN)序列、最长线性反馈移位寄存器(M)序列、Golden序列、里德-马勒(Reed-Muller)序列、离散傅里叶变换(discrete Fourier transform,DFT)序列、离散傅里叶反变换(inverse discrete Fourier transform,IDFT)序列,或哈德马(Hadamard)序列等。
这里的多址接入签名包括但不限于能用于或辅助或增强多用户检测或多数据接收的码本(codebook)、图案、序列等,例如扩频序列(spreading sequence)、扩频图案(spreading pattern)、资源映射图案(resource mapping pattern)或资源跳变图案(resource hopping pattern)等。
在该第一种实现方式中,第一上行授权信息可包括传输资源和/或传输参数的显式指示信息,或者,第一上行授权信息可包括传输资源和/或传输参数。该传输资源和/或传输参数可用于第一终端装置发送上行数据。本申请中,传输资源包括但不限于时域资源、频域资源、码域资源或多址接入签名资源等任意一项 或多项资源。本申请中的传输参数包括但不限于MCS、功控参数或重复传输次数等参数。第一终端装置可根据该传输资源和/或该传输参数向网络设备发送上行数据。
具体的,第一上行授权信息具体可包括传输资源的资源信息和/或传输参数,因此第一上行授权信息可直接指示传输资源和/或传输参数。或者,第一上行授权信息也可用于从传输资源集合中指示一个传输资源,该传输资源集合可以是网络设备通过RRC消息、MAC CE或DCI指示的。和/或,第一上行授权信息可用于从传输参数集合中指示一个传输参数,该传输参数集合可以是网络设备通过RRC消息、MAC CE或DCI指示的。
此外,第一上行授权信息可用于隐式指示传输资源和/或传输参数。例如前面的说明,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于传输资源,因此在第一终端装置在接收第一上行授权信息后,可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的传输资源作为用于发送上行数据的传输资源。
同理,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于传输参数,可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的传输参数作为用于发送上行数据的传输参数。
可选的,第一终端装置可从网络设备接收第二对应关系,该第二对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与传输参数之间的对应关系,或者,该第二对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第二对应关系确定传输参数。
此外,可选的,在第一种实现方式中,第一上行授权信息可用于第一终端装置确定第一上行授权信息所对应的波束方向,其中,第一上行授权信息中可包括该波束方向的指示信息,或者,第一上行授权信息可用于隐式指示该波束方向。其中,波束方向可用于第一终端装置确定是否在第一上行授权信息对应的时频资源发送上行数据,具体可参见上述所述,这里暂不展开。这里的波束可以是网络设备进行接收所使用的波束。
作为一种示例,第一上行授权信息中可包括波束指示信息(也可称为波束方向的指示信息),用于显式指示波束方向。示例性的,波束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识。波束方向关联的参考信号的指示信息例如包括表征波束方向的参考信号的索引,例如SSB索引或CSI-RS索引等。波束方向标识例如可以是波束方向对应的索引或标识等。
作为另一种示例,第一终端装置可根据用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,确定波束方向。例如,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,因此在第一终端装置该在接收第一上行授权信息后,可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的波束方向作为这里的波束方向,或者说,该第一上行授权信息可用于隐式指示波束方向。可选的,第一终端装置可从网络设备接收第三对应关系,该第三对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系,或者,该第三对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第三对应关系确定第一上行授权信息对应的波束方向。
举例来说,第三对应关系包括RNTI-1与SSB-1(或SSB-1的索引)之间的对应关系,以及包括RNTI-2与SSB-2(或SSB-2的索引)之间的对应关系,当第一终端装置根据RNTI-1接收到第一上行授权信息,则第一终端装置可将SSB-1关联的波束方向作为该波束方向,或者说,将该SSB-1作为波束方向。当第一终端装置根据RNTI-2接收到第一上行授权信息,则第一终端装置可将SSB-2关联的波束方向作为该波束方向,或者说,将该SSB-2作为波束方向。
(2)、在第二种可能的实现方式中,第一上行授权信息可来自于第二终端装置。示例性的,第二终端装置可根据来自于网络设备的第二上行授权信息向第一终端装置发送第一上行授权信息。
其中,第二终端装置可通过终端与终端间的任何一种通信链路,例如D2D链路、侧行链路(sidelink)、蓝牙(bluetooth)等,以单播(unicast)、组播(groupcast)、多播(multicast)或广播(broadcast)方式向 第一终端装置发送第一上行授权信息。例如,第一上行授权信息可以承载在物理侧行控制信道(physical sidelink control channel,PSCCH)或物理侧行共享信道(physical sidelink shared channel,PSSCH)。
该第二种可能的实现方式中,根据本申请中的介绍,可选的,第二终端装置可通过PUCCH向网络设备发送调度请求,或者,第二终端装置可通过PUSCH向网络设备发送缓存状态,第二终端装置可接收来自于网络设备的该第二上行授权信息。第二终端装置可根据接收到的第二上行授权信息确定并向第一终端装置发送第一上行授权信息。例如,第二终端装置可根据第二上行授权信息确定时频资源,并在第一上行授权信息中携带该时频资源的指示信息。
第二终端装置可根据第二上行授权信息中携带的显式指示确定第二上行授权信息用于第二终端装置进行上行数据的传输。或者说,第二终端装置可根据第二上行授权信息中携带的显式指示确定第二终端装置为主调终端。此外,该第二种实现方式中,也不排除第二终端装置为从属终端,例如,第一终端装置和第二终端装置作为一组从属终端,第二终端装置可配置为,将收到的上行授权信息转发至其他从属终端(如包括第一终端装置)。
此外,在该第二种可能的实现方式中,第一上行授权信息中还可包括用于第一终端装置向网络设备进行上行传输的传输资源(或传输资源的指示信息)和/或传输参数(或传输参数的指示信息)。可选的,第二上行授权信息中可包括用于第二终端装置进行上行传输的传输资源和/或传输参数,该第一上行授权信息中的用于第一终端装置向网络设备进行上行传输的传输资源和/或传输参数可以与第二上行授权信息中包括的用于第二终端装置进行上行传输的传输资源和/或传输参数相同。
作为一种可能的示例,第一上行授权信息可包括第一终端装置向网络设备参数上行数据所使用的和/或不能使用的传输资源和/或传输参数的指示信息。
在第二种可能的实现方式中,第一上行授权信息中还可包括波束指示信息。示例性的,波束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识,具体可参见在本申请在第一种实现方式中对于波束指示信息的描述。其中,该波束方向可以是第二上行授权信息指示的,第二上行授权信息可通过显式或隐式方式指示该波束方向,显式指示和隐式指示的方式可以参照第一种实现方式中显式或隐式指示波束方向的方式,不再赘述。
应理解,在以上各个实现方式中,除传输资源和传输参数以外,第一上行授权信息还可包括用于第一终端装置进行上行传输的其他信息,这些信息例如包括:主调终端的标识、从属终端的标识或用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息等。
其中,从属终端的标识可用于显式指示从属终端。第一终端装置和/或从属终端的标识例如UE ID,或者,可包括其他可用于标识终端类型的信息,例如,在终端可通过时频资源、DMRS资源或序列标识时,终端对应的时频资源、DMRS资源或序列等信息。其中,终端的类型在本申请中是指终端为主调终端或从属终端。类似的,主调终端的标识可用于显式指示主调终端(如第二终端装置)。主调终端的标识可以是终端的UE ID,或可包括其他可用于标识终端的信息。此外,从属终端的标识和主调终端的标识也可作为允许发送数据的终端的标识,如果接收到第一上行授权信息的终端的标识,未包括在允许发送数据的终端的标识中,则表示不允许该终端通过第一上行授权信息发送上行数据。
可选的,在本申请中,第一终端装置可在接收到第一上行授权信息后,根据第一上行授权信息确定自身作为从属终端。此外,第二终端装置可在接收到第一上行授权信息或第二上行授权信息后,根据第一上行授权信息或第二上行授权信息确定自身作为主调终端。
本申请中,当终端接收到上行授权信息(包括第一上行授权信息和/或第二上行授权信息),且上行授权信息中仅指示了主调终端(如携带主调终端的标识),如果终端判断自己不是主调终端,如主调终端的标识不包括该终端的标识,则一种实现方式是,终端确定自己为从属终端;如果终端判断主调终端的标识包括自己的标识,则确定自己为主调终端。同理,当终端接收到上行授权信息(包括第一上行授权信息和/或第二上行授权信息),且上行授权信息中仅指示了从属终端(如携带从属终端的标识),如果终端判断自己不是从属终端时,如从属终端的标识不包括该终端的标识,则一种实现方式是,终端确定自己为主调终端;如果终端判断从属终端的标识包括自己的标识,则确定自己为从属终端。
此外应理解,用于接收上行授权信息(包括第一上行授权信息和/或第二上行授权信息)的RNTI、CORESET、搜索空间或信令格式中的至少一个,可对应于主调终端或从属终端,从而可如果上行授权信息隐式指示终端的类型。作为一种可选的示例,用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型(例如包括主调终端和从属终端)有对应关系(可称为第四对应关 系)。例如,例如网络设备为终端配置了两个RNTI,RNTI-1和RNTI-2,分别关联主调终端和从属终端两个类型,当终端使用RNTI-1接收到动态授权指令时,终端确定自己为主调终端;当终端使用RNTI-2接收到动态授权指令时,终端确定自己为从属终端。
其中,第一上行授权信息包括用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息可以参考步骤S1001中相关描述,此处不再赘述。
可选的,当第一上行授权信息中包括第一终端装置的标识,或包括用于指示允许第一终端装置通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息时,第一终端装置可根据第一上行授权信息进行上行数据的传输;否则,如果第一上行授权信息中不包括第一终端装置的标识,或者,不包括用于指示允许第一终端装置通过该时频资源进行上行传输的指示信息,则第一终端装置不根据第一上行授权信息(或该时频资源)进行上行传输,或者说,第一终端装置忽略根据第一上行授权信息(或该时频资源)进行上行传输。
在一种可能的实现方式中,该方法还包括:当第一定时器超时时,第一终端装置发起免动态授权传输过程或随机接入过程。
需要说明的是,当第一定时器超时时,第一终端装置还根据第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
其中,当第一定时器超时,且第一终端装置未进行初始传输,第一终端装置发起免动态授权传输过程。可选的,第一终端装置发起第二类免动态授权传输过程,或者,第一终端装置判断第一类免动态授权传输的资源有效时,发起第一类免动态授权传输过程,否则发起第二类免动态授权传输过程。其中,关于第一类免动态授权传输过程和第二类免动态授权传输过程的相关描述可以参考上述所述,此处不再赘述。
当第一定时器超时,且第一终端装置已进行初始传输,第一终端装置发起随机接入过程。
其中,第一终端装置进行初始传输可以理解为第一终端装置执行机会式多址接入过程后已发送第一个数据包,也即第一终端设备执行机会式多址接入过程时基于时频资源已发送第一个数据包;第一终端装置未进行初始传输可以理解为第一终端装置执行机会式多址接入过程后未发送第一个数据包。
在又一种可能的实现方式中,该方法还包括:在满足第二条件的情况下,第一终端装置停止第一定时器。
可以理解为,第一终端装置停止第一定时器的过程发生在第一定时器启动之后,且未超时之前。其中,第二条件包括以下一项或多项:第一终端装置终止机会式多址接入传输过程时/后;第一终端装置接收来自网络设备的第三指示信息时/后,该第三指示信息用于指示机会式多址接入传输过程结束;第一终端装置的RRC状态发生改变时/后;或第一终端装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
其中,第一终端装置终止机会式多址接入传输过程可以理解为第一终端装置停止机会式多址接入传输过程。第一终端装置接收来自网络设备的第三指示信息,该第三指示信息可以为RRC释放消息。第一终端装置的RRC状态发生改变例如,第一终端装置由非激活态转换为激活态;或者,第一终端装置由非激活态转换为空闲态。第一终端装置中的时间对齐定时器用于第一终端装置与网络设备同步,第一终端装置中的时间对齐定时器超时可以理解为该时间对齐定时器启动,且超过该时间对齐定时器设定的时长。
S1003:第一终端装置基于时频资源发送上行数据。
其中,第一终端装置基于时频资源发送上行数据可以是指,第一终端装置使用该时频资源的部分或全部发送上行数据。该时频资源为第一终端装置基于第一上行授权信息确定的,具体可以参考上述所述,此处不再赘述。
还应理解,在S1003中,第一终端装置可根据传输资源和/或传输参数向网络设备发送上行数据。可选的,该传输资源和/或该传输参数可以是第一终端装置根据第一上行授权信息确定的,具体可参见上述所述。例如,第一上行授权信息具体可包括传输资源信息和/或传输参数。再例如,第一上行授权信息也可用于从传输资源集合中指示一个传输资源,和/或,第一上行授权信息可用于从传输参数集合中指示一个传输参数。又例如,第一上行授权信息可用于隐式指示传输资源和/或传输参数。可选的,该传输资源和/或传输参数可以是网络设备通过RRC、DCI、MAC CE等信令为第一终端装置预先配置的。
这里通过举例,介绍本申请中配置第一对应关系、第二对应关系、第三对应关系和第四对应关系中的至少一个的方式。
作为一种可能的示例,网络设备可向终端设备发送或指示RNTI、CORESET、搜索空间或信令格式中的至少一个,与传输资源、传输参数、波束方向和终端类型中的至少一个之间的对应关系。其中,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源之间的对应关系时,该对应关系包括第一对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输参数之间的对应关系时,该对应关系包括第二对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系时,该对应关系包括第三对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型之间的对应关系时,该对应关系包括第四对应关系。
例如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源和/或传输参数之间的对应关系时,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定传输资源,并通过该传输资源和/或传输参数发送上行数据。相应的,网络设备可根据该传输资源和/或传输参数,接收来自于第一终端装置的上行数据。
又如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系时,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定波束方向,并根据该波束方向确定是否在第一上行授权信息对应的时频资源发送上行数据,具体可参见S803中的描述。
又如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型之间的对应关系时,第一终端设备可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定终端类型,终端类型为从属终端或主调终端。其中,如果该终端类型为从属终端,则第一终端装置可执行图8所示流程,实现机会式传输或从属传输。
作为另一种示例,以上该RNTI、CORESET、搜索空间或信令格式中的至少一个,与传输资源、传输参数、波束方向和终端类型中的至少一个之间的对应关系,可以存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。该对应关系的使用方式可参见上面的示例,不再赘述。
在一种可能的实现方式中,当第一终端装置接收到第一上行授权信息时,可以直接使用第一上行授权信息所对应的时频资源发送上行数据,而不需要执行确定波束方向以及判断波束方向是否满足预设条件的动作。例如当第一终端装置和第二终端装置有相同的波束方向时,基站才会配置第一终端装置接收第一上行授权信息,此时,第一终端装置能够接收到第一上行授权信息时,默认可以使用对应的时频资源发送上行数据。
此外,还可以由网络设备或通过预配置或预定义的方式等,设定波束方向、传输资源、传输参数或终端类型等信息中的至少两项之间的对应关系,用于隐式指示以上信息。例如,可以设定波束方向与传输资源和/或传输参数之间的对应关系,从而第一终端装置可以在根据本申请所示任一方式确定波束方向后,根据波束方向与传输资源和/或传输参数之间的对应关系确定传输资源和/或传输参数。同理,第一终端装置也可以在根据本申请所示任一方式确定传输资源和/或传输参数后,根据该对应关系确定波束方向。
可选的,在步骤S1002之前,如果支持基于上行机会式多址接入或从属多址接入的上行数据传输(下文简称为机会式传输或从属传输),或具备机会式传输或从属传输能力,第一终端装置可以向网络设备上报请求或能力信息,以指示第一终端装置支持机会式传输或从属传输。进一步可选的,网络设备可向第一终端装置(如支持机会式传输或从属传输的终端装置,或广播方式向多个不特定的终端装置)配置机会式传输模式或从属传输模式,或配置如下信息中的一种或多种:用于接收网络设备发送的第一授权信息所使用的参数如RNTI、CORESET、SS、信令格式,用于接收第二终端设备发送的第一授权信息的参数如PSCCH和/PSSCH信道配置,发送数据使用的传输资源和/或传输参数。
此外,可选的,在步骤S1002之前,如果支持作为主调终端或具备主调终端的能力,第二终端装置可以向网络设备上报能力信息。进一步可选的,网络设备可向第二终端装置(如支持作为主调终端的终端装置,或广播方式向多个不特定的终端装置)配置主调终端模式,或配置如下信息中的一种或多种:用于接收网络设备发送的第一授权信息和/或第二授权信息所使用的参数如RNTI、CORESET、SS、信令格式,用于向第二终端设备发送的第一授权信息的参数如PSCCH和/PSSCH信道配置。
可以理解,在本申请的任一实施例中,网络设备可通过RRC消息、MAC CE或者DCI中的一种或多种信令,向第一终端装置和/或第二终端装置发送配置信息,用于配置基于机会传输或多址接入的上行传输模式和/或相关参数,相关参数包括但不限于波束方向、用于发送数据的传输资源、传输参数、用于接收上 行授权的参数如RNTI、CORESET、搜索空间或信令格式等。
还可以理解,在本申请的任一实施例中,可选的,网络设备可以预先配置主调终端(包括第二终端装置)和从属终端(包括第一终端装置),以及配置主调终端和从属终端之间的通信链路。例如,网络设备预先配置一组位置相近或波束方向相近的终端(如包括第一终端装置和第二终端装置)之间可以进行通信,该组终端中的一个或多个终端可以作为主调终端执行本发明实施例中主调终端的步骤,该组终端中的一个或多个终端可以作为从属终端执行本发明实施例中从属终端的步骤。可选的,该组终端中,一个终端既可以是主调终端,也可以是从属终端。
在上述方法中,通过设置第一定时器,并在第一定时器运行时,接收第一上行授权信息的方式,能够避免第一终端装置在无法监听到有效的动态授权时,会长时间的监听下去,从而降低终端的功耗,提高数据传输的可靠性,且降低时延。
请参见图11,图11为本申请提供的又一种数据传输方法的流程示意图,可包括以下步骤:
S1101、第一终端装置判断是否满足第三条件。
其中,第三条件包括以下一项或多项:第一终端装置与所述网络设备之间处于同步状态;第一终端装置的信道质量满足第一预设值;网络设备为所述第一终端装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,第一终端装置的数据缓存大小满足第二预设值。具体可以参考步骤S1001中相关描述,此处不再赘述。
S1102、若满足第三条件,第一终端装置执行第一类免动态授权传输过程;否则第一终端装置判断是否满足第四条件。
其中,第四条件包括以下一项或多项:第一终端装置与所述网络设备之间处于同步状态;第一终端装置的信道质量满足第三预设值;网络设备为所述第一终端装置的机会式多址接入传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,第一终端装置的数据缓存大小满足第四预设值。具体可以参考步骤S1001中相关描述,此处不再赘述。关于第一类免动态授权传输过程的相关描述可以参考上述所述,此处不再赘述。
可选的,该步骤中,第一终端装置可以不需要判断第四条件是否满足,而直接执行机会式多址接入传输过程。
S1103、若满足第四条件,第一终端装置执行机会式多址接入传输过程;否则第一终端装置判断是否满足第五条件。
其中,第五条件包括以下一项或多项:第一终端装置的信道质量满足第五预设值;或第一终端装置的数据缓存大小满足第六预设值。具体可以参考步骤S1001中相关描述,此处不再赘述。
可选的,该步骤中,第一终端装置可以不需要判断第五条件是否满足,而直接执行第二类免动态授权传输过程。
S1104、若满足第五条件,第一终端装置执行第二类免动态授权传输过程。
其中,关于第二类免动态授权传输过程的相关描述可以参考上述所述,此处不再赘述。
上述方法中,步骤S1103和S1104为可选步骤。
在上述方法中,通过优先选择第一类免动态授权传输过程,从而避免终端设备的资源竞争,提高资源利用率。其次,选择机会式多址接入传输过程,最后选择第二类免动态授权传输过程,其中,第二类免动态授权传输过程中终端设备的资源需要竞争,因此,通过上述选择的顺序,能够保证方案的最优性。
请参见图12,图12为本申请提供的又一种数据传输方法的流程示意图,可包括以下步骤:
S1201、第一终端装置向网络设备发送第四指示信息。
具体地,该第四指示信息用于第一终端装置向网络设备请求进行机会式传输或用于第一终端装置向网络设备告知进行机会式传输。该第四指示信息可以携带在上行控制信息(Uplink Control Information,UCI)或MAC CE中由第一终端装置发送给网络设备,该第四指示信息本身也可以是序列。该第四指示信息可用于辅助网络设备对第一终端装置的机会式传输进行检测和接收。
S1202、网络设备接收来自第一终端装置的第四指示信息。
例如,当网络设备接收到第四指示信息后,可以获知第一终端装置将进行机会式传输,因此网络设备可以在第一授权信息所指示的时频资源上检测和接收第一终端装置的数据,从而提高检测和数据接收的可靠性。
可选的,当第四指示信息用于第一终端装置向网络设备请求进行机会式传输时,第一终端装置在发送该第四指示信息后,会接收网络设备向第一终端装置发送的第五指示信息,该第五指示信息用于网络设备响应第一终端装置发送的第四指示信息,例如指示第一终端装置进行机会式传输。可选的,第一终端装置在接收到该第五指示信息后,执行机会式多址接入过程。
请参见图13,图13为本申请提供的又一种数据传输方法的流程示意图,可包括以下步骤:
S1301、第一终端装置在执行机会式多址接入过程中,判断是否满足第六条件。
S1302、当满足第六条件时,第一终端装置执行随机接入过程。
其中,第六条件包括如下一项或多项:网络设备为第一终端装置的机会式多址接入配置的全部波束方向的测量结果都不满足预设条件,或,第一终端装置确定第一授权信息为无效授权。其中,网络设备为第一终端装置的机会式多址接入配置的全部波束方向的测量结果都不满足预设条件的相关描述可以参考步骤S1001中的描述,此处不再赘述;第一终端装置确定第一授权信息为无效授权的相关描述可以参考步骤S1001中的描述,此处不再赘述。
上述对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
请参见图14,图14为本申请提供的一种数据传输装置的结构示意图,基于同一技术构思,本申请实施例还提供了一种数据传输装置1400,该数据传输装置1400可以是数据传输装置,也可以是数据传输装置中的装置或组件,或者是能够和数据传输装置匹配使用的装置。数据传输装置1400可以是终端设备或网络设备。一种设计中,该数据传输装置1400可以包括执行上述方法实施例中所涉及的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该数据传输装置1400可以包括处理模块1401和收发模块1402。收发模块1402可包括发送模块和/或接收模块。
示例性的,在该装置用于执行以上各个实施例所描述的由第一终端装置执行的方法时,该装置可以包括收发模块1402和处理模块1401。其中,处理模块1401,用于启动或重启第一定时器,该第一定时器包括机会式多址接入定时器(opma-Timer);收发模块1402,用于在该第一定时器运行时,接收第一上行授权信息,该第一上行授权信息对应的时频资源用于第二终端装置的上行传输;该第二终端装置与该装置不同;收发模块1402,还用于基于该视频资源发送上行数据。
在一种可能的实现方式中,收发模块1402,用于接收来自该第二终端装置的第一上行授权信息;或者,接收来自网络设备的第一上行授权信息。
在又一种可能的实现方式中,处理模块1401,还用于在该第一定时器超时时,发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理模块1401,还用于在满足第一条件的情况下,启动或重启该第一定时器;该第一条件包括以下中的至少一项:该装置发起机会式多址接入传输过程时/后;该装置接收到该第一上行授权信息时/后;该装置确定该第一上行授权信息为有效授权时/后;该装置接收到第二上行授权信息时/后,该第二上行授权信息用于授权该第一终端装置的数据传输,或者用于授权包括该第一终端装置在内的一组终端装置的数据传输;该装置发送上行数据时/后;该装置完成随机接入过程时/后,或,该装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。
在又一种可能的实现方式中,处理模块1401,用于自行触发机会式多址接入传输过程;处理模块1401,用于向该网络设备发送第一指示信息后发起机会式多址接入传输过程,该第一指示信息用于通知该网络设备该装置发起机会式多址接入传输过程,或用于该装置请求发起机会式多址接入传输过程;或者,处理模块1401,用于接收来自该网络设备的第二指示信息后发起机会式多址接入传输过程,该第二指示信息用于指示该装置发起机会式多址接入传输过程。
在又一种可能的实现方式中,处理模块1401,用于在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动该第一定时器。
在又一种可能的实现方式中,处理模块1401,用于在该第一定时器超时的情况下,根据该装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理模块1401,用于在该第一定时器超时,且该装置未进行初始传输情况下,确定发起免动态授权传输过程。
在又一种可能的实现方式中,处理模块1401,用于在该第一定时器超时,且该装置已进行初始传输情况下,确定发起随机接入过程。
在又一种可能的实现方式中,处理模块1401,用于在满足第二条件的情况下,停止该第一定时器;该第二条件包括以下一项或多项:该装置终止机会式多址接入传输过程时/后;该装置接收来自网络设备的第三指示信息时/后,该第三指示信息用于指示机会式多址接入传输过程结束;该装置的无线资源控制RRC状态发生改变时/后;或该装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
在又一种可能的实现方式中,处理模块1401,还用于确定选择执行机会式多址接入过程。
在又一种可能的实现方式中,处理模块1401,还用于在确定选择执行机会式多址接入过程之前,判断是否满足第三条件;处理模块1401,还用于在满足该第三条件的情况下,执行第一类免动态授权传输过程,否则,执行机会式多址接入过程;该第三条件包括以下一项或多项:该装置与该网络设备之间处于同步状态;该装置的信道质量满足第一预设值;该网络设备为该装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,该装置的数据缓存大小满足第二预设值。
示例性的,在该装置用于执行以上各个实施例所描述的由网络设备执行的方法时,该装置可以包括收发模块1402和处理模块1401。其中,处理模块1401可用于确定第一上行授权信息,所述收发模块1402可用于发送所述第一上行授权信息。第一上行授权信息可参见上述方法实施例中对于第一上行授权信息的说明。
收发模块1402还可用于执行以上图10至图13所示实施例中由箭头表示的动作,处理模块1401还用于执行上述图10至图13所示实施例中由矩形框表示的动作中的其它操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图15,图15为本申请提供的又一种数据传输装置的结构示意图,用于实现本申请提供的数据传输方法。数据传输装置1500可以是位于终端设备中的装置或组件,也可以是终端设备,也可以是网络设备或网络设备中的装置或组件。该数据传输装置1500可以是数据传输装置,也可以是数据传输装置中的装置,或者是能够和数据传输装置匹配使用的装置。其中,该数据传输装置1500可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。数据传输装置1500包括至少一个处理器1520,用于实现本申请实施例提供的数据传输方法。数据传输装置1500还可以包括通信接口1510,通信接口1510也可称为输入输出接口。在本申请实施例中,通信接口1510用于通过传输介质和其它装置进行通信。例如,数据传输装置1500是芯片时,通过通信接口1510与其他芯片或器件进行传输。处理器1520用于实现上述方法实施例所述的方法。
示例性的,在该装置用于执行以上各个实施例所描述的由第一终端装置执行的方法时,该装置可以包括通信接口1510和处理器1520。其中,处理器1520,用于执行以下操作:启动或重启第一定时器,该第一定时器包括机会式多址接入定时器(opma-Timer);在该第一定时器运行的情况下,通过该通信接口1510接收第一上行授权信息,该第一上行授权信息对应的时频资源用于第二终端装置的上行传输;该第二终端装置与该装置不同;通过该通信接口1510基于该时频资源发送上行数据。
在一种可能的实现方式中,处理器1520,用于通过该通信接口1510接收来自该第二终端装置的该第一上行授权信息;或者,处理器1520,用于通过该通信接口1510接收来自网络设备的该第一上行授权信息。
在又一种可能的实现方式中,处理器1520,还用于在该第一定时器超时的情况下,发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理器1520,用于在满足第一条件的情况下,启动或重启该第一定时器;该第一条件包括以下中的至少一项:该装置发起机会式多址接入传输过程时/后;该装置接收到该第一上行授权信息时/后;该装置确定该第一上行授权信息为有效授权时/后;该装置接收到第二上行授权信息时/后,该第二上行授权信息用于授权该装置的数据传输,或者用于授权包括该装置在内的一组终端装置的数据传输;该装置发送上行数据时/后;该装置完成随机接入过程时/后,或,该装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。
在又一种可能的实现方式中,处理器1520,用于自行触发机会式多址接入传输过程;处理器1520,用于向该网络设备发送第一指示信息后发起机会式多址接入传输过程,该第一指示信息用于通知该网络设备该装置发起机会式多址接入传输过程,或用于该装置请求发起机会式多址接入传输过程;或者,处理器1520,用于接收来自该网络设备的第二指示信息后发起机会式多址接入传输过程,该第二指示信息用于指示该装置发起机会式多址接入传输过程。
在又一种可能的实现方式中,处理器1520,用于在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动该第一定时器。
在又一种可能的实现方式中,处理器1520,用于在该第一定时器超时的情况下,根据该装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
在又一种可能的实现方式中,处理器1520,用于在该第一定时器超时,且该装置未进行初始传输情况下,确定发起免动态授权传输过程。
在又一种可能的实现方式中,处理器1520,用于在该第一定时器超时,且该装置已进行初始传输情况下,确定发起随机接入过程。
在又一种可能的实现方式中,处理器1520,还用于在满足第二条件的情况下,停止该第一定时器;该第二条件包括以下一项或多项:该装置终止机会式多址接入传输过程时/后;该装置接收来自网络设备的第三指示信息时/后,该第三指示信息用于指示机会式多址接入传输过程结束;该装置的无线资源控制RRC状态发生改变时/后;或该装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
在又一种可能的实现方式中,处理器1520,还用于确定选择执行机会式多址接入过程。
在又一种可能的实现方式中,处理器1520,还用于在确定选择执行机会式多址接入过程之前,判断是否满足第三条件;处理器1520,还用于在满足该第三条件的情况下,执行第一类免动态授权传输过程,否则,执行机会式多址接入过程;该第三条件包括以下一项或多项:该装置与该网络设备之间处于同步状态;该装置的信道质量满足第一预设值;该网络设备为该装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,该装置的数据缓存大小满足第二预设值。
示例性的,在该装置用于执行以上各个实施例所描述的由网络设备执行的方法时,该装置可以包括通信接口1510和处理器1520。其中,处理器1520可用于确定第一上行授权信息,所述通信接口1510可用于发送所述第一上行授权信息。第一上行授权信息可参见上述方法实施例中的描述。
通信接口1510还可用于执行以上图10至图13所示实施例中由箭头表示的动作,处理器1520还用于执行上述图10至图13所示实施例中由矩形框表示的动作中的其它操作,在此不再一一赘述。
数据传输装置1500还可以包括至少一个存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令。所述至少一个存储器中的至少一个可以与处理器集成在一起。
在本申请实施例中,存储器1530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,处理器1520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
请参见图16,图16为本申请提供的又一种数据传输装置1600的结构示意图用于实现本申请提供的数据传输方法。数据传输装置1600可以是位于终端设备中的装置,也可以是终端设备,也可以是网络设备或位于网络设备中的装置或组件。该数据传输装置1600可以是数据传输装置,也可以是数据传输装置中的装置,或者是能够和数据传输装置匹配使用的装置。其中,该数据传输装置1600可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。上述实施例提供的数 据传输方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,数据传输装置1600可包括:输入接口电路1601、逻辑电路1602和输出接口电路1603。可选的,以该装置用于实现第一终端装置的功能为例,输入接口电路1601可用于获取第一上行授权信息,逻辑电路1602可用于执行第一终端装置的处理动作,输出接口电路1603可用于输出上行数据。
可选的,数据传输装置1600在具体实现时可以是芯片或者集成电路。
本申请上述方法实施例描述的数据传输装置所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一终端装置启动或重启第一定时器,所述第一定时器包括机会式多址接入定时器(opma-Timer);
    当所述第一定时器运行时,所述第一终端装置接收第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;所述第二终端装置与所述第一终端装置不同;
    所述第一终端装置基于所述时频资源发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端装置接收第一上行授权信息,包括:
    所述第一终端装置接收来自所述第二终端装置的所述第一上行授权信息;或者,
    所述第一终端装置接收来自网络设备的所述第一上行授权信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当所述第一定时器超时时,所述第一终端装置发起免动态授权传输过程或随机接入过程。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一终端装置启动或重启第一定时器,包括:
    在满足第一条件的情况下,所述第一终端装置启动或重启所述第一定时器;
    所述第一条件包括以下中的至少一项:
    所述第一终端装置发起机会式多址接入传输过程时/后;
    所述第一终端装置接收到所述第一上行授权信息时/后;
    所述第一终端装置确定所述第一上行授权信息为有效授权时/后;
    所述第一终端装置接收到第二上行授权信息时/后,所述第二上行授权信息用于授权所述第一终端装置的数据传输,或者用于授权包括所述第一终端装置在内的一组终端装置的数据传输;
    所述第一终端装置发送上行数据时/后;
    所述第一终端装置完成随机接入过程时/后,或,
    所述第一终端装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。
  5. 根据权利要求4所述的方法,其特征在于,所述第一终端装置发起机会式多址接入传输过程,包括以下中的一项:
    所述第一终端装置自行发起机会式多址接入传输过程;
    所述第一终端装置向所述网络设备发送第一指示信息后发起机会式多址接入传输过程,所述第一指示信息用于通知所述网络设备所述第一终端装置发起机会式多址接入传输过程,或用于所述第一终端装置请求发起机会式多址接入传输过程;或者,
    所述第一终端装置接收来自所述网络设备的第二指示信息后发起机会式多址接入传输过程,所述第二指示信息用于指示所述第一终端装置发起机会式多址接入传输过程。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一终端装置发送上行数据时/后启动或重启所述第一定时器,包括:
    所述第一终端装置在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动所述第一定时器。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述当所述第一定时器超时时,所述第一终端装置发起免动态授权传输过程或随机接入过程,包括:
    当所述第一定时器超时,所述第一终端装置根据所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
  8. 根据权利要求7所述的方法,其特征在于,所述当所述第一定时器超时,所述第一终端装置根据 所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程,包括:
    当所述第一定时器超时,且所述第一终端装置未进行初始传输,所述第一终端装置发起免动态授权传输过程。
  9. 根据权利要求7所述的方法,其特征在于,所述当所述第一定时器超时,所述第一终端装置根据所述第一终端装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程,包括:
    当所述第一定时器超时,且所述第一终端装置已进行初始传输,所述第一终端装置发起随机接入过程。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    在满足第二条件的情况下,所述第一终端装置停止所述第一定时器;
    所述第二条件包括以下一项或多项:
    所述第一终端装置终止机会式多址接入传输过程时/后;
    所述第一终端装置接收来自网络设备的第三指示信息时/后,所述第三指示信息用于指示机会式多址接入传输过程结束;
    所述第一终端装置的无线资源控制RRC状态发生改变时/后;或
    所述第一终端装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置确定选择执行机会式多址接入过程。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端装置确定选择执行机会式多址接入过程之前,所述方法还包括:
    所述第一终端装置判断是否满足第三条件;
    若满足所述第三条件,所述第一终端装置执行第一类免动态授权传输过程,
    否则,所述第一终端装置执行机会式多址接入过程;
    所述第三条件包括以下一项或多项:
    所述第一终端装置与所述网络设备之间处于同步状态;
    所述第一终端装置的信道质量满足第一预设值;
    所述网络设备为所述第一终端装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,
    所述第一终端装置的数据缓存大小满足第二预设值。
  13. 一种数据传输装置,其特征在于,所述数据传输装置包括至少一个处理器和通信接口,所述至少一个处理器用于执行以下操作:
    启动或重启第一定时器,所述第一定时器包括机会式多址接入定时器(opma-Timer);
    在所述第一定时器运行的情况下,通过所述通信接口接收第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;所述第二终端装置与所述装置不同;
    基于所述时频资源发送上行数据。
  14. 根据权利要求13所述的装置,其特征在于,
    所述至少一个处理器,用于通过所述通信接口接收来自所述第二终端装置的所述第一上行授权信息;或者,
    所述至少一个处理器,用于通过所述通信接口接收来自网络设备的所述第一上行授权信息。
  15. 根据权利要求13或14所述的装置,其特征在于,
    所述至少一个处理器,还用于在所述第一定时器超时的情况下,发起免动态授权传输过程或随机接入过程。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,
    所述至少一个处理器,用于在满足第一条件的情况下,启动或重启所述第一定时器;
    所述第一条件包括以下中的至少一项:
    所述装置发起机会式多址接入传输过程时/后;
    所述装置接收到所述第一上行授权信息时/后;
    所述装置确定所述第一上行授权信息为有效授权时/后;
    所述装置接收到第二上行授权信息时/后,所述第二上行授权信息用于授权所述装置的数据传输,或者用于授权包括所述装置在内的一组终端装置的数据传输;
    所述装置发送上行数据时/后;
    所述装置完成随机接入过程时/后,或,
    所述装置中的机会式多址接入响应监听定时器和/或机会式多址接入自动重传定时器超时时/后。
  17. 根据权利要求16所述的装置,其特征在于,
    所述至少一个处理器,用于自行触发机会式多址接入传输过程;
    所述至少一个处理器,用于向所述网络设备发送第一指示信息后发起机会式多址接入传输过程,所述第一指示信息用于通知所述网络设备所述装置发起机会式多址接入传输过程,或用于所述装置请求发起机会式多址接入传输过程;或者,
    所述至少一个处理器,用于接收来自所述网络设备的第二指示信息后发起机会式多址接入传输过程,所述第二指示信息用于指示所述装置发起机会式多址接入传输过程。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述至少一个处理器,用于在发送上行数据所使用的时域资源的第一个符号/最后一个符号或第一个符号/最后一个符号后启动所述第一定时器。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,
    所述至少一个处理器,用于在所述第一定时器超时的情况下,根据所述装置的初始传输情况,确定发起免动态授权传输过程或随机接入过程。
  20. 根据权利要求19所述的装置,其特征在于,
    所述至少一个处理器,用于在所述第一定时器超时,且所述装置未进行初始传输情况下,确定发起免动态授权传输过程。
  21. 根据权利要求19所述的装置,其特征在于,
    所述至少一个处理器,用于在所述第一定时器超时,且所述装置已进行初始传输情况下,确定发起随机接入过程。
  22. 根据权利要求13-21任一项所述的装置,其特征在于,
    所述至少一个处理器,还用于在满足第二条件的情况下,停止所述第一定时器;
    所述第二条件包括以下一项或多项:
    所述装置终止机会式多址接入传输过程时/后;
    所述装置接收来自网络设备的第三指示信息时/后,所述第三指示信息用于指示机会式多址接入传输过程结束;
    所述装置的无线资源控制RRC状态发生改变时/后;或
    所述装置中的时间对齐定时器(TimerAlignmentTimer)超时时/后。
  23. 根据权利要求13-22任一项所述的装置,其特征在于,
    所述至少一个处理器,还用于确定选择执行机会式多址接入过程。
  24. 根据权利要求23所述的装置,其特征在于,
    所述至少一个处理器,还用于在确定选择执行机会式多址接入过程之前,判断是否满足第三条件;
    所述至少一个处理器,还用于在满足所述第三条件的情况下,执行第一类免动态授权传输过程,否则,执行机会式多址接入过程;
    所述第三条件包括以下一项或多项:
    所述装置与所述网络设备之间处于同步状态;
    所述装置的信道质量满足第一预设值;
    所述网络设备为所述装置的免动态授权传输配置的波束方向中至少有一个波束方向的测量结果满足预设条件;或,
    所述装置的数据缓存大小满足第二预设值。
  25. 一种数据传输方法,其特征在于,包括:
    第一终端装置启动或重启第一定时器,所述第一定时器包括机会式多址接入定时器(opma-Timer);
    当所述第一定时器运行时,网络设备向所述第一终端装置发送第一上行授权信息;
    当所述第一定时器运行时,所述第一终端装置接收来自所述网络设备的第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;所述第二终端装置与所述第一终端装置不同;
    所述第一终端装置基于所述时频资源发送上行数据;
    所述网络设备基于所述时频资源接收来自所述第一终端装置的上行数据。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,使得如权利要求1-12中任一项所述的方法被实现。
PCT/CN2023/115018 2022-08-27 2023-08-25 一种数据传输方法及装置 WO2024046236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211037914.6 2022-08-27
CN202211037914.6A CN117715159A (zh) 2022-08-27 2022-08-27 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024046236A1 true WO2024046236A1 (zh) 2024-03-07

Family

ID=90100339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115018 WO2024046236A1 (zh) 2022-08-27 2023-08-25 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN117715159A (zh)
WO (1) WO2024046236A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058387A1 (zh) * 2016-09-28 2018-04-05 华为技术有限公司 用于传输数据的方法和终端设备
CN109644085A (zh) * 2016-08-10 2019-04-16 华为技术有限公司 混合自动重传请求的方法和终端设备
CN110249674A (zh) * 2018-01-11 2019-09-17 瑞典爱立信有限公司 用于控制对被配置授权的超控的方法和设备
WO2022082749A1 (zh) * 2020-10-23 2022-04-28 Oppo广东移动通信有限公司 无线通信方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644085A (zh) * 2016-08-10 2019-04-16 华为技术有限公司 混合自动重传请求的方法和终端设备
WO2018058387A1 (zh) * 2016-09-28 2018-04-05 华为技术有限公司 用于传输数据的方法和终端设备
CN110249674A (zh) * 2018-01-11 2019-09-17 瑞典爱立信有限公司 用于控制对被配置授权的超控的方法和设备
WO2022082749A1 (zh) * 2020-10-23 2022-04-28 Oppo广东移动通信有限公司 无线通信方法和设备

Also Published As

Publication number Publication date
CN117715159A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2019096150A1 (zh) 用于随机接入的方法、终端设备和网络设备
RU2663220C1 (ru) Беспроводное устройство, первый сетевой узел и способы в них
JP2022520785A (ja) 新無線設定されたアップリンク(ul)のための時間リソース
WO2020221318A1 (zh) 一种上行波束管理方法及装置
US11432335B2 (en) Back-off timer per SSB in NR
JP2019537335A (ja) Srsキャリアベース切り替えと関連付けられた中断を制御するようにランダムアクセス設定を適応させる方法および装置
WO2022152003A1 (zh) 非激活态下数据传输方法及装置
US20220322452A1 (en) Communication method and system, and device
US20220346157A1 (en) Configuration for Random Access Procedure
JP2024026239A (ja) 2ステップランダムアクセスプロシージャのための方法および装置
WO2013052126A1 (en) Methods and apparatus for distributed medium access in wireless peer-to-peer networks
CN117242736A (zh) 针对能力降低的设备的功率节省
WO2021159253A1 (zh) 获取信号质量信息的方法、设备及系统
WO2024046236A1 (zh) 一种数据传输方法及装置
WO2023221727A1 (zh) 一种数据传输方法及装置
WO2023241171A9 (zh) 一种数据传输方法及装置
WO2023221726A9 (zh) 一种数据传输方法及装置
WO2024059972A1 (zh) 一种数据传输方法及装置
WO2023143269A1 (zh) 一种通信方法及装置
WO2022134046A1 (zh) 一种通信方法及装置
WO2023231005A1 (zh) 无线通信的方法及装置
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2022237803A1 (zh) 通信方法以及相关联的装置、介质和芯片
WO2022077477A1 (zh) 一种信号传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859268

Country of ref document: EP

Kind code of ref document: A1