WO2023241171A9 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2023241171A9
WO2023241171A9 PCT/CN2023/085353 CN2023085353W WO2023241171A9 WO 2023241171 A9 WO2023241171 A9 WO 2023241171A9 CN 2023085353 W CN2023085353 W CN 2023085353W WO 2023241171 A9 WO2023241171 A9 WO 2023241171A9
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
uplink
authorization information
information
uplink authorization
Prior art date
Application number
PCT/CN2023/085353
Other languages
English (en)
French (fr)
Other versions
WO2023241171A1 (zh
Inventor
徐修强
王磊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023241171A1 publication Critical patent/WO2023241171A1/zh
Publication of WO2023241171A9 publication Critical patent/WO2023241171A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of mobile communication technology, and in particular, to a data transmission method and device.
  • the base station configures the terminal (user equipment, UE) through a UE-specific RRC message.
  • Grant-free (GF) resources used for inactive transmission such as small packet transmission).
  • grant-free resources include periodic time-frequency resources and demodulation reference signal (DMRS) resources, as well as modulation Transmission parameters such as modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the terminal can use authorization-free resources to send data.
  • time and frequency resources are shared by multiple terminals, the base station can distinguish the license-free resources of the terminals through DMRS resources such as DMRS ports or DMRS sequences. For example, different terminals use different DMRS ports or sequences to receive license-free resource configurations.
  • terminal devices In order to increase the number of terminal devices that perform multiplexed transmission on the same time-frequency resource to meet the terminal multiplexed transmission requirements brought by the growing number of terminals, in uplink opportunistic transmission, terminal devices (called slave terminals) can use The network equipment transmits the transmission resources allocated by other terminal equipment (called the main terminal). In this transmission method, the method of determining the hybrid automatic retransmission request (HARQ) process used by the slave terminal needs to be clarified.
  • HARQ hybrid automatic retransmission request
  • This application provides a data transmission method and device to reasonably determine the HARQ process used by the slave terminal, thereby improving the reliability of uplink transmission.
  • this application provides a data transmission method to increase the number of terminal devices that perform multiplexed transmission on the same time-frequency resource.
  • the method can be implemented by the first terminal device.
  • the first terminal device is a terminal device (which may be called a terminal device corresponding to the first terminal device) or a component implementation in the terminal device.
  • the components in this application are such as a processor, a transceiver, a processing module or a transceiver module. of at least one.
  • the terminal device corresponding to the first terminal device may be a slave terminal.
  • the method can be implemented through the following steps: the first terminal device receives the first uplink authorization information, wherein the time-frequency resource corresponding to the first uplink authorization information is used for the uplink of the second terminal device. For transmission, it can also be said that the terminal device corresponding to the second terminal device is the main calling terminal.
  • the first terminal device determines the first HARQ process number according to the first uplink authorization information.
  • the first terminal device uses the first HARQ process number to send uplink data in the time-frequency resource.
  • the first terminal device and the network device can accurately determine that the first terminal device adopts the above The HARQ process number used when sending uplink data through opportunistic transmission.
  • the network device fails to receive the uplink data of the first terminal device, the first terminal device can be instructed to retransmit through the first HARQ process number, thereby improving the reliability of the uplink transmission.
  • the first terminal device may receive the first uplink authorization information from the second terminal device.
  • the first terminal device may receive the first uplink authorization information from the network device. Therefore, the first terminal device can flexibly obtain the first uplink authorization information to meet transmission requirements in different scenarios.
  • the first uplink authorization information includes indication information of the first HARQ process number, and the first terminal device may determine the first HARQ process number based on the indication information of the first HARQ process number.
  • the first uplink authorization information can explicitly indicate the HARQ process number, so that the first terminal device can determine the first HARQ process number flexibly and accurately.
  • the first terminal device determines the radio network temporary identifier RNTI used to receive the first uplink authorization information, a control resource set CORESET, a search space or a signaling format.
  • the first HARQ process number can implicitly indicate the HARQ process number, so that the first terminal device can determine the first HARQ process number flexibly and accurately.
  • the first uplink authorization information also includes information of the second terminal device, and the first terminal device can determine the first HARQ process number based on the information of the second terminal device.
  • the first uplink authorization information can indicate the information of the second terminal device, and the first terminal device determines the first HARQ process number based on the information of the second terminal device.
  • the HARQ process number can also be indicated implicitly, so that the first terminal device can determine the first HARQ process number.
  • a terminal device determines the first HARQ process number flexibly and accurately.
  • the information of the second terminal device includes the identification of the second terminal device and/or the second HARQ process number of the second terminal device, and the second HARQ process number is used for the second terminal device. Upstream transmission of terminal devices.
  • the first terminal device may determine the first NDI corresponding to the first HARQ process number according to the first uplink authorization information.
  • the first terminal device may send the uplink data in the time-frequency resource corresponding to the first uplink authorization information according to the first NDI.
  • the first terminal device can determine the first NDI based on the first uplink authorization information, and further send uplink data in the time-frequency resource based on the first NDI. Initial transmission or retransmission can be implemented based on the first NDI, so data transmission reliability can be improved.
  • the time-frequency resource corresponding to the first uplink grant information is specifically used for retransmission by the second terminal device.
  • the second terminal device can retransmit based on the time-frequency resources.
  • the first uplink authorization information can also be used to schedule retransmission of the second terminal device.
  • the first terminal device may determine a second NDI corresponding to a second HARQ process number based on the first uplink authorization information.
  • the second HARQ process number is used for the second terminal device. uplink transmission.
  • the first terminal device determines the first NDI based on the second NDI.
  • the first uplink authorization information can indicate the HARQ process number and the second NDI of the second terminal device.
  • the first terminal device determines the first NDI based on the second NDI, thereby realizing implicit indication of the NDI of the first terminal device.
  • the first terminal device may determine, based on the first uplink authorization information, to allow the first terminal device to retransmit the uplink data.
  • the first uplink authorization information can be used to indicate whether the first terminal device is allowed to retransmit. If retransmission is allowed, the first terminal device will retransmit based on the first uplink authorization information, thereby improving transmission reliability and avoiding errors due to Transmission interference caused by retransmission by the first terminal device to other uplink transmissions.
  • the first uplink authorization information further includes indication information indicating that the first terminal device is allowed to retransmit the uplink data; or; the first terminal device receives the The first upstream authorization At least one of RNTI, CORESET, search space or signaling format of the information determines that the first terminal device is allowed to retransmit the uplink data.
  • the first uplink authorization information can display or implicitly indicate whether the first terminal device is allowed to retransmit uplink data, achieving flexible indication.
  • this application provides a data transmission method to increase the number of terminal devices that perform multiplexed transmission on the same time-frequency resource.
  • the method can be implemented by the second terminal device.
  • the second terminal device is a terminal device (which may be called a terminal device corresponding to the second terminal device) or a component implementation in the terminal device.
  • the components in this application are such as a processor, a transceiver, a processing module or a transceiver module. of at least one.
  • the terminal device corresponding to the second terminal device may be the calling terminal.
  • the method can be implemented through the following steps: the second terminal device receives the second uplink authorization information from the network device; the second terminal device according to the second uplink authorization information, Send first uplink authorization information to the first terminal device, the time-frequency resource corresponding to the first uplink authorization information is used for uplink transmission of the second terminal device, and the first uplink authorization information is used for the first terminal
  • the device determines a first HARQ process number, and the first HARQ process number is used by the first terminal device to send uplink data in the time-frequency resource.
  • the second terminal device can receive the second uplink authorization information from the network device and send the first uplink authorization information to the first terminal device, so that the first terminal device has the opportunity to send the uplink authorization information to the network device according to the first uplink authorization information.
  • Data, wherein the first uplink authorization information can also be used by the first terminal device to determine the first HARQ process number to improve uplink transmission reliability.
  • the first uplink authorization information is also used to determine the first NDI corresponding to the first HARQ process number.
  • the first uplink authorization information may include a second NDI corresponding to a second HARQ process number.
  • the second HARQ process number is used for the uplink transmission of the second terminal device.
  • the second NDI may be used by the first terminal device to determine the first terminal device.
  • the time-frequency resource can also be used for retransmission by the second terminal device.
  • the second uplink authorization information can also be used to schedule retransmission of the second terminal device.
  • the second uplink authorization information is included in DCI.
  • this application provides a data transmission method to increase the number of terminal devices that perform multiplexed transmission on the same time-frequency resource.
  • the method may be implemented by a network device or a component in the network device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the method can be implemented through the following steps: the network device determines the first uplink authorization information, and the time-frequency resource corresponding to the first uplink authorization information is used for the uplink transmission of the second terminal device, the The first uplink authorization information is used to determine the first HARQ process number, and the first HARQ process number is used for the first terminal device to send uplink data in the time-frequency resource; the network device sends the first uplink authorization information.
  • the first terminal device can send uplink data to the network device according to the time-frequency resource corresponding to the first uplink authorization information, wherein the first uplink authorization information can also be used by the first terminal device to determine the first HARQ process number to improve uplink transmission. reliability.
  • the first uplink authorization information in the third aspect may be understood as the first uplink authorization information and/or the second uplink authorization information in the first or second aspect.
  • the first uplink authorization information includes indication information of the first HARQ process number.
  • At least one of RNTI, CORESET, search space or signaling format used to send the first uplink grant information is also used to determine the first HARQ process number.
  • the first uplink authorization information is also used to determine the first NDI corresponding to the first HARQ process number, and the first NDI is used by the first terminal device to determine the time and frequency.
  • the resource sends the uplink data.
  • the first uplink authorization information is specifically used for a second NDI corresponding to a second HARQ process number, and the second HARQ process number is used for uplink transmission of the second terminal device.
  • the second NDI is used to determine the first NDI.
  • the first uplink authorization information further includes indication information for indicating that the first terminal device is allowed to retransmit the uplink data; or; a wireless device for sending the first uplink authorization information.
  • At least one of the network temporary identifier RNTI, the control resource set CORESET, the search space or the signaling format is also used to determine whether the first terminal device is allowed to retransmit the uplink data.
  • a fourth aspect provides a data transmission device.
  • the device can implement the method described in any possible design of the first aspect.
  • the device has the function of the above-mentioned first terminal device.
  • the device is, for example, a terminal device corresponding to the first terminal device, or a functional module in the terminal device.
  • the device may implement the method described in the second aspect and any possible design thereof.
  • the device has the function of the above-mentioned second terminal device.
  • the device is, for example, a terminal device corresponding to the second terminal device, or a functional module in the terminal device.
  • the device may implement the method described in the third aspect and any possible design thereof.
  • the device has the functions of the above network device.
  • the device is, for example, a network device, or a functional module in the network device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the first aspect, the second aspect, or the third aspect, and the module may be a hardware circuit, It can also be software, or it can be implemented by hardware circuit combined with software.
  • the device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a sending module). receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the device when the device is used to perform the method described in the first aspect, the device may include a transceiver module and a processing module.
  • the transceiver module may be used to receive the first uplink authorization information.
  • the processing module may be configured to determine the first HARQ process number according to the first uplink authorization information.
  • the transceiver module can also be used to use the first HARQ process number to send uplink data in the time-frequency resource.
  • the first uplink authorization information please refer to the description in the first aspect.
  • the transceiver module may also be configured to receive the first uplink authorization information from the network device or the second terminal device.
  • the processing module may also determine the first HARQ process number based on the indication information of the first HARQ process number.
  • the processing module may also determine the first HARQ process number based on at least one of a wireless network temporary identifier RNTI, a control resource set CORESET, a search space or a signaling format used to receive the first uplink grant information.
  • the processing module may determine the first HARQ process number based on the information about the second terminal device.
  • the information of the second terminal device includes the identification of the second terminal device and/or the second HARQ process number of the second terminal device, and the second HARQ process number is used for the second terminal device. Upstream transmission of terminal devices.
  • the processing module may also determine the first NDI corresponding to the first HARQ process number based on the first uplink authorization information. Specifically, the transceiver module may send the uplink data in the time-frequency resource corresponding to the first uplink authorization information according to the first NDI.
  • the processing module can also determine the second NDI corresponding to the second HARQ process number based on the first uplink authorization information.
  • the second HARQ process number is used for the uplink transmission of the second terminal device, and according to the The second NDI determines the first NDI.
  • the processing module may also determine, based on the first uplink authorization information, to allow the first terminal device to retransmit the uplink data.
  • the processing module may determine that the first uplink authorization information includes indication information indicating that the first terminal device is allowed to retransmit the uplink data; or; the processing module may determine based on the request for receiving the first At least one of RNTI, CORESET, search space or signaling format of the uplink authorization information determines that the first terminal device is allowed to retransmit the uplink data.
  • the device when the device is used to perform the method described in the second aspect, the device may include a transceiver module and a processing module.
  • the transceiver module may be configured to receive the second uplink authorization information from the network device, and may also be configured to send the first uplink authorization information to the first terminal device according to the second uplink authorization information.
  • the processing module may be configured to generate first uplink authorization information according to the second uplink authorization information.
  • first uplink authorization information and the second uplink authorization information please refer to the introduction in the first aspect or the second aspect.
  • the device when the device is used to perform the method described in the third aspect, the device may include a transceiver module and a processing module.
  • the processing module may be used to determine the first uplink authorization information
  • the transceiving module may be used to send the first uplink authorization information and/or the second uplink authorization information.
  • first uplink authorization information and the second uplink authorization information please refer to the descriptions in the first aspect to the third aspect.
  • the apparatus includes: a processor coupled to a memory and configured to execute instructions in the memory to implement the method of the first aspect, the second aspect or the third aspect.
  • the device also includes other components, such as antennas, input and output modules, interfaces, etc. These components can be hardware, software, or a combination of software and hardware.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store a computer program or instructions that, when executed, enable the method of any one of the first to third aspects to be implemented. .
  • a sixth aspect provides a computer program product containing instructions that, when run on a computer, enables the method described in any one of the first to third aspects to be implemented.
  • a seventh aspect provides a chip system, which includes a logic circuit (or is understood to include a processor, and the processor may include a logic circuit, etc.), and may also include an input and output interface.
  • the input and output interface can be used to receive messages or send messages.
  • the input and output interface may be used to receive the first uplink authorization information.
  • the input and output interfaces can be the same interface, that is, the same interface can realize both the sending function and the receiving function; or the input and output interface includes an input interface and an output interface, and the input interface is used to realize the receiving function, that is, used to receive Message; the output interface is used to implement the sending function, that is, used to send messages.
  • the logic circuit can be used to perform operations other than the transceiver function in the above-mentioned first to third aspects; the logic circuit can also be used to transmit messages to the input-output interface, or receive messages from other communication devices from the input-output interface.
  • the chip system can be used to implement the method of any one of the above first to third aspects.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the chip system can also include a memory, which can be used to store instructions, and the logic circuit can call the instructions stored in the memory to implement corresponding functions.
  • An eighth aspect provides a communication system.
  • the communication system may include a first terminal device and a network device.
  • the first terminal device may be used to perform the method described in the first aspect.
  • the network device may be used to perform the method as described in the first aspect. The method described in the third aspect above.
  • the communication system may also include a second terminal device, and the second terminal device may be used to perform the method described in the second aspect above.
  • Figure 1 is a schematic diagram of the architecture of a wireless communication system provided by this application.
  • Figure 2a is a schematic diagram of the protocol stack architecture of a wireless communication system
  • Figure 2b is a schematic diagram of the protocol stack architecture of another wireless communication system
  • Figure 3 is a schematic flow chart of RRC state switching
  • Figure 4 is a schematic flow chart of a random access method
  • Figure 5 is a schematic flow chart of another random access method
  • Figure 6 is a schematic diagram of the relationship between a beam and spatial direction provided by this application.
  • Figure 7 is a schematic diagram of the relationship between beams and transmission resources provided by this application.
  • Figure 8 is a schematic flow chart of an uplink opportunistic transmission method
  • Figure 9 is a schematic flow chart of a communication method provided by this application.
  • Figure 10 is a signaling diagram of the retransmission process provided by this application.
  • Figure 11 is a schematic structural diagram of a communication device provided by this application.
  • Figure 12 is a schematic structural diagram of another communication device provided by the present application.
  • Figure 13 is a schematic structural diagram of another communication device provided by this application.
  • Embodiments of the present application provide a data transmission method and device.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • "and/or" describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, alone There are three situations B.
  • the character "/" generally indicates that the related objects are in an "or” relationship. At least one mentioned in this application refers to one or more; multiple refers to two or more.
  • the data transmission method provided by the embodiment of the present application can be applied to the fourth generation (4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) communication system, and can also be applied to the fifth generation (5th generation, 5G) Communication systems, such as 5G new radio (NR) communication systems, or various communication systems applied in the future, such as sixth generation (6th generation, 6G) communication systems.
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, WiFi systems, LoRa systems or Internet of Vehicles systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • a communication system 100 includes a network device 101 and a terminal device 102 .
  • the apparatus provided in the embodiment of this application can be applied to the network device 101 or to the terminal device 102.
  • Figure 1 This only shows one possible communication system architecture to which the embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • the network device 101 is a node in a radio access network (radio access network, RAN), which can also be called a base station or a RAN node (or device).
  • RAN radio access network
  • some examples of network devices 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) , Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (base band unit, BBU), or wireless fidelity (Wifi) access point (access point, AP), satellite equipment, or network equipment in 5G communication systems, or networks in possible future communication systems equipment.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver
  • the network device 101 can also be other devices with network device functions.
  • the network device 101 can also be a device that serves as a network device in device-to-device (D2D) communication, Internet of Vehicles communication, and machine communication.
  • the network device 101 may also be a network device in a possible future communication system.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain Radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment 102 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users. , or it can be an IoT device.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices ( For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, smart home equipment ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in driverless driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (such as smart robots, hot air balloons, drones, airplanes), etc.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • vehicle-mounted devices For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • the terminal device may also be other devices with terminal functions.
  • the terminal device may also be a device that serves as a terminal function in D2D communication.
  • terminal equipment with wireless transceiver functions and chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the user plane protocol stack for communication between terminal equipment and network equipment includes the service data adaptation protocol (SDAP) layer and the packet data convergence protocol (PDCP) layer, radio link control (radio link control, RLC) layer, media access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the control plane protocol stack for communication between terminal equipment and network equipment includes a non-access stratum (NAS) layer, a radio resource control (RRC) layer, and a PDCP layer. , RLC layer, MAC layer and PHY layer.
  • NAS non-access stratum
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RRC_CONNECTED RRC idle
  • RRC_INACTIVE RRC inactive
  • RRC_CONNECTED RRC connected
  • RRC_CONNECTED RRC connected
  • the terminal device is in the RRC_CONNECTED state or RRC_INACTIVE state.
  • the terminal device does not establish an RRC connection
  • the terminal device is in the RRC_IDLE state.
  • the RRC_INACTIVE state is a state introduced for terminal equipment in the 5G NR communication system.
  • the RRC_INACTIVE state mainly targets the situation where "terminal equipment with infrequent data transmission is usually maintained in the RRC_INACTIVE state by the network.”
  • the terminal device starts to be in the RRC_IDLE state.
  • the terminal device will perform a random access process to establish (setup) an RRC connection with the network device and enter the RRC_CONNECTED state.
  • the terminal device starts data transmission after entering the RRC_CONNECTED state.
  • the RRC connection is established by the terminal device sending a connection establishment request message, such as RRCSetupRequest, to the network device during the process of initiating random access, and receiving the connection establishment message sent by the network device. For example, RRCSetup message.
  • the network device can release the terminal device to enter the RRC_IDLE state or RRC_INACTIVE state. For example, the network device sends a release message with a suspension indication, such as RRCRelease with suspension indication, causing the terminal device to enter the RRC_INACTIVE state. Or the network device sends a release message, such as an RRCRelease message, to cause the terminal device to enter the RRC_IDLE state.
  • a suspension indication such as RRCRelease with suspension indication
  • a release message such as an RRCRelease message
  • the terminal device in the RRC_INACTIVE state can also return to the RRC_CONNECTED state through a resume (resume) message.
  • the terminal device sends an RRC resume request (RRCResumeRequest) and receives an RRC resume (RRCResume) message, returning to the RRC_CONNECTED state.
  • the network device can also release the terminal device to enter the RRC_IDLE state.
  • the RRC_IDLE state can also be briefly described as the idle state or IDLE state; the RRC_INACTIVE state can also be simply described as the inactive state or INACTIVE state; the RRC_CONNECTED state can also be briefly described as the connected state or activated state or CONNECTED state.
  • RRC states which can also be referred to as states
  • the embodiments of the present application can be used for terminal equipment in the RRC connected state, RRC idle state or RRC inactive state to implement uplink data transmission, or can be used in other states other than the RRC connected state, RRC idle state and RRC inactive state.
  • terminal equipment such as terminal equipment that is not attached to the network or is located on the network for downlink synchronization, to realize uplink data transmission.
  • the terminal device can send uplink data to the network device.
  • One uplink data transmission method is uplink transmission based on dynamic grant (DG) (or dynamic UL grant).
  • DG dynamic grant
  • the terminal can monitor the downlink data transmitted by the base station through the physical downlink control channel (PDCCH).
  • DCI downlink control information
  • DCI carries an uplink grant (UL grant), which can be used to authorize a terminal to use specified parameters, such as a specified modulation and coding scheme (MCS), to send uplink data on specified time-frequency resources.
  • MCS modulation and coding scheme
  • the terminal Before monitoring DCI, the terminal can first send a scheduling request (SR) to the base station through the physical uplink control channel (PUCCH) or report the cache to the base station through the physical uplink shared channel (PUSCH).
  • SR scheduling request
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the buffer state (BS) is used to inform the base station of uplink transmission requirements or cache status, so that the base station can perform uplink authorization and resource scheduling according to needs.
  • the uplink data transmission method provided by the embodiment of the present application may also include data transmission in a random access (random access, RA) process or data transmission based on grant-free (GF).
  • RA random access
  • GF grant-free
  • Data transmission in the RA process and data transmission based on GF can be applied to small data transmission (SDT) scenarios. The following will introduce these two uplink data transmission methods in combination with small packet transmission.
  • the 3rd generation partnership project (3GPP) supports UE to transmit data, such as small packet data, in the RRC idle state or RRC inactive state.
  • the corresponding transmission process can be called small packet transmission.
  • the data amount of the data packets that the UE needs to transmit is usually very small, and the amount of signaling data required for the UE to enter the RRC connected state from the RRC idle state or the RRC inactive state is even greater than that of the small packet transmission. If the UE in the RRC idle state or RRC inactive state is required to enter the connected state before sending small packet data, unnecessary power consumption and signaling overhead will result.
  • supporting terminals to directly transmit small packet data in RRC idle state or RRC inactive state instead of entering RRC connected state and then transmitting small packet data can significantly reduce signaling overhead and power consumption.
  • small packet transmission include: instant messages of instant messaging applications (applications, APPs), heartbeat packets or push messages of various APPs, non-smartphone business data, such as accuracy data of wearable devices (such as heartbeat packets) , periodic readings sent by industrial wireless sensor networks, or data from devices such as smart meters.
  • small packet transmission for UEs in RRC idle state or RRC inactive state can usually be achieved through data transmission in the RA process and data transmission based on GF. These two transmission methods correspond to the following method 1 and method 2 respectively.
  • Method 1 Implement small packet transmission in RA.
  • the small packet transmission process can be called random access small packet transmission (RA SDT).
  • RA SDT random access small packet transmission
  • Small packet transmission based on RA means that the terminal device sends uplink data to the network device or receives downlink data during the RA process.
  • uplink data in this application can also be replaced with downlink data.
  • “send uplink data” and “receive downlink data” can be replaced with each other
  • “send downlink data” and “receive uplink data” can be replaced with each other.
  • RA can include four-step RA (4-step RA) and two-step RA (2-step RA).
  • the terminal device sends message 1 (Msg1) to the network device, and the network device receives message 1 from the terminal device.
  • the message 1 is a random access preamble (hereinafter referred to as the preamble).
  • the preamble is used for
  • the network device estimates the timing advance (TA) of the terminal device.
  • the network device sends message 2 (Msg2) to the terminal device, and the terminal device receives message 2 from the network device.
  • Msg2 message 2
  • message 2 is a random access response (random access response).
  • the terminal device sends message 3 (Msg3) to the network device, and the network device receives message 3 from the terminal device.
  • Uplink data such as small packet data, can be carried in Msg3.
  • the network device sends message 4 (Msg4) to the terminal device, and the terminal device receives message 4 from the network device.
  • the terminal device sends message A (MsgA) to the network device, and the network device receives message A from the terminal device.
  • MsgA message A
  • Uplink data such as small packet data, can be carried in MsgA.
  • the transmission channel of MsgA can include physical random access channel (physical random access channel, PRACH) and physical uplink shared channel (physical uplink shared channel, PUSCH).
  • PRACH is used to send the preamble, which is used by the network equipment to estimate the time advance of the terminal equipment, so that the terminal equipment can achieve uplink synchronization with the network equipment.
  • the terminal device can also send uplink data (such as small packet data) through MsgA's PUSCH. It can also be said that PUSCH can be used to carry uplink data.
  • the network device returns message B (MsgB) to the terminal, and the terminal device receives message B from the network device.
  • Downlink data can be carried in MsgB. Early downlink data can be transmitted on the physical downlink shared channel PDSCH of MsgB.
  • Method 2 GF-based small packet transmission.
  • the process of small packet transmission based on GF is as follows.
  • the network device pre-configures the PUSCH resources and transmission parameters for uplink data transmission for the terminal device in a semi-static manner.
  • the terminal device When the terminal device has uplink data to send, it directly uses the pre-configured PUSCH resources and parameters to send data to the network device. There is no need to receive dynamic uplink authorization from network devices or send preambles for random access.
  • CG includes the first type (Type 1) CG and the second type (Type 2) CG.
  • PUR-based transmission is similar to Type 1 CG-based transmission.
  • Network equipment configures resources and transmission parameters for terminal equipment through RRC signaling, such as configuring one or more of the following parameters: period of time domain resources, open-loop power control related parameters , waveform, redundant version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of HARQ processes, demodulation reference signal (demodulation reference signal, DMRS) related parameters, modulation and coding scheme (modulation and coding scheme, MCS) table, Resource block group (RBG) group size, time domain resources, frequency domain resources, MCS, etc.
  • RRC signaling such as configuring one or more of the following parameters: period of time domain resources, open-loop power control related parameters , waveform, redundant version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of HARQ processes, demodulation reference signal (demodulation reference signal, DMRS) related parameters, modulation and coding scheme (modulation and coding scheme, MCS) table, Resource block group (RBG) group size, time domain resources, frequency domain resources, MCS
  • Type 2 CG-based transmission network equipment adopts a two-step resource configuration method.
  • the network device issues configured authorization configuration information through RRC signaling.
  • This configuration information is used to configure one or more of the following transmission resources and transmission parameters: period of time domain resources, open-loop power control related parameters, waveforms, redundancy Remaining version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of HARQ processes, reference signal related parameters for demodulation, MCS table, RBG group size.
  • the PUSCH transmission of Type2CG is activated by the downlink control information (DCI) scrambled using the configured scheduling radio network temporary identifier (CS-RNTI), and is configured at the same time including time domain resources, Other transmission resources and transmission parameters including frequency domain resources, DMRS, MCS, etc.
  • DCI downlink control information
  • CS-RNTI configured scheduling radio network temporary identifier
  • License-free transmission technology can be applied to the uplink transmission of RRC active terminals.
  • CG transmission of 5G NR configuration (such as Type 1 CG and Type 2 CG) can be applied to the uplink transmission of RRC active terminals.
  • license-free transmission technology can also be applied to uplink transmission of RRC idle state or RRC inactive state terminals.
  • PUR transmission can be applied to LTE idle state terminals for uplink transmission.
  • Type 1 CG transmission can be applied to 5G NR.
  • RRC inactive terminals perform uplink transmission.
  • the terminal device Based on authorization-free small packet transmission, the terminal device does not need to send a preamble, so it is more suitable for scenarios where the terminal device and the network device are in a synchronized state. Compared with the RA-based solution, it can further save signaling overhead and terminal device power consumption.
  • 5G NR also introduces synchronization system/physical broadcast channel block (synchronization system/physical broadcast channel block (SS/PBCH block).
  • SS/PBCH block synchronization system/physical broadcast channel block
  • the SS/PBCH block may also be called synchronization signal block (SSB).
  • SSB can be composed of three parts: primary synchronization signal (PSS), secondary synchronization signal (SSS), and master information block (MIB).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • MIB master information block
  • the network device sends multiple SSBs in a scanning manner in one cycle.
  • Different SSBs correspond to different spatial directions (for example, corresponding to different beams). Therefore, beam indication can also be implemented through SSB, or the SSB can be used as beam information.
  • SSB-1 and SSB-2 cover different areas respectively, and different areas can contain different terminal devices.
  • the number of SSBs can be configured by the network device to the terminal device through system messages.
  • NR supports three SSB numbers: 4, 8, and 64. Generally, the higher the frequency, the greater the number of SSBs, and the narrower the beam used to send SSBs.
  • the terminal device can measure the reference signal receiving power (RSRP) of the SSB sent by the network device.
  • RSRP reference signal receiving power
  • the terminal device can select the access mapped by the SSB.
  • the channel opportunity (RACH occasion, RO) or preamble performs the RA process, where a PRACH time-frequency resource can be called a physical random access channel opportunity. Therefore, if there is a mapping relationship between SSB and RO or preamble, the mapping relationship can be one-to-many, one-to-one, or many-to-one.
  • the terminal can implicitly inform the base station of the selected SSB through the selected RO or preamble.
  • the base station when the base station sends the response message (MsgB or Msg2), it can send in the same spatial direction as the SSB mapped by the RO or preamble selected by the terminal.
  • the terminal receives the response message, it also assumes quasi co-location (quasi co-location).
  • location, QCL) characteristics are the same as the SSB mapped by the selected RO or preamble, so the terminal can be implemented to implicitly indicate the SSB to the network device.
  • QCL characteristics can also be called QCL relationships.
  • QCL relationships mean that two reference signals have certain same spatial parameters. Implementing implicit indication of SSB through RA allows the base station to initially determine the location of the terminal, allowing for more precise beam management. The terminal will measure the SSB sent by the base station.
  • the terminal can select the RO or Preamble mapped by the SSB to perform the RA process.
  • SSB can also have a mapping relationship with authorization-free transmission resources.
  • SSB has a mapping relationship with time-frequency resources (transmission occasion, TO) or DMRS.
  • the relationship can also be one-to-many or one-to-one. Or many to one.
  • the base station configures authorization-free resources for inactive direct small packet transmission through terminal-specific RRC messages, including periodic time-frequency resources. and DMRS resources, as well as transmission parameters such as MCS.
  • the terminal uses the configured time-frequency resources to send data.
  • time-frequency resources are shared by multiple terminals, the base station can distinguish the terminals through DMRS resources such as DMRS ports or DMRS sequences. For example, different terminals use different DMRS ports or sequences.
  • the base station when the base station configures time-frequency resources and DMRS resources for the terminal, it will associate beams such as SSB with the configured resources. In this way, the terminal side selects the time-frequency resource or DMRS resource associated with a certain beam to send data based on the beam measurement results. Beam indication is implemented, and the base station side uses the beam direction to receive data sent by the terminal using the associated DMRS on the associated time-frequency resource.
  • SSBs are mapped to multiple time-frequency resources in the order of DMRS resources (ports or sequences) first, and then time-frequency resources.
  • the base station In order to take into account the transmission of terminals that support GF transmission for all service types in the cell, the base station needs to configure the corresponding SSB for each terminal. However, since the distribution of these terminals in the cell may be completely dispersed, this means that the base station needs to configure SSB for all or most of the terminals.
  • Beam direction (such as SSB) configures associated time-frequency resources and DMRS resources, which will map to Time-frequency resources in the same beam direction are widely spaced in time, which limits the number of terminal devices that can perform multiplexing and transmission within a certain period of time, making it difficult to meet the terminal multiplexing and transmission requirements brought about by the growing number of terminals.
  • the beams are narrower and the beam directions are more, and limited by the number of transceiver channels, the beam directions that the base station can serve at the same time are limited, further limiting the number of terminal devices that can perform multiplexed transmission.
  • terminal equipment can use a data transmission method based on opportunistic multiple access (OpMA) or based on affiliated multiple access (AMA).
  • the data transmission method sends uplink data to the network device.
  • This method can also be called opportunity-based multiple access (OBMA) transmission.
  • the terminal can determine the beam direction based on the received uplink authorization information, and when the beam direction meets the preset conditions, send uplink data to the network device through the time-frequency resources corresponding to the uplink authorization information.
  • the time-frequency resources corresponding to the uplink authorization information are used for the calling terminal to send uplink data, or in other words, the time-frequency resources are allocated to the calling terminal.
  • the first terminal device, the second terminal device and the network device are the execution subjects as an example.
  • the first terminal device may be a first terminal device or a component of the first terminal device
  • the second terminal device may be a second terminal device or a component of the second terminal device.
  • the first terminal device and the second terminal device are different terminal devices respectively.
  • the first terminal device and the second terminal device are different terminals within the coverage area of the same beam.
  • the second terminal device may serve as the main dispatching terminal (or main scheduling terminal), or in other words, the time-frequency resource corresponding to the first uplink authorization information was originally allocated by the network device to the second terminal device.
  • the first terminal device can be used as a slave terminal in this application.
  • the slave terminal in this application can transmit uplink data through the time-frequency resources allocated by the network device to the master terminal under certain conditions.
  • the first terminal device and the second terminal device both serve as slave terminals, or the second terminal device is one or more slave terminals including the first terminal device. In this case, there may be no master terminal, or in other words, no need Distinguish between master terminal and slave terminal.
  • an uplink opportunistic transmission method may include the following steps:
  • the network device configures the relevant parameters of the uplink opportunistic transmission to the first terminal device for the first terminal device to perform uplink transmission.
  • the network device may configure at least one of beam direction, terminal type, transmission resource and transmission parameter to the first terminal device and/or the second terminal device.
  • the network device sends configuration information to the first terminal device or the second terminal device through signaling such as RRC messages, MAC CE or DCI, for configuring the uplink transmission mode and/or related parameters based on opportunistic multiple access.
  • Related Parameters include but are not limited to terminal identification, beam direction, transmission resources used to send data, transmission parameters, parameters used to receive uplink authorization such as radio network temporary identifier (RNTI), control resource set (control resource) set, CORESET), search space (SS) or signaling format (format), etc. Another detail will be described below.
  • relevant parameters for uplink opportunistic transmission may also be preconfigured or predefined.
  • the first terminal device also obtains the first uplink authorization information.
  • the first uplink authorization information comes from the network device, or the first uplink authorization information is sent by the network device to the first terminal device for scheduling uplink data transmission of the second terminal device.
  • the first uplink grant information may be a physical layer signal, for example, the first uplink grant information is DCI, and the first uplink grant information may be sent through the PDCCH.
  • the first uplink authorization information may also be a MAC layer signal, such as a MAC control element (CE).
  • CE MAC control element
  • the first uplink authorization information may be delivered through, for example, PDSCH.
  • DCI is usually scrambled by a specific RNTI before being sent, so the terminal first determines Only the RNTI can correctly receive the DCI sent by the base station to the terminal, and the reception of MAC CE does not need to be scrambled by a specific RNTI.
  • the RNTI used by the first terminal device to receive the first uplink authorization information may be preconfigured by the network device through signaling.
  • the network device may configure the RNTI to the first terminal device through an RRC message, MAC CE or DCI.
  • the first uplink grant information may be used to indicate time-frequency resources (or time-frequency resources corresponding to the first uplink grant information), and the time-frequency resources may be used by the second terminal device to send uplink data.
  • the first uplink authorization information is sent by the network device to the second terminal for scheduling the uplink data transmission of the second terminal, but the first terminal device can also obtain the first uplink authorization information.
  • the parameters configured by the network device to the first terminal device include parameters for the first terminal device to receive the first uplink authorization information.
  • the relevant parameters may include at least one parameter among RNTI, CORESET, search space or signaling format for receiving the first uplink grant information, and the first terminal device may blindly detect the PDCCH to receive the The first uplink authorization information of DCI.
  • the time-frequency resource corresponding to the first uplink grant information is used for uplink transmission of the second terminal device.
  • the first uplink authorization information can be used by the second terminal device to send uplink data using specified parameters (such as MCS) on the corresponding time-frequency resources.
  • the time-frequency resources corresponding to the first uplink authorization information may be time-frequency resources allocated by the network equipment to the master terminal (such as the second terminal device), and the slave terminal (such as the first terminal device) has uplink data transmission.
  • data transmission is performed using the time-frequency resources allocated by the base station to the primary terminal (such as the second terminal device), that is, opportunistic transmission or affiliated transmission.
  • the first terminal device and the second terminal device both serve as slave terminals. Therefore, the time-frequency resources corresponding to the first uplink grant information may be resources allocated by the network device to a group (or at least one) of slave terminals.
  • the time-frequency resource corresponding to the first uplink grant information may be the time-frequency resource indicated by the first uplink grant information.
  • the time-frequency resources can also be used by the first terminal device to send uplink data.
  • the second terminal device may send the first uplink authorization information to the first terminal device after receiving the first uplink authorization information from the network device.
  • the second terminal device may receive the second uplink authorization information sent by the network device, and send the first uplink authorization information to the first terminal device according to the uplink authorization information, to instruct the first terminal to perform uplink according to the first uplink authorization information. data transmission.
  • the first uplink authorization information may be determined based on the second uplink authorization information.
  • the first uplink authorization information may be the same as the second uplink authorization information from the network device, or may be different from the second uplink authorization information, for example, it may be a new one used to indicate time-frequency resources, uplink transmission parameters and beam information. Message or information.
  • the second uplink grant information and/or the first uplink grant information may include at least one of information such as indication information of reference signals associated with beam directions, indication information of transmission resources, indication information of transmission parameters, and other information.
  • the following describes the manner in which the first terminal device determines the time-frequency resources used to send uplink data based on the first uplink grant information.
  • the first uplink grant information may include the time-frequency resource information of the time-frequency resource. That is to say, the time-frequency resource corresponding to the first uplink grant information is indicated by the time-frequency resource information included in the first uplink grant information.
  • the first uplink grant information includes time domain location information and frequency domain location information of the time-frequency resource.
  • the network device can configure a transmission resource set for the terminal through an RRC message or MAC CE or DCI.
  • the first uplink authorization information can carry indication information for indicating a certain transmission resource from the transmission resource set.
  • the transmission resources may include time-frequency resources (i.e., domain resources and frequency domain resources).
  • the transmission resources may also be Including air domain resources, code domain resources (such as DMRS) or multi-access signature (signature), etc.
  • the time-frequency resource determined according to the indication information in the first uplink grant information is also the time-frequency resource corresponding to the first uplink grant information.
  • the first uplink grant information may include an index of a time-frequency resource in the resource set.
  • the time-frequency resource indicated by the first uplink grant information may be a time-frequency resource corresponding to at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information, or That is, the time-frequency resource indicated by the first uplink grant information is implicitly indicated by at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information.
  • at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information corresponds to the transmission resource.
  • the first terminal device may receive a first correspondence relationship from the network device, and the first correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between transmission resources, or the first corresponding relationship may be stored in the first terminal device.
  • the corresponding relationship may be preconfigured by the network device through signaling, or may be defined by a protocol, or may be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the first correspondence determine the time-frequency resource corresponding to the first uplink grant information.
  • the first correspondence relationship can be configured in S801.
  • the RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information can be called used to send the first uplink authorization information for the network device that sends the first uplink authorization information.
  • RNTI, CORESET, search space or signaling format of the message can be called used to send the first uplink authorization information for the network device that sends the first uplink authorization information.
  • At least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may be for one or more terminals (including the first terminal device and/or the second terminal device) )distributed.
  • the first correspondence includes the correspondence between RNTI-1 and time-frequency resource 1.
  • the time-frequency corresponding to the first uplink grant information The resource is time-frequency resource 1.
  • time-frequency resources corresponding to the above first uplink grant information may be time-frequency resources allocated by the network device to the second terminal device. Therefore, the second terminal device can perform uplink transmission through the time-frequency resource.
  • the first uplink authorization information is dynamic authorization information sent by the network device.
  • the second terminal device can send a scheduling request to the network device through PUCCH, or the second terminal device can send the cache status to the network device through PUSCH, and then the network device can send the first uplink authorization information, using for scheduling uplink data transmission of the second terminal device.
  • the first uplink grant information may include time-frequency resources used for uplink data transmission by the second terminal device.
  • the first uplink authorization information may be sent by the network device through unicast, multicast or broadcast.
  • the first uplink grant information may be a physical layer signal, for example, the first uplink grant information is DCI, and the first uplink grant information may be sent through the PDCCH.
  • the first authorization information may also be a MAC layer signal, such as a MAC control element (CE).
  • CE MAC control element
  • the first authorization information may be delivered through, for example, PDSCH.
  • DCI is usually sent after being scrambled by a specific RNTI. Therefore, the terminal must first determine the RNTI before it can correctly receive the DCI sent by the base station to the terminal, while the reception of MAC CE does not need to be scrambled by a specific RNTI.
  • the RNTI used by the first terminal device to receive the first uplink authorization information may be preconfigured by the network device through signaling.
  • the network device may configure the RNTI to the first terminal device through an RRC message, MAC CE or DCI.
  • the RNTI may also be calculated by the first terminal device based on resources such as time domain resources, frequency domain resources, code domain resources, and multiple access signatures.
  • the network device configures transmission resources including time domain resources, frequency domain resources, code domain resources or multiple access signatures, such as authorization-free transmission resources, for the first terminal device.
  • the terminal can calculate the RNTI based on these resources, and Receive the first uplink grant information sent through the PDCCH according to the RNTI.
  • the authorization-free resource is set with a corresponding RNTI, or is set with a corresponding parameter for calculating the RNTI, which is used by the first terminal device to calculate the RNTI.
  • the first uplink authorization information here may be sent by the network device to the second terminal device, and the network device may configure at least one terminal device (including the first terminal device) including time domain resources, frequency domain resources, and code domain in advance.
  • Transmission resources including any one or more of resources or multi-access signatures, such as authorization-free transmission resources, when the network device sends dynamic authorization information to the second terminal device (for example, used to instruct the second terminal device to proceed)
  • the RNTI of the dynamic authorization information will be calculated based on the configured transmission resources, and the dynamic authorization information will be sent based on the RNTI. If the first terminal device has uplink transmission requirements, the RNTI can also be calculated based on the configured transmission resources.
  • the dynamic authorization information can be used as the first uplink authorization information. If the first terminal device does not successfully receive the dynamic grant information according to the RNTI, it means that there is no uplink grant information corresponding to the time-frequency resource.
  • the code domain resources here may be DMRS resources such as DMRS ports, preamble resources or sequence resources.
  • the sequence resources include, for example, ZC (Zadoff-Chu) sequences, covered ZC (covered-ZC) sequences, and pseudo-random noise. (pseudo-noise, PN) sequence, longest linear feedback shift register (M) sequence, Golden sequence, Reed-Muller (Reed-Muller) sequence, discrete Fourier transform (DFT) sequence, Inverse discrete Fourier transform (IDFT) sequence, or Hadamard sequence, etc.
  • the multi-access signatures here include but are not limited to codebooks, patterns, sequences, etc. that can be used to assist or enhance multi-user detection or multi-data reception, such as spreading sequences, spreading patterns ( spreading pattern), resource mapping pattern (resource mapping pattern) or resource hopping pattern (resource hopping pattern), etc.
  • the first uplink authorization information may include explicit indication information of transmission resources and/or transmission parameters, or the first uplink authorization information may include transmission resources and/or transmission parameters.
  • the transmission resources and/or transmission parameters may be used by the first terminal device to send uplink data.
  • transmission resources include but are not limited to any one or more resources such as time domain resources, frequency domain resources, code domain resources or multiple access signature resources.
  • the transmission parameters in this application include but are not limited to parameters such as MCS, power control parameters or the number of repeated transmissions.
  • the first terminal device may send uplink data to the network device according to the transmission resource and/or the transmission parameter.
  • the first uplink grant information may specifically include resource information and/or transmission parameters of transmission resources, so the first uplink grant information may directly indicate the transmission resources and/or transmission parameters.
  • the first uplink authorization information may also be used to indicate a transmission resource from a transmission resource set.
  • the transmission resource set may be indicated by the network device through an RRC message, MAC CE or DCI.
  • the first uplink authorization information may be used to indicate a transmission parameter from a transmission parameter set, and the transmission parameter set may be indicated by the network device through an RRC message, MAC CE or DCI.
  • the first uplink grant information may be used to implicitly indicate transmission resources and/or transmission parameters.
  • the transmission resources and/or transmission parameters may be pre-configured by the network device for the first terminal device through signaling such as RRC, DCI, MAC CE, etc.
  • At least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may correspond to a transmission resource. Therefore, after the first terminal device receives the first uplink grant information, The transmission resource corresponding to at least one of RNTI, CORESET, search space or signaling format may be used as a transmission resource for sending uplink data.
  • At least one of RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information may correspond to a transmission parameter, and at least one of RNTI, CORESET, search space or signaling format may be The corresponding transmission parameters are used as transmission parameters for sending uplink data.
  • the first terminal device may receive a second correspondence relationship from the network device, and the second correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between the transmission parameters, or the second corresponding relationship can be stored in the first terminal device.
  • the corresponding relationship can be preconfigured by the network device through signaling, or it can be defined by the protocol, or it can be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the second correspondence determine transmission parameters.
  • the second correspondence relationship can be configured in S801.
  • the first uplink authorization information may be used by the first terminal device to determine the beam direction corresponding to the first uplink authorization information (or may be referred to as the beam direction of the first terminal device). ), wherein the first uplink grant information may include indication information of a reference signal associated with the beam direction or a beam direction identifier, or the first uplink grant information may be used to implicitly indicate the beam direction.
  • the beam direction can be used by the first terminal device to determine whether to send uplink data in the time-frequency resource corresponding to the first uplink authorization information.
  • the beam here may be a beam used by the network device for reception.
  • the first uplink grant information may include beam indication information (which may also be referred to as beam direction indication information), which is used to explicitly indicate the beam direction.
  • the beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identification.
  • the indication information of the reference signal associated with the beam direction includes, for example, an index characterizing the reference signal of the beam direction, such as an SSB index or a CSI-RS index.
  • the beam direction identifier may be, for example, an index or identifier corresponding to the beam direction.
  • the first terminal device may determine the beam direction according to at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information, which may correspond to the beam direction.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink grant information may correspond to the beam direction. Therefore, after the first terminal device receives the first uplink grant information, it may The beam direction corresponding to at least one of RNTI, CORESET, search space or signaling format is used as the beam direction here, or in other words, the first uplink grant information can be used to implicitly indicate the beam direction.
  • the first terminal device may receive a third correspondence relationship from the network device, and the third correspondence relationship may include at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and
  • the corresponding relationship between the beam directions, or the third corresponding relationship may be stored in the first terminal device.
  • the corresponding relationship may be preconfigured by the network device through signaling, or may be defined by a protocol, or may be Preconfigured in the first terminal device.
  • the first terminal device may further receive the first uplink grant information based on at least one of RNTI, CORESET, search space or signaling format.
  • One and the third correspondence determine the beam direction corresponding to the first uplink grant information.
  • the third correspondence relationship can be configured in S801.
  • the third correspondence includes the correspondence between RNTI-1 and SSB-1 (or the index of SSB-1), and the third correspondence between RNTI-2 and SSB-2 (or the index of SSB-2).
  • the first terminal device may use the beam direction associated with SSB-1 as the beam direction, or in other words, use the SSB-1 as the beam direction.
  • the first terminal device may use the beam direction associated with SSB-2 as the beam direction, or in other words, use the SSB-2 as the beam direction.
  • the first uplink authorization information may come from the second terminal device.
  • the second terminal device may send the first uplink authorization information to the first terminal device according to the second uplink authorization information from the network device.
  • the second terminal device can use any communication link between terminals, such as D2D link, sidelink, bluetooth, etc., to perform unicast or groupcast. ), multicast or broadcast method to send the first uplink authorization information to the first terminal device.
  • the first uplink authorization information can be carried on the physical sidelink control channel (physical sidelink control channel, PSCCH) or the physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • the second terminal device can send a scheduling request to the network device through PUCCH, or the second terminal device can send the buffer status to the network device through PUSCH.
  • the second terminal device can receive the second uplink authorization information from the network device.
  • the second terminal device may determine and send the first uplink authorization information to the first terminal device according to the received second uplink authorization information.
  • the second terminal device may determine the time-frequency resource according to the second uplink grant information (the time-frequency resource is the time-frequency resource corresponding to the second uplink grant information), and carry an indication of the time-frequency resource in the first uplink grant information.
  • the time-frequency resources corresponding to the second uplink grant information and the time-frequency resources corresponding to the first uplink grant information may be the same.
  • the second terminal device may determine, according to the explicit indication carried in the second uplink authorization information, that the second uplink authorization information is used for the second terminal device to transmit uplink data.
  • the second terminal device may determine the second terminal device to be the primary calling terminal according to the explicit indication carried in the second uplink authorization information.
  • the second terminal device is a slave terminal.
  • the first terminal device and the second terminal device serve as a group of slave terminals, and the second terminal device can be configured to receive the The uplink authorization information is forwarded to other slave terminals (for example, including the first terminal device).
  • the first uplink authorization information may also include transmission resources (or indication information of transmission resources) and/or transmission parameters used for the first terminal device to perform uplink transmission to the network device. (or instructions for transmitting parameters).
  • the second uplink authorization information may include transmission resources and/or transmission parameters for the second terminal device to perform uplink transmission
  • the first uplink authorization information may include transmission resources and/or transmission parameters for the first terminal device to perform uplink transmission to the network device.
  • the transmission resources and/or transmission parameters may be the same as the transmission resources and/or transmission parameters included in the second uplink authorization information for the second terminal device to perform uplink transmission.
  • the first uplink authorization information may include indication information of transmission resources and/or transmission parameters used and/or unusable by the first terminal device to parameterize uplink data to the network device.
  • the first uplink grant information may also include beam indication information.
  • the beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identifier.
  • the beam direction may be indicated by the second uplink authorization information.
  • the second uplink authorization information may indicate the beam direction in an explicit or implicit manner.
  • the explicit indication and implicit indication may refer to the first implementation of S802. The method of explicitly or implicitly indicating the beam direction will not be described again.
  • the first uplink authorization information may also include other information used for the first terminal device to perform uplink transmission.
  • Such information includes, for example: the identity of the calling terminal, the identity of the slave terminal, or indication information used to indicate whether to allow the first terminal device (or slave terminal) to perform uplink transmission through the first uplink authorization information (or the time-frequency resource). wait.
  • the identification of the slave terminal can be used to explicitly indicate the slave terminal.
  • the identity of the first terminal device and/or the slave terminal such as UE ID, may include other information that can be used to identify the terminal type. For example, when the terminal can be identified through time-frequency resources, DMRS resources or sequences, the time-frequency corresponding to the terminal Resources, DMRS resources or sequences and other information.
  • the type of terminal in this application refers to the terminal as a master terminal or a slave terminal.
  • the identification of the calling terminal can be used to explicitly indicate the calling terminal (eg, the second terminal device).
  • the identification of the calling terminal may be the terminal's UE ID, or may include other information that can be used to identify the terminal.
  • the identity of the slave terminal and the calling terminal can also be used as the identity of the terminal that is allowed to send data. If the identity of the terminal that receives the first uplink authorization information is not included in the identity of the terminal that is allowed to send data, it means The terminal is not allowed to send uplink data through the first uplink authorization information.
  • the first terminal device may determine itself as a slave terminal based on the first uplink authorization information.
  • the second terminal device may determine itself as the calling terminal according to the second uplink authorization information.
  • the terminal when the terminal receives the uplink authorization information (including the first uplink authorization information and/or the second uplink authorization information), and the uplink authorization information only indicates the calling terminal (such as carrying the identification of the calling terminal), if The terminal determines that it is not the primary calling terminal. If the identity of the primary calling terminal does not include the terminal's identity, one implementation method is that the terminal determines that it is a slave terminal; if the terminal determines that the identity of the calling terminal includes its own identity, then determine Call the main terminal yourself.
  • the terminal receives the uplink authorization information (including the first uplink authorization information and/or the second uplink authorization information), and the uplink authorization information only indicates the subordinate terminal (such as carrying the identification of the subordinate terminal), if the terminal determines that it When it is not a slave terminal, if the identifier of the slave terminal does not include the identifier of the terminal, one implementation method is that the terminal determines itself as the master terminal; if the terminal determines that the identifier of the slave terminal includes its own identifier, it determines itself as the slave terminal. .
  • At least one of RNTI, CORESET, search space or signaling format used to receive uplink grant information may correspond to the master terminal or the slave terminal, so that the uplink authorization information can implicitly indicate the type of terminal.
  • at least one of the RNTI, CORESET, search space or signaling format used to receive the first uplink authorization information has a corresponding relationship (can be called is the fourth corresponding relationship).
  • the network device configures two RNTIs for the terminal, RNTI-1 and RNTI-2, which are respectively associated with the two types of master terminal and slave terminal. When the terminal uses RNTI-1 to receive the dynamic authorization instruction, the terminal determines that it is Master terminal; when the terminal receives a dynamic authorization instruction using RNTI-2, the terminal determines itself as a slave terminal.
  • the indication information used to indicate whether the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource) may include specific bit information in the first uplink grant information. For example, when the value of a specific bit of the first uplink grant information is "0", it indicates that the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource). Indication information, when the value of a specific bit is "1”, indicates indication information that allows the first terminal device (or slave terminal) to perform uplink transmission through the first uplink grant information (or the time-frequency resource).
  • the indication information when the value of a specific bit of the first uplink grant information is "1", it indicates that the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink grant information (or the time-frequency resource)
  • the indication information when the value of the specific bit is "0", indicates the indication information that allows the first terminal device (or slave terminal) to perform uplink transmission through the first uplink authorization information (or the time-frequency resource). It can be understood that in this application, there is no specific requirement for the name of the indication information used to indicate that the first terminal device (or slave terminal) is allowed to perform uplink transmission through the first uplink authorization information (or the time-frequency resource). May also have other names, For example: indication information used to indicate whether slave terminal transmission is allowed, or information used to indicate whether only primary terminal transmission is performed, etc.
  • the first terminal device can transmit uplink data according to the first uplink authorization information; otherwise, if the first uplink authorization information does not include the identification of the first terminal device, or does not include an indication to allow the first terminal device to pass the Instruction information for uplink transmission using time-frequency resources, the first terminal device does not perform uplink transmission according to the first uplink authorization information (or the time-frequency resource), or in other words, the first terminal device ignores the instruction information based on the first uplink authorization information (or the time-frequency resource). time-frequency resources) for uplink transmission.
  • the method of configuring at least one of the first correspondence, the second correspondence, the third correspondence and the fourth correspondence in this application is introduced. It can be understood that at least one of the first correspondence, the second correspondence, the third correspondence and the fourth correspondence can be configured in S801.
  • the network device may send or indicate to the terminal device at least one of RNTI, CORESET, search space or signaling format, and at least one of transmission resources, transmission parameters, beam direction and terminal type.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and a transmission resource
  • the corresponding relationship includes a first corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and a transmission parameter
  • the corresponding relationship includes a second corresponding relationship.
  • the corresponding relationship includes a third corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between at least one of RNTI, CORESET, search space or signaling format and the terminal type, the corresponding relationship includes a fourth corresponding relationship.
  • the first terminal device may receive the first uplink grant information according to At least one of RNTI, CORESET, search space or signaling format and the corresponding relationship, determine the transmission resource, and send uplink data through the transmission resource and/or transmission parameters.
  • the network device may receive uplink data from the first terminal device according to the transmission resources and/or transmission parameters.
  • the first terminal device may receive the first uplink grant information according to the RNTI, CORESET , search space or signaling format and the corresponding relationship, determine the beam direction, and determine whether to send uplink data in the time-frequency resource corresponding to the first uplink authorization information according to the beam direction. For details, see the description in S804.
  • the first terminal device may receive the first uplink authorization information according to the RNTI, CORESET , search space or signaling format and the corresponding relationship, determine the terminal type, and the terminal type is a slave terminal or a calling terminal. If the terminal type is a slave terminal, the first terminal device can execute the process shown in Figure 8 to implement uplink opportunistic transmission or slave transmission.
  • the above correspondence between at least one of the RNTI, CORESET, search space or signaling format and at least one of the transmission resources, transmission parameters, beam direction and terminal type may be stored in the first In the terminal device, for example, the corresponding relationship may be preconfigured by the network device through signaling, may be defined by a protocol, or may be preconfigured in the first terminal device. How to use this correspondence can be seen in the example above. No longer.
  • the first terminal device when the first terminal device receives the first uplink authorization information, it can directly use the time-frequency resource corresponding to the first uplink authorization information to send uplink data without performing S803 of determining the beam direction. and the action of determining whether the beam direction meets the preset conditions in S804. For example, when the first terminal device and the second terminal device have the same beam direction, the base station will configure the first terminal device to receive the first uplink authorization information. At this time, when the first terminal device can receive the first uplink authorization information, By default, the corresponding time-frequency resources can be used to send uplink data.
  • the corresponding relationship between at least two items of information such as beam direction, transmission resources, transmission parameters or terminal type can also be set by the network device or through pre-configuration or pre-defined methods to implicitly indicate the above information.
  • the corresponding relationship between the beam direction and transmission resources and/or transmission parameters can be set, so that after the first terminal device determines the beam direction according to any method shown in this application, the first terminal device can determine the beam direction according to the beam direction and transmission resources and/or The correspondence between transmission parameters determines transmission resources and/or transmission parameters.
  • the first terminal device may also determine the beam direction according to the corresponding relationship after determining the transmission resources and/or transmission parameters according to any method shown in this application.
  • the first terminal device determines the beam direction according to the first uplink authorization information.
  • the first uplink authorization information obtained by the first terminal device may include beam indication information (also referred to as beam direction indication information), which is used to explicitly indicate the beam direction, or the first uplink authorization information may be used to implicitly indicate the beam direction. indicates the direction of the beam.
  • the beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identification.
  • the indication information of the reference signal associated with the beam direction includes, for example, an index characterizing the reference signal of the beam direction, such as an SSB index or a CSI-RS index.
  • the beam direction identifier may be, for example, an index or identifier corresponding to the beam direction.
  • the first terminal device may determine the beam direction according to at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information.
  • the first uplink grant information is carried in DCI, and at least one of the RNTI, CORESET, search space or signaling format used by the first terminal device to receive the first uplink grant information may correspond to the beam direction, so in the first After receiving the first uplink grant information, the terminal device may use the beam direction corresponding to at least one of the RNTI, CORESET, search space or signaling format as the beam direction here.
  • the correspondence between at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and the beam direction may be carried in the relevant parameters in S801.
  • the beam direction may correspond to the transmission resources and/or transmission parameters used by the first terminal device to send uplink data to the network device, and therefore the transmission resources and/or transmission parameters may be implicitly indicated.
  • the first terminal device sends uplink data to the network device through the time-frequency resource corresponding to the first uplink authorization information.
  • the preset conditions include at least one of condition 1 and condition 2.
  • condition 1 is: the signal measurement value corresponding to the beam direction meets the threshold condition.
  • Condition 2 is: the beam direction of the first terminal device includes this beam direction.
  • the first terminal device can determine whether the beam direction needs to meet the preset condition according to the measurement result of the beam direction. For example, when the reference signal can represent the beam direction, the first terminal device determines whether the beam direction meets the preset conditions based on the signal quality measurement value and threshold condition (or signal quality threshold) of the reference signal corresponding to the beam direction.
  • the signal quality here includes but Not limited to reference signal received power (RSRP), received quality (reference signal received quality, RSRP), signal-to-noise and interference ratio (SINR), received signal strength indication (received) Measurement of signal strength indicator (RSSI), path loss (PL), signal angle of arrival (AoA), and time difference of arrival (TDOA).
  • RSRP reference signal received power
  • RSRP received quality
  • SINR received signal-to-noise and interference ratio
  • SI received signal strength indication
  • PL path loss
  • AoA signal angle of arrival
  • TDOA time difference of arrival
  • the preset condition may include whether the beam direction is (or is included in) the network device is the first terminal device and is unlicensed.
  • the beam direction of the transmission configuration If the beam direction is the beam direction configured by the network device for the license-free transmission of the first terminal device, or the beam direction is included in the beam direction configured by the network device for the license-free transmission of the first terminal device, then the first terminal device It can be determined that the beam direction meets the preset conditions.
  • condition 1 and 2 are exemplary conditions.
  • one of condition 1 and condition 2 can be adopted as the preset condition, that is, the first terminal device determines that the preset condition is met when it determines that one of condition 1 and condition 2 is met.
  • a combination of condition 1 and condition 2 may be used as the preset condition, that is, the first terminal device determines that the preset condition is met when it determines that condition 1 and condition 2 are met.
  • the first terminal device may use transmission resources and/or transmission parameters to send uplink data to the network device.
  • the transmission resources and/or the transmission parameters may be determined by the first terminal device based on the first uplink authorization information.
  • the first uplink authorization information may specifically include transmission resource information and/or transmission parameters.
  • the first uplink grant information may also be used to indicate a transmission resource from a transmission resource set, and/or the first uplink grant information may be used to indicate a transmission parameter from a transmission parameter set.
  • the first uplink grant information may be used to implicitly indicate transmission resources and/or transmission parameters.
  • the transmission resources and/or transmission parameters may be pre-configured by the network device for the first terminal device through signaling such as RRC, DCI, MAC CE, etc.
  • time-frequency resources used by the first terminal device to send uplink data to the network device may be part or all of the time-frequency resources corresponding to the first uplink grant information.
  • the network device receives data from the first terminal device.
  • the first terminal device does not send (or ignores sending) uplink data in the time-frequency resource corresponding to the first uplink grant information.
  • the second terminal device may send uplink data through the time-frequency resource corresponding to the first uplink grant information.
  • the network device receives data from the second terminal device.
  • the first terminal device can send uplink data according to the time-frequency resources originally allocated by the network equipment to the second terminal device, thereby improving terminal reuse on time-frequency resources. ability.
  • the first terminal device does not send uplink data according to the first uplink authorization information.
  • the first uplink authorization information is originally used to schedule the uplink transmission of the second terminal device, that is, the calling terminal, and may not instruct the first terminal device to send the HARQ process of uplink data. Therefore, the first terminal device needs to send uplink data when sending uplink data. Reasonably determine the HARQ process.
  • a data transmission method provided by an embodiment of the present application may include steps shown in S901 to S903. The steps are described respectively below.
  • the first terminal device receives the first uplink authorization information, and the time-frequency resource corresponding to the first uplink authorization information is used for uplink transmission of the second terminal device.
  • the manner in which the first terminal device receives the first uplink authorization information can also refer to the introduction in S802, and will not be described again here.
  • the first uplink authorization information may come from the network device, or the first terminal device may receive the first uplink authorization information from the network device.
  • the first uplink authorization information may come from the second terminal device, or in other words, the first terminal device may receive the first uplink authorization information from the second terminal device.
  • the first terminal device determines the first HARQ process number (or first HARQ process number) based on the first uplink authorization information. process).
  • the first HARQ process number can be used by the first terminal device to send uplink data.
  • the manner in which the first terminal device determines the first HARQ according to the first uplink grant information will be described below with reference to an example.
  • the first uplink authorization information includes indication information of the first HARQ process number
  • the first terminal device determines the first HARQ process number according to the indication information of the first HARQ process number.
  • the network device when it sends the first uplink authorization information, it may carry indication information, such as the process number, of the HARQ process number allocated to the slave terminal (including but not limited to the first terminal device).
  • the slave terminal may according to the instruction information indicate The HARQ process number is used as the first HARQ process number.
  • Method 2 The first terminal device determines the first HARQ process number based on at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information.
  • a pre-agreed or pre-configured network device may be used to establish a correspondence between at least one of RNTI, CORESET, search space or signaling format and the HARQ process number of the first terminal device ( can be called the fifth correspondence).
  • the first terminal device may determine the RNTI used to receive the first uplink grant information based on the corresponding relationship.
  • the HARQ process number corresponding to at least one of CORESET, search space or signaling format is used as the first HARQ process number.
  • the pre-agreement in this application includes, but is not limited to, the terminal indicating a certain configuration, parameter or information (such as a mapping relationship or corresponding relationship) to the network device, or may include the network device indicating a certain configuration, parameter or information to the terminal.
  • the determination method of the fifth correspondence relationship may refer to the determination methods of the first to fourth correspondence relationships, which will not be described again.
  • the network device configures RNTI1 and RNTI2 for the first terminal device, corresponding to HARQ process 1 and HARQ process 2 respectively.
  • the slave terminal uses RNTI1 to receive the dynamic authorization
  • the first terminal device determines that the first HARQ process is process 1.
  • the terminal receives the dynamic authorization using RNTI2
  • the first terminal device determines that the first HARQ process is process 2.
  • the first terminal device can receive the first uplink authorization information according to the search space, such as receiving a side link used to carry the first uplink authorization information.
  • Control information sidelink control information, SCI
  • SCI can be carried on PSCCH.
  • Method 3 the first uplink authorization information includes the information of the second terminal device, and the first terminal device determines the first HARQ process number based on the information of the second terminal device.
  • the first terminal device may establish a correspondence relationship between the information of the second terminal device and the HARQ process number of the first terminal device (which may be called a sixth correspondence relationship).
  • the HARQ process number corresponding to the information of the second terminal device can be determined as the first HARQ process number according to the corresponding relationship.
  • the determination method of the sixth corresponding relationship may refer to the determination method of the first to fourth corresponding relationships, which will not be described again.
  • the information about the second terminal device may include the identity of the second terminal device, the time domain resources and/or frequency domain resources used by the second terminal device to send data, and the code domain resources used by the second terminal device to send data. , the HARQ process number of the second terminal device (called the second HARQ process number).
  • the identification of the second terminal device is, for example, a terminal identification (UE ID) of the second terminal device or other information that can be used to identify the second terminal device.
  • UE ID terminal identification
  • the first uplink authorization information received by the first terminal device from the network device may include the terminal identifier of the second terminal device, or in the first uplink authorization
  • the terminal identification may be included in the SCI.
  • the second HARQ process number may be used for uplink transmission of the second terminal device.
  • the second terminal device performs uplink transmission in the time-frequency resource corresponding to the first uplink grant information according to the second HARQ process number.
  • the sixth corresponding relationship may include a function mapping relationship. Therefore, it can also be said that the first terminal device can determine the first HARQ process number according to the second HARQ process number through a certain determination method.
  • the determination method may be pre-agreed between the first terminal device and the network device, or may be configured by the network device, or may be defined by a protocol or pre-configured, and this application does not make specific requirements.
  • a method of determining the first HARQ process number based on the second HARQ process number is, for example, determining the first HARQ process number based on the second HARQ process number and the number of first HARQ processes.
  • the number of first HARQ processes is less than or equal to the maximum number of HARQ processes of the first terminal device.
  • the number of first HARQ processes may be pre-agreed between the first terminal device and the network device, may be configured by the network device, or may be Protocol-defined or pre-configured, this application does not make specific requirements.
  • the first HARQ process number is a non-negative integer.
  • HARQ_num_z the second HARQ process number as HARQ_num_z
  • the first HARQ as HARQ_num_c the first HARQ process number as HARQ_num_c_max as an example
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c HARQ_num_z MOD HARQ_num_c_max;
  • MOD represents the remainder operation.
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c FLOOR(HARQ_num_z/HARQ_num_c_max);
  • FLOOR represents the downward rounding operation
  • / represents the division operation
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c CEIL(HARQ_num_z/HARQ_num_c_max);
  • CEIL represents the upward rounding operation.
  • the first terminal device may also determine the first HARQ process number based on the second HARQ process number, the first HARQ process number, and the HARQ process number offset value.
  • the HARQ process number offset value can be used to distinguish the HARQ process used by the first terminal device when using the time-frequency resources of multiple second terminal devices to send data.
  • the first terminal device may use different HARQ process number offset values to determine different HARQ process numbers.
  • the HARQ process number offset value can be pre-agreed between the first terminal device and the network device, or it can be configured by the network device, or it can be defined by the protocol or pre-configured. This application does not make specific requirements.
  • the HARQ process number offset value is a non-negative integer.
  • the number of the first HARQ process please refer to the description in the previous implementation method.
  • HARQ_num_z Taking the second HARQ process number as HARQ_num_z, the first HARQ as HARQ_num_c, the HARQ process number offset value as HARQ_num_offset, and the first HARQ process number as HARQ_num_c_max as an example, HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c HARQ_num_z MOD HARQ_num_c_max+HARQ_num_offset.
  • MOD represents the remainder operation.
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c FLOOR(HARQ_num_z/HARQ_num_c_max)+HARQ_num_offset.
  • FLOOR represents the downward rounding operation.
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c CEIL(HARQ_num_z/HARQ_num_c_max)+HARQ_num_offset.
  • CEIL represents the upward rounding operation.
  • HARQ_num_c and HARQ_num_z satisfy:
  • HARQ_num_c (HARQ_num_z MOD HARQ_num_c_max+HARQ_num_offset) MOD HARQ_num_max.
  • HARQ_num_max is a non-negative integer, indicating the maximum number of HARQ processes of the first terminal device.
  • HARQ_num_max can be pre-agreed between the first terminal device and the network device, or it can be configured by the network device, or it can be defined by the protocol or pre-configured. This application does not make specific requirements.
  • different HARQ process number offset values can be determined for different calling terminals (such as the second terminal device) through pre-agreement or pre-configuration of the network equipment, so that the first terminal device can follow different third terminal devices.
  • the two terminal devices use different HARQ processes when performing slave transmissions to avoid confusion.
  • the first HARQ process number may be determined for different calling terminals (such as the second terminal device).
  • HARQ process number offset values can be set for the second terminal device 1 and the second terminal device 2, respectively represented as HARQ_num_offset1 and HARQ_num_offset2.
  • HARQ_num_z1 and HARQ_num_z2 are the second HARQ process numbers of the second terminal device 1 and the second terminal device 2 respectively
  • HARQ_num_c_max1 and HARQ_num_c_max2 are the first terminal devices set for the second terminal device 1 and the second terminal device 2 respectively.
  • the number of the first HARQ process For the number of the first HARQ process, please refer to the description in the previous implementation method.
  • the first terminal device may also use the second HARQ process number as the first HARQ process number, or determine the first HARQ process number based on the second HARQ process number and the offset value.
  • the first terminal device may use the HARQ process number determined by pre-agreement or pre-configuration of the network device as the first HARQ process number used when performing slave transmission.
  • the network device may configure the first HARQ process number to the first terminal device.
  • configuring the first terminal device to perform slave transmission includes but is not limited to: configuring whether the first terminal device supports slave transmission, configuring the parameters (such as beam direction, etc.) used by the first terminal device to perform slave transmission, or configuring the third terminal device to perform slave transmission.
  • the transmission method used by a terminal device to perform slave transmission is not specifically limited.
  • the first terminal device may use the HARQ process number determined through pre-agreement or pre-configuration of network equipment as the first HARQ used for subordinate transmission. process number.
  • the first HARQ process number can also be determined by combining one or more of methods 1 to 3.
  • multiple methods in the above methods 1 to 3 can also be implemented in combination with each other, and this application does not make specific requirements.
  • the network device may determine the first HARQ process number in the same or similar manner as the first terminal device.
  • the first HARQ process number used by the first terminal device is determined.
  • the first terminal device uses the first HARQ process number to send uplink data in the time-frequency resource corresponding to the first uplink authorization information.
  • the header of the data packet of the uplink data sent by the first terminal device includes the first HARQ process number.
  • S903 may correspond to S803, or in other words, the first terminal device may use the first HARQ process number to send uplink data when using uplink opportunistic transmission.
  • the first terminal device and the network device can accurately determine the HARQ process number used by the first terminal device to send uplink data.
  • the network device fails to receive the uplink data of the first terminal device, the first terminal device can be instructed to retransmit through the first HARQ process number, thereby improving the reliability of the uplink transmission.
  • the network device can instruct the first terminal device to retransmit through a new data indicator (new data indicator, NDI).
  • new data indicator new data indicator
  • the uplink authorization information can carry the same HARQ process number and NDI as the initial transmission.
  • the uplink authorization information carrying the same HARQ process number may be used to schedule initial transmission or retransmission.
  • the terminal device can determine whether the initial transmission of data or the retransmission of data is scheduled based on whether the NDI is flipped.
  • the uplink authorization information is the same as the HARQ process number of the uplink data previously sent by the terminal device, and the uplink authorization information is the same as the NDI in the uplink authorization information previously scheduled for uplink data, that is, NDI does not occur. If flipped, it means that the current uplink authorization information is used to schedule retransmission of data.
  • the HARQ process number carried in the uplink authorization information is the same as the HARQ process number of the uplink data previously sent by the terminal device, and the uplink authorization information is different from the NDI in the uplink authorization information previously scheduled for the uplink data, that is, the NDI is flipped, then Indicates that the current uplink authorization information is used to schedule initial transmission of data.
  • the first terminal device can also determine the NDI (hereinafter referred to as the first NDI) based on the received first uplink authorization information, and determine the NDI based on the first NDI.
  • Send uplink data when the HARQ process number determined based on the first uplink authorization information is the same as the HARQ process number used in the previous slave transmission of the first terminal device, whether to initially transmit or retransmit the data based on the first uplink authorization information is determined based on the first NDI.
  • the previous slave transmission of the first terminal device may be performed based on the received third uplink authorization information.
  • the third uplink grant information may be used to indicate time-frequency resources, and the first terminal device may initially transmit uplink data according to the time-frequency resources.
  • the uplink data is initial transmission data or retransmission data.
  • the time-frequency resources can also be used by the second terminal device for uplink transmission.
  • the method of determining the time-frequency resources indicated by the third uplink grant information please refer to the method of determining the time-frequency resources corresponding to the first uplink grant information, which will not be described again.
  • the third uplink authorization information here may be the uplink authorization information before the first uplink authorization information. It can also be understood that the first terminal device can also determine the third NDI based on the third uplink authorization information in the same or similar way as determining the first NDI.
  • the third NDI can be understood as the NDI corresponding to the initially transmitted data.
  • the terminal device may store the third NDI.
  • the first terminal device can determine whether the NDI is flipped based on the two NDIs. For example, when the two NDI values are the same, it means that the NDI is not flipped. If the values of the two NDIs are different, it means that the NDI flip has occurred.
  • the value of the first NDI can also be used to indicate whether the NDI is flipped. For example, when the first NDI value is "1", it means that the NDI is flipped; conversely, when the first NDI value is "0", it means that the NDI is not flipped. According to the previous description, if the NDI is not flipped, the first terminal device retransmits the uplink data according to the first uplink authorization information. If the NDI is flipped, the first terminal device initially transmits uplink data according to the first uplink authorization information.
  • the method for the first terminal device to determine the HARQ based on the third uplink authorization information may refer to the description of the first terminal device determining the first HARQ process number based on the first uplink authorization information in S902.
  • the way in which the first terminal device determines the first HARQ process number based on the first uplink authorization information may be the same as or different from the way in which the first terminal device determines the HARQ process number based on the third uplink authorization information, and this application does not make specific requirements.
  • the manner in which the first terminal device receives the third uplink authorization information may refer to the description of the manner in which the first terminal device receives the first uplink authorization information.
  • the third uplink authorization information may come from the network device or the second terminal device (or other calling terminal).
  • the following describes the manner in which the first terminal device determines the first NDI based on the first uplink authorization information.
  • the first uplink authorization information includes the second NDI
  • the first terminal device determines the first NDI according to the second NDI, where the second NDI is the NDI corresponding to the second HARQ process number.
  • the first terminal device may determine the first NDI according to the second NDI of the second terminal device.
  • the corresponding relationship between the first NDI and the second NDI (which may be referred to as the seventh corresponding relationship) may be established in a pre-agreed or pre-configured manner on the network device.
  • the seventh correspondence relationship includes that the first NDI and the second NDI are the same.
  • the determination method of the seventh corresponding relationship may refer to the determination method of the first to fourth corresponding relationships, which will not be described again.
  • the first uplink authorization information includes indication information of the first NDI.
  • the first uplink authorization information includes indication information of the value of the first NDI.
  • the network device may indicate the value of the first NDI through the first uplink authorization information, so that the first terminal device determines whether the data needs to be retransmitted.
  • the first uplink authorization information here indicates retransmission of the first terminal device, or in other words, the first NDI determined according to the first uplink authorization information can be used to determine that the NDI is not flipped.
  • the first uplink authorization information may be sent in the following three situations:
  • the first uplink authorization information is used to schedule retransmission of the second terminal device, and the first terminal device and the second terminal device receive the first uplink authorization information from the network device.
  • the HARQ process number determined by the second terminal device based on the first uplink authorization information is the second HARQ process number
  • the NDI carried in the first uplink authorization information is the same as the NDI carried in the third uplink authorization information, that is, the first
  • the uplink grant information may schedule retransmission by the second terminal device.
  • the network device scrambles the first uplink authorization information through the RNTI shared by the first terminal device and the second terminal device, and both the first terminal device and the second terminal device can receive the first uplink authorization information through the RNTI.
  • the network device does not correctly receive the data of the second terminal device. Therefore, the network device can schedule retransmission of the second terminal device through the first uplink authorization information.
  • the network device does not correctly receive the uplink data of at least one first terminal device.
  • the first terminal device may also include an identification of the first terminal device whose data has not been received correctly.
  • first instruction information instructing the first terminal device to request to send data to the network device to the second terminal device
  • the second terminal device sends a request to the network device.
  • the network device can learn the first terminal device that sends the uplink data according to the second instruction information, so that it can be used without receiving the instruction information.
  • the first terminal device to which the incorrectly received uplink data belongs is determined, so that the first uplink authorization information carries the identity of the first terminal device.
  • the first HARQ process number determined by the first terminal device based on the third uplink authorization information is the same as the first HARQ process number determined based on the first uplink authorization information
  • the first HARQ process number determined based on the first uplink authorization information is the same as the first HARQ process number determined based on the first uplink authorization information.
  • An NDI is the same as the third NDI determined based on the third uplink authorization information. Therefore, the first terminal device can determine the same HARQ process number based on the received first uplink authorization information (that is, the first NDI determined based on the first uplink authorization information).
  • HARQ process number) uplink data or in other words, the first uplink grant information is used to schedule retransmission of the first terminal device.
  • situation 1 can also be replaced by: the second uplink authorization information is used to schedule retransmission of the second terminal device, and the second terminal device sends the first uplink authorization information to the first terminal device after receiving the second uplink authorization information, At this time, the first uplink authorization information comes from the second terminal device.
  • the first uplink authorization information may be determined by the second uplink authorization information.
  • the first HARQ process number determined by the first terminal device based on the first uplink authorization information is the same as the first HARQ process number determined based on the third uplink authorization information
  • the first NDI determined based on the first uplink authorization information is the same as the first HARQ process number determined based on the third uplink authorization information.
  • the third NDI determined by the authorization information is the same, that is, the first uplink authorization information can schedule retransmission of the first terminal device.
  • the first uplink authorization information is sent by the network device to multiple first terminal devices, where the multiple first terminal devices are slave terminals, and the multiple first terminal devices all respond to one or more third uplink Authorization information sends uplink data to network devices.
  • the first uplink grant information can be used to schedule retransmissions of the plurality of first terminal devices.
  • the network device may send the first uplink authorization information through parameters such as RNTI shared by the plurality of first terminal devices, so that the plurality of first terminal devices can receive the first uplink authorization information.
  • the network device can learn the uplink transmissions of the multiple first terminal devices, but does not correctly receive the uplink data of the multiple first terminal devices.
  • the first HARQ process number determined by the first terminal device based on the first uplink authorization information is the same as the first HARQ process number determined based on the third uplink authorization information, and the first terminal device determines the first HARQ process number based on the first uplink authorization information.
  • the first NDI is the same as the third NDI determined according to the third uplink authorization information, that is, the first uplink authorization information can schedule retransmission of the first terminal device.
  • the plurality of first terminal devices may determine the second terminal device according to the first uplink authorization information, so as to determine the first HARQ process number or NDI according to the second terminal device.
  • the first uplink authorization information may carry explicit indication information of the second terminal device, such as the identification of the second terminal device.
  • the first uplink grant information may be used to implicitly indicate the second terminal device.
  • the first terminal device may determine the first terminal device according to at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information. There is a corresponding relationship between the two terminal devices, for example, at least one of RNTI, CORESET, search space or signaling format used to receive the first uplink grant information and the second terminal device.
  • the first uplink authorization information includes the information of the second terminal device, and the first terminal device can determine the first HARQ process number based on the information of the second terminal device.
  • the information of the second terminal device and the method for the first terminal device to determine the first HARQ process number based on the information of the second terminal device are the same as the method for the first terminal device to determine the first HARQ process number based on the first uplink authorization information in step S903. Introduction, no further details.
  • the first uplink authorization information is sent to a first terminal device to instruct the terminal device to retransmit.
  • the RNTI used to scramble the third uplink grant information is an RNTI exclusive to the first terminal device.
  • Case 3 is applicable to the situation where the network device accurately receives the data of the second terminal device, but does not receive the uplink data of the first terminal device.
  • the first terminal device may be one or more slave terminals
  • the network device may send the first uplink authorization information to each slave terminal individually, and each slave terminal may serve as the first terminal device in case 3.
  • the HARQ process number carried in the first uplink authorization information is the second HARQ process number
  • the NDI carried in the first uplink authorization information is the same as the NDI carried in the third uplink authorization information.
  • the first HARQ process number determined by the first terminal device based on the first uplink authorization information is the same as the first HARQ process number determined based on the third uplink authorization information
  • the first NDI determined based on the first uplink authorization information is the same as the first HARQ process number determined based on the third uplink authorization information.
  • the third NDI determined by the authorization information is the same. Therefore, the first terminal device can determine uplink data with the same HARQ process number (that is, the first HARQ process number determined according to the third uplink authorization information) based on the received first uplink authorization information. retransmission.
  • the first uplink authorization information in case 3 may directly carry the first HARQ process number and the third NDI.
  • the first HARQ process number and the third NDI may be sent by the first terminal device to the network device.
  • it can be sent by the first terminal device to the second terminal device, and then sent by the second terminal device to the network device.
  • the first indication information and the second indication information can carry the first HARQ process number and the third NDI. Therefore, When the uplink data of the first terminal device does not correctly receive the corresponding uplink data, the network device may carry the first HARQ process number and the third NDI in the first uplink authorization information, thereby passing the first HARQ process number and the third NDI.
  • the NDI instructs the first terminal device to retransmit.
  • the first terminal device can determine the second terminal device according to the first uplink authorization information.
  • the determination method please refer to the introduction in case 2, which will not be described again.
  • the first terminal device determines to allow the first terminal device to retransmit the uplink data according to the first uplink authorization information.
  • the first uplink authorization information may include information indicating whether the first terminal device is allowed to retransmit the uplink data.
  • the first terminal device may retransmit the uplink data according to the first uplink authorization information.
  • the indication information indicates that the first terminal device is not allowed to retransmit uplink data, even if the HARQ process number determined according to the first uplink authorization information is the first HARQ and the NDI determined according to the first uplink authorization information has not been flipped, the first The terminal device will not retransmit the uplink data.
  • the first terminal device can send uplink data according to the first uplink authorization information, and the uplink data is initial transmission data.
  • the first uplink authorization information may include a status indication, which may be used for at least one of the following statuses: indicating that slave transmission (including initial transmission and retransmission) is not allowed, slave retransmission is allowed but slave initial transmission is not allowed. Transmit or allow slave transmission (including initial transmission and retransmission).
  • the uplink demand (such as the second indication information) of UE-1 (i.e., the first terminal device) is sent to the network device through the MAC CE of the second terminal device.
  • the MAC CE does not include The uplink requirements of UE-2, that is, the second terminal device and UE-1 send initial transmission data based on the third uplink authorization information, and UE-2 does not send initial transmission data based on the third uplink authorization information.
  • the MAC CE cannot be changed, so the MAC CE does not carry the uplink requirements of UE-2.
  • the network device can learn the retransmission of UE-1 based on the MAC CE and receive the retransmission.
  • the network device may carry indication information in the first uplink authorization information to indicate that UE-2's dependent transmission is not allowed, for example, UE-2 (or other dependent terminals other than UE-1) is not allowed to perform initial transmission and/or or retransmit.
  • UE-2 will not send uplink data based on the time-frequency resource corresponding to the first uplink authorization information, or in other words, UE-2 ignores sending data based on the first uplink authorization information.
  • the first uplink grant information may also carry indication information indicating whether UE-1 is allowed to perform dependent transmission, such as indication information indicating whether UE-1 is allowed to perform initial transmission or retransmission.
  • the first indication information may be used to instruct the first terminal device to request to send data to the network device.
  • the second instruction information may Used to instruct the first terminal device to send data to the network device.
  • the first indication information may be used to instruct the first terminal device to perform uplink transmission.
  • the first terminal device may send first indication information to the second terminal device to indicate that the first terminal device sends data to the network device according to the first uplink authorization information
  • the content of the indication may specifically be that the first terminal device is about to send or is sending or has already sent data to the network device based on the third uplink authorization information.
  • the first indication information may be sent after the first terminal device determines to perform uplink transmission, or the first indication information may be sent after the first terminal device determines that the conditions for uplink transmission are met, or the first indication information may be sent after the first terminal device determines that the conditions for uplink transmission are met.
  • the indication information may be sent by the first terminal device after it determines that it has received the third uplink authorization information.
  • the first indication information may also carry the HARQ process number and NDI used by the first terminal device for uplink transmission.
  • the first indication information may be used to indicate that the first terminal device has a need to send uplink data, or the first indication information may be used to instruct the first terminal device to request to send uplink data.
  • the first indication information may be sent through multicast, multicast or broadcast.
  • the first indication information may carry the HARQ process number and NDI used by the first terminal device for uplink transmission.
  • the second terminal device and/or the network device may send third uplink authorization information to the first terminal device according to the first indication information. It can also be said that the first terminal device may not have received the third uplink authorization information when sending the first indication information.
  • the first indication information may be sent by the first terminal device after determining that there is an uplink transmission requirement. For example, optionally, the first indication information may be sent before the first terminal device obtains the first uplink authorization information, or That is, the first indication information may be sent before the first terminal device receives the first uplink authorization information.
  • the first uplink authorization information may instruct the first terminal device to send data to the network device according to the first uplink authorization information.
  • the second terminal device may be configured to receive the fourth uplink authorization information from the network device and send the third uplink authorization information to the first terminal device.
  • the implementation method for the second terminal device to receive the fourth uplink authorization information and send the third uplink authorization information to the first terminal device may refer to S802.
  • the introduction of authorization information will not be repeated.
  • the time-frequency resource corresponding to the fourth uplink grant information is the same as the time-frequency resource corresponding to the third uplink grant information.
  • the time-frequency resources may be used by the second terminal device to send uplink data and second indication information, and/or may be used by the first terminal device to send uplink data.
  • the fourth uplink grant information may also carry indication information or a beam direction identifier of at least one reference signal associated with the beam direction.
  • the second terminal device may send the first indication information (or new indication information determined according to the first indication information) to the network device to indicate that the first terminal device has an uplink transmission requirement, or for Instruct the first terminal device to request uplink transmission, so that the network device sends the relevant parameters of the uplink opportunistic transmission to the first terminal device according to the first indication information (or new indication information, such as the second indication information) and sends a third Uplink authorization information, that is to say, the first terminal device can send the first indication information to the second terminal device before receiving the third uplink authorization information, and the second terminal device sends the first indication information (or according to the first indication New indication information determined by the information) is sent to the network device.
  • the first indication information or new indication information determined according to the first indication information
  • the first indication information may also be used to indicate the beam direction of the first terminal device.
  • the beam direction of the first terminal device may be, for example, the beam direction in which the network device receives the uplink data of the first terminal device.
  • the first indication information may include beam indication information, used to explicitly indicate the beam direction.
  • wave The beam indication information may include indication information of a reference signal associated with the beam direction or a beam direction identification.
  • the indication information of the reference signal associated with the beam direction includes, for example, an index characterizing the reference signal of the beam direction, such as an SSB index or a CSI-RS index.
  • the beam direction identifier may be, for example, an index or identifier corresponding to the beam direction.
  • the second terminal device may determine whether to send the third uplink authorization information to the first terminal device according to the beam direction indicated by the first indication information.
  • the second terminal device may receive fourth uplink authorization information from the network device.
  • the fourth uplink authorization information may carry indication information of a reference signal associated with a beam direction or a beam direction identifier.
  • the beam direction indicated by the uplink authorization information includes the beam direction of the first terminal device indicated by the first indication information, or the beam direction of the second terminal device determined by the second terminal device according to other methods includes the first beam direction indicated by the first indication information. If the beam direction of the terminal device is consistent with the beam direction of the first terminal device indicated by the first indication information, the second terminal device may send the third uplink grant information to the first terminal device.
  • the beam direction indicated by the fourth uplink authorization information does not include the beam direction of the first terminal device indicated by the first indication information, or the beam direction of the second terminal device determined by the second terminal device according to other methods does not include the first
  • the beam direction of the first terminal device indicated by the indication information is inconsistent with the beam direction of the first terminal device indicated by the first indication information, which means that the receiving beam of the network device does not include the reception of the uplink data sent by the first terminal device. Beam, that is, the network equipment cannot receive the uplink data of the first terminal device, or the received signal is poor.
  • the second terminal device can ignore sending the third uplink authorization information to the first terminal device, or the second terminal device does not send the third uplink authorization information to the first terminal device.
  • a terminal device sends third uplink authorization information to improve communication reliability.
  • the first indication information may also be used to indicate the transmission resources and/or transmission parameters used by the first terminal device to send data to the network device.
  • transmission resources include but are not limited to any one or more resources such as time domain resources, frequency domain resources, code domain resources or multiple access signature resources.
  • multi-access signatures include but are not limited to codebooks, patterns, sequences, etc. that can be used to assist or enhance multi-user detection or multi-data reception, such as spreading sequences, spreading patterns, resource mapping patterns or resources. Jump patterns, etc.
  • the transmission parameters in this application include but are not limited to parameters such as MCS, power control parameters or the number of repeated transmissions.
  • the first terminal device may send uplink data to the network device according to the transmission resource and/or the transmission parameter.
  • the code domain resources may include code domain resources for uplink transmission by the first terminal device, so that the network device receives uplink data from the first terminal device according to the code domain resources and reduces reception complexity.
  • the code domain resources may be code domain resources and may include DMRS resources, such as DMRS ports, preamble resources or sequence resources, etc.
  • sequence resources include, for example, ZC sequences, covered ZC sequences, pseudo-random noise sequences, longest Linear feedback shift register sequence, Golden sequence, Reed-Mahler sequence, DFT sequence, IDFT sequence, or Hadema sequence, etc.
  • the transmission resources and/or transmission parameters used by the first terminal device to send data to the network device may be determined by the first terminal device based on the third uplink authorization information.
  • the determination method may refer to S802 for the first terminal device based on
  • the first uplink authorization information determines the description of transmission resources and/or transmission parameters, which will not be described again.
  • the transmission resources and/or transmission parameters used by the first terminal device to send data to the network device may also be pre-configured by the network device for the first terminal device through RRC, MAC CE, and DCI signaling.
  • the first indication information may also be a sequence, which may be used to instruct the first terminal device to perform uplink transmission or the first terminal device to request uplink transmission, or to indicate the identity or terminal type of the first terminal device. , beam direction, transmission resources, or transmission parameters.
  • the sequence has a corresponding relationship with the identity of the first terminal device, terminal type, beam direction, transmission resources, and transmission parameters.
  • the second terminal device may send the first indication to the first terminal device.
  • Response information of the message the response information is used to confirm that the first terminal device sends data to the network device.
  • the response information may be used to confirm to the first terminal device whether the first terminal device can (or is allowed to) send uplink data to the network device. After receiving the response information confirming that the first terminal device can send uplink data to the network device, the first terminal device may send the uplink data to the network device. Otherwise, if the first terminal device does not receive the response information, or the response information received by the first terminal device indicates that the first terminal device cannot send uplink data to the network device, the first terminal device no longer responds according to the third The uplink authorization information sends uplink data to the network device.
  • the second terminal device can use the response information to indicate whether the first terminal device can send uplink data to the network device through the time-frequency resources indicated by the third uplink authorization information. . If the first terminal device receives the response information corresponding to the first indication information for confirming that the first terminal device can send uplink data to the network device, it can send the uplink data to the network device through the time-frequency resource corresponding to the third uplink authorization information.
  • the first terminal device if the first terminal device does not receive the response information, or if the response information received by the first terminal device indicates that the first terminal device cannot send uplink data to the network device, the first terminal device will no longer send the uplink data to the network device according to the first terminal device.
  • the time-frequency resources corresponding to the three uplink authorization information are used to send uplink data to the network device.
  • the response information may also be used to indicate the transmission resources and/or transmission parameters used by the first terminal device for uplink transmission.
  • the above first indication information and/or the response information to the first indication information may be sent to the first terminal in a unicast, multicast, multicast or broadcast manner through, for example, a D2D link, a side link, Bluetooth, etc.
  • the device sends third uplink authorization information.
  • the response information of the first indication information may be carried in the PSCCH or PSSCH, so that the second terminal device indicates the response information to the first terminal device in an explicit manner.
  • the second terminal device can use an implicit method to indicate to the first terminal device whether it can (or is allowed to) send uplink data to the network device.
  • the second terminal device sends information, signals or sequences to the first terminal device, etc. It may not correspond to a specific meaning, but different meanings can be distinguished by the resources carrying the information or signal or sequence.
  • the time-frequency resources of the information or signal or sequence sent by the second terminal device to the first terminal device correspond to the specific meaning of the response information.
  • the second terminal device When the second terminal device uses the first resource to send response information to the first terminal device, it represents Uplink data can be sent to the network device through the time-frequency resource indicated by the third uplink authorization information, or when the second terminal device uses the second resource to send response information to the first terminal device, it means that the time-frequency resource indicated by the third uplink authorization information cannot be used.
  • Time-frequency resources send uplink data to network devices.
  • the information or signal or sequence sent by the second terminal device to the first terminal device corresponds to the specific meaning of the response information.
  • the first sequence corresponds to the time-frequency resource that can be indicated by the third uplink grant information to send uplink to the network device.
  • the second terminal device when the second terminal device sends the first sequence to the first terminal device, it means that it can be sent through the third
  • the time-frequency resources indicated by the uplink authorization information are used to send uplink data to the network device, or when the second terminal device sends the second sequence to the first terminal device, it means that the time-frequency resources indicated by the third uplink authorization information cannot be used to send uplink data to the network device.
  • Upstream data when the second terminal device sends the second sequence to the first terminal device, it means that the time-frequency resources indicated by the third uplink authorization information cannot be used to send uplink data to the network device.
  • the second indication information may indicate one or more of the following information: the presence or absence of a first terminal device sending data to the network device, and the identification and/or number of the first terminal device sending data to the network device. , the beam direction of the first terminal device that sends data to the network device, and the transmission resources and/or transmission parameters used by the first terminal device that sends data to the network device.
  • the second terminal device may determine whether the first terminal device exists according to the received first indication information. Send data to the network device, or determine the identity and/or quantity of the first terminal device that sends data to the network device. For example, when the second terminal device receives the first indication information sent by two first terminal devices, it can determine the number of first terminal devices sent to the network device. The number of first terminal devices to which the network device sends data is two.
  • the manner in which the second indication information indicates the beam direction of the first terminal device may refer to the manner in which the first indication information indicates the beam direction of the first terminal device, which will not be described again.
  • the first indication information and/or the second indication information may include indication information or a beam direction identification of a reference signal associated with a beam direction.
  • the second indication information indicates the presence or absence of the first terminal sending data to the network device, and the second indication information indicates the identification and/or the identity of the first device that sends data to the network device.
  • the quantity, first indication information and/or second indication information indicates the beam direction of the first terminal device and/or the transmission resources and/or transmission parameters used by the first terminal device to send data to the network device.
  • the first method is to directly indicate code domain resources in the first indication information and/or the second indication information.
  • the first indication information and/or the second indication information carries resource information of code domain resources, such as DMRS port number, etc.
  • the second method is that the first indication information and/or the second indication information are associated with code domain resources, and the network device determines the code domain resources according to the association relationship.
  • the first indication information and/or the second indication information indicates the identity of the first terminal device, and the identity of the first terminal device is associated with the code domain resource.
  • the first indication information and/or the second indication information It is a sequence in itself, and the sequence is associated with the first terminal device identifier or the code domain resource used by the first terminal device.
  • the network device can pre-encode and index the slave transmission information of multiple terminal devices, or can pre-configure or define the association between the index of the terminal device and the DMRS port, thereby reducing overhead.
  • the first instruction information only needs to carry the corresponding index.
  • the network device pre-configures the association between the index and the DMRS port shown in Table 1.
  • the first terminal device may carry the index value in the first indication information, indicating that the corresponding DMRS port is used by the first terminal device for uplink transmission.
  • association mentioned here may be configured by the network device to the first terminal device and/or the second terminal device through an RRC message, MAC CE or DCI, or may be preconfigured or predefined.
  • the first terminal device may report the dependent transmission or uplink opportunistic transmission capability to the network device to indicate that the first terminal device supports Slave transfer or upstream opportunistic transfer.
  • the network device can configure the slave transmission or uplink opportunistic transmission mode to the first terminal device (such as a terminal device that supports slave transmission or uplink opportunistic transmission, or broadcast to multiple unspecified terminal devices), or Configure one or more of the following information: parameters used to receive the first authorization information sent by the network device, such as RNTI, CORESET, SS, and signaling format, used to send the first indication information to the second terminal device, or Receive the first authorization information and/or parameters of the response message for the first indication information such as PSCCH and/PSSCH channel configuration parameters sent by the second terminal device, and transmit the transmission resources and/or transmission parameters used to send the data.
  • the first terminal device such as a terminal device that supports slave transmission or uplink opportunistic transmission, or broadcast to multiple unspecified terminal devices
  • the network device can configure the slave transmission or uplink opportunistic transmission mode to the first terminal device (such as a terminal device that supports slave transmission or uplink opportunistic transmission, or broadcast to multiple
  • the network device may indicate the code domain resource to the first terminal device, or indicate the association between the identity of the first terminal device and the code domain resource, or indicate the sequence and the identity of the first terminal device or the identity of the first terminal device. in use The relationship between code domain resources.
  • the transmission resources may include available time-frequency resources and/or frequency domain resources, such as at least one DMRS port. Among them, when configuring the DMRS port, the network device can indicate the association relationship shown in Table 1.
  • the above examples take the code domain resource indication manner as an example to illustrate the manner in which the first indication information and/or the second indication information indicates the code domain resources.
  • the first indication information and/or the second indication information indicates other Information such as the identification of the terminal device, the beam direction, the transmission resource, or the transmission parameter method can be implemented by reference, and this application will not give examples one by one.
  • the second indication information may also be a sequence, which sequence may be used to indicate the presence or absence of the first terminal sending data to the network device, the identity and/or number of the first terminal device sending data to the network device, The beam direction of the first terminal device that sends data to the network device, or the transmission resources and/or transmission parameters used by the first terminal device that sends data to the network device.
  • the sequence is related to the presence or absence of a first terminal sending data to the network device, the identification and/or number of the first terminal device sending data to the network device, the beam direction of the first terminal device sending data to the network device, or the direction of the first terminal device sending data to the network device.
  • the second indication information may be carried in the uplink data sent by the second terminal device to the network device.
  • the time-frequency resource of the uplink data is the time-frequency resource indicated by the third uplink grant information and/or the fourth uplink grant information.
  • the second indication information can also be carried in signaling such as uplink control information (UCI) or MAC CE, which is not specifically limited in this application.
  • UCI uplink control information
  • MAC CE MAC CE
  • the first terminal device may send uplink data to the network device based on the third uplink authorization information.
  • the condition may include but is not limited to the fact that the beam direction satisfies any one of Condition 1 and Condition 2 shown in S804.
  • the conditions for uplink transmission may also include condition 3.
  • Condition 3 For example, the first terminal device determines that the transmission resources used by the first terminal device to send uplink data to the network device do not conflict with the transmission resources used by the second terminal device to send uplink data to the network device, so as to reduce the cost of the first terminal device. Uplink transmission interference between the terminal device and the second terminal device.
  • the non-conflict here means that the transmission resources used by the first terminal device to send uplink data to the network device are different from the transmission resources used by the second terminal device to send uplink data to the network device.
  • the first terminal device and the third terminal device use different transmission resources to send uplink data to the network device.
  • the code domain resources used by the two terminal devices are orthogonal, or the orthogonality of the code domain resources exceeds a set threshold, etc.
  • the second terminal device may send the response information of the first indication information to the first terminal device, for confirming the first terminal device to the first terminal device.
  • Devices may and/or may not perform slave transfers.
  • the second terminal device may determine the transmission resource used by the first terminal device to send the uplink data to the network device. If the resource does not conflict with the transmission resource used by the second terminal device to send uplink data to the network device, response information for confirming that the first terminal device sends data to the network device is sent to the first terminal device.
  • the second terminal device determines that the transmission resources used by the first terminal device to send uplink data to the network device conflict with the transmission resources used by the second terminal device to send uplink data to the network device, it may not send the response information, or send a message for Response information indicating that the first terminal device cannot send uplink data to the network device. Then the first terminal device can confirm that the resources do not conflict when receiving the response information indicating that the first terminal device can perform slave transmission. Therefore, the response information can also be used to indicate that the resources do not conflict, that is, condition 3 is satisfied. Otherwise, if the first terminal device does not receive the response information, or the response information received by the first terminal device indicates that the first terminal device cannot send uplink data to the network device, the first terminal device confirms the resource conflict, that is, it does not Condition 3 is met.
  • the second terminal device may also indicate to the first terminal device the transmission resources used by the second terminal device to perform uplink transmission to the network device, so that the first terminal device determines whether there is a resource conflict.
  • the first terminal device may send uplink data to the network device when any one of the above conditions 1 to 3 is met.
  • the uplink data here includes, but is not limited to: uplink data sent according to the first uplink authorization information, and/or uplink data sent according to the third uplink authorization information.
  • the transmission resources and/or transmission parameters used by the first terminal device to send uplink data to the network device may be determined based on the first uplink authorization information or the third uplink authorization information, or may be determined by the network device through RRC, MAC CE and DCI signaling are pre-configured by the first terminal device.
  • RRC Radio Resource Control
  • MAC CE Packet Control Function
  • DCI signaling are pre-configured by the first terminal device.
  • the network device may receive data from the first terminal device according to the second instruction information. If the second indication information is not received, the network device may ignore the blind detection of the uplink data of the slave terminal.
  • the second indication information may be used to indicate the beam direction of the first terminal device.
  • the second instruction letter may be used to instruct the first terminal device to use transmission resources and/or transmission parameters to send data to the network device.
  • the network device can learn the beam direction and receive uplink data sent by the first terminal device through uplink opportunistic transmission or dependent transmission according to the beam direction.
  • the network device can receive the uplink from the first terminal device through the transmission resources and/or transmission parameters. data. Therefore, the reception efficiency can be improved, blind detection can be reduced, the reception complexity of network equipment can be reduced, and data transmission performance can be improved.
  • the second indication information may also be used to indicate the presence or absence of the first terminal device sending data to the network device, or to indicate the identity and/or quantity of the first device that sends data to the network device.
  • the network device can learn whether there is a first terminal device sending data and/or the number of first terminal devices sending data according to the second indication information, so as to improve the success rate of the network device in detecting data sent by the first terminal device.
  • the second terminal device in this application can send capability information to the network device to indicate that the second terminal device has the ability to support the communication action in this application.
  • the second terminal device may send the capability information to the network device.
  • the capability information may be used to indicate that the second terminal device supports receiving information (such as the first indication information) of the first terminal device (or other terminals performing slave transmission) through the link between terminals, and supports sending the information to the network device. information (such as the second instruction information).
  • the communication device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the embodiment of the present application also provides a data transmission device 1100.
  • the data transmission device 1100 may be a data transmission device, a device or component in the data transmission device, or A device that can be used in conjunction with a data transmission device.
  • the data transmission device 1100 may be a terminal device or a network device.
  • the data transmission device 1100 may include a module that performs one-to-one correspondence with the methods/operations/steps/actions involved in the above method embodiments.
  • the module may be a hardware circuit, software, or hardware. The circuit is combined with software implementation.
  • the data transmission device 1100 may include a processing module 1101 and a transceiver module 1102.
  • the transceiver module 1102 may include a sending module and/or a receiving module.
  • the device when the device is used to perform the method performed by the second terminal device described in the above embodiments, the device may include a transceiver module 1102 and a processing module 1101.
  • the device when the device is used to perform the method described in the first aspect, the device may include a transceiver module and a processing module.
  • the transceiver module 1102 may be used to receive the first uplink authorization information.
  • the processing module 1101 may be configured to determine the first HARQ process number according to the first uplink authorization information.
  • the transceiver module 1102 may also be configured to use the first HARQ process number to send uplink data in the time-frequency resource.
  • the first uplink authorization information please refer to the description in the foregoing method embodiment.
  • the transceiving module 1102 may also be configured to receive the first uplink authorization information from the network device or the second terminal device.
  • the processing module 1101 may also determine the first HARQ process number based on the indication information of the first HARQ process number. Alternatively, the processing module 1101 may also determine the first HARQ process number based on at least one of the wireless network temporary identity RNTI, the control resource set CORESET, the search space or the signaling format used to receive the first uplink grant information. Alternatively, when the first uplink authorization information also includes the information of the second terminal device, the processing module 1101 may determine the first HARQ process number according to the information of the second terminal device. Exemplarily, the information of the second terminal device includes the identification of the second terminal device and/or the second HARQ process number of the second terminal device, and the second HARQ process number is used for the second terminal device. Upstream transmission of terminal devices.
  • the processing module 1101 may also determine the first NDI corresponding to the first HARQ process number according to the first uplink authorization information. Specifically, the transceiver module 1102 may send the uplink data in the time-frequency resource corresponding to the first uplink authorization information according to the first NDI.
  • the processing module 1101 can also determine the second NDI corresponding to the second HARQ process number according to the first uplink authorization information.
  • the second HARQ process number is used for the uplink transmission of the second terminal device, and according to The second NDI determines the first NDI.
  • the processing module 1101 may also determine, based on the first uplink authorization information, to allow the first terminal device to retransmit the uplink data.
  • the processing module 1101 may determine that the first uplink authorization information includes indication information indicating that the first terminal device is allowed to retransmit the uplink data; or; the processing module 1101 may determine based on the request for receiving the At least one of RNTI, CORESET, search space or signaling format of the first uplink grant information determines that the first terminal device is allowed to retransmit the uplink data.
  • the device when the device is used to perform the action of the second terminal device described in the above method embodiment, the device may include a transceiver module 1102 and a processing module 1101.
  • the transceiver module 1102 may be configured to receive the second uplink authorization information from the network device, and may also be configured to send the first uplink authorization information to the first terminal device according to the second uplink authorization information.
  • the processing module 1101 may be configured to generate first uplink authorization information according to the second uplink authorization information.
  • the first uplink authorization information and the second uplink authorization information please refer to the introduction in the first aspect or the second aspect.
  • the apparatus when the apparatus is used to perform the actions of the network device described in the above method embodiment, the apparatus may include a transceiver module 1102 and a processing module 1101.
  • the processing module 1101 may be used to determine the first uplink authorization information
  • the transceiving module 1102 may be used to send the first uplink authorization information or the second uplink authorization information.
  • the first uplink authorization information and the second uplink authorization information please refer to the description of the first uplink authorization information in the third aspect.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. device , it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Figure 12 shows a data transmission device 1200 provided by an embodiment of the present application, which is used to implement the data transmission method provided by the present application.
  • the data transmission device 1200 may be a device or component located in a terminal device, a terminal device, a network device, or a device or component in a network device.
  • the data transmission device 1200 may be a data transmission device, a device in a data transmission device, or a device that can be used in conjunction with a data transmission device.
  • the data transmission device 1200 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the data transmission device 1200 includes at least one processor 1220, which is used to implement the data transmission method provided by the embodiment of the present application.
  • the data transmission device 1200 may also include an output interface 1210, which may also be called an input-output interface.
  • the communication interface is used to communicate with other devices through transmission media. For example, when the data transmission device 1200 is a chip, it transmits with other chips or devices through the output interface 1210 .
  • the processor 1220 is used to implement the method described in the above method embodiment.
  • the device when the device is used to perform the method performed by the second terminal device described in the above embodiments, the device may include an output interface 1210 and a processor 1220.
  • the output interface 1210 may be used to receive first indication information from the first terminal device.
  • the processor 1220 may be configured to generate second indication information according to the first indication information.
  • the output interface 1210 may also be used to send second indication information to the network device.
  • first indication information please refer to the description in the above method embodiment.
  • the output interface 1210 may also be used to send response information of the first indication information to the first terminal device.
  • response information of the first indication information please refer to the description in the above method embodiment.
  • the output interface 1210 may also be used to receive the second uplink authorization information from the network device, and send the first uplink authorization information to the first terminal device.
  • the first uplink authorization information and/or the second uplink authorization information please refer to the description in the above method embodiment.
  • the device when the device is used to perform the method performed by the first terminal device described in the above embodiments, the device may include an output interface 1210 and a processor 1220.
  • the output interface 1210 may be used to send the first instruction information to the second terminal device, and may also be used to send data to the network device.
  • the processor 1220 may be configured to generate first indication information and/or data.
  • first indication information please refer to the introduction in the above method embodiment.
  • the output interface 1210 may also be used to receive response information from the second terminal device to the first indication information.
  • response information please refer to the introduction in the above method embodiment.
  • the device when the device is used to perform the method performed by the network device described in each of the above embodiments, the device may include an output interface 1210 and a processor 1220.
  • the output interface 1210 may be used to send and receive second instruction information from the second terminal device, and may also receive data from the first terminal device.
  • the processor 1220 may be configured to parse the second indication information.
  • the output interface 1210 may also be used to send second uplink authorization information to the second terminal device.
  • the output interface 1210 can also be used to perform actions represented by arrows in the embodiment shown in FIGS. 8 to 9
  • the processor 1220 can also be used to perform actions represented by rectangular boxes in the embodiment shown in FIGS. 8 to 9 .
  • Other operations in will not be described one by one here.
  • the data transmission device 1200 may also include at least one memory 1230 for storing program instructions and/or data.
  • Memory 1230 and processor 1220 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230.
  • Processor 1220 may perform storage in memory 1230 program instructions. At least one of the at least one memory may be integrated with the processor.
  • the memory 1230 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 1220 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • Figure 13 shows a data transmission device 1300 provided by an embodiment of the present application, which is used to implement the data transmission method provided by the present application.
  • the data transmission device 1300 may be a device located in a terminal device, a terminal device, a network device, or a device or component located in a network device.
  • the data transmission device 1300 may be a data transmission device, a device in a data transmission device, or a device that can be used in conjunction with the data transmission device.
  • the data transmission device 1300 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices. Some or all of the data transmission methods provided by the above embodiments can be implemented by hardware or software.
  • the data transmission device 1300 can include: an input interface circuit 1301, a logic circuit 1302, and an output interface circuit. 1303.
  • the input interface circuit 1301 can be used to receive the first instruction information
  • the logic circuit 1302 can be used to perform the processing action of the first terminal device, such as according to the first instruction.
  • the information generates second indication information
  • the output interface circuit 1303 can be used to output the second indication information.
  • the output interface circuit 1303 can be used to output the first instruction information and data
  • the logic circuit 1302 can be used to perform processing actions of the first terminal device, such as generating the first instruction information. and/or data.
  • the input interface circuit 1301 can be used to receive the first instruction information and data
  • the logic circuit 1302 can be used to perform processing actions of the first terminal device, such as parsing the first instruction information and/or or data.
  • the data transmission device 1300 may be a chip or an integrated circuit during specific implementation.
  • Embodiments of the present application provide a computer-readable storage medium storing a computer program.
  • the computer program includes instructions for executing the above method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the above method embodiments.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • This application refers to flowcharts of methods, devices (systems), and computer program products according to embodiments of the application. and/or block diagrams. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法及装置,用以提高在同一个时频资源进行复用传输的终端设备的数量。该方法包括:第一终端装置接收第一上行授权信息。其中,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,第一终端装置根据该第一上行授权信息确定第一HARQ进程号,并采用所述第一HARQ进程号,在所述时频资源发送上行数据。因此第一终端装置可根据第一上行授权信息准确和合理地确定上行机会式传输所采用的HARQ进程,可以提高上行传输可靠性。

Description

一种数据传输方法及装置
相关申请的交叉引用
本申请要求在2022年06月13日提交中华人民共和国知识产权局、申请号为202210661385.0、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
移动通信系统例如第五代移动通信技术(5th generation mobile communication technology,5G)新无线(new radio,NR)系统中,基站通过终端(user equipment,UE)专用(UE-specific)RRC消息为其配置用于非激活态传输(如小包传输)的免授权(grant-free,GF)资源,例如,免授权资源包括周期性时频资源和解调参考信号(demodulation reference signal,DMRS)资源,以及调制编码方式(modulation and coding scheme,MCS)等传输参数。在终端有上行数据包传输需求时,可使用免授权资源发送数据。当时频资源被多个终端共享时,基站可以通过DMRS资源例如DMRS端口或DMRS序列区分终端各自的免授权资源,例如,不同的终端使用不同的DMRS端口或序列接收免授权资源配置。
为了提高在同一个时频资源进行复用传输的终端设备的数量,以满足日益增长的终端数量带来的终端复用传输需求,在上行机会式传输中终端设备(称为从属终端)可以采用网络设备为其他终端设备(称为主调终端)分配的传输资源进行传输。而该传输方式中,从属终端所采用的混合自动请求重传请求(hybrid automatic retransmission request,HARQ)进程的确定方式有待明确。
发明内容
本申请提供一种数据传输方法及装置,用以合理确定从属终端所采用的HARQ进程,从而提高上行传输可靠性。
第一方面,本申请提供一种数据传输方法,用以提高在同一个时频资源进行复用传输的终端设备的数量。该方法可由第一终端装置实施。示例性的,第一终端装置是终端设备(可称为第一终端装置对应的终端设备)或终端设备中的组件实施,本申请中的组件例如处理器、收发器、处理模块或收发模块中的至少一种。本申请中,第一终端装置对应的该终端设备可以是从属终端。以执行主体是第一终端装置为例,该方法可以通过以下步骤实现:第一终端装置接收第一上行授权信息,其中,第一上行授权信息对应的时频资源用于第二终端装置的上行传输,也可以说,第二终端装置对应的终端设备为主调终端。第一终端装置根据第一上行授权信息确定第一HARQ进程号。该第一终端装置采用该第一HARQ进程号,在该时频资源发送上行数据。
基于第一方面所示方法,第一终端装置和网络设备可以准确确定第一终端装置采用上 行机会式传输发送上行数据时采用的HARQ进程号。当网络设备对于第一终端装置的上行数据的接收失败,可通过该第一HARQ进程号指示第一终端装置进行重传,从而可提高上行传输可靠性。
在一种可能的设计中,第一终端装置可接收来自于所述第二终端装置的所述第一上行授权信息。或者,第一终端装置可接收来自于所述网络设备的所述第一上行授权信息。因此,第一终端装置可以灵活获取第一上行授权信息,以满足不同场景下的传输需求。
在一种可能的设计中,所述第一上行授权信息包括所述第一HARQ进程号的指示信息,所述第一终端装置可根据所述第一HARQ进程号的指示信息确定所述第一HARQ进程号。该设计中,第一上行授权信息可显式指示HARQ进程号,从而可令第一终端装置灵活、准确地确定第一HARQ进程号。
在一种可能的设计中,所述第一终端装置根据用于接收所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,确定所述第一HARQ进程号。该设计中,第一上行授权信息可隐式指示HARQ进程号,从而可令第一终端装置灵活、准确地确定第一HARQ进程号。
在一种可能的设计中,所述第一上行授权信息还包括所述第二终端装置的信息,所述第一终端装置可根据所述第二终端装置的信息确定所述第一HARQ进程号。该设计中,第一上行授权信息可指示第二终端装置的信息,由第一终端装置根据第二终端装置的信息确定第一HARQ进程号,同样可以隐式指示HARQ进程号,从而可令第一终端装置灵活、准确地确定第一HARQ进程号。示例性的,所述第二终端装置的信息包括所述第二终端装置的标识和/或所述第二终端装置的第二HARQ进程号,所述第二HARQ进程号用于所述第二终端装置的上行传输。
在一种可能的设计中,所述第一终端装置可根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一NDI。所述第一终端装置可根据所述第一NDI,在所述第一上行授权信息对应的时频资源发送所述上行数据。采用该设计,第一终端装置可根据第一上行授权信息确定第一NDI,进一步根据第一NDI在该时频资源发送上行数据。基于该第一NDI可以实现初传或重传,因此可以提高数据传输可靠性。
在一种可能的设计中,所述第一上行授权信息对应的时频资源具体用于所述第二终端装置的重传。采用该设计,第二终端装置可基于该时频资源进行重传。或者说,该第一上行授权信息还可用于调度第二终端装置的重传。
在一种可能的设计中,所述第一终端装置可根据所述第一上行授权信息确定第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输。所述第一终端装置根据所述第二NDI确定所述第一NDI。采用该设计,第一上行授权信息可指示第二终端装置的HARQ进程号和第二NDI,第一终端装置根据该第二NDI确定第一NDI,实现第一终端装置的NDI的隐式指示。
在一种可能的设计中,所述第一终端装置可根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据。采用该设计,可通过第一上行授权信息指示是否允许第一终端装置,如果允许重传则第一终端装置根据第一上行授权信息进行重传,从而提高传输可靠性,避免在一些情况下由于第一终端装置进行重传对其他上行传输造成的传输干扰。
在一种可能的设计中,所述第一上行授权信息还包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;所述第一终端装置根据用于接收所述第一上行授权 信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定允许所述第一终端装置重传所述上行数据。基于该设计,第一上行授权信息可显示或隐式指示是否允许第一终端装置重传上行数据,实现灵活指示。
第二方面,本申请提供一种数据传输方法,用以提高在同一个时频资源进行复用传输的终端设备的数量。该方法可由第二终端装置实施。示例性的,第二终端装置是终端设备(可称为第二终端装置对应的终端设备)或终端设备中的组件实施,本申请中的组件例如处理器、收发器、处理模块或收发模块中的至少一种。本申请中,第二终端装置对应的该终端设备可以是主调终端。以执行主体是第二终端装置为例,该方法可以通过以下步骤实现:第二终端装置接收来自于网络设备的第二上行授权信息;所述第二终端装置根据所述第二上行授权信息,向所述第一终端装置发送第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于所述第一终端装置确定第一HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据。因此,第二终端装置可以接收来自于网络设备的第二上行授权信息,并向第一终端装置发送第一上行授权信息,使得第一终端装置有机会根据第一上行授权信息向网络设备发送上行数据,其中,该第一上行授权信息还可用于第一终端装置确定第一HARQ进程号,以提高上行传输可靠性。
在一个可能的设计中,第一上行授权信息还用于确定所述第一HARQ进程号对应的第一NDI。示例性的,第一上行授权信息可包括第二HARQ进程号对应的第二NDI,第二HARQ进程号用于所述第二终端装置的上行传输,第二NDI可用于第一终端装置确定第一NDI。
在一个可能的设计中,该时频资源还可用于第二终端装置的重传。或者说,第二上行授权信息还可用于调度第二终端装置的重传。
在一个可能的设计中,所述第二上行授权信息包括在DCI中。
以上第二方面设计的技术术语可参见第一方面中的介绍。
第三方面,本申请提供一种数据传输方法,用以提高在同一个时频资源进行复用传输的终端设备的数量。该方法可由网络设备或网络设备中的组件实施,本申请中的组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是网络设备为例,该方法可以通过以下步骤实现:网络设备确定第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于确定第一HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据;所述网络设备发送所述第一上行授权信息。该第一终端装置可根据第一上行授权信息对应的时频资源向网络设备发送上行数据,其中,该第一上行授权信息还可用于第一终端装置确定第一HARQ进程号,以提高上行传输可靠性。
其中第三方面中的第一上行授权信息可理解为第一方面或第二方面中的第一上行授权信息和/或第二上行授权信息。
在一个可能的设计中,所述第一上行授权信息包括所述第一HARQ进程号的指示信息。
在一个可能的设计中,用于发送所述第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,还用于确定所述第一HARQ进程号。
在一个可能的设计中,所述第一上行授权信息还用于确定所述第一HARQ进程号对应的第一NDI,所述第一NDI用于所述第一终端装置确定在所述时频资源发送所述上行数据。
在一个可能的设计中,所述第一上行授权信息具体用于第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输,所述第二NDI用于确定所述第一NDI。
在一个可能的设计中,所述第一上行授权信息还包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;用于发送所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,还用于确定允许所述第一终端装置重传所述上行数据。
第四方面,提供一种数据传输装置。所述装置可以实现上述第一方面其任意可能的设计所述的方法。所述装置具备上述第一终端装置的功能。所述装置例如为第一终端装置对应的终端设备,或为该终端设备中的功能模块等。
或者,所述装置可以实现上述第二方面及其任意可能的设计所述的方法。所述装置具备上述第二终端装置的功能。所述装置例如为第二终端装置对应的终端设备,或为该终端设备中的功能模块等。
或者,所述装置可以实现上述第三方面及其任意可能的设计所述的方法。所述装置具备上述网络设备的功能。所述装置例如为网络设备,或为该网络设备中的功能模块等。
一种可选的实现方式中,该装置可以包括执行第一方面、第二方面或第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可选的实现方式中,所述装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
示例性的,在该装置用于执行第一方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,收发模块可用于接收第一上行授权信息。处理模块可用于根据第一上行授权信息确定第一HARQ进程号。收发模块还可用于,采用该第一HARQ进程号,在该时频资源发送上行数据。第一上行授权信息可参见第一方面中的描述。
可选的,收发模块还可用于,接收来自于网络设备或第二终端装置的第一上行授权信息。
可选的,当第一上行授权信息包括第一HARQ进程号的指示信息时,处理模块还可根据所述第一HARQ进程号的指示信息确定所述第一HARQ进程号。或者,处理模块还可根据用于接收所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,确定所述第一HARQ进程号。或者,当所述第一上行授权信息还包括所述第二终端装置的信息时,处理模块可根据所述第二终端装置的信息确定所述第一HARQ进程号。示例性的,所述第二终端装置的信息包括所述第二终端装置的标识和/或所述第二终端装置的第二HARQ进程号,所述第二HARQ进程号用于所述第二终端装置的上行传输。
可选的,处理模块还可根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一NDI。收发模块具体可根据所述第一NDI,在所述第一上行授权信息对应的时频资源发送所述上行数据。
可选的,处理模块还可根据所述第一上行授权信息确定第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输,并根据所述第二NDI确定所述第一NDI。
可选的,处理模块还可根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据。
可选的,处理模块可确定所述第一上行授权信息中包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;处理模块可根据用于接收所述第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定允许所述第一终端装置重传所述上行数据。
示例性的,在该装置用于执行第二方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,收发模块可用于接收来自于网络设备的第二上行授权信息,以及,还可用于根据所述第二上行授权信息,向所述第一终端装置发送第一上行授权信息。可选的,处理模块可用于根据第二上行授权信息生成第一上行授权信息,第一上行授权信息以及第二上行授权信息可参见第一方面或第二方面中的介绍。
示例性的,在该装置用于执行第三方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,处理模块可用于确定第一上行授权信息,所述收发模块可用于发送所述第一上行授权信息和/或第二上行授权信息。第一上行授权信息和第二上行授权信息可参见第一方面至第三方面中的说明。
再例如,所述装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面、第二方面或第三方面的方法。可选的,该装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得第一方面至第三方面中任一方面的方法被实现。
第六方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得第一方面至第三方面中任一方面所述的方法被实现。
第七方面,提供一种芯片系统,该芯片系统包括逻辑电路(或理解为,该芯片系统包括处理器,处理器可包括逻辑电路等),还可以包括输入输出接口。该输入输出接口可以用于接收消息,也可以用于发送消息。例如该芯片系统用于实现第一终端装置的功能时,该输入输出接口可用于接收第一上行授权信息。输入输出接口可以是相同的接口,即,同一个接口既能够实现发送功能也能够实现接收功能;或者,输入输出接口包括输入接口以及输出接口,输入接口用于实现接收功能,即,用于接收消息;输出接口用于实现发送功能,即,用于发送消息。逻辑电路可用于执行上述第一方面至第三方面中除收发功能之外的操作;逻辑电路还可用于向输入输出接口传输消息,或者从输入输出接口接收来自其他通信装置的消息。该芯片系统可用于实现上述第一方面至第三方面中任一方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
可选的,该芯片系统还可以包括存储器,存储器可用于存储指令,逻辑电路可调用存储器所存储的指令来实现相应功能。
第八方面,提供一种通信系统,该通信系统可以包括第一终端装置和网络设备,该第一终端装置可以用于执行如上述第一方面所述的方法,该网络设备可以用于执行如上述第三方面所述的方法。
可选的,该通信系统还可以包括第二终端装置,该第二终端装置可用于执行如上述第二方面所述的方法。
以上第二方面至第八方面所带来的技术效果可参见上述第一方面的描述,此处不再赘述。
附图说明
图1为本申请提供的一种无线通信系统的架构示意图;
图2a为一种无线通信系统的协议栈架构示意图;
图2b为另一种无线通信系统的协议栈架构示意图;
图3为RRC状态切换的流程示意图;
图4为一种随机接入方法的流程示意图;
图5为另一种随机接入方法的流程示意图;
图6为本申请提供的一种波束与空间方向关系的示意图;
图7为本申请提供的一种波束与传输资源关系的示意图;
图8为一种上行机会式传输方法的流程示意图;
图9为本申请提供的一种通信方法的流程示意图;
图10为本申请提供的重传过程的信令示意图;
图11为本申请提供的一种通信装置的结构示意图;
图12为本申请提供的另一种通信装置的结构示意图;
图13为本申请提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例提供一种数据传输方法及装置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的数据传输方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的方法还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
为了便于理解本申请实施例,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1 仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些网络设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。网络设备101还可以是其他具有网络设备功能的设备,例如,网络设备101还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备101还可以是未来可能的通信系统中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
下面结合图1所示的通信系统,对本申请实施例提供的数据传输方法做详细说明。
为了更好的理解本申请实施例提供的方案,以下先对本申请实施例涉及到的一些术语、概念或流程进行介绍。
首先介绍一下终端设备的状态。
如图2a所示,在终端设备与网络设备之间进行通信的用户面协议栈中,包括服务数据适配(service data adaptation protocol,SDAP)层、包数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层。
如图2b所示,在终端设备与网络设备之间进行通信的控制面协议栈中,包括非接入(non access stratum,NAS)层、无线资源控制(radio resource control,RRC)层、PDCP层、RLC层、MAC层和PHY层。
针对RRC层,存在几种终端设备的RRC状态,分别为RRC空闲(RRC_IDLE)态,RRC非激活(RRC_INACTIVE)态以及RRC连接(RRC_CONNECTED)态。当终端设备已经建立了RRC连接,则终端设备处于RRC_CONNECTED态或RRC_INACTIVE态。如果终端设备未建立RRC连接,则终端设备处于RRC_IDLE态。其中,RRC_INACTIVE态是在5G NR通信系统中为终端设备引入的一种状态,该RRC_INACTIVE态主要针对的情况为“具有不频繁(infrequent)数据传输的终端设备通常由网络保持在RRC_INACTIVE状态”。
当终端设备处于不同的RRC状态时,均会执行不同的操作。这三种状态之间的转换的流程如图3所示。终端设备开始处于RRC_IDLE状态,当终端设备需要进行数据传输时,终端设备会执行随机接入过程与网络设备建立(setup)RRC连接,进入RRC_CONNECTED态。终端设备在进入RRC_CONNECTED态后开始进行数据传输,其中建立RRC连接是通过终端设备在发起随机接入的过程中向网络设备发送连接建立请求消息,例如RRCSetupRequest,并接收网络设备发送的连接建立消息,例如RRCSetup消息。
当终端设备后续无需进行数据传输时,网络设备可将终端设备释放使其转入RRC_IDLE态或RRC_INACTIVE态。例如,网络设备发送带有暂停指示的释放(release)消息,例如RRCRelease with suspend indication,使终端设备进入RRC_INACTIVE态。或者网络设备发送释放消息,例如RRCRelease消息,使终端设备进入RRC_IDLE态。
另外,处于RRC_INACTIVE态的终端设备还可以通过恢复(resume)消息回到RRC_CONNECTED态,例如终端设备发送RRC恢复请求(RRCResumeRequest)并接收RRC恢复(RRCResume)消息,回到RRC_CONNECTED态。同样,网络设备还可将终端设备释放使其转入RRC_IDLE态。
为了描述简要,RRC_IDLE态也可以简述为空闲态或IDLE态;RRC_INACTIVE态也可以简述为非激活态或INACTIVE态;RRC_CONNECTED态也可以简述为连接态或激活态或CONNECTED态。
综上,对于终端设备的几种RRC状态(也可以简称为状态)已经介绍完毕。本申请实施例可以用于处于RRC连接态、RRC空闲态或RRC非激活态的终端设备实现上行数据传输,或者,可以用于处于RRC连接态、RRC空闲态和RRC非激活态以外的其他状态的终端设备,例如未进行网络附着或位于网络进行下行同步的终端设备,实现上行数据传输,不具体要求。
本申请中,终端设备可向网络设备发送上行数据。
一种上行数据传输方式为基于动态授权(dynamic grant,DG)(或称动态上行授权(dynamic UL grant))的上行传输。该方式中,当终端有用户面数据需要向基站发送时,终端可以监听基站通过下行物理控制信道(physical downlink control channel,PDCCH)下 发的下行控制信息(downlink control information,DCI)。DCI中携带上行授权(uplink grant,UL grant),上行授权可用于授权终端在指定的时频资源上使用指定的参数,如指定的调制编码方案(modulation and coding scheme,MCS)等发送上行数据。终端在监听DCI之前,可以先通过物理上行控制信道(physical uplink control channel,PUCCH)向基站发送调度请求(scheduling request,SR)或通过物理上行共享信道(physical uplink shared channal,PUSCH)向基站上报缓存状态(buffer state,BS),用于将上行发送需求或缓存状态告知基站,便于基站根据需求进行上行授权和资源调度。
可以理解的是,本申请实施例提供的上行数据传输方式还可包括在随机接入(random access,RA)过程中的数据传输或基于免授权(grant-free,GF)的数据传输。在RA过程中的数据传输和基于GF的数据传输可应用于小包传输(small data transmission,SDT)场景,下面将结合小包传输对这两种上行数据传输方式进行介绍。
目前,第三代合作伙伴计划(3rd generation partnership project,3GPP)支持UE在RRC空闲态或RRC非激活态传输数据,如小包数据,相应的传输过程可称为小包传输。其中,在小包传输场景下,UE所需要传输的数据包的数据量通常很小,而UE从RRC空闲态或RRC非激活态进入RRC连接态所需要的信令的数据量甚至会大于小包传输的数据量,如果要求处于RRC空闲态或RRC非激活态的UE进入连接态后再发送小包数据,会导致不必要的功耗和信令开销。因此,支持终端在RRC空闲态或RRC非激活态直接传输小包数据,而不是进入RRC连接态后再传输小包数据,可以显著降低信令开销和功耗。示例性的,小包传输例如:即时通信应用(application,APP)的即时消息、各类APP的心跳包或推送消息、非智能手机的业务数据,如可穿戴设备的准确性数据(如心跳包)、工业无线传感器网络所发送的周期性读书,或智能电表等设备的数据等。
目前,RRC空闲态或RRC非激活态的UE的小包传输通常可以通过如在RA过程中的数据传输和基于GF的数据传输实现,这两种传输方式分别对应于以下方式1和方式2。
方式1:在RA中实现小包传输,该小包传输过程可称为随机接入小包传输(RA SDT)。基于RA的小包传输是指终端设备在RA的过程中,向网络设备发送上行数据或接收下行数据。为方便描述,下文中出现的数据均可理解为上行数据或下行数据。此外,本申请中的上行数据也可替换为下行数据,例如,“发送上行数据”与“接收下行数据”之间可以相互替换,“发送下行数据”与“接收上行数据”之间可以相互替换。
可以理解,RA可以包括四步RA(4-step RA)和两步RA(2-step RA)。
如图4所示,示例了四步RA中小包传输的过程。
S401、终端设备向网络设备发送消息1(Msg1),网络设备从终端设备接收消息1,该消息1为随机接入前导码(random access preamble)(以下可简称为前导码),前导码用于网络设备对终端设备的时间提前量(timing advance,TA)进行估计。
S402、网络设备向终端设备发送消息2(Msg2),终端设备从网络设备接收消息2。
其中,该消息2为随机接入响应(random access response)。
S403、终端设备向网络设备发送消息3(Msg3),网络设备从终端设备接收消息3。
可以在Msg3中携带上行数据,如小包数据。
S404、网络设备向终端设备发送消息4(Msg4),终端设备从网络设备接收消息4。
可选的,在Msg4中携带下行数据。
如图5所示,示例了两步RA中小包传输的过程。
S501、终端设备向网络设备发送消息A(MsgA),网络设备从终端设备接收消息A。
可以在MsgA中携带上行数据,如小包数据。
MsgA的传输信道可以包括物理随机接入信道(physical random access channel,PRACH)和物理上行共享信道(physical uplink shared channel,PUSCH)。PRACH用于发送前导码,用于网络设备对终端设备的时间提前量进行估计,使终端设备实现与网络设备的上行同步。终端设备还可以通过MsgA的PUSCH发送上行数据(如小包数据),也可以说,PUSCH可用于承载上行数据。
S502、网络设备向终端返回消息B(MsgB),终端设备从网络设备接收消息B。
可以在MsgB中携带下行数据。可以在MsgB的物理下行共享信道PDSCH上传输早传的下行数据。
方式2:基于GF的小包传输。基于GF的小包传输的过程如下所述。
网络设备通过半静态的方式为终端设备预配置用于上行数据传输的PUSCH资源以及传输参数,当终端设备有上行数据需要发送时,直接使用预配置的PUSCH资源和参数向网络设备发送数据,而不必接收网络设备的动态上行授权,也不必发送前导码进行随机接入。
LTE中基于预配置上行资源(pre-configured uplink resource,PUR)传输和NR中基于配置的授权(configured grant,CG)传输都属于上行免授权传输范畴。其中,CG包括第一类(Type 1)CG和第二类(Type 2)CG。基于PUR的传输和基于Type 1 CG的传输类似,网络设备通过RRC信令为终端设备配置资源和传输参数,例如配置以下一种或多种参数:时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调参考信号(demodulation reference Signal,DMRS)相关参数、调制编码方式(modulation and coding scheme,MCS)表格、资源块(resource block group,RBG)组大小、以及时域资源、频域资源、MCS等。
基于Type 2 CG的传输中,网络设备采用两步的资源配置方式。首先,网络设备通过RRC信令下发配置的授权配置信息,该配置信息用于配置以下一种或多种传输资源和传输参数:时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调用参考信号相关参数、MCS表格、RBG组大小。然后由使用配置的调度无线网络临时标识符(configured scheduling radio network temporary identifier,CS-RNTI)加扰的下行控制信息(downlink control information,DCI)激活Type2CG的PUSCH传输,并同时配置包括时域资源、频域资源、DMRS、MCS等在内的其他传输资源和传输参数。
免授权传输技术可以应用于RRC激活态终端的上行传输,例如,5G NR配置的CG传输(如Type 1 CG和Type 2 CG)可以应用于RRC激活态终端的上行传输。此外,免授权传输技术也可以应用于RRC空闲态或RRC非激活态终端的上行传输,例如,PUR传输可应用于LTE空闲态终端进行上行传输,又如,Type 1 CG传输可应用于5G NR RRC非激活态终端进行上行传输。
基于免授权的小包传输,终端设备不需要发送前导码,因此更适用于终端设备与网络设备处于同步状态的场景,相比基于RA的方案,可以进一步节省信令开销和终端设备功耗。
另外,5G NR还引入了同步信号/物理广播信道块(synchronization system/physical  broadcast channel block,SS/PBCH block),本申请中,SS/PBCH block也可以称为同步信号块(synchronization signal block,SSB)。SSB可由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、主信息块(master information block,MIB)三部分组成。
网络设备在一个周期中以扫描的方式发送多个SSB,不同的SSB对应不同的空间方向(例如对应不同的波束),因此也可以通过SSB实现波束指示,或者,SSB可作为波束信息。例如图6所示,SSB-1和SSB-2分别覆盖不同区域,不同区域可包含不同的终端设备。SSB的数量可由网络设备通过系统消息配置给终端设备,NR支持4、8、64三种SSB数量。通常情况下,频点越高,SSB数量越多,发送SSB的波束越窄。
终端设备可对网络设备发送的SSB测量参考信号接收功率(reference signal receiving power,RSRP),当某个SSB的RSRP测量结果大于或等于预设门限时,终端设备可以选择该SSB所映射的接入信道时机(RACH occasion,RO)或前导码执行RA过程,其中,一个PRACH时频资源可以称为一个物理随机接入信道时机。因此,SSB与RO或前导码有映射关系的,该映射关系可以是一对多、一对一、多对一的。终端在执行两步RA或四步RA时,可通过选择的RO或前导码,用隐式的方式将所选择的SSB告知基站。这样基站在发送响应消息(MsgB或Msg2)时,可以使用与终端所选择的RO或前导码所映射的SSB相同的空间方向发送,终端在接收响应消息时,也假设准共址(quasi co-location,QCL)特性与所选择的RO或前导码所映射的SSB相同,因此可以实现终端向网络设备隐式指示SSB。QCL特性也可以称为QCL关系,QCL关系指:两个参考信号之间具有某些相同的空间参数。通过RA实现SSB的隐式指示,可以让基站初步确定终端的位置,从而进行更精确的波束管理。终端会对基站发送的SSB进行测量,当某个SSB的测量结果超过预设门限时,终端可以选择该SSB所映射的RO或Preamble执行RA过程。与RA类似,GF传输中,SSB也可以与免授权传输资源有映射关系,例如SSB与时频资源(transmission occasion,TO)或DMRS有映射关系,该关系也可以是一对多、一对一或者多对一的。
基于以上对于小包传输的介绍和对于SSB配置方式的介绍,在目前的GF传输中,基站通过终端专用RRC消息为其配置用于非激活态直接小包传输的免授权资源,包括周期性时频资源和DMRS资源,以及MCS等传输参数。终端有上行数据包传输需求时,使用所配置的时频资源发送数据。当时频资源被多个终端共享时,基站可以通过DMRS资源例如DMRS端口或DMRS序列区分终端,例如不同的终端使用不同的DMRS端口或序列。
此外,基站为终端配置时频资源以及DMRS资源时,会为所配置的资源关联波束如SSB,这样,终端侧根据波束测量结果,选择某个波束关联的时频资源或DMRS资源发送数据,以实现波束指示,而基站侧则使用该波束方向在关联的时频资源上使用关联的DMRS接收终端发送的数据。波束方式与免授权时频资源和DMRS资源的一种关联方法例如是,N(N>=1)个SSB按照先DMRS资源(端口或序列)、再时频资源的顺序映射到多个时频资源和DMRS的组合上。例如,当N=2时,两个不同的SSB可以映射到不同的时频资源(如图7中的情况1所示)或同一个时频资源上的不同的DMRS资源(如图7中情况2所示)。
为了兼顾小区内所有业务类型支持GF传输的终端的传输,基站需要为每个终端配置相应的SSB,然而由于这些终端在小区的分布可能是完全分散的,这意味着基站需要为全部或者大部分波束方向(如SSB)配置关联的时频资源和DMRS资源,这就会使得映射到 同一个波束方向的时频资源在时间上间隔较大,导致一定时间内进行复用传输的终端设备的数量受限,难以满足日益增长的终端数量带来的终端复用传输需求。另外,在高频场景下,波束更窄,波束方向更多,且受限于收发通道数量,基站同时能服务的波束方向有限,进一步限制了能够进行复用传输的终端设备的数量。
此外,为了提高上行数据传输的复用传输能力,终端设备可通过基于机会式多址接入(opportunistic multiple access,OpMA)的数据传输方法或基于从属多址接入(affiliated multiple access,AMA)的数据传输方法向网络设备发送上行数据,该方法也可称为基于机会的多址接入(opportunity-based multiple access,OBMA)传输。在上行机会式传输中,终端可根据接收的上行授权信息确定波束方向,并在波束方向满足预设条件时,通过上行授权信息对应的时频资源向网络设备发送上行数据。其中,上行授权信息对应的时频资源用于主调终端发送上行数据,或者说,该时频资源是为主调终端分配的。
下文中,以第一终端装置、第二终端装置和网络设备是执行主体为例进行描述。其中,第一终端装置可以是第一终端设备或第一终端设备中的组件,第二终端装置可以是第二终端设备或第二终端设备中的组件。可选的,第一终端设备与第二终端设备分别为不同的终端设备,例如可选的,第一终端设备和第二终端设备为同一个波束的覆盖区域内的不同终端。本申请中,第二终端设备可作为主调终端(或主调度终端),或者说,第一上行授权信息对应的时频资源原本是网络设备为第二终端设备分配的。第一终端设备在本申请中可作为从属终端,本申请中的从属终端在一些条件下可通过网络设备为主调终端分配的时频资源进行上行数据的传输。或者,第一终端设备和第二终端设备均作为从属终端,或者,第二终端设备为包括第一终端设备的一个或多个从属终端,此时可以不存在主调终端,或者说,不需要区分主调终端和从属终端。
下面结合图8对该方法的流程进行介绍。
如图8所示,一种上行机会式传输方法可包括以下步骤:
S801:网络设备向第一终端装置配置上行机会式传输的相关参数,用于第一终端装置进行上行传输。
例如,S801中,网络设备可向第一终端装置和/或第二终端装置配置波束方向、终端类型、传输资源和传输参数中的至少一项。例如,网络设备通过RRC消息、MAC CE或DCI等信令向第一终端装置或第二终端装置发送配置信息,用于配置基于机会式多址接入的上行传输模式和/或相关参数,相关参数包括但不限于终端标识、波束方向、用于发送数据的传输资源、传输参数、用于接收上行授权的参数如无线网络临时标识符(radio network temporary identifier,RNTI)、控制资源集(control resource set,CORESET)、搜索空间(search space,SS)或信令格式(format)等。另一个具体将结合下文进行描述。
该步骤为可选的。例如,上行机会式传输的相关参数也可以是预配置或预定义的。
S802:第一终端装置还获取第一上行授权信息。
在S802的第一种实现方式中,第一上行授权信息来自于网络设备,或者,第一上行授权信息由网络设备发送至第一终端装置,用于调度第二终端装置的上行数据传输。
示例性的,该第一上行授权信息可以是物理层信号,例如,第一上行授权信息为DCI,该第一上行授权信息可通过PDCCH发送。又如,第一上行授权信息也可以是MAC层信号,例如MAC控制信元(control element,CE),此时第一上行授权信息可通过例如PDSCH下发。两者的区别在于,DCI通常会经过特定的RNTI加扰之后再发送,因此终端先确定 RNTI才能正确接基站发送给该终端的DCI,而MAC CE的接收则不需要通过特定的RNTI加扰。
其中,如果第一上行授权信息为DCI,此时第一终端装置接收第一上行授权信息所使用的RNTI可以是网络设备通过信令预配置的。例如,网络设备可通过RRC消息、MAC CE或DCI向第一终端装置配置该RNTI。
其中,该第一上行授权信息可用于指示时频资源(或称为第一上行授权信息对应的时频资源),该时频资源可用于第二终端装置发送上行数据。
应理解,第一上行授权信息是网络设备发送第二终端用于调度第二终端的上行数据传输,但是第一终端装置也可以获得该第一上行授权信息。例如,S801中,网络设备向第一终端装置配置的参数包括用于第一终端装置接收该第一上行授权信息的参数。举例来说,在S801中,相关参数可包括用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个参数,第一终端装置可盲检PDCCH以接收承载于DCI的第一上行授权信息。
其中,第一上行授权信息对应的时频资源用于第二终端装置的上行传输。或者说,第一上行授权信息可用于第二终端装置在对应的时频资源上使用指定的参数(如MCS)等发送上行数据。也就是说,第一上行授权信息对应的时频资源可以是网络设备为主调终端(如第二终端装置)分配的时频资源,而从属终端(如第一终端装置)在有上行数据传输需求时,借助基站分配给主调终端(如第二终端装置)的时频资源进行数据传输,即进行机会式(opportunistic)传输或从属(affiliated)传输。或者,第一终端装置和第二终端装置均作为从属终端,因此,该第一上行授权信息对应的时频资源可以是网络设备为一组(或至少一个)从属终端分配的资源。
本申请中,第一上行授权信息对应的时频资源可以是第一上行授权信息指示的时频资源。该时频资源还可用于第一终端装置发送上行数据。
又如,在S802的第二种实现方式中,第二终端装置可在接收来自于网络设备的第一上行授权信息后,将第一上行授权信息发送至第一终端装置。或者,第二终端装置可接收网络设备所发送的第二上行授权信息,并根据该上行授权信息向第一终端装置发送第一上行授权信息,以指示第一终端根据第一上行授权信息进行上行数据传输。该第一上行授权信息可以是根据第二上行授权信息确定的。其中,该第一上行授权信息可以与来自于网络设备的第二上行授权信息相同,也可以与第二上行授权信息不同,例如是用于指示时频资源、上行传输参数和波束信息的新的消息或信息。此时,第二上行授权信息和/或第一上行授权信息可包括波束方向关联的参考信号的指示信息、传输资源的指示信息、传输参数的指示信息等信息中的至少一项。
下面说明第一终端装置根据第一上行授权信息确定发送上行数据所使用的时频资源的方式。
作为一种示例,第一上行授权信息可包括该时频资源的时频资源信息,也就是说,第一上行授权信息对应的时频资源由第一上行授权信息包括的时频资源信息指示,例如,第一上行授权信息中包括时频资源的时域位置信息和频域位置信息。
作为另一种示例,网络设备可以通过RRC消息或MAC CE或DCI为终端配置传输资源集合,该第一上行授权信息中可携带指示信息,用于从传输资源集合中指示某个传输资源。其中,传输资源可包括时频资源(即时域资源和频域资源),此外,该传输资源还可 包括空域资源、码域资源(如DMRS)或多址接入签名(signature)等。根据第一上行授权信息中的指示信息确定的该时频资源也就是第一上行授权信息对应的时频资源。例如,第一上行授权信息可包括该资源集合中的时频资源的索引。
作为另一种示例,第一上行授权信息指示的时频资源可以是用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的时频资源,或者说,第一上行授权信息指示的时频资源是通过用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个隐式指示的。例如,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,对应于传输资源。可选的,第一终端装置可从网络设备接收第一对应关系,该第一对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源之间的对应关系,或者,该第一对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第一对应关系确定第一上行授权信息对应的时频资源。可选的,第一对应关系可以在S801中配置。
可以理解,本申请中,用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式,对于发送第一上行授权信息的网络设备来说,可称为用于发送第一上行授权信息的RNTI、CORESET、搜索空间或信令格式。
可选的,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,可以是针对一个或多个终端(包括第一终端装置和/或第二终端装置)分配的。
举例来说,第一对应关系包括RNTI-1与时频资源1之间的对应关系,当第一终端装置根据RNTI-1接收到第一上行授权信息,则第一上行授权信息对应的时频资源为时频资源1。
应理解,以上第一上行授权信息对应的时频资源可以是网络设备为第二终端装置分配的时频资源。因此,第二终端装置可通过该时频资源进行上行传输。
在S802的第一种可能的实现方式中,第一上行授权信息是网络设备发送的动态授权信息。例如根据本申请中的介绍,第二终端装置可通过PUCCH向网络设备发送调度请求,或者,第二终端装置可通过PUSCH向网络设备发送缓存状态,之后网络设备可发送第一上行授权信息,用于调度第二终端装置的上行数据传输。可选的,该第一上行授权信息中可包括用于第二终端装置进行上行数据传输的时频资源。可选的,第一上行授权信息可以是网络设备通过单播、组播或广播方式发送的。
示例性的,该第一上行授权信息可以是物理层信号,例如,第一上行授权信息为DCI,该第一上行授权信息可通过PDCCH发送。又如,第一授权信息也可以是MAC层信号,例如MAC控制信元(control element,CE),此时第一授权信息可通过例如PDSCH下发。两者的区别在于,DCI通常会经过特定的RNTI加扰之后再发送,因此终端先确定RNTI才能正确接基站发送给该终端的DCI,而MAC CE的接收则不需要通过特定的RNTI加扰。
其中,如果第一上行授权信息为DCI,此时第一终端装置接收第一上行授权信息所使用的RNTI可以是网络设备通过信令预配置的。例如,网络设备可通过RRC消息、MAC CE或DCI向第一终端装置配置该RNTI。
或者,该RNTI也可以是第一终端装置根据时域资源、频域资源、码域资源、多址接入签名等资源推算的。例如,网络设备为第一终端装置配置了包括时域资源、频域资源、码域资源或多址接入签名等在内的传输资源例如免授权传输资源,终端可以根据这些资源推算RNTI,并根据RNTI接收通过PDCCH发送的第一上行授权信息。例如,免授权资源设置有对应的RNTI,或设置有对应的用于推算RNTI的参数,用于第一终端装置推算RNTI。
应理解,这里的第一上行授权信息可以是网络设备针对第二终端装置发送的,网络设备可以提前向至少一个终端装置配置(包括第一终端装置)包括时域资源、频域资源、码域资源或多址接入签名等中任意一项或多项在内的传输资源例如免授权传输资源,当网络设备向第二终端装置发送动态授权信息(例如,用于向第二终端装置指示进行上行传输的时频资源)时,会根据该配置的传输资源推算动态授权信息的RNTI,并根据该RNTI发送动态授权信息。如果第一终端装置有上行传输需求,则也可根据该配置的传输资源推算RNTI,如果第一终端装置根据该RNTI成功接收该动态授权信息,则该动态授权信息可作为第一上行授权信息。如果第一终端装置未根据该RNTI成功接收到动态授权信息,则表示不存在对应于该时频资源的上行授权信息。
其中,这里的码域资源可以是DMRS资源如DMRS端口、前导码资源或序列资源等,其中,序列资源例如包括ZC(Zadoff-Chu)序列、覆盖的ZC(covered-ZC)序列、伪随机噪声(pseudo-noise,PN)序列、最长线性反馈移位寄存器(M)序列、Golden序列、里德-马勒(Reed-Muller)序列、离散傅里叶变换(discrete Fourier transform,DFT)序列、离散傅里叶反变换(inverse discrete Fourier transform,IDFT)序列,或哈德马(Hadamard)序列等。
这里的多址接入签名包括但不限于能用于或辅助或增强多用户检测或多数据接收的码本(codebook)、图案、序列等,例如扩频序列(spreading sequence)、扩频图案(spreading pattern)、资源映射图案(resource mapping pattern)或资源跳变图案(resource hopping pattern)等。
在该第一种实现方式中,第一上行授权信息可包括传输资源和/或传输参数的显式指示信息,或者,第一上行授权信息可包括传输资源和/或传输参数。该传输资源和/或传输参数可用于第一终端装置发送上行数据。本申请中,传输资源包括但不限于时域资源、频域资源、码域资源或多址接入签名资源等任意一项或多项资源。本申请中的传输参数包括但不限于MCS、功控参数或重复传输次数等参数。第一终端装置可根据该传输资源和/或该传输参数向网络设备发送上行数据。
具体的,第一上行授权信息具体可包括传输资源的资源信息和/或传输参数,因此第一上行授权信息可直接指示传输资源和/或传输参数。或者,第一上行授权信息也可用于从传输资源集合中指示一个传输资源,该传输资源集合可以是网络设备通过RRC消息、MAC CE或DCI指示的。和/或,第一上行授权信息可用于从传输参数集合中指示一个传输参数,该传输参数集合可以是网络设备通过RRC消息、MAC CE或DCI指示的。
此外,第一上行授权信息可用于隐式指示传输资源和/或传输参数。可选的,该传输资源和/或传输参数可以是网络设备通过RRC、DCI、MAC CE等信令为第一终端装置预先配置的。
例如前面的说明,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于传输资源,因此在第一终端装置在接收第一上行授权信息后, 可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的传输资源作为用于发送上行数据的传输资源。
同理,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于传输参数,可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的传输参数作为用于发送上行数据的传输参数。
可选的,第一终端装置可从网络设备接收第二对应关系,该第二对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与传输参数之间的对应关系,或者,该第二对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第二对应关系确定传输参数。可选的,第二对应关系可以在S801中配置。
此外,可选的,在S802的第一种实现方式中,第一上行授权信息可用于第一终端装置确定第一上行授权信息所对应的波束方向(或可称为第一终端装置的波束方向),其中,第一上行授权信息中可包括该波束方向关联的参考信号的指示信息或波束方向标识,或者,第一上行授权信息可用于隐式指示该波束方向。其中,波束方向可用于第一终端装置确定是否在第一上行授权信息对应的时频资源发送上行数据,具体可参见S804中的描述,这里暂不展开。这里的波束可以是网络设备进行接收所使用的波束。
作为一种示例,第一上行授权信息中可包括波束指示信息(也可称为波束方向的指示信息),用于显式指示波束方向。示例性的,波束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识。波束方向关联的参考信号的指示信息例如包括表征波束方向的参考信号的索引,例如SSB索引或CSI-RS索引等。波束方向标识例如可以是波束方向对应的索引或标识等。
作为另一种示例,第一终端装置可根据用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,确定波束方向。例如,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,因此在第一终端装置该在接收第一上行授权信息后,可将RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的波束方向作为这里的波束方向,或者说,该第一上行授权信息可用于隐式指示波束方向。可选的,第一终端装置可从网络设备接收第三对应关系,该第三对应关系可包括该用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系,或者,该第三对应关系可存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。当第一终端装置根据RNTI、CORESET、搜索空间或信令格式中的至少一个接收第一上行授权信息,可以进一步根据该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该第三对应关系确定第一上行授权信息对应的波束方向。可选的,第三对应关系可以在S801中配置。
举例来说,第三对应关系包括RNTI-1与SSB-1(或SSB-1的索引)之间的对应关系,以及包括RNTI-2与SSB-2(或SSB-2的索引)之间的对应关系,当第一终端装置根据RNTI-1 接收到第一上行授权信息,则第一终端装置可将SSB-1关联的波束方向作为该波束方向,或者说,将该SSB-1作为波束方向。当第一终端装置根据RNTI-2接收到第一上行授权信息,则第一终端装置可将SSB-2关联的波束方向作为该波束方向,或者说,将该SSB-2作为波束方向。
在S802的第二种可能的实现方式中,第一上行授权信息可来自于第二终端装置。示例性的,第二终端装置可根据来自于网络设备的第二上行授权信息向第一终端装置发送第一上行授权信息。
其中,第二终端装置可通过终端与终端间的任何一种通信链路,例如D2D链路、侧行链路(sidelink)、蓝牙(bluetooth)等,以单播(unicast)、组播(groupcast)、多播(multicast)或广播(broadcast)方式向第一终端装置发送第一上行授权信息。例如,第一上行授权信息可以承载在物理侧行控制信道(physical sidelink control channel,PSCCH)或物理侧行共享信道(physical sidelink shared channel,PSSCH)。
该第二种可能的实现方式中,根据本申请中的介绍,可选的,第二终端装置可通过PUCCH向网络设备发送调度请求,或者,第二终端装置可通过PUSCH向网络设备发送缓存状态,第二终端装置可接收来自于网络设备的该第二上行授权信息。第二终端装置可根据接收到的第二上行授权信息确定并向第一终端装置发送第一上行授权信息。例如,第二终端装置可根据第二上行授权信息确定时频资源(该时频资源即第二上行授权信息对应的时频资源),并在第一上行授权信息中携带该时频资源的指示信息,也就是说,第二上行授权信息对应的时频资源与第一上行授权信息对应的时频资源可以相同。
第二终端装置可根据第二上行授权信息中携带的显式指示确定第二上行授权信息用于第二终端装置进行上行数据的传输。或者说,第二终端装置可根据第二上行授权信息中携带的显式指示确定第二终端装置为主调终端。此外,该第二种实现方式中,也不排除第二终端装置为从属终端,例如,第一终端装置和第二终端装置作为一组从属终端,第二终端装置可配置为,将收到的上行授权信息转发至其他从属终端(如包括第一终端装置)。
此外,在该第二种可能的实现方式中,第一上行授权信息中还可包括用于第一终端装置向网络设备进行上行传输的传输资源(或传输资源的指示信息)和/或传输参数(或传输参数的指示信息)。可选的,第二上行授权信息中可包括用于第二终端装置进行上行传输的传输资源和/或传输参数,该第一上行授权信息中的用于第一终端装置向网络设备进行上行传输的传输资源和/或传输参数可以与第二上行授权信息中包括的用于第二终端装置进行上行传输的传输资源和/或传输参数相同。
作为一种可能的示例,第一上行授权信息可包括第一终端装置向网络设备参数上行数据所使用的和/或不能使用的传输资源和/或传输参数的指示信息。
在第二种可能的实现方式中,第一上行授权信息中还可包括波束指示信息。示例性的,波束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识,具体可参见在本申请在S802的第一种实现方式中对于波束指示信息的描述。其中,该波束方向可以是第二上行授权信息指示的,第二上行授权信息可通过显式或隐式方式指示该波束方向,显式指示和隐式指示的方式可以参照S802的第一种实现方式中显式或隐式指示波束方向的方式,不再赘述。
可选的,第一上行授权信息还可包括用于第一终端装置进行上行传输的其他信息,这 些信息例如包括:主调终端的标识、从属终端的标识或用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息等。
其中,从属终端的标识可用于显式指示从属终端。第一终端装置和/或从属终端的标识例如UE ID,或者,可包括其他可用于标识终端类型的信息,例如,在终端可通过时频资源、DMRS资源或序列标识时,终端对应的时频资源、DMRS资源或序列等信息。其中,终端的类型在本申请中是指终端为主调终端或从属终端。类似的,主调终端的标识可用于显式指示主调终端(如第二终端装置)。主调终端的标识可以是终端的UE ID,或可包括其他可用于标识终端的信息。此外,从属终端的标识和主调终端的标识也可作为允许发送数据的终端的标识,如果接收到第一上行授权信息的终端的标识,未包括在允许发送数据的终端的标识中,则表示不允许该终端通过第一上行授权信息发送上行数据。
可选的,在本申请中,第一终端装置可在接收到第一上行授权信息后,根据第一上行授权信息确定自身作为从属终端。此外,第二终端装置可在接收到第二上行授权信息后,根据第二上行授权信息确定自身作为主调终端。
本申请中,当终端接收到上行授权信息(包括第一上行授权信息和/或第二上行授权信息),且上行授权信息中仅指示了主调终端(如携带主调终端的标识),如果终端判断自己不是主调终端,如主调终端的标识不包括该终端的标识,则一种实现方式是,终端确定自己为从属终端;如果终端判断主调终端的标识包括自己的标识,则确定自己为主调终端。同理,当终端接收到上行授权信息(包括第一上行授权信息和/或第二上行授权信息),且上行授权信息中仅指示了从属终端(如携带从属终端的标识),如果终端判断自己不是从属终端时,如从属终端的标识不包括该终端的标识,则一种实现方式是,终端确定自己为主调终端;如果终端判断从属终端的标识包括自己的标识,则确定自己为从属终端。
此外应理解,用于接收上行授权信息(包括第一上行授权信息和/或第二上行授权信息)的RNTI、CORESET、搜索空间或信令格式中的至少一个,可对应于主调终端或从属终端,从而可如果上行授权信息隐式指示终端的类型。作为一种可选的示例,用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型(例如包括主调终端和从属终端)有对应关系(可称为第四对应关系)。例如,例如网络设备为终端配置了两个RNTI,RNTI-1和RNTI-2,分别关联主调终端和从属终端两个类型,当终端使用RNTI-1接收到动态授权指令时,终端确定自己为主调终端;当终端使用RNTI-2接收到动态授权指令时,终端确定自己为从属终端。
用于指示是否允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,可包括第一上行授权信息中的特定比特信息。例如,当第一上行授权信息的特定比特位的取值为“0”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,当特定比特位的取值为“1”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息。又如,当第一上行授权信息的特定比特位的取值为“1”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息,当特定比特位的取值为“0”时,表示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息。可以理解,本申请中,用于指示允许第一终端装置(或从属终端)通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息的名称不做具体要求,该指示信息也可具有其他名称, 例如:用于指示是否允许从属终端传输的指示信息,或用于指示是否只进行主调终端传输的信息等。
可选的,当第一上行授权信息中包括第一终端装置的标识,或包括用于指示允许第一终端装置通过该第一上行授权信息(或该时频资源)进行上行传输的指示信息时,第一终端装置可根据第一上行授权信息进行上行数据的传输;否则,如果第一上行授权信息中不包括第一终端装置的标识,或者,不包括用于指示允许第一终端装置通过该时频资源进行上行传输的指示信息,则第一终端装置不根据第一上行授权信息(或该时频资源)进行上行传输,或者说,第一终端装置忽略根据第一上行授权信息(或该时频资源)进行上行传输。
这里通过举例,介绍本申请中配置第一对应关系、第二对应关系、第三对应关系和第四对应关系中的至少一个的方式。可以理解,第一对应关系、第二对应关系、第三对应关系和第四对应关系中的至少一个可以在S801中配置。
作为一种可能的示例,网络设备可向终端设备发送或指示RNTI、CORESET、搜索空间或信令格式中的至少一个,与传输资源、传输参数、波束方向和终端类型中的至少一个之间的对应关系。其中,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源之间的对应关系时,该对应关系包括第一对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输参数之间的对应关系时,该对应关系包括第二对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系时,该对应关系包括第三对应关系。当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型之间的对应关系时,该对应关系包括第四对应关系。
例如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与传输资源和/或传输参数之间的对应关系时,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定传输资源,并通过该传输资源和/或传输参数发送上行数据。相应的,网络设备可根据该传输资源和/或传输参数,接收来自于第一终端装置的上行数据。
又如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系时,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定波束方向,并根据该波束方向确定是否在第一上行授权信息对应的时频资源发送上行数据,具体可参见S804中的描述。
又如,当该对应关系包括RNTI、CORESET、搜索空间或信令格式中的至少一个与终端类型之间的对应关系时,第一终端设备可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个以及该对应关系,确定终端类型,终端类型为从属终端或主调终端。其中,如果该终端类型为从属终端,则第一终端装置可执行图8所示流程,实现上行机会式传输或从属传输。
作为另一种示例,以上该RNTI、CORESET、搜索空间或信令格式中的至少一个,与传输资源、传输参数、波束方向和终端类型中的至少一个之间的对应关系,可以存储在第一终端装置中,例如,该对应关系可以是网络设备通过信令预配置的,也可以是协议定义的,或者可以是预配置在第一终端装置中的。该对应关系的使用方式可参见上面的示例, 不再赘述。
在一种可能的实现方式中,当第一终端装置接收到第一上行授权信息时,可以直接使用第一上行授权信息所对应的时频资源发送上行数据,而不需要执行S803的确定波束方向以及S804的判断波束方向是否满足预设条件的动作。例如当第一终端装置和第二终端装置有相同的波束方向时,基站才会配置第一终端装置接收第一上行授权信息,此时,第一终端装置能够接收到第一上行授权信息时,默认可以使用对应的时频资源发送上行数据。
此外,还可以由网络设备或通过预配置或预定义的方式等,设定波束方向、传输资源、传输参数或终端类型等信息中的至少两项之间的对应关系,用于隐式指示以上信息。例如,可以设定波束方向与传输资源和/或传输参数之间的对应关系,从而第一终端装置可以在根据本申请所示任一方式确定波束方向后,根据波束方向与传输资源和/或传输参数之间的对应关系确定传输资源和/或传输参数。同理,第一终端装置也可以在根据本申请所示任一方式确定传输资源和/或传输参数后,根据该对应关系确定波束方向。
S803:第一终端装置根据第一上行授权信息确定波束方向。
其中,第一终端装置获得的第一上行授权信息中可包括波束指示信息(也可称为波束方向的指示信息),用于显式指示波束方向,或者,该第一上行授权信息可用于隐式指示该波束方向。示例性的,波束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识。波束方向关联的参考信号的指示信息例如包括表征波束方向的参考信号的索引,例如SSB索引或CSI-RS索引等。波束方向标识例如可以是波束方向对应的索引或标识等。
对于隐式指示的方案,第一终端装置可根据用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定波束方向。例如,第一上行授权信息承载于DCI中,用于第一终端装置接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个可对应于波束方向,因此在第一终端装置接收该第一上行授权信息后,可将该RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的波束方向作为这里的波束方向。其中,用于接收该第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与波束方向之间的对应关系可携带在S801中的相关参数中。
可以理解,波束方向可以对应于第一终端装置向网络设备发送上行数据所采用的传输资源和/或传输参数,因此可隐式指示传输资源和/或传输参数。
S804:在波束方向满足预设条件时,第一终端装置通过第一上行授权信息对应的时频资源向网络设备发送上行数据。
例如,预设条件包括条件1和条件2中的至少一项。其中,条件1为:该波束方向对应的信号测量值满足阈值条件。条件2为:第一终端装置的波束方向包括该波束方向。
在条件1中,第一终端装置可根据该波束方向的测量结果确定该波束方向是否需满足预设条件。例如当参考信号可以表征波束方向时,第一终端装置根据波束方向对应的参考信号的信号质量测量值和阈值条件(或信号质量门限)判断波束方向是否满足预设条件,这里的信号质量包括但不限于参考信号的接收功率(reference signal received power,RSRP)、接收质量(reference signal received quality,RSRP)、信干噪比(signal-to-noise and interference ratio,SINR)、接收信号强度指示(received signal strength indicator,RSSI)、路径损耗(pathloss,PL)、信号的入射角(angle of arrival,AoA)、入射时间差(time difference of arrival,TDOA)的测量。例如,当参考信号的RSRP超过预设的RSRP的门限时,第一终端装置确定该波束方向满足预设条件。
在条件2中,对于网络设备为第一终端装置配置了传输资源例如免授权传输资源的情形,预设条件可以包括该波束方向是否为(或包括在)网络设备为第一终端装置的免授权传输配置的波束方向。如果该波束方向为网络设备为第一终端装置的免授权传输配置的波束方向,或者,该波束方向包括在网络设备为第一终端装置的免授权传输配置的波束方向中,则第一终端装置可确定该波束方向满足预设条件。
应理解,以上条件1和条件2为示例性的条件。在实际使用中,可根据采用条件1和条件2中的一个作为预设条件,即第一终端装置在确定满足条件1和条件2中的一个时确定满足预设条件。或者,可采用条件1和条件2的结合作为预设条件,即第一终端装置在确定满足条件1且满足条件2时确定满足预设条件。
还应理解,在S804中,第一终端装置可使用传输资源和/或传输参数向网络设备发送上行数据。可选的,该传输资源和/或该传输参数可以是第一终端装置根据第一上行授权信息确定的,具体可参见S802中的介绍。例如,第一上行授权信息具体可包括传输资源信息和/或传输参数。再例如,第一上行授权信息也可用于从传输资源集合中指示一个传输资源,和/或,第一上行授权信息可用于从传输参数集合中指示一个传输参数。又例如,第一上行授权信息可用于隐式指示传输资源和/或传输参数。可选的,该传输资源和/或传输参数可以是网络设备通过RRC、DCI、MAC CE等信令为第一终端装置预先配置的。
可以理解的是,第一终端装置向网络设备发送上行数据所采用的时频资源可以是第一上行授权信息对应的时频资源中的部分或全部时频资源。
相应的,网络设备接收来自于第一终端装置的数据。
如果波束方向不满足预设条件,则第一终端装置在第一上行授权信息对应的时频资源不发送(或忽略发送)上行数据。
此外,第二终端装置可通过第一上行授权信息对应的时频资源发送上行数据。相应的,网络设备接收来自于第二终端装置的数据。
基于图8所示流程,第一终端装置可以在波束信息满足预设条件时,根据网络设备原本为第二终端装置分配的时频资源发送上行数据,从而可以提高时频资源上的终端复用能力。而在波束信息不符合预设条件时,第一终端装置不根据该第一上行授权信息发送上行数据。然而,第一上行授权信息原本是用于调度第二终端装置即主调终端的上行传输,可能不会指示第一终端装置发送上行数据的HARQ进程,因而需要第一终端装置在发送上行数据时合理确定HARQ进程。
为了令第一终端装置合理确定HARQ进程,本申请实施例提供一种数据传输方法。如图9所示,本申请实施例提供的一种数据传输方法可包括S901至S903所示步骤,下面分别对所述步骤进行描述。
S901:第一终端装置接收第一上行授权信息,第一上行授权信息对应的时频资源用于第二终端装置的上行传输。
其中,第一上行授权信息可参见S802中的描述。第一终端装置接收第一上行授权信息的方式也可以参见S802中的介绍,这里不再赘述。
示例性的,如S802中的说明,第一上行授权信息可来自于网络设备,或者说,第一终端装置可接收来自于网络设备的第一上行授权信息。或者,第一上行授权信息可来自于第二终端装置,或者说,第一终端装置可接收来自于第二终端装置的第一上行授权信息。
S902:第一终端装置根据第一上行授权信息确定第一HARQ进程号(或第一HARQ 进程)。
该第一HARQ进程号可用于第一终端装置发送上行数据。
下面结合示例对第一终端装置根据第一上行授权信息确定第一HARQ的方式进行说明。
方式1,第一上行授权信息包括第一HARQ进程号的指示信息,第一终端装置根据第一HARQ进程号的指示信息确定该第一HARQ进程号。
例如,网络设备在发送第一上行授权信息时,可携带为从属终端(包括但不限于第一终端装置)分配的HARQ进程号的指示信息,如进程号,从属终端可根据指示信息所指示的HARQ进程号作为第一HARQ进程号。
方式2,第一终端装置根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定第一HARQ进程号。
可选的,方式2中,可以采用预先约定或网络设备预先配置的方式,建立RNTI、CORESET、搜索空间或信令格式中的至少一个与第一终端装置的HARQ进程号之间的对应关系(可称为第五对应关系)。在第一终端装置采用RNTI、CORESET、搜索空间或信令格式中的至少一个接收到第一上行授权信息时,第一终端装置可以根据该对应关系确定用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个所对应的HARQ进程号,作为第一HARQ进程号。可以理解,本申请中的预先约定包括但不限于,终端向网络设备指示某配置、参数或信息(如映射关系或对应关系),或者,可包括网络设备向终端指示某配置、参数或信息。该第五对应关系的确定方式可参照第一对应关系至第四对应关系的确定方式,不再赘述。
例如,网络设备为第一终端装置配置RNTI1和RNTI2,分别对应于HARQ进程1和HARQ进程2,当从属终端使用RNTI1接收到动态授权时,第一终端装置确定第一HARQ进程为进程1,当终端使用RNTI2接收到动态授权时,第一终端装置确定第一HARQ进程为进程2。
可以理解,本申请中,当第一上行授权信息来自于第二终端装置,则第一终端装置可根据搜索空间接收第一上行授权信息,如,接收用于承载第一上行授权信息的侧行控制信息(sidelink control information,SCI)。SCI可承载于PSCCH。
方式3,第一上行授权信息包括第二终端装置的信息,第一终端装置根据第二终端装置的信息确定第一HARQ进程号。
与方式2类似,方式3中,第一终端装置可建立第二终端装置的信息与第一终端装置的HARQ进程号之间的对应关系(可称为第六对应关系)。在第一终端装置获得第一上行授权信息中的第二终端装置的信息时,可根据该对应关系确定第二终端装置的信息对应的HARQ进程号作为第一HARQ进程号。该第六对应关系的确定方式可参照第一对应关系至第四对应关系的确定方式,不再赘述。
示例性的,第二终端装置的信息可包括第二终端装置的标识、第二终端装置发送数据所使用的时域资源和/或频域资源、第二终端装置发送数据所使用的码域资源、第二终端装置的HARQ进程号(称为第二HARQ进程号)。
第二终端装置的标识例如是第二终端装置的终端标识(UE ID)或其他可用于标识第二终端装置的信息。以第二终端装置的标识是终端标识为例,第一终端装置接收的来自于网络设备的第一上行授权信息中可包括第二终端装置的终端标识,或者,在第一上行授权 信息包括在来自于第二终端装置的SCI中时,该SCI中可包括该终端标识。
第二HARQ进程号可用于第二终端装置的上行传输,例如,第二终端装置根据该第二HARQ进程号,在第一上行授权信息对应的时频资源进行上行传输。
可以理解,如果第二终端装置的信息包括第二HARQ进程号,则第六对应关系可包括函数映射关系。因此也可以说,第一终端装置可根据第二HARQ进程号通过一定的确定方式确定第一HARQ进程号。其中,该确定方式可以是第一终端装置与网络设备预先约定的,也可以是网络设备配置的,或者可以是协议定义的或预配置的,本申请不作具体要求。
在方式2的一种可能的实现方式中,一种根据第二HARQ进程号确定第一HARQ进程号的方式例如,根据第二HARQ进程号以及第一HARQ进程数确定第一HARQ进程号。其中,第一HARQ进程数小于或等于第一终端装置的HARQ进程的最大数量、第一HARQ进程数可以是第一终端装置与网络设备预先约定的,也可以是网络设备配置的,或者可以是协议定义的或预配置的,本申请不作具体要求。示例性的,第一HARQ进程数为非负整数。
以第二HARQ进程号表示为HARQ_num_z,第一HARQ表示为HARQ_num_c,第一HARQ进程数表示为HARQ_num_c_max为例,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=HARQ_num_z MOD HARQ_num_c_max;
其中,MOD表示取余运算。
或者,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=FLOOR(HARQ_num_z/HARQ_num_c_max);
其中,FLOOR表示向下取整运算,/表示除法运算。
或者,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=CEIL(HARQ_num_z/HARQ_num_c_max);
其中,CEIL表示向上取整运算。
在另一种可能的实现方式中,第一终端装置还可根据第二HARQ进程号、第一HARQ进程数以及HARQ进程号偏置值确定第一HARQ进程号。其中,HARQ进程号偏置值。例如,HARQ进程号偏置值可用于区分第一终端装置使用多个第二终端装置的时频资源发送数据时所使用的HARQ进程,比如,对于不同的第二终端装置来说,第一终端装置可以使用不同的HARQ进程号偏置值确定出不同的HARQ进程号。HARQ进程号偏置值可以是第一终端装置与网络设备预先约定的,也可以是网络设备配置的,或者可以是协议定义的或预配置的,本申请不作具体要求。示例性的,HARQ进程号偏置值为非负整数。第一HARQ进程数可参见前一种实现方式中的说明。
以第二HARQ进程号表示为HARQ_num_z,第一HARQ表示为HARQ_num_c,HARQ进程号偏置值表示为HARQ_num_offset,第一HARQ进程数表示为HARQ_num_c_max为例,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=HARQ_num_z MOD HARQ_num_c_max+HARQ_num_offset。
其中,MOD表示取余运算。
或者,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=FLOOR(HARQ_num_z/HARQ_num_c_max)+HARQ_num_offset。
其中,FLOOR表示向下取整运算。
或者,HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=CEIL(HARQ_num_z/HARQ_num_c_max)+HARQ_num_offset。
其中,CEIL表示向上取整运算。
或者,对上述各公式再进行取余操作,例如HARQ_num_c与HARQ_num_z满足:
HARQ_num_c=(HARQ_num_z MOD HARQ_num_c_max+HARQ_num_offset)MOD HARQ_num_max。
其中,HARQ_num_max为非负整数,表示第一终端装置的HARQ进程的最大数量。HARQ_num_max可以是第一终端装置与网络设备预先约定的,也可以是网络设备配置的,或者可以是协议定义的或预配置的,本申请不作具体要求。
可选的,可以通过预先约定或网络设备预先配置的方式针对不同的主调终端(如第二终端装置)确定不同的HARQ进程号偏置值,这样可以使第一终端装置在跟随不同的第二终端装置进行从属传输时使用不同的HARQ进程,避免混淆。同理,第一HARQ进程数可以是针对不同的主调终端(如第二终端装置)确定的。
例如,对于第二终端装置1和第二终端装置2可设置不同的HARQ进程号偏置值,分别表示为HARQ_num_offset1和HARQ_num_offset2,第一终端装置在,如果第一上行授权信息对应的时频资源用于第二终端装置1的上行传输,则第一终端装置可根据HARQ_num_offset1确定HARQ_num_c1,例如,HARQ_num_c1=HARQ_num_z1 MOD HARQ_num_c_max1+HARQ_num_offset1。如果第一上行授权信息对应的时频资源用于第二终端装置2的上行传输,则第一终端装置可根据HARQ_num_offset2确定HARQ_num_c2,例如,HARQ_num_c2=HARQ_num_z2 MOD HARQ_num_c_max2+HARQ_num_offset2。可选的,HARQ_num_z1和HARQ_num_z2分别为第二终端装置1和第二终端装置2的第二HARQ进程号,HARQ_num_c_max1和HARQ_num_c_max2分别是针对第二终端装置1和第二终端装置2设置的第一终端装置的第一HARQ进程数。第一HARQ进程数可参见前一种实现方式中的说明。
此外可选的,第一终端装置也可将第二HARQ进程号作为第一HARQ进程号,或者,根据第二HARQ进程号和偏移值确定第一HARQ进程号。
方式4,第一终端装置可将通过预先约定或网络设备预先配置等方式确定的HARQ进程号作为进行从属传输时采用的第一HARQ进程号。
例如,网络设备可以在配置第一终端装置进行从属传输时,将该第一HARQ进程号配置给第一终端装置。本申请中,配置第一终端装置进行从属传输,包括但不限于:配置第一终端装置是否支持从属传输、配置第一终端装置进行从属传输所采用的参数(如波束方向等),或配置第一终端装置进行从属传输的传输方式,不具体限定。
方式4中,第一终端装置可以在根据第一上行授权信息确定进行上行机会式传输后,将通过预先约定或网络设备预先配置等方式确定的HARQ进程号作为进行从属传输时采用的第一HARQ进程号。
此外,在通过预先约定或网络设备预先配置等方式确定的HARQ进程号为多个时,也可以结合方式1至方式3中的一种或多种,确定第一HARQ进程号。此外,以上方式1至方式3中的多种方式也可以相互组合实施,本申请不作具体要求。
可以理解,网络设备可按照第一终端装置确定第一HARQ进程号的相同或相似的方式 确定第一终端装置所采用的第一HARQ进程号。
S903:第一终端装置采用第一HARQ进程号,在第一上行授权信息对应的时频资源发送上行数据。
例如,第一终端装置所发送的上行数据的数据包的包头中包括第一HARQ进程号。
示例性的,S903可对应于S803,或者说,第一终端装置可以在采用上行机会式传输时,采用第一HARQ进程号发送上行数据。
采用以上图9所示流程,第一终端装置和网络设备可以准确确定第一终端装置发送上行数据所采用的HARQ进程号。当网络设备对于第一终端装置的上行数据的接收失败,可通过该第一HARQ进程号指示第一终端装置进行重传,从而可提高上行传输可靠性。
可以理解的是,本申请中,网络设备可通过新数据指示(new data indicator,NDI)指示第一终端装置进行重传。这里对于NDI指示终端设备进行重传的方式进行介绍。网络设备在指示终端设备进行重传时,可在上行授权信息中携带与初传相同的HARQ进程号和NDI。其中,由于终端设备使用的HARQ进程号有限(HARQ进程号的最大数量不超过HARQ进程数),因此,携带相同HARQ进程号的上行授权信息有可能用于调度初传,也可能调度重传,终端设备可根据NDI是否翻转判断调度的是初传数据还是重传数据。
示例性的,当上行授权信息携带的HARQ进程号与终端设备此前发送的上行数据的HARQ进程号相同,且该上行授权信息与此前调度上行数据的上行授权信息中的NDI相同,即NDI未发生翻转,则表示当前的上行授权信息用于调度重传数据。否则,如果上行授权信息携带的HARQ进程号与终端设备此前发送的上行数据的HARQ进程号相同,且该上行授权信息与此前调度上行数据的上行授权信息中的NDI不同,即NDI发生翻转,则表示当前的上行授权信息用于调度初传数据。
可选的,为了合理确定NDI,本申请实施例提供的通信方法中,第一终端装置还可根据接收的第一上行授权信息,确定NDI(以下称为第一NDI),并根据第一NDI发送上行数据。其中,在根据第一上行授权信息确定的HARQ进程号与第一终端装置此前的从属传输采用的HARQ进程号相同时,根据该第一NDI确定根据第一上行授权信息初传还是重传数据。
其中,第一终端装置此前的从属传输可以是根据接收的第三上行授权信息进行的。该第三上行授权信息可用于指示时频资源,第一终端装置可根据该时频资源初传上行数据。可选的,该上行数据为初传数据或重传数据。此外,该时频资源还可用于第二终端装置进行上行传输。其中,该第三上行授权信息所指示的时频资源的确定方式,可以参见第一上行授权信息对应的时频资源的确定方式,不再赘述。
可以理解,这里的第三上行授权信息可以是第一上行授权信息之前的上行授权信息。还可以理解,第一终端装置还可根据确定第一NDI相同或相似的方式,根据第三上行授权信息确定第三NDI,该第三NDI可理解为初传数据所对应的NDI。终端设备可存储该第三NDI。第一终端装置可根据这两个NDI确定NDI是否翻转,例如,当这两个NDI取值相同,表示NDI未翻转,如果这两个NDI的取值不同,则表示发生NDI翻转。此外在本申请中,第一NDI的取值也可用于指示NDI是否翻转。例如,当第一NDI取值为“1”时,表示NDI翻转,反之,当第一NDI取值为“0”时,表示NDI未翻转。根据前面的描述,如果NDI未翻转,则第一终端装置根据第一上行授权信息重传上行数据。如果NDI翻转,则第一终端装置根据第一上行授权信息初传上行数据。
还可以理解,第一终端装置根据第三上行授权信息确定HARQ的方式,可参见S902中第一终端装置根据第一上行授权信息确定第一HARQ进程号的说明。第一终端装置根据第一上行授权信息确定第一HARQ进程号的方式,可以与第一终端装置根据第三上行授权信息确定HARQ进程号的方式相同或不同,本申请不作具体要求。
还可以理解,第一终端装置接收第三上行授权信息的方式可参见第一终端装置接收第一上行授权信息的方式的说明。例如,参见S802中对于第一上行授权信息的说明,第三上行授权信息可来自于网络设备或第二终端装置(或其他的主调终端)。
下面对第一终端装置根据第一上行授权信息确定第一NDI的方式进行说明。
方式(1),第一上行授权信息中包括第二NDI,第一终端装置根据第二NDI确定第一NDI,其中,第二NDI为第二HARQ进程号对应的NDI。
方式(1)中,第一终端装置可根据第二终端装置的第二NDI确定第一NDI。例如,可采用预先约定或网络设备预先配置的方式,建立第一NDI与第二NDI之间的对应关系(可称为第七对应关系)。例如,第七对应关系包括,第一NDI与第二NDI相同。又如,在NDI通过1个比特指示时,第一NDI与第二NDI不同。该第七对应关系的确定方式可参照第一对应关系至第四对应关系的确定方式,不再赘述。
方式(2),第一上行授权信息中包括第一NDI的指示信息。
例如,第一上行授权信息中包括第一NDI的取值的指示信息。
基于方式(2),网络设备可通过第一上行授权信息指示第一NDI的取值,以便第一终端装置确定是否需要重传数据。
下面对基于以上第一NDI的从属传输中重传或初传的判断机制进行介绍。
首先,对第一上行授权信息的发送方式进行说明。这里的第一上行授权信息指示第一终端装置的重传,或者说,根据第一上行授权信息确定的第一NDI可用于确定NDI未翻转。
第一上行授权信息的发送方式可能存在以下三种情况:
情况1,第一上行授权信息用于调度第二终端装置的重传,第一终端装置和第二终端装置从网络设备接收该第一上行授权信息。此时,第二终端装置根据第一上行授权信息确定的HARQ进程号为第二HARQ进程号,且第一上行授权信息中携带的NDI与第三上行授权信息中携带的NDI相同,即第一上行授权信息可调度第二终端装置的重传。
例如,网络设备通过第一终端装置和第二终端装置共享的RNTI加扰该第一上行授权信息,第一终端装置和第二终端装置均可通过该RNTI接收第一上行授权信息。情况1中,网络设备未正确接收第二终端装置的数据,因此,网络设备可通过第一上行授权信息调度第二终端装置的重传。
此外,网络设备未正确接收至少一个第一终端装置的上行数据。
可选的,第一终端装置中还可包括数据未被正确接收的所述第一终端装置的标识。例如,在第一终端装置向第二终端装置发送用于指示第一终端装置请求向网络设备发送数据的指示信息(以下称为第一指示信息),并且相应的,第二终端装置向网络设备发送用于指示第一终端装置向网络设备发送数据的指示信息(可称为第二指示信息)时,网络设备可根据第二指示信息获知发送上行数据的第一终端装置,从而可以在未接收到相应的第一终端装置的上行数据时,确定未正确接收的上行数据所属的第一终端装置,从而在第一上行授权信息中携带第一终端装置的标识。
可以理解,情况1中,第一终端装置根据第三上行授权信息确定的第一HARQ进程号与根据第一上行授权信息确定的第一HARQ进程号相同,且根据第一上行授权信息确定的第一NDI与根据第三上行授权信息确定的第三NDI相同,因此,第一终端装置可以根据接收到的第一上行授权信息确定进行相同HARQ进程号(即根据第一上行授权信息确定的第一HARQ进程号)的上行数据的重传,或者说,第一上行授权信息用于调度第一终端装置的重传。
或者,情况1也可替换为,第二上行授权信息用于调度第二终端装置的重传,第二终端装置在接收第二上行授权信息后,向第一终端装置发送第一上行授权信息,此时第一上行授权信息来自于第二终端装置。第一上行授权信息可以由第二上行授权信息确定。第一终端装置根据第一上行授权信息确定的第一HARQ进程号与根据第三上行授权信息确定的第一HARQ进程号相同,且根据第一上行授权信息确定的第一NDI与根据第三上行授权信息确定的第三NDI相同,即第一上行授权信息可调度第一终端装置的重传。
情况2,第一上行授权信息由网络设备发送至多个第一终端装置,其中,多个第一终端装置均为从属终端,且该多个第一终端装置均响应于一个或多个第三上行授权信息向网络设备发送上行数据。此时第一上行授权信息可用于调度该多个第一终端装置的重传。
例如,情况2中,网络设备可通过该多个第一终端装置共享的RNTI等参数发送第一上行授权信息,使得该多个第一终端装置能够接收第一上行授权信息。
可以理解,情况2中,网络设备可以获知该多个第一终端装置的上行传输,但未正确接收该多个第一终端装置的上行数据。
与情况1相同,第一终端装置根据第一上行授权信息确定的第一HARQ进程号与根据第三上行授权信息确定的第一HARQ进程号相同,且第一终端装置根据第一上行授权信息确定的第一NDI与根据第三上行授权信息中确定第三NDI相同,即第一上行授权信息可调度第一终端装置的重传。
可选的,情况2中,该多个第一终端装置可根据第一上行授权信息确定第二终端装置,以便根据第二终端装置确定第一HARQ进程号或NDI。例如,第一上行授权信息中可携带第二终端装置的显式指示信息,显式指示信息如第二终端装置的标识。或者,第一上行授权信息可用于隐式指示第二终端装置,例如,第一终端装置可根据用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个确定第二终端装置,例如,用于接收第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个与第二终端装置之间存在对应关系。
可选的,情况2中,第一上行授权信息中包括第二终端装置的信息,第一终端装置可以根据第二终端装置的信息确定第一HARQ进程号。第二终端装置的信息以及第一终端装置根据第二终端装置的信息确定第一HARQ进程号的方法同步骤S903中对于第一终端装置根据第一上行授权信息确定第一HARQ进程号的方式的介绍,不再赘述。
情况3,第一上行授权信息发送至一个第一终端装置,用于指示该终端装置的重传。例如,用于加扰该第三上行授权信息的RNTI为该第一终端装置独享的RNTI。
情况3适用于网络设备准确接收到第二终端装置的数据,但未接收到第一终端装置的上行数据的情形。可以理解,第一终端装置可以是一个或多个从属终端,网络设备可单独向每个从属终端发送第一上行授权信息,每个从属终端可作为情况3中的第一终端装置。
与情况1或情况2相同,可选的,第一上行授权信息携带的HARQ进程号为第二HARQ进程号,且第一上行授权信息中携带的NDI与第三上行授权信息中携带的NDI相同。第一终端装置根据第一上行授权信息确定的第一HARQ进程号与根据第三上行授权信息确定的第一HARQ进程号相同,且根据第一上行授权信息确定的第一NDI与根据第三上行授权信息确定的第三NDI相同,因此,第一终端装置可以根据接收到的第一上行授权信息确定进行相同HARQ进程号(即根据第三上行授权信息确定的第一HARQ进程号)的上行数据的重传。
或者,情况3中的第一上行授权信息可直接携带第一HARQ进程号,以及第三NDI。其中,可选的,第一HARQ进程号与第三NDI可由第一终端装置发送至网络设备。或者,可由第一终端装置发送至第二终端装置,再由第二终端装置发送至网络设备,例如,第一指示信息和第二指示信息中可携带第一HARQ进程号与第三NDI,因此网络设备可以在该第一终端装置的上行数据未正确接收到相应的上行数据时,在第一上行授权信息中携带第一HARQ进程号与第三NDI,从而通过第一HARQ进程号与第三NDI指示第一终端装置进行重传。
可以理解,在情况3中,第一终端装置可根据第一上行授权信息确定第二终端装置,确定方式可参见情况2中的介绍,不再赘述。
可选的,第一终端装置根据第一上行授权信息确定允许第一终端装置重传上行数据。
在一种可能的实现方式中,第一上行授权信息可包括用于指示是否允许第一终端装置重传上行数据的信息。当该指示信息指示允许第一终端装置重传上行数据时,第一终端装置可根据第一上行授权信息重传上行数据。而在该指示信息指示不允许第一终端装置重传上行数据时,即便根据第一上行授权信息确定的HARQ进程号为第一HARQ,且根据第一上行授权信息确定的NDI未翻转,第一终端装置也不会重传发送上行数据。此外,在满足从属传输要求且第一终端装置有上行数据需要发送时,第一终端装置可根据该第一上行授权信息发送上行数据,该上行数据为初传数据。
具体来说,第一上行授权信息可包括状态指示,该状态指示可用于以下状态中的至少一项:指示不允许从属传输(包括初传和重传)、允许从属重传但不允许从属初传或允许从属传输(包括初传和重传)。
如图10所示,初传过程中,UE-1(即第一终端装置)的上行需求(如第二指示信息)通过第二终端装置的MAC CE发送至网络设备,该MAC CE中不包括UE-2的上行需求,也就是说,第二终端装置与UE-1根据第三上行授权信息进行初传数据的发送,UE-2不根据第三上行授权信息进行初传数据的发送。当第一上行授权信息调度重传数据时,MAC CE无法改变,因此该MAC CE中也不会携带UE-2的上行需求,网络设备可以根据该MAC CE获知UE-1的重传进而接收重传数据,而不会接收UE-2的上行数据。此时网络设备可以在第一上行授权信息中携带指示信息,用于指示不允许UE-2的从属传输,如不允许UE-2(或UE-1以外的其他从属终端)的初传和/或重传。相应的,即便有上行传输的需求,UE-2也不会根据第一上行授权信息对应的时频资源发送上行数据,或者说,UE-2忽略根据该第一上行授权信息发送数据。此外,第一上行授权信息中还可携带用于指示是否允许UE-1进行从属传输的指示信息,如携带用于指示是否允许UE-1进行初传或重传的指示信息。
下面结合实施例,对第一指示信息和第二指示信息的发送方式进行说明。根据前面的描述,第一指示信息可用于指示第一终端装置请求向网络设备发送数据。第二指示信息可 用于指示第一终端装置向网络设备发送数据。
在第一种可能的实现方式,第一指示信息可用于指示第一终端装置进行上行传输。例如,当第一终端装置接收到第三上行授权信息,第一终端装置可向第二终端装置发送第一指示信息,以表示第一终端装置根据该第一上行授权信息向网络设备发送数据,其中,指示的内容具体可以是第一终端装置将要或正在或已经根据该第三上行授权信息向网络设备发送数据。该实现方式中,第一指示信息可以是第一终端装置确定进行上行传输后发送的,或者说第一指示信息可以是第一终端装置确定满足进行上行传输的条件后发送的,或者说第一指示信息可以是第一终端装置确定接收到第三上行授权信息后发送的。结合本申请中的说明,该第一指示信息还可携带第一终端装置进行上行传输所采用的HARQ进程号和NDI。
在第二种可能的实现方式,第一指示信息可用于指示第一终端装置有上行数据的发送需求,或者,第一指示信息可用于指示第一终端装置请求发送上行数据。该实现方式中,第一指示信息可以是通过多播、组播或广播方式发送的。该第一指示信息中可携带第一终端装置进行上行传输所采用的HARQ进程号和NDI。
基于该第二种实现方式,可选的,第二终端装置和/或网络设备可根据该第一指示信息向第一终端装置发送第三上行授权信息。也可以说,在发送第一指示信息时第一终端装置可能尚未接收到第三上行授权信息。该实现方式中,第一指示信息可以是第一终端装置在确定有上行传输需求后发送的,例如可选的,第一指示信息在第一终端装置获取到第一上行授权信息之前发送,或者说,该第一指示信息可以是第一终端装置接收到第一上行授权信息之前发送的。可选的,此时第一上行授权信息可以指示第一终端装置根据第一上行授权信息向网络设备发送数据。
可以理解,以上第一指示信息的任一实现方式中,第二终端装置可用于接收来自于网络设备的第四上行授权信息,并向第一终端装置发送第三上行授权信息。第二终端装置接收第四上行授权信息并向第一终端装置发送第三上行授权信息的实现方式可参照S802中,对于第二终端装置根据第二上行授权信息向第一终端装置发送第一上行授权信息的介绍,不再赘述。示例性的,如参照S802中的说明,第四上行授权信息对应的时频资源与第三上行授权信息对应的时频资源相同。其中,该时频资源可用于第二终端装置发送上行数据和第二指示信息,和/或,可用于第一终端装置发送上行数据。
其中可选的,该第四上行授权信息中还可携带至少一个波束方向关联的参考信号的指示信息或波束方向标识。
另外,可选的,第二终端装置可将第一指示信息(或根据第一指示信息确定的新的指示信息)发送至网络设备,用于指示第一终端装置有上行传输需求,或用于指示第一终端装置请求进行上行传输,从而由网络设备根据该第一指示信息(或新的指示信息,如第二指示信息)向第一终端装置发送上行机会式传输的相关参数并发送第三上行授权信息,也就是说,第一终端装置可以在收到第三上行授权信息之前向第二终端装置发送第一指示信息,并由第二终端装置将第一指示信息(或根据第一指示信息确定的新的指示信息)发送至网络设备。
可选的,第一指示信息还可用于指示第一终端装置的波束方向。该第一终端装置的波束方向例如可以为网络设备接收第一终端装置的上行数据的波束方向。
其中,第一指示信息中可包括波束指示信息,用于显式指示波束方向。示例性的,波 束指示信息可包括波束方向关联的参考信号的指示信息或波束方向标识。波束方向关联的参考信号的指示信息例如包括表征波束方向的参考信号的索引,例如SSB索引或CSI-RS索引等。波束方向标识例如可以是波束方向对应的索引或标识等。对于第一指示信息的第二种实现方式,第二终端装置可根据第一指示信息所指示的波束方向确定是否向第一终端装置发送第三上行授权信息。例如,第二终端装置可接收来自于网络设备的第四上行授权信息,该第四上行授权信息中可携带波束方向关联的参考信号的指示信息或波束方向标识,当第二终端装置确定第四上行授权信息指示的波束方向包括第一指示信息所指示的第一终端装置的波束方向,或第二终端装置根据其他方式确定的第二终端装置的波束方向包括第一指示信息所指示的第一终端装置的波束方向、或与第一指示信息所指示的第一终端装置的波束方向一致,则第二终端装置可向第一终端装置发送第三上行授权信息。此外,如果第四上行授权信息指示的波束方向不包括第一指示信息所指示的第一终端装置的波束方向,或第二终端装置根据其他方式确定的第二终端装置的波束方向不包括第一指示信息所指示的第一终端装置的波束方向、或与第一指示信息所指示的第一终端装置的波束方向不一致,意味着网络设备的接收波束不包括第一终端装置所发送上行数据的接收波束,即网络设备无法接收第一终端装置的上行数据,或者接收信号较差,此时第二终端装置可以忽略向第一终端装置发送第三上行授权信息,或者,第二终端装置不向第一终端装置发送第三上行授权信息,以提高通信可靠性。
另外,可选的,第一指示信息还可用于指示第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数。本申请中,传输资源包括但不限于时域资源、频域资源、码域资源或多址接入签名资源等任意一项或多项资源。本申请中,多址接入签名包括但不限于能用于或辅助或增强多用户检测或多数据接收的码本、图案、序列等,例如扩频序列、扩频图案、资源映射图案或资源跳变图案等。本申请中的传输参数包括但不限于MCS、功控参数或重复传输次数等参数。第一终端装置可根据该传输资源和/或该传输参数向网络设备发送上行数据。
示例性的,该码域资源可包括第一终端装置进行上行传输的码域资源,以便于网络设备根据该码域资源接收来自于第一终端装置的上行数据,降低接收复杂度。
本申请中,码域资源可以是码域资源可包括DMRS资源,如DMRS端口、前导码资源或序列资源等,其中,序列资源例如包括ZC序列、覆盖的ZC序列、伪随机噪声序列、最长线性反馈移位寄存器序列、Golden序列、里德-马勒序列、DFT序列、IDFT序列,或哈德马序列等。
可以理解,第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数,可以是第一终端装置根据第三上行授权信息确定的,确定方式可以参照S802中对于第一终端装置根据第一上行授权信息确定传输资源和/或传输参数的描述,不再赘述。此外,第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数还可以是网络设备通过RRC、MAC CE、DCI信令为第一终端装置预先配置的。
可选的,第一指示信息还可以是一个序列,该序列可以用于指示第一终端装置进行上行传输或第一终端装置请求进行上行传输,或用于指示第一终端装置的标识、终端类型、波束方向、传输资源、或传输参数,例如该序列与第一终端装置的标识、终端类型、波束方向、传输资源、传输参数有对应关系。
可选的,第二终端装置在接收到第一指示信息后,可以向第一终端装置发送第一指示 信息的响应信息,该响应信息用于确认第一终端装置向网络设备发送数据。
示例性的,该响应信息可用于向第一终端装置确认该第一终端装置是否可以(或是否允许)向网络设备发送上行数据。第一终端装置在收到用于确认该第一终端装置可以向网络设备发送上行数据的响应信息后,可以向网络设备发送上行数据。否则,如果第一终端装置未接收到该响应信息,或者,第一终端装置接收到的响应信息指示第一终端装置不可以向网络设备发送上行数据,则第一终端装置不再根据该第三上行授权信息向网络设备发送上行数据。
比如在上行机会传输中,第二终端装置为主调终端,则第二终端装置可以通过该响应信息指示第一终端装置是否可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据。第一终端装置如果接收到第一指示信息对应的用于确认该第一终端装置可以向网络设备发送上行数据的响应信息,则可以通过第三上行授权信息对应的时频资源向网络设备发送上行数据,如果第一终端装置未接收到该响应信息,或者,如果第一终端装置接收到的响应信息指示第一终端装置不可以向网络设备发送上行数据,则第一终端装置不再根据该第三上行授权信息对应的时频资源向网络设备发送上行数据。
此外,该响应信息还可用于指示第一终端装置进行上行传输所使用的传输资源和/或传输参数。
可选的,以上第一指示信息和/或第一指示信息的响应信息可以通过例如D2D链路、侧行链路、蓝牙等,以单播、组播、多播或广播方式向第一终端装置发送第三上行授权信息。
例如,第一指示信息的响应信息可承载在PSCCH或PSSCH中,从而由第二终端装置以显式的方式向第一终端装置指示该响应信息。
此外,第二终端装置可使用隐式的方式向第一终端装置指示是否可以(或允许)向网络设备发送上行数据,此时第二终端装置向第一终端装置发送的信息或信号或序列等可以不对应于某个具体的含义,而可以通过承载该信息或信号或序列的资源区分不同含义。例如,第二终端装置向第一终端装置发送的信息或信号或序列的时频资源对应于响应信息的特定含义,当第二终端装置使用第一资源向第一终端装置发送响应信息时,代表可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据,或者当第二终端装置使用第二资源向第一终端装置发送响应信息时,代表不可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据。或者,第二终端装置向第一终端装置发送的信息或信号或序列对应于响应信息的特定含义,例如,第一序列对应于可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据,或者第二序列对应于不可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据,则当第二终端装置向第一终端装置发送第一序列时,代表可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据,或者当第二终端装置向第一终端装置发送第二序列时,代表不可以通过第三上行授权信息指示的时频资源向网络设备发送上行数据。
本申请中,第二指示信息可以指示如下信息中的一种或多种:存在或不存在第一终端装置向网络设备发送数据,向网络设备发送数据的第一终端装置的标识和/或数量,向网络设备发送数据的第一终端装置的波束方向,向网络设备发送数据的第一终端装置使用的传输资源和/或传输参数。
示例性的,第二终端装置可以根据接收到的第一指示信息确定是否存在第一终端装置 向网络设备发送数据,或者确定向网络设备发送数据的第一终端装置的标识和/或数量,例如当第二终端装置接收到两个第一终端装置发送的第一指示信息时,可以确定向网络设备发送数据的第一终端装置的数量为2。
其中,第二指示信息指示第一终端装置的波束方向的方式可参照第一指示信息指示第一终端装置的波束方向的方式,不再赘述。例如,第一指示信息和/或第二指示信息中可包括波束方向关联的参考信号的指示信息或波束方向标识。
下面以传输资源包括码域资源为例,对第二指示信息指示存在或不存在第一终端向网络设备发送数据、第二指示信息指示向网络设备发送数据的第一种装置的标识和/或数量、第一指示信息和/或第二指示信息指示第一终端装置的波束方向和/或第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数的方式进行介绍。
示例性的,该过程中可以考虑两种码域资源的指示方式。其中,第一种方式是第一指示信息和/或第二指示信息中直接指示码域资源。例如,第一指示信息和/或第二指示信息中携带码域资源的资源信息,如DMRS端口号等。
第二种方式是第一指示信息和/或第二指示信息与码域资源有关联关系,网络设备根据关联关系确定码域资源。例如,第一指示信息和/或第二指示信息指示第一终端装置的标识,而第一终端装置的标识与码域资源有关联关系,又例如,第一指示信息和/或第二指示信息本身为一个序列,该序列与第一终端装置标识或第一终端装置所使用的码域资源之间有关联关系。
再例如表1所示,网络设备可预先为多个终端装置的从属传输信息进行编码并建立索引,或者,可以预先配置或定义终端装置的索引与DMRS端口之间的关联关系,从而为了降低开销,第一指示信息中只需要携带对应的索引即可。例如,网络设备预先配置表1所示的索引与DMRS端口的关联关系,第一终端装置可在第一指示信息中携带索引值,代表相应的DMRS端口被第一终端装置用于进行上行传输。
表1
可以理解,这里提到的关联关系可以是网络设备通过RRC消息、MAC CE或DCI向第一终端装置和/或第二终端装置配置的,也可以是预配置或预定义的。
可选的,如果支持上行机会式传输或从属传输或具备上行机会式传输或从属传输的能力,第一终端装置可以向网络设备上报从属传输或上行机会式传输能力,以指示第一终端装置支持从属传输或上行机会式传输。进一步可选的,网络设备可向第一终端装置(如支持从属传输或上行机会式传输的终端装置,或广播方式向多个不特定的终端装置)配置从属传输或上行机会式传输模式,或配置如下信息中的一种或多种:用于接收网络设备发送的第一授权信息所使用的参数如RNTI、CORESET、SS、信令格式,用于向第二终端设备发送第一指示信息或接收第二终端设备发送的第一授权信息和/或针对第一指示信息的响应消息的参数如PSCCH和/PSSCH信道配置参数,发送数据使用的传输资源和/或传输参数。例如,网络设备可向第一终端装置指示码域资源,或者,指示第一终端装置的标识与码域资源之间的关联关系,或者,指示序列与第一终端装置标识或第一终端装置所使用的 码域资源之间的关联关系。又如,传输资源可包括可用的时频资源和/或频域资源,频域资源如至少一个DMRS端口。其中,在配置DMRS端口时,网络设备可指示表1所示关联关系。
可以理解,以上的示例中以码域资源的指示方式为例,说明了第一指示信息和/或第二指示信息指示码域资源的方式,第一指示信息和/或第二指示信息指示其他信息如终端装置的标识、波束方向、传输资源、或传输参数的方式可以参照实现,本申请不再一一举例。
可选的,第二指示信息还可以是一个序列,该序列可以用于指示存在或不存在第一终端向网络设备发送数据、向网络设备发送数据的第一终端装置的标识和/或数量、向网络设备发送数据的第一终端装置的波束方向、或向网络设备发送数据的第一终端装置使用的传输资源和/或传输参数。例如该序列与存在或不存在第一终端向网络设备发送数据、向网络设备发送数据的第一终端装置的标识和/或数量、向网络设备发送数据的第一终端装置的波束方向、或向网络设备发送数据的第一终端装置使用的传输资源和/或传输参数有对应关系。可选的,第二指示信息可携带在第二终端装置向网络设备发送的上行数据中。其中,该上行数据的时频资源是通过第三上行授权信息和/或第四上行授权信息所指示的时频资源。
此外,第二指示信息也可携带在上行控制信息(uplink control information,UCI)或MAC CE等信令中,本申请不具体限定。
可选的,第一终端装置可以在确定满足进行上行传输的条件时,根据第三上行授权信息向网络设备发送上行数据。其中,该条件可以包括但不限于波束方向满足S804所示的条件1和条件2中的任意一项。
进一步可选的,进行上行传输的条件还可包括条件3。条件3例如,第一终端装置确定第一终端装置向网络设备发送上行数据所采用的传输资源,与第二终端装置向网络设备发送上行数据所采用的传输资源不冲突,以降低第一终端装置和第二终端装置之间的上行传输干扰。其中,这里的不冲突是指,第一终端装置向网络设备发送上行数据所采用的传输资源与第二终端装置向网络设备发送上行数据所采用的传输资源不同,例如,第一终端装置和第二终端装置分别采用的码域资源正交,或者,码域资源的正交性超过设定的门限等。
作为一种示例,第二终端装置可在接收来自于第一终端装置的第一指示信息后,向第一终端装置发送第一指示信息的响应信息,用于向第一终端装置确认第一终端装置可以和/或不可以进行从属传输。可选的,如果第一指示信息用于指示第一终端装置向网络设备发送上行数据所采用的传输资源,则第二终端装置可以在确定第一终端装置向网络设备发送上行数据所采用的传输资源与第二终端装置向网络设备发送上行数据所采用的传输资源不冲突的情况下,向第一终端装置发送用于确认第一终端装置向网络设备发送数据的响应信息。如果第二终端装置确定第一终端装置向网络设备发送上行数据所采用的传输资源与第二终端装置向网络设备发送上行数据所采用的传输资源存在冲突,则可不发送响应信息,或者发送用于指示第一终端装置不可以向网络设备发送上行数据的响应信息。则第一终端装置可以在接收到用于指示第一终端装置可以进行从属传输的响应信息的情况下,确认资源不冲突,因此该响应信息还可用于指示资源不冲突,即满足条件3。否则,如果第一终端装置未接收到该响应信息,或者,第一终端装置接收到的响应信息指示第一终端装置不可以向网络设备发送上行数据,则第一终端装置确认资源冲突,即不满足条件3。
作为另一种示例,如果由第二终端装置向第一终端装置发送第三上行授权信息,则第 二终端装置还可以向第一终端装置指示第二终端装置向网络设备进行上行传输所采用的传输资源,从而由第一终端装置判断是否存在资源冲突。
应理解,本申请中,第一终端装置可以在满足以上条件1至条件3中的任意一项时,向网络设备发送上行数据。这里的上行数据包括但不限于:根据第一上行授权信息发送的上行数据,和/或,根据第三上行授权信息发送的上行数据。
还可理解,第一终端装置向网络设备发送上行数据所采用的传输资源和/或传输参数可以是根据第一上行授权信息或第三上行授权信息确定的,还可以是网络设备通过RRC、MAC CE、DCI信令为第一终端装置预先配置的,具体可参见S802和S804中的描述,不再赘述。
本申请中,网络设备可根据第二指示信息接收来自于第一终端装置的数据。而如果未接收到第二指示信息,网络设备可以忽略对从属终端的上行数据的盲检。
其中,第二指示信息可用于指示第一终端装置的波束方向。此外,第二指示信可用于指示第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数。
可以理解,当第二指示信息用于指示第一终端装置的波束方向时,网络设备可获知波束方向,并根据该波束方向接收第一终端装置通过上行机会式传输或从属传输发送的上行数据。当第二指示信息用于指示第一终端装置向网络设备发送数据所采用的传输资源和/或传输参数时,网络设备可通过该传输资源和/或传输参数接收来自于第一终端装置的上行数据。因此,可以提高接收效率,减少盲检测,降低网络设备的接收复杂度,提高数据传输性能。
另外,可选的,第二指示信息还可用于指示存在或不存在第一终端装置向网络设备发送数据、或用于指示向网络设备发送数据的第一种装置的标识和/或数量。网络设备可根据第二指示信息获知是否存在第一终端装置发送数据和/或发送数据的第一终端装置的数量,以便提升网络设备对第一终端装置发送数据的检测成功率。
可选的,本申请中的第二终端装置可以向网络设备发送能力信息,用于指示第二终端装置具备支持本申请中通信动作的能力。例如,在发送第二指示信息和/或接收第四上行授权信息之前,第二终端装置可以向网络设备发送能力信息。示例性的,能力信息可用于指示第二终端装置支持通过终端间的链路接收第一终端装置(或其他进行从属传输的终端)的信息(如第一指示信息),并支持向网络设备发送信息(如第二指示信息)。
上述对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图11所示,基于同一技术构思,本申请实施例还提供了一种数据传输装置1100,该数据传输装置1100可以是数据传输装置,也可以是数据传输装置中的装置或组件,或者是能够和数据传输装置匹配使用的装置。数据传输装置1100可以是终端设备或网络设备。一种设计中,该数据传输装置1100可以包括执行上述方法实施例中所涉及的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该数据传输装置1100可以包括处理模块1101和收发模块1102。收发模块1102可包括发送模块和/或接收模块。
示例性的,在该装置用于执行以上各个实施例所描述的由第二终端装置执行的方法时,该装置可以包括收发模块1102和处理模块1101。示例性的,在该装置用于执行第一方面所描述的方法时,该装置可以包括收发模块和处理模块。其中,收发模块1102可用于接收第一上行授权信息。处理模块1101可用于根据第一上行授权信息确定第一HARQ进程号。收发模块1102还可用于,采用该第一HARQ进程号,在该时频资源发送上行数据。第一上行授权信息可参见前述方法实施例中的描述。
可选的,收发模块1102还可用于,接收来自于网络设备或第二终端装置的第一上行授权信息。
可选的,当第一上行授权信息包括第一HARQ进程号的指示信息时,处理模块1101还可根据所述第一HARQ进程号的指示信息确定所述第一HARQ进程号。或者,处理模块1101还可根据用于接收所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,确定所述第一HARQ进程号。或者,当所述第一上行授权信息还包括所述第二终端装置的信息时,处理模块1101可根据所述第二终端装置的信息确定所述第一HARQ进程号。示例性的,所述第二终端装置的信息包括所述第二终端装置的标识和/或所述第二终端装置的第二HARQ进程号,所述第二HARQ进程号用于所述第二终端装置的上行传输。
可选的,处理模块1101还可根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一NDI。收发模块1102具体可根据所述第一NDI,在所述第一上行授权信息对应的时频资源发送所述上行数据。
可选的,处理模块1101还可根据所述第一上行授权信息确定第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输,并根据所述第二NDI确定所述第一NDI。
可选的,处理模块1101还可根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据。
可选的,处理模块1101可确定所述第一上行授权信息中包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;处理模块1101可根据用于接收所述第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定允许所述第一终端装置重传所述上行数据。
示例性的,在该装置用于执行上述方法实施例所描述的第二终端装置的动作时,该装置可以包括收发模块1102和处理模块1101。其中,收发模块1102可用于接收来自于网络设备的第二上行授权信息,以及,还可用于根据所述第二上行授权信息,向所述第一终端装置发送第一上行授权信息。可选的,处理模块1101可用于根据第二上行授权信息生成第一上行授权信息,第一上行授权信息以及第二上行授权信息可参见第一方面或第二方面中的介绍。
示例性的,在该装置用于执行上述方法实施例所描述的网络设备的动作时,该装置可以包括收发模块1102和处理模块1101。其中,处理模块1101可用于确定第一上行授权信息,所述收发模块1102可用于发送所述第一上行授权信息或第二上行授权信息。第一上行授权信息和第二上行授权信息可参见第三方面中对于第一上行授权信息的说明。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器 中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图12所示为本申请实施例提供的数据传输装置1200,用于实现本申请提供的数据传输方法。数据传输装置1200可以是位于终端设备中的装置或组件,也可以是终端设备,也可以是网络设备或网络设备中的装置或组件。该数据传输装置1200可以是数据传输装置,也可以是数据传输装置中的装置,或者是能够和数据传输装置匹配使用的装置。其中,该数据传输装置1200可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。数据传输装置1200包括至少一个处理器1220,用于实现本申请实施例提供的数据传输方法。数据传输装置1200还可以包括输出接口1210,输出接口也可称为输入输出接口。在本申请实施例中,通信接口用于通过传输介质和其它装置进行通信。例如,数据传输装置1200是芯片时,通过输出接口1210与其他芯片或器件进行传输。处理器1220用于实现上述方法实施例所述的方法。
示例性的,在该装置用于执行以上各个实施例所描述的由第二终端装置执行的方法时,该装置可以包括输出接口1210和处理器1220。其中,输出接口1210可用于接收来自于第一终端装置的第一指示信息。可选的,处理器1220可用于根据第一指示信息生成第二指示信息。输出接口1210还可用于向网络设备发送第二指示信息。第一指示信息可参见上述方法实施例中的描述。
可选的,输出接口1210还可用于,向该第一终端装置发送该第一指示信息的响应信息。第一指示信息的响应信息可参见上述方法实施例中的描述。
此外,可选的,输出接口1210还可用于接收来自该网络设备的第二上行授权信息,并向该第一终端装置发送第一上行授权信息。该第一上行授权信息和/或第二上行授权信息可参见上述方法实施例中的说明。
示例性的,在该装置用于执行以上各个实施例所描述的由第一终端装置执行的方法时,该装置可以包括输出接口1210和处理器1220。其中,输出接口1210可用于向第二终端装置发送第一指示信息,还可用于向该网络设备发送数据。可选的,处理器1220可用于生成第一指示信息和/或数据,第一指示信息可参见上述方法实施例中的介绍。
此外,可选的,输出接口1210还可用于接收来自于所述第二终端装置的所述第一指示信息的响应信息。该响应信息可参见上述方法实施例中的介绍。
示例性的,在该装置用于执行以上各个实施例所描述的由网络设备执行的方法时,该装置可以包括输出接口1210和处理器1220。其中,输出接口1210可用于发送接收来自于第二终端装置的第二指示信息,以及还可接收来自于第一终端装置的数据。第二指示信息可参见上述方法实施例中的说明。可选的,处理器1220可用于解析第二指示信息。
可选的,输出接口1210还可用于向所述第二终端装置发送第二上行授权信息。
此外,输出接口1210还可用于执行以上图8至图9所示实施例中由箭头表示的动作,处理器1220还用于执行上述图8至图9所示实施例中由矩形框表示的动作中的其它操作,在此不再一一赘述。
数据传输装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储 的程序指令。所述至少一个存储器中的至少一个可以与处理器集成在一起。
在本申请实施例中,存储器1230可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,处理器1220可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
如图13所示为本申请实施例提供的数据传输装置1300,用于实现本申请提供的数据传输方法。数据传输装置1300可以是位于终端设备中的装置,也可以是终端设备,也可以是网络设备或位于网络设备中的装置或组件。该数据传输装置1300可以是数据传输装置,也可以是数据传输装置中的装置,或者是能够和数据传输装置匹配使用的装置。其中,该数据传输装置1300可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。上述实施例提供的数据传输方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,数据传输装置1300可包括:输入接口电路1301、逻辑电路1302和输出接口电路1303。可选的,以该装置用于实现第二终端装置的功能为例,输入接口电路1301可用于接收第一指示信息,逻辑电路1302可用于执行第一终端装置的处理动作,如根据第一指示信息生成第二指示信息,输出接口电路1303可用于输出第二指示信息。又以该装置用于实现第一终端装置的功能为例,输出接口电路1303可用于输出第一指示信息和数据,逻辑电路1302可用于执行第一终端装置的处理动作,如生成第一指示信息和/或数据。又以该装置用于实现网络设备的功能为例,输入接口电路1301可用于接收第一指示信息和数据,逻辑电路1302可用于执行第一终端装置的处理动作,如解析第一指示信息和/或数据。
可选的,数据传输装置1300在具体实现时可以是芯片或者集成电路。
本申请上述方法实施例描述的数据传输装置所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种数据传输方法,其特征在于,包括:
    第一终端装置接收第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;
    所述第一终端装置根据所述第一上行授权信息确定第一混合自动请求重传请求HARQ进程号;
    所述第一终端装置采用所述第一HARQ进程号,在所述时频资源发送上行数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一终端装置接收第一上行授权信息,包括:
    所述第一终端装置接收来自于所述第二终端装置的所述第一上行授权信息;或者,
    所述第一终端装置接收来自于所述网络设备的所述第一上行授权信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一上行授权信息包括所述第一HARQ进程号的指示信息;
    所述第一终端装置根据所述第一上行授权信息确定第一HARQ进程号,包括:
    所述第一终端装置根据所述第一HARQ进程号的指示信息确定所述第一HARQ进程号。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一终端装置根据所述第一上行授权信息确定第一HARQ进程号,包括:
    所述第一终端装置根据用于接收所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,确定所述第一HARQ进程号。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一上行授权信息还包括所述第二终端装置的信息;
    所述第一终端装置根据所述第一上行授权信息确定第一HARQ进程号,包括:
    所述第一终端装置根据所述第二终端装置的信息确定所述第一HARQ进程号。
  6. 如权利要求5所述的方法,其特征在于,所述第二终端装置的信息包括所述第二终端装置的标识和/或所述第二终端装置的第二HARQ进程号,所述第二HARQ进程号用于所述第二终端装置的上行传输。
  7. 如权利要求1-6中任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一新数据指示NDI;
    所述第一终端装置采用所述第一HARQ进程号,在所述时频资源发送上行数据,包括:
    所述第一终端装置根据所述第一NDI,在所述第一上行授权信息对应的时频资源发送所述上行数据。
  8. 如权利要求7所述的方法,其特征在于,所述第一上行授权信息对应的时频资源具体用于所述第二终端装置的重传。
  9. 如权利要求7或8所述的方法,其特征在于,所述第一终端装置根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一NDI,包括:
    所述第一终端装置根据所述第一上行授权信息确定第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输;
    所述第一终端装置根据所述第二NDI确定所述第一NDI。
  10. 如权利要求7-9中任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据。
  11. 如权利要求10所述的方法,其特征在于,所述第一上行授权信息还包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;
    所述第一终端装置根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据,包括:所述第一终端装置根据用于接收所述第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定允许所述第一终端装置重传所述上行数据。
  12. 一种数据传输方法,其特征在于,包括:
    第二终端装置接收来自于网络设备的第二上行授权信息;
    所述第二终端装置根据所述第二上行授权信息,向所述第一终端装置发送第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于所述第一终端装置确定第一混合自动重传请求HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据。
  13. 如权利要求12所述的方法,其特征在于,所述第一上行授权信息还用于确定所述第一HARQ进程号对应的第一新数据指示NDI。
  14. 一种数据传输方法,其特征在于,包括:
    网络设备确定第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于确定第一混合自动重传请求HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据;
    所述网络设备发送所述第一上行授权信息。
  15. 如权利要求14所述的方法,其特征在于,所述第一上行授权信息包括所述第一HARQ进程号的指示信息;或者,
    用于发送所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,还用于确定所述第一HARQ进程号。
  16. 如权利要求14或15所述的方法,其特征在于,所述第一上行授权信息还用于确定所述第一HARQ进程号对应的第一新数据指示NDI,所述第一NDI用于所述第一终端装置确定在所述时频资源发送所述上行数据。
  17. 如权利要求16所述的方法,其特征在于,所述第一上行授权信息具体用于第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输,所述第二NDI用于确定所述第一NDI。
  18. 如权利要求16所述的方法,其特征在于,所述第一上行授权信息还包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;
    用于发送所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,还用于确定允许所述第一终端装置重传所述上行数据。
  19. 一种数据传输装置,其特征在于,包括收发模块和处理模块:
    所述收发模块,用于接收第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输;
    所述处理模块,用于根据所述第一上行授权信息确定第一混合自动重传请求HARQ进程号;
    所述收发模块还用于,采用所述第一HARQ进程号,在所述时频资源发送上行数据。
  20. 如权利要求19所述的装置,其特征在于,所述收发模块具体用于:
    接收来自于所述第二终端装置的所述第一上行授权信息;或者,
    接收来自于所述网络设备的所述第一上行授权信息。
  21. 如权利要求19或20所述的装置,其特征在于,所述第一上行授权信息包括所述第一HARQ进程号的指示信息;
    所述处理模块具体用于:
    根据所述第一HARQ进程号的指示信息确定所述第一HARQ进程号。
  22. 如权利要求19或20所述的装置,其特征在于,所述处理模块具体用于:
    根据用于接收所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,确定所述第一HARQ进程号。
  23. 如权利要求19或20所述的装置,其特征在于,所述第一上行授权信息还包括所述第二终端装置的信息;
    所述处理模块具体用于:
    所述第一终端装置根据所述第二终端装置的信息确定所述第一HARQ进程号。
  24. 如权利要求23所述的装置,其特征在于,所述第二终端装置的信息包括所述第二终端装置的标识和/或所述第二终端装置的第二HARQ进程号,所述第二HARQ进程号用 于所述第二终端装置的上行传输。
  25. 如权利要求19-24中任一所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一上行授权信息确定所述第一HARQ进程号对应的第一新数据指示NDI;
    所述收发模块具体用于:
    根据所述第一NDI,在所述第一上行授权信息对应的时频资源发送所述上行数据。
  26. 如权利要求25所述的装置,其特征在于,所述第一上行授权信息对应的时频资源具体用于所述第二终端装置的重传。
  27. 如权利要求25或26所述的装置,其特征在于,所述处理模块具体用于:
    根据所述第一上行授权信息确定第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输;
    所述第一终端装置根据所述第二NDI确定所述第一NDI。
  28. 如权利要求25-27中任一所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一上行授权信息确定允许所述第一终端装置重传所述上行数据。
  29. 如权利要求28所述的装置,其特征在于,所述第一上行授权信息包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;
    所述处理模块具体用于:根据用于接收所述第一上行授权信息的RNTI、CORESET、搜索空间或信令格式中的至少一个,确定允许所述第一终端装置重传所述上行数据。
  30. 一种数据传输装置,其特征在于,包括收发模块和处理模块:
    所述处理模块,用于获取来自于网络设备的第二上行授权信息;
    所述收发模块,还用于根据所述第二上行授权信息,向所述第一终端装置发送第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于所述第一终端装置确定第一混合自动重传请求HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据。
  31. 如权利要求30所述的装置,其特征在于,所述第一上行授权信息还用于确定所述第一HARQ进程号对应的第一新数据指示NDI。
  32. 一种数据传输装置,其特征在于,包括收发模块和处理模块:
    所述处理模块,用于确定第一上行授权信息,所述第一上行授权信息对应的时频资源用于第二终端装置的上行传输,所述第一上行授权信息用于确定第一混合自动重传请求HARQ进程号,所述第一HARQ进程号用于所述第一终端装置在所述时频资源发送上行数据;
    所述收发模块,用于发送所述第一上行授权信息。
  33. 如权利要求32所述的装置,其特征在于,所述第一上行授权信息包括所述第一HARQ进程号的指示信息;或者,
    用于发送所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,还用于确定所述第一HARQ进程号。
  34. 如权利要求32或33所述的装置,其特征在于,所述第一上行授权信息还用于确定所述第一HARQ进程号对应的第一新数据指示NDI,所述第一NDI用于所述第一终端装置确定在所述时频资源发送所述上行数据。
  35. 如权利要求34所述的装置,其特征在于,所述第一上行授权信息具体用于第二HARQ进程号对应的第二NDI,所述第二HARQ进程号用于所述第二终端装置的上行传输,所述第二NDI用于确定所述第一NDI。
  36. 如权利要求32-35中任一所述的装置,其特征在于,所述第一上行授权信息还包括用于指示允许所述第一终端装置重传所述上行数据的指示信息;或者;
    用于发送所述第一上行授权信息的无线网络临时标识RNTI、控制资源集CORESET、搜索空间或信令格式中的至少一个,还用于确定允许所述第一终端装置重传所述上行数据。
  37. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储一个或多个计算机程序,所述一个或多个计算机程序包括计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述一个或多个计算机程序,以使得所述通信装置执行如权利要求1-11中任一项所述的方法,或使得所述通信装置执行如权利要求12-13中任一项所述的方法,或使得所述通信装置执行如权利要求14-18中任一项所述的方法。
  38. 一种芯片系统,其特征在于,所述芯片系统包括逻辑电路和输入输出接口,其中:
    所述输入输出接口用于与所述芯片系统之外的其他通信装置进行通信,所述逻辑电路用于执行如权利要求1-11中任一项所述的方法;
    或者,所述输入输出接口用于与所述芯片系统之外的其他通信装置进行通信,所述逻辑电路用于执行如权利要求12-13中任一项所述的方法;
    或者,所述输入输出接口用于与所述芯片系统之外的其他通信装置进行通信,所述逻辑电路用于执行如权利要求14-18中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-11中任一项所述的方法,或使得所述计算机执行如权利要求12-13中任一项所述的方法,或使得所述计算机执行如权利要求14-18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-11中任一项所述的方法,或使得所述计算机执行如权利要求12-13中任一项所述的方法,或使得所述计算机执行如权利要求14-18中任一项所述的方法。
  41. 一种通信系统,其特征在于,包括第一终端装置和网络设备,所述第一终端装置用于执行如权利要求1-11中任一所述的方法,所述网络设备用于执行如权利要求14-18中任 一所述的方法。
  42. 如权利要求41所述的通信系统,其特征在于,还包括第二终端装置,所述第二终端装置用于执行如权利要求12-13中任一所述的方法。
PCT/CN2023/085353 2022-06-13 2023-03-31 一种数据传输方法及装置 WO2023241171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210661385.0A CN117279106A (zh) 2022-06-13 2022-06-13 一种数据传输方法及装置
CN202210661385.0 2022-06-13

Publications (2)

Publication Number Publication Date
WO2023241171A1 WO2023241171A1 (zh) 2023-12-21
WO2023241171A9 true WO2023241171A9 (zh) 2024-01-18

Family

ID=89192114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085353 WO2023241171A1 (zh) 2022-06-13 2023-03-31 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN117279106A (zh)
WO (1) WO2023241171A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673593B2 (en) * 2016-11-03 2020-06-02 Huawei Technologies Co., Ltd. HARQ signaling for grant-free uplink transmissions
US10595336B2 (en) * 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions
US10869333B2 (en) * 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions
WO2021184266A1 (zh) * 2020-03-18 2021-09-23 Oppo广东移动通信有限公司 一种数据包重组方法、电子设备及存储介质

Also Published As

Publication number Publication date
WO2023241171A1 (zh) 2023-12-21
CN117279106A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2019141101A1 (zh) 随机接入方法及装置
RU2631671C2 (ru) Временная шкала harq для tdd-fdd агрегирования несущих
CN113348642B (zh) 执行发送和接收操作的用户设备和系统
JPWO2019064768A1 (ja) 端末装置、基地局装置、方法及び記録媒体
WO2017169008A1 (ja) 端末装置、基地局装置および通信方法
JP6380705B2 (ja) 端末装置、基地局装置および通信方法
WO2017134943A1 (ja) 端末装置、基地局装置および通信方法
WO2017169003A1 (ja) 端末装置、基地局装置および通信方法
US20160198453A1 (en) Method, Device, and System for Sending Feedback Information
KR20200105436A (ko) 무선 통신 시스템에서 리소스 풀을 운영하는 방법 및 장치
WO2017130490A1 (ja) 端末装置、基地局装置および通信方法
EP3745792B1 (en) Communication method and device
WO2017130500A1 (ja) 端末装置、基地局装置および通信方法
WO2017169004A1 (ja) 端末装置、基地局装置および通信方法
WO2021035447A1 (zh) 一种数据传输方法及装置
US20220361164A1 (en) Uplink control information transmission method and apparatus
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
JP2022549266A (ja) ランダムアクセスプロシージャのための方法および装置
WO2021197109A1 (zh) 一种通信方法和通信装置
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
WO2022057655A1 (zh) 一种无线局域网的协作传输方法及装置
WO2023241171A9 (zh) 一种数据传输方法及装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
KR20220102586A (ko) 인터-ue 조정 기반의 사이드링크 자원의 할당을 위한 방법 및 장치
WO2023221727A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822742

Country of ref document: EP

Kind code of ref document: A1